JP2020102521A - レーザ加工方法、及び、半導体デバイス製造方法 - Google Patents

レーザ加工方法、及び、半導体デバイス製造方法 Download PDF

Info

Publication number
JP2020102521A
JP2020102521A JP2018239492A JP2018239492A JP2020102521A JP 2020102521 A JP2020102521 A JP 2020102521A JP 2018239492 A JP2018239492 A JP 2018239492A JP 2018239492 A JP2018239492 A JP 2018239492A JP 2020102521 A JP2020102521 A JP 2020102521A
Authority
JP
Japan
Prior art keywords
laser processing
modified spots
laser light
processing method
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018239492A
Other languages
English (en)
Other versions
JP7330695B2 (ja
Inventor
大祐 河口
Daisuke Kawaguchi
大祐 河口
陽太郎 和仁
Yotaro Wani
陽太郎 和仁
泰則 伊ケ崎
Yasunori Igasaki
泰則 伊ケ崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2018239492A priority Critical patent/JP7330695B2/ja
Priority to TW108146729A priority patent/TW202108275A/zh
Priority to PCT/JP2019/049955 priority patent/WO2020130108A1/ja
Publication of JP2020102521A publication Critical patent/JP2020102521A/ja
Application granted granted Critical
Publication of JP7330695B2 publication Critical patent/JP7330695B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Laser Beam Processing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)

Abstract

【課題】好適な半導体デバイスの取得を可能とするレーザ加工方法、及び、半導体デバイス製造方法を提供する。【解決手段】GaNウェハ30の表面30aからGaNウェハ30の内部にレーザ光Lを照射することにより、GaNウェハ30の内部において表面30aに対向する仮想面15に沿って、複数の改質スポット13を形成する第1工程と、第1工程の後に、GaNウェハ30に対して、エピタキシャル成長によって半導体デバイスのための半導体層70を形成する第2工程と、を備えるレーザ加工方法。【選択図】図37

Description

本発明は、レーザ加工方法、及び、半導体デバイス製造方法に関する。
半導体インゴット等の半導体対象物にレーザ光を照射することにより、半導体対象物の内部に改質領域を形成し、改質領域から延びる亀裂を進展させることによって、半導体対象物から半導体ウェハ等の半導体部材を切り出す加工方法が知られている(例えば、特許文献1,2参照)。
特開2017−183600号公報 特開2017−057103号公報
ところで、改質領域から延びる亀裂を進展させて半導体部材から不要部分を剥離する(切り出す)ことにより、半導体部材を薄化する要求がある。薄化の対象となる半導体部材は、後に切り出される半導体デバイスのためのエピタキシャル成長層を含む場合がある。この場合、半導体部材の内部に改質領域を形成するためにレーザ光を照射すると、その漏れ光によってエピタキシャル成長層にダメージが生じ、半導体デバイスの品質が低下するおそれがある。
本発明は、好適な半導体デバイスの取得を可能とするレーザ加工方法、及び、半導体デバイス製造方法を提供することを目的とする。
本発明に係るレーザ加工方法は、半導体ウェハの内部において前記半導体ウェハの表面に対向する仮想面に沿って、半導体ウェハを切断するためのレーザ加工方法であって、表面から半導体ウェハの内部にレーザ光を照射することにより、仮想面に沿って、複数の改質スポットを形成する第1工程と、第1工程の後に、半導体ウェハに対して、エピタキシャル成長によって半導体デバイスのための半導体層を形成する第2工程と、を備える。
この方法においては、エピタキシャル成長による半導体デバイスのための半導体層の形成に先立って、レーザ光の照射によって半導体ウェハの内部に改質スポットを形成する。したがって、改質スポットの形成に際して半導体層に対してダメージが生じ得ない。よって、当該改質スポットから延びる亀裂を進展させて半導体ウェハを仮想面に沿って切断(例えば剥離)することにより、ダメージが抑制された好適な半導体デバイスが取得可能である。
本発明に係るレーザ加工方法は、第2工程の後に、表面に交差する方向からみて集光点が改質スポットに重ならないように、半導体ウェハにおける半導体層が形成された面と異なる面から半導体ウェハの内部にレーザ光を照射することにより、仮想面に渡る亀裂を形成する第3工程を備えてもよい。このように、レーザ光の照射によって、剥離の起点となる仮想面に沿った亀裂を形成してもよい。なお、この場合であっても、半導体層の形成に先立って改質スポットを形成しているので、全てのレーザ加工を半導体層の形成の後に行う場合と比較して、半導体層へのダメージが抑制される。
ここで、本発明者は、上記課題を解決するために鋭意検討を進めるなかで、次のような問題点を見出した。すなわち、上記のように、レーザ光の照射によって半導体ウェハの内部の仮想面に沿って改質スポットを形成すると共に、当該改質スポットから延びる亀裂を進展させて半導体ウェハから半導体デバイスを切り出す(剥離する)場合を検討すると、剥離された面の凹凸を減らしてより好適な半導体デバイスを取得すためには、レーザ光の仮想面でのエネルギーを低減することが有効である一方で、レーザ光の仮想面でのエネルギーが低すぎると、改質スポット及び亀裂を生じさせることができなくなる。
本発明者は、このような問題点に着目し、さらなる検討を進めることにより、以下の知見を得るに至った。すなわち、まず、ガリウムを含む半導体ウェハにレーザ光を照射することにより、仮想面に沿って、複数の改質スポットと、それらの複数の改質スポットにおいて析出されたガリウムを含む析出領域と、を形成する。そうすると、後の工程においてレーザ光を再度照射するときに、レーザ光の集光点が予め形成された改質スポットが重ならないようにすると共に、仮想面におけるレーザ光のエネルギーを半導体ウェハの加工閾値を下回るほど低下させても、予め形成されたガリウムを含む領域を拡大させることができる。その結果、仮想面に渡る亀裂を形成して半導体ウェハを剥離したときに、剥離された面の凹凸を低減できる。次の発明は、このような知見に基づいてなされたものである。
すなわち、本発明に係るレーザ加工方法においては、半導体ウェハは、ガリウムを含み、第1工程においては、表面から半導体ウェハの内部にレーザ光を照射することにより、複数の改質スポット、及び、複数の改質スポットにおいて析出されたガリウムを含む複数の析出領域を形成し、第3工程においては、仮想面におけるエネルギーが半導体ウェハの加工閾値を下回るように半導体ウェハの内部にレーザ光を照射することにより、析出領域を拡大し、仮想面に渡る亀裂を形成してもよい。
この場合、まず、ガリウムを含む半導体ウェハの内部にレーザ光を照射することにより、レーザ光の入射面である表面に対向する仮想面に沿って、複数の改質スポット、及び、析出されたガリウムを含む複数の析出領域を形成する。そして、後の工程において、集光点が改質スポットに重ならないように、且つ、仮想面におけるエネルギーが半導体ウェハの加工閾値を下回るように、半導体ウェハの内部にレーザ光を照射することにより析出領域を拡大し、仮想面に渡る亀裂を形成する。この結果、上記知見のとおり、仮想面に渡る亀裂を境界とした剥離により、凹凸の低減された好適な半導体デバイスを得ることが可能となる。
本発明に係るレーザ加工方法においては、第2工程においては、エピタキシャル成長のための半導体ウェハの加熱によって、複数の改質スポットからそれぞれ延びる複数の亀裂を進展させることにより、仮想面に渡る亀裂を形成してもよい。この場合、半導体層の形成と、仮想面に渡る亀裂の形成とを、同時に行うことが可能となる。
本発明に係るレーザ加工方法においては、第1工程においては、半導体ウェハに対して、複数の改質スポットからそれぞれ延びる複数の亀裂の進展を阻む周縁領域を設けてもよい。この場合、第2工程でのエピタキシャル成長の際に、仮想面に渡る亀裂が意図せずに形成されて剥離が生じることが抑制される。
本発明に係るレーザ加工方法は、第1工程と第2工程との間において、半導体ウェハの透過率を測定する第4工程と、第4工程と第2工程との間において、第4工程において測定された透過率が基準値よりも高いか否かを判定する第5工程と、をさらに備え、第5工程の判定の結果、当該透過率が基準値よりも高い場合には、第1工程を再び実施してもよい。この場合、半導体層を形成する第2工程に先立って、半導体ウェハの内部に十分に改質スポットを形成できる。
本発明に係るレーザ加工方法においては、第1工程においては、複数の改質スポットからそれぞれ延びる複数の亀裂が互いに繋がらないように、複数の改質スポットを形成してもよい。この場合、後のレーザ光の照射の際に、レーザ光の集光点を、改質スポットのみならず、改質スポットから延びる亀裂に重ならないようにできる。この結果、後のレーザ光の照射の際に、意図しない位置に新たな改質スポットや亀裂やガリウムの析出した領域が形成されることを避けることが可能となる。すなわち、より好適な半導体部材を得ることが可能となる。
本発明に係るレーザ加工方法においては、第1工程においては、パルス発振されたレーザ光の集光点を仮想面に沿って移動させることにより、複数の改質スポットとして複数列の改質スポットを形成し、第3工程においては、パルス発振されたレーザ光の集光点を複数列の改質スポットの列間において仮想面に沿って移動させてもよい。この場合、複数の改質スポットに対して第3工程でのレーザ光の集光点が重なるのを確実に防止できる。
本発明に係るレーザ加工方法においては、半導体ウェハは、窒化ガリウムを含んでもよい。この場合、ガリウムの析出と共に生じた窒素ガスの圧力(内圧)を利用して、仮想面に渡る亀裂を容易に形成することができる。
本発明に係る半導体デバイス製造方法は、上記のいずれかのレーザ加工方法を実施する工程と、仮想面に渡る亀裂を境界として半導体ウェハから複数の半導体デバイスを取得する工程と、を備える。この方法は、上記のレーザ加工方法を実施する。よって、同様の理由から、好適な半導体デバイスの取得が可能である。
本発明に係る半導体デバイス製造方法においては、仮想面は、表面に沿った方向に並ぶように複数設定されていてもよい。この場合、1つの半導体ウェハから複数の半導体デバイスの取得が可能となる。
本発明によれば、好適な半導体デバイスの取得を可能とするレーザ加工方法、及び、半導体デバイス製造方法を提供できる。
レーザ加工装置の構成図である。 第1例のレーザ加工方法及び半導体部材製造方法の対象物であるGaNインゴットの側面図である。 図2に示されるGaNインゴットの平面図である。 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの側面図である。 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNウェハの側面図である。 一例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像である。 図14に示される剥離面の高さプロファイルである。 他の例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像である。 図16に示される剥離面の高さプロファイルである。 一例のレーザ加工方法及び半導体部材製造方法による剥離面の形成原理を説明するための模式図である。 他の例のレーザ加工方法及び半導体部材製造方法による剥離面の形成原理を説明するための模式図である。 一例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像である。 他の例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像である。 比較例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像である。 第1実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像である。 第2実施例及び第3実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像である。 第2例のレーザ加工方法及び半導体部材製造方法の対象物であるGaNウェハの平面図である。 第2例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNウェハの一部分の側面図である。 第2例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNウェハの一部分の側面図である。 第2例のレーザ加工方法及び半導体部材製造方法の一工程における半導体デバイスの側面図である。 比較例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像である。 実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像である。 実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの剥離面の画像である。 図31に示される剥離面の高さプロファイルである。 変形例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの平面図である。 変形例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの平面図である。 レーザ加工装置の構成図である。 実施形態のレーザ加工方法及び半導体デバイス製造方法の一工程におけるGaNウェハの一部分の縦断面図である。 実施形態のレーザ加工方法及び半導体デバイス製造方法の一工程におけるGaNウェハの一部分の横断面図である。 実施形態のレーザ加工方法及び半導体デバイス製造方法の一工程におけるGaNウェハの一部分の縦断面図である。 実施形態のレーザ加工方法及び半導体デバイス製造方法の一工程におけるGaNウェハの一部分の横断面図である。
以下、図面を参照した詳細な説明が提供される。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[レーザ加工装置の構成]
図1に示されるように、レーザ加工装置1は、ステージ2と、光源3と、空間光変調器4と、集光レンズ5と、制御部6と、を備えている。レーザ加工装置1は、対象物11にレーザ光Lを照射することにより、対象物11に改質領域12を形成する装置である。以下、第1水平方向をX方向といい、第1水平方向に垂直な第2水平方向をY方向という。また、鉛直方向をZ方向という。
ステージ2は、例えば対象物11に貼り付けられたフィルムを吸着することにより、対象物11を支持する。本実施形態では、ステージ2は、X方向及びY方向のそれぞれに沿って移動可能である。また、ステージ2は、Z方向に平行な軸線を中心線として回転可能である。
光源3は、例えばパルス発振方式によって、対象物11に対して透過性を有するレーザ光Lを出力する。空間光変調器4は、光源3から出力されたレーザ光Lを変調する。空間光変調器4は、例えば反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。集光レンズ5は、空間光変調器4によって変調されたレーザ光Lを集光する。本実施形態では、空間光変調器4及び集光レンズ5は、レーザ照射ユニットとして、Z方向に沿って移動可能である。
ステージ2に支持された対象物11の内部にレーザ光Lが集光されると、レーザ光Lの集光点Cに対応する部分においてレーザ光Lが特に吸収され、対象物11の内部に改質領域12が形成される。改質領域12は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域12としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。
一例として、ステージ2をX方向に沿って移動させ、対象物11に対して集光点CをX方向に沿って相対的に移動させると、複数の改質スポット13がX方向に沿って1列に並ぶように形成される。1つの改質スポット13は、1パルスのレーザ光Lの照射によって形成される。1列の改質領域12は、1列に並んだ複数の改質スポット13の集合である。隣り合う改質スポット13は、対象物11に対する集光点Cの相対的な移動速度及びレーザ光Lの繰り返し周波数によって、互いに繋がる場合も、互いに離れる場合もある。
制御部6は、ステージ2、光源3、空間光変調器4及び集光レンズ5を制御する。制御部6は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。制御部6では、メモリ等に読み込まれたソフトウェア(プログラム)が、プロセッサによって実行され、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信が、プロセッサによって制御される。これにより、制御部6は、各種機能を実現する。
[第1例に係るレーザ加工方法及び半導体部材製造方法]
ここでは、対象物11は、図2及び図3に示されるように、窒化ガリウム(GaN)によって例えば円板状に形成されたGaNインゴット(半導体インゴット、半導体対象物)20である。一例として、GaNインゴット20の直径は2inであり、GaNインゴット20の厚さは2mmである。第1実施形態のレーザ加工方法及び半導体部材製造方法は、GaNインゴット20から複数のGaNウェハ(半導体ウェハ、半導体部材)30を切り出すために実施される。一例として、GaNウェハ30の直径は2inであり、GaNウェハ30の厚さは100μmである。
まず、上述したレーザ加工装置1が、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する。複数の仮想面15のそれぞれは、GaNインゴット20の内部においてGaNインゴット20の表面20aに対向する面であり、表面20aに対向する方向に並ぶように設定されている。ここでは、複数の仮想面15のそれぞれは、表面20aに平行な面であり、例えば円形状を呈している。複数の仮想面15のそれぞれは、表面20a側から見た場合に互いに重なるように設定されている。GaNインゴット20には、複数の仮想面15のそれぞれを囲むように複数の周縁領域16が設定されている。つまり、複数の仮想面15のそれぞれは、GaNインゴット20の側面20bに至っていない。一例として、隣り合う仮想面15間の距離は100μmであり、周縁領域16の幅(本実施形態では、仮想面15の外縁と側面20bとの距離)は30μm以上である。
複数の改質スポット13の形成は、例えば532nmの波長を有するレーザ光Lの照射によって、表面20aとは反対側から1つの仮想面15ごとに順次に実施される。複数の改質スポット13の形成は、複数の仮想面15のそれぞれにおいて同様であるため、以下、表面20aに最も近い仮想面15に沿った複数の改質スポット13の形成について、図4〜図11を参照して詳細に説明する。なお、図5、図7、図9及び図11において、矢印は、レーザ光Lの集光点Cの軌跡を示している。また、後述する改質スポット13a,13b,13c,13dを包括して改質スポット13といい、後述する亀裂14a,14b,14c,14dを包括して亀裂14という場合がある。
まず、レーザ加工装置1が、図4及び図5に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させて照射することにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット13a(第1改質スポット)を形成する(工程S1)。このとき、レーザ加工装置1は、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がらないように、複数の改質スポット13aを形成する。また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数列の改質スポット13aを形成する。なお、図4及び図5では、改質スポット13aが白抜き(ハッチングなし)で示されており、亀裂14aが延びる範囲が破線で示されている(図6〜図11でも同様)。また、このとき、改質スポット13aのそれぞれにおいて析出されたガリウムが、亀裂14a内に入り込むように拡がることによって、改質スポット13aの周囲に、析出されたガリウムを含む析出領域Rが形成される。
ここでは、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は8μmであり、レーザ光Lのパルスピッチ(すなわち、複数の集光点Cの相対的な移動速度を、レーザ光Lの繰り返し周波数で除した値)は10μmである。また、1つの集光点C当たりのレーザ光Lのパルスエネルギー(以下、単に「レーザ光Lのパルスエネルギー」という)は、0.33μJである。この場合、Y方向において隣り合う改質スポット13aの中心間距離は8μmとなり、X方向において隣り合う改質スポット13aの中心間距離は10μmとなる。また、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aは互いに繋がらない。
続いて、レーザ加工装置1が、図6及び図7に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させて照射することにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット(第2改質スポット)13bを形成する(工程S2)。このとき、レーザ加工装置1は、複数の改質スポット13a及び複数の亀裂14aに重ならないように、複数の改質スポット13bを形成する。また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13aの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13bを形成する。この工程では、複数の改質スポット13bからそれぞれ延びる複数の亀裂14bが、複数の亀裂14aに繋がってもよい。なお、図6及び図7では、改質スポット13bがドットハッチングで示されており、亀裂14bが延びる範囲が破線で示されている(図8〜図11でも同様)。また、このとき、改質スポット13bのそれぞれにおいて析出されたガリウムが、亀裂14b内に入り込むように拡がることによって、改質スポット13bの周囲に、析出されたガリウムを含む析出領域Rが形成される。
ここでは、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、複数列の改質スポット13aの列間の中心において、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は8μmであり、レーザ光Lのパルスピッチは10μmである。また、レーザ光Lのパルスエネルギーは、0.33μJである。この場合、Y方向において隣り合う改質スポット13bの中心間距離は8μmとなり、X方向において隣り合う改質スポット13bの中心間距離は10μmとなる。
続いて、レーザ加工装置1が、図8及び図9に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させて照射することにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット(第3改質スポット)13cを形成する(工程S3)。更に、レーザ加工装置1が、図10及び図11に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させて照射することにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット(第3改質スポット)13dを形成する(工程S4)。このとき、レーザ加工装置1は、複数の改質スポット13a,13bに重ならないように、複数の改質スポット13c,13dを形成する。
また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13a,13bの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13c,13dを形成する。この工程では、複数の改質スポット13c,13dからそれぞれ延びる複数の亀裂14c,14dが、複数の亀裂14a,14bに繋がってもよい。なお、図8及び図9では、改質スポット13cが実線ハッチングで示されており、亀裂14cが延びる範囲が破線で示されている(図10及び図11でも同様)。また、図10及び図11では、改質スポット13dが実線ハッチング(改質スポット13cの実線ハッチングとは逆に傾斜する実線ハッチング)で示されており、亀裂14dが延びる範囲が破線で示されている。また、このとき、改質スポット13c,13dのそれぞれにおいて析出されたガリウムが、亀裂14c,14d内に入り込むように拡がることによって、改質スポット13c,13dの周囲に、析出されたガリウムを含む析出領域Rが形成される。
ここでは、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、複数列の改質スポット13a,13bの列間の中心において、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は8μmであり、レーザ光Lのパルスピッチは5μmである。また、レーザ光Lのパルスエネルギーは、0.33μJである。この場合、Y方向において隣り合う改質スポット13cの中心間距離は8μmとなり、X方向において隣り合う改質スポット13cの中心間距離は5μmとなる。また、Y方向において隣り合う改質スポット13dの中心間距離は8μmとなり、X方向において隣り合う改質スポット13dの中心間距離は5μmとなる。
続いて、ヒータ等を備える加熱装置が、GaNインゴット20を加熱し、複数の仮想面15のそれぞれにおいて、複数の改質スポット13からそれぞれ延びる複数の亀裂14を互いに繋げることにより、図12に示されるように、複数の仮想面15のそれぞれにおいて、仮想面15に渡る亀裂17(以下、単に「亀裂17」という)を形成する。図12では、複数の改質スポット13及び複数の亀裂14、並びに、亀裂17が形成される範囲が破線で示されている。なお、加熱以外の方法でGaNインゴット20に何らかの力を作用させることにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。また、仮想面15に沿って複数の改質スポット13を形成することにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。
ここで、GaNインゴット20においては、複数の改質スポット13からそれぞれ延びる複数の亀裂14内に窒素ガスが生じている。そのため、GaNインゴット20を加熱して窒素ガスを膨張させることにより、窒素ガスの圧力(内圧)を利用して亀裂17を形成することができる。しかも、周縁領域16によって、当該周縁領域16が囲む仮想面15の外部(例えば、GaNインゴット20の側面20b)への複数の亀裂14の進展が阻まれるため、複数の亀裂14内に生じた窒素ガスが仮想面15の外部に逃げるのを抑制することができる。つまり、周縁領域16は、改質スポット13を含まない非改質領域であって、当該周縁領域16が囲む仮想面15に亀裂17が形成される際に、当該周縁領域16が囲む仮想面15の外部への複数の亀裂14の進展を阻む領域である。そのために、周縁領域16の幅を30μm以上とすることが好ましい。
続いて、研削装置が、GaNインゴット20のうち複数の周縁領域16及び複数の仮想面15のそれぞれに対応する部分を研削(研磨)することにより、図13に示されるように、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得する(工程S5)。このように、GaNインゴット20は、複数の仮想面15のそれぞれに沿って切断される。なお、この工程では、研削以外の機械加工、レーザ加工等によって、GaNインゴット20のうち複数の周縁領域16に対応する部分を除去してもよい。
以上の工程のうち、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する工程までが、第1例のレーザ加工方法である。また、以上の工程のうち、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得する工程までが、第1例の半導体部材製造方法である。
以上説明したように、第1例のレーザ加工方法では、複数の仮想面15のそれぞれに沿って複数の改質スポット13aを形成し、複数の改質スポット13a及び複数の亀裂14aに重ならないように、複数の仮想面15のそれぞれに沿って複数の改質スポット13bを形成する。更に、第1例のレーザ加工方法では、複数の改質スポット13a,13bに重ならないように、複数の仮想面15のそれぞれに沿って複数の改質スポット13c,13dを形成する。これにより、複数の仮想面15のそれぞれに沿って複数の改質スポット13を精度良く形成することができ、その結果、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となる。よって、第1例のレーザ加工方法によれば、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得することにより、複数の好適なGaNウェハ30の取得が可能となる。
同様に、第1例のレーザ加工方法を実施するレーザ加工装置1によれば、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適なGaNウェハ30の取得が可能となる。
また、第1例のレーザ加工方法では、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がらないように、複数の改質スポット13aを形成する。これにより、複数の改質スポット13bを仮想面15に沿ってより精度良く形成することができる。
また、第1例のレーザ加工方法では、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数列の改質スポット13aを形成し、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13aの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13bを形成する。これにより、複数の改質スポット13a及び複数の亀裂14aに複数の改質スポット13bが重なるのを確実に防止して、複数の改質スポット13bを仮想面15に沿ってより精度良く形成することができる。
特に、第1例のレーザ加工方法では、GaNインゴット20の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aにガリウムが析出し(析出領域Rが形成され)、当該ガリウムによってレーザ光Lが吸収され易い状態となる。そのため、当該亀裂14aに重ならないように複数の改質スポット13bを形成することは、複数の改質スポット13bを仮想面15に沿って精度良く形成する上で有効である。
また、第1例のレーザ加工方法では、GaNインゴット20の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の亀裂14内に窒素ガスが生じる。そのため、当該窒素ガスの圧力を利用して、亀裂17を容易に形成することが可能となる。
また、第1例の半導体部材製造方法によれば、第1例のレーザ加工方法に含まれる工程によって、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適なGaNウェハ30の取得が可能となる。
また、第1例の半導体部材製造方法では、複数の仮想面15が、GaNインゴット20の表面20aに対向する方向に並ぶように設定されている。これにより、1つのGaNインゴット20から複数のGaNウェハ30の取得が可能となる。
ここで、第1例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハ30では、GaNウェハ30の剥離面に現れる凹凸が小さくなることを示す実験結果について説明する。
図14は、一例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像であり、図15の(a)及び(b)は、図14に示される剥離面の高さプロファイルである。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ1つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。このとき、Y方向において隣り合う集光点C間の距離を10μm、レーザ光Lのパルスピッチを1μm、レーザ光Lのパルスエネルギーを1μJとした。この場合、図15の(a)及び(b)に示されるように、GaNウェハ30の剥離面(亀裂17によって形成された面)に25μm程度の凹凸が現れた。
図16は、他の例の実施例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像であり、図17の(a)及び(b)は、図16に示される剥離面の高さプロファイルである。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、第1実施形態のレーザ加工方法及び半導体部材製造方法の第1工程及び第2工程と同様に、仮想面15に沿って複数の改質スポット13を形成した。複数の改質スポット13aを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μk、レーザ光Lのパルスエネルギーを0.33μJとした。複数の改質スポット13bを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとした。複数の改質スポット13cを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.33μJとした。複数の改質スポット13dを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.33μJとした。この場合、図17の(a)及び(b)に示されるように、GaNウェハ30の剥離面に5μm程度の凹凸が現れた。
以上の実験結果から、第1例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハでは、GaNウェハ30の剥離面に現れる凹凸が小さくなること、すなわち、仮想面15に沿って亀裂17が精度良く形成されることが分かった。なお、GaNウェハ30の剥離面に現れる凹凸が小さくなると、当該剥離面を平坦化するための研削量が少なくて済む。したがって、GaNウェハ30の剥離面に現れる凹凸が小さくなることは、材料の利用効率的にも生産効率的にも有利である。
次に、GaNウェハ30の剥離面に凹凸が現れる原理について説明する。
例えば、図18に示されるように、仮想面15に沿って複数の改質スポット13aを形成し、改質スポット13bがその一方の側の改質スポット13aから延びる亀裂14aに重なるように、仮想面15に沿って複数の改質スポット13bを形成する。この場合には、複数の亀裂14aに析出したガリウムによってレーザ光Lが吸収され易い状態にあるため、集光点Cが仮想面15上に位置していても、改質スポット13aに対してレーザ光Lの入射側に改質スポット13bが形成され易くなる。続いて、改質スポット13cがその一方の側の改質スポット13bから延びる亀裂14bに重なるように、仮想面15に沿って複数の改質スポット13cを形成する。この場合にも、複数の亀裂14bに析出したガリウムによってレーザ光Lが吸収され易い状態にあるため、集光点Cが仮想面15上に位置していても、改質スポット13bに対してレーザ光Lの入射側に改質スポット13cが形成され易くなる。このように、この例では、複数の改質スポット13bが複数の改質スポット13aに対してレーザ光Lの入射側に形成され、更に、複数の改質スポット13cが複数の改質スポット13bに対してレーザ光Lの入射側に形成され易くなる。
それに対し、例えば、図19に示されるように、仮想面15に沿って複数の改質スポット13aを形成し、改質スポット13bがその両側の改質スポット13aから延びる亀裂14aに重ならないように、仮想面15に沿って複数の改質スポット13bを形成する。この場合には、複数の亀裂14aに析出したガリウムによってレーザ光Lが吸収され易い状態にあるものの、改質スポット13bが亀裂14aに重ならないため、改質スポット13bも、改質スポット13aと同様に仮想面15上に形成される。続いて、改質スポット13cがその両側の改質スポット13a,13bのそれぞれから延びる亀裂14a,14bに重なるように、仮想面15に沿って複数の改質スポット13cを形成する。更に、改質スポット13dがその両側の改質スポット13a,13bのそれぞれから延びる亀裂14a,14bに重なるように、仮想面15に沿って複数の改質スポット13dを形成する。これらの場合には、複数の亀裂14a,14bに析出したガリウムによってレーザ光Lが吸収され易い状態にあるため、集光点Cが仮想面15上に位置していても、改質スポット13a,13bに対してレーザ光Lの入射側に改質スポット13c,13dが形成され易くなる。このように、この例では、複数の改質スポット13c,13dが複数の改質スポット13a,13bに対してレーザ光Lの入射側に形成され易くなるだけである。
以上の原理から、第1例のレーザ加工方法及び半導体部材製造方法においては、複数の改質スポット13a及び複数の改質スポット13aからそれぞれ延びる複数の亀裂14aに重ならないように、複数の改質スポット13bを形成することが、GaNウェハ30の剥離面に現れる凹凸を小さくする上で極めて重要であることが分かる。
次に、第1例のレーザ加工方法及び半導体部材製造方法においては、仮想面15に沿って亀裂17が精度良く進展することを示す実験結果について説明する。
図20の(a)及び(b)は、一例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像であり、図20の(b)は、図20の(a)における矩形枠内の拡大画像である。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ6つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。このとき、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを1μm、レーザ光Lのパルスエネルギーを1.33μJとした。そして、レーザ加工を仮想面15の途中で停止させた。この場合、図20の(a)及び(b)に示されるように、加工領域から未加工領域に進展した亀裂が、未加工領域において仮想面15から大きく外れた。
図21の(a)及び(b)は、他の例の実施例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像であり、図21の(b)は、図21の(a)における矩形枠内の拡大画像である。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ6つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。具体的には、まず、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとして、加工領域1及び加工領域2に複数列の改質スポット13を形成した。続いて、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとして、加工領域1及び加工領域2に、既に形成された複数列の改質スポット13の列間の中心にそれぞれの列が位置するように複数列の改質スポット13を形成した。続いて、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.33μJとして、加工領域1のみに、既に形成された複数列の改質スポット13の列間の中心にそれぞれの列が位置するように複数列の改質スポット13を形成した。この場合、図21の(a)及び(b)に示されるように、加工領域1から加工領域2に進展した亀裂が、加工領域2において仮想面15から大きく外れなかった。
以上の実験結果から、第1例のレーザ加工方法及び半導体部材製造方法においては、仮想面15に沿って亀裂17が精度良く進展することが分かった。これは、加工領域2に先に形成された複数の改質スポット13が、亀裂が進展する際にガイドになったためと想定される。
次に、第1例のレーザ加工方法及び半導体部材製造方法においては、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が抑制されることを示す実験結果について説明する。
図22は、比較例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像(側面視での画像)である。この比較例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、1つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。具体的には、Y方向において隣り合う集光点C間の距離を2μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13を形成した。この場合、図22に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が100μm程度となった。
図23は、第1実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像であり、図23の(a)は平面視での画像、図23の(b)は側面視での画像である。この第1実施例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ6つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。具体的には、まず、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13aを形成した。続いて、Y方向に並ぶ6つの集光点Cを先の状態からY方向に+4μmずらした状態で、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13bを形成した。続いて、Y方向に並ぶ6つの集光点Cを先の状態からY方向に−4μmずらした状態で、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13を形成した。続いて、Y方向に並ぶ6つの集光点Cを先の状態からY方向に+4μmずらした状態で、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13を形成した。これにより、1回目に形成した改質スポット13aと3回目に形成した改質スポット13とが互いに重なり、2回目に形成した改質スポット13bと4回目に形成した改質スポット13とが互いに重なっていると想定される。この場合、図23の(b)に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が70μm程度となった。
図24の(a)及び(b)は、第2例の実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像であり、図24の(a)は平面視での画像、図24の(b)は側面視での画像である。この第2実施例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、第1例のレーザ加工方法及び半導体部材製造方法の第1工程及び第2工程と同様に、仮想面15に沿って複数の改質スポット13を形成した。複数の改質スポット13aを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとした。複数の改質スポット13bを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとした。複数の改質スポット13cを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとした。複数の改質スポット13dを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとした。この場合、図23の(b)に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が50μm程度となった。
図24の(c)及び(d)は、第3実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像であり、図24の(c)は平面視での画像、図24の(d)は側面視での画像である。この実施例では、図23に示される状態にある仮想面15(すなわち、複数列の改質スポット13が既に形成された仮想面15)に沿って、更に、複数の改質スポット13を形成した。具体的には、まず、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.1μJとして、既に形成された複数列の改質スポット13の列間の中心にそれぞれの列が位置するように複数列の改質スポット13を形成した。この場合、図24の(d)に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が60μm程度となった。
以上の実験結果から、仮想面15に沿って既に形成された複数の改質スポット13a及び複数の亀裂14aに重ならないように、仮想面15に沿って複数の改質スポット13bを形成すれば(第1実施例、第2実施例及び第3実施例)、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が抑制されることが分かった。仮想面15に沿って更に複数の改質スポット13を形成する場合には、仮想面15に沿って既に形成された複数の改質スポット13a,13bに重ならないように、仮想面15に沿って複数の改質スポット13すれば(第2実施例及び第3実施例)、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量がより一層抑制されることが分かった。
[第2例のレーザ加工方法及び半導体部材製造方法]
第2例のレーザ加工方法及び半導体部材製造方法の対象物11は、図25に示されるように、GaNによって例えば円板状に形成されたGaNウェハ(半導体ウェハ、半導体対象物)30である。一例として、GaNウェハ30の直径は2inであり、GaNウェハ30の厚さは100μmである。第2例のレーザ加工方法及び半導体部材製造方法は、GaNウェハ30から複数の半導体デバイス(半導体部材)40を切り出すために実施される。一例として、半導体デバイス40のGaN基板部分の外形は1mm×1mmであり、半導体デバイス40のGaN基板部分の厚さは数十μmである。
まず、上述したレーザ加工装置1が、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する。複数の仮想面15のそれぞれは、GaNウェハ30の内部においてGaNウェハ30の表面30aに対向する面であり、表面30aが延在する方向に並ぶように設定されている。本実施形態では、複数の仮想面15のそれぞれは、表面30aに平行な面であり、例えば矩形状を呈している。複数の仮想面15のそれぞれは、GaNウェハ30のオリエンテーションフラット31に平行な方向及び垂直な方向に2次元状に並ぶように設定されている。GaNウェハ30には、複数の仮想面15のそれぞれを囲むように複数の周縁領域16が設定されている。つまり、複数の仮想面15のそれぞれは、GaNウェハ30の側面30bに至っていない。一例として、複数の仮想面15のそれぞれに対応する周縁領域16の幅(第2例では、隣り合う仮想面15間の距離の半分)は30μm以上である。
複数の仮想面15のそれぞれに沿った複数の改質スポット13の形成は、第1例のレーザ加工方法及び半導体部材製造方法の工程S1〜工程S4と同様に、実施される。これにより、GaNウェハ30においては、図26に示されるように、複数の仮想面15のそれぞれに沿って、複数の改質スポット13(すなわち、改質スポット13a,13b,13c,13d)及び複数の亀裂14(すなわち、亀裂14a,14b,14c,14d)が形成される。図26では、複数の改質スポット13及び複数の亀裂14が形成される範囲が破線で示されている。
続いて、半導体製造装置が、図27に示されるように、GaNウェハ30の表面30aに複数の機能素子32を形成する。複数の機能素子32のそれぞれは、GaNウェハ30の厚さ方向から見た場合に1つの機能素子32が1つの仮想面15に含まれるように、形成される。機能素子32は、例えば、フォトダイオード等の受光素子、レーザダイオード等の発光素子、メモリ等の回路素子等である。
第2例では、表面30aに複数の機能素子32を形成する際に、半導体製造装置が加熱装置として機能する。つまり、表面30aに複数の機能素子32を形成する際に、半導体製造装置が、GaNウェハ30を加熱し、複数の仮想面15のそれぞれにおいて、複数の改質スポット13からそれぞれ延びる複数の亀裂14を互いに繋げることにより、複数の仮想面15のそれぞれにおいて、亀裂17(すなわち、仮想面15に渡る亀裂17)を形成する。図27では、複数の改質スポット13及び複数の亀裂14、並びに、亀裂17が形成される範囲が破線で示されている。なお、半導体製造装置とは別の加熱装置が用いられてもよい。また、加熱以外の方法でGaNウェハ30に何らかの力を作用させることにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。また、仮想面15に沿って複数の改質スポット13を形成することにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。
ここで、GaNウェハ30においては、複数の改質スポット13からそれぞれ延びる複数の亀裂14内に窒素ガスが生じている。そのため、GaNインゴット20を加熱して窒素ガスを膨張させることにより、窒素ガスの圧力を利用して亀裂17を形成することができる。しかも、周縁領域16によって、当該周縁領域16が囲む仮想面15の外部(例えば、隣り合う仮想面15、GaNウェハ30の側面30b)への複数の亀裂14の進展が阻まれるため、複数の亀裂14内に生じた窒素ガスが仮想面15の外部に逃げるのを抑制することができる。つまり、周縁領域16は、改質スポット13を含まない非改質領域であって、当該周縁領域16が囲む仮想面15に亀裂17が形成される際に、当該周縁領域16が囲む仮想面15の外部への複数の亀裂14の進展を阻む領域である。そのために、周縁領域16の幅を30μm以上とすることが好ましい。
続いて、レーザ加工装置が、GaNウェハ30を機能素子32ごとに切断すると共に、研削装置が、複数の仮想面15のそれぞれに対応する部分を研削することにより、図28に示されるように、複数の亀裂17のそれぞれを境界としてGaNウェハ30から複数の半導体デバイス40を取得する(工程S6)。このように、GaNウェハ30は、複数の仮想面15のそれぞれに沿って切断される。なお、この工程では、レーザ加工以外の機械加工(例えばブレードダイシング)等によって、GaNウェハ30を機能素子32ごとに切断してもよい。
以上の工程のうち、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する工程までが、第2例のレーザ加工方法である。また、以上の工程のうち、複数の亀裂17のそれぞれを境界としてGaNウェハ30から複数の半導体デバイス40を取得する工程までが、第2例の半導体部材製造方法である。
以上説明したように、第2例のレーザ加工方法よれば、第1例のレーザ加工方法と同様に、複数の仮想面15のそれぞれに沿って複数の改質スポット13を精度良く形成することができ、その結果、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となる。よって、第2例のレーザ加工方法によれば、複数の亀裂17のそれぞれを境界としてGaNウェハ30から複数の半導体デバイス40を取得することにより、複数の好適な半導体デバイス40の取得が可能となる。また、複数の半導体デバイス40を切り出した後のGaNウェハ30を再利用することも可能となる。
同様に、第2例のレーザ加工方法を実施するレーザ加工装置1によれば、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適な半導体デバイス40の取得が可能となる。
また、第2例のレーザ加工方法では、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がらないように、複数の改質スポット13aを形成する。これにより、複数の改質スポット13bを仮想面15に沿ってより精度良く形成することができる。
また、第2例のレーザ加工方法では、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数列の改質スポット13aを形成し、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13aの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13bを形成する。これにより、複数の改質スポット13a及び複数の亀裂14aに複数の改質スポット13bが重なるのを確実に防止して、複数の改質スポット13bを仮想面15に沿ってより精度良く形成することができる。
特に、第2例のレーザ加工方法では、GaNウェハ30の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aにガリウムが析出し、当該ガリウムによってレーザ光Lが吸収され易い状態となる。そのため、当該亀裂14aに重ならないように複数の改質スポット13bを形成することは、複数の改質スポット13bを仮想面15に沿って精度良く形成する上で有効である。
また、第2例のレーザ加工方法では、GaNウェハ30の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の亀裂14内に窒素ガスが生じる。そのため、当該窒素ガスの圧力を利用して、亀裂17を容易に形成することが可能となる。
また、第2例の半導体部材製造方法によれば、第2実施形態のレーザ加工方法に含まれる工程によって、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適な半導体デバイス40の取得が可能となる。
また、第2例の半導体部材製造方法では、複数の仮想面15が、GaNウェハ30の表面30aが延在する方向に並ぶように設定されている。これにより、1つのGaNウェハ30から複数の半導体デバイス40の取得が可能となる。
[変形例]
上述した例は、任意に変形可能である。例えば、レーザ光Lに関する各種数値は、上述したものに限定されない。ただし、亀裂14が改質スポット13からレーザ光Lの入射側及びその反対側に延びるのを抑制するためには、レーザ光Lのパルスエネルギーが0.1μJ〜1μJであり且つレーザ光Lのパルス幅が200fs〜1nsであることが好ましい。
また、レーザ加工方法及び半導体部材製造方法によって加工される半導体対象物は、第1例のGaNインゴット20及び第2例のGaNウェハ30に限定されない。半導体部材製造方法によって製造される半導体部材は、第1例のGaNウェハ30及び第2例の半導体デバイス40に限定されない。1つの半導体対象物に1つの仮想面が設定されてもよい。
一例として、半導体対象物の材料は、SiCであってもよい。その場合にも、レーザ加工方法及び半導体部材製造方法によれば、次に述べるように、仮想面に渡る亀裂を仮想面に沿って精度良く形成することが可能となる。
図29の(a)及び(b)は、比較例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像(側面視での画像)であり、図29の(b)は、図29の(a)における矩形枠内の拡大画像である。この比較例では、532nmの波長を有するレーザ光をSiCウェハの表面からSiCウェハの内部に入射させ、Y方向に並ぶ6つの集光点を、X方向に沿って仮想面上を相対的に移動させることにより、仮想面に沿って複数の改質スポットを形成した。このとき、Y方向において隣り合う集光点C間の距離を2μm、レーザ光のパルスピッチを15μm、レーザ光のパルスエネルギーを4μJとした。この場合、図29の(a)及び(b)に示されるように、仮想面に対して4°〜5°傾斜する方向に延びる亀裂が発生した。
図30の(a)及び(b)は、実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像(側面視での画像)であり、図30の(b)は、図30の(a)における矩形枠内の拡大画像である。この実施例では、532nmの波長を有するレーザ光をSiCウェハの表面からSiCウェハの内部に入射させ、第1実施形態のレーザ加工方法及び半導体部材製造方法の第1工程及び第2工程と同様に、仮想面に沿って複数の改質スポットを形成した。複数の改質スポット13a,13b,13c,13dのそれぞれに相当する複数の改質スポットを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを15μm、レーザ光Lのパルスエネルギーを4μJとした。この場合、図30の(a)及び(b)に示されるように、仮想面に対して4°〜5°傾斜する方向に延びる亀裂の発生が抑制された。図31は、実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの剥離面の画像であり、図32の(a)及び(b)は、図31に示される剥離面の高さプロファイルである。この場合、SiCウェハの剥離面に現れる凹凸は2μm程度に抑えられた。
以上の実験結果から、半導体対象物の材料がSiCである場合にも、レーザ加工方法及び半導体部材製造方法によれば、仮想面に渡る亀裂が仮想面に沿って精度良く形成されることが分かった。なお、上述した比較例及び実施例で用いたSiCウェハは、4±0.5°のオフ角を有する4H−SiCウェハであり、レーザ光の集光点を移動させた方向は、m軸方向である。
また、複数の改質スポット13a,13b,13c,13dの形成の仕方は、上述したものに限定されない。複数の改質スポット13aは、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がるように形成されてもよい。また、複数の改質スポット13bは、複数の改質スポット13aに重ならないように形成されればよい。複数の改質スポット13aからそれぞれ延びる複数の亀裂14aに複数の改質スポット13bが重なったとしても、複数の改質スポット13bが複数の改質スポット13aに重ならなければ、複数の改質スポット13a,13bが仮想面15に沿って精度良く形成される。また、複数の改質スポット13c,13dの形成の仕方は任意であり、複数の改質スポット13c,13dは、形成されなくてもよい。また、図33に示されるように、例えばGaNインゴット20を回転させることにより、径方向に並んだ複数の集光点を相対的に回転させて(一点鎖線の矢印)、複数列の改質スポット13を形成し、更に、図34に示されるように、複数列の改質スポット13の列間に複数の集光点のそれぞれを位置させた状態で、径方向に並んだ複数の集光点を相対的に回転させて(一点鎖線の矢印)、複数列の改質スポット13を形成してもよい。
また、第1例のレーザ加工方法及び半導体部材製造方法において、複数の改質スポット13の形成は、表面20aとは反対側から複数の仮想面15ごとに順次に実施されてもよい。また、第1例のレーザ加工方法及び半導体部材製造方法では、複数の改質スポット13の形成が表面20a側の1つ又は複数の仮想面15に沿って実施され、1つ又は複数のGaNウェハ30が切り出された後に、GaNインゴット20の表面20aが研削され、再び、複数の改質スポット13の形成が表面20a側の1つ又は複数の仮想面15に沿って実施されてもよい。
また、第1例及び第2例のレーザ加工方法及び半導体部材製造方法では、周縁領域16が形成されなくてもよい。第1例のレーザ加工方法及び半導体部材製造方法において周縁領域16を形成しない場合には、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成した後に、例えば、GaNインゴット20に対してエッチングを施すことにより、複数のGaNウェハ30を取得することも可能である。
また、上述した例における各構成には、上述した材料及び形状に限定されず、様々な材料及び形状を適用することができる。また、上述した一の例又は変形例における各構成は、他の例又は変形例における各構成に任意に適用することができる。
また、レーザ加工装置1は、上述した構成を有するものに限定されない。例えば、レーザ加工装置1は、空間光変調器4を備えていなくてもよい。
[実施形態に係るレーザ加工方法、及び、半導体デバイス製造方法]
図35は、レーザ加工装置を示す図である。図35に示されるように、レーザ加工装置1Aは、図1に示されたレーザ加工装置1と比較して、測定部50をさらに備える点、及び、ステージ2に代えてステージ2Aを備える点において、レーザ加工装置1と相違している。レーザ加工装置1Aにおいては、光源3、空間光変調器4、及び、集光レンズ5によって、照射部45が構成されている。すなわち、レーザ加工装置1Aは、GaNウェハ30を支持するステージ2Aと、ステージ2Aに支持されたGaNウェハ30にレーザ光Lを照射する照射部45と、GaNウェハ30の透過率を測定する測定部50と、照射部45及び測定部50を制御する制御部6と、を備えている。
ステージ2Aは、測定に用いられる測定光ILを透過する透過部2Tを含む。測定部50は、ステージ2Aに支持されたGaNウェハ30に向けて測定光ILを照射する光源51と、GaNウェハ30及び透過部2Tを透過した測定光ILを検出する光検出器52と、を有し、光検出器52の検出結果に基づいてGaNウェハ30の透過率を測定する。
本実施形態に係る方法においては、まず、上記の第1例と同様にして、工程S1〜工程S3を実施する。すなわち、図36に示されるように、(GaNインゴット20に代えて)GaNウェハ30の表面30aからGaNウェハ30の内部にレーザ光Lを照射することにより、GaNウェハ30の内部において表面30aに対向する仮想面15に沿って、複数の改質スポット13(改質スポット13a〜改質スポット13c)、及び、複数の改質スポット13において析出されたガリウムを含む複数の析出領域Rを形成する(第1工程)。この第1工程においては、当然ながら、仮想面15におけるレーザ光Lのエネルギーは、GaNウェハ30の加工閾値を上回っている。
改質スポット13a〜改質スポット13cを形成するときのレーザ光Lの照射条件は、例えば次のように規定することができる。まず、レーザ光Lのパルスエネルギーが大きくなると、改質スポット13の周辺に形成される析出領域Rが大きくなる傾向にある。したがって、(例えばY方向における)レーザ光Lの集光点C間の距離を相対的に大きくする(改質スポット13及び析出領域Rを相対的に粗に形成する)場合には、後のレーザ光の照射による析出領域Rの拡大の観点から、レーザ光Lのパルスエネルギーを大きくすることが望ましい。一方で、(例えばY方向における)レーザ光Lの集光点C間の距離を相対的に小さくする(改質スポット13及び析出領域Rを相対的に密に形成する)場合には、レーザ光のパルスエネルギーを小さくしても、後の工程でのレーザ光の照射によって析出領域Rを拡大し得る。一例として、レーザ光Lのパルスピッチを10μmと一定とすると、Y方向において隣り合う集光点C間の距離を8μmとする場合には、レーザ光Lのパルスエネルギーを2μJ程度とすることにより、後の工程でのレーザ光の照射によって析出領域Rを拡大し得る。また、Y方向において隣り合う集光点C間の距離を4μmとする場合には、レーザ光Lのパルスエネルギーを0.67μJ程度とすることにより、後の工程でのレーザ光の照射によって析出領域Rを拡大し得る。さらに、Y方向において隣り合う集光点C間の距離を2μmとする場合には、レーザ光Lのパルスエネルギーを0.33μJ程度とすることにより、後の工程でのレーザ光の照射によって析出領域Rを拡大し得る。
続いて、GaNウェハ30の透過率を測定する(第4工程)。続いて、第4工程において測定された透過率が基準値よりも高いか否かを判定する(第5工程)。GaNウェハ30の透過率の基準値は、例えば0.5(50%)とすることができる。そして、第5工程の判定の結果、当該透過率が基準値よりも高い場合には、改質スポット13の形成が不十分であるとして、第1工程を再び実施する。一方、第5工程の判定の結果、当該透過率が基準値以下である場合には、続く工程に進む。
すなわち、続く工程においては、図37に示されるように、GaNウェハ30を半導体製造装置のチャンバH内に配置する。そして、GaNウェハ30に対して、エピタキシャル成長によって半導体デバイスのための半導体層(エピタキシャル成長層)70を形成する。ここでは、GaNウェハ30の表面30aに半導体層70を形成する。ここでのエピタキシャル成長は、任意の方法を用いることができるが、GaNウェハ30が例えば1030℃程度に加熱され得る。
続いて、半導体層70が設けられたGaNウェハ30をチャンバHから取り出す。そして、図38及び図39に示されるように、GaNウェハ30の表面30aに交差する方向(Z方向)からみて、レーザ光Lの集光点Cを改質スポット13に重ならないように配置する。ここでは、複数の集光点Cのそれぞれを、Y方向に互いに隣り合う改質スポット13a及び改質スポット13bとの間に配置する。また、ここでは、一例として、集光点Cは、改質スポット13に加えて、亀裂14及び析出領域Rに重ならないように配置され得る。そのうえで、仮想面15におけるエネルギーがGaNウェハ30の加工閾値を下回るようにする。その状態において、表面30aの反対側の裏面(GaNウェハ30における半導体層70が形成された面と異なる面)30rからGaNウェハ30の内部にレーザ光Lを照射する。
この工程は、以下の知見に基づいている。すなわち、まず、ガリウムを含む半導体対象物にレーザ光を照射することにより、仮想面に沿って、複数の改質スポットと、それらの複数の改質スポットにおいて析出されたガリウムを含む析出領域と、を形成する。そうすると、後の工程においてレーザ光を再度照射するときに、(レーザ光の集光点が予め形成された改質スポットが重ならないようにすると共に)仮想面におけるレーザ光のエネルギーを半導体対象物の加工閾値を下回るほど低下させても、予め形成されたガリウムを含む析出領域を拡大させることができる。その結果、仮想面に渡る亀裂を形成して半導体部材を切り出したときに、切り出された面の凹凸を低減できる。
ここでは、レーザ加工装置1が、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させる。また、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は1μmであり、レーザ光Lのパルスピッチは10μmである。また、レーザ光Lのパルスエネルギーは、0.33μJである。この照射条件によれば、レーザ光Lの集光点Cに対応する位置に改質スポットが形成されないものの、析出領域Rが拡大される。この後の工程については、上記の第1例と同様である。これにより、GaNウェハ30から半導体層70を含む半導体デバイスが取得される。
以上説明した様に、本実施形態に係る方法においては、エピタキシャル成長による半導体デバイスのための半導体層70の形成に先立って、レーザ光Lの照射によってGaNウェハ30の内部に改質スポット13を形成する。したがって、改質スポット13の形成に際して半導体層70に対してダメージが生じ得ない。よって、当該改質スポット13から延びる亀裂を進展させてGaNウェハ30を剥離することにより、ダメージが抑制された好適な半導体デバイスが取得可能である。
また、本実施形態に係る方法は、第2工程の後に、表面30aに交差する方向からみて集光点Cが改質スポット13に重ならないように、GaNウェハ30における半導体層70が形成された面と異なる裏面30rからGaNウェハ30の内部にレーザ光Lを照射することにより、仮想面15に渡る亀裂を形成する第3工程を備えている。このように、レーザ光Lの照射によって、剥離の起点となる仮想面15に沿った亀裂を形成してもよい。なお、この場合であっても、半導体層70の形成に先立って改質スポット13を形成しているので、全てのレーザ加工を半導体層70の形成の後に行う場合と比較して、半導体層70へのダメージが抑制される。
また、本実施形態に係る方法においては、第1工程においては、表面30aからGaNウェハの内部にレーザ光Lを照射することにより、複数の改質スポット13、及び、複数の改質スポット13において析出されたガリウムを含む複数の析出領域Rを形成し、第3工程においては、仮想面15におけるエネルギーがGaNウェハ30の加工閾値を下回るようにGaNウェハ30の内部にレーザ光Lを照射することにより、析出領域Rを拡大し、仮想面15に渡る亀裂を形成する。
このように、まず、ガリウムを含むGaNウェハ30の内部にレーザ光Lを照射することにより、レーザ光Lの入射面である表面30aに対向する仮想面15に沿って、複数の改質スポット13、及び、析出されたガリウムを含む複数の析出領域Rを形成する。そして、後の工程において、集光点Cが改質スポット13に重ならないように、且つ、仮想面15におけるエネルギーがGaNウェハ30の加工閾値を下回るように、GaNウェハ30の内部にレーザ光Lを照射することにより析出領域Rを拡大し、仮想面15に渡る亀裂を形成する。この結果、上記知見のとおり、仮想面15に渡る亀裂を境界とした剥離により、凹凸の低減された好適な半導体デバイスを得ることが可能となる。
以上の実施形態は、本発明に係るレーザ加工方法及び半導体デバイス製造方法の一例を説明したものである。したがって、本発明に係るレーザ加工方法及び半導デイバス製造方法は、上記実施形態に限定されず、種々の変更が適用され得る。
例えば、レーザ加工方法においては、第2工程において、エピタキシャル成長のためのGaNウェハ30の加熱によって、複数の改質スポット13からそれぞれ延びる複数の亀裂を進展させることにより、仮想面15に渡る亀裂を形成してもよい。この場合、半導体層70の形成と、仮想面15に渡る亀裂の形成とを、同時に行うことが可能となる。
このとき、第1工程においては、GaNウェハ30に対して、複数の改質スポット13からそれぞれ延びる複数の亀裂14の進展を阻む周縁領域16を設けてもよい。この場合、第2工程でのエピタキシャル成長の際に、仮想面15に渡る亀裂が意図せずに形成されて剥離が生じることが抑制される。
また、上記の方法においては、第4工程においてGaNウェハ30の透過率を測定し、第5工程において当該透過率が基準値よりも高いと判定された場合には、改めて第1工程を実施して十分に改質スポット13を形成する場合について例示した。この場合には、半導体層70を形成した後のレーザ加工を低エネルギー化したり、レーザ光の照射を控えたりすることにより、半導体層70へのダメージを抑制できた。
一方で、第1工程において、透過率が基準値よりも高い状態を維持しつつ、第2工程において半導体層70を形成し、その後、第3工程において、GaNウェハ30の加工閾値を超えるエネルギーでのレーザ加工を実施してもよい。この場合、事前の改質スポット13の形成量が少なくなるので、第2工程のエピタキシャル成長の際に半導体層70の反りが生じることを抑制できる。なお、この場合であっても、全てのレーザ加工を半導体層70の形成の後に行う場合と比較して、半導体層70へのダメージが抑制される。また、この場合には、GaNウェハ30の透過率の測定及び判定は必須でない。
以上の実施形態は、本発明に係るレーザ加工方法及び半導体デバイス製造方法の一例を説明したものである。したがって、本発明に係るレーザ加工方法及び半導体デバイス製造方法は、上記実施形態に限定されず、種々の変更が適用され得る。
例えば、上記実施形態に係る方法に対して、第1例、第2例、及び、それぞれの変形例の要素を任意に適用できる。一例としては、第1工程においては、複数の改質スポット13からそれぞれ延びる複数の亀裂14が互いに繋がらないように、複数の改質スポット13を形成するこができる。また、第1工程においては、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数の改質スポット13として複数列の改質スポット13を形成すると共に、第3工程においては、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13の列間において仮想面15に沿って移動させることができる。
13…改質スポット、15…仮想面、30…GaNウェハ(半導体ウェハ)、30a…表面、70…半導体層、L…レーザ光、R…析出領域。

Claims (11)

  1. 半導体ウェハの内部において前記半導体ウェハの表面に対向する仮想面に沿って、前記半導体ウェハを切断するためのレーザ加工方法であって、
    前記表面から前記半導体ウェハの内部にレーザ光を照射することにより、前記半導体ウェハの内部において前記仮想面に沿って、複数の改質スポットを形成する第1工程と、
    前記第1工程の後に、前記半導体ウェハに対して、エピタキシャル成長によって半導体デバイスのための半導体層を形成する第2工程と、
    を備えるレーザ加工方法。
  2. 前記第2工程の後に、前記表面に交差する方向からみて集光点が前記改質スポットに重ならないように、前記半導体ウェハにおける前記半導体層が形成された面と異なる面から前記半導体ウェハの内部にレーザ光を照射することにより、前記仮想面に渡る亀裂を形成する第3工程を備える、
    請求項1に記載のレーザ加工方法。
  3. 前記半導体ウェハは、ガリウムを含み、
    前記第1工程においては、前記表面から前記半導体ウェハの内部にレーザ光を照射することにより、前記複数の改質スポット、及び、前記複数の改質スポットにおいて析出されたガリウムを含む複数の析出領域を形成し、
    前記第3工程においては、前記仮想面におけるエネルギーが前記半導体ウェハの加工閾値を下回るように前記半導体ウェハの内部にレーザ光を照射することにより、前記析出領域を拡大し、前記仮想面に渡る亀裂を形成する、
    請求項2に記載のレーザ加工方法。
  4. 前記第2工程においては、前記エピタキシャル成長のための前記半導体ウェハの加熱によって、前記複数の改質スポットからそれぞれ延びる複数の亀裂を進展させることにより、前記仮想面に渡る亀裂を形成する、
    請求項1に記載のレーザ加工方法。
  5. 前記第1工程においては、前記半導体ウェハに対して、前記複数の改質スポットからそれぞれ延びる複数の亀裂の進展を阻む周縁領域を設ける、
    請求項1〜4のいずれか一項に記載のレーザ加工方法。
  6. 前記第1工程と前記第2工程との間において、前記半導体ウェハの透過率を測定する第4工程と、
    前記第4工程と前記第2工程との間において、前記第4工程において測定された透過率が基準値よりも高いか否かを判定する第5工程と、
    をさらに備え、
    前記第5工程の判定の結果、当該透過率が基準値よりも高い場合には、前記第1工程を再び実施する、
    請求項1〜5のいずれか一項に記載のレーザ加工方法。
  7. 前記第1工程においては、前記複数の改質スポットからそれぞれ延びる複数の亀裂が互いに繋がらないように、前記複数の改質スポットを形成する、
    請求項1〜6のいずれか一項に記載のレーザ加工方法。
  8. 前記第1工程においては、パルス発振されたレーザ光の集光点を前記仮想面に沿って移動させることにより、前記複数の改質スポットとして複数列の改質スポットを形成し、
    前記第3工程においては、パルス発振されたレーザ光の集光点を前記複数列の改質スポットの列間において前記仮想面に沿って移動させる、
    請求項2又は3に記載のレーザ加工方法。
  9. 前記半導体ウェハは、窒化ガリウムを含む、
    請求項1〜8のいずれか一項に記載のレーザ加工方法。
  10. 請求項1〜9のいずれか一項に記載のレーザ加工方法を実施する工程と、
    前記仮想面に渡る亀裂を境界として前記半導体ウェハから複数の半導体デバイスを取得する工程と、
    を備える半導体デバイス製造方法。
  11. 前記仮想面は、前記表面に沿った方向に並ぶように複数設定されている、
    請求項10に記載の半導体デバイス製造方法。
JP2018239492A 2018-12-21 2018-12-21 レーザ加工方法、及び、半導体デバイス製造方法 Active JP7330695B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018239492A JP7330695B2 (ja) 2018-12-21 2018-12-21 レーザ加工方法、及び、半導体デバイス製造方法
TW108146729A TW202108275A (zh) 2018-12-21 2019-12-19 雷射加工方法、及半導體裝置製造方法
PCT/JP2019/049955 WO2020130108A1 (ja) 2018-12-21 2019-12-19 レーザ加工方法、及び、半導体デバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018239492A JP7330695B2 (ja) 2018-12-21 2018-12-21 レーザ加工方法、及び、半導体デバイス製造方法

Publications (2)

Publication Number Publication Date
JP2020102521A true JP2020102521A (ja) 2020-07-02
JP7330695B2 JP7330695B2 (ja) 2023-08-22

Family

ID=71101283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018239492A Active JP7330695B2 (ja) 2018-12-21 2018-12-21 レーザ加工方法、及び、半導体デバイス製造方法

Country Status (3)

Country Link
JP (1) JP7330695B2 (ja)
TW (1) TW202108275A (ja)
WO (1) WO2020130108A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12106967B2 (en) 2020-11-10 2024-10-01 Disco Corporation Wafer producing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113369677B (zh) * 2021-05-31 2022-05-31 深圳赛意法微电子有限公司 晶圆切割方法及切割设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535472A (ja) * 2000-05-30 2003-11-25 コミツサリア タ レネルジー アトミーク 脆弱化された基板およびそのような基板の製造方法
WO2010082267A1 (ja) * 2009-01-15 2010-07-22 並木精密宝石株式会社 エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
WO2011108698A1 (ja) * 2010-03-05 2011-09-09 並木精密宝石株式会社 エピタキシャル成長用内部改質基板、多層膜付き内部改質基板、半導体デバイス、半導体バルク基板およびそれらの製造方法
JP2012169363A (ja) * 2011-02-10 2012-09-06 Saitama Univ 基板加工方法
WO2017163548A1 (ja) * 2016-03-24 2017-09-28 日本碍子株式会社 種結晶基板の製造方法、13族元素窒化物結晶の製造方法および種結晶基板
JP2017183600A (ja) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 スライス方法およびスライス装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535472A (ja) * 2000-05-30 2003-11-25 コミツサリア タ レネルジー アトミーク 脆弱化された基板およびそのような基板の製造方法
WO2010082267A1 (ja) * 2009-01-15 2010-07-22 並木精密宝石株式会社 エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
WO2011108698A1 (ja) * 2010-03-05 2011-09-09 並木精密宝石株式会社 エピタキシャル成長用内部改質基板、多層膜付き内部改質基板、半導体デバイス、半導体バルク基板およびそれらの製造方法
JP2012169363A (ja) * 2011-02-10 2012-09-06 Saitama Univ 基板加工方法
WO2017163548A1 (ja) * 2016-03-24 2017-09-28 日本碍子株式会社 種結晶基板の製造方法、13族元素窒化物結晶の製造方法および種結晶基板
JP2017183600A (ja) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 スライス方法およびスライス装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12106967B2 (en) 2020-11-10 2024-10-01 Disco Corporation Wafer producing method

Also Published As

Publication number Publication date
WO2020130108A1 (ja) 2020-06-25
JP7330695B2 (ja) 2023-08-22
TW202108275A (zh) 2021-03-01

Similar Documents

Publication Publication Date Title
WO2020130109A1 (ja) レーザ加工方法、及び、半導体部材製造方法
KR20150135262A (ko) 레이저 가공 장치 및 레이저 가공 방법
KR102128416B1 (ko) 레이저 가공 장치 및 레이저 가공 방법
JP2016015463A (ja) SiC材料の加工方法及びSiC材料
WO2020130108A1 (ja) レーザ加工方法、及び、半導体デバイス製造方法
WO2020130054A1 (ja) レーザ加工方法、半導体部材製造方法及びレーザ加工装置
JP7123759B2 (ja) レーザスライス装置、及びレーザスライス方法
WO2020129569A1 (ja) レーザ加工方法、半導体部材製造方法、及び半導体対象物
JP5361916B2 (ja) レーザスクライブ方法
WO2020130110A1 (ja) レーザ加工装置
TWI687559B (zh) 基板製造方法
JP7246919B2 (ja) レーザ加工方法、半導体部材製造方法及びレーザ加工装置
WO2021153353A1 (ja) レーザ加工方法、半導体部材製造方法、及び、レーザ加工装置
WO2021153354A1 (ja) レーザ加工方法、半導体部材製造方法、及び、レーザ加工装置
US20230123795A1 (en) Singulation of optical devices from optical device substrates via laser ablation
WO2020129913A1 (ja) 半導体対象物加熱装置
JP2023183070A (ja) レーザ加工方法、半導体デバイスの製造方法、及びレーザ加工装置
KR20230123917A (ko) 레이저 가공 장치 및 레이저 가공 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230809

R150 Certificate of patent or registration of utility model

Ref document number: 7330695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150