JP6595677B1 - 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体 - Google Patents
窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体 Download PDFInfo
- Publication number
- JP6595677B1 JP6595677B1 JP2018159988A JP2018159988A JP6595677B1 JP 6595677 B1 JP6595677 B1 JP 6595677B1 JP 2018159988 A JP2018159988 A JP 2018159988A JP 2018159988 A JP2018159988 A JP 2018159988A JP 6595677 B1 JP6595677 B1 JP 6595677B1
- Authority
- JP
- Japan
- Prior art keywords
- plane
- layer
- main surface
- nitride semiconductor
- base substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 529
- 239000004065 semiconductor Substances 0.000 title claims abstract description 204
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 190
- 238000004519 manufacturing process Methods 0.000 title claims description 63
- 239000013078 crystal Substances 0.000 claims abstract description 191
- 238000000034 method Methods 0.000 claims description 90
- 238000005259 measurement Methods 0.000 claims description 60
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 36
- 239000001301 oxygen Substances 0.000 claims description 36
- 229910052760 oxygen Inorganic materials 0.000 claims description 36
- 238000012545 processing Methods 0.000 claims description 19
- 230000009467 reduction Effects 0.000 claims description 15
- 230000005284 excitation Effects 0.000 claims description 13
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000001947 vapour-phase growth Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 412
- 230000008569 process Effects 0.000 description 38
- 239000007789 gas Substances 0.000 description 34
- 229910002601 GaN Inorganic materials 0.000 description 24
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 24
- 238000002474 experimental method Methods 0.000 description 18
- 239000011800 void material Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 239000013598 vector Substances 0.000 description 10
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000000644 propagated effect Effects 0.000 description 8
- 239000002346 layers by function Substances 0.000 description 6
- 230000001902 propagating effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007517 polishing process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 235000015220 hamburgers Nutrition 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 description 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/186—Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/68—Crystals with laminate structure, e.g. "superlattices"
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02027—Setting crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02389—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02513—Microstructure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02516—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/872—Schottky diodes
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
III族窒化物半導体の単結晶からなり、鏡面化された主面を有し、前記主面に対して最も近い低指数の結晶面が(0001)面である下地基板を準備する工程と、
前記(0001)面が露出した頂面を有するIII族窒化物半導体の単結晶を前記下地基板の前記主面上に直接的にエピタキシャル成長させ、前記(0001)面以外の傾斜界面で構成される複数の凹部を前記頂面に生じさせ、前記下地基板の前記主面の上方に行くにしたがって該傾斜界面を徐々に拡大させ、前記(0001)面を前記頂面から消失させ、表面が前記傾斜界面のみで構成される第1層を成長させる第1工程と、
前記第1層上にIII族窒化物半導体の単結晶をエピタキシャル成長させ、前記傾斜界面を消失させ、鏡面化された表面を有する第2層を成長させる第2工程と、
を有し、
前記第1工程では、
前記単結晶の前記頂面に前記複数の凹部を生じさせ、前記(0001)面を消失させることで、前記第1層の表面に、複数の谷部および複数の頂部を形成する
窒化物半導体基板の製造方法が提供される。
上述の態様に記載の窒化物半導体基板の製造方法において、前記第2層をスライスすることにより得られる
窒化物半導体基板が提供される。
2インチ以上の直径を有し、最も近い低指数の結晶面が(0001)面である主面を有する窒化物半導体基板であって、
Ge(220)面の2結晶モノクロメータおよびスリットを介して前記主面に対してCuのKα1のX線を照射し、(0002)面回折のX線ロッキングカーブ測定を行った場合に、前記スリットの幅を1mmとしたときの前記(0002)面回折の半値幅FWHMaから、前記スリットの幅を0.1mmとしたときの前記(0002)面回折の半値幅FWHMbを引いた差FWHMa−FWHMbは、FWHMaの30%以下である
窒化物半導体基板が提供される。
2インチ以上の直径を有する窒化物半導体基板であって、
多光子励起顕微鏡により視野250μm角で前記窒化物半導体基板の主面を観察して暗点密度から転位密度を求めたときに、前記転位密度が3×106cm−2を超える領域が前記主面に存在せず、前記転位密度が1×106cm−2未満である領域が前記主面の80%以上存在する
窒化物半導体基板が提供される。
III族窒化物半導体の単結晶からなり、鏡面化された主面を有し、前記主面に対して最も近い低指数の結晶面が(0001)面である下地基板と、
前記(0001)面が露出した頂面を有するIII族窒化物半導体の単結晶を前記下地基板の前記主面上に直接的にエピタキシャル成長させ、前記(0001)面以外の傾斜界面で構成される複数の凹部を前記頂面に生じさせ、前記下地基板の前記主面の上方に行くにしたがって該傾斜界面を徐々に拡大させ、(0001)面を前記頂面から消失させることにより形成され、表面が前記傾斜界面のみで構成される第1層と、
前記第1層上にIII族窒化物半導体の単結晶をエピタキシャル成長させ、前記傾斜界面を消失させ、鏡面化された表面を有する第2層と、
を有し、
前記第1層は、前記単結晶の前記頂面に前記複数の凹部を生じさせ、前記(0001)面を消失させることで前記表面に形成される複数の谷部および複数の頂部を有する
積層構造体が提供される。
まず、発明者等の得た知見について説明する。
従来では、上述のように、III族窒化物半導体の単結晶からなる下地基板上に、さらに結晶層をエピタキシャル成長させる場合において、例えば、下地基板上の結晶層を、c面以外の傾斜界面を露出させずに、c面のみを成長面として成長させていた。この場合、結晶層の表面における転位密度は、当該結晶層の厚さに対して反比例する傾向があった。
窒化物半導体基板において、(0001)面が主面に対して凹の球面状に湾曲することがある。(0001)面が主面に対して湾曲すると、主面の法線に対して<0001>軸のなす角度であるオフ角が、主面内でばらつくこととなる。
以下、本発明の一実施形態について図面を参照しながら説明する。
図1〜図6を用い、本実施形態に係る窒化物半導体基板の製造方法について説明する。図1は、本実施形態に係る窒化物半導体基板の製造方法を示すフローチャートである。図2(a)〜(g)、図3(a)〜(c)、図5(a)〜図6(b)は、本実施形態に係る窒化物半導体基板の製造方法の一部を示す概略断面図である。図4は、本実施形態に係る窒化物半導体基板の製造方法の一部を示す概略斜視図である。なお、図4は、図3(b)の時点での斜視図に相当し、下地基板10上に成長する第1層30の一部を示している。また、図5(b)において、細実線は、成長途中の結晶面を示し、図3(c)〜図6(b)において、点線は、転位を示している。
まず、下地基板準備工程S100において、III族窒化物半導体の単結晶からなる下地基板10を準備する。本実施形態では、下地基板10として、例えば、窒化ガリウム(GaN)自立基板を準備する。
まず、図2(a)に示すように、結晶成長用基板1(以下、「基板1」と略すことがある)を準備する。基板1は、例えば、サファイア基板である。なお、基板1は、例えば、Si基板またはガリウム砒素(GaAs)基板であってもよい。基板1は、例えば、成長面となる主面1sを有している。主面1sに対して最も近い低指数の結晶面は、例えば、c面1cである。
次に、図2(b)に示すように、例えば、有機金属気相成長(MOVPE)法により、所定の成長温度に加熱された基板1に対して、III族原料ガスとしてのトリメチルガリウム(TMG)ガス、窒化剤ガスとしてのアンモニアガス(NH3)およびn型ドーパントガスとしてのモノシラン(SiH4)ガスを供給することで、基板1の主面1s上に、第1結晶層(下地成長層)2として、低温成長GaNバッファ層およびSiドープGaN層をこの順で成長させる。このとき、低温成長GaNバッファ層の厚さおよびSiドープGaN層の厚さを、それぞれ、例えば、20nm、0.5μmとする。
次に、図2(c)に示すように、第1結晶層2上に金属層3を蒸着させる。金属層3としては、例えば、チタン(Ti)層とする。また、金属層3の厚さを例えば20nmとする。
次に、上述の基板1を電気炉内に投入し、所定のヒータを有するサセプタ上に基板1を載置する。基板1をサセプタ上に載置したら、ヒータにより基板1を加熱し、水素ガスまたは水素化物ガスを含む雰囲気中で熱処理を行う。具体的には、例えば、20%のNH3ガスを含有する水素(H2)ガス気流中において、所定の温度で20分間熱処理を行う。なお、熱処理温度を、例えば、850℃以上1,100℃以下とする。このような熱処理を行うことで、金属層3を窒化し、表面に高密度の微細な穴を有する金属窒化層5を形成する。また、上述の熱処理を行うことで、金属窒化層5の穴を介して第1結晶層2の一部をエッチングし、該第1結晶層2中に高密度のボイドを形成する。
次に、例えば、ハイドライド気相成長(HVPE)法により、所定の成長温度に加熱された基板1に対して、塩化ガリウム(GaCl)ガス、NH3ガスおよびn型ドーパントガスとしてのジクロロシラン(SiH2Cl2)ガスを供給することで、ボイド含有第1結晶層4および金属窒化層5上に第2結晶層(本格成長層)6としてSiドープGaN層をエピタキシャル成長させる。なお、n型ドーパントガスとして、SiH2Cl2ガスの代わりに、テトラクロロゲルマン(GeCl4)ガスなどを供給することで、第2結晶層6としてGeドープGaN層をエピタキシャル成長させてもよい。
第2結晶層6の成長が終了した後、第2結晶層6を成長させるために用いたHVPE装置を冷却する過程において、第2結晶層6は、ボイド含有第1結晶層4および金属窒化層5を境に基板1から自然に剥離する。
次に、図2(f)に示すように、例えば、第2結晶層6の主面6sの中心の法線方向に対して略垂直な切断面SSに沿って、ワイヤーソーにより、第2結晶層6をスライスする。
次に、研磨装置により下地基板10の両面を研磨する。これにより、下地基板10の主面10sは、鏡面化される。
下地基板10を準備したら、図3(a)に示すように、主面10s上へのマスク層の形成、および主面10sへの凹凸パターンの形成のうち、いずれの加工を施さない状態の下地基板10を用いて、以下の第1工程S200を行う。なお、ここでいう「マスク層」とは、例えば、いわゆるELO(Epitaxial Lateral Overgrowth)法において用いられ、所定の開口を有するマスク層のことを意味する。また、ここでいう「凹凸パターン」は、例えば、いわゆるペンデオエピタキシー法において用いられ、下地基板の主面を直接パターニングしたトレンチおよびリッジのうち少なくともいずれかのことを意味する。ここでいう凹凸パターンの高低差は、例えば、100nm以上である。本実施形態の下地基板10は、上述のような構造を有しない状態で、第1工程S200に用いられる。
Gc0=Gi/cosα ・・・(a)
R1=Gi/cosα’ ・・・(b)
Gc1=R1sinαR1 ・・・(c)
Gc1=GisinαR1/cos(α+90−αR1) ・・・(d)
Gc1>Gi/cosα ・・・(1)
ただし、上述のように、Giは、c面30cに対して最も傾斜した傾斜界面30iの成長レートであり、αは、c面30cに対して最も傾斜した傾斜界面30iと、c面30cとのなす角度である。
Gc1>2.13Gi ・・・(1’)
Gc1>1.47Gi ・・・(1”)
成長圧力:90〜105kPa、好ましくは、90〜95kPa
GaClガスの分圧:1.5〜15kPa
N2ガスの流量/H2ガスの流量:0〜1
まず、図3(b)および図4に示すように、III族窒化物半導体の単結晶からなる第1層30の傾斜界面拡大層32を、上述の第1成長条件下で、下地基板10の主面10s上に直接エピタキシャル成長させる。
傾斜界面拡大層32の表面からc面30cを消失させた後に、図5(a)に示すように、表面が傾斜界面30iのみで構成された状態を維持しつつ、所定の厚さに亘って第1層30の成長を継続させる。これにより、傾斜界面拡大層32上に、c面を有さず傾斜界面30iのみを表面に有する傾斜界面維持層34を形成する。傾斜界面維持層34を形成することで、第1層30の表面全体に亘って確実にc面30cを消失させることができる。
c面30cを消失させた第1層30を成長させたら、図5(b)および図6(a)に示すように、第1層30上に、III族窒化物半導体の単結晶をさらにエピタキシャル成長させる。
R2=Gi/cosα” ・・・(e)
Gc2=R2sinαR2 ・・・(f)
Gc2=GisinαR2/cos(α+αR2−90) ・・・(g)
Gc2<Gi/cosα ・・・(2)
ただし、上述のように、Giは、c面40cに対して最も傾斜した傾斜界面40iの成長レートであり、αは、c面40cに対して最も傾斜した傾斜界面40iと、c面40cとのなす角度である。
Gc2<2.13Gi ・・・(2’)
Gc2<1.47Gi ・・・(2”)
成長圧力:90〜105kPa、好ましくは、90〜95kPa
GaClガスの分圧:1.5〜15kPa
N2ガスの流量/H2ガスの流量:1〜20
図5(b)に示すように、第1層30上に、上述の第2成長条件で、III族窒化物半導体の単結晶からなる第2層40のc面拡大層42をエピタキシャル成長させる。
c面拡大層42において傾斜界面40iが消失し、表面が鏡面化されたら、図6(a)に示すように、c面拡大層42上に、c面40cを成長面として所定の厚さに亘って本成長層44を形成する。これにより、傾斜界面40iを有さずc面40cのみを表面に有する本成長層44を形成する。
次に、図6(b)に示すように、例えば、本成長層44の表面と略平行な切断面に沿ってワイヤーソーにより本成長層44をスライスする。これにより、アズスライス基板としての窒化物半導体基板50(基板50ともいう)を少なくとも1つ形成する。このとき、基板50の厚さを、例えば、300μm以上700μm以下とする。
次に、研磨装置により基板50の両面を研磨する。なお、このとき、最終的な基板50の厚さを、例えば、250μm以上650μm以下とする。
基板50が製造されたら、例えば、基板50上にIII族窒化物半導体からなる半導体機能層をエピタキシャル成長させ、半導体積層物を作製する。半導体積層物を作製したら、半導体積層物を用いて電極等を形成し、半導体積層物をダイシングし、所定の大きさのチップを切り出す。これにより、半導体装置を作製する。
次に、図6(a)を用い、本実施形態に係る積層構造体90について説明する。
次に、本実施形態に係る窒化物半導体基板50について説明する。
図9(b)および(c)に示すように、本実施形態では、基板50の主面50sに対して最も近い低指数の結晶面としてのc面50cは、例えば、上述した基板50の製造方法に起因して、主面50sに対して凹の球面状に湾曲している。
次に、本実施形態の基板50の主面50sにおける暗点について説明する。なお、ここでいう「暗点」とは、転位だけでなく、異物または点欠陥を起因とした非発光中心も含んでいる。
ここで、発明者は、入射側のスリット幅を異ならせてX線ロッキングカーブ測定を行うことにより、本実施形態の基板50を構成する結晶のモザイシティと、上述のc面50cの湾曲(反り)と、の両方を同時に評価することができることを見出した。
b=a/sinθB ・・・(h)
γ=sin−1(b/2R)≒b/2R ・・・(i)
本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
(1−1)窒化物半導体基板の作製
以下のようにして、実施例および比較例の窒化物半導体基板を作製した。なお、実施例については、窒化物半導体基板をスライスする前の積層構造体も作製した。
(下地基板)
材質:GaN
作製方法:VAS法
直径:2インチ
厚さ:400μm
主面に対して最も近い低指数の結晶面:c面
主面に対するマスク層等のパターン加工なし。
主面の二乗平均粗さRMS:2nm
主面のオフ角:m方向に0.4°
XRC測定での(10−10)面回折のFWHM:100arcsec
(第1層)
材質:GaN
成長方法:HVPE法
第1成長条件:
成長温度を980℃以上1,020℃以下とし、V/III比を2以上20以下とした。このとき、第1成長条件が式(1)を満たすように、成長温度およびV/III比のうち少なくともいずれかをそれぞれ上記範囲のなかで調整した。
(第2層)
材質:GaN
成長方法:HVPE法
成長温度:1,050℃
V/III比:2
なお、上記第2成長条件は、式(2)を満たす。
下地基板の主面から第2層の表面までの厚さ:2mm
(スライス条件)
窒化物半導体基板の厚さ:400μm
カーフロス:200μm
(下地基板)
材質:GaN
作製方法:VAS法
直径:2インチ
厚さ:400μm
主面に対して最も近い低指数の結晶面:c面
主面に対するマスク層等のパターン加工なし。
主面の二乗平均粗さRMS:0.7nm
主面のオフ角:m方向に0.4°
XRC測定での(10−10)面回折のFWHM:50arcsec
(結晶層)
材質:GaN
成長方法:HVPE法
成長温度:1,050℃(実施例の第2層と同じ)
V/III比:2(実施例の第2層と同じ)
なお、上記成長条件は、式(2)を満たす。
下地基板の主面から結晶層の表面までの厚さ:2mm
(スライス条件)
実施例と同じ。
(蛍光顕微鏡による観察)
蛍光顕微鏡を用い、実施例の窒化物半導体基板をスライスする前の積層構造体の断面を観察した。
多光子励起顕微鏡を用い、下地基板、実施例の窒化物半導体基板、および比較例の窒化物半導体基板のそれぞれの主面を観察した。このとき、視野250μmごとに主面全体に亘って暗点密度を測定することで、転位密度を測定した。なお、これらの基板における暗点の全てが転位であることは、厚さ方向に焦点をずらして測定することにより確認している。また、このとき、視野250μmでの全測定領域数に対する、転位密度が1×106cm−2未満である領域(低転位密度領域)の数の割合を求めた。なお、ここでいう「低転位密度領域」とは、後述の結果で示すように、第1工程を行わずに結晶層を成長させた比較例の、結晶層の主面における平均転位密度よりも低い転位密度を有する領域のことを意味する。
下地基板、実施例の窒化物半導体基板、および比較例の窒化物半導体基板のそれぞれについて、以下の2種類のX線ロッキングカーブ測定を行った。
入射側スリットのω方向の幅を0.1mmとし、下地基板、実施例の窒化物半導体基板、および比較例の窒化物半導体基板のそれぞれの、(0002)面のX線ロッキングカーブ測定を行った。このとき、それぞれの基板の主面内のうちm軸方向およびa軸方向のそれぞれに5mm間隔で設定した複数の測定点において、該測定を行った。測定の結果、各測定点における(0002)面の回折ピーク角度に基づいて、c面の曲率半径と、主面の法線に対するc軸のなす角度であるオフ角と、を求めた。また、主面の中心から直径29.6mm内におけるオフ角の大きさの最大最小差として、オフ角のばらつきを求めた。また、各測定点において、入射側スリットのω方向の幅を0.1mmとしたときの(0002)面回折の半値幅FWHMbを求めた。
入射側スリットのω方向の幅を1mmとし、下地基板および実施例の窒化物半導体基板のそれぞれについて、X線ロッキングカーブ測定を行った。なお、該測定は、それぞれの基板における主面の中心で行った。測定の結果、入射側スリットのω方向の幅を1mmとしたときの(0002)面回折の半値幅FWHMaを求めた。さらに、それぞれの基板における主面の中心において、FWHMaに対するFWHMa−FWHMbの割合を求めた。
結果を表1に示す。
(2−1)積層構造体の作製
第1層の表面に生じる傾斜界面を調べるため、下地基板および第1層を有し第2層を有しない積層構造体を作製した。なお、下地基板および第1層の条件は、実験1の実施例とほぼ同等の条件とした。
(光学顕微鏡による観察)
光学顕微鏡を用い、積層構造体の第1層の表面を観察した。
蛍光顕微鏡を用い、積層構造体の断面を観察した。
図14(a)は、実験2の積層構造体の表面を光学顕微鏡により観察した観察像を示す図であり、(b)は、実験2の積層構造体の表面を走査型電子顕微鏡により観察した観察像を示す図である。図15(a)は、実験2の積層構造体のM断面を光学顕微鏡により観察した観察像を示す図であり、(b)は、実験2の積層構造体のM断面を走査型電子顕微鏡により観察した観察像を示す図である。図16(a)は、実験2の積層構造体のa断面を光学顕微鏡により観察した観察像を示す図であり、(b)は、実験2の積層構造体のa断面を走査型電子顕微鏡により観察した観察像を示す図である。
{11−21}面:72.9°
{11−22}面:58.4°
{11−23}面:47.3°
{11−24}面:39.1°
以下、本発明の好ましい態様について付記する。
III族窒化物半導体の単結晶からなり、鏡面化された主面を有し、前記主面に対して最も近い低指数の結晶面が(0001)面である下地基板を準備する工程と、
前記(0001)面が露出した頂面を有するIII族窒化物半導体の単結晶を前記下地基板の前記主面上に直接的にエピタキシャル成長させ、前記(0001)面以外の傾斜界面で構成される複数の凹部を前記頂面に生じさせ、前記下地基板の前記主面の上方に行くにしたがって該傾斜界面を徐々に拡大させ、前記(0001)面を前記頂面から消失させ、表面が前記傾斜界面のみで構成される第1層を成長させる第1工程と、
前記第1層上にIII族窒化物半導体の単結晶をエピタキシャル成長させ、前記傾斜界面を消失させ、鏡面化された表面を有する第2層を成長させる第2工程と、
を有し、
前記第1工程では、
前記単結晶の前記頂面に前記複数の凹部を生じさせ、前記(0001)面を消失させることで、前記第1層の表面に、複数の谷部および複数の頂部を形成する
窒化物半導体基板の製造方法。
前記下地基板を準備する工程では、
前記下地基板の前記主面の二乗平均粗さを、1nm以上とする
付記1に記載の窒化物半導体基板の製造方法。
前記下地基板を準備する工程では、
前記下地基板の加工によって導入される結晶歪みを該下地基板の前記主面側に残存させ、
加工後の前記下地基板の前記主面に対する入射角を2°としてX線ロッキングカーブ測定を行ったときの、(10−10)面回折の半値幅を、加工前の前記下地基板の前記半値幅よりも大きくし、60arcsec以上200arcsec以下とする
付記1又は2に記載の窒化物半導体基板の製造方法。
前記第1工程では、
前記主面に垂直な任意の断面を見たときに、前記複数の谷部のうちの1つを挟んで前記複数の頂部のうちで最も接近する一対の頂部同士が前記主面に沿った方向に離間した平均距離を、100μm超とする
付記1〜3のいずれか1つに記載の窒化物半導体基板の製造方法。
前記第1工程では、
最も接近する前記一対の頂部同士の前記平均距離を、800μm未満とする
付記4に記載の窒化物半導体基板の製造方法。
前記第1工程では、
前記(0001)面を前記表面から消失させた後に、前記表面が前記傾斜界面のみで構成された状態を維持しつつ、所定の厚さに亘って前記第1層の成長を継続させる
付記1〜5のいずれか1つに記載の窒化物半導体基板の製造方法。
前記下地基板を準備する工程では、
前記(0001)面が前記主面に対して凹の球面状に湾曲した前記下地基板を準備し、
前記第2工程の後に、
前記第2層から少なくとも1つの窒化物半導体基板をスライスし、
前記窒化物半導体基板のうち主面の法線に対する<0001>軸のなす角度であるオフ角のばらつきを、前記下地基板のうち前記主面の法線に対する<0001>軸のなす角度であるオフ角のばらつきよりも小さくする
付記1〜6のいずれか1つに記載の窒化物半導体基板の製造方法。
前記第1工程では、式(1)を満たす第1成長条件で、前記第1層を成長させ、
前記第2工程では、式(2)を満たす第2成長条件で、前記第2層を成長させる
付記1〜7のいずれか1つに記載の窒化物半導体基板の製造方法。
Gc1>Gi/cosα ・・・(1)
Gc2<Gi/cosα ・・・(2)
(ただし、前記第1層のうちの前記(0001)面の成長レートをGc1とし、前記第2層のうちの前記(0001)面の成長レートをGc2とし、前記第1層および前記第2層のそれぞれのうち前記(0001)面に対して最も傾斜した前記傾斜界面の成長レートをGiとし、前記第1層および前記第2層のそれぞれにおいて前記(0001)面に対して最も傾斜した前記傾斜界面と前記(0001)面とのなす角度をαとする。)
前記第1工程では、
前記第1層に、前記(0001)面を成長面として成長した第1c面成長領域を形成し、
前記第1c面成長領域のうち前記(0001)面が消失した位置に凸部を形成するとともに、前記第1c面成長領域のうち前記凸部を挟んだ両側に、前記(0001)面と前記傾斜界面との交点の軌跡として一対の傾斜部を形成し、
前記一対の傾斜部のなす角度を70°以下とする
付記1〜8のいずれか1つに記載の窒化物半導体基板の製造方法。
前記第1工程は、
前記下地基板の上方に行くにしたがって前記傾斜界面を徐々に拡大させ、傾斜界面拡大層を形成する工程と、
前記(0001)面を前記表面から消失させた前記傾斜界面拡大層上に、前記表面が前記(0001)面以外の傾斜界面のみで構成された状態を維持しつつ、所定の厚さに亘って傾斜界面維持層を形成する工程と、
を有する
付記1〜9のいずれか1つに記載の窒化物半導体基板の製造方法。
前記第2工程は、
前記第1層の上方に行くにしたがって前記(0001)面を拡大させつつ前記(0001)面以外の傾斜界面を縮小させ、c面拡大層を形成する工程と、
表面が鏡面化された前記c面拡大層上に、前記(0001)面を成長面として所定の厚さに亘って本成長層を形成する工程と、
を有する
付記1〜10のいずれか1つに記載の窒化物半導体基板の製造方法。
前記第1工程では、
前記傾斜界面として、m≧3である{11−2m}面を生じさせる
付記1〜11のいずれか1つに記載の窒化物半導体基板の製造方法。
付記1〜12のいずれか1つに記載の窒化物半導体基板の製造方法において、前記第2層をスライスすることにより得られる
窒化物半導体基板。
2インチ以上の直径を有し、最も近い低指数の結晶面が(0001)面である主面を有する窒化物半導体基板であって、
Ge(220)面の2結晶モノクロメータおよびスリットを介して前記主面に対してCuのKα1のX線を照射し、(0002)面回折のX線ロッキングカーブ測定を行った場合に、前記スリットのω方向の幅を1mmとしたときの前記(0002)面回折の半値幅FWHMaから、前記スリットのω方向の幅を0.1mmとしたときの前記(0002)面回折の半値幅FWHMbを引いた差FWHMa−FWHMbは、FWHMaの30%以下である
窒化物半導体基板。
前記主面内に5mm間隔で設定した複数の測定点において、前記スリットのω方向の幅を0.1mmとして前記(0002)面回折のX線ロッキングカーブ測定を行ったときに、全測定点の90%以上において、前記(0002)面回折の半値幅FWHMbは、80arcsec以下である
付記14に記載の窒化物半導体基板。
前記(0002)面回折のX線ロッキングカーブ測定を行った場合に、該(0002)面の回折ピーク角度に基づいて、前記主面の法線に対する<0001>軸のなす角度であるオフ角を測定したときに、前記主面の中心から直径29.6mm内における前記オフ角の大きさの最大最小差で求められるばらつきは、0.075°以下である
付記14又は15に記載の窒化物半導体基板。
2インチ以上の直径を有し、最も近い低指数の結晶面が(0001)面である主面を有する窒化物半導体基板であって、
(0002)面のX線ロッキングカーブ測定を行い、該(0002)面の回折ピーク角度に基づいて、前記主面の法線に対する<0001>軸のなす角度であるオフ角を測定したときに、前記主面の中心から直径29.6mm内における前記オフ角の大きさの最大最小差で求められるばらつきは、0.075°以下である
窒化物半導体基板。
多光子励起顕微鏡により視野250μm角で前記主面を観察して暗点密度から転位密度を求めたときに、前記転位密度が3×106cm−2を超える領域が前記主面に存在せず、前記転位密度が1×106cm−2未満である領域が前記主面の80%以上存在する
付記14〜17のいずれか1つに記載の窒化物半導体基板。
2インチ以上の直径を有する窒化物半導体基板であって、
多光子励起顕微鏡により視野250μm角で前記窒化物半導体基板の主面を観察して暗点密度から転位密度を求めたときに、前記転位密度が3×106cm−2を超える領域が前記主面に存在せず、前記転位密度が1×106cm−2未満である領域が前記主面の80%以上存在する
窒化物半導体基板。
前記主面は、重ならない50μm角の無転位領域を100個/cm2以上の密度で有する
付記14〜19のいずれか1つに記載の窒化物半導体基板。
前記<0001>軸に沿った方向に延在する複数の転位を有し、
前記<11−20>軸方向の格子定数をa、前記<0001>軸の格子定数をcとしたときに、
前記複数の転位の全数に対する、バーガースベクトルの大きさが、a、a+c、またはcのうちいずれかである転位の数の割合は、90%以上である
付記14〜20のいずれか1つに記載の窒化物半導体基板。
III族窒化物半導体の単結晶からなり、鏡面化された主面を有し、前記主面に対して最も近い低指数の結晶面が(0001)面である下地基板と、
前記(0001)面が露出した頂面を有するIII族窒化物半導体の単結晶を前記下地基板の前記主面上に直接的にエピタキシャル成長させ、前記(0001)面以外の傾斜界面で構成される複数の凹部を前記頂面に生じさせ、前記下地基板の前記主面の上方に行くにしたがって該傾斜界面を徐々に拡大させ、(0001)面を前記頂面から消失させることにより形成され、表面が前記傾斜界面のみで構成される第1層と、
前記第1層上にIII族窒化物半導体の単結晶をエピタキシャル成長させ、前記傾斜界面を消失させ、鏡面化された表面を有する第2層と、
を有し、
前記第1層は、前記単結晶の前記頂面に前記複数の凹部を生じさせ、前記(0001)面を消失させることで前記表面に形成される複数の谷部および複数の頂部を有する
積層構造体。
前記第1層は、
前記(0001)面を成長面として成長した第1c面成長領域と、
前記傾斜界面を成長面として成長した傾斜界面成長領域と、
を有し、
前記第2層は、前記(0001)面を成長面として成長した第2c面成長領域を有する
付記22に記載の積層構造体。
前記傾斜界面成長領域は、前記下地基板の前記主面に沿って連続して設けられる
付記23に記載の積層構造体。
前記第1c面成長領域は、
前記(0001)面が消失した位置に設けられる凸部と、
前記凸部を挟んだ両側に、前記(0001)面と前記傾斜界面との交点の軌跡として設けられる一対の傾斜部と、
を有し、
前記一対の傾斜部のなす角度は、70°以下である
付記23又は24に記載の積層構造体。
前記下地基板の前記主面における転位密度をN0とし、前記第2層のうち前記傾斜界面が消失した位置の境界面における転位密度をNとしたときに、N/N0で求められる転位密度の低減率は、前記下地基板の前記主面上に前記(0001)面のみを成長面としてIII族窒化物半導体の結晶層を、前記下地基板の前記主面から前記境界面までの厚さと等しい厚さでエピタキシャル成長させた場合の、前記結晶層の表面における転位密度をN’としたときに、N’/N0で求められる転位密度の低減率よりも大きい
付記22〜25のいずれか1つに記載の積層構造体。
前記第2層のうち前記傾斜界面が消失した位置の境界面の、前記下地基板の前記主面からの厚さは、1.5mm以下であり、
前記下地基板の前記主面における転位密度をN0とし、前記第2層の前記境界面における転位密度をNとしたときに、N/N0で求められる転位密度の低減率は、0.3以下である
付記22〜26のいずれか1つに記載の積層構造体。
30 第1層
40 第2層
50 窒化物半導体基板(基板)
Claims (20)
- 気相成長法を用いた窒化物半導体基板の製造方法であって、
III族窒化物半導体の単結晶からなり、鏡面化された主面を有し、前記主面に対して最も近い低指数の結晶面が(0001)面である下地基板を準備する工程と、
(0001)面が露出した頂面を有するIII族窒化物半導体の単結晶を前記下地基板の前記主面上に直接的にエピタキシャル成長させ、前記(0001)面以外の傾斜界面で構成される複数の凹部を前記頂面に生じさせ、前記下地基板の前記主面の上方に行くにしたがって該傾斜界面を徐々に拡大させ、前記(0001)面を前記頂面から消失させ、表面が前記傾斜界面のみで構成される第1層を成長させる第1工程と、
前記第1層上にIII族窒化物半導体の単結晶をエピタキシャル成長させ、前記傾斜界面を消失させ、鏡面化された表面を有する第2層を成長させる第2工程と、
を有し、
前記第1工程では、
前記単結晶の前記頂面に前記複数の凹部を生じさせ、前記(0001)面を消失させることで、前記第1層の表面に、複数の谷部および複数の頂部を形成し、
前記主面に垂直な任意の断面を見たときに、前記複数の谷部のうちの1つを挟んで前記複数の頂部のうちで最も接近する一対の頂部同士が前記主面に沿った方向に離間した平均距離を、100μm超とする
窒化物半導体基板の製造方法。 - 前記下地基板を準備する工程では、
前記下地基板の前記主面の二乗平均粗さを、1nm以上とする
請求項1に記載の窒化物半導体基板の製造方法。 - 前記下地基板を準備する工程では、
前記下地基板の加工によって導入される結晶歪みを該下地基板の前記主面側に残存させ、
加工後の前記下地基板の前記主面に対する入射角を2°としてX線ロッキングカーブ測定を行ったときの、(10−10)面回折の半値幅を、加工前の前記下地基板の前記半値幅よりも大きくし、60arcsec以上200arcsec以下とする
請求項1又は2に記載の窒化物半導体基板の製造方法。 - 前記第1工程では、
最も接近する前記一対の頂部同士の前記平均距離を、800μm未満とする
請求項1〜3のいずれか1項に記載の窒化物半導体基板の製造方法。 - 前記第1工程では、
前記(0001)面を前記表面から消失させた後に、前記表面が前記傾斜界面のみで構成された状態を維持しつつ、所定の厚さに亘って前記第1層の成長を継続させる
請求項1〜4のいずれか1項に記載の窒化物半導体基板の製造方法。 - 前記第2工程の後に、前記第2層から少なくとも1つの窒化物半導体基板をスライスする工程を有する
請求項1〜5のいずれか1項に記載の窒化物半導体基板の製造方法。 - 前記下地基板を準備する工程では、
前記(0001)面が前記主面に対して凹の球面状に湾曲した前記下地基板を準備し、
前記窒化物半導体基板をスライスする工程では、
前記窒化物半導体基板のうち主面の法線に対する<0001>軸のなす角度であるオフ角のばらつきを、前記下地基板のうち前記主面の法線に対する<0001>軸のなす角度であるオフ角のばらつきよりも小さくする
請求項6に記載の窒化物半導体基板の製造方法。 - 前記第1工程では、
前記第1層に、前記(0001)面を成長面として成長した第1c面成長領域を形成し、
前記第1c面成長領域のうち前記(0001)面が消失し上に凸の変曲点として終端した位置に凸部を形成するとともに、前記第1c面成長領域のうち前記凸部を挟んだ両側に、前記(0001)面と前記傾斜界面との交点の軌跡として一対の傾斜部を形成し、
前記一対の傾斜部のなす角度を70°以下とする
請求項1〜7のいずれか1項に記載の窒化物半導体基板の製造方法。 - 前記第1工程では、
前記傾斜界面として、m≧3である{11−2m}面を生じさせる
請求項1〜8のいずれか1項に記載の窒化物半導体基板の製造方法。 - 2インチ以上の直径を有し、最も近い低指数の結晶面が(0001)面である主面を有する窒化物半導体基板であって、
Ge(220)面の2結晶モノクロメータおよびスリットを介して前記主面に対してCuのKα1のX線を照射し、(0002)面回折のX線ロッキングカーブ測定を行った場合に、
前記スリットのω方向の幅を0.1mmとしたときの前記(0002)面回折の半値幅FWHMbは32arcsec以下であり、
前記スリットのω方向の幅を1mmとしたときの前記(0002)面回折の半値幅FWHMaからFWHMbを引いた差FWHMa−FWHMbは、FWHMaの30%以下であり、
前記スリットのω方向の幅を1mmとしたときの回折パターンは、単一ピークを有する
窒化物半導体基板。 - 前記主面内に5mm間隔で設定した複数の測定点において、前記スリットのω方向の幅を0.1mmとして前記(0002)面回折のX線ロッキングカーブ測定を行ったときに、全測定点の90%以上において、前記(0002)面回折の半値幅FWHMbは、32arcsec以下である
請求項10に記載の窒化物半導体基板。 - 多光子励起顕微鏡により視野250μm角で前記主面を観察して暗点密度から転位密度を求めたときに、前記転位密度が3×106cm−2を超える領域が前記主面に存在せず、前記転位密度が1×106cm−2未満である領域が前記主面の80%以上存在する
請求項10又は11に記載の窒化物半導体基板。 - 前記主面は、重ならない50μm角の無転位領域を100個/cm 2 以上の密度で有する
請求項10〜12のいずれか1項に記載の窒化物半導体基板。 - 2インチ以上の直径を有し、最も近い低指数の結晶面が(0001)面である主面を有する窒化物半導体基板であって、
多光子励起顕微鏡により視野250μm角で前記窒化物半導体基板の主面を観察して暗点密度から転位密度を求めたときに、前記転位密度が3×106cm−2を超える領域が前記主面に存在せず、前記転位密度が1×106cm−2未満である領域が前記主面の80%以上存在し、
前記主面は、重ならない50μm角の無転位領域を100個/cm 2 以上の密度で有する
窒化物半導体基板。 - 酸素濃度は、5×10 16 cm −3 以下である
請求項10〜14のいずれか1項に記載の窒化物半導体基板。 - III族窒化物半導体の単結晶からなり、鏡面化された主面を有し、前記主面に対して最も近い低指数の結晶面が(0001)面である下地基板と、
前記下地基板の前記主面上に直接的に設けられ、III族窒化物半導体の単結晶からなる第1低酸素濃度領域と、
前記第1低酸素濃度領域上に設けられ、III族窒化物半導体の単結晶からなる高酸素濃度領域と、
前記高酸素濃度領域上に設けられ、III族窒化物半導体の単結晶からなる第2低酸素濃度領域と、
を備え、
前記高酸素濃度領域の酸素濃度は、前記第1低酸素濃度領域および前記第2低酸素濃度領域のそれぞれの酸素濃度よりも高く、
前記主面に垂直な任意の断面を見たときに、
前記第1低酸素濃度領域の上面は、複数の谷部および複数の山部を有し、
前記複数の谷部のうちの1つを挟んで前記複数の山部のうちで最も接近する一対の山部同士が前記主面に沿った方向に離間した平均距離は、100μm超である
積層構造体。 - 前記高酸素濃度領域は、前記下地基板の前記主面に沿って連続して設けられる
請求項16に記載の積層構造体。 - 前記第1低酸素濃度領域は、前記山部を挟んだ両側に設けられる一対の傾斜部をさらに有し、
前記一対の傾斜部のなす角度は、70°以下である
請求項16又は17に記載の積層構造体。 - 前記下地基板の前記主面における転位密度をN0とし、前記高酸素濃度領域の上端で前記主面に沿った境界面における転位密度をNとしたときに、N/N0で求められる転位密度の低減率は、前記下地基板の前記主面上に前記(0001)面のみを成長面としてIII族窒化物半導体の結晶層を、前記下地基板の前記主面から前記境界面までの厚さと等しい厚さでエピタキシャル成長させた場合の、前記結晶層の表面における転位密度をN’としたときに、N’/N0で求められる転位密度の低減率よりも小さい
請求項16〜18のいずれか1項に記載の積層構造体。 - 前記高酸素濃度領域の上端で前記主面に沿った境界面の、前記下地基板の前記主面からの厚さは、1.5mm以下であり、
前記下地基板の前記主面における転位密度をN0とし、前記境界面における転位密度をNとしたときに、N/N0で求められる転位密度の低減率は、0.3以下である
請求項16〜19のいずれか1項に記載の積層構造体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018159988A JP6595677B1 (ja) | 2018-08-29 | 2018-08-29 | 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体 |
PCT/JP2019/032851 WO2020045234A1 (ja) | 2018-08-29 | 2019-08-22 | 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体 |
US17/272,169 US12071707B2 (en) | 2018-08-29 | 2019-08-22 | Method for manufacturing nitride semiconductor substrate, nitride semiconductor substrate, and laminate structure |
CN201980056303.6A CN112601847B (zh) | 2018-08-29 | 2019-08-22 | 氮化物半导体基板的制造方法、氮化物半导体基板和层叠结构体 |
CN202211203575.4A CN115637491A (zh) | 2018-08-29 | 2019-08-22 | 氮化物半导体基板的制造方法、氮化物半导体基板和层叠结构体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018159988A JP6595677B1 (ja) | 2018-08-29 | 2018-08-29 | 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019170992A Division JP7166998B2 (ja) | 2019-09-20 | 2019-09-20 | 窒化物半導体基板 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6595677B1 true JP6595677B1 (ja) | 2019-10-23 |
JP2020033211A JP2020033211A (ja) | 2020-03-05 |
Family
ID=68314165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018159988A Active JP6595677B1 (ja) | 2018-08-29 | 2018-08-29 | 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12071707B2 (ja) |
JP (1) | JP6595677B1 (ja) |
CN (2) | CN115637491A (ja) |
WO (1) | WO2020045234A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240302302A1 (en) * | 2019-10-18 | 2024-09-12 | Sumitomo Chemical Company, Limited | Nitride semiconductor substrate, laminated structure, and method for manufacturing nitride semiconductor substrate |
US20240300064A1 (en) * | 2021-06-30 | 2024-09-12 | Kyocera Corporation | Method of manufacturing gallium nitride single-crystal substrate and method of manufacturing single-crystal substrate of nitride of group 13 element in periodic table |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1159750C (zh) * | 1997-04-11 | 2004-07-28 | 日亚化学工业株式会社 | 氮化物半导体的生长方法 |
JP4145437B2 (ja) | 1999-09-28 | 2008-09-03 | 住友電気工業株式会社 | 単結晶GaNの結晶成長方法及び単結晶GaN基板の製造方法と単結晶GaN基板 |
JP4106906B2 (ja) * | 2001-12-26 | 2008-06-25 | ソニー株式会社 | 半導体レーザー素子及び半導体レーザー素子の製造方法 |
JP4307113B2 (ja) * | 2002-03-19 | 2009-08-05 | 宣彦 澤木 | 半導体発光素子およびその製造方法 |
US7786503B2 (en) | 2002-12-27 | 2010-08-31 | Momentive Performance Materials Inc. | Gallium nitride crystals and wafers and method of making |
WO2004061923A1 (en) | 2002-12-27 | 2004-07-22 | General Electric Company | Gallium nitride crystal, homoepitaxial gallium-nitride-based devices and method for producing same |
US7098487B2 (en) | 2002-12-27 | 2006-08-29 | General Electric Company | Gallium nitride crystal and method of making same |
JP4457609B2 (ja) * | 2003-08-26 | 2010-04-28 | 豊田合成株式会社 | 窒化ガリウム(GaN)の製造方法 |
JP4849296B2 (ja) * | 2005-04-11 | 2012-01-11 | 日立電線株式会社 | GaN基板 |
JP5297219B2 (ja) * | 2008-02-29 | 2013-09-25 | 信越化学工業株式会社 | 単結晶薄膜を有する基板の製造方法 |
CN103556225B (zh) | 2009-02-16 | 2015-05-27 | 日本碍子株式会社 | 13族氮化物晶体 |
JP6031733B2 (ja) * | 2010-09-27 | 2016-11-24 | 住友電気工業株式会社 | GaN結晶の製造方法 |
JP5808208B2 (ja) | 2011-09-15 | 2015-11-10 | 株式会社サイオクス | 窒化物半導体基板の製造方法 |
JP5888208B2 (ja) * | 2011-11-18 | 2016-03-16 | 三菱化学株式会社 | 窒化物結晶の製造方法 |
JP2013212946A (ja) * | 2012-03-30 | 2013-10-17 | Mitsubishi Chemicals Corp | Iii族窒化物半導体結晶 |
JP2013214686A (ja) * | 2012-04-04 | 2013-10-17 | Furukawa Co Ltd | Iii族窒化物半導体層およびiii族窒化物半導体層の製造方法 |
JP2014181170A (ja) * | 2013-03-21 | 2014-09-29 | Mitsubishi Chemicals Corp | 半導体バルク結晶および半導体バルク結晶の製造方法 |
WO2015037232A1 (ja) * | 2013-09-11 | 2015-03-19 | 国立大学法人東京農工大学 | 窒化物半導体結晶、製造方法および製造装置 |
FR3021454B1 (fr) * | 2014-05-20 | 2019-12-13 | Centre National De La Recherche Scientifique (Cnrs) | Procede de fabrication d'un materiau semi-conducteur incluant une couche de nitrure d'element iii semi-polaire |
JP2017139247A (ja) | 2014-05-30 | 2017-08-10 | 三菱化学株式会社 | エピタキシャルウエハ、半導体発光素子、発光装置及びエピタキシャルウエハの製造方法 |
WO2015182207A1 (ja) | 2014-05-30 | 2015-12-03 | 三菱化学株式会社 | エピタキシャルウエハ、半導体発光素子、発光装置及びエピタキシャルウエハの製造方法 |
JP6841195B2 (ja) * | 2016-09-30 | 2021-03-10 | 豊田合成株式会社 | Iii族窒化物半導体の製造方法 |
JP6984148B2 (ja) * | 2017-03-22 | 2021-12-17 | 日本電気株式会社 | 計算機システム及びキャッシュ・コヒーレンス方法 |
JP6513165B2 (ja) * | 2017-11-08 | 2019-05-15 | 住友化学株式会社 | Iii族窒化物半導体単結晶の製造方法 |
-
2018
- 2018-08-29 JP JP2018159988A patent/JP6595677B1/ja active Active
-
2019
- 2019-08-22 WO PCT/JP2019/032851 patent/WO2020045234A1/ja active Application Filing
- 2019-08-22 CN CN202211203575.4A patent/CN115637491A/zh active Pending
- 2019-08-22 CN CN201980056303.6A patent/CN112601847B/zh active Active
- 2019-08-22 US US17/272,169 patent/US12071707B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20210292931A1 (en) | 2021-09-23 |
WO2020045234A1 (ja) | 2020-03-05 |
CN112601847B (zh) | 2022-09-27 |
JP2020033211A (ja) | 2020-03-05 |
US12071707B2 (en) | 2024-08-27 |
CN115637491A (zh) | 2023-01-24 |
CN112601847A (zh) | 2021-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109989110B (zh) | 氮化物半导体基板及其制造方法、半导体层叠物及其制造方法、以及层叠结构体 | |
JP6595731B1 (ja) | 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体 | |
WO2020158571A1 (ja) | 窒化物半導体基板、積層構造体、および窒化物半導体基板の製造方法 | |
JP7542713B2 (ja) | 窒化物半導体基板 | |
JP6595677B1 (ja) | 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体 | |
JP6595689B1 (ja) | 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体 | |
JP2023157999A (ja) | 窒化物半導体基板 | |
JP2020075850A (ja) | 窒化物半導体基板の製造方法 | |
JP6595676B1 (ja) | 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体 | |
JP6595678B1 (ja) | 窒化物半導体基板、窒化物半導体基板の製造方法および積層構造体 | |
WO2021075369A1 (ja) | 窒化物半導体基板、積層構造体、および窒化物半導体基板の製造方法 | |
JP2020033254A (ja) | 窒化物半導体基板 | |
JP7339096B2 (ja) | 窒化物半導体基板の製造方法および窒化物半導体基板 | |
JP2020125233A (ja) | 窒化物半導体基板 | |
JP2020033252A (ja) | 窒化物半導体基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190528 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190926 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6595677 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |