WO2020158571A1 - 窒化物半導体基板、積層構造体、および窒化物半導体基板の製造方法 - Google Patents

窒化物半導体基板、積層構造体、および窒化物半導体基板の製造方法 Download PDF

Info

Publication number
WO2020158571A1
WO2020158571A1 PCT/JP2020/002333 JP2020002333W WO2020158571A1 WO 2020158571 A1 WO2020158571 A1 WO 2020158571A1 JP 2020002333 W JP2020002333 W JP 2020002333W WO 2020158571 A1 WO2020158571 A1 WO 2020158571A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
growth
main surface
layer
nitride semiconductor
Prior art date
Application number
PCT/JP2020/002333
Other languages
English (en)
French (fr)
Inventor
丈洋 吉田
Original Assignee
株式会社サイオクス
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サイオクス, 住友化学株式会社 filed Critical 株式会社サイオクス
Priority to US17/426,334 priority Critical patent/US20220106706A1/en
Priority to CN202080011565.3A priority patent/CN113366159A/zh
Publication of WO2020158571A1 publication Critical patent/WO2020158571A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/34Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being on the surface

Definitions

  • the present invention relates to a nitride semiconductor substrate, a laminated structure, and a method for manufacturing a nitride semiconductor substrate.
  • a substrate made of a single crystal of a group III nitride semiconductor is used as a base substrate (seed substrate), and a group III nitride semiconductor is formed on the main surface whose closest low-index crystal plane is the (0001) plane.
  • a method of further growing a crystal layer composed of the single crystal of According to this method, at least one nitride semiconductor substrate can be obtained by slicing a crystal layer grown to a predetermined thickness (for example, Patent Document 1).
  • An object of the present invention is to provide a technique capable of easily and stably obtaining a nitride semiconductor substrate having good crystal quality.
  • a nitride semiconductor substrate which is composed of a group III nitride semiconductor single crystal and has a main surface whose closest low-index crystal plane is a (0001) plane,
  • the inclined interface growth region is formed by using an inclined interface other than the (0001) plane as a growth surface,
  • the area ratio of the inclined interface growth region in the main surface is 80% or more
  • a base substrate made of a single crystal of a group III nitride semiconductor, having a mirror-finished main surface, and a crystal face with a low index closest to the main surface is a (0001) plane;
  • a low oxygen concentration region which is provided directly on the main surface of the base substrate and is made of a single crystal of a group III nitride semiconductor;
  • a high oxygen concentration region formed on the low oxygen concentration region and made of a single crystal of a group III nitride semiconductor; Equipped with The oxygen concentration in the high oxygen concentration region is higher than the oxygen concentration in the low oxygen concentration region, When looking at any cross section perpendicular to the main surface,
  • the upper surface of the low oxygen concentration region has a plurality of valleys and a plurality of peaks, An average distance in which a pair of peaks closest to each other among the peaks sandwiching one of the valleys is separated in the direction along the main surface is more than 100 ⁇ m.
  • the body is provided.
  • a method for manufacturing a nitride semiconductor substrate using a vapor phase growth method comprising: A group III nitride semiconductor single crystal having a mirror-finished main surface, and a base substrate having a (0001) plane as a crystal face with a low index closest to the main surface; A group III nitride semiconductor single crystal having a top surface with an exposed (0001) plane is epitaxially grown directly on the main surface of the underlying substrate, and a plurality of slanted interfaces other than the (0001) plane are formed. A concave portion is formed on the top surface, the inclined interface is gradually expanded as it goes above the main surface of the base substrate, and the (0001) plane disappears from the top surface at least once.
  • the step of growing Slicing the three-dimensional growth layer to form a nitride semiconductor substrate Have In the step of forming the three-dimensional growth layer, By forming the plurality of recesses on the top surface of the single crystal and eliminating the (0001) plane, a plurality of valleys and a plurality of tops are formed on the surface of the three-dimensional growth layer, A direction along which the pair of tops closest to each other among the plurality of peaks sandwiching one of the plurality of valleys is along the main surface when an arbitrary cross section perpendicular to the main surface is seen.
  • a method for manufacturing a nitride semiconductor substrate having an average distance separated by more than 100 ⁇ m.
  • a nitride semiconductor substrate having good crystal quality can be easily and stably obtained.
  • FIG. 3 is a flowchart showing a method for manufacturing a nitride semiconductor substrate according to an embodiment of the present invention.
  • A)-(g) is a schematic sectional drawing which shows a part of manufacturing method of the nitride semiconductor substrate which concerns on one Embodiment of this invention.
  • A)-(c) is a schematic sectional drawing which shows a part of manufacturing method of the nitride semiconductor substrate which concerns on one Embodiment of this invention.
  • FIG. 6 is a schematic perspective view showing a part of the method for manufacturing the nitride semiconductor substrate according to the embodiment of the present invention.
  • FIG. 1 is a schematic sectional drawing which shows a part of manufacturing method of the nitride semiconductor substrate which concerns on one Embodiment of this invention.
  • (A) is a schematic cross-sectional view showing a growth process under a standard growth condition in which the inclined interface and the c-plane are neither expanded nor contracted, and
  • (b) is a diagram in which the inclined interface expands and the c-plane contracts. It is a schematic sectional drawing which shows the growth process on 1 growth conditions.
  • (A) is a schematic top view showing a nitride semiconductor substrate according to one embodiment of the present invention
  • (b) is a schematic cross-sectional view along the m-axis of a nitride semiconductor substrate according to one embodiment of the present invention.
  • It is a figure and (c) is a schematic sectional drawing along the a axis of the nitride semiconductor substrate concerning one embodiment of the present invention.
  • FIG. (A) is a figure which shows the observation image which observed the surface of the laminated structure of experiment 1 with an optical microscope
  • (b) shows the observation image which observed the cross section of the laminated structure of experiment 1 with the fluorescence microscope.
  • FIG. 3 is a schematic diagram showing an observation image obtained by observing the main surface of the nitride semiconductor substrate A obtained in Experiment 1 with a multiphoton excitation microscope.
  • FIG. (A) is a figure which shows the result of having performed the rocking curve measurement of X-ray diffraction with respect to the direction along the m-axis of the nitride semiconductor substrate A obtained in Experiment 1
  • (b) is Experiment 1.
  • FIG. 6 is a diagram showing a result of performing a rocking curve measurement of X-ray diffraction in the direction along the a-axis of the nitride semiconductor substrate A obtained in 1.
  • A is a figure which shows the result of having performed the rocking curve measurement of X-ray diffraction with respect to the predetermined direction of the nitride semiconductor substrate B obtained in Experiment 1
  • (b) is a of (a). It is the figure which expanded the result of having performed the rocking curve measurement of the X-ray diffraction to the direction along the axis
  • (c) is the rocking curve of the X-ray diffraction to the direction along the m-axis of (a). It is the figure which expanded the result of having measured.
  • (A) is a figure which shows the cathode luminescence image which observed the surface of the semiconductor layer in the laminated body of the Example in Experiment 2 by the scanning electron microscope
  • (b) is a reference
  • (A) is a figure which shows the result of having performed the photoluminescence mapping measurement in the laminated body of the Example in experiment 2
  • (b) is a photoluminescence mapping measurement in the reference laminated body of the reference example in experiment 2.
  • 3 is a photoluminescence spectrum in each semiconductor layer of the laminate of Example and the reference laminate of Reference Example in Experiment 2.
  • FIG. 1 is a flowchart showing a method for manufacturing a nitride semiconductor substrate according to this embodiment.
  • 2A to 2G, 3A to 3C, and 5A to 5B show a part of the method for manufacturing the nitride semiconductor substrate according to the present embodiment.
  • It is a schematic sectional drawing.
  • FIG. 4 is a schematic perspective view showing a part of the method for manufacturing the nitride semiconductor substrate according to the present embodiment. Note that FIG. 4 corresponds to a perspective view at the time of FIG. 3B and shows a part of the three-dimensional growth layer 30 grown on the base substrate 10.
  • the dotted lines indicate dislocations.
  • the method for manufacturing a nitride semiconductor substrate includes, for example, a base substrate preparing step S100, a three-dimensional growth step S200, a slicing step S400, and a polishing step S500. ing.
  • base substrate preparing step S100 base substrate 10 made of a single crystal of a group III nitride semiconductor is prepared.
  • base substrate 10 for example, a gallium nitride (GaN) free-standing substrate is prepared.
  • GaN gallium nitride
  • the ⁇ 0001> axis (for example, the [0001] axis) is referred to as the “c axis” and the (0001) plane is referred to as the “c plane”.
  • the (0001) plane may be referred to as "+c plane (group III element polar plane)", and the (000-1) plane may be referred to as "-c plane (nitrogen (N) polar plane)”.
  • the ⁇ 1-100> axis eg, [1-100] axis
  • m-axis the ⁇ 1-100 ⁇ plane is referred to as “m-plane”.
  • the m-axis may be described as a ⁇ 10-10> axis.
  • the ⁇ 11-20> axis (for example, the [11-20] axis) is called the “a axis”, and the ⁇ 11-20 ⁇ plane is called the “a plane”.
  • the base substrate 10 is manufactured by, for example, a VAS (Void-Assisted Separation) method.
  • VAS Vaid-Assisted Separation
  • the base substrate preparation step S100 includes, for example, a crystal growth substrate preparation step S110, a first crystal layer formation step S120, a metal layer formation step S130, a void formation step S140, and a second crystal layer formation. It has a step S150, a peeling step S160, a slicing step S170, and a polishing step S180.
  • a crystal growth substrate 1 (hereinafter sometimes abbreviated as “substrate 1”) is prepared.
  • the substrate 1 is, for example, a sapphire substrate.
  • the substrate 1 may be, for example, a Si substrate or a gallium arsenide (GaAs) substrate.
  • the substrate 1 has, for example, a main surface 1s serving as a growth surface.
  • the crystal face with a low index closest to the main surface 1s is, for example, the c-plane 1c.
  • the c-plane 1c of the substrate 1 is inclined with respect to the main surface 1s.
  • the c-axis 1ca of the substrate 1 is inclined at a predetermined off angle ⁇ 0 with respect to the normal line of the main surface 1s.
  • the off angle ⁇ 0 within the main surface 1s of the substrate 1 is uniform over the entire main surface 1s.
  • the off angle ⁇ 0 in the main surface 1s of the substrate 1 affects the off angle ⁇ 3 at the center of the main surface 10s of the base substrate 10 described later.
  • TMG trimethylgallium
  • MOVPE metal organic chemical vapor deposition
  • NH 3 ammonia gas
  • SiH 4 monosilane
  • a low temperature grown GaN buffer layer and a Si-doped GaN layer are grown in this order.
  • the thickness of the low-temperature grown GaN buffer layer and the thickness of the Si-doped GaN layer are, for example, 20 nm and 0.5 ⁇ m, respectively.
  • the metal layer 3 is deposited on the first crystal layer 2.
  • the metal layer 3 is, for example, a titanium (Ti) layer. Further, the thickness of the metal layer 3 is set to, for example, 20 nm.
  • the substrate 1 described above is put into an electric furnace, and the substrate 1 is placed on a susceptor having a predetermined heater. After the substrate 1 is placed on the susceptor, the substrate 1 is heated by a heater and heat treatment is performed in an atmosphere containing hydrogen gas or hydride gas. Specifically, for example, the heat treatment is performed for 20 minutes at a predetermined temperature in a hydrogen (H 2 ) gas flow containing 20% NH 3 gas.
  • the heat treatment temperature is, for example, 850° C. or higher and 1100° C. or lower.
  • the metal layer 3 is nitrided, and the metal nitride layer 5 having high-density fine holes is formed on the surface. Further, by performing the above-mentioned heat treatment, a part of the first crystal layer 2 is etched through the holes of the metal nitride layer 5 to form high density voids in the first crystal layer 2.
  • the void-containing first crystal layer 4 is formed.
  • a Ge-doped GaN layer may be epitaxially grown as the second crystal layer 6 by supplying tetrachlorogermane (GeCl 4 ) gas or the like as the n-type dopant gas instead of SiH 2 Cl 2 gas.
  • tetrachlorogermane (GeCl 4 ) gas or the like as the n-type dopant gas instead of SiH 2 Cl 2 gas.
  • the second crystal layer 6 grows on the void-containing first crystal layer 4 and the metal nitride layer 5 from the void-containing first crystal layer 4 through the hole of the metal nitride layer 5.
  • Some of the voids in the void-containing first crystal layer 4 are filled with the second crystal layer 6, but the other portions of the voids in the void-containing first crystal layer 4 remain.
  • a flat void is formed between the second crystal layer 6 and the metal nitride layer 5 due to the void remaining in the void-containing first crystal layer 4. This void causes peeling of the second crystal layer 6 in the peeling step S160 described later.
  • the second crystal layer 6 grows while the orientation of the substrate 1 is inherited. That is, the off-angle ⁇ 1 in the main surface of the second crystal layer 6 is uniform over the entire main surface similarly to the off-angle ⁇ 0 in the main surface 1s of the substrate 1.
  • the thickness of the second crystal layer 6 is, for example, 600 ⁇ m or more, preferably 1 mm or more.
  • the upper limit of the thickness of the second crystal layer is not particularly limited, but the thickness of the second crystal layer 6 is preferably 50 mm or less from the viewpoint of improving productivity.
  • a tensile stress is introduced into the second crystal layer 6 by the initial nuclei generated during the growth process attracting each other. Therefore, due to the tensile stress generated in the second crystal layer 6, internal stress acts on the second crystal layer 6 such that the surface side thereof is recessed. Further, the dislocation density on the main surface (front surface) side of the second crystal layer 6 is low, while the dislocation density on the back surface side of the second crystal layer 6 is high. Therefore, due to the difference in dislocation density in the thickness direction of the second crystal layer 6, internal stress acts on the second crystal layer 6 so that the surface side of the second crystal layer 6 is recessed.
  • the second crystal layer 6 is warped such that the surface side thereof becomes concave after being peeled from the substrate 1. Therefore, the c-plane 6c of the second crystal layer 6 is curved into a concave spherical shape with respect to the plane perpendicular to the normal direction of the center of the main surface 6s of the second crystal layer 6.
  • the off angle ⁇ 2 formed by the c-axis 6ca with respect to the normal line of the center of the main surface 6s of the second crystal layer 6 has a predetermined distribution.
  • the base substrate 10 as an as-slice substrate is formed.
  • the thickness of the base substrate 10 is, eg, 450 ⁇ m.
  • the off angle ⁇ 3 of the base substrate 10 may change from the off angle ⁇ 2 of the second crystal layer 6 due to the slice direction dependency.
  • the base substrate 10 made of a GaN single crystal is obtained.
  • the diameter of the base substrate 10 is, for example, 2 inches or more.
  • the thickness of the base substrate 10 is, for example, 300 ⁇ m or more and 1 mm or less.
  • the main surface 10s of the base substrate 10 has, for example, a main surface (base surface) 10s to be an epitaxial growth surface.
  • the closest low-index crystal plane to the main surface 10s is, for example, the c-plane (+c-plane) 10c.
  • the c-plane 10c of the base substrate 10 is curved in a spherical shape concave to the main surface 10s.
  • the "spherical shape” here means a curved surface shape that is approximated to a spherical surface.
  • the “spherical surface approximation” here means that the spherical surface is approximated within a predetermined error range with respect to a perfect spherical surface or an elliptic spherical surface.
  • the c-plane 10c of the base substrate 10 has, for example, a curved surface that is approximated to a sphere in each of the cross section along the m axis and the cross section along the a axis.
  • the curvature radius of the c-plane 10c of the base substrate 10 is, for example, 1 m or more and less than 10 m.
  • the off angle ⁇ 3 formed by the c-axis 10ca with respect to the normal line of the center of the principal surface 10s of the base substrate 10 has a predetermined distribution.
  • the magnitude of the off angle ⁇ 3 at the center of the main surface 10s of the base substrate 10 is, for example, more than 0° and 1° or less.
  • the magnitude and direction of the off angle ⁇ 3 at the center of the main surface 10s of the base substrate 10 are, for example, the magnitude and direction of the off angle ⁇ 0 of the crystal growth substrate 1 used in the above VAS method, and the slicing step. It is possible to adjust by the slice angle and slice direction in S170.
  • the root mean square roughness RMS of the main surface 10s of the base substrate 10 is set to, for example, less than 1 nm.
  • the dislocation density on the main surface 10s of the base substrate 10 is low.
  • the dislocation density on the main surface 10s of the base substrate 10 is, for example, 3 ⁇ 10 6 cm ⁇ 2 or more and less than 1 ⁇ 10 7 cm ⁇ 2 .
  • the “mask layer” used herein means, for example, a mask layer used in a so-called ELO (Epitaxial Lateral Overgrowth) method and made of silicon oxide or the like and having a predetermined opening.
  • the “concave/convex pattern” used here is, for example, used in a so-called pendeo epitaxy method, and means at least one of a trench and a ridge in which the main surface of the underlying substrate is directly patterned.
  • the height difference of the uneven pattern here is, for example, 100 nm or more.
  • the base substrate 10 of the present embodiment is used in the three-dimensional growth step S200 without having the structure as described above.
  • a group III nitride semiconductor single crystal having a top surface 30u with an exposed c-plane 30c is formed on a base substrate. Epitaxial growth is directly carried out on the main surface 10s of 10.
  • a plurality of concave portions 30p surrounded by the inclined interfaces 30i other than the c-plane are formed on the top surface 30u of the single crystal, and the inclined interfaces 30i increase as they go above the main surface 10s of the base substrate 10. Is gradually enlarged, and the c-plane 30c is gradually reduced. As a result, the c-plane 30c disappears from the top surface 30u at least once. As a result, the three-dimensional growth layer 30 having the inclined interface 30i widely existing on the surface is formed.
  • the inclined interface growth region 70 (gray portion in the figure) formed by using the inclined interface 30i other than the c-plane as the growth surface is formed.
  • the area occupied by the inclined interface growth region 70 in the three-dimensional growth layer 30 along the main surface 10 s of the base substrate 10 is set to, for example, 80% or more.
  • the three-dimensional growth layer 30 is three-dimensionally grown so as to intentionally roughen the main surface 10s of the base substrate 10.
  • the three-dimensional growth layer 30 is grown as a single crystal as described above even if such a growth form is formed.
  • the three-dimensional growth layer 30 is different from a so-called low temperature growth buffer layer formed as an amorphous or polycrystal on a heterogeneous substrate such as sapphire before epitaxially growing a group III nitride semiconductor on the heterogeneous substrate. Is.
  • the three-dimensional growth layer 30 for example, a layer made of the same group III nitride semiconductor as the group III nitride semiconductor forming the underlying substrate 10 is epitaxially grown. Specifically, for example, by heating the underlying substrate 10 by the HVPE method and supplying GaCl gas and NH 3 gas to the heated underlying substrate 10, a GaN layer is epitaxially grown as the three-dimensional growth layer 30.
  • the three-dimensional growth layer 30 is grown under, for example, a predetermined first growth condition in order to express the above-described growth process.
  • FIG. 6A is a schematic cross-sectional view showing a growth process under standard growth conditions in which the inclined interface and the c-plane do not expand or contract.
  • a thick solid line indicates the surface of the three-dimensional growth layer 30 for each unit time.
  • the inclined interface 30i shown in FIG. 6A is the inclined interface most inclined with respect to the c-plane 30c.
  • the growth rate of the c-plane 30c of the three-dimensional growth layer 30 is G c0
  • the growth rate of the inclined interface 30i of the three-dimensional growth layer 30 is G i.
  • the angle between the c-plane 30c and the inclined interface 30i is ⁇ .
  • FIG. 6A it is assumed that the three-dimensional growth layer 30 grows while maintaining the angle ⁇ formed by the c-plane 30c and the inclined interface 30i.
  • the off-angle of the c-plane 30c of the three-dimensional growth layer 30 is negligible compared with the angle ⁇ formed by the c-plane 30c and the inclined interface 30i.
  • FIG. 6B is a schematic cross-sectional view showing the growth process under the first growth condition in which the inclined interface expands and the c-plane contracts.
  • a thick solid line indicates the surface of the three-dimensional growth layer 30 for each unit time.
  • the inclined interface 30i shown in FIG. 6B is also the inclined interface most inclined with respect to the c-plane 30c.
  • the growth rate of the c-plane 30c of the three-dimensional growth layer 30 is set to G c1, and the trajectory of the intersection of the inclined interface 30i and the c-plane 30c of the three-dimensional growth layer 30 progresses. Let the rate be R 1 . Further, of the angles formed by the intersection of the inclined interface 30i and the c-plane 30c and the c-plane 30c, the smaller angle is ⁇ R1 .
  • the progress rate R 1 of the locus of the intersection of the inclined interface 30i and the c-plane 30c is expressed by the following equation (b).
  • R 1 G i /cos ⁇ '...(b)
  • the growth rate G c1 of the c-plane 30c of the three-dimensional growth layer 30 is expressed by the following equation (c).
  • G c1 R 1 sin ⁇ R1 ...(c)
  • G c1 is represented by the following equation (d) using G i .
  • G c1 G i sin ⁇ R1 /cos( ⁇ +90 ⁇ R1 ) (d)
  • the first growth condition in which the inclined interface 30i expands and the c-plane 30c shrinks satisfies the following expression (1) by the expression (d) and ⁇ R1 ⁇ 90°.
  • G i is the growth rate of the inclined interface 30i most inclined with respect to the c-plane 30c
  • is the inclined interface 30i most inclined with respect to the c-plane 30c and the c-plane 30c. Is the angle formed by.
  • G c1 under the first growth condition is preferably larger than G c0 under the reference growth condition.
  • the expression (1) can be derived by substituting the expression (a) for G c1 >G c0 .
  • the first growth condition preferably satisfies, for example, the following expression (1′).
  • the first growth condition preferably satisfies, for example, the following expression (1′′).
  • the growth temperature in the three-dimensional growth step S200 is set lower than the growth temperature in the case of growing the group III nitride layer typically using the c-plane as the growth surface. ..
  • the growth temperature in the three-dimensional growth step S200 is, for example, 980° C. or higher and 1,020° C. or lower, preferably 1,000° C. or higher and 1,020° C. or lower.
  • the ratio of the partial pressure of the flow rate of the NH 3 gas as the nitrogen source gas to the partial pressure of the GaCl gas as the group III source gas in the three-dimensional growth step S200 may be larger than the V/III ratio in the case of growing a group III nitride layer typically using the c-plane as a growth surface.
  • the V/III ratio in the three-dimensional growth step S200 is, for example, 2 or more and 20 or less, preferably 2 or more and 15 or less.
  • the first growth condition at least one of the growth temperature and the V/III ratio is adjusted within the above range so as to satisfy the formula (1).
  • the other conditions of the first growth conditions of the present embodiment are as follows, for example. Growth pressure: 90 to 105 kPa, preferably 90 to 95 kPa GaCl gas partial pressure: 1.5 to 15 kPa N 2 gas flow rate/H 2 gas flow rate: 0 to 1
  • the three-dimensional growth step S200 of this embodiment is classified into two steps, for example, based on the morphology of the three-dimensional growth layer 30 during growth.
  • the three-dimensional growth step S200 of the present embodiment has, for example, an inclined interface expanding step S220 and an inclined interface maintaining step S240.
  • the three-dimensional growth layer 30 has, for example, the graded interface expansion layer 32 and the graded interface maintenance layer 34.
  • the graded interface expansion layer 32 of the three-dimensional growth layer 30 made of a group III nitride semiconductor single crystal is formed on the base substrate 10 under the above-described first growth condition. Epitaxial growth is performed directly on the main surface 10s.
  • the tilted interface expansion layer 32 has a predetermined thickness in the normal direction of the main surface 10s of the underlying substrate 10 (direction along the c-axis) with the c-plane 30c as a growth surface. Is subjected to step flow growth (two-dimensional growth).
  • a part of the inclined interface expansion layer 32 that has grown using the c-plane 30c as a growth surface is also referred to as an "initial layer".
  • an initial layer having a mirror-finished surface is formed with a predetermined thickness.
  • the initial layer is, for example, continuously grown in the direction along the main surface 10s of the base substrate 10, that is, over the entire main surface 10s of the base substrate 10.
  • the thickness of the initial layer is, for example, 1 ⁇ m or more and 100 ⁇ m or less, preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the "gradient interface 30i" referred to here means a growth interface that is tilted with respect to the c-plane 30c, and has a low index facet other than the c-plane, a high index facet other than the c-plane, or a plane index. It includes an inclined surface that cannot be represented by.
  • the facets other than the c-plane are, for example, ⁇ 11-2m ⁇ and ⁇ 1-10n ⁇ . However, m and n are integers other than 0.
  • the inclined interface 30i is, for example, m ⁇ 3 ⁇ 11-2m ⁇ .
  • a surface can be generated.
  • the inclination angle of the ⁇ 11-2m ⁇ plane with respect to the c-plane 30c can be made gentle.
  • the inclination angle can be 47.3° or less.
  • the c-plane 30c of the inclined interface expanding layer 32 disappears from the top surface 30u at least once, and the outermost surface (uppermost surface) of the inclined interface expanding layer 32 is only the inclined interface 30i. Composed.
  • each of the plurality of valleys 30v is a downwardly convex inflection point on the surface of the inclined interface expansion layer 32, and is formed above the position where each of the inclined interfaces 30i other than the c-plane is generated.
  • each of the plurality of tops 30t is an inflection point that is convex upward on the surface of the tilted interface expansion layer 32, and the c-plane is sandwiched by a pair of tilted interfaces 30i that expand in opposite directions.
  • 30c is formed at or above the (finally) disappeared position.
  • the valley portions 30v and the top portions 30t are alternately formed in the direction along the main surface 10s of the base substrate 10.
  • the inclined interface expansion is performed on the main surface 10s of the base substrate 10 without using the inclined interface 30i as a growth surface without forming the inclined interface 30i.
  • a graded interface 30i other than the c-plane is formed on the surface of the graded interface expansion layer 32.
  • the plurality of valleys 30v are formed at positions separated upward from the main surface 10s of the base substrate 10.
  • dislocations bend and propagate as follows. Specifically, as shown in FIG. 3C, a plurality of dislocations extending in the direction along the c-axis in the base substrate 10 are transferred from the base substrate 10 to the c-axis of the inclined interface expansion layer 32. Propagate in the direction along. In the region in which the c-plane 30c has grown as the growth surface in the graded interface expansion layer 32, dislocations propagate from the base substrate 10 in the direction along the c-axis of the graded interface expansion layer 32.
  • the dislocations are substantially perpendicular to the graded interface 30i at the position where the graded interface 30i is exposed. It propagates by bending in the direction. That is, the dislocations are bent and propagate in a direction inclined with respect to the c-axis. As a result, dislocations are locally collected above the approximate center between the pair of tops 30t in the steps after the inclined interface expansion step S220. As a result, the dislocation density on the surface of the tilted interface sustaining layer 34 described later can be reduced.
  • an average distance L between the pair of tops 30t is also set to be more than 100 ⁇ m (also referred to as “average distance between closest tops”) L in the direction along the main surface 10s of the base substrate 10.
  • the closest average distance L between the tops is the distance when the cross section when the c-plane 30c disappears from the crystal growth interface is viewed.
  • the inclination is 100 ⁇ m or less.
  • the dislocation bends and propagates in a shorter distance. Therefore, dislocations cannot be sufficiently collected above the center of the inclined interface expansion layer 32 between the pair of tops 30t. As a result, the dislocation density on the surface of the tilted interface sustaining layer 34, which will be described later, may not be sufficiently reduced.
  • the distance at which dislocations are bent and propagated is ensured to be at least 50 ⁇ m or more in the steps after the inclined interface expansion step S220. be able to.
  • dislocations can be sufficiently collected above the center of the inclined interface expansion layer 32 between the pair of tops 30t.
  • the dislocation density on the surface of the tilted interface sustaining layer 34 which will be described later, can be sufficiently reduced.
  • the average distance L between the closest points is set to less than 800 ⁇ m. If the average distance L between the closest points is 800 ⁇ m or more, dislocations are collected over the entire surface, and therefore it takes time to eliminate the c-plane 30c over the entire surface. Therefore, the productivity of the substrate 50 is reduced. If the average distance L between the closest peaks is 800 ⁇ m or more, the height from the valley 30v to the peak 30t of the inclined interface expansion layer 32 may be excessively high. The valley portion 30v on the crystal surface becomes a cause of a through pit when the substrate 50 is sliced unless measures such as burying growth are taken. Therefore, the acquisition yield of the substrate 50 may decrease.
  • the average distance L between the closest peaks by setting the average distance L between the closest peaks to less than 800 ⁇ m, it is possible to shorten the time for the c-plane 30c to disappear over the entire surface. Thereby, the productivity of the substrate 50 can be improved. Further, by setting the average distance L between the closest peaks to less than 800 ⁇ m, the height from the valley 30v to the peak 30t of the inclined interface expansion layer 32 can be reduced. As a result, it is possible to suppress the formation of the valley portion 30v that causes a through pit when the substrate 50 is sliced. As a result, the yield of acquisition of the substrate 50 can be improved.
  • a c-plane growth region (first c-plane growth region, base-side c-face growth region) that has grown using the c-plane 30c as a growth surface is formed on the basis of the difference in the growth surface in the growth process.
  • a valley portion 60a is formed at a position where the inclined interface 30i is generated, and a crest portion 60b is formed at a position where the c-plane 30c disappears.
  • a pair of inclined portions 60i is formed on both sides of the crest portion 60b as a locus of the intersection of the c-plane 30c and the inclined interface 30i.
  • the angle ⁇ formed by the pair of inclined portions 60i when the cross section passing through the centers of the two adjacent valley portions 60a is viewed is, for example, , 70° or less.
  • the inclined interface maintaining layer 34 is formed on the inclined interface expanding layer 32.
  • the three-dimensional growth step S200 in order to surely bend the dislocation propagation direction and reduce the dislocation density as described above, when the history of the growth interface is observed at an arbitrary position of the three-dimensional growth layer 30. In addition, it is important that the c-plane 30c disappear at least once. For this reason, it is desirable that the c-plane 30c disappear at least once in the early stage of the three-dimensional growth step S200 (for example, the above-mentioned inclined interface expansion step S220).
  • the c-plane 30c may reappear on a part of the surface of the inclined interface maintaining layer 34 after the c-plane 30c has disappeared at least once.
  • the area ratio of the inclined interface growth region 70 in the creeping cross section is set to 80% or more, it is possible to suppress the occurrence of cracks during growth, and to perform slicing and polishing. It can be easily processed.
  • the c-plane 30c appears again on a part of the surface of the graded interface sustaining layer 34, and the area ratio of the graded interface growth region 70 in the creeping cross section is 100%. It may be less than.
  • the inclined interface growth region 70 and the c-plane growth region (second c-plane growth region) 80 are mixed in a part of the three-dimensional growth layer 30.
  • oxygen as an n-type impurity is relatively easy to be taken in, whereas in the mixed c-plane growth region 80, oxygen is relatively suppressed.
  • the oxygen concentration in the c-plane growth region 80 becomes lower than the oxygen concentration in the inclined interface growth region 70, and the carrier concentration in the c-plane growth region 80 becomes lower than the carrier concentration in the inclined interface growth region 70. ..
  • the carrier concentration in the c-plane growth region 80 becomes lower than the carrier concentration in the inclined interface growth region 70. ..
  • in the substrate 50 sliced from a region in which the inclined interface growth region 70 and the c-plane growth region 80 are mixed there is a possibility that in-plane variation in carrier concentration occurs.
  • the conductive impurities are, for example, at least one of Si and Ge as n type impurities.
  • the conductive impurities may be added at the above-described concentration when the inclined interface maintaining layer 34 is grown at the planned slice position of the substrate 50 in at least the inclined interface maintaining step S240 of the three-dimensional growth step S200.
  • the conductivity type impurities may be added to the entire three-dimensional growth layer 30 at the above concentration. The addition of such conductive impurities can suppress the carrier concentration in the second c-plane growth region from becoming relatively low. As a result, in-substrate variations in carrier concentration can be suppressed in the substrate 50.
  • the inclined interface maintaining layer 34 is mainly grown using the inclined interface 30i as a growth surface, so that the inclined interface 30i is exposed at the position where the inclined interface 30i is exposed as described above. Then, the dislocations that are bent and propagated in the direction inclined with respect to the c-axis continue to propagate in the same direction in the inclined interface sustaining layer 34. As a result, dislocations are locally collected at the meeting portion of the adjacent inclined interfaces 30i in the inclined interface sustaining layer 34. Among the plurality of dislocations collected at the meeting portion of the adjacent tilt interfaces 30i in the tilt interface sustaining layer 34, dislocations having mutually opposite Burgers vectors disappear during the meeting.
  • a part of the plurality of dislocations collected at the meeting portion of the adjacent inclined interfaces 30i forms a loop and propagates in the direction along the c-axis (that is, on the surface side of the inclined interface sustaining layer 34). Suppressed.
  • the other part of the plurality of dislocations gathered at the meeting part of the adjacent graded interfaces 30i moves from the direction in which the propagation direction is inclined to the c axis to the direction along the c axis. It is changed again and propagates to the surface side of the inclined interface sustaining layer 34.
  • dissociating a part of the plurality of dislocations or suppressing a part of the plurality of dislocations from propagating to the surface side of the c-plane expanded layer 42 dislocations on the surface of the graded interface sustaining layer 34 are suppressed.
  • the density can be reduced.
  • a low dislocation density region can be formed above the portion of the graded interface sustaining layer 34 where the dislocations propagate in the direction inclined with respect to the c-axis.
  • the thickness of the inclined interface maintaining layer 34 is set to, for example, 300 ⁇ m or more and 10 mm or less added to the height from the valley portion 30v to the top portion 30t of the inclined interface expanding layer 32.
  • the thickness of the graded interface maintenance layer 34 is set to 300 ⁇ m or more, at least one or more substrates 50 can be sliced from the graded interface maintenance layer 34 in a slicing step S400 described later.
  • the thickness of the graded interface maintenance layer 34 is set to 650 ⁇ m, and when slicing the substrate 50 having a thickness of 700 ⁇ m from the graded interface maintenance layer 34, about 200 ⁇ m of kerf loss is taken into consideration. However, at least 10 substrates 50 can be obtained.
  • the tilted interface maintaining layer 34 has a tilted interface with respect to the main surface 10s of the underlying substrate 10 on the surface.
  • the inclination angle formed by 30i does not necessarily have to be maintained.
  • at the end of the growth of the graded interface maintenance layer 34 at least a part of the recess 30p of the graded interface maintenance layer 34 may be filled.
  • the tilt angle of the tilted interface 30i may be gradually decreased and the index m of the ⁇ 11-2m ⁇ plane may be gradually increased.
  • the three-dimensional growth layer 30 having the graded interface expansion layer 32 and the graded interface maintenance layer 34 is formed.
  • the above-described inclined interface expanding step S220 and inclined interface maintaining step S240 are continuously performed in the same chamber without exposing the underlying substrate 10 to the atmosphere. This suppresses formation of an unintended high oxygen concentration region (a region having an oxygen concentration excessively higher than that of the graded interface growth region 70) at the interface between the graded interface expansion layer 32 and the graded interface sustaining layer 34. can do.
  • the three-dimensional growth layer 30 is sliced by a wire saw along a cut surface substantially parallel to the main surface 10s of the base substrate 10.
  • at least one nitride semiconductor substrate 50 also referred to as a substrate 50
  • the thickness of the substrate 50 is set to, for example, 300 ⁇ m or more and 700 ⁇ m or less.
  • the substrate 50 is formed by, for example, slicing the inclined interface maintaining layer 34. Further, for example, the inclined interface sustaining layer 34 is sliced at a position apart from the position where the c-plane growth region 60 continuing from the underlying substrate 10 is finally disappeared (that is, the crest 60b of the c-plane growth region 60). Thereby, the substrate 50 with reduced dislocations can be stably obtained.
  • the radius of curvature (absolute value) of the c-plane 50c of the substrate 50 can be made larger than the radius of curvature (absolute value) of the c-plane 10c of the base substrate 10.
  • the variation of the off-angle ⁇ of the c-axis 50 ca with respect to the normal line of the main surface 50 s of the substrate 50 can be made smaller than the variation of the off-angle of the c-axis 10 ca of the base substrate 10.
  • both surfaces of the substrate 50 are polished by a polishing device.
  • the final thickness of the substrate 50 is, for example, 250 ⁇ m or more and 650 ⁇ m or less.
  • the substrate 50 according to the present embodiment is manufactured by the above steps S100 to S500.
  • semiconductor laminate manufacturing process and semiconductor device manufacturing process After the substrate 50 is manufactured, for example, a semiconductor functional layer made of a group III nitride semiconductor is epitaxially grown on the substrate 50 to produce a semiconductor laminate. After the semiconductor laminated body is manufactured, electrodes and the like are formed using the semiconductor laminated body, and the semiconductor laminated body is diced to cut a chip having a predetermined size. Thereby, a semiconductor device is manufactured.
  • the laminated structure 90 of this embodiment includes, for example, the base substrate 10 and the three-dimensional growth layer 30.
  • the three-dimensional growth layer 30 is grown on the main surface 10s of the base substrate 10, for example.
  • the three-dimensional growth layer 30 causes, for example, a plurality of concave portions 30p composed of inclined interfaces 30i other than the c-plane to be formed on the top surface 30u of the single crystal of the group III nitride semiconductor, and the c-plane 30c disappears at least once. It is formed by that.
  • the three-dimensional growth layer 30 includes a c-plane growth region (first low oxygen concentration region) 60, a graded interface growth region (high oxygen concentration region) 70, based on the difference in the growth surface during the growth process, for example. ,have.
  • the c-plane growth region 60 is a region grown using the c-plane 30c as a growth surface. As described above, in the c-plane growth region 60, oxygen uptake is suppressed as compared with the inclined interface growth region 70. Therefore, the oxygen concentration in the c-plane growth region 60 becomes lower than the oxygen concentration in the inclined interface growth region 70. Specifically, the oxygen concentration in the c-plane growth region 60 is, for example, 5 ⁇ 10 16 cm ⁇ 3 or less, preferably 3 ⁇ 10 16 cm ⁇ 3 or less.
  • the c-plane growth region 60 is not continuous from the base substrate 10 to the surface (uppermost surface) of the three-dimensional growth layer 30.
  • the c-plane growth region 60 has, for example, a plurality of valleys 60a and a plurality of peaks 60b in a sectional view.
  • Each of the valleys 60a and the peaks 60b here means a part of the shape observed based on the difference in emission intensity when the cross section of the laminated structure 90 is observed by a fluorescence microscope or the like, and the three-dimensional growth is performed. It does not mean a part of the shape of the outermost surface generated during the growth of the layer 30.
  • Each of the plurality of valleys 60a is a downwardly convex inflection point in the c-plane growth region 60 in a cross-sectional view, and is formed at a position where the inclined interface 30i is generated.
  • At least one (or all) of the plurality of valleys 60a is provided at a position separated upward from the main surface 10s of the base substrate 10.
  • each of the plurality of crests 60b is an inflection point that is convex upward in the c-plane growth region 60 in a cross-sectional view, and sandwiches a pair of inclined interfaces 30i that are enlarged in opposite directions.
  • the c-plane 30c is formed at the (finally) disappeared position.
  • the valleys 60a and the peaks 60b are alternately formed in the direction along the main surface 10s of the base substrate 10.
  • the average distance between the closest peaks in the growth process of the three-dimensional growth layer 30 is the average distance between the crests 60b of the c-plane growth region 60. Equivalent to.
  • the average distance between the crests 60b of the c-plane growth region 60 is, for example, more than 100 ⁇ m.
  • the c-plane growth region 60 has a pair of inclined portions 60i provided as a locus of intersections between the c-plane 30c and the inclined interface 30i on both sides sandwiching one of the plurality of peaks 60b.
  • the inclined portion 60i here means a part of the shape observed based on the difference in emission intensity when the cross section of the laminated structure 90 is observed with a fluorescence microscope or the like, and during the growth of the three-dimensional growth layer 30. It does not mean the outermost surface inclined interface 30i.
  • the angle ⁇ formed by the pair of inclined portions 60i when the cross section passing through the centers of the two adjacent valleys 60a is viewed is, for example, 70° or less, preferably 20° or more and 65° or less.
  • the angle ⁇ formed by the pair of inclined portions 60i is 70° or less, which means that the growth rate G i of the inclined interface 30i most inclined with respect to the c-plane 30c of the three-dimensional growth layer 30 under the first growth condition. This means that the ratio G c1 /G i of the growth rate G c1 of the c-plane 30c in the three-dimensional growth layer 30 was high. Thereby, the inclined interface 30i other than the c-plane can be easily generated.
  • the dislocations can be easily bent at the position where the inclined interface 30i is exposed.
  • the angle ⁇ formed by the pair of inclined portions 60i is 70° or less, it is possible to easily form the plurality of valleys 30v and the plurality of tops 30t above the main surface 10s of the base substrate 10.
  • the angle ⁇ formed by the pair of inclined portions 60i is set to 65° or less, the inclined interface 30i other than the c-plane can be more easily generated, and a plurality of inclined interfaces 30i can be formed above the main surface 10s of the base substrate 10.
  • the valley portion 30v and the plurality of top portions 30t can be generated more easily.
  • the angle ⁇ formed by the pair of inclined portions 60i By setting the angle ⁇ formed by the pair of inclined portions 60i to 20° or more, it is possible to prevent the height from the valley portion 30v to the top portion 30t of the three-dimensional growth layer 30 from increasing. As a result, it is possible to minimize the area where a non-defective substrate cannot be obtained due to the formation of through pits due to the valleys 30v when the substrate 50 is sliced.
  • the inclined interface growth region 70 is a region that has grown using the inclined interface 30i other than the c-plane as the growth surface.
  • the inclined interface growth region 70 can easily take in oxygen. Therefore, the oxygen concentration in the inclined interface growth region 70 becomes higher than the oxygen concentration in the c-plane growth region 60.
  • the oxygen taken into the inclined interface growth region 70 is, for example, oxygen that is unintentionally mixed in the HVPE device or oxygen released from a member (quartz member or the like) that constitutes the HVPE device.
  • the oxygen concentration in the graded interface growth region 70 is, for example, 9 ⁇ 10 17 cm ⁇ 3 or more and 5 ⁇ 10 19 cm ⁇ 3 or less.
  • the inclined interface growth region 70 is provided on the c-plane growth region 60.
  • the lower surface of the inclined interface growth region 70 is formed following the shape of the c-plane growth region 60, for example.
  • At least a part of the inclined interface growth region 70 is continuously provided along the main surface of the base substrate 10. That is, when a plurality of cross-sections (creep cross-sections) obtained by cutting the three-dimensional growth layer 30 along the main surface 10s of the underlying substrate 10 are viewed, a cross-section that does not include a c-plane growth region grown with the c-plane 30c as a growth surface. Are preferably present in at least a part of the three-dimensional growth layer 30 in the thickness direction.
  • the inclined interface maintaining layer 34 is continuously grown mainly using the inclined interface 30i as a growth surface, the inclined interface growth region 70 is formed in the creeping cross section of the three-dimensional growth layer 30 along the main surface 10s of the underlying substrate 10.
  • the area ratio occupied by is, for example, 80% or more.
  • the area ratio of the inclined interface growth region 70 may be less than 100% in a predetermined creeping cross section. That is, a creeping cross section in which the inclined interface growth region 70 and the second c-plane growth region (corresponding to the c-plane growth region 80 described later) are mixed may occur.
  • the second c-plane growth region mixed in the creeping cross section has, for example, an oxygen concentration equivalent to the oxygen concentration of the c-plane growth region 60 described above.
  • the size of the c-plane growth region 80 in plan view is 3 to 3 mm from the main surface 10s of the base substrate 10. It randomly changes toward the surface of the dimensional growth layer 30.
  • the c-plane growth region 80 is similar to the c-plane growth region 60 in the main substrate 10 of the underlying substrate 10. It is not continuous from the surface 10s to the surface (uppermost surface) of the three-dimensional growth layer 30.
  • dislocations are bent at a position where the inclined interface 30i other than the c-plane is exposed in a direction substantially perpendicular to the inclined interface 30i.
  • a part of the plurality of dislocations disappears or a part of the plurality of dislocations is suppressed from propagating to the surface side of the graded interface sustaining layer 34.
  • the dislocation density on the surface of the graded interface sustaining layer 34 is lower than the dislocation density on the main surface 10s of the underlying substrate 10.
  • the entire surface of the three-dimensional growth layer 30 is configured to be oriented in the +c plane, and the three-dimensional growth layer 30 does not include a polarity reversal section (inversion domain).
  • the laminated structure 90 of the present embodiment is different from the laminated structure formed by the so-called DEEP (Dislocation Emination by the Epitaxial-growth with inverse-pyramidal Pits) method, that is, it is located at the center of the pit. This is different from the laminated structure in which the core includes the polarity reversal section.
  • FIG. 7A is a schematic top view showing the nitride semiconductor substrate according to this embodiment
  • FIG. 7B is a schematic cross-sectional view along the m-axis of the nitride semiconductor substrate according to this embodiment
  • (C) is a schematic sectional view along the a-axis of the nitride semiconductor substrate according to the present embodiment
  • FIG. 8 is a schematic diagram showing a cathode luminescence image obtained by observing the main surface of the nitride semiconductor substrate according to the present embodiment with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the substrate 50 obtained by the above-described manufacturing method is, for example, a free-standing substrate made of a group III nitride semiconductor single crystal.
  • the substrate 50 is, for example, a GaN free-standing substrate.
  • the diameter of the substrate 50 is, for example, 2 inches or more.
  • the thickness of the substrate 50 is, for example, 300 ⁇ m or more and 1 mm or less.
  • the substrate 50 has, for example, a main surface 50s that is an epitaxial growth surface.
  • the closest low-index crystal plane to the main surface 50s is, for example, the c-plane 50c.
  • the main surface 50s of the substrate 50 is, for example, mirror-finished, and the root-mean-square roughness RMS of the main surface 50s of the substrate 50 is, for example, less than 1 nm.
  • the substrate 50 does not include the polarity inversion section (inversion domain) as described above, for example.
  • the substrate 50 has, for example, an inclined interface growth region (high oxygen concentration region) 70 grown by using the inclined interface 30i as a growth surface.
  • the oxygen concentration in the graded interface growth region 70 is, for example, 9 ⁇ 10 17 cm ⁇ 3 or more and 5 ⁇ 10 19 cm ⁇ 3 or less.
  • the graded interface growth region 70 contains a high concentration of oxygen as described above, the cathode luminescence when imaged in a wavelength range including at least a part of the wavelength of light emission at least near the band gap energy of the group III nitride semiconductor.
  • the inclined interface growth region 70 is observed relatively bright.
  • the shape of the inclined interface growth region 70 in plan view reflects, for example, the shape of the recess 30p formed in the growth process of the three-dimensional growth layer 30 in plan view, and has at least a part of a substantially hexagon. .. Of the shape of the inclined interface growth region 70 in plan view, one substantially hexagon may intersect with another substantially hexagon. In the 2PPL image, the ridgeline of the recess 30p generated during the growth process of the three-dimensional growth layer 30 may be visible in the inclined interface growth region 70.
  • the area ratio of the inclined interface growth region 70 in the main surface 50s is, for example, 80% or more.
  • the c-plane growth region (second c-plane growth region, front-side c-face growth region, low oxygen concentration region) 80 may exist at an area ratio of 20% or less.
  • the c-plane growth region 80 is a region in which the c-plane 30c appears again in the graded interface sustaining layer 34.
  • the oxygen concentration in the c-plane growth region 80 is, for example, 5 ⁇ 10 16 cm ⁇ 3 or less, preferably 3 ⁇ 10 16 cm ⁇ 3 or less.
  • the c-plane growth region 80 is not continuous, for example, from the back surface of the substrate 50 opposite to the main surface 50s toward the main surface 50s.
  • the area ratio of the inclined interface growth region 70 in the main surface 50s may be 100%, that is, the substrate 50 may not have the c-plane growth region 80.
  • the oxygen concentration obtained by averaging the entire main surface 50s of the substrate 50 based on the area ratio of the inclined interface growth region 70 in the main surface 50s is, for example, 7 ⁇ 10 17 cm ⁇ 3 or more and 5 ⁇ 10 19 cm ⁇ 3. It is as follows.
  • the substrate 50 obtained by the above manufacturing method is, for example, n-type.
  • the substrate 50 of the present embodiment contains, as an n-type impurity, not only oxygen (O) described above but also at least one of Si and Ge.
  • the total n-type impurity concentration in the substrate 50 is, for example, 1.0 ⁇ 10 18 cm ⁇ 3 or more and 1.0 ⁇ 10 20 cm ⁇ 3 or less.
  • the free electron concentration in the substrate 50 is, for example, equal to the total concentration of O, Si, and Ge in the substrate 50.
  • the concentration of impurities other than n-type impurities (conductive type impurities) in the substrate 50 obtained by the above-described manufacturing method is low.
  • the hydrogen concentration in the substrate 50 obtained by the above manufacturing method is lower than that of the substrate obtained by the flux method or the ammonothermal method.
  • the hydrogen concentration in the substrate 50 is, for example, less than 1 ⁇ 10 17 cm ⁇ 3 , preferably 5 ⁇ 10 16 cm ⁇ 3 or less.
  • dark spot means a point at which the emission intensity is low, which is observed in an observation image of the main surface 50s in a multiphoton excitation microscope, a cathode luminescence image of the main surface 50s, and the like, and only dislocations. In addition, it also includes non-radiative centers caused by foreign matters or point defects.
  • the "multi-photon excitation microscope” may also be called a two-photon excitation fluorescence microscope.
  • the substrate 50 is manufactured using the base substrate 10 made of a high-purity GaN single crystal manufactured by the VAS method, the non-emission center caused by a foreign substance or a point defect in the substrate 50. Less is.
  • dislocations are locally collected in the graded interface sustaining layer 34 by the above-described manufacturing method, and the dislocation density on the surface of the graded interface sustaining layer 34 is higher than the dislocation density on the main surface 10s of the underlying substrate 10. Has also been reduced. As a result, the dislocation density is reduced also in the main surface 50s of the substrate 50 formed by slicing the graded interface sustaining layer 34.
  • dislocations d are locally concentrated at the center of the substantially hexagon of the graded interface growth region 70 by the manufacturing method described above.
  • the region in which the dislocations d are relatively concentrated in the inclined interface growth region 70 is also referred to as “dislocation concentrated region dca”.
  • a low dislocation density region is widely formed outside the dislocation concentrated region dca.
  • the three-dimensional growth step S200 is performed by using the underlying substrate 10 that is not subjected to the pattern processing by the above-described manufacturing method, so that the three-dimensional growth layer 30 is sliced and formed.
  • the main surface 50s of the substrate 50 high dislocation density regions that regularly occur due to the patterning of the underlying substrate 10 are not formed.
  • the dislocation concentrated regions dca are randomly arranged.
  • the dislocation density in the dislocation concentration region dca of the substrate 50 of this embodiment is lower than that when the underlying substrate 10 is patterned.
  • the dislocation density when the dislocation density is determined from the dark spot density by observing the main surface 50s of the substrate 50 in a field of view of 250 ⁇ m square with a multiphoton excitation microscope, the dislocation density is 3 ⁇ 10 6 cm ⁇ No more than 2 areas exist. Further, a region having a dislocation density of less than 1 ⁇ 10 6 cm ⁇ 2 exists in 80% or more, preferably 90% or more, and more preferably 95% or more of the main surface 50s. Observation of the cathode luminescence image also gives the same results as those obtained by the multiphoton excitation microscope.
  • the upper limit of the proportion of the region having a dislocation density of less than 1 ⁇ 10 6 cm ⁇ 2 is, for example, 99% of the main surface 50s.
  • the average dislocation density of the entire main surface 50s of the substrate 50 is, for example, less than 1 ⁇ 10 6 cm ⁇ 2 , and preferably less than 5.5 ⁇ 10 5 cm ⁇ 2 . , And more preferably 3 ⁇ 10 5 cm ⁇ 2 or less.
  • the main surface 50s of the substrate 50 of the present embodiment includes at least a 50 ⁇ m square dislocation-free region based on the average distance L between the closest peaks in the above-described three-dimensional growth step S200, for example. Further, the 50 ⁇ m square dislocation-free regions are scattered, for example, over the entire main surface 50 s of the substrate 50 excluding the dislocation-concentrated regions dca described above. Further, the main surface 50s of the substrate 50 of the present embodiment has, for example, 100 dislocation-free regions of 50 ⁇ m square which do not overlap with each other, 100/cm 2 or more, preferably 800/cm 2 or more, and more preferably 1600/cm 2 or more. It has a density of.
  • the density of dislocation-free regions of 50 ⁇ m square that do not overlap is 1600 pieces/cm 2 or more, for example, it corresponds to the case where the main surface 50s has at least one 50 ⁇ m-square dislocation-free region in an arbitrary visual field of 250 ⁇ m square. To do.
  • the upper limit of the density of dislocation-free regions of 50 ⁇ m square that do not overlap is, for example, about 30,000 pieces/cm 2 .
  • the size of dislocation-free regions is smaller than 50 ⁇ m square, or the density of dislocation-free regions of 50 ⁇ m square is 100. It is lower than / cm 2. Further, also in the substrate obtained by the conventional ELO method, the size of the dislocation-free region is smaller than 50 ⁇ m square, or the density of the dislocation-free region of 50 ⁇ m square is lower than 100/cm 2 .
  • the c-plane 30c disappears at least once during the growth process of the three-dimensional growth layer 30, and the main surface 50s side Dislocations are bent below the c-plane growth region 80.
  • the c-plane growth region 80 on the main surface 50s may include the above-mentioned at least 50 ⁇ m square dislocation-free region.
  • the dislocation density in the dislocation concentration region dca is low as described above, the main surface 50s is observed with a multiphoton excitation microscope in a 50 ⁇ m square field of view including the dislocation concentration region dca.
  • the dislocation density is, for example, less than 3 ⁇ 10 6 cm ⁇ 2 . Since it is considered that at least one dark spot exists in the visual field of 50 ⁇ m square including the dislocation concentrated region dca, the lower limit value of dislocation density in the visual field of 50 ⁇ m square including the dislocation concentrated region dca is, for example, 4 ⁇ . It is 10 4 cm -2 .
  • basal plane dislocation Next, the basal plane dislocation bpd on the major surface 50s of the substrate 50 of the present embodiment will be described with reference to FIG.
  • crystal strain may be applied to the three-dimensional growth layer 30 due to the stress canceling effect of the later-described inclined interface growth region 70, and basal plane dislocation may occur. Therefore, as shown in FIG. 8, a basal plane dislocation bpd may be observed in the CL image of the main surface 50s of the substrate 50 formed by slicing the three-dimensional growth layer 30.
  • the basal plane dislocation bpd on the major surface 50s of the substrate 50 is smaller than that of the substrate obtained by the ELO method or the like using the mask layer.
  • the number of intersections between the line segment ls and the basal plane dislocation bpd is, for example, 10 It is not more than 5 points, preferably not more than 5 points.
  • the minimum value of the number of intersections between the line segment ls and the basal plane dislocation bpd is, for example, 0 point.
  • the dislocation density on the main surface 10s of the base substrate 10 used in the above-described manufacturing method is low, a plurality of dislocations are combined (mixed) when the three-dimensional growth layer 30 is grown on the base substrate 10. Little to do. Thereby, generation of dislocations having a large Burgers vector can be suppressed in the substrate 50 obtained from the three-dimensional growth layer 30.
  • the Burgers vector is any one of ⁇ 11-20>/3, ⁇ 0001>, or ⁇ 11-23>/3.
  • the “Burgers vector” here can be measured by, for example, a large-angle convergent electron diffraction method (LACBED method) using a transmission electron microscope (TEM).
  • LACBED method large-angle convergent electron diffraction method
  • TEM transmission electron microscope
  • the dislocation having a Burgers vector of ⁇ 11-20>/3 is an edge dislocation
  • the dislocation having a Burgers vector of ⁇ 0001> is a screw dislocation
  • a dislocation having a Burgers vector of ⁇ 11-23>/3 is A certain dislocation is a mixed dislocation in which edge dislocations and screw dislocations are mixed.
  • the Burgers vector when 100 dislocations on the main surface 50s of the substrate 50 are randomly extracted, the Burgers vector is either ⁇ 11-20>/3, ⁇ 0001>, or ⁇ 11-23>/3.
  • the ratio of the number of dislocations is, for example, 50% or more, preferably 70% or more, more preferably 90% or more. It should be noted that dislocations having a Burgers vector of 2 ⁇ 11-20>/3, ⁇ 11-20>, or the like may be present in at least a part of the main surface 50s of the substrate 50.
  • the c-plane 50c as a crystal face with a low index closest to the main surface 50s of the substrate 50 is, for example, the above-described substrate 50 manufactured. Depending on the method, it is flat or curved spherically.
  • the c-plane 50c of the substrate 50 may be curved, for example, in a concave spherical shape with respect to the main surface 50s, or may be curved in a convex spherical shape.
  • the c-face 50c of the substrate 50 is, for example, substantially flat, a portion curved in a spherical surface concave to the main surface 50s and a portion curved in a spherical surface convex to the main surface 50s. And may have.
  • the c-plane 50c of the substrate 50 is, for example, flat in each of the cross section along the m-axis and the cross-section along the a-axis, or has a curved surface that approximates a sphere. ..
  • the coordinate in the direction along the m-axis is “x”.
  • the coordinate in the direction along the a-axis is “y”.
  • the coordinates (x, y) of the center of the main surface 50s of the substrate 50 are (0, 0).
  • the directional component along the m-axis is “ ⁇ m ”
  • the off-angle m-axis component ⁇ m and the off-angle a-axis component ⁇ a are , Can be approximately expressed by a linear function of x and a linear function of y, respectively.
  • the X-ray rocking curve of the (0002) plane is measured at each position on a straight line passing through the center in the main surface 50s, and the peak formed by the X-rays incident on the main surface 50s and the main surface 50s.
  • the peak angle ⁇ can be approximated by a linear function of the position.
  • the “peak angle ⁇ ” referred to here is an angle formed by the X-rays incident on the main surface 50s and the main surface 50s, and is an angle at which the diffraction intensity is maximum.
  • the radius of curvature of the c-plane 50c can be obtained by the reciprocal of the slope of the linear function approximated as described above.
  • the radius of curvature of the c-plane 50c of the substrate 50 is, for example, larger than the radius of curvature of the c-plane 10c of the base substrate 10 used in the method of manufacturing the substrate 50 described above.
  • the radius of curvature of the c-plane 50c obtained by the reciprocal of the slope of the linear function is, for example, , 15 m or more, preferably 23 m or more, more preferably 30 m or more, still more preferably 40 m or more.
  • the upper limit of the radius of curvature of the c-plane 50c of the substrate 50 is preferably as large as possible, and is not particularly limited.
  • the c-plane 50c of the substrate 50 is substantially flat, it can be considered that the radius of curvature of the c-plane 50c is infinite.
  • the variation of the off-angle ⁇ of the c-axis 50ca with respect to the normal line of the main surface 50s of the substrate 50 can be reduced by the off-angle of the c-axis 10ca of the base substrate 10. Can be smaller than the variation of.
  • the error of the measured peak angle ⁇ with respect to the linear function approximated as described above is, for example, 0.05° or less, preferably 0.02° or less, and more preferably 0.01° or less. Is. Note that the minimum value of the error is 0° because at least part of the peak angle ⁇ may match the linear function.
  • the substrate 50 has the inclined interface growth region 70 having a high oxygen concentration as described above.
  • the substrate 50 was grown on the substrate 50.
  • the crystal strain caused by the substrate 50 hardly occurs in the semiconductor layer. Therefore, in the photoluminescence of the semiconductor layer grown on the substrate 50, the peak shift due to the crystal strain of the semiconductor layer is small or absent.
  • the substrate 50 it is the same as the substrate 50 except that a semiconductor layer made of a non-doped single crystal of a predetermined group III nitride semiconductor is epitaxially grown on the main surface 50s of the substrate 50 and that the inclined interface growth region 70 is not provided.
  • group III nitride semiconductor single crystal that is, the same non-doped single crystal of the group III nitride semiconductor as the substrate 50
  • a reference laminate in which a semiconductor layer is epitaxially grown on the substrate that is, the same non-doped single crystal of the group III nitride semiconductor as the substrate 50
  • the term “non-doped” as used herein means that the semiconductor does not include impurities intentionally added, and includes the case where the semiconductor includes inevitable impurities.
  • the photoluminescence of the semiconductor layer in each of the laminate of the present embodiment and the reference laminate is measured at a temperature difference of less than 1° C. (for example, at 27° C.).
  • the difference between the maximum peak wavelength in the semiconductor layer of the laminate of the present embodiment and the maximum peak wavelength in the semiconductor layer of the reference laminate is, for example, 1 nm or less.
  • a tilted interface 30i other than the c-plane is formed on the surface of the single crystal forming the three-dimensional growth layer 30, so that the tilted interface 30i is exposed at the position where the tilted interface 30i is exposed.
  • the dislocations can be bent and propagated in a direction substantially perpendicular thereto. This allows dislocations to be locally collected. By collecting dislocations locally, dislocations having mutually opposite Burgers vectors can be eliminated. Alternatively, dislocations that are locally collected form a loop, so that the dislocations can be suppressed from propagating to the surface side of the three-dimensional growth layer 30. In this way, the dislocation density on the surface of the three-dimensional growth layer 30 can be reduced. As a result, the substrate 50 having a dislocation density lower than that of the base substrate 10 can be obtained.
  • the dislocation propagated from the underlying substrate propagates in a substantially vertical direction without being bent and reaches the surface of the three-dimensional growth layer. Therefore, dislocations are not reduced above the portion where the c-plane remains, and a high dislocation density region is formed.
  • the c-plane 30c disappears from the top surface 30u of the three-dimensional growth layer 30 at least once so that the surface of the three-dimensional growth layer 30 is removed at least once. It can be configured only by the inclined interface 30i other than the c-plane.
  • dislocations propagating from the base substrate 10 can be surely bent over the entire surface of the three-dimensional growth layer 30.
  • the dislocation density can be reduced over the entire main surface 50s of the substrate 50 obtained from the three-dimensional growth layer 30.
  • the substantially vertical direction from the base substrate 10 to the surface of the three-dimensional growth layer 30 is obtained. Propagation of dislocations in the direction can be suppressed. Thereby, concentration of dislocations in the three-dimensional growth layer 30 can be suppressed.
  • the radius of curvature of the c-plane 50c of the substrate 50 can be made larger than the radius of curvature of the c-plane 10c of the underlying substrate 10.
  • the radius of curvature of the c-plane 50c of the substrate 50 becomes large, for example, the following reasons can be considered.
  • the three-dimensional growth layer 30 is grown with the inclined interface 30i other than the c-plane as the growth surface, whereby the inclined interface growth region 70 is formed.
  • the inclined interface growth region 70 is more likely to take in oxygen. Therefore, the oxygen concentration in the inclined interface growth region 70 becomes higher than the oxygen concentration in the c-plane growth region 60. That is, the inclined interface growth region 70 can be considered as a high oxygen concentration region.
  • the lattice constant in the high oxygen concentration region can be made larger than the lattice constant in other regions other than the high oxygen concentration region (reference: Chris G. et al. Van de Wall, Physical Review B vol.68, 165209 (2003)).
  • the curvature of the c-face 10c of the base substrate 10 causes the concentration toward the center of curvature of the c-face 30c. The stress to apply is added.
  • the radius of curvature of the c-plane 50c of the substrate 50 can be made larger than the radius of curvature of the c-plane 10c of the base substrate 10.
  • the three-dimensional growth layer 30 is grown by growing the three-dimensional growth layer 30 using the inclined interface 30i as a growth surface, compared with the case where the semiconductor layer is grown using the c-plane as a growth surface. Can grow faster. Thereby, the throughput in manufacturing the substrate 50 can be improved.
  • the substrate 50 having good crystal quality can be easily and stably obtained.
  • the inclined interface expansion layer 32 is two-dimensionally grown with a predetermined thickness using the c-plane 30c as a growth surface, a plurality of top surfaces 30u of the inclined interface expansion layer 32 are formed.
  • the concave portion 30p the crystal axes can be aligned over the entire main surface 10s of the base substrate 10. This can suppress the generation of new dislocations due to the shift of the crystal axis. As a result, the dislocation density can be lowered.
  • the buffer layer changes from amorphous to polycrystalline in the process of raising the temperature to the growth temperature of the epi layer.
  • the epi layer is island-shaped grown on the polycrystallized buffer layer.
  • the crystal axes vary. Therefore, when the island-shaped crystals further grow and the island-shaped crystals associate with each other, new dislocations are generated due to the shift of the crystal axes. Therefore, the epilayer may have a high dislocation density.
  • etch pits when etch pits are usually formed in a nitride semiconductor substrate using a predetermined etchant, etch pits composed of ⁇ 1-10n ⁇ planes are formed on the surface of the substrate.
  • the surface of the three-dimensional growth layer 30 grown under predetermined conditions can have ⁇ 11-2m ⁇ planes with m ⁇ 3. Therefore, it is considered that the inclined interface 30i peculiar to the manufacturing method is formed in this embodiment, as compared with the normal etch pit.
  • the average distance L between the closest peaks is set to more than 100 ⁇ m, so that the dislocation bends and propagates. Of at least 50 ⁇ m can be ensured.
  • dislocations can be sufficiently collected above the center of the three-dimensional growth layer 30 between the pair of tops 30t. As a result, the dislocation density on the surface of the three-dimensional growth layer 30 can be sufficiently reduced.
  • the substrate 50 is formed by slicing the inclined interface maintaining layer 34.
  • the inclined interface sustaining layer 34 is sliced at a position which is separated upward from the position where the c-plane growth region 60 continuing from the base substrate 10 disappears last. As a result, it is possible to avoid a part of the process in which dislocations are collected in the three-dimensional growth layer 30. As a result, the substrate 50 with reduced dislocations can be stably obtained.
  • the base substrate 10 is a GaN free-standing substrate.
  • the base substrate 10 is not limited to a GaN free-standing substrate, but may be, for example, aluminum nitride (AlN), aluminum gallium nitride (AlGaN), or indium nitride.
  • Group III nitride semiconductors such as (InN), indium gallium nitride (InGaN), and aluminum indium gallium nitride (AlInGaN), that is, Al x In y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ It may be a free-standing substrate made of a group III nitride semiconductor represented by a composition formula of 1, 0 ⁇ x+y ⁇ 1).
  • the substrate 50 is a GaN free-standing substrate
  • the substrate 50 is not limited to a GaN free-standing substrate, and for example, a group III nitride semiconductor such as AlN, AlGaN, InN, InGaN, AlInGaN, That is, it is a free-standing substrate made of a group III nitride semiconductor represented by a composition formula of Al x In y Ga 1-x ⁇ y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1). May be.
  • the substrate 50 is n-type has been described, but the substrate 50 may be p-type or may have semi-insulating properties.
  • the substrate 50 when manufacturing a semiconductor device as a high electron mobility transistor (HEMT) using the substrate 50, it is preferable that the substrate 50 has a semi-insulating property.
  • HEMT high electron mobility transistor
  • the growth temperature is mainly adjusted as the first growth condition in the three-dimensional growth step S200 .
  • the first growth condition satisfies Expression (1)
  • the first growth condition is set as the first growth condition.
  • the growth conditions other than the growth temperature may be adjusted, or the growth temperature and the growth conditions other than the growth temperature may be combined and adjusted.
  • the growth condition in the inclined interface maintaining step S240 is maintained under the above-described first growth condition as in the inclined interface expanding step S220 has been described.
  • the growth condition in the inclined interface maintaining step S240 is described. Satisfying the first growth condition, the growth condition in the inclined interface maintaining step S240 may be different from the growth condition in the inclined interface expanding step S220.
  • the wire saw is used to slice the second crystal layer 6 or the inclined interface maintaining layer 34.
  • the outer peripheral blade slicer and the inner peripheral blade slicer are used.
  • an electric discharge machine or the like may be used.
  • the laminated structure 90 may be used as it is to manufacture a semiconductor laminate for manufacturing a semiconductor device. Specifically, after the laminated structure 90 is manufactured, a semiconductor functional layer is epitaxially grown on the laminated structure 90 in the semiconductor laminated body manufacturing step to manufacture a semiconductor laminated body. After the semiconductor laminated body is manufactured, the back surface side of the laminated structure 90 is polished to remove the base substrate 10 and the inclined interface expansion layer 32 of the laminated structure 90.
  • a semiconductor laminate including the graded interface maintenance layer 34 and the semiconductor functional layer is obtained.
  • the slicing step S400 and the polishing step S500 for obtaining the substrate 50 can be omitted.
  • Thickness of three-dimensional growth layer about 1.45 mm
  • Thickness of nitride semiconductor substrate 400 ⁇ m
  • Calf loss 200 ⁇ m
  • two substrates (A and B) having different slice positions were manufactured.
  • the substrate B was sliced on the side closer to the base substrate than the substrate A.
  • Polishing thickness 200 ⁇ m
  • the "low dislocation density region” referred to here is, as will be shown by the results described later, obtained from the average dislocation density in the main surface of the crystal layer of the comparative example in which the crystal layer is grown without performing the three-dimensional growth process. Also means a region having a low dislocation density.
  • the X-ray rocking curve of the (0002) plane of each of the base substrate, the substrate of the comparative example, and the substrate of the example was measured.
  • the measurement was carried out at a plurality of measurement points set at 5 mm intervals on a straight line passing through the center and along the m-axis direction and the a-axis direction in the main surface of each substrate.
  • the peak angle ⁇ formed by the X-ray incident on the main surface and the main surface was plotted against the position on the straight line, and the peak angle ⁇ was approximated by a linear function of the position.
  • the radius of curvature of the c-plane was obtained by the reciprocal of the slope of the linear function. In the above arrangement of the apparatus used in this experiment, it means that the c-plane was convex when the inclination of the linear function became negative.
  • FIG. 9A is a diagram showing an observation image of the surface of the laminated structure of Experiment 1 observed by an optical microscope
  • FIG. 9B is a cross section of the laminated structure of Experiment 1 observed by a fluorescence microscope. It is a figure which shows an observed image. Note that FIG. 9B is a cross section taken along the ⁇ 11-20> axis.
  • the three-dimensional growth layer uses the c-plane as the growth surface based on the difference in the growth surface in the growth process (that is, the difference in oxygen concentration). It had a grown c-plane growth region and a tilted interface growth region grown with the tilted interface as the growth surface.
  • the c-plane growth region had a portion corresponding to the initial layer grown on the underlying substrate with the c-plane as the growth surface in the initial stage of growth.
  • the initial layer was formed with a predetermined thickness over the entire main surface of the base substrate.
  • the c-plane growth region was not continuous from the base substrate to the surface (top surface) of the three-dimensional growth layer.
  • At least a part of the inclined interface growth region was continuously provided along the main surface of the underlying substrate. That is, when looking at a plurality of cross sections obtained by cutting the three-dimensional growth layer along the main surface of the underlying substrate, the cross section that does not include the c-plane growth region grown with the c-plane as the growth surface is the thickness of the three-dimensional growth layer. It was confirmed that it existed in at least a part of the direction.
  • the c-plane growth region had a plurality of valleys and a plurality of peaks.
  • the average value of the angle formed by the pair of inclined portions in the c-plane growth region was about 52°.
  • the average distance between the closest points was approximately 234 ⁇ m.
  • the second c-plane growth region was also present at the position overlapping the inclined interface growth region in cross-sectional view.
  • the width of the second c-plane growth region in cross section is , Randomly changed from the base substrate to the surface of the three-dimensional growth layer.
  • the surface of the three-dimensional growth layer had a plurality of recesses formed by inclined interfaces other than the c-plane.
  • the recess formed on the surface of the three-dimensional growth layer six shiny surfaces were formed, that is, the recess had six inclined interfaces.
  • the ridgeline in the recess is along the ⁇ 1-100> axis direction, and the inclined interface forming the recess is in the direction inclined from the ⁇ 11-20> axis.
  • the surface was the normal direction (that is, the ⁇ 11-2m ⁇ surface).
  • the angle of the inclined interface in the three-dimensional growth layer with respect to the main surface of the underlying substrate was about 47° or less.
  • the angle of ⁇ 11-2m ⁇ with respect to the ⁇ 0001 ⁇ plane of GaN is as follows. ⁇ 11-21 ⁇ plane: 72.9° ⁇ 11-22 ⁇ plane: 58.4° ⁇ 11-23 ⁇ plane: 47.3° ⁇ 11-24 ⁇ plane: 39.1°
  • the graded interface generated on the surface of the three-dimensional growth layer was the ⁇ 11-2m ⁇ plane with m ⁇ 3. It was also confirmed that most of the inclined interfaces were ⁇ 11-23 ⁇ planes.
  • FIG. 10 is a schematic diagram showing an observation image obtained by observing the main surface of the nitride semiconductor substrate A obtained in Experiment 1 with a multiphoton excitation microscope.
  • the thick line square portion shows a 50 ⁇ square dislocation-free region.
  • the nitride semiconductor substrate of the example had a graded interface growth region that was observed relatively brightly.
  • the area ratio of the inclined interface growth region on the main surface of the nitride semiconductor substrate of the example was 80% or more.
  • the average dislocation density on the main surface was significantly reduced as compared with the base substrate and the nitride semiconductor substrate of the comparative example, and the average dislocation density was 5.5 ⁇ 10 5 cm. It was less than -2 . Even when the crystal layer is grown thick as in the comparative example, the dislocation density of the nitride semiconductor substrate is lower than that of the base substrate, but in the nitride semiconductor substrate of the example, the dislocation density is higher than that of the comparative example. Was further reduced.
  • the nitride semiconductor substrate of the example there was no region where the dislocation density exceeded 3 ⁇ 10 6 cm ⁇ 2 .
  • 90% or more of the main surface had a region having a dislocation density of less than 1 ⁇ 10 6 cm ⁇ 2 (low dislocation density region).
  • the main surface of the nitride semiconductor substrate of the example included a dislocation-free region of at least 50 ⁇ m square.
  • the main surface of the nitride semiconductor substrate of the example had non-overlapping 50 ⁇ m square dislocation-free regions at a density of 100/cm 2 or more.
  • the density of dislocation-free regions of 50 ⁇ m square that do not overlap was about 5000 pieces/cm 2 .
  • the c-plane growth region had a dislocation-free region of at least 50 ⁇ m square.
  • the dislocation density was 3 ⁇ . It was less than 10 6 cm -2 .
  • the substrate of the example had basal plane dislocations.
  • the CL image of the substrate of the example was observed, when an arbitrary virtual line segment having a length of 200 ⁇ m was drawn in the CL image of the main surface, the number of intersections between the line segment and the basal plane dislocations was found to be It was 10 points or less.
  • FIG. 11A is a diagram showing a result of rocking curve measurement of X-ray diffraction in the direction along the m-axis of the nitride semiconductor substrate A obtained in Experiment 1
  • FIG. FIG. 6 is a diagram showing the results of X-ray diffraction rocking curve measurement in the direction along the a-axis of the nitride semiconductor substrate A obtained in Experiment 1.
  • FIG. 12A is a diagram showing the result of rocking curve measurement of X-ray diffraction in a predetermined direction of the nitride semiconductor substrate B obtained in Experiment 1, and FIG.
  • 2C is an enlarged view of a result obtained by performing a rocking curve measurement of X-ray diffraction in the direction along the a-axis of FIG. It is the figure which expanded the result of having performed a rocking curve measurement.
  • R in the drawing indicates the radius of curvature of the c-plane, and negative R means that the c-plane is convexly curved with respect to the main surface as described above.
  • the radius of curvature of the c-plane of the substrate of the example is (absolute value) is the curvature of the c-plane of each of the base substrate and the substrate of the comparative example. It was larger than the radius and was 30 m or more. Even when the crystal layer is grown thick as in the comparative example, the radius of curvature of the c-plane of the substrate is larger than the radius of curvature of the c-plane of the underlying substrate, but the radius of curvature of the c-plane of the substrate of the example is Was larger than the radius of curvature of the c-plane in the nitride semiconductor substrate of the comparative example.
  • the c-plane of the substrate B has a spherical surface concave to the main surface and a spherical surface convex to the main surface. And a curved portion.
  • the c-plane in the substrate A sliced from the side closer to the surface of the laminated structure of the example, the c-plane has a spherical shape convex to the main surface. It was curved.
  • the absolute value of the radius of curvature of the c-plane of the substrate A was smaller than the absolute value of the radius of curvature of the c-plane of the substrate B.
  • the error with respect to the linear function was small. Specifically, the error of the measured peak angle ⁇ with respect to the linear function approximated as described above was 0.01° or less.
  • the first growth condition was adjusted so as to satisfy the formula (1).
  • the c-plane could be reliably eliminated at least once during the growth process of the three-dimensional growth layer.
  • dislocations could be reliably bent at the position where the inclined interface in the three-dimensional growth layer was exposed.
  • the dislocation density on the main surface of the nitride semiconductor substrate could be reduced.
  • the ⁇ 11-2m ⁇ plane in which m ⁇ 3 is formed as the inclined interface. could be generated.
  • the average distance between the closest apexes was able to exceed 100 ⁇ m.
  • the dislocation density on the main surface of the nitride semiconductor substrate could be sufficiently reduced.
  • a dislocation-free region of at least 50 ⁇ m square could be formed.
  • the graded interface expansion layer was able to be three-dimensionally grown after the two-dimensional growth with the predetermined thickness with the c-plane as the growth surface.
  • the crystal axes can be aligned over the entire main surface of the underlying substrate, and the generation of new dislocations due to the deviation of the crystal axes can be suppressed.
  • the dislocation density could be lowered.
  • the radius of curvature of the c-plane of the nitride semiconductor substrate can be made larger than the radius of curvature of the c-plane of the base substrate due to the stress canceling effect of the inclined interface growth region. It was confirmed that it was possible to reduce the variation in the off-angle of the c-axis in the case of (1) to the variation in the off-angle of the c-axis in the base substrate.
  • Substrate A of Example (Semiconductor layer) Material GaN Growth method: MOVPE method Growth conditions: Conditions for step-flow growth of non-doped GaN with the c-plane as the growth surface Semiconductor layer thickness: 2 ⁇ m
  • photoluminescence mapping measurement of semiconductor layers in each of the laminate of the example and the reference laminate of the reference example was performed.
  • a He—Cd laser having a wavelength of 325 nm and a power of 1.25 mW was used as an excitation light source.
  • the laser spot size was 5 ⁇ m in diameter. That is, the irradiation intensity was 6.4 ⁇ 10 3 Wcm ⁇ 2 .
  • the measurement interval is 500 ⁇ m.
  • PL mapping measurement of the semiconductor layer in each of the laminate of the example and the reference laminate of the reference example was performed under conditions of a temperature of 27° C. and a temperature difference of less than 1° C.
  • FIG. 13A is a diagram showing a cathode luminescence image obtained by observing the surface of the semiconductor layer in the laminate of the example of Experiment 2 with a scanning electron microscope
  • FIG. 13B is a diagram of the reference example of Experiment 2. It is a figure which shows the cathode luminescence image which observed the surface of the semiconductor layer in a reference laminated body with the scanning electron microscope.
  • the semiconductor layer of the example only the dislocations in the dislocation-concentrated regions of the substrate were taken over, and the dislocations were less in the regions other than the dislocation-concentrated regions.
  • the semiconductor layer of the example had at least 50 ⁇ m square dislocation-free regions.
  • no unevenness in light emission was observed in the semiconductor layer of the example, it was confirmed that the surface of the semiconductor layer of the example was flat.
  • FIG. 14A is a diagram showing a result of performing photoluminescence mapping measurement on the laminate of the example in Experiment 2
  • FIG. 14B is a photoluminescence mapping of the reference laminate of the reference example in Experiment 2. It is a figure which shows the result of having measured.
  • FIG. 15 is a photoluminescence spectrum in each semiconductor layer of the laminate of Example and the reference laminate of Reference Example in Experiment 2.
  • the difference between the maximum peak wavelength in the semiconductor layer of the laminate of the example and the maximum peak wavelength in the semiconductor layer of the reference laminate of the reference example was 1 nm or less. That is, the band edge emission of the semiconductor layer of the example was not peak-shifted.
  • the surface of the semiconductor layer in the laminate of the example was flat, and the band edge emission of the semiconductor layer was not peak-shifted. From this, it was confirmed that crystal strain due to the substrate did not occur in the semiconductor layer grown on the substrate of the example. That is, it was proved that the substrate of the example was sufficiently practical as a substrate for producing a light emitting device and the like.
  • a nitride semiconductor substrate which is composed of a group III nitride semiconductor single crystal and has a main surface whose closest low-index crystal plane is a (0001) plane,
  • the inclined interface growth region is formed by using an inclined interface other than the (0001) plane as a growth surface,
  • the area ratio of the inclined interface growth region in the main surface is 80% or more,
  • (Appendix 4) A c-plane growth region grown with the (0001) plane as a growth plane, 3.
  • (Appendix 5) Has a dislocation concentrated region in which dislocations are relatively concentrated, The dislocation density is less than 3 ⁇ 10 6 cm ⁇ 2 when the dislocation density is determined from the dark spot density by observing the main surface in a visual field of 50 ⁇ m square including the dislocation concentrated region with a multiphoton excitation microscope. 5.
  • the nitride semiconductor substrate according to any one of 1 to 4.
  • a base substrate made of a single crystal of a group III nitride semiconductor, having a mirror-finished main surface, and a crystal face with a low index closest to the main surface is a (0001) plane;
  • a low oxygen concentration region which is provided directly on the main surface of the base substrate and is made of a single crystal of a group III nitride semiconductor;
  • a high oxygen concentration region formed on the low oxygen concentration region and made of a single crystal of a group III nitride semiconductor; Equipped with The oxygen concentration in the high oxygen concentration region is higher than the oxygen concentration in the low oxygen concentration region, When looking at any cross section perpendicular to the main surface,
  • the upper surface of the low oxygen concentration region has a plurality of valleys and a plurality of peaks, An average distance in which a pair of peaks closest to each other among the peaks sandwiching one of the valleys is separated in the direction along the main surface is more than 100 ⁇ m. body.
  • a method for manufacturing a nitride semiconductor substrate using a vapor phase growth method comprising: A group III nitride semiconductor single crystal having a mirror-finished main surface, and a base substrate having a (0001) plane as a crystal face with a low index closest to the main surface; A group III nitride semiconductor single crystal having a top surface with an exposed (0001) plane is epitaxially grown directly on the main surface of the underlying substrate, and a plurality of slanted interfaces other than the (0001) plane are formed. A concave portion is formed on the top surface, the inclined interface is gradually expanded as it goes above the main surface of the base substrate, and the (0001) plane disappears from the top surface at least once.
  • the step of growing Slicing the three-dimensional growth layer to form a nitride semiconductor substrate Have In the step of forming the three-dimensional growth layer, By forming the plurality of recesses on the top surface of the single crystal and eliminating the (0001) plane, a plurality of valleys and a plurality of tops are formed on the surface of the three-dimensional growth layer, A direction along which the pair of tops closest to each other among the plurality of peaks sandwiching one of the plurality of valleys is along the main surface when an arbitrary cross section perpendicular to the main surface is seen. A method for manufacturing a nitride semiconductor substrate, wherein the average distance separated from each other is more than 100 ⁇ m.
  • Appendix 12 In the step of growing the three-dimensional growth layer, Forming an inclined interface growth region in which the inclined interface is grown as a growth surface in the three-dimensional growth layer, 12.
  • the step of forming the three-dimensional growth layer includes After the (0001) plane disappears from the top surface, the single crystal grows over a predetermined thickness while maintaining the state where the inclined interface growth region occupies 80% or more of the creeping cross section. 13.
  • the single crystal is grown to have a predetermined thickness with the (0001) plane as a growth surface, and then the plurality of recesses are formed on the top surface of the single crystal.
  • Base substrate 30 Three-dimensional growth layer 50 Nitride semiconductor substrate (substrate)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

III族窒化物半導体の単結晶からなり、最も近い低指数の結晶面が(0001)面である主面を有する窒化物半導体基板であって、(0001)面以外の傾斜界面を成長面として成長した傾斜界面成長領域を有し、主面において傾斜界面成長領域が占める面積割合は、80%以上であり、多光子励起顕微鏡により視野250μm角で主面を観察して暗点密度から転位密度を求めたときに、転位密度が3×106cm-2を超える領域が主面に存在せず、主面は、重ならない50μm角の無転位領域を100個/cm2以上の密度で有する。

Description

窒化物半導体基板、積層構造体、および窒化物半導体基板の製造方法
 本発明は、窒化物半導体基板、積層構造体、および窒化物半導体基板の製造方法に関する。
 III族窒化物半導体の単結晶からなる基板を下地基板(種基板)として用い、当該下地基板のうち最も近い低指数の結晶面が(0001)面である主面上に、III族窒化物半導体の単結晶からなる結晶層をさらに成長させる手法が知られている。この手法によれば、所定の厚さで成長させた結晶層をスライスすることで、少なくとも1つの窒化物半導体基板を得ることができる(例えば特許文献1)。
特開2013-60349号公報
 本発明の目的は、結晶品質が良好な窒化物半導体基板を容易かつ安定的に得ることができる技術を提供することにある。
 本発明の一態様によれば、
 III族窒化物半導体の単結晶からなり、最も近い低指数の結晶面が(0001)面である主面を有する窒化物半導体基板であって、
 前記(0001)面以外の傾斜界面を成長面として成長した傾斜界面成長領域を有し、
 前記主面において前記傾斜界面成長領域が占める面積割合は、80%以上であり、
 多光子励起顕微鏡により視野250μm角で前記主面を観察して暗点密度から転位密度を求めたときに、転位密度が3×10cm-2を超える領域が前記主面に存在せず、
 前記主面は、重ならない50μm角の無転位領域を100個/cm以上の密度で有する
窒化物半導体基板が提供される。
 本発明の他の態様によれば、
 III族窒化物半導体の単結晶からなり、鏡面化された主面を有し、前記主面に対して最も近い低指数の結晶面が(0001)面である下地基板と、
 前記下地基板の前記主面上に直接的に設けられ、III族窒化物半導体の単結晶からなる低酸素濃度領域と、
 前記低酸素濃度領域上に設けられ、III族窒化物半導体の単結晶からなる高酸素濃度領域と、
 を備え、
 前記高酸素濃度領域の酸素濃度は、前記低酸素濃度領域の酸素濃度よりも高く、
 前記主面に垂直な任意の断面を見たときに、
 前記低酸素濃度領域の上面は、複数の谷部および複数の山部を有し、
 前記複数の谷部のうちの1つを挟んで前記複数の山部のうちで最も接近する一対の山部同士が前記主面に沿った方向に離間した平均距離は、100μm超である
積層構造体が提供される。
 本発明の更に他の態様によれば、
 気相成長法を用いた窒化物半導体基板の製造方法であって、
 III族窒化物半導体の単結晶からなり、鏡面化された主面を有し、前記主面に対して最も近い低指数の結晶面が(0001)面である下地基板を準備する工程と、
 (0001)面が露出した頂面を有するIII族窒化物半導体の単結晶を前記下地基板の前記主面上に直接的にエピタキシャル成長させ、前記(0001)面以外の傾斜界面で構成される複数の凹部を前記頂面に生じさせ、前記下地基板の前記主面の上方に行くにしたがって該傾斜界面を徐々に拡大させ、前記(0001)面を前記頂面から少なくとも一度消失させ、3次元成長層を成長させる工程と、
 前記3次元成長層をスライスし、窒化物半導体基板を形成する工程と、
 を有し、
 前記3次元成長層を形成する工程では、
 前記単結晶の前記頂面に前記複数の凹部を生じさせ、前記(0001)面を消失させることで、前記3次元成長層の表面に、複数の谷部および複数の頂部を形成し、
 前記主面に垂直な任意の断面を見たときに、前記複数の谷部のうちの1つを挟んで前記複数の頂部のうちで最も接近する一対の頂部同士が前記主面に沿った方向に離間した平均距離を、100μm超とする
窒化物半導体基板の製造方法が提供される。
 本発明によれば、結晶品質が良好な窒化物半導体基板を容易かつ安定的に得ることができる。
本発明の一実施形態に係る窒化物半導体基板の製造方法を示すフローチャートである。 (a)~(g)は、本発明の一実施形態に係る窒化物半導体基板の製造方法の一部を示す概略断面図である。 (a)~(c)は、本発明の一実施形態に係る窒化物半導体基板の製造方法の一部を示す概略断面図である。 本発明の一実施形態に係る窒化物半導体基板の製造方法の一部を示す概略斜視図である。 (a)~(b)は、本発明の一実施形態に係る窒化物半導体基板の製造方法の一部を示す概略断面図である。 (a)は、傾斜界面およびc面のそれぞれが拡大も縮小もしない基準成長条件下での成長過程を示す概略断面図であり、(b)は、傾斜界面が拡大しc面が縮小する第1成長条件下での成長過程を示す概略断面図である。 (a)は、本発明の一実施形態に係る窒化物半導体基板を示す概略上面図であり、(b)は、本発明の一実施形態に係る窒化物半導体基板のm軸に沿った概略断面図であり、(c)は、本発明の一実施形態に係る窒化物半導体基板のa軸に沿った概略断面図である。 本発明の一実施形態に係る窒化物半導体基板の主面を走査型電子顕微鏡により観察したカソードルミネッセンス像を示す模式図である。 (a)は、実験1の積層構造体の表面を光学顕微鏡により観察した観察像を示す図であり、(b)は、実験1の積層構造体の断面を蛍光顕微鏡により観察した観察像を示す図である。 実験1で得られた窒化物半導体基板Aの主面を多光子励起顕微鏡により観察した観察像を示す模式図である。 (a)は、実験1で得られた窒化物半導体基板Aのm軸に沿った方向に対してX線回折のロッキングカーブ測定を行った結果を示す図であり、(b)は、実験1で得られた窒化物半導体基板Aのa軸に沿った方向に対してX線回折のロッキングカーブ測定を行った結果を示す図である。 (a)は、実験1で得られた窒化物半導体基板Bの所定の方向に対してX線回折のロッキングカーブ測定を行った結果を示す図であり、(b)は、(a)のa軸に沿った方向に対してX線回折のロッキングカーブ測定を行った結果を拡大した図であり、(c)は、(a)のm軸に沿った方向に対してX線回折のロッキングカーブ測定を行った結果を拡大した図である。 (a)は、実験2での実施例の積層物における半導体層の表面を走査型電子顕微鏡により観察したカソードルミネッセンス像を示す図であり、(b)は、実験2での参考例の基準積層物における半導体層の表面を走査型電子顕微鏡により観察したカソードルミネッセンス像を示す図である。 (a)は、実験2での実施例の積層物におけるフォトルミネッセンスマッピング測定を行った結果を示す図であり、(b)は、実験2での参考例の基準積層物におけるフォトルミネッセンスマッピング測定を行った結果を示す図である。 実験2での、実施例の積層物および参考例の基準積層物のそれぞれの半導体層におけるフォトルミネッセンススペクトルである。
<本発明の一実施形態>
 以下、本発明の一実施形態について図面を参照しながら説明する。
(1)窒化物半導体基板の製造方法
 図1~図6を用い、本実施形態に係る窒化物半導体基板の製造方法について説明する。図1は、本実施形態に係る窒化物半導体基板の製造方法を示すフローチャートである。図2(a)~(g)、図3(a)~(c)、図5(a)~図5(b)は、本実施形態に係る窒化物半導体基板の製造方法の一部を示す概略断面図である。図4は、本実施形態に係る窒化物半導体基板の製造方法の一部を示す概略斜視図である。なお、図4は、図3(b)の時点での斜視図に相当し、下地基板10上に成長する3次元成長層30の一部を示している。また、図3(c)~図5(b)において、点線は、転位を示している。
 図1に示すように、本実施形態に係る窒化物半導体基板の製造方法は、例えば、下地基板準備工程S100と、3次元成長工程S200と、スライス工程S400と、研磨工程S500と、を有している。
(S100:下地基板準備工程)
 まず、下地基板準備工程S100において、III族窒化物半導体の単結晶からなる下地基板10を準備する。本実施形態では、下地基板10として、例えば、窒化ガリウム(GaN)自立基板を準備する。
 なお、以下では、ウルツ鉱構造を有するIII族窒化物半導体の結晶において、<0001>軸(例えば[0001]軸)を「c軸」といい、(0001)面を「c面」という。なお、(0001)面を「+c面(III族元素極性面)」といい、(000-1)面を「-c面(窒素(N)極性面)」ということがある。また、<1-100>軸(例えば[1-100]軸)を「m軸」といい、{1-100}面を「m面」という。なお、m軸は<10-10>軸と表記してもよい。また、<11-20>軸(例えば[11-20]軸)を「a軸」といい、{11-20}面を「a面」という。
 本実施形態の下地基板準備工程S100では、例えば、VAS(Void-Assisted Separation)法により下地基板10を作製する。
 具体的には、下地基板準備工程S100は、例えば、結晶成長用基板準備工程S110と、第1結晶層形成工程S120と、金属層形成工程S130と、ボイド形成工程S140と、第2結晶層形成工程S150と、剥離工程S160と、スライス工程S170と、研磨工程S180と、を有している。
(S110:結晶成長用基板準備工程)
 まず、図2(a)に示すように、結晶成長用基板1(以下、「基板1」と略すことがある)を準備する。基板1は、例えば、サファイア基板である。なお、基板1は、例えば、Si基板またはガリウム砒素(GaAs)基板であってもよい。基板1は、例えば、成長面となる主面1sを有している。主面1sに対して最も近い低指数の結晶面は、例えば、c面1cである。
 本実施形態では、基板1のc面1cが、主面1sに対して傾斜している。基板1のc軸1caは、主面1sの法線に対して所定のオフ角θで傾斜している。基板1の主面1s内でのオフ角θは、主面1s全体に亘って均一である。基板1の主面1s内でのオフ角θは、後述する下地基板10の主面10sの中心におけるオフ角θに影響する。
(S120:第1結晶層形成工程)
 次に、図2(b)に示すように、例えば、有機金属気相成長(MOVPE)法により、所定の成長温度に加熱された基板1に対して、III族原料ガスとしてのトリメチルガリウム(TMG)ガス、窒素原料ガスとしてのアンモニアガス(NH)およびn型ドーパントガスとしてのモノシラン(SiH)ガスを供給することで、基板1の主面1s上に、第1結晶層(下地成長層)2として、低温成長GaNバッファ層およびSiドープGaN層をこの順で成長させる。このとき、低温成長GaNバッファ層の厚さおよびSiドープGaN層の厚さを、それぞれ、例えば、20nm、0.5μmとする。
(S130:金属層形成工程)
 次に、図2(c)に示すように、第1結晶層2上に金属層3を蒸着させる。金属層3としては、例えば、チタン(Ti)層とする。また、金属層3の厚さを例えば20nmとする。
(S140:ボイド形成工程)
 次に、上述の基板1を電気炉内に投入し、所定のヒータを有するサセプタ上に基板1を載置する。基板1をサセプタ上に載置したら、ヒータにより基板1を加熱し、水素ガスまたは水素化物ガスを含む雰囲気中で熱処理を行う。具体的には、例えば、20%のNHガスを含有する水素(H)ガス気流中において、所定の温度で20分間熱処理を行う。なお、熱処理温度を、例えば、850℃以上1,100℃以下とする。このような熱処理を行うことで、金属層3を窒化し、表面に高密度の微細な穴を有する金属窒化層5を形成する。また、上述の熱処理を行うことで、金属窒化層5の穴を介して第1結晶層2の一部をエッチングし、該第1結晶層2中に高密度のボイドを形成する。
 これにより、図2(d)に示すように、ボイド含有第1結晶層4を形成する。
(S150:第2結晶層形成工程)
 次に、例えば、ハイドライド気相成長(HVPE)法により、所定の成長温度に加熱された基板1に対して、塩化ガリウム(GaCl)ガス、NHガスおよびn型ドーパントガスとしてのジクロロシラン(SiHCl)ガスを供給することで、ボイド含有第1結晶層4および金属窒化層5上に第2結晶層(本格成長層)6としてSiドープGaN層をエピタキシャル成長させる。なお、n型ドーパントガスとして、SiHClガスの代わりに、テトラクロロゲルマン(GeCl)ガスなどを供給することで、第2結晶層6としてGeドープGaN層をエピタキシャル成長させてもよい。
 このとき、第2結晶層6は、ボイド含有第1結晶層4から金属窒化層5の穴を介してボイド含有第1結晶層4および金属窒化層5上に成長する。ボイド含有第1結晶層4中のボイドの一部は、第2結晶層6によって埋め込まれるが、ボイド含有第1結晶層4中のボイドの他部は、残存する。第2結晶層6と金属窒化層5との間には、当該ボイド含有第1結晶層4中に残存したボイドを起因として、平らな空隙が形成される。この空隙が後述の剥離工程S160での第2結晶層6の剥離を生じさせることとなる。
 また、このとき、第2結晶層6は、基板1の配向性が引き継がれて成長する。すなわち、第2結晶層6の主面内でのオフ角θは、基板1の主面1s内でのオフ角θと同様に、主面全体に亘って均一となる。
 また、このとき、第2結晶層6の厚さを、例えば、600μm以上、好ましくは1mm以上とする。なお、第2結晶層の厚さの上限値は特に限定されるものではないが、生産性向上の観点から、第2結晶層6の厚さを50mm以下とすることが好ましい。
(S160:剥離工程)
 第2結晶層6の成長が終了した後、第2結晶層6を成長させるために用いたHVPE装置を冷却する過程において、第2結晶層6は、ボイド含有第1結晶層4および金属窒化層5を境に基板1から自然に剥離する。
 このとき、第2結晶層6には、その成長過程で生じる初期核同士が引き合うことによって、引張応力が導入されている。このため、第2結晶層6中に生じた引張応力に起因して、第2結晶層6には、その表面側が凹むように内部応力が働く。また、第2結晶層6の主面(表面)側の転位密度が低く、一方で、第2結晶層6の裏面側の転位密度が高くなっている。このため、第2結晶層6の厚さ方向の転位密度差に起因しても、第2結晶層6には、その表面側が凹むように内部応力が働く。
 その結果、図2(f)に示すように、第2結晶層6は、基板1から剥離された後に、その表面側が凹となるように反ってしまう。このため、第2結晶層6のc面6cは、第2結晶層6の主面6sの中心の法線方向に垂直な面に対して凹の球面状に湾曲する。第2結晶層6の主面6sの中心の法線に対してc軸6caがなすオフ角θは、所定の分布を有する。
(S170:スライス工程)
 次に、図2(f)に示すように、例えば、第2結晶層6の主面6sの中心の法線方向に対して略垂直な切断面SSに沿って、ワイヤーソーにより、第2結晶層6をスライスする。
 これにより、図2(g)に示すように、アズスライス基板としての下地基板10を形成する。このとき、下地基板10の厚さを、例えば、450μmとする。なお、下地基板10のオフ角θは、スライス方向依存性により、第2結晶層6のオフ角θから変化する可能性がある。
(S180:研磨工程)
 次に、研磨装置により下地基板10の両面を研磨する。これにより、下地基板10の主面10sは、鏡面化される。
 以上の下地基板準備工程S100により、GaNの単結晶からなる下地基板10が得られる。
 下地基板10の直径は、例えば、2インチ以上である。また、下地基板10の厚さは、例えば、300μm以上1mm以下である。
 下地基板10の主面10sは、例えば、エピタキシャル成長面となる主面(下地表面)10sを有している。本実施形態において、主面10sに対して最も近い低指数の結晶面は、例えば、c面(+c面)10cである。
 下地基板10におけるc面10cは、主面10sに対して凹の球面状に湾曲している。ここでいう「球面状」とは、球面近似される曲面状のことを意味している。また、ここでいう「球面近似」とは、真円球面または楕円球面に対して所定の誤差の範囲内で近似されることを意味している。
 本実施形態では、下地基板10のc面10cは、例えば、m軸に沿った断面およびa軸に沿った断面のそれぞれにおいて球面近似される曲面状となっている。下地基板10でのc面10cの曲率半径は、例えば、1m以上10m未満である。
 下地基板10におけるc面10cが湾曲していることで、下地基板10の主面10sの中心の法線に対してc軸10caのなすオフ角θは、所定の分布を有している。
 本実施形態では、下地基板10の主面10sの中心におけるオフ角θの大きさを、例えば、0°超1°以下とする。
 なお、下地基板10の主面10sの中心におけるオフ角θの大きさおよび方向は、例えば、上述のVAS法で用いる結晶成長用基板1のオフ角θの大きさおよび方向と、スライス工程S170でのスライス角度およびスライス方向とによって調整することが可能である。
 また、本実施形態では、下地基板10の主面10sの二乗平均粗さRMSを、例えば、1nm未満とする。
 また、本実施形態では、下地基板10が上述のVAS法により作製されるため、下地基板10の主面10sにおける転位密度が低くなっている。具体的には、下地基板10の主面10sにおける転位密度は、例えば、3×10cm-2以上1×10cm-2未満である。
(S200:3次元成長工程)
 下地基板10を準備したら、図3(a)に示すように、主面10s上へのマスク層の形成、および主面10sへの凹凸パターンの形成のうち、いずれの加工を施さない状態の下地基板10を用いて、以下の3次元成長工程S200を行う。なお、ここでいう「マスク層」とは、例えば、いわゆるELO(Epitaxial Lateral Overgrowth)法において用いられ、酸化シリコンなどからなり所定の開口を有するマスク層のことを意味する。また、ここでいう「凹凸パターン」は、例えば、いわゆるペンデオエピタキシー法において用いられ、下地基板の主面を直接パターニングしたトレンチおよびリッジのうち少なくともいずれかのことを意味する。ここでいう凹凸パターンの高低差は、例えば、100nm以上である。本実施形態の下地基板10は、上述のような構造を有しない状態で、3次元成長工程S200に用いられる。
 まず、図3(b)、図3(c)、図4および図5(a)に示すように、c面30cが露出した頂面30uを有するIII族窒化物半導体の単結晶を、下地基板10の主面10s上に直接的にエピタキシャル成長させる。
 このとき、c面以外の傾斜界面30iで囲まれて構成される複数の凹部30pを単結晶の頂面30uに生じさせ、下地基板10の主面10sの上方に行くにしたがって、該傾斜界面30iを徐々に拡大させ、c面30cを徐々に縮小させる。これにより、c面30cを頂面30uから少なくとも一度消失させる。その結果、傾斜界面30iが表面に広く存在する3次元成長層30が形成される。
 また、このとき、3次元成長層30において、c面以外の傾斜界面30iを成長面として成長させた傾斜界面成長領域70(図中灰色部)を形成する。また、後述するように、3次元成長層30のうち下地基板10の主面10sに沿った沿面断面において傾斜界面成長領域70が占める面積を、例えば、80%以上とする。
 このように、3次元成長工程S200では、下地基板10の主面10sをあえて荒らすように、3次元成長層30を3次元成長させる。なお、3次元成長層30は、このような成長形態を形成したとしても、上述のように、単結晶で成長させる。この点において、3次元成長層30は、サファイアなどの異種基板上にIII族窒化物半導体をエピタキシャル成長させる前に該異種基板上にアモルファスまたは多結晶として形成されるいわゆる低温成長バッファ層とは異なるものである。
 本実施形態では、3次元成長層30として、例えば、下地基板10を構成するIII族窒化物半導体と同じIII族窒化物半導体からなる層をエピタキシャル成長させる。具体的には、例えば、HVPE法により、下地基板10を加熱し、当該加熱された下地基板10に対してGaClガスおよびNHガスを供給することで、3次元成長層30としてGaN層をエピタキシャル成長させる。
 ここで、3次元成長工程S200では、上述の成長過程を発現させるために、例えば、所定の第1成長条件下で、3次元成長層30を成長させる。
 まず、図6(a)を用い、傾斜界面30iおよびc面30cのそれぞれが拡大も縮小もしない基準成長条件について説明する。図6(a)は、傾斜界面およびc面のそれぞれが拡大も縮小もしない基準成長条件下での成長過程を示す概略断面図である。
 図6(a)において、太い実線は、単位時間ごとの3次元成長層30の表面を示している。図6(a)で示されている傾斜界面30iは、c面30cに対して最も傾斜した傾斜界面とする。また、図6(a)において、3次元成長層30のうちのc面30cの成長レートをGc0とし、3次元成長層30のうちの傾斜界面30iの成長レートをGとし、3次元成長層30においてc面30cと傾斜界面30iとのなす角度をαとする。また、図6(a)において、c面30cと傾斜界面30iとのなす角度αを維持したまま、3次元成長層30が成長するものとする。なお、3次元成長層30のc面30cのオフ角が、c面30cと傾斜界面30iとのなす角度αに比べて無視できるものとする。
 図6(a)に示すように、傾斜界面30iおよびc面30cのそれぞれが拡大も縮小もしないとき、傾斜界面30iとc面30cとの交点の軌跡は、c面30cに対して垂直となる。このことから、傾斜界面30iおよびc面30cのそれぞれが拡大も縮小もしない基準成長条件は、以下の式(a)を満たす。
 Gc0=G/cosα ・・・(a)
 次に、図6(b)を用い、傾斜界面30iが拡大しc面30cが縮小する第1成長条件について説明する。図6(b)は、傾斜界面が拡大しc面が縮小する第1成長条件下での成長過程を示す概略断面図である。
 図6(b)においても、図6(a)と同様に、太い実線は、単位時間ごとの3次元成長層30の表面を示している。また、図6(b)で示されている傾斜界面30iも、c面30cに対して最も傾斜した傾斜界面とする。また、図6(b)において、3次元成長層30のうちのc面30cの成長レートをGc1とし、3次元成長層30のうちの傾斜界面30iとc面30cとの交点の軌跡の進行レートをRとする。また、傾斜界面30iとc面30cとの交点の軌跡と、c面30cとのなす角度のうち、狭いほうの角度をαR1とする。R方向とG方向とのなす角度をα’としたとき、α’=α+90-αR1である。なお、3次元成長層30のc面30cのオフ角が、c面30cと傾斜界面30iとのなす角度αに比べて無視できるものとする。
 図6(b)に示すように、傾斜界面30iとc面30cとの交点の軌跡の進行レートRは、以下の式(b)で表される。
 R=G/cosα’ ・・・(b)
 また、3次元成長層30のうちのc面30cの成長レートGc1は、以下の式(c)で表される。
 Gc1=RsinαR1 ・・・(c)
 式(c)に式(b)を代入することで、Gc1は、Gを用いて、以下の式(d)で表される。
 Gc1=GsinαR1/cos(α+90-αR1) ・・・(d)
 傾斜界面30iが拡大しc面30cが縮小するためには、αR1<90°となることが好ましい。したがって、傾斜界面30iが拡大しc面30cが縮小する第1成長条件は、式(d)とαR1<90°とにより、以下の式(1)を満たすことが好ましい。
 Gc1>G/cosα ・・・(1)
 ただし、上述のように、Gは、c面30cに対して最も傾斜した傾斜界面30iの成長レートであり、αは、c面30cに対して最も傾斜した傾斜界面30iと、c面30cとのなす角度である。
 または、第1成長条件下でのGc1が、基準成長条件下でのGc0よりも大きいことが好ましいと考えることもできる。このことからも、Gc1>Gc0に式(a)を代入することにより、式(1)が導出されうる。
 なお、c面30cに対して最も傾斜した傾斜界面30iを拡大させる成長条件が最も厳しい条件となることから、第1成長条件が式(1)を満たせば、他の傾斜界面30iも拡大させることが可能となる。
 具体的には、例えば、c面30cに対して最も傾斜した傾斜界面30iが{10-11}面であるとき、α=61.95°である。したがって、第1成長条件は、例えば、以下の式(1’)を満たすことが好ましい。
 Gc1>2.13G ・・・(1’)
 または、後述するように、例えば、傾斜界面30iがm≧3の{11-2m}面である場合には、c面30cに対して最も傾斜した傾斜界面30iが{11-23}面であるため、α=47.3°である。したがって、第1成長条件は、例えば、以下の式(1”)を満たすことが好ましい。
 Gc1>1.47G ・・・(1”)
 本実施形態の第1成長条件としては、例えば、3次元成長工程S200での成長温度を、典型的にc面を成長面としてIII族窒化物層を成長させる場合での成長温度よりも低くする。具体的には、3次元成長工程S200での成長温度を、例えば、980℃以上1,020℃以下、好ましくは1,000℃以上1,020℃以下とする。
 また、本実施形態の第1成長条件として、例えば、3次元成長工程S200でのIII族原料ガスとしてのGaClガスの分圧に対する窒素原料ガスとしてのNHガスの流量の分圧の比率(以下、「V/III比」ともいう)を、典型的にc面を成長面としてIII族窒化物層を成長させる場合でのV/III比よりも大きくしてもよい。具体的には、3次元成長工程S200でのV/III比を、例えば、2以上20以下、好ましくは、2以上15以下とする。
 実際には、第1成長条件として、式(1)を満たすように、成長温度およびV/III比のうち少なくともいずれかをそれぞれ上記範囲のなかで調整する。
 なお、本実施形態の第1成長条件のうちの他の条件は、例えば、以下のとおりである。
 成長圧力:90~105kPa、好ましくは、90~95kPa
 GaClガスの分圧:1.5~15kPa
 Nガスの流量/Hガスの流量:0~1
 ここで、本実施形態の3次元成長工程S200は、例えば、3次元成長層30の成長中の形態に基づいて、2つの工程に分類される。具体的には、本実施形態の3次元成長工程S200は、例えば、傾斜界面拡大工程S220と、傾斜界面維持工程S240と、を有している。これらの工程により、3次元成長層30は、例えば、傾斜界面拡大層32と、傾斜界面維持層34と、を有することとなる。
(S220:傾斜界面拡大工程)
 まず、図3(b)および図4に示すように、III族窒化物半導体の単結晶からなる3次元成長層30の傾斜界面拡大層32を、上述の第1成長条件下で、下地基板10の主面10s上に直接エピタキシャル成長させる。
 傾斜界面拡大層32が成長する初期段階では、下地基板10の主面10sの法線方向(c軸に沿った方向)に、c面30cを成長面として所定の厚さで傾斜界面拡大層32をステップフロー成長(2次元成長)させる。ここで、c面30cを成長面として成長した傾斜界面拡大層32のうちの一部の層を「初期層」ともいう。この成長により、鏡面化された表面を有する初期層が所定の厚さで形成される。このとき、初期層を、例えば、下地基板10の主面10sに沿った方向に連続的に、すなわち、下地基板10の主面10sの全体に亘って成長させる。また、このとき、初期層の厚さを、例えば、1μm以上100μm以下、好ましくは1μm以上20μm以下とする。
 その後、第1成長条件下で傾斜界面拡大層32を徐々に成長させることで、図3(b)および図4に示すように、傾斜界面拡大層32のうちc面30cを露出させた頂面30uに、c面以外の傾斜界面30iで構成される複数の凹部30pを生じさせる。c面以外の傾斜界面30iで構成される複数の凹部30pは、当該頂面30uにランダムに形成される。これにより、c面30cとc面以外の傾斜界面30iとが表面に混在する傾斜界面拡大層32が形成される。
 なお、ここでいう「傾斜界面30i」とは、c面30cに対して傾斜した成長界面のことを意味し、c面以外の低指数のファセット、c面以外の高指数のファセット、または面指数で表すことができない傾斜面を含んでいる。なお、c面以外のファセットは、例えば、{11-2m}、{1-10n}などである。ただし、mおよびnは0以外の整数である。
 本実施形態では、上述の下地基板10を用い、且つ、式(1)を満たすように第1成長条件を調整したことで、傾斜界面30iとして、例えば、m≧3である{11-2m}面を生じさせることができる。これにより、c面30cに対する{11-2m}面の傾斜角度を緩やかにすることができる。具体的には、該傾斜角度を47.3°以下とすることができる。
 第1成長条件下で傾斜界面拡大層32をさらに成長させることで、図3(b)および(c)に示すように、下地基板10の上方に行くにしたがって、傾斜界面拡大層32において、c面以外の傾斜界面30iを徐々に拡大させ、c面30cを徐々に縮小させる。なお、このとき、下地基板10の上方に行くにしたがって、該下地基板10の主面10sに対する、傾斜界面30iがなす傾斜角度が徐々に小さくなっていく。これにより、最終的に、傾斜界面30iのほとんどが、上述したm≧3の{11-2m}面となる。
 さらに傾斜界面拡大層32を成長させていくと、傾斜界面拡大層32のc面30cは頂面30uから少なくとも一度消失し、傾斜界面拡大層32の最表面(最上面)は傾斜界面30iのみで構成される。
 このように、傾斜界面拡大層32の頂面30uにc面以外の傾斜界面30iで構成される複数の凹部30pを生じさせ、c面30cを消失させることで、図3(c)に示すように、該傾斜界面拡大層32の表面に、複数の谷部30vおよび複数の頂部30tを形成する。複数の谷部30vのそれぞれは、傾斜界面拡大層32の表面のうち下に凸の変曲点であって、c面以外の傾斜界面30iのそれぞれが発生した位置の上方に形成される。一方で、複数の頂部30tのそれぞれは、傾斜界面拡大層32の表面のうち上に凸の変曲点であって、互いに相反する方向を向いて拡大した一対の傾斜界面30iを挟んでc面30cが(最後に)消失した位置またはその上方に形成される。谷部30vおよび頂部30tは、下地基板10の主面10sに沿った方向に交互に形成される。
 本実施形態では、上述のように、傾斜界面拡大層32が成長する初期段階において、下地基板10の主面10s上に、傾斜界面30iを生じさせずにc面30cを成長面として傾斜界面拡大層32を所定の厚さで成長させた後、傾斜界面拡大層32の表面に、c面以外の傾斜界面30iを生じさせる。これにより、複数の谷部30vは、下地基板10の主面10sから上方に離れた位置に形成されることとなる。
 以上のような傾斜界面拡大層32の成長過程により、転位は、以下のように屈曲して伝播する。具体的には、図3(c)に示すように、下地基板10内においてc軸に沿った方向に延在していた複数の転位は、下地基板10から傾斜界面拡大層32のc軸に沿った方向に向けて伝播する。傾斜界面拡大層32のうちc面30cを成長面として成長した領域では、下地基板10から傾斜界面拡大層32のc軸に沿った方向に向けて転位が伝播する。しかしながら、傾斜界面拡大層32において、転位が露出した成長界面がc面30cから傾斜界面30iに変化すると、当該転位は、傾斜界面30iが露出した位置で、該傾斜界面30iに対して略垂直な方向に向けて屈曲して伝播する。すなわち、転位は、c軸に対して傾斜した方向に屈曲して伝播する。これにより、傾斜界面拡大工程S220以降の工程において、一対の頂部30t間での略中央の上方において、局所的に転位が集められることとなる。その結果、後述の傾斜界面維持層34の表面における転位密度を低減させることができる。
 このとき、本実施形態では、下地基板10の主面10sに垂直な任意の断面を見たときに、複数の谷部30vのうちの1つを挟んで複数の頂部30tのうちで最も接近する一対の頂部30t同士が、下地基板10の主面10sに沿った方向に離間した平均距離(「最近接頂部間平均距離」ともいう)Lを、例えば、100μm超とする。なお、最近接頂部間平均距離Lは、結晶成長界面からc面30cが消失したときの断面を見た場合における距離とする。
 傾斜界面拡大工程S220の初期段階から下地基板10の主面10s上に微細な六角錐状の結晶核を生じさせる場合などのように、最近接頂部間平均距離Lが100μm以下であると、傾斜界面拡大工程S220以降の工程において、転位が屈曲して伝播する距離が短くなる。このため、傾斜界面拡大層32のうち一対の頂部30t間の略中央の上方で充分に転位が集められない。その結果、後述の傾斜界面維持層34の表面における転位密度が充分に低減されない可能性がある。これに対し、本実施形態では、最近接頂部間平均距離Lを100μm超とすることで、傾斜界面拡大工程S220以降の工程において、転位が屈曲して伝播する距離を、少なくとも50μm超、確保することができる。これにより、傾斜界面拡大層32のうち一対の頂部30t間の略中央の上方に、充分に転位を集めることができる。その結果、後述の傾斜界面維持層34の表面における転位密度を充分に低減させることができる。
 一方で、本実施形態では、最近接頂部間平均距離Lを800μm未満とする。最近接頂部間平均距離Lが800μm以上であると、面内全体に亘って転位を集めるために、c面30cを面内全体に亘って消失させるのに時間がかかる。このため、基板50の生産性が低下する。また、最近接頂部間平均距離Lが800μm以上であると、傾斜界面拡大層32の谷部30vから頂部30tまでの高さが過剰に高くなることがある。結晶表面の谷部30vは、埋め込み成長等の対策を施さない限り、基板50をスライスしたときの貫通ピットの原因となる。このため、基板50の取得歩留まりが低下する可能性がある。これに対し、本実施形態では、最近接頂部間平均距離Lを800μm未満とすることで、c面30cを面内全体に亘って消失させる時間を短くすることができる。これにより、基板50の生産性を向上させることができる。また、最近接頂部間平均距離Lを800μm未満とすることで、傾斜界面拡大層32の谷部30vから頂部30tまでの高さを低くすることができる。これにより、基板50をスライスしたときの貫通ピットの原因となるような谷部30vの形成を抑制することができる。その結果、基板50の取得歩留まりを向上させることができる。
 また、このとき、傾斜界面拡大層32には、成長過程での成長面の違いに基づいて、c面30cを成長面として成長したc面成長領域(第1c面成長領域、下地側c面成長領域)60と、c面以外の傾斜界面30iを成長面として成長した傾斜界面成長領域70とが形成される。
 また、このとき、c面成長領域60では、傾斜界面30iが発生した位置に谷部60aを形成し、c面30cが消失した位置に山部60bを形成する。また、c面成長領域60では、山部60bを挟んだ両側に、c面30cと傾斜界面30iとの交点の軌跡として、一対の傾斜部60iを形成する。
 また、このとき、第1成長条件が式(1)を満たすことで、隣接する2つの谷部60aのそれぞれの中心を通る断面を見たときの一対の傾斜部60iのなす角度βを、例えば、70°以下とする。
 これらの領域については、詳細を後述する。
(S240:傾斜界面維持工程)
 傾斜界面拡大層32の表面からc面30cを消失させた後、傾斜界面維持工程S240での成長条件を、傾斜界面拡大工程S220と同様に、上述の第1成長条件で維持する。
 これにより、図5(a)に示すように、傾斜界面成長領域70が沿面断面の80%以上の面積を占める状態を維持しつつ、所定の厚さに亘って3次元成長層30の成長を継続させる。その結果、傾斜界面拡大層32上に傾斜界面維持層34が形成される。
 ここで、3次元成長工程S200において、上述のように転位の伝播方向を確実に曲げて転位密度を低減させるためには、3次元成長層30の任意の位置で成長界面の履歴を見たときに、少なくとも一度はc面30cが消失していることが重要となる。このため、3次元成長工程S200の早い段階(例えば上述の傾斜界面拡大工程S220)で、少なくとも一度はc面30cが消失することが望ましい。
 しかしながら、傾斜界面維持工程S240では、c面30cを少なくとも一度消失させた後であれば、傾斜界面維持層34の表面の一部においてc面30cが再度出現してもよい。ただし、上述のように、沿面断面において傾斜界面成長領域70の占める面積割合が80%以上となるように、傾斜界面維持層34の表面において、主に傾斜界面30iを露出させることが好ましい。沿面断面において傾斜界面成長領域70の占める面積割合が80%未満となると、成長中にクラックが発生する可能性がある。また、スライスおよび研磨などの加工を施すことが困難となる可能性がある。これに対し、本実施形態では、沿面断面において傾斜界面成長領域70の占める面積割合を80%以上とすることで、成長中のクラックの発生を抑制することができ、また、スライスおよび研磨などの加工を容易に施すことができる。
 なお、沿面断面において傾斜界面成長領域70の占める面積割合は、高ければ高いほどよく、100%であることが好ましい。
 しかしながら、上述のように、3次元成長工程200では、例えば、傾斜界面維持層34の表面の一部においてc面30cが再度出現し、沿面断面において傾斜界面成長領域70の占める面積割合が100%未満となることがある。この場合、3次元成長層30の一部に、傾斜界面成長領域70とc面成長領域(第2c面成長領域)80とが混在する。傾斜界面成長領域70では、n型不純物としての酸素を相対的に取り込みやすいのに対して、混在したc面成長領域80では、酸素の取り込みが相対的に抑制される。このため、c面成長領域80中における酸素濃度が傾斜界面成長領域70中の酸素濃度よりも低くなり、c面成長領域80中のキャリア濃度が傾斜界面成長領域70中のキャリア濃度よりも低くなる。その結果、傾斜界面成長領域70とc面成長領域80とが混在した領域からスライスした基板50では、キャリア濃度の面内ばらつきが生じてしまう可能性がある。
 そこで、本実施形態の3次元成長工程S200では、例えば、傾斜界面成長領域70中に取り込まれる酸素の濃度以上の濃度で、導電型不純物を添加することが好ましい。導電型不純物としては、例えば、n型不純物としてのSiまたはGeのうち少なくともいずれかである。例えば、3次元成長工程S200のうちの少なくとも傾斜界面維持工程S240において基板50のスライス予定位置に傾斜界面維持層34を成長しているときに、上述の濃度で導電型不純物を添加すればよい。なお、3次元成長層30の全体に、上述の濃度で導電型不純物を添加してもよい。このような導電型不純物の添加により、第2c面成長領域中のキャリア濃度が相対的に低くなることを抑制することができる。その結果、基板50において、キャリア濃度の面内ばらつきを抑制することができる。
 また、このとき、第1成長条件下で、主に傾斜界面30iを成長面として傾斜界面維持層34を成長させることで、上述のように、傾斜界面拡大層32において傾斜界面30iが露出した位置で、c軸に対して傾斜した方向に向けて屈曲して伝播した転位は、傾斜界面維持層34においても同じ方向に伝播し続ける。これにより、傾斜界面維持層34のうち、隣接する傾斜界面30iの会合部で、局所的に転位が集められる。傾斜界面維持層34において隣接する傾斜界面30iの会合部に集められた複数の転位のうち、互いに相反するバーガースベクトルを有する転位同士は、会合時に消失する。また、隣接する傾斜界面30iの会合部に集められた複数の転位の一部は、ループを形成し、c軸に沿った方向(すなわち、傾斜界面維持層34の表面側)に伝播することが抑制される。なお、傾斜界面維持層34において隣接する傾斜界面30iの会合部に集められた複数の転位のうちの他部は、その伝播方向をc軸に対して傾斜した方向からc軸に沿った方向に再度変化させ、傾斜界面維持層34の表面側まで伝播する。このように複数の転位の一部を消失させたり、複数の転位の一部をc面拡大層42の表面側に伝播することを抑制したりすることで、傾斜界面維持層34の表面における転位密度を低減することができる。また、転位を局所的に集めることで、傾斜界面維持層34のうち、転位がc軸に対して傾斜した方向に向けて伝播した部分の上方に、低転位密度領域を形成することができる。
 傾斜界面維持工程S240では、傾斜界面維持層34の厚さを、例えば、傾斜界面拡大層32の谷部30vから頂部30tまでの高さ分に、300μm以上10mm以下を加算した厚さとする。傾斜界面維持層34の厚さを300μm以上とすることで、後述のスライス工程S400において、傾斜界面維持層34から少なくとも1枚以上の基板50をスライスすることができる。一方で、傾斜界面維持層34の厚さを10mmとすることで、最終的な厚さを650μmとし、700μm厚の基板50を傾斜界面維持層34からスライスする場合に、カーフロス200μm程度を考慮しても、少なくとも10枚の基板50を得ることができる。
 なお、傾斜界面維持層34の成長の最後において、主に傾斜界面30iを成長面とした成長が維持されていれば、傾斜界面維持層34の表面において、下地基板10の主面10sに対する傾斜界面30iがなす傾斜角度を必ずしも維持しなくてもよい。例えば、傾斜界面維持層34の成長の最後において、傾斜界面維持層34の凹部30pの少なくとも一部を埋め込んでもよい。この場合、傾斜界面30iの傾斜角度を徐々に緩やかにし、{11-2m}面の指数mを徐々に大きくしていってもよい。
 以上の3次元成長工程S200により、傾斜界面拡大層32および傾斜界面維持層34を有する3次元成長層30が形成される。
 なお、以上の傾斜界面拡大工程S220および傾斜界面維持工程S240を、下地基板10を大気暴露することなく、同一のチャンバ内で連続的に行う。これにより、傾斜界面拡大層32および傾斜界面維持層34の間の界面に、意図しない高酸素濃度領域(傾斜界面成長領域70よりも過剰に高い酸素濃度を有する領域)が形成されることを抑制することができる。
(S400:スライス工程)
 次に、図5(b)に示すように、例えば、下地基板10の主面10sと略平行な切断面に沿ってワイヤーソーにより3次元成長層30をスライスする。これにより、アズスライス基板としての窒化物半導体基板50(基板50ともいう)を少なくとも1つ形成する。このとき、基板50の厚さを、例えば、300μm以上700μm以下とする。
 このとき、例えば、傾斜界面維持層34をスライスすることで、基板50を形成する。また、例えば、下地基板10から継続するc面成長領域60が最後に消失した位置(すなわちc面成長領域60の山部60b)から上方に離れた位置で、傾斜界面維持層34をスライスする。これにより、転位が低減された基板50を安定的に得ることができる。
 また、このとき、基板50のc面50cの曲率半径(の絶対値)を、下地基板10のc面10cの曲率半径(の絶対値)よりも大きくすることができる。これにより、基板50の主面50sの法線に対するc軸50caのオフ角θのばらつきを、下地基板10のc軸10caオフ角のばらつきよりも小さくすることができる。
(S500:研磨工程)
 次に、研磨装置により基板50の両面を研磨する。なお、このとき、最終的な基板50の厚さを、例えば、250μm以上650μm以下とする。
 以上の工程S100~S500により、本実施形態に係る基板50が製造される。
(半導体積層物の作製工程および半導体装置の作製工程)
 基板50が製造されたら、例えば、基板50上にIII族窒化物半導体からなる半導体機能層をエピタキシャル成長させ、半導体積層物を作製する。半導体積層物を作製したら、半導体積層物を用いて電極等を形成し、半導体積層物をダイシングし、所定の大きさのチップを切り出す。これにより、半導体装置を作製する。
(2)積層構造体
 次に、図5(a)を用い、本実施形態に係る積層構造体90について説明する。
 本実施形態の積層構造体90は、例えば、下地基板10と、3次元成長層30と、を有している。
 3次元成長層30は、例えば、下地基板10の主面10s上に成長している。
 3次元成長層30は、例えば、III族窒化物半導体の単結晶の頂面30uに、c面以外の傾斜界面30iで構成される複数の凹部30pを生じさせ、c面30cを少なくとも一度消失させることで形成されている。
 また、3次元成長層30は、例えば、成長過程での成長面の違いに基づいて、c面成長領域(第1低酸素濃度領域)60と、傾斜界面成長領域(高酸素濃度領域)70と、を有している。
 c面成長領域60は、c面30cを成長面として成長した領域である。c面成長領域60では、上述のように、傾斜界面成長領域70と比較して、酸素の取り込みが抑制される。このため、c面成長領域60中の酸素濃度は、傾斜界面成長領域70中の酸素濃度よりも低くなる。具体的には、c面成長領域60中の酸素濃度は、例えば、5×1016cm-3以下、好ましくは3×1016cm-3以下である。
 c面30cが少なくとも一度消失しているため、c面成長領域60は、下地基板10から3次元成長層30の表面(最上面)まで連続していない。
 c面成長領域60は、例えば、断面視で、複数の谷部60aおよび複数の山部60bを有する。なお、ここでいう谷部60aおよび山部60bのそれぞれは、積層構造体90の断面を蛍光顕微鏡等で観察したときに発光強度差に基づいて観察される形状の一部分を意味し、3次元成長層30の成長途中で生じる最表面の形状の一部分を意味するものではない。複数の谷部60aのそれぞれは、断面視で、c面成長領域60のうち下に凸の変曲点であって、傾斜界面30iが発生した位置に形成される。複数の谷部60aのうち少なくとも1つ(または全て)は、下地基板10の主面10sから上方に離れた位置に設けられている。一方で、複数の山部60bのそれぞれは、断面視で、c面成長領域60のうち上に凸の変曲点であって、互いに相反する方向を向いて拡大した一対の傾斜界面30iを挟んでc面30cが(最後に)消失した位置に形成される。谷部60aおよび山部60bは、下地基板10の主面10sに沿った方向に交互に形成される。
 下地基板10の主面に垂直な任意の断面を見たときに、3次元成長層30の成長過程での最近接頂部間平均距離は、c面成長領域60の山部60b間の平均距離に相当する。c面成長領域60の山部60b間の平均距離は、例えば、100μm超である。
 c面成長領域60は、複数の山部60bのうちの1つを挟んだ両側に、c面30cと傾斜界面30iとの交点の軌跡として設けられる一対の傾斜部60iを有している。なお、ここでいう傾斜部60iは、積層構造体90の断面を蛍光顕微鏡等で観察したときに発光強度差に基づいて観察される形状の一部分を意味し、3次元成長層30の成長途中で生じる最表面の傾斜界面30iを意味するものではない。
 隣接する2つの谷部60aのそれぞれの中心を通る断面を見たときの一対の傾斜部60iのなす角度βは、例えば、70°以下、好ましくは、20°以上65°以下である。一対の傾斜部60iのなす角度βが70°以下であることは、第1成長条件において、3次元成長層30のうちのc面30cに対して最も傾斜した傾斜界面30iの成長レートGに対する、3次元成長層30のうちのc面30cの成長レートGc1の比率Gc1/Gが高かったことを意味する。これにより、c面以外の傾斜界面30iを容易に生じさせることができる。その結果、傾斜界面30iが露出した位置で、転位を容易に屈曲させることが可能となる。また、一対の傾斜部60iのなす角度βを70°以下とすることで、下地基板10の主面10sの上方に、複数の谷部30vおよび複数の頂部30tを容易に生じさせることができる。さらに、一対の傾斜部60iのなす角度βを65°以下とすることで、c面以外の傾斜界面30iをさらに容易に生じさせることができ、下地基板10の主面10sの上方に、複数の谷部30vおよび複数の頂部30tをさらに容易に生じさせることができる。なお、一対の傾斜部60iのなす角度βを20°以上とすることで、3次元成長層30の谷部30vから頂部30tまでの高さが高くなることを抑制することができる。これにより、基板50をスライスしたときに谷部30vに起因した貫通ピットが発生して良品基板が取得できなくなる領域を極力少なくすることができる。
 一方で、傾斜界面成長領域70は、c面以外の傾斜界面30iを成長面として成長した領域である。
 傾斜界面成長領域70では、c面成長領域60と比較して、酸素を取り込みやすい。このため、傾斜界面成長領域70中の酸素濃度は、c面成長領域60中の酸素濃度よりも高くなる。なお、傾斜界面成長領域70中に取り込まれる酸素は、例えば、HVPE装置内に意図せずに混入する酸素、またはHVPE装置を構成する部材(石英部材等)から放出される酸素等である。
 具体的には、傾斜界面成長領域70中の酸素濃度は、例えば、9×1017cm-3以上5×1019cm-3以下である。
 傾斜界面成長領域70はc面成長領域60の上に設けられている。傾斜界面成長領域70の下面は、例えば、c面成長領域60の形状に倣って形成されている。
 傾斜界面成長領域70の少なくとも一部は、下地基板10の主面に沿って連続して設けられている。すなわち、3次元成長層30を下地基板10の主面10sに沿って切った複数の断面(沿面断面)を見たときに、c面30cを成長面として成長したc面成長領域を含まない断面が、3次元成長層30の厚さ方向の少なくとも一部に存在していることが望ましい。
 主に傾斜界面30iを成長面として傾斜界面維持層34を継続的に成長させたことで、3次元成長層30を下地基板10の主面10sに沿って切った沿面断面において傾斜界面成長領域70の占める面積割合は、例えば、80%以上である。
 なお、上述のように、所定の沿面断面において、傾斜界面成長領域70の占める面積割合が100%未満となることがある。すなわち、傾斜界面成長領域70と第2c面成長領域(後述のc面成長領域80に相当)とが混在した沿面断面が生じることがある。当該沿面断面において混在する第2c面成長領域は、例えば、上述のc面成長領域60の酸素濃度と同等の酸素濃度を有している。
 3次元成長層30の成長過程で、c面成長領域80が発生したり消失したりしているため、平面視でのc面成長領域80の大きさは、下地基板10の主面10sから3次元成長層30の表面に向けてランダムに変化している。
 また、上述のように、3次元成長層30の成長過程で、c面30cが少なくとも一度消失しているため、c面成長領域80は、c面成長領域60と同様に、下地基板10の主面10sから3次元成長層30の表面(最上面)まで連続していない。
 また、本実施形態では、3次元成長層30の成長過程で、c面以外の傾斜界面30iが露出した位置で、該傾斜界面30iに対して略垂直な方向に向けて、転位が屈曲して伝播することで、傾斜界面維持層34では、複数の転位の一部が消失したり、複数の転位の一部が傾斜界面維持層34の表面側に伝播することが抑制されたりしている。これにより、傾斜界面維持層34の表面における転位密度は、下地基板10の主面10sにおける転位密度よりも低減されている。
 その他、本実施形態では、3次元成長層30の表面全体は+c面に配向して構成されており、3次元成長層30は、極性反転区(インバージョンドメイン)を含んでいない。この点において、本実施形態の積層構造体90は、いわゆるDEEP(Dislocation Elimination by the Epitaxial-growth with inverse-pyramidal Pits)法により形成された積層構造体とは異なり、すなわち、ピットの中心に位置するコアに極性反転区を含む積層構造体とは異なっている。
(3)窒化物半導体基板(窒化物半導体自立基板、窒化物結晶基板)
 次に、図7および図8を用い、本実施形態に係る窒化物半導体基板50について説明する。図7(a)は、本実施形態に係る窒化物半導体基板を示す概略上面図であり、(b)は、本実施形態に係る窒化物半導体基板のm軸に沿った概略断面図であり、(c)は、本実施形態に係る窒化物半導体基板のa軸に沿った概略断面図である。図8は、本実施形態に係る窒化物半導体基板の主面を走査型電子顕微鏡(SEM)により観察したカソードルミネッセンス像を示す模式図である。
 本実施形態において、上述の製造方法によって得られる基板50は、例えば、III族窒化物半導体の単結晶からなる自立基板である。本実施形態では、基板50は、例えば、GaN自立基板である。
 基板50の直径は、例えば、2インチ以上である。また、基板50の厚さは、例えば、300μm以上1mm以下である。
 基板50は、例えば、エピタキシャル成長面となる主面50sを有している。本実施形態において、主面50sに対して最も近い低指数の結晶面は、例えば、c面50cである。
 なお、基板50の主面50sは、例えば、鏡面化されており、基板50の主面50sの二乗平均粗さRMSは、例えば、1nm未満である。
 また、本実施形態では、基板50は、例えば、上述のように、極性反転区(インバージョンドメイン)を含んでいない。
(傾斜界面成長領域およびc面成長領域)
 次に、図8を用い、基板50の主面50sの特徴について説明する。
 図8に示すように、基板50は、例えば、傾斜界面30iを成長面として成長した傾斜界面成長領域(高酸素濃度領域)70を有している。傾斜界面成長領域70中の酸素濃度は、上述のように、例えば、9×1017cm-3以上5×1019cm-3以下である。
 傾斜界面成長領域70は上述のように高濃度の酸素を含んでいるため、少なくともIII族窒化物半導体のバンドギャップエネルギー付近における発光の少なくとも一部の波長を含む波長範囲で撮像したときのカソードルミネッセンス像(CL像)(または多光子励起顕微鏡像(2PPL像))では、傾斜界面成長領域70は相対的に明るく観察される。
 傾斜界面成長領域70の平面視での形状は、例えば、3次元成長層30の成長過程で生じた凹部30pの平面視での形状を反映し、略六角形の少なくとも一部を有している。傾斜界面成長領域70の平面視での形状のうち、1つの略六角形は、他の略六角形と交差していてもよい。なお、2PPL像では、3次元成長層30の成長過程で生じた凹部30pの稜線が、傾斜界面成長領域70内に見えることがある。
 本実施形態では、主面50sにおいて傾斜界面成長領域70が占める面積割合は、例えば、80%以上である。言い換えれば、主面50sにおいて、20%以下の面積割合で、c面成長領域(第2c面成長領域、表面側c面成長領域、低酸素濃度領域)80が存在していてもよい。
 c面成長領域80は、上述のように、傾斜界面維持層34においてc面30cが再度出現した領域である。c面成長領域80中の酸素濃度は、例えば、5×1016cm-3以下、好ましくは3×1016cm-3以下である。
 平面視でのc面成長領域80の大きさは、例えば、基板50の主面50sの反対側の裏面から主面50sに向けてランダムに変化している。
 c面成長領域80は、例えば、基板50の主面50sの反対側の裏面から主面50sに向けて連続的に繋がっていない。
 一方で、主面50sにおいて傾斜界面成長領域70が占める面積割合は、100%であってもよく、すなわち、基板50はc面成長領域80を有していなくてもよい。
 なお、主面50sにおいて傾斜界面成長領域70が占める面積割合に基づいて、基板50の主面50s全体を平均した酸素濃度は、例えば、7×1017cm-3以上5×1019cm-3以下である。
 本実施形態において、上述の製造方法によって得られる基板50は、例えば、n型である。本実施形態の基板50は、n型不純物として、例えば、上述の酸素(O)だけでなく、SiおよびGeの少なくともいずれかも含んでいる。基板50中の合計のn型不純物濃度は、例えば、1.0×1018cm-3以上1.0×1020cm-3以下である。
 本実施形態の基板50では、SiおよびGeの少なくともいずれかだけでなく、Oも活性化している。このため、基板50中の自由電子濃度は、例えば、基板50中のO、SiおよびGeの合計の濃度と同等となっている。
 なお、本実施形態において、上述の製造方法によって得られる基板50中のn型不純物(導電型不純物)以外の不純物の濃度は低くなっている。
 例えば、上述の製造方法によって得られる基板50中の水素濃度は、フラックス法またはアモノサーマル法などによって得られる基板よりも低くなっている。
 具体的には、基板50中の水素濃度は、例えば、1×1017cm-3未満、好ましくは5×1016cm-3以下である。
(暗点)
 次に、図8を用い、本実施形態の基板50の主面50sにおける暗点について説明する。なお、ここでいう「暗点」とは、多光子励起顕微鏡における主面50sの観察像や、主面50sのカソードルミネッセンス像などにおいて観察される発光強度が低い点のことを意味し、転位だけでなく、異物または点欠陥を起因とした非発光中心も含んでいる。なお、「多光子励起顕微鏡」とは、二光子励起蛍光顕微鏡と呼ばれることもある。
 本実施形態では、VAS法により作製された高純度のGaN単結晶からなる下地基板10を用いて基板50が製造されているため、基板50中に、異物または点欠陥を起因とした非発光中心が少ない。
 したがって、図8に示すように、基板50の主面50sのCL像(または2PPL像)において、暗点の95%以上、好ましくは99%以上は、異物または点欠陥を起因とした非発光中心ではなく、転位(貫通転位)dとなる。
 また、本実施形態では、上述の製造方法により、傾斜界面維持層34において転位が局所的に集められ、傾斜界面維持層34の表面における転位密度が、下地基板10の主面10sにおける転位密度よりも低減されている。これにより、傾斜界面維持層34をスライスして形成される基板50の主面50sにおいても、転位密度が低減されている。
 また、本実施形態では、図8に示すように、上述の製造方法により、傾斜界面成長領域70の略六角形の中心には、局所的に転位dが集中している。以下、傾斜界面成長領域70内で転位dが相対的に集中した領域を「転位集中領域dca」ともいう。転位集中領域dcaの外側には、低転位密度領域が広く形成されている。
 また、本実施形態では、上述の製造方法により、パターン加工を施さない状態の下地基板10を用いて、3次元成長工程S200を行ったことで、3次元成長層30をスライスして形成される基板50の主面50sにおいて、下地基板10のパターン加工に起因して規則的に発生する高転位密度領域が形成されていない。言い換えれば、本実施形態の基板50では、転位集中領域dcaが存在したとしても、転位集中領域dcaはランダムに配置される。また、本実施形態の基板50の転位集中領域dcaでの転位密度は、下地基板10にパターン加工を施した場合のそれよりも低くなっている。
 具体的には、本実施形態では、多光子励起顕微鏡により視野250μm角で基板50の主面50sを観察して暗点密度から転位密度を求めたときに、転位密度が3×10cm-2を超える領域が存在しない。また、転位密度が1×10cm-2未満である領域が主面50sの80%以上、好ましくは90%以上、より好ましくは95%以上存在する。なお、カソードルミネッセンス像の観察によっても、多光子励起顕微鏡と同様の結果が得られる。
 なお、本実施形態の製造方法を用いた場合では、転位密度が1×10cm-2未満である領域の割合の上限値は、例えば、主面50sの99%となる。
 言い換えれば、本実施形態では、基板50の主面50s全体を平均した転位密度は、例えば、1×10cm-2未満であり、好ましくは、5.5×10cm-2未満であり、より好ましくは3×10cm-2以下である。
 また、本実施形態の基板50の主面50sは、例えば、上述の3次元成長工程S200での最近接頂部間平均距離Lに基づいて、少なくとも50μm角の無転位領域を含んでいる。また、50μm角の無転位領域は、例えば、上述の転位集中領域dcaを除く基板50の主面50s全体に亘って散在している。また、本実施形態の基板50の主面50sは、例えば、重ならない50μm角の無転位領域を100個/cm以上、好ましくは800個/cm以上、より好ましくは1600個/cm以上の密度で有している。重ならない50μm角の無転位領域の密度が1600個/cm以上である場合は、例えば、主面50sが250μm角の任意の視野内に少なくとも1つの50μm角の無転位領域を有する場合に相当する。
 なお、重ならない50μm角の無転位領域の密度の上限値は、例えば、30000個/cm程度である。
 参考までに、転位を集める特段の工程を行わない従来の製造方法で得られる基板では、無転位領域の大きさが50μm角よりも小さいか、或いは、50μm角の無転位領域の密度は100個/cmよりも低くなる。また、従来のELO法により得られる基板においても、無転位領域の大きさが50μm角よりも小さいか、或いは、50μm角の無転位領域の密度が100個/cmよりも低くなる。
 また、本実施形態では、上述のように基板50がc面成長領域80を有する場合であっても、3次元成長層30の成長過程でc面30cが少なくとも一度消失し、主面50s側のc面成長領域80の下方において、転位が屈曲されている。これにより、例えば、主面50sにおけるc面成長領域80が、上述の少なくとも50μm角の無転位領域を含んでいる場合がある。
 また、本実施形態では、上述のように転位集中領域dcaでの転位密度が低くなっていることで、多光子励起顕微鏡により転位集中領域dcaを含む50μm角の視野で主面50sを観察して暗点密度から転位密度を求めたときに、転位密度は、例えば、3×10cm-2未満である。なお、転位集中領域dcaを含む50μm角の視野では少なくとも1つの暗点が存在すると考えられることから、転位集中領域dcaを含む50μm角の視野での、転位密度の下限値は、例えば、4×10cm-2である。
(基底面転位)
 次に、図8を用い、本実施形態の基板50の主面50sにおける基底面転位bpdについて説明する。
 本実施形態では、後述の傾斜界面成長領域70の応力相殺効果に起因して、3次元成長層30には、結晶歪みが加わり、基底面転位が生じうる。このため、図8に示すように、3次元成長層30をスライスして形成される基板50の主面50sのCL像では、基底面転位bpdが観察されることがある。
 しかしながら、本実施形態では、マスク層を用いたELO法などで得られる基板と比較して、基板50の主面50sにおける基底面転位bpdが少ない。
 具体的には、主面50sのCL像において、長さ200μmの任意の仮想的な線分lsを引いたときに、該線分lsと基底面転位bpdとの交点の数は、例えば、10点以下、好ましくは5点以下である。なお、線分lsと基底面転位bpdとの交点の数の最小値は、例えば、0点である。
(バーガースベクトル)
 次に、本実施形態の基板50における転位のバーガースベクトルについて説明する。
 本実施形態では、上述の製造方法で用いられる下地基板10の主面10sにおける転位密度が低いため、下地基板10上に3次元成長層30を成長させる際に、複数の転位が結合(混合)することが少ない。これにより、3次元成長層30から得られる基板50内において、大きいバーガースベクトルを有する転位の生成を抑制することができる。
 具体的には、本実施形態の基板50では、例えば、バーガースベクトルが<11-20>/3、<0001>、または<11-23>/3のうちいずれかである転位が多い。なお、ここでの「バーガースベクトル」は、例えば、透過電子顕微鏡(TEM)を用いた大角度収束電子回折法(LACBED法)により測定可能である。また、バーガースベクトルが<11-20>/3である転位は、刃状転位であり、バーガースベクトルが<0001>である転位は、螺旋転位であり、バーガースベクトルが<11-23>/3である転位は、刃状転位と螺旋転位とが混合した混合転位である。
 本実施形態では、基板50の主面50sにおける転位を無作為に100個抽出したときに、バーガースベクトルが<11-20>/3、<0001>または<11-23>/3のうちいずれかである転位の数の割合は、例えば、50%以上、好ましくは70%以上、より好ましくは90%以上である。なお、基板50の主面50s内の少なくとも一部において、バーガースベクトルが2<11-20>/3または<11-20>などである転位が存在していてもよい。
(c面の曲率半径)
 次に、図7を用い、本実施形態の基板50におけるc面50cの曲率半径について説明する。
 図7(b)および(c)に示すように、本実施形態では、基板50の主面50sに対して最も近い低指数の結晶面としてのc面50cは、例えば、上述した基板50の製造方法に起因して、平坦となっているか、或いは、球面状に湾曲している。なお、基板50のc面50cは、例えば、主面50sに対して凹の球面状に湾曲していてもよいし、或いは、凸の球面状に湾曲していてもよい。または、基板50のc面50cは、例えば、略平坦となっていれば、主面50sに対して凹の球面状に湾曲した部分と、主面50sに対して凸の球面状に湾曲した部分と、を有していてもよい。
 本実施形態では、基板50のc面50cは、例えば、m軸に沿った断面およびa軸に沿った断面のそれぞれにおいて、平坦となっているか、或いは、球面近似される曲面状となっている。
 ここで、基板50の主面50s内での位置のうち、m軸に沿った方向の座標を「x」とする。一方で、基板50の主面50s内での位置のうち、a軸に沿った方向の座標を「y」とする。なお、基板50の主面50sの中心の座標(x,y)を(0,0)とする。また、主面50sの法線に対するc軸50caのオフ角θのうち、m軸に沿った方向成分を「θ」とし、a軸に沿った方向成分を「θ」とする。なお、θ=θ +θ である。
 本実施形態では、基板50のc面50cが上述のように平坦となっているか、或いは、球面状に湾曲していることから、オフ角m軸成分θおよびオフ角a軸成分θは、それぞれ、xの1次関数およびyの1次関数で近似的に表すことができる。
 具体的には、例えば、主面50s内で中心を通る直線上の各位置において(0002)面のX線ロッキングカーブ測定を行い、主面50sへ入射したX線と主面50sとがなすピーク角度ωを、直線上の位置に対してプロットしたときに、ピーク角度ωを位置の1次関数で近似することができる。なお、ここでいう「ピーク角度ω」とは、主面50sへ入射したX線と主面50sとがなす角度であって、回折強度が最大となる角度のことをいう。上述のように近似された1次関数の傾きの逆数により、c面50cの曲率半径を求めることができる。
 本実施形態では、基板50のc面50cの曲率半径は、例えば、上述した基板50の製造方法で用いる下地基板10のc面10cの曲率半径よりも大きくなっている。
 具体的には、c面50cのX線ロッキングカーブ測定においてピーク角度ωを位置の1次関数で近似したときに、当該1次関数の傾きの逆数により求められるc面50cの曲率半径は、例えば、15m以上、好ましくは23m以上、より好ましくは30m以上、さらに好ましくは40m以上である。
 本実施形態では、基板50のc面50cの曲率半径の上限値は、大きければ大きいほどよいため、特に限定されるものではない。基板50のc面50cが略平坦となる場合は、該c面50cの曲率半径が無限大であると考えればよい。
 本実施形態では、基板50のc面50cの曲率半径が大きいことにより、基板50の主面50sの法線に対するc軸50caのオフ角θのばらつきを、下地基板10のc軸10caのオフ角のばらつきよりも小さくすることができる。
 また、本実施形態では、c面50cのX線ロッキングカーブ測定においてピーク角度ωを位置の1次関数で近似したときに、マスク層を用いたELO法などで得られる基板と比較して、1次関数に対するωの誤差が小さい。
 具体的には、上述のように近似した1次関数に対する、測定されたピーク角度ωの誤差は、例えば、0.05°以下、好ましくは0.02°以下、より好ましくは0.01°以下である。なお、少なくとも一部のピーク角度ωが1次関数と一致することがあるため、当該誤差の最小値は、0°である。
(半導体積層物におけるフォトルミネッセンス特性)
 次に、基板50を用いて半導体積層物を作製したときの、半導体層のフォトルミネッセンス特性について説明する。
 本実施形態では、上述のように基板50が高酸素濃度を有する傾斜界面成長領域70を有しているが、基板50を用いて半導体積層物を作製したときに、基板50上に成長させた半導体層に対して、基板50を起因とした結晶歪みが生じることがほとんどない。このため、基板50上に成長させた半導体層のフォトルミネッセンスにおいて、半導体層の結晶歪みに起因したピークシフトが小さいか、或いは無い。
 具体的には、以下の特性が得られる。まず、所定のIII族窒化物半導体のノンドープの単結晶からなる半導体層を基板50の主面50s上にエピタキシャル成長させた積層物と、傾斜界面成長領域70を有しない点を除いて基板50と同一のIII族窒化物半導体の単結晶(すなわち、基板50と同一のIII族窒化物半導体のノンドープの単結晶)からなる基板上に半導体層をエピタキシャル成長させた基準積層物と、を作製する。なお、ここでいう「ノンドープ」とは、半導体が意図的に添加した不純物を含まないことを意味し、半導体が不可避不純物を含む場合を含んでいる。次に、本実施形態の積層物および基準積層物のそれぞれにおける半導体層のフォトルミネッセンスを温度差1℃未満で(例えば27℃で)測定する。この場合に、本実施形態の積層物の半導体層における最大ピーク波長と、基準積層物の半導体層における最大ピーク波長との差は、例えば、1nm以下である。
(4)本実施形態により得られる効果
 本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(a)3次元成長工程S200において、3次元成長層30を構成する単結晶の表面にc面以外の傾斜界面30iを生じさせることで、傾斜界面30iが露出した位置で、該傾斜界面30iに対して略垂直な方向に向けて、転位を屈曲させて伝播させることができる。これにより、転位を局所的に集めることができる。転位を局所的に集めることで、互いに相反するバーガースベクトルを有する転位同士を消失させることができる。または、局所的に集められた転位がループを形成することで、転位が3次元成長層30の表面側に伝播することを抑制することができる。このようにして、3次元成長層30の表面における転位密度を低減することができる。その結果、下地基板10よりも転位密度を低減させた基板50を得ることができる。
(b)3次元成長工程S200では、3次元成長層30の頂面30uから少なくとも一度c面30cを消失させる。これにより、下地基板10から伝播する転位を、3次元成長層30における傾斜界面30iが露出した位置で、確実に屈曲させることができる。
 ここで、3次元成長工程において、c面が残存した場合について考える。この場合、c面が残存した部分では、下地基板から伝播した転位が、屈曲されずに略鉛直上方向に伝播し、3次元成長層の表面にまで到達する。このため、c面が残存した部分の上方では、転位が低減されず、高転位密度領域が形成されてしまう。
 これに対し、本実施形態によれば、3次元成長工程S200において、3次元成長層30の頂面30uから少なくとも一度c面30cを消失させることで、少なくとも一度、3次元成長層30の表面をc面以外の傾斜界面30iのみにより構成することができる。これにより、下地基板10から伝播する転位を、3次元成長層30の表面全体に亘って、確実に屈曲させることができる。転位を確実に屈曲させることで、複数の転位の一部を消失させ易くし、または、複数の転位の一部を3次元成長層30の表面側に伝播し難くすることができる。その結果、3次元成長層30から得られる基板50の主面50s全体に亘って転位密度を低減することが可能となる。
(c)3次元成長工程S200では、3次元成長層30の表面からc面30cを消失させた後に、傾斜界面成長領域70が沿面断面の80%以上の面積を占める状態を維持しつつ、所定の厚さに亘って3次元成長層30の成長を継続させる。これにより、傾斜界面30iが露出した位置で転位を屈曲させる時間を充分に確保することができる。ここで、c面が消失してから直ぐにc面成長をさせると、転位が充分に屈曲されずに、3次元成長層の表面に向けて略鉛直方向に伝播してしまう可能性がある。これに対し、本実施形態では、c面以外の傾斜界面30iが露出した位置で転位を屈曲させる時間を充分に確保することで、下地基板10から3次元成長層30の表面に向けて略鉛直方向に転位が伝播することを抑制することができる。これにより、3次元成長層30における転位の集中を抑制することができる。
(d)本実施形態では、3次元成長層30をスライスすることで、基板50のc面50cの曲率半径を、下地基板10のc面10cの曲率半径よりも大きくすることができる。
 基板50のc面50cの曲率半径が大きくなる理由の1つとして、例えば、以下のような理由が考えられる。
 上述のように、3次元成長工程S200において、c面以外の傾斜界面30iを成長面として3次元成長層30を成長させることで、傾斜界面成長領域70が形成される。傾斜界面成長領域70では、c面成長領域60と比較して、酸素を取り込みやすい。このため、傾斜界面成長領域70中の酸素濃度は、c面成長領域60中の酸素濃度よりも高くなる。つまり、傾斜界面成長領域70は、高酸素濃度領域として考えることができる。
 このように、高酸素濃度領域中に酸素を取り込むことで、高酸素濃度領域の格子定数を、高酸素濃度領域以外の他の領域の格子定数よりも大きくすることができる(参考:Chris G. Van de Walle, Physical Review B vol.68, 165209 (2003))。下地基板10、または3次元成長層30のうちc面30cを成長面として成長したc面成長領域60には、下地基板10のc面10cの湾曲によって、c面30cの曲率中心に向かって集中する応力が加わっている。これに対して、高酸素濃度領域の格子定数を相対的に大きくすることで、高酸素濃度領域には、c面30cを沿面方向の外側に広げる応力を生じさせることができる。これにより、高酸素濃度領域よりも下側でc面30cの曲率中心に向かって集中する応力と、高酸素濃度領域のc面30cを沿面方向の外側に広げる応力とを相殺させることができる(以下、高酸素濃度領域による「応力相殺効果」ともいう)。その結果、基板50のc面50cの曲率半径を、下地基板10のc面10cの曲率半径よりも大きくすることができる。
(e)3次元成長工程S200において、傾斜界面30iを成長面として3次元成長層30を成長させることで、c面を成長面として半導体層を成長させる場合と比較して、3次元成長層30の成長速度を速くすることができる。これにより、基板50の製造におけるスループットを向上させることができる。
(f)3次元成長工程S200において、沿面断面において傾斜界面成長領域70の占める面積割合を80%以上とすることで、上述のように3次元成長層30の応力相殺効果を発現させることができる。これにより、3次元成長層30の成長中におけるクラックの発生を抑制することができる。その結果、3次元成長層30を容易に厚く成長させることが可能となる。
(g)3次元成長工程S200において、沿面断面において傾斜界面成長領域70の占める面積割合を80%以上とすることで、c面成長領域が広く占める場合と比較して、スライスおよび研磨などの加工を容易に施すことができる。
 以上の(a)~(g)のように、本実施形態では、結晶品質が良好な基板50を容易かつ安定的に得ることができる。
(h)3次元成長工程S200のうち、傾斜界面拡大層32が成長する初期段階では、c面30cを成長面として所定の厚さで傾斜界面拡大層32を2次元成長させた後に、該傾斜界面拡大層32の頂面30uに複数の凹部30pを生じさせる。言い換えれば、傾斜界面拡大層32が3次元成長し始める前に、鏡面化された表面を有する傾斜界面拡大層32(初期層)を所定の厚さで形成する。これにより、3次元成長工程S200において、3次元成長層30における傾斜界面30iの出現具合を、安定的に面内で均一にすることができる。その結果、3次元成長層30の表面全体に亘って転位密度を低減することができる。
 また、3次元成長工程S200の初期段階に、c面30cを成長面として所定の厚さで傾斜界面拡大層32を2次元成長させた後に、該傾斜界面拡大層32の頂面30uに複数の凹部30pを生じさせることで、下地基板10の主面10sの全体に亘って、結晶軸を揃えることができる。これにより、結晶軸のずれに起因した新たな転位の発生を抑制することができる。その結果、転位密度を低くすることが可能となる。
 なお、参考までに、下地基板上にアモルファスのバッファ層を低温で成長させ、その後、昇温してエピ層を3次元成長させる場合について考える。この場合、エピ層の成長温度まで昇温させる過程で、バッファ層がアモルファスから多結晶へと変化する。その後のエピ層の成長では、多結晶化したバッファ層上にエピ層が島状成長する。多結晶上に島状成長した結晶のそれぞれでは、結晶軸がばらつく。このため、さらに島状結晶が成長し、島状結晶同士が会合したときに、結晶軸のずれに起因して、新たな転位が発生する。このため、エピ層では、転位密度が高くなる可能性がある。
(i)本実施形態では、上述の下地基板10を用い、且つ、式(1)を満たすように第1成長条件を調整することで、3次元成長工程S200において、傾斜界面30iとして、m≧3である{11-2m}面を生じさせることができる。これにより、c面30cに対する{11-2m}面の傾斜角度を緩やかにすることができる。具体的には、該傾斜角度を47.3°以下とすることができる。c面30cに対する{11-2m}面の傾斜角度を緩やかにすることとで、複数の頂部30tの周期を長くすることができる。具体的には、下地基板10の主面10sに垂直な任意の断面を見たときに、最近接頂部間平均距離Lを100μm超とすることができる。
 なお、参考までに、通常、所定のエッチャントを用い窒化物半導体基板にエッチピットを生じさせると、該基板の表面に、{1-10n}面により構成されるエッチピットが形成される。これに対し、本実施形態において所定の条件で成長させた3次元成長層30の表面では、m≧3である{11-2m}面を生じさせることができる。したがって、通常のエッチピットに比較して、本実施形態では、製法特有の傾斜界面30iが形成されると考えられる。
(j)本実施形態では、下地基板10の主面10sに垂直な任意の断面を見たときに、最近接頂部間平均距離Lを100μm超とすることで、転位が屈曲して伝播する距離を、少なくとも50μm超、確保することができる。これにより、3次元成長層30のうち一対の頂部30t間の略中央の上方に、充分に転位を集めることができる。その結果、3次元成長層30の表面における転位密度を充分に低減させることができる。
(k)スライス工程S400では、傾斜界面維持層34をスライスすることで、基板50を形成する。また、下地基板10から継続するc面成長領域60が最後に消失した位置から上方に離れた位置で、傾斜界面維持層34をスライスする。これにより、3次元成長層30において転位が集められる過程の部分を避けることができる。その結果、転位が低減された基板50を安定的に得ることができる。
<他の実施形態>
 以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の実施形態では、下地基板10がGaN自立基板である場合について説明したが、下地基板10は、GaN自立基板に限らず、例えば、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGaN)、窒化インジウム(InN)、窒化インジウムガリウム(InGaN)、窒化アルミニウムインジウムガリウム(AlInGaN)等のIII族窒化物半導体、すなわち、AlInGa1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)の組成式で表されるIII族窒化物半導体からなる自立基板であってもよい。
 上述の実施形態では、基板50がGaN自立基板である場合について説明したが、基板50は、GaN自立基板に限らず、例えば、AlN、AlGaN、InN、InGaN、AlInGaN等のIII族窒化物半導体、すなわち、AlInGa1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)の組成式で表されるIII族窒化物半導体からなる自立基板であってもよい。
 上述の実施形態では、基板50がn型である場合について説明したが、基板50はp型であったり、または半絶縁性を有していたりしてもよい。例えば、基板50を用いて高電子移動度トランジスタ(HEMT)としての半導体装置を製造する場合には、基板50は、半絶縁性を有していることが好ましい。
 上述の実施形態では、3次元成長工程S200において、第1成長条件として主に成長温度を調整する場合について説明したが、第1成長条件が式(1)を満たせば、当該第1成長条件として、成長温度以外の成長条件を調整したり、成長温度と成長温度以外の成長条件とを組み合わせて調整したりしてもよい。
 上述の実施形態では、傾斜界面維持工程S240での成長条件を、傾斜界面拡大工程S220と同様に、上述の第1成長条件で維持する場合について説明したが、傾斜界面維持工程S240での成長条件が第1成長条件を満たせば、該傾斜界面維持工程S240での成長条件を、傾斜界面拡大工程S220での成長条件と異ならせてもよい。
 上述の実施形態では、スライス工程S170およびスライス工程S400において、ワイヤーソーを用い、第2結晶層6または傾斜界面維持層34をスライスする場合について説明したが、例えば、外周刃スライサー、内周刃スライサー、放電加工機等を用いてもよい。
 上述の実施形態では、積層構造体90のうちの傾斜界面維持層34をスライスすることで、基板50を得る場合について説明したが、この場合に限られない。例えば、積層構造体90をそのまま用いて、半導体装置を作製するための半導体積層物を製造してもよい。具体的には、積層構造体90を作製したら、半導体積層物作製工程において、積層構造体90上に半導体機能層をエピタキシャル成長させ、半導体積層物を作製する。半導体積層物を作製したら、積層構造体90の裏面側を研磨し、積層構造体90のうち、下地基板10と、傾斜界面拡大層32と、を除去する。これにより、上述の実施形態と同様に、傾斜界面維持層34と、半導体機能層と、を有する半導体積層物が得られる。この場合によれば、基板50を得るためのスライス工程S400および研磨工程S500を省略することができる。
 以下、本発明の効果を裏付ける各種実験結果について説明する。
(1)実験1
(1-1)窒化物半導体基板の作製
 以下のようにして、実施例および比較例の窒化物半導体基板を作製した。なお、実施例については、窒化物半導体基板をスライスする前の積層構造体も作製した。以下、「窒化物半導体基板」を「基板」と略すことがある。
[実施例の窒化物半導体基板の作製条件]
(下地基板)
 材質:GaN
 作製方法:VAS法
 直径:2インチ
 厚さ:550μm
 主面に対して最も近い低指数の結晶面:c面
 主面に対するマスク層等のパターン加工なし。
(3次元成長層)
 材質:GaN
 成長方法:HVPE法
 第1成長条件:
 成長温度を980℃以上1,020℃以下とし、V/III比を2以上20以下とした。このとき、第1成長条件が式(1)を満たすように、成長温度およびV/III比のうち少なくともいずれかをそれぞれ上記範囲のなかで調整した。
 3次元成長層の厚さ:約1.45mm
(スライス条件)
 窒化物半導体基板の厚さ:400μm
 カーフロス:200μm
 なお、実施例では、スライス位置が異なる2つの基板(AおよびB)を作製した。なお、基板Bは基板Aよりも下地基板に近い側でスライスした。
(研磨条件)
 研磨厚さ:200μm
[比較例の窒化物半導体基板の作製条件]
(下地基板)
 材質:GaN
 作製方法:VAS法
 直径:2インチ
 厚さ:400μm
 主面に対して最も近い低指数の結晶面:c面
 主面に対するマスク層等のパターン加工なし。
(結晶層)
 材質:GaN
 成長方法:HVPE法
 成長温度:1,050℃
 V/III比:2
 (すなわち結晶層はc面を成長面としてステップフロー成長させた。)
 下地基板の主面から結晶層の表面までの厚さ:2mm
(スライス条件および研磨条件)
 実施例と同じ。
(1-2)評価
(積層構造体の観察)
 蛍光顕微鏡を用い、実施例の基板をスライスする前の積層構造体の断面を観察した。なお、光学顕微鏡を用い、積層構造体の表面も観察した。
(多光子励起顕微鏡による窒化物半導体基板の観察)
 多光子励起顕微鏡を用い、下地基板、比較例の基板、および実施例の基板のそれぞれの主面を観察した。このとき、視野250μmごとに主面全体に亘って暗点密度を測定することで、転位密度を測定した。なお、これらの基板における暗点の全てが貫通転位であることは、厚さ方向に焦点をずらして測定することにより確認している。また、このとき、視野250μmでの全測定領域数に対する、転位密度が1×10cm-2未満である領域(低転位密度領域)の数の割合を求めた。なお、ここでいう「低転位密度領域」とは、後述の結果で示すように、3次元成長工程を行わずに結晶層を成長させた比較例の、結晶層の主面における平均転位密度よりも低い転位密度を有する領域のことを意味する。
(X線ロッキングカーブ測定)
 下地基板、比較例の基板、および実施例の基板のそれぞれの、(0002)面のX線ロッキングカーブ測定を行った。このとき、それぞれの基板の主面内のうち、中心を通りm軸方向およびa軸方向のそれぞれに沿った直線上で、5mm間隔で設定した複数の測定点において、該測定を行った。測定の結果、主面へ入射したX線と主面とがなすピーク角度ωを、直線上の位置に対してプロットし、ピーク角度ωを位置の1次関数で近似した。当該1次関数の傾きの逆数により、c面の曲率半径を求めた。なお、本実験で用いた装置における上述の配置では、1次関数の傾きが負となったときに、c面が凸であったことを意味する。
(1-3)結果
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
(積層構造体の観察結果)
 図9(a)は、実験1の積層構造体の表面を光学顕微鏡により観察した観察像を示す図であり、図9(b)は、実験1の積層構造体の断面を蛍光顕微鏡により観察した観察像を示す図である。なお、図9(b)は、<11-20>軸に沿った断面である。
 図9(b)に示すように、実施例の積層構造体では、3次元成長層は、成長過程での成長面の違い(すなわち、酸素濃度の違い)に基づいて、c面を成長面として成長したc面成長領域と、傾斜界面を成長面として成長した傾斜界面成長領域と、を有していた。
 c面成長領域は、成長初期段階に下地基板上にc面を成長面として成長した初期層に相当する部分を有していた。初期層は、下地基板の主面全体に亘って、所定の厚さで形成されていた。
 c面が少なくとも一度消失したため、c面成長領域は、下地基板から3次元成長層の表面(最上面)まで連続していなかった。
 傾斜界面成長領域の少なくとも一部は、下地基板の主面に沿って連続して設けられていた。すなわち、3次元成長層を下地基板の主面に沿って切った複数の断面を見たときに、c面を成長面として成長したc面成長領域を含まない断面が、3次元成長層の厚さ方向の少なくとも一部に存在していたことを確認した。
 c面成長領域は、複数の谷部および複数の山部を有していた。c面成長領域のうち一対の傾斜部のなす角度の平均値は、およそ52°だった。また、最近接頂部間平均距離は、およそ234μmであった。
 図9(b)に示すように、断面視で傾斜界面成長領域と重なる位置にも、第2c面成長領域が存在していた。3次元成長層の成長過程で、第2c面成長領域が発生したり消失したりしたため、断面視で第2c面成長領域の幅(言い換えれば平面視での第2c面成長領域の大きさ)は、下地基板から3次元成長層の表面に向けてランダムに変化していた。
 図9(a)に示すように、3次元成長層の表面には、c面以外の傾斜界面で構成される複数の凹部が生じていた。3次元成長層の表面に生じた凹部内には、光って見える面が6つ形成され、すなわち、凹部は6つの傾斜界面を有していた。
 下地基板のオリエンテーションフラットの方向から考えて、凹部内の稜線は、<1-100>軸方向に沿っており、また、凹部を構成する傾斜界面は、<11-20>軸から傾斜した方向を法線方向とする面(すなわち{11-2m}面)であった。
 図9(b)に示した<11-20>軸に沿った方向の断面において、3次元成長層における傾斜界面の、下地基板の主面に対する角度は、約47°以下であった。
 ここで、GaNの{0001}面に対する{11-2m}の角度は、以下のとおりである。
 {11-21}面:72.9°
 {11-22}面:58.4°
 {11-23}面:47.3°
 {11-24}面:39.1°
 以上のことから、3次元成長層の表面に生じた傾斜界面は、m≧3の{11-2m}面であることを確認した。また、傾斜界面の多くは、{11-23}面であることを確認した。
(多光子励起顕微鏡による窒化物半導体基板の観察結果)
 図10は、実験1で得られた窒化物半導体基板Aの主面を多光子励起顕微鏡により観察した観察像を示す模式図である。なお、太線四角部は、50μ角の無転位領域を示している。
 図10に示すように、実施例の窒化物半導体基板は、相対的に明るく観察される傾斜界面成長領域を有していた。実施例の窒化物半導体基板の主面において傾斜界面成長領域が占める面積割合は、80%以上であった。
 表1に示すように、実施例の窒化物半導体基板では、主面における平均転位密度が、下地基板および比較例の窒化物半導体基板に比べて、大幅に低減され、5.5×10cm-2未満であった。比較例のように結晶層を厚く成長させた場合であっても、窒化物半導体基板の転位密度は下地基板よりも低減されるが、実施例の窒化物半導体基板では、転位密度が比較例よりもさらに低減されていた。
 また、実施例の窒化物半導体基板では、転位密度が3×10cm-2を超える領域が存在しなかった。また、実施例の窒化物半導体基板では、転位密度が1×10cm-2未満である領域(低転位密度領域)が主面の90%以上存在していた。
 また、図10に示すように、実施例の窒化物半導体基板の主面は、少なくとも50μm角の無転位領域を含んでいた。また、実施例の窒化物半導体基板の主面は、重ならない50μm角の無転位領域を100個/cm以上の密度で有していた。具体的には、実施例の窒化物半導体基板の主面では、重ならない50μm角の無転位領域の密度は、5000個/cm程度であった。
 また、暗く観察されたc面成長領域を拡大して確認したところ、当該c面成長領域が、少なくとも50μm角の無転位領域を有していた。
 さらに、多光子励起顕微鏡により転位集中領域dcaを含む50μm角の視野で実施例の窒化物半導体基板の主面を観察して暗点密度から転位密度を求めたときに、転位密度は、3×10cm-2未満であった。
 なお、図10に示すように、実施例の基板は、基底面転位を有していた。実施例の基板のCL像を観察したところ、当該主面のCL像において、長さ200μmの任意の仮想的な線分を引いたときに、該線分と基底面転位との交点の数は、10点以下であった。
(c面の曲率半径)
 次に、表1、図11(a)~図12(c)を用い、c面の曲率半径について説明する。
 図11(a)は、実験1で得られた窒化物半導体基板Aのm軸に沿った方向に対してX線回折のロッキングカーブ測定を行った結果を示す図であり、(b)は、実験1で得られた窒化物半導体基板Aのa軸に沿った方向に対してX線回折のロッキングカーブ測定を行った結果を示す図である。図12(a)は、実験1で得られた窒化物半導体基板Bの所定の方向に対してX線回折のロッキングカーブ測定を行った結果を示す図であり、(b)は、(a)のa軸に沿った方向に対してX線回折のロッキングカーブ測定を行った結果を拡大した図であり、(c)は、(a)のm軸に沿った方向に対してX線回折のロッキングカーブ測定を行った結果を拡大した図である。なお、図中のRはc面の曲率半径を示し、負のRは、上述のように、c面が主面に対して凸に湾曲していたことを意味している。
 なお、上記した表1において、下地基板および比較例の基板のそれぞれにおけるc面は、凹の球面状に湾曲していた。
 表1、図11(a)~図12(c)に示すように、実施例の基板におけるc面の曲率半径(の絶対値)は、下地基板および比較例の基板のそれぞれにおけるc面の曲率半径に比べて大きくなり、30m以上であった。比較例のように結晶層を厚く成長させた場合であっても、基板におけるc面の曲率半径が下地基板のc面の曲率半径よりも大きくなるが、実施例の基板におけるc面の曲率半径は、比較例の窒化物半導体基板におけるc面の曲率半径よりもさらに大きくなっていた。
 また、図12(a)~(c)に示すように、実施例の積層構造体のうち下地基板に近い側からスライスした基板Bでは、c面が主面に対して若干凹となっていたが、c面の曲率半径が大きく、c面がほぼ平坦であった。図12(b)および(c)における拡大した測定結果によれば、基板Bのc面が、主面に対して凹の球面状に湾曲した部分と、主面に対して凸の球面状に湾曲した部分と、を有していた。
 一方、図11(a)および図11(b)に示すように、実施例の積層構造体のうち表面に近い側からスライスした基板Aでは、c面が主面に対して凸の球面状に湾曲していた。また、基板Aにおけるc面の曲率半径の絶対値は、基板Bにおけるc面の曲率半径の絶対値よりも小さかった。
 また、実施例の基板AおよびBでは、c面のX線ロッキングカーブ測定においてピーク角度ωを位置の1次関数で近似したときに、1次関数に対する誤差が小さかった。具体的には、上述のように近似した1次関数に対する、測定されたピーク角度ωの誤差は、0.01°以下であった。
(実験1のまとめ)
 以上の実施例によれば、3次元成長工程において、式(1)を満たすように第1成長条件を調整した。これにより、3次元成長層の成長過程で、c面を少なくとも一度確実に消失させることができた。c面を少なくとも一度消失させたことで、3次元成長層における傾斜界面が露出した位置で、転位を確実に屈曲させることができた。その結果、窒化物半導体基板の主面における転位密度を低減することができたことを確認した。
 また、実施例によれば、上述の下地基板を用い、かつ、式(1)を満たすように第1成長条件を調整したことで、傾斜界面として、m≧3である{11-2m}面を生じさせることができた。これにより、3次元成長層において、最近接頂部間平均距離を100μm超とすることができた。その結果、窒化物半導体基板の主面における転位密度を充分に低減させることができたことを確認した。また、最近接頂部間平均距離を100μm超とすることで、少なくとも50μm角の無転位領域を形成することができたことを確認した。
 また、実施例によれば、3次元成長工程の初期段階に、傾斜界面拡大層を、c面を成長面として所定の厚さで2次元成長させた後に、3次元成長させることができた。これにより、下地基板の主面の全体に亘って結晶軸を揃えることができ、結晶軸のずれに起因した新たな転位の発生を抑制することができた。その結果、転位密度を低くすることができたことを確認した。
 また、実施例によれば、傾斜界面成長領域の応力相殺効果によって、窒化物半導体基板のc面の曲率半径を、下地基板のc面の曲率半径よりも大きくすることができ、窒化物半導体基板におけるc軸のオフ角のばらつきを、下地基板におけるc軸のオフ角のばらつきを小さくすることができたことを確認した。
 なお、実施例では、傾斜界面成長領域の応力相殺効果によって、c面が、積層構造体の下地基板側から表面側に向けて凹から凸へ変化していることを確認した。したがって、積層構造体からスライスする厚さ方向の位置を最適化すれば、c面が極めて平坦な窒化物半導体基板を得ることができると考えられる。
(2)実験2
(2-1)積層物の作製
 下地基板、および実施例の基板Aのそれぞれを用い、以下の積層物を作製した。
[実施例の積層物の作製条件]
(基板)
 実施例の基板A
(半導体層)
 材質:GaN
 成長方法:MOVPE法
 成長条件:ノンドープのGaNをc面を成長面としてステップフロー成長させる条件
 半導体層の厚さ:2μm
[参考例の基準積層物の作製条件]
(基板)
 実験1で用いた下地基板(すなわち傾斜界面成長領域を含まない基板)
(半導体層)
 実施例の積層物における半導体層の条件と同様。
(2-2)評価
(積層物の観察)
 SEMを用い、実施例の積層物、および参考例の基準積層物のそれぞれにおける半導体層の表面のCL像を観察した。
(フォトルミネッセンス測定)
 堀場製作所製のLabRAM HR Evolutionを用い、実施例の積層物、および参考例の基準積層物のそれぞれにおける半導体層のフォトルミネッセンス(PL)マッピング測定を行った。このとき、励起光源として、波長が325nmでありパワーが1.25mWであるHe-Cdレーザを用いた。また、レーザのスポットサイズは直径5μmとした。すなわち、照射強度は6.4×10Wcm-2とした。また、測定間隔は、500μmとし。なお、実施例の積層物、および参考例の基準積層物のそれぞれにおける半導体層のPLマッピング測定を、温度27℃かつ温度差1℃未満の条件下で測定した。
(2-3)結果
(積層物の観察結果)
 図13(a)は、実験2での実施例の積層物における半導体層の表面を走査型電子顕微鏡により観察したカソードルミネッセンス像を示す図であり、(b)は、実験2での参考例の基準積層物における半導体層の表面を走査型電子顕微鏡により観察したカソードルミネッセンス像を示す図である。
 図13(b)に示すように、参考例の半導体層では、下地基板の転位を引き継いだ転位が多く見られた。また、参考例の半導体層では、半導体層の表面モフォロジに対応した微視的な発光ムラが見られた。
 これに対し、図13(a)に示すように、実施例の半導体層では、基板の転位集中領域における転位のみが引き継がれ、転位集中領域以外の領域では転位が少なかった。また、実施例の半導体層は、少なくとも50μm角の無転位領域を有していた。また、実施例の半導体層では、発光ムラが見られなかったことから、実施例の半導体層の表面が平坦であったことを確認した。
(PL測定結果)
 図14(a)は、実験2での実施例の積層物におけるフォトルミネッセンスマッピング測定を行った結果を示す図であり、(b)は、実験2での参考例の基準積層物におけるフォトルミネッセンスマッピング測定を行った結果を示す図である。
 図14(a)に示すように、実施例の積層物の全面をPLマッピング測定した結果によれば、図14(b)に示した比較例の結果と同様に、巨視的な発光ムラは見られなかった。
 図15は、実験2での、実施例の積層物および参考例の基準積層物のそれぞれの半導体層におけるフォトルミネッセンススペクトルである。
 図15に示すように、実施例の積層物の半導体層における最大ピーク波長と、参考例の基準積層物の半導体層における最大ピーク波長との差は、1nm以下であった。つまり、実施例の半導体層のバンド端発光はピークシフトしていなかった。
(まとめ)
 以上の実施例によれば、実施例の積層物における半導体層の表面は平坦であり、当該半導体層のバンド端発光はピークシフトしていなかった。このことから、実施例の基板上に成長させた半導体層に対して、当該基板を起因とした結晶歪みが生じていなかったことを確認した。つまり、実施例の基板は、発光素子などを作製するための基板として充分に実用可能であることを実証した。
<本発明の好ましい態様>
 以下、本発明の好ましい態様について付記する。
(付記1)
 III族窒化物半導体の単結晶からなり、最も近い低指数の結晶面が(0001)面である主面を有する窒化物半導体基板であって、
 前記(0001)面以外の傾斜界面を成長面として成長した傾斜界面成長領域を有し、
 前記主面において前記傾斜界面成長領域が占める面積割合は、80%以上であり、
 多光子励起顕微鏡により視野250μm角で前記主面を観察して暗点密度から転位密度を求めたときに、転位密度が3×10cm-2を超える領域が前記主面に存在せず、
 前記主面は、重ならない50μm角の無転位領域を100個/cm以上の密度で有する
窒化物半導体基板。
(付記2)
 前記主面内で中心を通る直線上の各位置において(0002)面のX線ロッキングカーブ測定を行い、前記主面へ入射したX線と前記主面とがなすピーク角度ωを、前記直線上の位置に対してプロットし、前記ピーク角度ωを前記位置の1次関数で近似したときに、
 前記1次関数の傾きの逆数により求められる前記(0001)面の曲率半径は、15m以上であり、
 前記1次関数に対する、測定された前記ピーク角度ωの誤差は、0.05°以下である
付記1に記載の窒化物半導体基板。
(付記3)
 前記(0001)面を成長面として成長したc面成長領域を有しない
付記1又は2に記載の窒化物半導体基板。
(付記4)
 前記(0001)面を成長面として成長したc面成長領域を有し、
 前記主面における前記c面成長領域は、少なくとも50μm角の無転位領域を含む
付記1又は2に記載の窒化物半導体基板。
(付記5)
 転位が相対的に集中した転位集中領域を有し、
 多光子励起顕微鏡により前記転位集中領域を含む50μm角の視野で前記主面を観察して暗点密度から転位密度を求めたときに、転位密度は、3×10cm-2未満である
付記1~4のいずれか1つに記載の窒化物半導体基板。
(付記6)
 前記主面のカソードルミネッセンス像において長さ200μmの任意の仮想的な線分を引いたときに、該線分と基底面転位との交点の数は、10点以下である
付記1~5のいずれか1つに記載の窒化物半導体基板。
(付記7)
 所定のIII族窒化物半導体のノンドープの単結晶からなる半導体層を前記主面上にエピタキシャル成長させた積層物と、前記傾斜界面成長領域を有しない点を除いて前記窒化物半導体基板と同一のIII族窒化物半導体の単結晶からなる基板上に前記半導体層をエピタキシャル成長させた基準積層物と、を作製し、前記積層物および前記基準積層物のそれぞれにおける前記半導体層のフォトルミネッセンスを温度差1℃未満で測定した場合に、
 前記積層物の前記半導体層における最大ピーク波長と、前記基準積層物の前記半導体層における最大ピーク波長との差は、1nm以下である
付記1~6のいずれか1つに記載の窒化物半導体基板。
(付記8)
 III族窒化物半導体の単結晶からなり、鏡面化された主面を有し、前記主面に対して最も近い低指数の結晶面が(0001)面である下地基板と、
 前記下地基板の前記主面上に直接的に設けられ、III族窒化物半導体の単結晶からなる低酸素濃度領域と、
 前記低酸素濃度領域上に設けられ、III族窒化物半導体の単結晶からなる高酸素濃度領域と、
 を備え、
 前記高酸素濃度領域の酸素濃度は、前記低酸素濃度領域の酸素濃度よりも高く、
 前記主面に垂直な任意の断面を見たときに、
 前記低酸素濃度領域の上面は、複数の谷部および複数の山部を有し、
 前記複数の谷部のうちの1つを挟んで前記複数の山部のうちで最も接近する一対の山部同士が前記主面に沿った方向に離間した平均距離は、100μm超である
積層構造体。
(付記9)
 前記低酸素濃度領域は、前記下地基板から前記高酸素濃度領域の表面まで連続していない
付記8に記載の積層構造体。
(付記10)
 前記高酸素濃度領域を前記主面に沿って切った複数の断面を見たときに、前記低酸素濃度領域を含まない断面が、前記高酸素濃度領域の厚さ方向の少なくとも一部に存在する
付記8又は9に記載の積層構造体。
(付記11)
 気相成長法を用いた窒化物半導体基板の製造方法であって、
 III族窒化物半導体の単結晶からなり、鏡面化された主面を有し、前記主面に対して最も近い低指数の結晶面が(0001)面である下地基板を準備する工程と、
 (0001)面が露出した頂面を有するIII族窒化物半導体の単結晶を前記下地基板の前記主面上に直接的にエピタキシャル成長させ、前記(0001)面以外の傾斜界面で構成される複数の凹部を前記頂面に生じさせ、前記下地基板の前記主面の上方に行くにしたがって該傾斜界面を徐々に拡大させ、前記(0001)面を前記頂面から少なくとも一度消失させ、3次元成長層を成長させる工程と、
 前記3次元成長層をスライスし、窒化物半導体基板を形成する工程と、
 を有し、
 前記3次元成長層を形成する工程では、
 前記単結晶の前記頂面に前記複数の凹部を生じさせ、前記(0001)面を消失させることで、前記3次元成長層の表面に、複数の谷部および複数の頂部を形成し、
 前記主面に垂直な任意の断面を見たときに、前記複数の谷部のうちの1つを挟んで前記複数の頂部のうちで最も接近する一対の頂部同士が前記主面に沿った方向に離間した平均距離を、100μm超とする
窒化物半導体基板の製造方法。
(付記12)
 前記3次元成長層を成長させる工程では、
 前記3次元成長層において前記傾斜界面を成長面として成長させた傾斜界面成長領域を形成し、
 前記3次元成長層を前記主面に沿って切った沿面断面において前記傾斜界面成長領域が占める面積割合を、80%以上とする
付記11に記載の窒化物半導体基板の製造方法。
(付記13)
 前記3次元成長層を形成する工程は、
 前記(0001)面を前記頂面から消失させた後に、前記傾斜界面成長領域が前記沿面断面の80%以上の面積を占める状態を維持しつつ、所定の厚さに亘って前記単結晶の成長を継続させ、傾斜界面維持層を形成する工程を有する
付記12に記載の窒化物半導体基板の製造方法。
(付記14)
 前記3次元成長層をスライスする工程では、
 前記傾斜界面維持層をスライスする
付記13に記載の窒化物半導体基板の製造方法。
(付記15)
 前記3次元成長層をスライスする工程では、
 前記(0001)面が前記頂面から消失した位置から上方に離れた位置で、前記傾斜界面維持層をスライスする
付記14に記載の窒化物半導体基板の製造方法。
(付記16)
 前記3次元成長層を形成する工程では、
 前記(0001)面を成長面として所定の厚さで前記単結晶を成長させた後に、該単結晶の前記頂面に前記複数の凹部を生じさせる
付記11~15のいずれか1つに記載の窒化物半導体基板の製造方法。
(付記17)
 前記3次元成長層を形成する工程では、
 前記傾斜界面として、m≧3である{11-2m}面を生じさせる
付記11~16のいずれか1つに記載の窒化物半導体基板の製造方法。
(付記18)
 前記3次元成長層を形成する工程では、
 最も接近する前記一対の頂部同士の前記平均距離を、800μm未満とする
付記11~17のいずれか1つに記載の窒化物半導体基板の製造方法。
(付記19)
 前記下地基板を準備する工程では、
 前記(0001)面が前記主面に対して凹の球面状に湾曲した前記下地基板を準備し、
 前記3次元成長層をスライスする工程では、
 前記窒化物半導体基板の前記(0001)面の曲率半径を、前記下地基板の前記(0001)面の曲率半径よりも大きくする
付記11~18のいずれか1つに記載の窒化物半導体基板の製造方法。
10 下地基板
30 3次元成長層
50 窒化物半導体基板(基板)

Claims (16)

  1.  III族窒化物半導体の単結晶からなり、最も近い低指数の結晶面が(0001)面である主面を有する窒化物半導体基板であって、
     前記(0001)面以外の傾斜界面を成長面として成長した傾斜界面成長領域を有し、
     前記主面において前記傾斜界面成長領域が占める面積割合は、80%以上であり、
     多光子励起顕微鏡により視野250μm角で前記主面を観察して暗点密度から転位密度を求めたときに、転位密度が3×10cm-2を超える領域が前記主面に存在せず、
     前記主面は、重ならない50μm角の無転位領域を100個/cm以上の密度で有する
    窒化物半導体基板。
  2.  前記主面内で中心を通る直線上の各位置において(0002)面のX線ロッキングカーブ測定を行い、前記主面へ入射したX線と前記主面とがなすピーク角度ωを、前記直線上の位置に対してプロットし、前記ピーク角度ωを前記位置の1次関数で近似したときに、
     前記1次関数の傾きの逆数により求められる前記(0001)面の曲率半径は、15m以上であり、
     前記1次関数に対する、測定された前記ピーク角度ωの誤差は、0.05°以下である
    請求項1に記載の窒化物半導体基板。
  3.  前記(0001)面を成長面として成長したc面成長領域を有しない
    請求項1又は2に記載の窒化物半導体基板。
  4.  前記(0001)面を成長面として成長したc面成長領域を有し、
     前記主面における前記c面成長領域は、少なくとも50μm角の無転位領域を含む
    請求項1又は2に記載の窒化物半導体基板。
  5.  転位が相対的に集中した転位集中領域を有し、
     多光子励起顕微鏡により前記転位集中領域を含む50μm角の視野で前記主面を観察して暗点密度から転位密度を求めたときに、転位密度は、3×10cm-2未満である
    請求項1~4のいずれか1項に記載の窒化物半導体基板。
  6.  前記主面のカソードルミネッセンス像において長さ200μmの任意の仮想的な線分を引いたときに、該線分と基底面転位との交点の数は、10点以下である
    請求項1~5のいずれか1項に記載の窒化物半導体基板。
  7.  所定のIII族窒化物半導体のノンドープの単結晶からなる半導体層を前記主面上にエピタキシャル成長させた積層物と、前記傾斜界面成長領域を有しない点を除いて前記窒化物半導体基板と同一のIII族窒化物半導体の単結晶からなる基板上に前記半導体層をエピタキシャル成長させた基準積層物と、を作製し、前記積層物および前記基準積層物のそれぞれにおける前記半導体層のフォトルミネッセンスを温度差1℃未満で測定した場合に、
     前記積層物の前記半導体層における最大ピーク波長と、前記基準積層物の前記半導体層における最大ピーク波長との差は、1nm以下である
    請求項1~6のいずれか1項に記載の窒化物半導体基板。
  8.  III族窒化物半導体の単結晶からなり、鏡面化された主面を有し、前記主面に対して最も近い低指数の結晶面が(0001)面である下地基板と、
     前記下地基板の前記主面上に直接的に設けられ、III族窒化物半導体の単結晶からなる低酸素濃度領域と、
     前記低酸素濃度領域上に設けられ、III族窒化物半導体の単結晶からなる高酸素濃度領域と、
     を備え、
     前記高酸素濃度領域の酸素濃度は、前記低酸素濃度領域の酸素濃度よりも高く、
     前記主面に垂直な任意の断面を見たときに、
     前記低酸素濃度領域の上面は、複数の谷部および複数の山部を有し、
     前記複数の谷部のうちの1つを挟んで前記複数の山部のうちで最も接近する一対の山部同士が前記主面に沿った方向に離間した平均距離は、100μm超である
    積層構造体。
  9.  前記低酸素濃度領域は、前記下地基板から前記高酸素濃度領域の表面まで連続していない
    請求項8に記載の積層構造体。
  10.  前記高酸素濃度領域を前記主面に沿って切った複数の断面を見たときに、前記低酸素濃度領域を含まない断面が、前記高酸素濃度領域の厚さ方向の少なくとも一部に存在する
    請求項8又は9に記載の積層構造体。
  11.  気相成長法を用いた窒化物半導体基板の製造方法であって、
     III族窒化物半導体の単結晶からなり、鏡面化された主面を有し、前記主面に対して最も近い低指数の結晶面が(0001)面である下地基板を準備する工程と、
     (0001)面が露出した頂面を有するIII族窒化物半導体の単結晶を前記下地基板の前記主面上に直接的にエピタキシャル成長させ、前記(0001)面以外の傾斜界面で構成される複数の凹部を前記頂面に生じさせ、前記下地基板の前記主面の上方に行くにしたがって該傾斜界面を徐々に拡大させ、前記(0001)面を前記頂面から少なくとも一度消失させ、3次元成長層を成長させる工程と、
     前記3次元成長層をスライスし、窒化物半導体基板を形成する工程と、
     を有し、
     前記3次元成長層を形成する工程では、
     前記単結晶の前記頂面に前記複数の凹部を生じさせ、前記(0001)面を消失させることで、前記3次元成長層の表面に、複数の谷部および複数の頂部を形成し、
     前記主面に垂直な任意の断面を見たときに、前記複数の谷部のうちの1つを挟んで前記複数の頂部のうちで最も接近する一対の頂部同士が前記主面に沿った方向に離間した平均距離を、100μm超とする
    窒化物半導体基板の製造方法。
  12.  前記3次元成長層を成長させる工程では、
     前記3次元成長層において前記傾斜界面を成長面として成長させた傾斜界面成長領域を形成し、
     前記3次元成長層を前記主面に沿って切った沿面断面において前記傾斜界面成長領域が占める面積割合を、80%以上とする
    請求項11に記載の窒化物半導体基板の製造方法。
  13.  前記3次元成長層を形成する工程は、
     前記(0001)面を前記頂面から消失させた後に、前記傾斜界面成長領域が前記沿面断面の80%以上の面積を占める状態を維持しつつ、所定の厚さに亘って前記単結晶の成長を継続させ、傾斜界面維持層を形成する工程を有する
    請求項12に記載の窒化物半導体基板の製造方法。
  14.  前記3次元成長層をスライスする工程では、
     前記傾斜界面維持層をスライスする
    請求項13に記載の窒化物半導体基板の製造方法。
  15.  前記3次元成長層を形成する工程では、
     前記(0001)面を成長面として所定の厚さで前記単結晶を成長させた後に、該単結晶の前記頂面に前記複数の凹部を生じさせる
    請求項11~14のいずれか1項に記載の窒化物半導体基板の製造方法。
  16.  前記3次元成長層を形成する工程では、
     前記傾斜界面として、m≧3である{11-2m}面を生じさせる
    請求項11~15のいずれか1項に記載の窒化物半導体基板の製造方法。
PCT/JP2020/002333 2019-02-01 2020-01-23 窒化物半導体基板、積層構造体、および窒化物半導体基板の製造方法 WO2020158571A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/426,334 US20220106706A1 (en) 2019-02-01 2020-01-23 Nitride semiconductor substrate, laminated structure, and method for manufacturing nitride semiconductor substrate
CN202080011565.3A CN113366159A (zh) 2019-02-01 2020-01-23 氮化物半导体基板、层叠结构体和氮化物半导体基板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019016908A JP6646769B1 (ja) 2019-02-01 2019-02-01 窒化物半導体基板、積層構造体、および窒化物半導体基板の製造方法
JP2019-016908 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020158571A1 true WO2020158571A1 (ja) 2020-08-06

Family

ID=69568058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002333 WO2020158571A1 (ja) 2019-02-01 2020-01-23 窒化物半導体基板、積層構造体、および窒化物半導体基板の製造方法

Country Status (4)

Country Link
US (1) US20220106706A1 (ja)
JP (1) JP6646769B1 (ja)
CN (1) CN113366159A (ja)
WO (1) WO2020158571A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075369A1 (ja) * 2019-10-18 2021-04-22 株式会社サイオクス 窒化物半導体基板、積層構造体、および窒化物半導体基板の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115176049A (zh) * 2020-02-27 2022-10-11 国立大学法人三重大学 氮化物半导体基板、半导体元件及氮化物半导体基板的制造方法
JP6795805B1 (ja) * 2020-05-15 2020-12-02 株式会社Cusic SiC積層体およびその製造方法ならびに半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102307A (ja) * 1999-09-28 2001-04-13 Sumitomo Electric Ind Ltd 単結晶GaNの結晶成長方法及び単結晶GaN基板の製造方法と単結晶GaN基板
JP2003165799A (ja) * 2001-09-19 2003-06-10 Sumitomo Electric Ind Ltd 単結晶窒化ガリウム基板およびその成長方法並びにその製造方法
JP6595731B1 (ja) * 2018-10-26 2019-10-23 株式会社サイオクス 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968968B2 (ja) * 2000-07-10 2007-08-29 住友電気工業株式会社 単結晶GaN基板の製造方法
JP4849296B2 (ja) * 2005-04-11 2012-01-11 日立電線株式会社 GaN基板
KR20060127743A (ko) * 2005-06-06 2006-12-13 스미토모덴키고교가부시키가이샤 질화물 반도체 기판과 그 제조 방법
US8110484B1 (en) * 2010-11-19 2012-02-07 Sumitomo Electric Industries, Ltd. Conductive nitride semiconductor substrate and method for producing the same
JP5888208B2 (ja) * 2011-11-18 2016-03-16 三菱化学株式会社 窒化物結晶の製造方法
WO2015037232A1 (ja) * 2013-09-11 2015-03-19 国立大学法人東京農工大学 窒化物半導体結晶、製造方法および製造装置
JP6513165B2 (ja) * 2017-11-08 2019-05-15 住友化学株式会社 Iii族窒化物半導体単結晶の製造方法
JP6913626B2 (ja) * 2017-12-25 2021-08-04 株式会社サイオクス 半導体積層物
JP6595676B1 (ja) * 2018-08-29 2019-10-23 株式会社サイオクス 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体
JP6595678B1 (ja) * 2018-08-29 2019-10-23 株式会社サイオクス 窒化物半導体基板、窒化物半導体基板の製造方法および積層構造体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102307A (ja) * 1999-09-28 2001-04-13 Sumitomo Electric Ind Ltd 単結晶GaNの結晶成長方法及び単結晶GaN基板の製造方法と単結晶GaN基板
JP2003165799A (ja) * 2001-09-19 2003-06-10 Sumitomo Electric Ind Ltd 単結晶窒化ガリウム基板およびその成長方法並びにその製造方法
JP6595731B1 (ja) * 2018-10-26 2019-10-23 株式会社サイオクス 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075369A1 (ja) * 2019-10-18 2021-04-22 株式会社サイオクス 窒化物半導体基板、積層構造体、および窒化物半導体基板の製造方法

Also Published As

Publication number Publication date
JP2020125215A (ja) 2020-08-20
US20220106706A1 (en) 2022-04-07
JP6646769B1 (ja) 2020-02-14
CN113366159A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
JP2021183559A (ja) 窒化物半導体基板、および窒化物半導体基板の製造方法
WO2020158571A1 (ja) 窒化物半導体基板、積層構造体、および窒化物半導体基板の製造方法
WO2020085111A1 (ja) 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体
WO2020121837A1 (ja) 窒化物半導体基板の製造方法、および窒化物半導体基板
US11908688B2 (en) Method for manufacturing nitride semiconductor substrate, nitride semiconductor substrate and layered structure
WO2020096045A1 (ja) 窒化物半導体基板の製造方法および積層構造体
JP2021147264A (ja) 窒化物結晶基板の製造方法、積層構造体の製造方法、窒化物結晶基板および積層構造体
JP2020075850A (ja) 窒化物半導体基板の製造方法
US11970784B2 (en) Nitride semiconductor substrate, method for manufacturing nitride semiconductor substrate, and laminated structure
JP6595677B1 (ja) 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体
JP7339096B2 (ja) 窒化物半導体基板の製造方法および窒化物半導体基板
JP7403608B2 (ja) 窒化物半導体基板
JP2020125233A (ja) 窒化物半導体基板
JP2020033254A (ja) 窒化物半導体基板
JP2020189762A (ja) 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体
JP2020033252A (ja) 窒化物半導体基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748496

Country of ref document: EP

Kind code of ref document: A1