JP7161483B2 - 下地基板、機能素子および下地基板の製造方法 - Google Patents

下地基板、機能素子および下地基板の製造方法 Download PDF

Info

Publication number
JP7161483B2
JP7161483B2 JP2019545539A JP2019545539A JP7161483B2 JP 7161483 B2 JP7161483 B2 JP 7161483B2 JP 2019545539 A JP2019545539 A JP 2019545539A JP 2019545539 A JP2019545539 A JP 2019545539A JP 7161483 B2 JP7161483 B2 JP 7161483B2
Authority
JP
Japan
Prior art keywords
crystal layer
group
support substrate
underlying
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019545539A
Other languages
English (en)
Other versions
JPWO2019065689A1 (ja
Inventor
万佐司 後藤
正宏 坂井
翔平 大上
隆史 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2019065689A1 publication Critical patent/JPWO2019065689A1/ja
Application granted granted Critical
Publication of JP7161483B2 publication Critical patent/JP7161483B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/04Pattern deposit, e.g. by using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02354Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light using a coherent radiation, e.g. a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Description

発光ダイオード(LED)等の発光素子として、サファイア(α-アルミナ単結晶)上に各種窒化ガリウム(GaN)層を形成したものが知られている。例えば、サファイア基板上に、n型GaN層、InGaN層からなる量子井戸層とGaN層からなる障壁層とが交互積層された多重量子井戸層(MQW)、及びp型GaN層が順に積層形成された構造を有するものが量産化されている。
窒化ガリウム等の13族元素窒化物結晶層を育成するための下地基板(テンプレート基板)としては、下地基板の下地結晶層の結晶育成面に凹凸を設けることが提案されている。すなわち、特許文献1~3では、下地基板の結晶育成面に凹凸を形成することにより、転位低減や、結晶中の応力を低減する手法が開示されている。
特許文献2では、下地結晶層の育成面を平坦なc面とし、かつc面と平行な面を有さず、c面に対して傾斜した傾斜面を連続させて凹凸を形成している。
特許文献3では、下地基板の結晶育成面に、+c面の平坦部と、非+c面が露出した平坦な傾斜面とを形成している。特許文献3では、下地基板の結晶育成面に矩形の凹凸を形成している。
更に、特許文献4では、サファイア基板上に種結晶膜を形成する際に、サファイア基板と種結晶膜との界面に沿って、加熱やレーザを用いてボイドを形成するとともに、ボイド率を12.5%以下とすることを提案している。これによって、窒化ガリウム結晶層のクラックやひび割れを抑制している。
特許5359740 特開2017-36174 特開2005-281067 特許6144630
13族元素窒化物結晶層を下地結晶層上に育成した後に、育成温度から室温への温度降下時に、支持基板と13族元素窒化物結晶層との熱膨張の相違から応力が13族元素窒化物結晶層に加わり、13族元素窒化物結晶層に反りやクラックが生ずる。この反りやクラックが生ずると、13族元素窒化物結晶層上に他の機能素子を形成する際に、欠陥や成膜不良の原因となる。
本発明の課題は、下地結晶層の結晶育成面上に13族元素窒化物結晶層を育成するための下地基板において、13族元素窒化物結晶層における欠陥やクラックを更に低減できる構造を提供することである。
本発明に係る下地基板は、
酸化アルミニウムからなる支持基板、および
前記支持基板の主面上に設けられ、13族元素窒化物結晶からなり、結晶育成面を有する下地結晶層を有し
前記支持基板と前記下地結晶層との間に、ボイドおよび前記支持基板の材質と前記13族元素窒化物結晶との反応物が存在しており、この反応物が、アルミニウム13族元素および酸素を含前記下地結晶層が隆起部を備えており、前記隆起部の内側に前記反応物が存在しており、前記隆起部を前記支持基板の前記主面に垂直な断面で見たときに、前記結晶育成面が湾曲線を形成しており、この湾曲線において前記結晶育成面の前記主面からの高さが滑らかに変化しており、前記隆起部を前記支持基板の前記主面に垂直な断面で見たときに、前記主面の法線に対する前記前記13族元素窒化物結晶のc軸の角度が滑らかに変化していることを特徴とする。
また、本発明は、
前記下地基板、および
前記下地結晶層上に設けられた機能層
を備えていることを特徴とする、機能素子に係るものである。
本発明者は、特定組成の支持基板と13族元素窒化物結晶層との間に、特定組成の反応物や13族金属を生成できることを見いだした。すなわち、13族元素窒化物から窒素が放出されることで13族金属が生成し、また13族金属が酸化アルミニウムと反応することで反応物が生ずるものである。そして、このような反応物や分解物を生成させることによって、下地結晶層上に育成した後に、育成温度から室温への温度降下時に、13族元素窒化物結晶層に反りやクラックを抑制できることを見いだし、本発明に到達した。
(a)は、支持基板1上に下地結晶層2を設けた状態を示し、(b)は、下地結晶層2Aと支持基板1との間に反応物4Aを形成した状態を示す。 (a)は、下地結晶層2Bと支持基板1との間に反応物4Bを形成した状態を示し、図2(b)は、下地結晶層3に隆起部5を形成した状態を示す。 (a)は、下地結晶層3上に薄い13族元素窒化物結晶層7を設けた状態を示し、(b)は、下地結晶層3上に13族元素窒化物結晶層8の厚膜を設けた状態を示す。 (a)、(b)および(c)は、それぞれ、下地結晶層3に隆起部5、5A、5Bを設けた状態を示す。 (a)は、下地結晶層3に隆起部5Cを設けた状態を示し、(b)は、下地結晶層3に、隆起部5と平坦部3dとを設けた状態を示し、(c)は、下地結晶層3に、複数連続する隆起部5を設けた状態を示し、(d)も、下地結晶層3に隆起部5Cを設けた状態を示す。 (a)、(b)は、それぞれ、下地結晶層3の隆起部の平面パターンを示す。 (a)、(b)は、それぞれ、下地結晶層3の隆起部の平面パターンを示す。 (a)、(b)は、それぞれ、下地結晶層3の隆起部の平面パターンを示す。 (a)、(b)は、それぞれ、下地結晶層3の隆起部の平面パターンを示す。
以下、適宜図面を参照しつつ、本発明を詳細に説明する。
まず、図1(a)に示すように、支持基板1の主面1a上に下地結晶層2を成膜する。1bは支持基板1の底面である。次いで、支持基板1の底面1b側から、矢印Aのようにレーザ光を照射する。このレーザ光は支持基板1を透過し、下地結晶層2と支持基板1との界面に到達する。
ここで、レーザ光のエネルギーを調節することで、図1(b)に示すように、支持基板の材質と下地結晶層との反応物4Aが、支持基板と下地結晶層との間に生成するようにする。本例では、反応物4Aが、支持基板1の主面1aおよび下地結晶層2Aの界面2bに接しており、また複数の反応物4Aが分かれており、隣り合う反応物4Aの間に隙間が設けられている。しかし、本例では、反応物4Aが生成するときに、下地結晶層2Aを変形させるような圧力が加わっていないため、下地結晶層2Aは変形せず、隆起部は形成されていない。
図2(a)の例では、反応物4Bが、支持基板1の主面1aおよび下地結晶層2Bの界面2bに接しており、層状の反応物4Bが設けられている。本例では、反応物4Bが生成するときに、下地結晶層2Bを変形させるような圧力が加わっていないため、下地結晶層2Bは変形せず、隆起部は形成されていない。このため、反応物4B上で下地結晶層2Bは平坦面をなしている。
図1(b)、図2(a)に示すように、支持基板と下地結晶層との間に反応物が生成した場合には、たとえ下地結晶層に隆起部が生成しない場合であっても、下地結晶層上に育成された13族元素窒化物結晶層の反りやクラックを著しく抑制することが可能であった。
また、図2(b)の例では、支持基板の材質と下地結晶層との反応物4が、支持基板と下地結晶層との間に生成するようにする。本例では、反応物4が、支持基板1の主面1aおよび下地結晶層3の界面3bに接しており、また複数の反応物4が分かれており、隣り合う反応物4の間に隙間が設けられている。そして、反応物4の上では隆起部5が生成し、隆起部4の上側では下地結晶層3の湾曲部3cが湾曲し、隆起する。一方、反応物4が生成しない場所では、下地結晶層3が支持基板の主面1aに接した状態となる。3aは結晶育成面であり、6は下地基板である。
なお、反応物の代わりに13族金属が生成していてよく、あるいは反応物と13族金属との両方が生成していてよい。
次いで、下地結晶層上に13族元素窒化物結晶層を育成する。例えば、図2(b)に示す下地基板を作製した場合には、次に図3(a)に示すように、下地結晶層3の育成面3aに、13族元素窒化物結晶7(薄膜)を育成できる。20は、機能素子の育成面である。
あるいは、図3(b)に示すように、下地結晶層3の育成面3aに、13族元素窒化物結晶8(厚膜)を育成できる。20は、機能素子の育成面である。この時点で、13族元素窒化物結晶8を支持基板1から剥離せずにテンプレート(template)基板として使用することも可能である。しかし、13族元素窒化物結晶8を支持基板から分離して自立基板とし、この自立基板をテンプレート基板として使用できる。
次いで、13族元素窒化物結晶7、8上に機能素子構造を形成する。こうした機能素子構造の種類は特に限定されないが、発光素子を例示できる。また、結晶上に機能層を複数層形成することができる。
好適な実施形態においては、隆起部を支持基板の主面に垂直な断面で見たときに、結晶育成面が湾曲線を形成しており、この湾曲線において結晶育成面の前記主面からの高さが滑らかに変化している。
すなわち、13族元素窒化物結晶は、a軸方向には結晶会合しやすいが、m軸方向には会合しにくい。このため、特許文献1~3の下地基板では、13族元素窒化物結晶を厚膜成長させた時に、c軸、a軸以外の軸方向へ成長させた領域において、結晶の不会合が生じたり、ピットを十分低減することが難しく、転位密度の低減に限界があった。そのため、その基板の不会合やピット上にLEDを作製すると、リークが発生し、製造歩留まりを下げることが判明してきた。
これに対して、下地結晶層が隆起部を備えており、下地結晶層と支持基板との間に、支持基板の材質と前記13族元素窒化物結晶との反応物が存在する構造であると、結晶育成面上で13族元素窒化物結晶層が会合し易くなり、会合不良に伴うピットが低減され、13族元素窒化物結晶層の転位密度が低減される。
すなわち、図2(b)に示した例では、隆起部5を支持基板1の主面1aに垂直な断面(図2(b)の断面)で見たときに、結晶育成面3の湾曲部3cが湾曲線を形成しており、湾曲線において結晶育成面3cの主面1aからの高さhが滑らかに変化している。高さhは、法線P方向での支持基板主面に対する高さである。こうした構造であれば、結晶育成面上に13族元素窒化物結晶層7、8を成膜するときに、結晶育成面上で13族元素窒化物結晶層が会合し易くなり、会合不良に伴うピットが低減され、13族元素窒化物結晶層の転位密度が低減される。
以下、本発明の構成要素について更に説明する。
本発明では、支持基板上に13族元素窒化物からなる下地結晶層を設ける。
ここで、支持基板の材質は、酸化アルミニウムとする。ここで、支持基板を構成する酸化アルミニウムは、単結晶(サファイア)であってよく、多結晶アルミナであってよく、結晶配向性アルミナであってよく、またアモルファスアルミナであってもよい。また、酸化アルミニウム中には、酸素およびアルミニウム以外の成分が1mol%以下(好ましくは0.1mol%以下)含有されていてもよく、こうした成分としては、ジルコニウム、マグネシウム、シリコンを例示できる。
支持基板の下地結晶層と反対側の底面は、鏡面であってよく、粗面であってもよいが、粗面が好ましい。これによって、支持基板に入射するレーザ光が支持基板の底面で散乱された後に、界面の下地結晶層に照射されるため、レーザ光のビームプロファイル(beam profile)の影響を受けにくい。支持基板の下地結晶層と反対側の底面が粗面である場合には、この粗面の表面粗さRaは、0.1μm~2μmとすることが望ましい。
支持基板の底面が鏡面である場合には、レーザ光のスポットを用いて隆起部パターンを形成し易い。あるいは、支持基板の底面に、裏面にレーザを透過しない保護層を形成し、保護層をパターニングすることにより、表面の隆起パターンを制御することも出来る
降温直後に支持基板にクラックを発生させないという観点からは、支持基板の厚さは、0.5mm以上であることが好ましく、1mm以上であることが更に好ましい。また、取り扱いの観点からは、支持基板の厚さは3mm以下であることが好ましい。
支持基板上に、13族元素窒化物からなる下地結晶層を設ける。
下地結晶層を形成する際には、まず支持基板上にバッファ層を設け、続けて下地結晶層を育成することが好ましい。
こうしたバッファ層の形成方法は気相成長法が好ましく、有機金属化学気相成長(MOCVD: Metal Organic Chemical Vapor Deposition)法、ハイドライド気相成長(HVPE)法、MBE法、昇華法を例示できる。
下地結晶層は、一層であってよく、あるいは支持基板側のバッファ層を含んでいて良い。下地結晶層の形成方法は気相成長法を好ましい一例として挙げることができ、有機金属化学気相成長(MOCVD: Metal Organic Chemical Vapor Deposition)法、ハイドライド気相成長(HVPE)法、パルス励起堆積(PXD)法、MBE法、昇華法を例示できる。有機金属化学気相成長法が特に好ましい。
また、下地結晶層を構成する13族元素窒化物において、13族元素とは、IUPACが策定した周期律表による第13族元素のことである。13族元素は、具体的にはガリウム、アルミニウム、インジウム、タリウム等である。
下地結晶層を構成する13族元素窒化物は、窒化ガリウムや窒化インジウムのような単体でも良いし、窒化インジウムガリウムのような混晶でも構わない。
下地結晶層の厚さは、結晶育成時のメルトバックや消失を防止するという観点からは、0.5μm以上が好ましく、2μm以上が更に好ましい。また、下地結晶層の厚さは、生産性の観点からは15μm以下が好ましい。
次いで、支持基板側からレーザ光を照射することによって、下地結晶層と支持基板との間に、支持基板の材質と13族元素窒化物結晶との反応物を生成させ、反応物上に隆起部を設ける。
この場合、レーザ光照射により、13族元素窒化物結晶層ANが (Aは、Ga, In, Ta, Alなどの13族元素から選ばれる一つあるいは二つ以上の元素)がAとNに分解し、Aが支持基板内に拡散して反応物4が生成する。この反応物4は、少なくとも、Aとアルミニウムとを含む組成物である。ここで、反応物は、Aとアルミニウムとの合金であってよく、あるいはAとアルミニウムと酸素との組成物であってもよい。
好適な実施形態においては、反応物の組成は、反応物全体として以下のものである。
A(AがAl以外の単一13族元素、またはAlを含む複数の13族元素):0.1~99.5mol%(好ましくは0.1~40mol%、特に好ましくは0.5~40mol%)
Al:0.5~99mol%(好ましくは29~54mol%、特に好ましくは29~50.5mol%)
O:0~50mol%(好ましくは31~50mol%、特に好ましくは31~49mol%)
AがAlである場合には、反応物の組成は、反応物全体として以下のものが好ましい。
Al: 50~100mol%(好ましくは50~72mol%、特に好ましくは51~69mol%)
O:0~50mol%(好ましくは28~50mol%、特に好ましくは31~49mol%)
ただし、反応物全体として均一な組成分布を有している必要はなく、反応物の組成が傾斜組成になっていてよい。例えば、反応物のうち支持基板側において、アルミニウムおよび酸素のmol比が相対的に高くなっていてよく、13族元素のモル比が低くなっていてよい。一方、下地結晶層側においては、アルミニウムおよび酸素のmol比が相対的に低くなっていてよく、13族元素のモル比が高くなっていてよい。
また、ある実施形態においては、13族元素窒化物結晶層側に以下の組成の反応物A、反応物Bまたは13族元素A(AはAl以外の13族元素)からなる金属が生成していてよい。
(反応物A)
A:87~97.5mol%
Al:0.5~3mol%
O:2~10mol%
(反応物B)
A:95~99.5mol%
Al:0.5~5mol%
更に、ある実施形態においては、13族元素窒化物結晶層から支持基板へと向かって以下の第一層、第二層、第三層が生成している。
第一層: 反応物A、反応物Bまたは13族元素A(AはAl以外の13族元素)からなる金属
第二層:
A:0.5~40mol%
Al:29~50.5mol%
O:31~49mol%
第三層:
A:0.1~0.4mol%
Al:50~54mol%
O:45~50mol%
なお、反応物の組成分析方法は以下のとおりである。
測定装置:
元素分析装置(日本電子製JED-2300T)を用いて元素分析を行う。
測定条件:
FIB(集束イオンビーム)法にて薄片化したサンプルに対して、加速電圧200kV、X線取出角21.9°、立体角0.98sr、取込時間30秒にて分析する。
反応物や13族金属の厚さは特に限定されない。13族元素窒化物結晶層の反りやクラックを抑制するという観点からは、反応物や13族金属の厚さは、1nm以上が好ましい。また、隆起部を生成させるという観点からは、反応物や13族金属の厚さは10nm以上が好ましく、100nm以上が更に好ましい。また、13族元素窒化物結晶層の転位密度低減という観点からは、反応物や13族金属の厚さは、500nm以下が好ましく、400nm以下が更に好ましい。
ここで、支持基板側から照射するレーザ光のエネルギーを調節することによって、支持基板と下地結晶層の間に前記反応物や13族金属を生成させることができるが、反応物や13族金属とボイドとを同時に生成させることもできる。
例えば、図4(a)の例では、隆起部5下に反応物4が生成しており、反応物4によって下地結晶層が隆起している。一方、図4(b)の参考例では、支持基板1と下地結晶層3との間にボイド9のみが生成しており、反応物は生成していない。このため、ボイド9のみによって下地結晶層3が隆起し、隆起部5Aを形成している。
また、図4(c)の例では、支持基板1と下地結晶層3との間にボイド9、反応物4が生成しており、ボイド9、反応物4によって下地結晶層3が隆起し、隆起部5Bを形成している。
更に、図5(a)の例では、支持基板1と下地結晶層3との間にボイド9、反応物4が生成しており、ボイド9、反応物4によって下地結晶層3が隆起し、隆起部5Cを形成している。ただし、反応物4は隆起部内で片側に寄っており、ボイド9は隆起部内で反応物とは反対側に寄っている。
更に、ボイドが下地結晶層3内に亀裂を生じていても良く、またボイドが下地結晶層3の隆起部の表面に達することで凹部を形成していてもよい。
好適な実施形態においては、例えば図2(b)を参照して示すように、隆起部5を支持基板1の主面1aに垂直な断面で見たときに、結晶育成面3の湾曲部3cが湾曲線を形成しており、この湾曲線において結晶育成面3aの主面1aからの高さhが滑らかに変化している。隆起部表面の結晶育成面3の湾曲部3cの高さhを微分すると、結晶育成面3aの傾斜角度が得られる。ゆえに、結晶育成面3が滑らかに変化するということは、すなわち、結晶育成面3aの傾斜角度が連続的に変化し、傾斜角度が不連続に変化する角部がないことを意味する。ただし、局所的に凹部または亀裂(クラック)が存在することは許容するものとする。
このため、隆起部の結晶育成面の断面輪郭形状は具体的には限定されないが、例えば真円円弧、楕円円弧、双曲線状、放物線状、レーストラックなど種々の形状を例示できる。
各隆起部の寸法は特に限定されない。しかし、13族元素窒化物結晶層の転位密度低減という観点からは、隆起部を平面的に見たときの面積は、1μm~0.8mmであることが好ましい。また、隆起部の主面から高さhの最大値は、生産性の観点からは、10~1000nmであることが好ましく、100~700nmであることが更に好ましい。
また、下地結晶層の結晶育成面全体に占める隆起部の面積比率は、本発明の観点からは、5~80%であることが好ましく、生産性の観点からは15~60%であることが更に好ましい。
隆起部の寸法は、ZYGO(キャノン製の「三次元光学プロファイラーNewView7300」を用い、観察条件は5倍とする)で1.4mm×1mmで測定し、観察される隆起部の高さを計測し、算術平均をとって、平均隆起高さとした。また、隆起の面積比率は、画像解析ソフトウエア WinROOF (三谷商事(株)製)を用いて2値化処理し算出した。
また、図5(b)に示すように、隆起部5の間に平坦部3dが設けられていて良い。あるいは、図5(c)に示すように、隣接する隆起部5が、平坦部を介することなしに連続していてよい。この場合には、隣接する隆起部5の間には凹み10が生成する。図5(d)では、反応物4上にボイド9が設けられている。
隆起部の平面的形状は特に限定されない。例えば図6(a)に示す例では、結晶育成面3aに島状の隆起部5が多数形成されており、隣り合う隆起部5の間に平坦部3dが設けられている。各隆起部は分離相を形成しており、平坦部3dは網目状の連続相を形成している。
図6(b)に示す例では、隆起部5Eがストライプ状にパターニングされている。ただし、隆起部5Eを拡大すると、多数の隆起部が図6(b)に示すように連続していてもよい。このため、隆起部5Eのエッジ11は直線的ではなく、不規則な曲線を構成していてよい。
隆起部の全体的なパターニングを行う場合には、隆起部パターンは特に限定されない。図7(a)、図7(b)に示す例では、ストライプ状の隆起部5Eが多数並列されている。また、図8(a)の例では、網目格子状の隆起部5Fが形成されており、図8(b)の例では、隆起部5がドット状ないし散点状に形成されている。
更に、図9(a)、図9(b)の例では、それぞれ、隆起部5G、5Hが渦巻き状に形成されている。ただし、図9(a)の例では渦巻きの中心が結晶育成面内にあり、図9(b)の例では、渦巻きの中心が結晶育成面外にある。
ボイドとは、支持基板や下地結晶層の材質や反応物が充填されていない空隙を意味する。
ボイドの面積(支持基板主面に垂直な断面における面積)は、1μm~0.8mmであることが好ましい。また、ボイドの高さ(前記主面と垂直な法線Pの方向の寸法)は、1000nm以下であることが好ましく、500nm以下であることが更に好ましい。この高さの下限は特にないが、1nm以上であってよい。
また、下地結晶層の結晶育成面全体に占めるボイドの面積比率は、本発明の観点からは、5~80%であることが好ましく、生産性の観点からは15~60%であることが更に好ましい。
ボイドの存在および高さは、前記断面を電子顕微鏡で観察することで計測する。この条件は以下のとおりである。
測定装置:
電子顕微鏡(日立ハイテクノロジー製 SU8240)を用いて微構造観察する。
測定条件:
FIB(集束イオンビーム)法にて断面を形成したサンプルに対して、加速電圧3kVにて観察する。
ボイドの平面(2次元)的形状および面積は、サンプルの裏面から光を照射し、微分干渉顕微鏡で透過像を観察することで視認できる。
好適な実施形態では、隆起部5を支持基板1の主面1aに垂直な断面で見たときに(図2(b)参照)、主面の法線Pに対する13族元素窒化物結晶の特定結晶軸αの角度θが滑らかに変化している。これによって、その上に形成する13族元素窒化物結晶層の転位密度を一層効果的に低減できる。この特定結晶軸は、c軸、m軸、a軸であってもよいが、c軸であることが特に好ましい。
レーザ光の波長は、加工するべき種結晶層を構成する13族元素窒化物の有するバンドギャップより大きなエネルギーを有し、支持基板材質の有するバンドギャップより小さなエネルギーを有する波長とする。こうすることで、支持基板側からレーザを照射した時に、支持基板内ではレーザが透過し、種結晶層を構成する13族元素窒化物でレーザ光が吸収され、加熱されることにより加工することが出来る。
エネルギー(単位:eV)と波長(単位:nm)の変換は、エネルギーをE、波長をλとすると、
λ≒1240/E
からなる近似式で計算出来る。
本発明では、支持基板の組成が酸化アルミニウムであるので、下地結晶層を構成する13属元素窒化物が窒化ガリウムの場合は、バンドギャップがそれぞれ、約3.4eV、約8.6eVであるので、レーザの波長は144nmから364nmの間で選択する必要がある。
レーザ光源としては、Nd:YAGレーザの第3高調波、第4高調波、第5高調波、F2エキシマレーザ、ArFエキシマレーザ、KrFエキシマレーザ、XeClエキシマレーザ、XeFエキシマレーザ、YVO4レーザの第3高調波、第4高調波、YLFレーザの第3高調波、第4高調波を例示できる。特に好ましいレーザ光源は、Nd:YAGレーザの第3高調波、Nd:YAGレーザの第4高調波、KrFエキシマレーザ、YVO4レーザの第3高調波、YVO4レーザの第4高調波がある。
レーザの照射形は、円形、楕円形、方形、線状でも良い。
レーザプロファイルは、ビームプロファイラーを通して整形しても良い。レーザプロファイルは、ガウシアン、ガウシアンライク、ドーナツ、シルクハットでも良い。ガウシアン、シルクハットが望ましい。
レーザの照射サイズやエネルギー密度を調整するために、レンズやスリット、アパーチャーを通した後に、レーザを基板に照射しても良い。
好適な実施形態においては、パルスレーザを使用することにより、反応物や13族金属の生成を調節することが好ましい。
レーザのパルス幅に関しては特に制限がないが、100fsから200nsのレーザを使用できる。望ましくはより短パルスで、短パルスほど界面GaNの加熱時間が短くなるため、レーザ照射で分解したGaNから発生した窒素の加熱、膨張が減る。隆起部サイズの制御性の観点からは、このレーザのパルス幅は、200ns以下が好ましく、1ns以下が更に好ましい。
光ビームのエネルギー密度は、200~350mJ/cm2が好ましく、250~300 mJ/cm2が更に好ましい。このエネルギー密度が小さいと、界面の13族元素窒化物結晶が無反応になり、高すぎると界面GaNが13族元素と窒素に分解し、良好な隆起部が生成しにくくなる。
バルスレーザ光の照射は、1パルスを重ならないように照射しても良く、望ましくは、レーザスキャン速度や繰り返し周波数を制御してレーザスポットが重なるようにする。弱いエネルギーのレーザ光を重ねて照射することにより、急激な13族元素窒化物結晶の分解による窒素の気化を抑制することが出来、ひいては13族元素窒化物結晶の異常部を小さく出来る。
レーザ光の焦点位置を、下地結晶/支持基板の界面に位置するように加工しても良く、デフォーカス(defocus:焦点面を界面から光軸方向にずらすこと)して照射しても良い。
支持基板の底面上に拡散板を置き、拡散板を通してレーザを照射しても良い。拡散板の材料は、使用するレーザが透過する材料から選択する。拡散板の例として、表面が荒らしてあるだけのサファイア基板でもよく、透光性のセラミック板を使用しても良い。また、表面に規則的または不規則的な凹凸を形成した拡散板でも良い。
支持基板を加熱しながらレーザを照射しても良い。加熱すると反りが減るので、基板面内で均一な加工が出来る。
下地結晶層上に、フォトレジスト、金属蒸着膜等の表面保護層を形成することにより、支持基板側からレーザを照射した時に発生する異常部を抑制できる。
下地結晶層は支持基板に接合することで設けることもできる。この接合法は、直接接合や接着剤による接着を例示できる。また、この場合の支持基板の材質はシリコンであってもよい。この場合には、支持基板側からレーザ光を照射した時に生ずる異常部を抑制できる。
レーザスキャンはパターニングしても良いが、支持基板全面にスキャンしてもよく、これによって13族元素窒化物結晶層の全体にわたって転位低減効果が得られる。
パターニングされた隆起部の平面的パターンは、平面的にみて面内で均一であることが好ましく、同種のパターンが規則的に反復されていることが好ましい。具体的には、メッシュ状、ストライプ状、ドット状、スパイラル状等が挙げられる(図7~図9参照)。
ボイドの形成は、レーザ照射による13族元素窒化物の分解で界面にも形成される。このモードのボイドは、主として、界面よりも、下地結晶層の内部に形成されることが多い。ただし、ボイドが生成しても隆起部が生成されるわけではなく、下地結晶層を変形させるような十分な圧力が加わらなければ隆起部は形成されない。
次いで、下地結晶層上に13族元素窒化物結晶を育成する。この場合には、フラックス法で13族元素窒化物結晶を育成することが好ましいが、アモノサーマル法、HVPE法、MOCVD法、MBE法であってもよい。この13族元素窒化物において、13族元素とは、IUPACが策定した周期律表による第13族元素のことである。また13族元素窒化物は、具体的にはGaN、AlN、InNまたはこれらの混晶が好ましい。
13族元素窒化物結晶を支持基板からの剥離後に自立させるという観点からは、13族元素窒化物結晶の厚さは、300μm以上であることが好ましく、500μm以上であることが更に好ましい。また、特に13族元素窒化物結晶を自然剥離するためには、その厚さは1000μm以上であることが好ましい。
13族元素窒化物結晶は、好ましくは単結晶である。単結晶の定義について述べておく。結晶の全体にわたって規則正しく原子が配列した教科書的な単結晶を含むが、それのみに限定する意味ではなく、一般工業的に流通している単結晶という意味である。すなわち、結晶がある程度の欠陥を含んでいたり、歪みを内在していたり、不純物がとりこまれていたりしていてもよく、多結晶(セラミックス)と区別して、これらを単結晶と呼んで用いているのと同義である。
13族元素窒化物結晶をフラックス法によって育成する場合には、フラックスの種類は、窒化ガリウム結晶を生成可能である限り、特に限定されない。好適な実施形態においては、アルカリ金属とアルカリ土類金属の少なくとも一方を含むフラックスを使用し、ナトリウム金属を含むフラックスが特に好ましい。
フラックスには、金属原料物質を混合し、使用する。金属原料物質としては、単体金属、合金、金属化合物を適用できるが、単体金属が取扱いの上からも好適である。
フラックス法における13族元素窒化物結晶の育成温度や育成時の保持時間は特に限定されず、フラックスの組成に応じて適宜変更する。一例では、ナトリウムまたはリチウム含有フラックスを用いて窒化ガリウム結晶を育成する場合には、育成温度を800~950℃とすることが好ましく、850~900℃とすることが更に好ましい。
フラックス法では、窒素原子を含む気体を含む雰囲気下で13族元素窒化物結晶を育成する。このガスは窒素ガスが好ましいが、アンモニアでもよい。雰囲気の圧力は特に限定されないが、フラックスの蒸発を防止する観点からは、10気圧以上が好ましく、30気圧以上が更に好ましい。ただし、圧力が高いと装置が大がかりとなるので、雰囲気の全圧は、2000気圧以下が好ましく、500気圧以下が更に好ましい。雰囲気中の窒素原子を含む気体以外のガスは限定されないが、不活性ガスが好ましく、アルゴン、ヘリウム、ネオンが特に好ましい。
好適な実施形態においては、13族元素窒化物結晶を支持基板から分離する。本発明によれば、隆起部の支持基板面内における面積比率を制御することにより、育成した13族元素窒化物結晶を自然剥離させたり、あるいは他の方法で剥離させたりすることができる。自然剥離の場合には、工程数を減らすことができるので有利である。一方、自然剥離させずに加工によって13族元素窒化物結晶を分離する場合には、分離条件を人為的に制御することが可能なことから、歩留まりを一層高くすることができ、基板径が大きくなっても歩留まりの低下は少ない。
13族元素窒化物結晶を支持基板から加工によって分離するには、レーザリフトオフ法(LLO)や研削加工が好ましい。これら加工によって13族元素窒化物結晶を支持基板から分離する場合にも、反応物および/または13族金属やボイドがない場合と比べて歩留まりが向上する。この理由は、例えば研削加工により支持基板厚が薄くなってくると、支持基板が自然と反応物および/または13族金属やボイドを起点として剥離してくるためである。これに対して、反応物および/または13族金属やボイドがない場合には、研削加工によりサファイア基板厚が薄くなってくると、13族元素窒化物結晶に大きな力が加わり、この結晶にクラックが発生し易くなる。
こうして得られた13族元素窒化物結晶上に機能素子構造を形成する。この機能素子構造は、高輝度・高演色性の白色LEDや高速高密度光メモリ用青紫レーザディスク、ハイブリッド自動車用のインバータ用のパワーデバイスなどに用いることができる。
(実施例A1)
実施例A1では、図1~図2に示す方法によって、図3(a)に示すような構造体(1)(表1参照)を得た。
具体的には、直径4インチ、厚さ1.3mmの単結晶サファイアc面基板1をMOCVD炉(有機金属気相成長炉)内に入れ、水素雰囲気中で1150℃にて10分間加熱し、表面のクリーニングを行った。次いで、基板温度を500℃まで下げ、TMG(トリメチルガリウム)、アンモニアを原料として窒化ガリウム層を20nmの厚さに成長させて、下地結晶層を形成した。次いで、基板温度を1100℃まで上げ、TMGとアンモニアとを原料として、窒化ガリウムからなる下地結晶層2を5μmの厚さに成長させた。
次いで、支持基板1の底面1b側からレーザ光を照射し、隆起部を形成した。底面1bは研削仕上げし、表面粗さRaを0.1~0.3μmにした。
レーザ光源としては、YVO4レーザの第3高調波(波長355nm)を使用し、パルスレーザとした。出力を10wとし、繰り返し周波数は100kHzとし、パルス幅は20nsとし、焦点距離200mmのレンズで集光した。ワーキングディスタンス(レンズ-サンプル間距離)=150mmとした。ガルバノスキャナーを用いてレーザをラスタースキャンし、レーザ照射のショットピッチと行間を変え、表1に示すようなボイド、反応物および隆起部が形成された下地結晶層を得た。
次いで、下地基板を、10分間のアセトン洗浄、イソプロピルアルコールを用いた10分間の超音波洗浄に供し、その後に純水流水で10分間洗浄した。
次いで、Naフラックス法によって、各下地結晶層上に窒化ガリウム結晶8を育成した。
下地基板を、内径190mm、高さ45mmの円筒平底のアルミナ坩堝の底部分に設置し、次いで融液組成物をグローブボックス内で坩堝内に充填した。融液組成物の組成は以下のとおりである。
・金属Ga:200g
・金属Na:200g
このアルミナ坩堝を耐熱金属製の容器に入れて密閉した後、結晶育成炉の回転が可能な台上に設置した。窒素雰囲気中で870℃、4.0MPaまで昇温加圧後、溶液を回転することで、撹拌しながら窒化ガリウム結晶を約4時間成長させた。結晶成長終了後、3時間かけて室温まで徐冷し、結晶育成炉から育成容器を取り出した。エタノールを用いて、坩堝内に残った融液組成物を除去し、窒化ガリウム結晶が成長した試料を回収したところ、それぞれ、厚さ80μmの窒化ガリウム結晶8が成膜されていた。
次いで、研磨加工して、フラックス法による窒化ガリウム結晶層の厚みを10umにした。その後、微分干渉顕微鏡で表面観察したところ、ピットや結晶の不会合は観察されなかった。また、X線ロッキンカーブを測定したところ、半値幅は、(0002)面反射で120秒、(10-12)面で150秒と、特にC軸が揺らぐことはなかった。
次いで、窒化ガリウム結晶層の転位密度、反りおよびクラックを測定し、結果を表1に示す。
(比較例A1)
実施例A1と同様にして構造体(1)を得た。ただし、実施例A1とは異なり、レーザ光の照射を行わず、また隆起部を形成しなかった。得られた窒化ガリウム結晶層の転位密度、反りおよびクラックを測定し、結果を表1に示す。
Figure 0007161483000001

(実施例B1)
図3(b)に示すような構造体(2)(表2参照)を得た。
ただし、実施例A1と同様にして下地基板を作製した。この際、隆起部の高さ、寸法、ボイド、反応物の有無は表2に示すように変更した。
次いで、Naフラックス法によって、各下地結晶層上に窒化ガリウム結晶8を育成した。
下地基板を、内径190mm、高さ45mmの円筒平底のアルミナ坩堝の底部分に設置し、次いで融液組成物をグローブボックス内で坩堝内に充填した。融液組成物の組成は以下のとおりである。
・金属Ga:200g
・金属Na:200g
このアルミナ坩堝を耐熱金属製の容器に入れて密閉した後、結晶育成炉の回転が可能な台上に設置した。窒素雰囲気中で870℃、4.0MPaまで昇温加圧後、溶液を回転することで、撹拌しながら窒化ガリウム結晶を約50時間成長させた。結晶成長終了後、3時間かけて室温まで徐冷し、結晶育成炉から育成容器を取り出した。エタノールを用いて、坩堝内に残った融液組成物を除去し、窒化ガリウム結晶が成長した試料を回収したところ、それぞれ、厚さ1mmの窒化ガリウム結晶8が成膜されていた。
次いで、各例について、レーザリフトオフ法によって、窒化ガリウム結晶をサファイア支持基板から剥離させた。支持基板側からレーザを照射し、レーザ光源としては、Nd:YAGレーザの第3高調波(波長355nm)を使用し、パルスレーザとした。繰り返し周波数は10Hzとし、パルス幅は10ns、焦点距離700mmのレンズで集光し、レンズと基板表面との距離を400mmとし、レーザリフトオフ時の光エネルギー密度は500mJ/cm2とし、パルスレーザによる照射ドットが重なるように、基板全体をスキャンした。
次いで、研磨加工して総厚400μmとし、微分干渉顕微鏡で表面観察したところ、ピットや結晶の不会合は観察されなかった。また、X線ロッキンカーブを測定したところ、半値幅は、(0002)面反射で70秒、(10-12)面で80秒と、特にC軸が揺らぐことはなかった。
そして、各例について、得られた窒化ガリウム結晶層の転位密度、反りおよびクラックを測定し、結果を表2に示す。
(比較例B1)
実施例A1と同様にして構造体(2)を得た。ただし、実施例A1とは異なり、レーザ光の照射を行わず、また隆起部を形成しなかった。得られた窒化ガリウム結晶層の転位密度、反りおよびクラックを測定し、結果を表2に示す。
Figure 0007161483000002

(実施例C1~C4)
実施例B1と同様にして構造体(2)を得た。ただし、実施例B1とは異なり、隆起部の平均高さを表3に示すように変更した。得られた窒化ガリウム結晶層の転位密度、反りおよびクラックを測定し、結果を表3に示す。
Figure 0007161483000003

(実施例D1~D5)
実施例B1と同様にして構造体(2)を得た。ただし、実施例B1とは異なり、隆起部の面積比率を表4に示すように変更した。得られた窒化ガリウム結晶層の転位密度、反りおよびクラックを測定し、結果を表4に示す。
Figure 0007161483000004

(実施例E1)
実施例B1と同様にして構造体(3)(表5参照)を得た。
ただし、実施例B1とは異なり、窒化ガリウム層をHVPE法で成膜した。
具体的には、下地基板をHVPE炉に入れ、800℃に加熱されたソースボート(source boat)上の金属ガリウム(Ga)と塩化水素(HCl)ガスとを反応させることにより、塩化ガリウム(GaCl)ガスを生成し、塩化ガリウムガスと、原料ガスとしてアンモニア(NH)ガス、キャリアガスとしての水素(H)とを、加熱された上記種結晶基板の主表面に供給することにより、基板上で窒化ガリウム結晶を成長させた。結晶成長は、1100℃まで昇温し窒化ガリウム結晶を5時間成長させたところ、厚さ1mmの窒化ガリウム結晶8が成膜されていた。
窒化ガリウム結晶層の成長後に、研磨加工し、微分干渉顕微鏡で表面観察したところ、ピットや結晶の不会合は観察されなかった。また、X線ロッキンカーブを測定したところ、半値幅は、(0002)面反射で80秒、(10-12)面で90秒と、特にC軸が揺らぐことはなかった。
次いで、窒化ガリウム層を実施例B1と同様にして支持基板から剥離させ、転位密度、反りおよびクラックを測定した。結果を表5に示す。
(比較例E1)
実施例E1と同様にして構造体を作製した。
ただし、実施例E1とは異なり、レーザ光の照射を行わず、また隆起部を形成しなかった。得られた窒化ガリウム結晶層の転位密度、反りおよびクラックを測定し、結果を表5に示す。
Figure 0007161483000005

(実施例F1~F4および比較例F1~F3)
実施例B1と同様にして構造体(2)を得た。ただし、実施例B1とは異なり、支持基板側から照射するパルスレーザのエネルギー密度が、表6、表7に示す値となるようにレーザ出力を変更した。レーザ照射のショットピッチは20μm、行間は50μmであった。
得られた下地基板について、反応物、ボイド、金属ガリウム、隆起部を測定した。また、得られた窒化ガリウム結晶層の転位密度、反りおよびクラックを測定した。これらの結果を表6、表7に示す。
Figure 0007161483000006

Figure 0007161483000007

以上からわかるように、本発明の実施例では、窒化ガリウム層の反りが小さく、クラックも観察されなかった。更に下地結晶層下に反応物が生成した場合には、窒化ガリウム層の転位密度も著しく低減した。
比較例F1、F2、F3では、反応物が生成していないので、窒化ガリウムに反りが大きく、クラックが生成していた。

Claims (3)

  1. 酸化アルミニウムからなる支持基板、および
    前記支持基板の主面上に設けられ、13族元素窒化物結晶からなり、結晶育成面を有する下地結晶層を有し、
    前記支持基板と前記下地結晶層との間に、ボイドおよび前記支持基板の材質と前記13族元素窒化物結晶との反応物が存在しており、この反応物が、アルミニウム13族元素および酸素を含前記下地結晶層が隆起部を備えており、前記隆起部の内側に前記反応物が存在しており、前記隆起部を前記支持基板の前記主面に垂直な断面で見たときに、前記結晶育成面が湾曲線を形成しており、この湾曲線において前記結晶育成面の前記主面からの高さが滑らかに変化しており、前記隆起部を前記支持基板の前記主面に垂直な前記断面で見たときに、前記主面の法線に対する前記前記13族元素窒化物結晶のc軸の角度が滑らかに変化していることを特徴とする、下地基板。
  2. 前記隆起部に亀裂または凹部が形成されていることを特徴とする、請求項記載の下地基板。
  3. 請求項1または2記載の下地基板、および
    前記下地結晶層上に設けられた機能層
    を備えていることを特徴とする、機能素子。
JP2019545539A 2017-09-27 2018-09-26 下地基板、機能素子および下地基板の製造方法 Active JP7161483B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017186411 2017-09-27
JP2017186411 2017-09-27
PCT/JP2018/035586 WO2019065689A1 (ja) 2017-09-27 2018-09-26 下地基板、機能素子および下地基板の製造方法

Publications (2)

Publication Number Publication Date
JPWO2019065689A1 JPWO2019065689A1 (ja) 2020-11-26
JP7161483B2 true JP7161483B2 (ja) 2022-10-26

Family

ID=65901890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019545539A Active JP7161483B2 (ja) 2017-09-27 2018-09-26 下地基板、機能素子および下地基板の製造方法

Country Status (4)

Country Link
US (1) US11437233B2 (ja)
JP (1) JP7161483B2 (ja)
CN (1) CN111094638B (ja)
WO (1) WO2019065689A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094637B (zh) * 2017-09-27 2022-04-22 日本碍子株式会社 基底基板、功能元件及基底基板的制造方法
WO2022074880A1 (ja) * 2020-10-09 2022-04-14 日本碍子株式会社 Iii族元素窒化物半導体基板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091632A (ja) 1998-09-14 2000-03-31 Hewlett Packard Co <Hp> 応力緩和された積層構造を形成する方法
JP2003007616A (ja) 2001-03-23 2003-01-10 Matsushita Electric Ind Co Ltd 半導体膜の製造方法
WO2010082267A1 (ja) 2009-01-15 2010-07-22 並木精密宝石株式会社 エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
JP2011073894A (ja) 2009-09-29 2011-04-14 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法
JP2011195377A (ja) 2010-03-19 2011-10-06 Panasonic Corp Iii族窒化物結晶の製造方法
WO2014034338A1 (ja) 2012-08-30 2014-03-06 日本碍子株式会社 複合基板、その製造方法、13族元素窒化物からなる機能層の製造方法および機能素子
WO2017026196A1 (ja) 2015-08-10 2017-02-16 株式会社リコー 13族窒化物単結晶の製造方法、および13族窒化物単結晶の製造装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589857B2 (en) 2001-03-23 2003-07-08 Matsushita Electric Industrial Co., Ltd. Manufacturing method of semiconductor film
US6498113B1 (en) * 2001-06-04 2002-12-24 Cbl Technologies, Inc. Free standing substrates by laser-induced decoherency and regrowth
US7494896B2 (en) * 2003-06-12 2009-02-24 International Business Machines Corporation Method of forming magnetic random access memory (MRAM) devices on thermally-sensitive substrates using laser transfer
JP2005281067A (ja) 2004-03-30 2005-10-13 Sumitomo Electric Ind Ltd Iii族窒化物結晶基板およびその製造方法ならびにiii族窒化物半導体デバイス
JP4622720B2 (ja) * 2004-07-21 2011-02-02 日亜化学工業株式会社 窒化物半導体ウエハ又は窒化物半導体素子の製造方法
US8581263B2 (en) * 2008-12-17 2013-11-12 Palo Alto Research Center Incorporated Laser-induced flaw formation in nitride semiconductors
JP6652347B2 (ja) 2015-08-10 2020-02-19 古河機械金属株式会社 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
DE112017001472T5 (de) * 2016-03-24 2018-11-29 Ngk Insulators, Ltd. Verfahren zur Herstellung von Impfkristallsubstraten und Gruppe 13-Element-Nitridkristallen, und Impfkristallsubstrate
CN106312300A (zh) * 2016-09-28 2017-01-11 中国科学院半导体研究所 一种激光对铝化物基板金属化的方法及铝化物基板
CN111094637B (zh) 2017-09-27 2022-04-22 日本碍子株式会社 基底基板、功能元件及基底基板的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091632A (ja) 1998-09-14 2000-03-31 Hewlett Packard Co <Hp> 応力緩和された積層構造を形成する方法
JP2003007616A (ja) 2001-03-23 2003-01-10 Matsushita Electric Ind Co Ltd 半導体膜の製造方法
WO2010082267A1 (ja) 2009-01-15 2010-07-22 並木精密宝石株式会社 エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
JP2011073894A (ja) 2009-09-29 2011-04-14 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法
JP2011195377A (ja) 2010-03-19 2011-10-06 Panasonic Corp Iii族窒化物結晶の製造方法
WO2014034338A1 (ja) 2012-08-30 2014-03-06 日本碍子株式会社 複合基板、その製造方法、13族元素窒化物からなる機能層の製造方法および機能素子
WO2017026196A1 (ja) 2015-08-10 2017-02-16 株式会社リコー 13族窒化物単結晶の製造方法、および13族窒化物単結晶の製造装置

Also Published As

Publication number Publication date
CN111094638B (zh) 2022-04-22
JPWO2019065689A1 (ja) 2020-11-26
WO2019065689A1 (ja) 2019-04-04
US20200227259A1 (en) 2020-07-16
US11437233B2 (en) 2022-09-06
CN111094638A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
JP5552627B2 (ja) エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
JP6144630B2 (ja) 複合基板の製造方法、13族元素窒化物からなる機能層の製造方法
JP5802943B2 (ja) エピタキシャル成長用内部改質基板の製造方法および多層膜付き内部改質基板の製造方法
JP7117690B2 (ja) Iii-v族化合物結晶の製造方法および半導体装置の製造方法
US9045844B2 (en) Method for peeling group 13 element nitride film
US10192738B2 (en) Methods of producing seed crystal substrates and group 13 element nitride crystals, and seed crystal substrates
JP7161483B2 (ja) 下地基板、機能素子および下地基板の製造方法
JP6106932B2 (ja) 13族窒化物結晶、及び13族窒化物結晶基板
JP7181210B2 (ja) 下地基板、機能素子および下地基板の製造方法
JP6117821B2 (ja) 複合基板および機能素子
WO2022079962A1 (ja) 13族元素窒化物結晶層の育成方法、窒化物半導体インゴットおよびスパッタリングターゲット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221014

R150 Certificate of patent or registration of utility model

Ref document number: 7161483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150