WO2011108698A1 - エピタキシャル成長用内部改質基板、多層膜付き内部改質基板、半導体デバイス、半導体バルク基板およびそれらの製造方法 - Google Patents

エピタキシャル成長用内部改質基板、多層膜付き内部改質基板、半導体デバイス、半導体バルク基板およびそれらの製造方法 Download PDF

Info

Publication number
WO2011108698A1
WO2011108698A1 PCT/JP2011/055055 JP2011055055W WO2011108698A1 WO 2011108698 A1 WO2011108698 A1 WO 2011108698A1 JP 2011055055 W JP2011055055 W JP 2011055055W WO 2011108698 A1 WO2011108698 A1 WO 2011108698A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
epitaxial growth
single crystal
modified substrate
shape
Prior art date
Application number
PCT/JP2011/055055
Other languages
English (en)
French (fr)
Inventor
英雄 会田
奈津子 青田
仁志 星野
健次 古田
友三郎 浜元
慶司 本庄
Original Assignee
並木精密宝石株式会社
株式会社ディスコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社, 株式会社ディスコ filed Critical 並木精密宝石株式会社
Priority to US13/582,550 priority Critical patent/US20130161794A1/en
Priority to EP11750807.7A priority patent/EP2543752A4/en
Priority to CN201180009519.0A priority patent/CN102753737B/zh
Priority to JP2012503282A priority patent/JP5802943B2/ja
Priority to KR1020127022196A priority patent/KR101527457B1/ko
Publication of WO2011108698A1 publication Critical patent/WO2011108698A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Definitions

  • the present invention relates to an internally modified substrate for epitaxial growth, an internally modified substrate with a multilayer film, a semiconductor device, a semiconductor bulk substrate, and methods for producing them.
  • Nitride semiconductors typified by gallium nitride have a wide band gap and can emit blue light, and thus are widely used in LEDs (light emitting diodes), LDs (semiconductor lasers), and the like. In recent years, efforts have been actively made to further increase luminous efficiency and increase brightness.
  • a general nitride semiconductor light emitting device structure includes a sapphire substrate, a buffer layer made of GaN, an n-type contact layer made of n-type GaN, an n-type cladding layer made of n-type AlGaN, an active layer made of n-type InGaN, It has a double hetero structure in which a p-type cladding layer made of p-type AlGaN and a p-type contact layer made of p-type GaN are sequentially stacked.
  • the active layer is a single quantum well (SQW: Single Quantum Well) structure consisting of only a well layer made of InxGa1-xN (0 ⁇ X ⁇ 1), or a well layer made of InxGa1-xN (0 ⁇ X ⁇ 1), It is configured to include a multiple quantum well structure (MQW: In) with a barrier layer made of InyGa1-yN (0 ⁇ y ⁇ 1, y ⁇ x) (see Patent Document 1).
  • SQW Single Quantum Well
  • Non-Patent Document 1 investigates how an AlN buffer layer and a GaN layer are epitaxially grown on a sapphire substrate, and how thermal stress generated by the film formation is relieved depending on the film thickness of the GaN layer. Results are disclosed.
  • this Non-Patent Document 1 as the film thickness increases, the warpage of the substrate increases, and accordingly, interface defects, microcracks, dislocations, and macrocracks occur. It is clarified that stress is relieved.
  • FIG. 4 discloses an analysis method for in-situ observation of the warpage of a substrate that occurs through a process of epitaxially growing a GaN-based LED structure on a sapphire substrate. According to this, it is shown that the curvature of the sapphire substrate greatly changes due to changes in film forming material, film forming temperature, and film thickness in a series of film forming steps. Furthermore, it has been clarified that the emission wavelength in the substrate plane is made uniform by adopting a film forming process in which the curvature of the sapphire substrate becomes substantially zero at the growth stage of the InGaN layer as the active layer.
  • the warpage of the sapphire substrate changes greatly through a series of film forming steps, which affects the quality of the nitride semiconductor film and the uniformity of the emission wavelength.
  • the warp shape and the warp amount of the sapphire substrate are set so that the substrate curvature is substantially zero in the InGaN-based active layer using the difference in thermal expansion coefficient with the substrate. From such a background, various polishing techniques have been studied in order to control the shape and the amount of warpage of the sapphire substrate (see Patent Document 2 and the like).
  • Patent Document 3 when dividing a light emitting device in which a nitride semiconductor is laminated on a sapphire substrate, a pulsed laser is focused inside the sapphire substrate having a thickness of about 80 to 90 ⁇ m to form a division planned line of the light emitting device.
  • a technique for forming a corresponding altered region is known (Patent Document 3).
  • the technique disclosed in Patent Document 3 is a method for processing a sapphire substrate that can suppress a decrease in luminance of the light emitting element even when the sapphire substrate is irradiated with a laser beam and divided into individual light emitting elements. It is aimed.
  • the warpage of a single crystal substrate such as a sapphire substrate changes greatly through a series of film forming steps for obtaining a gallium nitride-based light emitting diode structure. This deteriorates the quality of the nitride semiconductor layer and the uniformity of the emission wavelength, leading to variations in the quality of the light emitting diodes and a decrease in yield.
  • the conventional method employs a method of setting the warp shape and the warp amount of the sapphire substrate so that the curvature of the substrate in the growth stage of the InGaN-based active layer becomes almost zero.
  • the amount of warpage generated in the growth stage of the InGaN-based active layer is previously applied to the sapphire substrate and offset.
  • variations in emission wavelength can be suppressed to some extent.
  • the sapphire substrate is greatly warped, resulting in deterioration of film quality and film quality uniformity, and uneven processing accuracy of substrate back grinding.
  • problems such as uneven exposure due to defocusing of photolithography. Since these greatly affect the yield of devices such as light emitting diodes, it is necessary to suppress the warpage of the substrate and the amount of change throughout the film forming process, and to reduce the warpage behavior of the substrate itself. There has never been a sapphire substrate.
  • a polished sapphire substrate usually warps the substrate due to residual processing strain or a difference in surface roughness between the upper and lower surfaces.
  • the surface roughness of the upper and lower surfaces is mainly a cause of warpage
  • the surface roughness of the upper and lower surfaces is slightly different.
  • a slight variation in the surface roughness within the substrate surface causes warping.
  • the present invention has been made in view of the above circumstances, and has an internal modified substrate for epitaxial growth having an arbitrary warped shape and / or amount of warpage, an internal modified substrate with a multilayer film using the same, a semiconductor device, and a semiconductor It is an object of the present invention to provide a bulk substrate and a manufacturing method thereof.
  • the above-mentioned subject is achieved by the following present invention. That is,
  • the internal modified substrate for epitaxial growth of the present invention is characterized by comprising a single crystal substrate and a thermally denatured layer formed inside the single crystal substrate by laser irradiation of the single crystal substrate.
  • One embodiment of the internally modified substrate for epitaxial growth of the present invention is preferably carried out so that the laser irradiation satisfies the irradiation condition described in at least one of A and B below.
  • ⁇ Irradiation condition A> ⁇ Laser wavelength: 200 nm to 400 nm ⁇ Pulse width: nanosecond order ⁇ Irradiation condition B> ⁇ Laser wavelength: 400 nm to 5000 nm ⁇ Pulse width: femtosecond order to picosecond order
  • the relative position in the thickness direction of the single crystal substrate is assumed to be 0% on one side which becomes the film formation surface, and the surface opposite to the film formation surface. Is assumed to be 100%, the heat-denatured layer is preferably provided in the range of 3% to 95% in the thickness direction of the single crystal substrate.
  • the thermally denatured layer is in a plane direction of the single crystal substrate, i) a shape in which a plurality of polygons having the same shape and the same size are regularly arranged; ii) a shape in which a plurality of circles or ellipses having the same shape and the same size are regularly arranged; iii) concentric circles, iv) a shape formed substantially point-symmetrically with respect to the center point of the single crystal substrate; v) a shape formed substantially symmetrical with respect to a straight line passing through the center point of the single crystal substrate; vi) stripe shape, and vii) Spiral shape It is preferable that it is provided in at least any one pattern shape selected from.
  • a shape in which a plurality of polygons having the same shape and the same size are regularly arranged is a lattice shape.
  • the pitch of the lines constituting the pattern having a lattice shape is preferably in the range of 50 ⁇ m to 2000 ⁇ m.
  • the material of the single crystal substrate is preferably at least one selected from sapphire, nitride semiconductor, Si, GaAs, quartz and SiC. .
  • the shape of the single crystal substrate before forming the heat-denatured layer is such that the film formation surface is concave, and the curvature of the concave surface is greater than 0 km ⁇ 1 and 160 km. ⁇ 1 or less is preferable.
  • the shape of the single crystal substrate before forming the heat-denatured layer is such that the film formation surface is concave, and the curvature of the concave surface is larger than 40 km ⁇ 1 and 150 km. ⁇ 1 or less is preferable.
  • the shape of the single crystal substrate before forming the heat-denatured layer is such that the film formation surface is concave, and the curvature of the concave surface is greater than 85 km ⁇ 1 and 150 km. ⁇ 1 or less is preferable.
  • the single crystal substrate preferably has a diameter of 50 mm or more and 300 mm or less.
  • the thickness of the single crystal substrate is preferably 0.05 mm or more and 5.0 mm or less.
  • the single crystal substrate is such that the film forming surface is a polished surface, and laser irradiation of the single crystal substrate is conducted through the polished surface. preferable.
  • An internal modified substrate with a multilayer film according to the present invention includes a single crystal substrate and a heat-denatured layer formed inside the single crystal substrate by laser irradiation of the single crystal substrate, and 2 on one side of the single crystal substrate.
  • a multilayer film having one or more layers is provided.
  • the internal modified substrate with a multilayer film of the present invention it is preferable that at least any one layer constituting the multilayer film is a nitride semiconductor crystal layer.
  • a semiconductor device of the present invention is characterized by including the internal modified substrate with a multilayer film according to claim 14.
  • the semiconductor device is preferably a light emitting element, an electronic device, or a light receiving element.
  • the semiconductor bulk substrate of the present invention is characterized by comprising a multilayer film provided in the internal modified substrate with a multilayer film according to claim 14.
  • the semiconductor bulk substrate is AlxInyGazN.
  • (x + y + z 1, x ⁇ 0, y ⁇ 0, z ⁇ 0).
  • the method for producing an internally modified substrate for epitaxial growth according to the present invention is characterized in that a thermally denatured layer is formed inside a single crystal substrate by laser irradiation on the single crystal substrate.
  • One embodiment of the method for producing an internally modified substrate for epitaxial growth of the present invention is preferably carried out so that the laser irradiation satisfies the irradiation condition described in at least one of the following A and B.
  • ⁇ Irradiation condition A> ⁇ Laser wavelength: 200 nm to 400 nm ⁇ Pulse width: nanosecond order ⁇ Irradiation condition B> ⁇ Laser wavelength: 400 nm to 5000 nm ⁇ Pulse width: femtosecond order to picosecond order
  • the relative position in the thickness direction of the single crystal substrate is assumed to be 0% on one side which becomes the film formation surface, and opposite to the film formation surface.
  • the heat-denatured layer is preferably formed so as to be within a range of 3% to 95% in the thickness direction of the single crystal substrate.
  • the thermally denatured layer is in a plane direction of the single crystal substrate. i) a shape in which a plurality of polygons having the same shape and the same size are regularly arranged; ii) a shape in which a plurality of circles or ellipses having the same shape and the same size are regularly arranged; iii) concentric circles, iv) a shape formed substantially point-symmetrically with respect to the center point of the single crystal substrate; v) a shape formed substantially symmetrical with respect to a straight line passing through the center point of the single crystal substrate; vi) stripe shape, and vii) Spiral shape Preferably, it is formed so as to draw at least one pattern shape selected from the following.
  • the shape in which a plurality of polygons having the same shape and the same size are regularly arranged is preferably a lattice shape.
  • the pitch of lines constituting a pattern having a lattice shape is in a range of 50 ⁇ m to 2000 ⁇ m.
  • the material of the single crystal substrate is at least one selected from sapphire, nitride semiconductor, Si, GaAs, quartz and SiC. It is preferable.
  • the shape of the single crystal substrate before forming the heat-denatured layer is such that the film formation surface is concave and the curvature of the concave surface is 0 km ⁇ 1. It is preferably larger than 160 km ⁇ 1 .
  • the shape of the single crystal substrate before forming the heat-denatured layer is such that the film formation surface is concave and the curvature of the concave surface is 40 km ⁇ 1. It is preferably larger than 150 km ⁇ 1 .
  • the shape of the single crystal substrate before forming the heat-denatured layer is such that the film formation surface is concave and the curvature of the concave surface is 85 km ⁇ 1. It is preferably larger than 150 km ⁇ 1 .
  • the diameter of the single crystal substrate is preferably 50 mm or more and 300 mm or less.
  • the thickness of the single crystal substrate is preferably 0.05 mm or more and 5.0 mm or less.
  • the single crystal substrate has a polished surface as a film forming surface, and laser irradiation of the single crystal substrate is conducted through the polished surface.
  • the method for producing an internal modified substrate with a multilayer film according to the present invention is such that a heat-denatured layer is formed inside the single crystal substrate by laser irradiation to the single crystal substrate, and two or more layers are formed on one side of the single crystal substrate.
  • a multilayer film having the following is formed.
  • At least any one layer constituting the multilayer film is a nitride semiconductor crystal layer.
  • a method for manufacturing a semiconductor device according to the present invention is characterized in that the semiconductor device is manufactured using the internal modified substrate with a multilayer film according to claim 14.
  • the semiconductor device is preferably a light emitting element, an electronic device, or a light receiving element.
  • the method for producing a semiconductor bulk substrate according to the present invention is characterized in that the semiconductor bulk substrate is formed by using a multilayer film provided in the internal modified substrate with a multilayer film according to claim 14.
  • an internally modified substrate for epitaxial growth having an arbitrary warped shape and / or amount of warpage, an internally modified substrate with a multilayer film using the same, a semiconductor device, and a semiconductor bulk substrate, As well as methods for their production.
  • FIG. 2A is a plan view showing a stripe shape in which a plurality of lines are formed perpendicular to the orientation flat surface of the substrate
  • FIG. 2B is a plan view showing the plurality of lines in the orientation flat of the substrate
  • 2C is a plan view showing a stripe shape formed horizontally with respect to the surface
  • FIG. 2C is a plan view showing a lattice shape in which the arrangement pattern shapes shown in FIGS. 2A and 2B are combined.
  • FIG. 2D regular hexagons of the same size are regularly arranged so that all six vertices of the regular hexagon overlap with any one of the regular hexagons adjacent to the regular hexagon.
  • FIG. 2E is a plan view showing a concentric shape. It is a figure which shows the epitaxial growth process of the nitride semiconductor layer which is an example of a multilayer film. An example of in-situ observation in the epitaxial growth process of the nitride semiconductor layer shown in FIG. 3 is shown. It is a figure which shows the relationship between the curvature amount of a board
  • FIG. 10 is a diagram showing an In-situ observation result of Sample 10 according to Example 3.
  • FIG. 10 is a diagram showing an In-situ observation result of Sample 12 according to Example 3.
  • FIG. 6 is a diagram showing an In-situ observation result of Sample 14 according to Example 3.
  • FIG. 10 is a diagram showing an In-situ observation result of Sample 16 according to Example 3.
  • FIG. 10 is a diagram showing an In-situ observation result of Sample 18 according to Example 3.
  • FIG. 10 is a diagram showing an In-situ observation result of Sample 20 according to Example 3. It is a figure which shows the in-situ observation result of the sample which concerns on Example 8 and Example 9.
  • FIG. 10 is a diagram showing an In-situ observation result of Sample 10 according to Example 3.
  • FIG. 10 is a diagram showing an In-situ observation result of Sample 12 according to Example 3.
  • FIG. 10 is a diagram showing an In-situ observation result of Sample 20 according to Example 3. It is a figure
  • the internal modified substrate for epitaxial growth of this embodiment includes a single crystal substrate and a heat-denatured layer formed inside the single crystal substrate in the thickness direction by laser irradiation on the single crystal substrate. And Note that in the case of using a single crystal substrate whose surface to be a film formation surface is a polishing surface, it is particularly preferable that laser irradiation to the single crystal substrate is performed through the polishing surface.
  • the warpage shape and / or the warpage amount are arbitrarily controlled according to the intended use of the internal modified substrate for epitaxial growth of the present embodiment.
  • the stress generated by the film formation can be offset by the stress of the single crystal substrate on which the heat-denatured layer is formed.
  • the warping behavior of the substrate can be reduced.
  • the “thermally modified layer” is a layer formed by locally heating a partial region inside the thickness direction of the single crystal substrate. When formed in one region divided into two equal parts in the thickness direction of the single crystal substrate, it has the effect of warping the substrate so that the surface on the region side where the heat-denaturing layer is formed is convex.
  • this heat-denatured layer As a method for forming this heat-denatured layer, a method of irradiating a single crystal substrate with laser is used. In this case, due to multiphoton absorption of atoms present in the laser irradiated region, the region is locally heated, and some modification such as a change in crystal structure or crystallinity occurs in the surrounding region. Thus, a heat-denatured layer is formed.
  • the internally modified substrate for epitaxial growth of this embodiment can be manufactured through at least a step of forming a heat-denatured layer in the thickness direction of the single crystal substrate by laser irradiation on the single crystal substrate.
  • the laser irradiation may be carried out under any irradiation conditions as long as a heat-denatured layer can be formed. However, in general, energy can be concentrated in a short time width, so that a high peak can be obtained. It is preferable to carry out within the ranges shown in 1) and 2) below by using a pulse laser that emits laser light intermittently in that an output can be obtained.
  • Pulse width femtosecond order to nanosecond order (1 fs to 1000 ns)
  • the laser wavelength and pulse width are the light transmittance / light absorption due to the material of the single crystal substrate that is the target of laser irradiation, the size and pattern accuracy of the heat-denatured layer formed in the single crystal substrate, It is appropriately selected in consideration of a laser device that can be used practically.
  • ⁇ Irradiation condition A> Laser wavelength: 200 nm to 400 nm -Pulse width: nanosecond order (1 ns to 1000 ns). More preferably, it is 10 ns to 15 ns.
  • the irradiation condition A uses a laser having a shorter wavelength than that of the irradiation condition B. For this reason, when laser irradiation is carried out under the same conditions other than the laser wavelength and pulse width, the laser necessary for obtaining the same degree of warp correction effect in the irradiation condition A than in the irradiation condition B. Processing time can be shortened.
  • the wavelength of the laser to be used is preferably selected to be longer than the absorption edge wavelength of the single crystal substrate that is the target of laser irradiation.
  • the irradiation condition B can be used.
  • ⁇ Pulse width 50ns to 200ns
  • Repetition frequency 10 kHz to 500 kHz
  • Irradiation energy 3 ⁇ J-30 ⁇ J
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m
  • Sample stage scanning speed 50 mm / s to 1000 mm / s (more preferably 100 mm / s to 1000 mm / s)
  • the irradiation condition B can be used.
  • ⁇ Pulse width 30 ns to 80 ns
  • Repetition frequency 10 kHz to 500 kHz
  • Irradiation energy 8 ⁇ J ⁇ 20 ⁇ J
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m
  • Sample stage scanning speed 50 mm / s to 1000 mm / s (more preferably 100 mm / s to 1000 mm / s)
  • the irradiation condition B can be used.
  • ⁇ Pulse width 200 fs to 800 fs
  • Repetition frequency 10 kHz to 500 kHz
  • Irradiation energy 3 ⁇ J ⁇ 6 ⁇ J
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m
  • Sample stage scanning speed 50 mm / s to 1000 mm / s (more preferably 100 mm / s to 1000 mm / s)
  • the irradiation condition A can be used.
  • ⁇ Pulse width 200 fs to 800 fs
  • Repetition frequency 10 kHz to 500 kHz
  • Irradiation energy 3 ⁇ J ⁇ 6 ⁇ J
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m
  • Sample stage scanning speed 50 mm / s to 1000 mm / s (more preferably 100 mm / s to 1000 mm / s)
  • the irradiation condition A can be used.
  • ⁇ Pulse width 10ns to 15ns
  • Repetition frequency 10 kHz to 500 kHz
  • Irradiation energy 10 ⁇ J ⁇ 20 ⁇ J
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m
  • Sample stage scanning speed 50 mm / s to 1000 mm / s (more preferably 100 mm / s to 1000 mm / s)
  • Tables 1 and 2 show examples of laser irradiation conditions in the case where a thermally denatured layer is formed on a Si substrate, a GaAs substrate, a quartz substrate, a lithium tantalate substrate, and a glass substrate.
  • the surface of the single crystal substrate on the laser irradiation side is particularly preferably in a mirror state. In order to make the laser-irradiated surface into a mirror state, for example, mirror polishing can be performed.
  • any known single crystal material capable of forming a heat-denatured layer by laser irradiation can be used.
  • sapphire, nitride semiconductor, Si, GaAs, quartz crystal, SiC and the like can be mentioned.
  • Si, GaAs, quartz, or SiC can be particularly preferably used.
  • quartz or glass may be used instead of a single crystal substrate.
  • the single crystal substrate a substrate in which at least one surface is mirror-polished is usually used.
  • the multilayer film is formed on the mirror-polished surface side.
  • a single crystal substrate whose both surfaces are mirror-polished may be used as necessary. In this case, any one surface can be arbitrarily used as a film formation surface.
  • the shape of the single crystal substrate in the planar direction is not particularly limited, and may be, for example, a square shape, but may be a circular shape from the viewpoint of easy application in a production line of various known elements.
  • a circular shape provided with an orientation flat surface is preferable.
  • the diameter of the single crystal substrate is preferably 50 mm or more, more preferably 75 mm or more, and more preferably 150 mm or more. Further preferred.
  • the upper limit of the diameter is not particularly limited, but is preferably 300 mm or less from a practical viewpoint.
  • the thickness of the single crystal substrate is preferably 5.0 mm or less, preferably 3.0 mm or less, and more preferably 2.0 mm or less.
  • the lower limit of the thickness is not particularly limited, and is preferably 0.05 mm or more and more preferably 0.1 mm or more from the viewpoint of ensuring the rigidity of the single crystal substrate.
  • the shape of the single crystal substrate 20 is a circular shape or a circular shape provided with an orientation flat surface
  • the thickness is preferably 0.3 mm or more, and the diameter is 150 mm.
  • the thickness is more than 0.5 mm, the thickness is preferably 0.5 mm or more.
  • FIG. 1 is a schematic explanatory view showing an example of a method for manufacturing an internally modified substrate for epitaxial growth according to this embodiment.
  • the single crystal substrate 1 fixed to a sample stage (not shown). Fixing is preferably performed so that the warp of the single crystal substrate 1 can be corrected, for example, by vacuum suction or the like. Then, the laser irradiation apparatus 2 irradiates the laser from the surface (film formation surface) side of the single crystal substrate 1 fixed to the sample stage. At this time, the laser is focused inside the thickness direction of the single crystal substrate 1 and the laser irradiation device 2 and the single crystal substrate 1 are relatively moved in the horizontal direction, so that the spot-shaped modified region 3 ( The heat-denatured layer is formed in a continuous line shape.
  • the spot-like modified region 3 When viewed locally, the spot-like modified region 3 is formed only in the portion irradiated with the laser instantaneously, and its size depends on the laser spot size, laser intensity, and pulse width.
  • the size and degree of modification of the thermally denatured layer with respect to the planar direction and thickness direction of the single crystal substrate 1 can be controlled.
  • the length of the spot-shaped modified region 3 formed in a line shape is the relative moving speed of the laser irradiation apparatus 1 with respect to the single crystal substrate 1 (for example, when the sample stage is movable, By appropriately selecting the scanning speed) and the laser repetition frequency, the plurality of heat-denatured layers in the plane direction of the single crystal substrate 1 can be controlled at intervals.
  • the modified region 3 is a region formed by locally generating multiphoton absorption in a portion irradiated with a laser.
  • the stress of the entire single crystal substrate is controlled, and the warp shape and / or the amount of warpage of the single crystal substrate is precisely controlled. Can be controlled.
  • the heat-denatured layer is preferably provided in the pattern shape shown below. That is, the heat-denatured layer is preferably provided in at least one pattern shape selected from the following i) to vii) with respect to the planar direction of the single crystal substrate.
  • Concentric circle iv) A shape formed substantially point-symmetrically with respect to the center point of the single crystal substrate v) A shape formed substantially symmetrical with respect to a straight line passing through the center point of the single crystal substrate.
  • the shape is preferably i) a shape in which a plurality of polygons having the same shape and the same size are regularly arranged. Further, i) as a shape in which a plurality of polygons having the same shape and the same size are regularly arranged, any one of a plurality of the same shapes and the same size quadrangles adjacent to each other on four sides constituting each quadrangle. It is particularly preferable that the shape is regularly arranged so as to overlap one side, that is, a lattice shape. In this case, laser scanning may be performed only in two directions, ie, the vertical direction and the horizontal direction, and laser processing becomes easier, and design of warpage amount control and shape control of the single crystal substrate becomes easier.
  • the pitch of the lines constituting the pattern having the lattice shape is preferably in the range of 50 ⁇ m to 2000 ⁇ m, and more preferably in the range of 100 ⁇ m to 1000 ⁇ m.
  • the pitch is preferably in the range of 50 ⁇ m to 2000 ⁇ m, and more preferably in the range of 100 ⁇ m to 1000 ⁇ m.
  • FIG. 2 is a plan view showing an example of an arrangement pattern shape of the heat-denatured layer with respect to the planar direction of the single crystal substrate.
  • An example of the arrangement pattern shape of a modified layer is shown.
  • the arrangement pattern shape of the heat-denaturing layer is, for example, as shown in FIG. 2, for example, a stripe shape in which a plurality of lines are formed perpendicularly or parallel to the orientation flat surface of the substrate (FIGS. 2A and 2B). ), A lattice shape combining both of them (FIG. 2C), and the like.
  • regular hexagons of the same size are regularly arranged so that all six vertices of the regular hexagon overlap with any one of the regular hexagons adjacent to the regular hexagon.
  • FIG. 2 (d) concentric circular shape
  • FIG. 2 (e) concentric circular shape
  • the width 4 shown in FIG. 2A means the pitch between lines.
  • the warp shape and / or the amount of warpage may be increased depending on the intended use of the internally modified substrate for epitaxial growth. Controlled arbitrarily.
  • the stress generated by the film formation can be offset by the stress of the single crystal substrate on which the heat-denatured layer is formed.
  • the warping behavior of the substrate can be reduced.
  • it is difficult to correct the warp if the heat-denatured layer is provided at a position deviated from the thickness direction or the plane direction of the single crystal substrate, is irregularly arranged, or is asymmetrically arranged. It may become.
  • the relative formation position for forming the heat-denatured layer with respect to the thickness direction of the single crystal substrate affects the amount of change in the warp amount of the single crystal substrate after forming the heat-denatured layer, and the amount of change increases as the formation position is closer to the surface. Become.
  • the thickness direction of the single crystal substrate is assumed to be a relative position 5 in the thickness direction of the single crystal substrate, and one side serving as the film formation surface is assumed to be 0%.
  • the heat-denatured layer is preferably provided in a range of 3% to 95% in the thickness direction of the single crystal substrate, preferably 3% to 50%. More preferably, it is provided within the range.
  • the plurality of heat-denatured layers are all present at the same position as the position of the heat-denatured layer in the thickness direction of the single crystal substrate, but they may be present at different positions.
  • the individual heat-denatured layers should not be significantly lost so as not to significantly reduce the warping correction effect caused by the provision of the heat-denatured layers. May be arranged at different positions with respect to the thickness direction of the single crystal substrate.
  • the length 6 of the thermally denatured layer with respect to the thickness direction of the single crystal substrate is determined depending on the laser spot size, irradiation energy (laser power / repetition frequency), and pulse width, and is usually several ⁇ m to several tens of tens. It is in the range of ⁇ m.
  • the warp shape and / or the amount of warpage of the single crystal substrate is controlled efficiently and precisely.
  • a modified substrate can be obtained.
  • the internal modified substrate with a multilayer film of this embodiment is characterized in that a multilayer film having two or more layers is provided on the film formation surface of the internal modified substrate for epitaxial growth obtained by the present invention. To do.
  • the “multilayer film” has two or more layers.
  • each layer constituting this multilayer film is composed of continuous layers having the same film thickness in the plane direction of the single crystal substrate, and does not have a step that allows the outermost layer film to penetrate (electrodes). Added to describe that it has no formation site.)
  • the layer structure of the multilayer film, and the film thickness, material and crystallinity / non-crystallinity of each layer constituting the multilayer film are prepared by further post-processing using the internal modified substrate with the multilayer film of this embodiment. It is appropriately selected according to the type of element to be manufactured and the manufacturing process applied when manufacturing the element.
  • the method for forming the multilayer film is not particularly limited, and a known film formation method can be used, and film formation can be performed by employing different film formation methods and / or film formation conditions for each layer constituting the multilayer film.
  • the film forming method include a liquid phase film forming method such as a plating method, but a vapor phase film forming method such as a sputtering method or a CVD method (Chemical Vapor Deposition) is preferably used.
  • vapor phase film formation such as MOCVD (Metal Organic Chemical Vapor Deposition), HVPE (Hydride vapor phase epitaxy), MBE (Molecular Beam Epitaxy), etc.
  • the method is used. It is particularly preferable that the film formation surface of the internally modified substrate for epitaxial growth is in a mirror state. In order to make the surface on which the multilayer film is formed into a mirror surface state, for example, mirror polishing can be performed.
  • At least one of the layers constituting the multilayer film is a crystalline layer.
  • at least one of the multilayer films is a nitride semiconductor crystal layer.
  • the epitaxial growth can be performed using the crystal plane exposed on the film-forming surface of the epitaxially reformed internal modified substrate, at least the formation of the epitaxially reformed internal modified substrate among the layers constituting the multilayer film.
  • the layer in direct contact with the film surface is preferably a crystalline layer, and all layers constituting the multilayer film may be crystalline layers.
  • the epitaxial growth includes homoepitaxial growth and heteroepitaxial growth including the same composition or mixed crystal.
  • each layer constituting the multilayer film is also appropriately selected according to the element to be manufactured.
  • each layer is configured.
  • the material is also preferably an inorganic material such as a metal material, a metal oxide material, or an inorganic semiconductor material, and it is desirable that all layers be composed of these inorganic materials.
  • MOCVD method when the MOCVD method is used, there is a possibility that a small amount of an organic metal-derived organic substance is mixed in this inorganic material.
  • each layer constituting the multilayer film includes various nitride semiconductors such as a light emitting element used for a surface emitting laser, a light receiving element used for an optical sensor or a solar cell, a semiconductor element used for an electronic circuit, etc.
  • suitable devices for the manufacture of such devices include GaN-based, AlGaN-based, and InGaN-based nitride semiconductor crystal layers.
  • a sapphire substrate is preferably used as the single crystal substrate.
  • FIG. 3 is a diagram showing an epitaxial growth process of a nitride semiconductor layer which is an example of a multilayer film.
  • a sapphire substrate is used as an internally modified substrate for epitaxial growth, and first, the sapphire substrate is thermally cleaned (FIG. 3A).
  • the buffer layer 8 is grown (FIG. 3B).
  • an n-GaN layer 9 (FIG. 3C) and an InGaN-based active layer 10 having a multiple quantum well structure are grown (FIG. 3D).
  • FIG. 4 shows an in-situ observation example in the epitaxial growth process of the nitride semiconductor layer shown in FIG.
  • FIG. 5 is a diagram showing the relationship between the amount of warpage of the substrate and the curvature.
  • FIG. 6 is a diagram showing an in-situ observation example when forming the multilayered internal modified substrate according to the present embodiment.
  • Non-Patent Document 2 it is possible to quantitatively analyze the behavior of the sapphire substrate during film formation by in-situ observation. That is, it is possible to know how the warpage shape and the warpage amount of the substrate change during film formation.
  • the horizontal axis represents time
  • the vertical axis represents the curvature (km ⁇ 1 ) of the substrate on the film formation surface.
  • the positive direction on the vertical axis indicates that the film formation surface has a convex shape
  • the negative direction indicates that the film formation surface has a concave shape.
  • the amount of warpage of the substrate can be calculated from the curvature of the substrate.
  • the radius of curvature of the substrate is indicated by R
  • the amount of warpage X of the substrate having the curvature 1 / R and the diameter of the substrate is approximately indicated by D.
  • Spectra A in FIG. 4 shows an example using a conventional sapphire substrate in which a heat-denatured layer is not formed.
  • 4A to 4E correspond to the respective steps of the film forming process. That is, it corresponds to (a) substrate thermal cleaning, (b) low temperature buffer layer growth, (c) n-GaN layer growth, (d) InGaN-based active layer growth, and (e) cool down.
  • the temperature is lowered to about 700 to 800 ° C., and (d) in the growth stage of the InGaN-based active layer, the thickness of the InGaN-based active layer and the uniformity of the In composition in the InGaN are in the plane of the emission wavelength. Since it affects uniformity, it affects the manufacturing yield of LED chips. Since the film thickness and In composition of the InGaN layer are affected by the film formation temperature, it is ideal that the curvature of the substrate during film formation be as close to 0 as possible in order to improve temperature uniformity within the substrate surface. .
  • the substrate curvature in the InGaN-based active layer growth stage can be made almost zero, while the substrate in the film forming process It can be seen that there is a disadvantage that the behavior is large and the curvature of the substrate after film formation is increased.
  • a modified region pattern is formed inside a conventional sapphire substrate to produce an epitaxially grown internal modified substrate of the present invention, and a first example of In-situ when a nitride semiconductor layer is formed Is shown in the spectrum B in FIG.
  • the modified region pattern is formed so that the film formation surface is warped more convex than the conventional sapphire substrate. Thereby, the warpage behavior of the substrate can be reduced as compared with the spectrum A using the conventional sapphire substrate.
  • Spectra C can further reduce the behavior of the substrate throughout the film forming process. That is, the effect of offsetting the stress generated during the film formation with the stress of the substrate is greater than that of the spectra A and B.
  • the nitride semiconductor layer obtained in the above-mentioned spectra B and C is less warped of the substrate during film formation and less warped of the substrate than when a conventional sapphire substrate is used. Quality and uniformity are improved.
  • the initial state of the internally modified substrate for epitaxial growth greatly warped the convex surface, and as a result, the curvature of the substrate at the InGaN-based active layer growth stage and at the end of film formation was the same as that of the conventional sapphire substrate. The problem of becoming larger than the case occurs.
  • the internally modified substrate for epitaxial growth according to the present invention reduces the warping behavior of the substrate as shown by spectrum C in FIG. 6, and at the same time, the growth of the InGaN-based active layer and at the end of film formation. It is desirable that the initial state is such that the curvature can be reduced.
  • the quality and uniformity of the nitride semiconductor layer film can be improved, and the uniformity of the emission wavelength of the nitride semiconductor light emitting device can be improved.
  • a sapphire substrate that can cancel in advance the substrate curvature that greatly warps the convex surface due to the formation of the heat-denatured layer, before the heat-denatured layer is formed.
  • a nitride semiconductor layer having a concave surface and a concave surface with a curvature greater than 0 km ⁇ 1 and 160 km ⁇ 1 can be used as the sapphire substrate for forming the heat-denatured layer.
  • the nitride semiconductor layer is formed with a concave surface, and the curvature of the concave surface is preferably 40 km ⁇ 1 or more and 150 km ⁇ 1 or less, more preferably 85 km ⁇ 1 or more and 150 km ⁇ 1 or less.
  • an internally modified substrate with a multilayer film provided with a nitride semiconductor layer having improved nitride semiconductor layer quality and uniformity is obtained. be able to.
  • Structuring various semiconductor devices using the internal modified substrate with a multilayer film obtained by the present invention can improve device quality and yield.
  • the semiconductor device include a light emitting element, an electronic device, a light receiving element, and the like.
  • a polishing process, a division line formation process, and a division process may be performed in this order in addition to the element part formation process.
  • the device manufacturing method using the internal modified substrate with a multilayer film according to the present embodiment specifically includes the following steps (1) to (4):
  • An element including a single crystal substrate having a size substantially corresponding to the element portion can be manufactured.
  • the heat-denatured layer remaining in the single crystal substrate is used as a planned dividing line after being polished to such an extent that the heat-denatured layer is not completely removed in the polishing process.
  • the multilayer film is individualized into individual element portions, alignment for laser irradiation cannot be performed after confirming the existence positions of the element portions. For this reason, it is difficult to accurately form the planned division lines corresponding to the individual element portions by the above-described method of forming the heat-denatured layer that also functions as the planned division lines before the individual element portions are manufactured. It is.
  • a thick film of a crystalline film having a film thickness capable of being self-supporting can be formed by homoepitaxial growth using the internal modified substrate with a multilayer film of the present invention as a base material. Further, the bulk film can be obtained by separating the thick film of the crystalline film from the base material made of the crystal film.
  • a bulk substrate made of a thick crystalline film can also be obtained by forming a thick film of a crystalline film on the epitaxially modified internal modified substrate of the present invention and separating it from the epitaxially grown internal modified substrate. Can do.
  • the internally modified substrate for epitaxial growth of the present invention warpage of the substrate that occurs during or after film formation can be suppressed, so that a thick film can be formed without generating cracks.
  • the above-described nitride semiconductor layer thick film is formed on an epitaxially reformed internal modified substrate, warpage of the substrate that occurs during or after film formation can be suppressed, and self-supporting without generating cracks.
  • a thick nitride semiconductor layer having a possible thickness can be obtained.
  • the nitride semiconductor bulk substrate can be obtained without using a complicated process by separating the thick film of the nitride semiconductor layer thus obtained from the internal modified substrate.
  • the film thickness that can stand by itself is preferably 50 ⁇ m or more.
  • an MOCVD method, an HVPE method, an LPE method, or the like can be used as a method for forming a thick film.
  • Example 1 As a sapphire substrate for forming the heat-denatured layer, a 2-inch sapphire substrate with one side polished was used. The substrate thickness was 430 ⁇ m. The warpage shape and warpage amount of the substrate before forming the heat-denatured layer were measured with a laser interferometer.
  • a sapphire substrate was placed on the sample stage of the pulse laser device, and a modified region pattern was formed inside the sapphire substrate.
  • Table 4 shows the pattern shapes of Samples 1 to 9, the pitch between each line, the formation position, the length of the heat-modified layer, and the processing time per sheet.
  • the substrate shape of the sapphire substrate after forming the modified region pattern was measured with a laser interferometer, and the amount of warpage and the substrate thickness were measured with a linear gauge and a laser interferometer.
  • ⁇ O. F. Is perpendicular to the orientation flat of the sapphire substrate, // O. F. Indicates that it is parallel to the orientation flat.
  • Table 5 shows the warpage shape and warpage amount of the substrate before and after the formation of the modified region pattern, and the symmetry of the warpage shape in the substrate surface after the heat-denatured layer is formed.
  • the warpage shape of the substrate indicates the shape on the film formation surface side.
  • Example 2 A 4-inch sapphire substrate with one side polished was used as the sapphire substrate for forming the internal modified region pattern.
  • the substrate thickness was 650 ⁇ m.
  • the warpage shape and the warpage amount of the substrate before forming the modified region pattern were measured with a laser interferometer.
  • Table 6 shows the shape, pitch, and formation position of the heat-denatured layers of Samples 10 to 19.
  • the warp shape of the substrate after forming the heat-denatured layer was measured with a laser interferometer, and the warp amount was measured with a linear gauge.
  • Table 7 shows a comparison of the substrate shape before and after the heat-modified layer formation, the amount of warpage, and the curvature calculated from the amount of warpage.
  • the warpage shape of the substrate indicates the shape on the film formation surface side.
  • FIG. 7 shows the formation position and the pitch dependence between each line with respect to the change amount of the substrate curvature after the heat-denatured layer is formed.
  • Example 3 Among the sapphire substrates on which the heat-denatured layer was formed in Example 2, samples 10, 12, 14, 16, and 18 and a conventional sapphire substrate on which no heat-denatured layer was formed (referred to as sample 20) were simultaneously introduced into the MOCVD apparatus. A gallium nitride layer was grown on the sapphire substrate. Table 8 shows the growth temperature and film thickness in each film forming step.
  • (1) to (4) in Table 10 are (1) during thermal cleaning transition to the initial state of the substrate, (2) during growth of the n-GaN layer relative to the initial state of the substrate, (3 ) At the time of GaN / InGaN active layer growth transition with respect to the end of n-GaN growth, (4) shows the amount of change in curvature after the end of cool-down with respect to the initial state of the substrate.
  • the substrate curvature is smaller than that of the other samples. The effect of suppressing the amount of change was observed.
  • Sample 10 was found to have improved film thickness uniformity as compared with sample 20 where the heat-denatured layer was not formed. This is considered to be because the n-GaN layer was grown in a flatter state by forming the heat-denatured layer at a shallow position from the surface of the sapphire substrate.
  • the FWHM values of the (001) plane and the (102) plane of the gallium nitride layer obtained by X-ray diffraction rocking curve measurement are 203 arcsec and 418 arcsec for the sample 10, respectively, and for the sample 20 where the heat-denatured layer is not formed, respectively. 242 arcsec and 579 arcsec. From this result, it was found that the crystallinity of the gallium nitride layer was improved in the sample 10 in which the heat-denatured layer was formed compared to the sample 20 in which the heat-denatured layer was not formed.
  • Example 4 As a sapphire substrate for forming the heat-denatured layer, a 2-inch substrate with one side polished was used. The substrate thickness was 430 ⁇ m. The warpage shape and warpage amount of the substrate before forming the heat-denatured layer were measured with a laser interferometer.
  • the above-mentioned two sapphire substrates are respectively placed on the sample stage of the UV laser device having the laser conditions shown in Table 11 and the Fs laser device having the laser conditions shown in Table 3, and the heat-modified layer inside the sapphire substrate. Was formed.
  • Table 12 shows the pitch between the lines of Example 4 and Example 5, the formation position, and the laser pulse interval.
  • the substrate shape of the sapphire substrate before and after the formation of the thermally denatured layer was measured with a laser interferometer, and the amount of warpage and the substrate thickness were measured with a linear gauge and a laser interferometer.
  • Table 13 shows the warpage shape and warpage amount of the substrate before and after the formation of the thermally denatured layer.
  • the warpage shape of the substrate indicates the shape on the film formation surface side.
  • Example 6 As a sapphire substrate for forming the heat-denatured layer, a 2-inch substrate with one side polished was used. The substrate thickness was 430 ⁇ m. The warpage shape and warpage amount of the substrate before forming the heat-denatured layer were measured with a laser interferometer.
  • the above-mentioned two sapphire substrates are respectively placed on the sample stage of the UV laser device having the laser conditions shown in Table 11 and the Fs laser device having the laser conditions shown in Table 3, and the heat-modified layer inside the sapphire substrate. Was formed.
  • Table 14 shows the pitch between the lines of Example 6 and Example 7, the formation position, and the laser pulse interval.
  • the substrate shape of the sapphire substrate before and after the formation of the thermally denatured layer was measured with a laser interferometer, and the amount of warpage and the substrate thickness were measured with a linear gauge and a laser interferometer.
  • Table 15 shows the warpage shape and warpage amount of the substrate before and after the heat-denatured layer was formed.
  • the warpage shape of the substrate indicates the shape on the film formation surface side.
  • Example 4 using a UV laser with a pulse width of 10 to 15 ns, the width of the processing line to be formed is large because the energy of the laser due to the laser wavelength is large.
  • Example 5 under the same processing conditions, in the UV laser processing, the amount of warpage of the substrate alone is further increased, so that the effect of correcting warpage due to the formation of the multilayer film is also greater. For this reason, it has been proved that the processing time can be shortened by using a UV laser when the warping effect of the same substrate alone is obtained. As a result, the manufacturing cost of the internally modified substrate for epitaxial growth can be reduced.
  • Example 6 using a UV laser with a pulse width of 10 to 15 ns, the laser irradiation processing line is thick for the same reason as described above. For this reason, compared with Example 7, the processing time which acquires the curvature effect of the same board
  • Example 8 (Examples 8 and 9)
  • the sapphire substrate on which the heat-denatured layer was formed and the sapphire substrate on which the heat-denatured layer was not formed were simultaneously introduced into the MOCVD apparatus, and a gallium nitride layer was grown on the substrate.
  • the growth temperature and film thickness in each film forming step are the same as the conditions shown in Table 8 above.
  • the internally modified substrate for epitaxial growth in which a thermally denatured layer is formed by UV laser irradiation is compared with the internally modified substrate for epitaxial growth in which a thermally denatured layer is formed by Fs laser irradiation.
  • the same substrate behavior suppression effect was confirmed during the epitaxial growth of an upward gallium nitride layer. Further, no cracks due to internal cracks caused by intense UV laser irradiation occurred.

Abstract

 任意の反り形状および/または反り量を有するエピタキシャル成長用内部改質基板、これを用いた多層膜付き内部改質基板、半導体デバイス、および半導体バルク基板、ならびにそれらの製造方法を提供すること。 単結晶基板と、単結晶基板に対するレーザ照射により、当該単結晶基板の内部に形成される熱変性層と、を含んでなるエピタキシャル成長用内部改質基板とする。

Description

エピタキシャル成長用内部改質基板、多層膜付き内部改質基板、半導体デバイス、半導体バルク基板およびそれらの製造方法
 本発明は、エピタキシャル成長用内部改質基板、多層膜付き内部改質基板、半導体デバイス、半導体バルク基板およびそれらの製造方法に関するものである。
 窒化ガリウムに代表される窒化物半導体は、バンドギャップが広く、青色系の発光が可能であることから、LED(発光ダイオード)やLD(半導体レーザ)等に広く用いられている。近年は、更なる発光効率アップや高輝度化への取り組みが盛んに行われている。
 一般的な窒化物半導体発光素子構造は、サファイア基板上に、GaNより成るバッファ層、n型GaNより成るn型コンタクト層、n型AlGaNより成るn型クラッド層、n型InGaNより成る活性層、p型AlGaNよりなるp型クラッド層、p型GaNより成るp型コンタクト層が順に積層されたダブルヘテロ構造を有している。活性層は、InxGa1-xN(0≦X≦1)よりなる井戸層のみの単一量子井戸(SQW:Single Quantum Well)構造もしくは、InxGa1-xN(0≦X≦1)よりなる井戸層と、InyGa1-yN(0≦y≦1、y<x)よりなる障壁層との多重量子井戸構造(MQW:Multi Quantum Well)のInを含む構成となっている(特許文献1参照)。
 サファイア基板上に上述した多層膜を形成すると、多層膜とサファイアとの熱膨張係数差および格子定数差に起因して、成膜後のサファイア基板に反りが発生することが知られている。例えば、非特許文献1には、サファイア基板上に、AlNバッファ層とGaN層とをエピタキシャル成長させ、成膜により発生する熱応力がGaN層膜厚に依存してどのように緩和されるかを調べた結果が開示されている。この非特許文献1では、膜厚が厚くなるに従って基板の反りが大きくなり、それに伴って界面欠陥(Interference Defects)、マイクロクラック(Microcracks)や転位(Dislocation)、マクロクラック(Macrocracks)が発生することで応力を緩和するということが明らかにされている。
 また、非特許文献2のFig.4には、サファイア基板上にGaN系LED構造をエピタキシャル成長させる工程を通して発生する基板の反りを、In-situ観察する解析手法が開示されている。これによると、一連の成膜工程において、成膜物質、成膜温度、膜厚の変化によりサファイア基板の曲率が大きく変化することが示されている。さらに、活性層であるInGaN層の成長段階でサファイア基板の曲率がほぼ0となるような成膜工程とすることによって、基板面内における発光波長を均一化することが明らかにされている。
 以上に説明したように、一連の成膜工程を通してサファイア基板の反りが大きく変化し、窒化物半導体膜の品質や発光波長の均一性に影響を与えることが知られている。なお、実際には、基板との熱膨張係数差を利用して、InGaN系活性層において基板曲率がほぼ0となるように、サファイア基板の反り形状および反り量が設定されることが多い。このような背景から、サファイア基板の形状および反り量を制御するために、様々な研磨加工技術が検討されている(特許文献2等参照)。
 一方で、サファイア基板上に窒化物半導体が積層された発光素子を分割する際に、80~90μm程度の厚みを有するサファイア基板の内部に、パルスレーザを集光し、発光素子の分割予定ラインに対応する変質領域を形成する技術が知られている(特許文献3)。特許文献3に開示される技術は、サファイア基板にレーザ光線を照射して個々の発光素子に分割しても発光素子の輝度低下を抑制し得るサファイア基板の加工方法であり、発光素子の分割を目的としている。
特許第3250438号公報 特開2006-347776号公報 特開2008-6492号公報
Jpn. J. Appl. Phys. Vol. 32 (1993)pp. 1528-1533 J. Cryst. Growth, Vol.272, Issues1-4, (2004), pp.94-99
 以上に説明したように、窒化ガリウム系発光ダイオード構造を得る一連の成膜工程を通じて、サファイア基板等の単結晶基板の反りが大きく変化する。これによって、窒化物半導体層の品質や発光波長の均一性が悪くなり、発光ダイオードの品質ばらつきや歩留まり低下等を招いていた。
 この問題に対し従来の方法では、InGaN系活性層の成長段階における基板の曲率がほぼ0となるように、サファイア基板の反り形状および反り量を設定する手法をとっていた。すなわち、InGaN系活性層の成長段階で発生する反り量分をあらかじめサファイア基板に与え、相殺するという手法である。これによって、発光波長のバラツキはある程度抑えることができる。しかし、InGaN系活性層以外の成膜工程で発生する基板の反りの問題が解決できない。
 特に、n-GaN層成長段階や、成膜終了後に基板をクールダウンする際に、サファイア基板が大きく反ることで、膜品質および膜品質均一性の低下、基板のバックグラインド加工の加工精度ムラ、フォトリソグラフィの焦点ずれによる露光ムラ等の問題があった。これらは、発光ダイオード等デバイスの歩留まりに大きく影響することから、成膜工程全体を通して基板の反りとその変化量を抑制し、基板の反り挙動自体を小さくすることが必要であったが、そのようなサファイア基板は従来存在しなかった。
 また、サファイア基板が大口径化すると、研磨加工による精密な反り形状および反り量の制御自体が困難になるという問題がある。研磨加工を施したサファイア基板には、通常、加工歪の残留や上下面の仕上げの表面粗さの違いによって基板に反りが発生することが知られている。例えば、片面が研磨されている基板では、主に上下面の表面粗さが異なることが反りの要因になり、両面が研磨されている基板では、上下面の表面粗さがわずかに異なることに加えて、基板面内での表面粗さがわずかにばらつくことが反りの要因になる。
 特に、大口径基板では、基板面内での表面粗さを均一にすることが技術的に困難であり、研磨加工のみでは所望の反り形状および反り量に精密に制御できないという技術的限界の問題があった。
 また、窒化物半導体バルク基板を得るために、サファイア基板上に、窒化物半導体の厚膜を自立可能な厚さまでエピタキシャル成長させようとすると、サファイアと窒化物半導体の熱膨張係数差によってサファイア基板が大きく反り、さらに膜厚が増加することで反り量が増大するという問題があった。そのため、結果として成膜中や成膜後にクラックが発生し、自立可能な窒化物半導体バルク基板を得ることが実質的に不可能であった。
 これらの解決手段として、ELOG(Epitaxial Lateral Over Growth)法やDEEP(Dislocation Elimination of Inverted-Pyramidal Pits)法やVAS(Void-Assisted Separation)法等が提案されているが、どちらも工程が複雑になるという欠点があった。
 本発明は、上記事情に鑑みてなされたものであり、任意の反り形状および/または反り量を有するエピタキシャル成長用内部改質基板、これを用いた多層膜付き内部改質基板、半導体デバイス、および半導体バルク基板、ならびにそれらの製造方法を提供することを課題とする。
 上記課題は以下の本発明により達成される。すなわち、 
本発明のエピタキシャル成長用内部改質基板は、単結晶基板と、当該単結晶基板に対するレーザ照射により、その単結晶基板の内部に形成される熱変性層と、を含んでなることを特徴とする。
 本発明のエピタキシャル成長用内部改質基板の一実施態様は、レーザ照射が、下記AとBに示す少なくともいずれか1つに記載の照射条件を満たすように実施されることが好ましい。
<照射条件A> 
・レーザ波長:200nm~400nm 
・パルス幅:ナノ秒オーダー 
<照射条件B> 
・レーザ波長:400nm~5000nm 
・パルス幅:フェムト秒オーダー~ピコ秒オーダー 
 本発明のエピタキシャル成長用内部改質基板の他の実施態様は、単結晶基板の厚み方向の相対位置を、成膜面となる片面側を0%と仮定し、当該成膜面と反対側の面を100%とし仮定した際に、熱変性層が、単結晶基板の厚み方向の3%以上95%以下の範囲内に設けられていることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の他の実施態様は、熱変性層が、単結晶基板の平面方向に対して、 
i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状、 
ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状、 
iii)同心円状、 
iv)単結晶基板の中心点に対して略点対称に形成された形状、 
v)単結晶基板の中心点を通じる直線に対して略線対称に形成された形状、 
vi)ストライプ形状、ならびに、 
vii)らせん形状 
から選択される少なくともいずれか1つのパターン形状で設けられていることが好ましい。 
 本発明のエピタキシャル成長用内部改質基板の他の実施態様は、複数個の同一形状および同一サイズの多角形を規則的に配置した形状が、格子形状であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の他の実施態様は、格子形状を成すパターンを構成するラインのピッチが、50μm~2000μmの範囲内であることが好ましい。
本発明のエピタキシャル成長用内部改質基板の他の実施態様は、単結晶基板の材質が、サファイア、窒化物半導体、Si、GaAs、水晶およびSiCから選択される少なくともいずれか1種であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の他の実施態様は、熱変性層を形成する前の単結晶基板の形状は、その成膜面が凹面であり、凹面の曲率が0km-1より大きく160km-1以下であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の他の実施態様は、熱変性層を形成する前の単結晶基板の形状は、その成膜面が凹面であり、凹面の曲率が40km-1より大きく150km-1以下であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の他の実施態様は、熱変性層を形成する前の単結晶基板の形状は、その成膜面が凹面であり、凹面の曲率が85km-1より大きく150km-1以下であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の他の実施態様は、単結晶基板の直径が50mm以上300mm以下であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の他の実施態様は、単結晶基板の厚みが0.05mm以上5.0mm以下であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の他の実施態様は、単結晶基板が、成膜面となる面が研磨面であり、単結晶基板に対するレーザ照射がその研磨面に通じて行われることが好ましい。
 本発明の多層膜付き内部改質基板は、単結晶基板と、当該単結晶基板に対するレーザ照射により、その単結晶基板の内部に形成される熱変性層とを備え、単結晶基板の片面に2つ層以上の層を有する多層膜が設けられていることを特徴とする。
 本発明の多層膜付き内部改質基板の他の実施態様は、多層膜を構成する少なくともいずれか1層が、窒化物半導体結晶層であることが好ましい。
 本発明の半導体デバイスは、請求項14に記載の多層膜付き内部改質基板を備えることを特徴とする。 
 本発明の半導体デバイスの他の実施態様は、半導体デバイスが、発光素子、電子デバイス、受光素子のいずれかであることが好ましい。
 本発明の半導体バルク基板は、請求項14に記載の多層膜付き内部改質基板が備える多層膜からなることを特徴とする。 
 本発明の半導体バルク基板の他の実施態様は、半導体バルク基板が、AlxInyGazN
(x+y+z=1,x≧0,y≧0,z≧0)からなることが好ましい。 
 本発明のエピタキシャル成長用内部改質基板の製造方法は、単結晶基板に対するレーザ照射により、単結晶基板の内部に熱変性層を形成することを特徴とする。
 本発明のエピタキシャル成長用内部改質基板の製造方法の一実施態様は、レーザ照射が、下記AとBに示す少なくともいずれか1つに記載の照射条件を満たすように実施されることが好ましい。
<照射条件A> 
・レーザ波長:200nm~400nm 
・パルス幅:ナノ秒オーダー 
<照射条件B> 
・レーザ波長:400nm~5000nm 
・パルス幅:フェムト秒オーダー~ピコ秒オーダー 
 本発明のエピタキシャル成長用内部改質基板の製造方法の他の実施態様は、単結晶基板の厚み方向の相対位置を、成膜面となる片面側を0%と仮定し、当該成膜面と反対側の面を100%とし仮定した際に、熱変性層が、単結晶基板の厚み方向の3%以上95%以下の範囲内に位置するように形成されることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の製造方法の他の実施態様は、熱変性層が、単結晶基板の平面方向に対して、 
i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状、 
ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状、 
iii)同心円状、 
iv)単結晶基板の中心点に対して略点対称に形成された形状、 
v)単結晶基板の中心点を通じる直線に対して略線対称に形成された形状、 
vi)ストライプ形状、ならびに、 
vii)らせん形状 
から選択される少なくともいずれか1つのパターン形状を描くように形成されているが好ましい。 
 本発明のエピタキシャル成長用内部改質基板の製造方法の他の実施態様は、複数個の同一形状および同一サイズの多角形を規則的に配置した形状が、格子形状であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の製造方法の他の実施態様は、格子形状を成すパターンを構成するラインのピッチが、50μm~2000μmの範囲内であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の製造方法の他の実施態様は、単結晶基板の材質が、サファイア、窒化物半導体、Si、GaAs、水晶およびSiCから選択される少なくともいずれか1種であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の製造方法の他の実施態様は、熱変性層を形成する前の単結晶基板の形状は、その成膜面が凹面であり、凹面の曲率が0km-1より大きく160km-1以下であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の製造方法の他の実施態様は、熱変性層を形成する前の単結晶基板の形状は、その成膜面が凹面であり、凹面の曲率が40km-1より大きく150km-1以下であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の製造方法の他の実施態様は、熱変性層を形成する前の単結晶基板の形状は、その成膜面が凹面であり、凹面の曲率が85km-1より大きく150km-1以下であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の製造方法の他の実施態様は、単結晶基板の直径が50mm以上300mm以下であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の製造方法の他の実施態様は、単結晶基板の厚みが0.05mm以上5.0mm以下であることが好ましい。
 本発明のエピタキシャル成長用内部改質基板の製造方法の他の実施態様は、単結晶基板が、成膜面となる面が研磨面であり、単結晶基板に対するレーザ照射がその研磨面に通じて行われることが好ましい。
 本発明の多層膜付き内部改質基板の製造方法は、単結晶基板に対するレーザ照射により、当該単結晶基板の内部に熱変性層を形成し、さらに単結晶基板の片面に2つ層以上の層を有する多層膜が形成ことを特徴とする。
 本発明の多層膜付き内部改質基板の製造方法の他の実施態様は、多層膜を構成する少なくともいずれか1層が、窒化物半導体結晶層であることが好ましい。
本発明の半導体デバイスの製造方法は、請求項14に記載の多層膜付き内部改質基板を用いて作製すること特徴とする。 
 本発明の半導体デバイスの製造方法の他の実施態様は、半導体デバイスが、発光素子、電子デバイス、受光素子のいずれかであることが好ましい。
 本発明の半導体バルク基板の製造方法は、請求項14に記載の多層膜付き内部改質基板が備える多層膜を用いて形成することを特徴とする。
 本発明の半導体バルク基板の製造方法の他の実施態様は、半導体バルク基板が、AlxInyGazN (x+y+z=1,x≧0,y≧0,z≧0)からなることが好ましい。
 以上に説明したように本発明によれば、任意の反り形状および/または反り量を有するエピタキシャル成長用内部改質基板、これを用いた多層膜付き内部改質基板、半導体デバイス、および半導体バルク基板、ならびにそれらの製造方法を提供することができる。
本実施形態のエピタキシャル成長用内部改質基板の製造方法の一例を示す模式説明図である。 単結晶基板の平面方向に対する熱変性層の配置パターン形状の一例を示す平面図である。ここで、図2(a)は、複数本のラインを基板のオリフラ面に対して垂直に形成したストライプ形状を示す平面図であり、図2(b)は、複数本のラインを基板のオリフラ面に対して水平に形成したストライプ形状を示す平面図であり、図2(c)は、図2(a)および図2(b)に示す配置パターン形状を組み合わせた格子形状を示す平面図であり、図2(d)は、同一サイズの複数の正六角形を、正六角形の6つの頂点全てが当該正六角形に隣接する正六角形のいずれか一つの頂点と必ず重なり合うように規則的に配置した形状を示す平面図であり、図2(e)は、同心円形状を示す平面図である。 多層膜の一例である窒化物半導体層のエピタキシャル成長工程を示す図である。 図3に示す窒化物半導体層のエピタキシャル成長工程におけるIn-situ観察例を示す。 基板の反り量と曲率の関係を示す図である。 本実施形態に係る多層膜付き内部改質基板を形成するときのIn-situ観察例を示す図である。 実施例2に係る熱変性層を形成した後の基板曲率の変化量に対する形成位置とピッチ依存性を示す図である。 実施例3に係るサンプル10のIn-situ観察結果を示す図である。 実施例3に係るサンプル12のIn-situ観察結果を示す図である。 実施例3に係るサンプル14のIn-situ観察結果を示す図である。 実施例3に係るサンプル16のIn-situ観察結果を示す図である。 実施例3に係るサンプル18のIn-situ観察結果を示す図である。 実施例3に係るサンプル20のIn-situ観察結果を示す図である。 実施例8と実施例9に係るサンプルのIn-situ観察結果を示す図である。
1  単結晶基板 
2  レーザ照射装置 
3  改質領域 
4  ピッチ 
5  形成位置 
6  熱変性層の長さ 
7  サファイア基板 
8  低温バッファ層 
9  n-GaN層 
10 InGaN系活性層 
 本実施形態のエピタキシャル成長用内部改質基板は、単結晶基板と、単結晶基板に対するレーザ照射により、当該単結晶基板の厚み方向の内部に形成される熱変性層と、を含んでなることを特徴とする。なお、成膜面となる面が研磨面である単結晶基板を用いる場合、単結晶基板に対するレーザ照射は研磨面を通じて行われることが特に好ましい。
 このため、本実施の形態のエピタキシャル成長用内部改質基板の使用用途に応じて、反り形状および/または反り量が任意に制御される。また、多層膜を成膜する場合に、成膜により発生する応力を、熱変性層が形成された単結晶基板の応力で相殺することができるため、成膜中の基板の反りを抑制し、基板の反り挙動を小さくすることができる。
 なお、「熱変性層」は、単結晶基板の厚み方向の内部の一部の領域を局所的に加熱することにより形成される層である。単結晶基板の厚み方向で2等分した片側の領域に形成すると、熱変性層が形成された領域側の面が凸をなすように基板を反らせる作用を有する。
 この熱変性層の形成方法としては、単結晶基板に対してレーザ照射する方法が用いられる。この場合、レーザ照射された領域に存在する原子の多光子吸収により、当該領域が局所的に加熱され、周囲の領域に対して結晶構造や結晶性の変化等の何がしかの変性が生じることで、熱変性層が形成される。すなわち、本実施形態のエピタキシャル成長用内部改質基板は、単結晶基板に対するレーザ照射により、単結晶基板の厚み方向の内部に熱変性層を形成する工程を、少なくとも経ることにより製造することができる。
-レーザ照射条件- 
 なお、レーザの照射は、熱変性層が形成できるのであれば、如何様な照射条件で実施してもよいが、一般には、短い時間幅の中にエネルギーを集中させることが出来るため、高いピーク出力が得ることができるという点で、断続的にレーザ光を出すパルスレーザを用いて、下記1)および2)に示す範囲内で実施することが好ましい。
1)レーザ波長:200nm~5000nm 
2)パルス幅:フェムト秒オーダー~ナノ秒オーダー(1fs~1000ns) 
 ここで、レーザ波長やパルス幅は、レーザ照射の対象となる単結晶基板の材質に起因する光透過性/光吸収性や、単結晶基板内に形成される熱変性層のサイズ・パターン精度、実用上利用可能なレーザ装置等を考慮して適宜選択される。しかしながら、レーザ照射に際しては、特に下記A、Bに示す照射条件を選択することが好ましい。
<照射条件A> 
・レーザ波長:200nm~400nm 
・パルス幅:ナノ秒オーダー(1ns~1000ns)。なお、より好ましくは、10ns~15ns。 
<照射条件B> 
・レーザ波長:400nm~2000nm 
・パルス幅:フェムト秒オーダー~ピコ秒オーダー(1fs~1000ps)。なお、より好ましくは、200fs~800fs。 
 なお、照射条件Aは、照射条件Bよりも、レーザ波長がより短波長域のレーザを利用する。このため、レーザ波長およびパルス幅以外のその他の条件を同一として、レーザ照射を実施した場合、照射条件Bよりも、照射条件Aの方が、同程度の反り矯正効果を得るために必要なレーザ加工時間を短縮できる。また、使用するレーザの波長は、レーザ照射の対象となる単結晶基板の吸収端波長よりも長波長域の波長を選択することが好適である。
 ここで、単結晶基板が、Si基板の場合は、上記照射条件Bが利用できる。この場合、レーザ波長以外のその他の条件としては、例えば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。
・パルス幅:50ns~200ns 
・繰り返し周波数:10kHz~500kHz 
・照射エネルギー:3μJ~30μJ 
・レーザのスポットサイズ:0.5μm~4.0μm 
・試料ステージの走査速度:50mm/s~1000mm/s(より好ましくは100mm/s~1000mm/s) 
 また、単結晶基板が、GaAs基板の場合は、上記照射条件Bが利用できる。この場合、レーザ波長以外のその他の条件としては、例えば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。
・パルス幅:30ns~80ns 
・繰り返し周波数:10kHz~500kHz 
・照射エネルギー:8μJ~20μJ 
・レーザのスポットサイズ:0.5μm~4.0μm 
・試料ステージの走査速度:50mm/s~1000mm/s(より好ましくは100mm/s~1000mm/s) 
 また、単結晶基板が、水晶基板の場合は、上記照射条件Bが利用できる。この場合、レーザ波長以外のその他の条件としては、例えば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。
・パルス幅:200fs~800fs 
・繰り返し周波数:10kHz~500kHz 
・照射エネルギー:3μJ~6μJ 
・レーザのスポットサイズ:0.5μm~4.0μm 
・試料ステージの走査速度:50mm/s~1000mm/s(より好ましくは100mm/s~1000mm/s) 
 また、単結晶基板が、リチウムタンタレート基板の場合は、上記照射条件Aが利用できる。この場合、レーザ波長以外のその他の条件としては、例えば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。
・パルス幅:200fs~800fs 
・繰り返し周波数:10kHz~500kHz 
・照射エネルギー:3μJ~6μJ 
・レーザのスポットサイズ:0.5μm~4.0μm 
・試料ステージの走査速度:50mm/s~1000mm/s(より好ましくは100mm/s~1000mm/s) 
 また、単結晶基板が、ガラス基板の場合は、上記照射条件Aが利用できる。この場合、レーザ波長以外のその他の条件としては、例えば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。
・パルス幅:10ns~15ns 
・繰り返し周波数:10kHz~500kHz 
・照射エネルギー:10μJ~20μJ 
・レーザのスポットサイズ:0.5μm~4.0μm 
・試料ステージの走査速度:50mm/s~1000mm/s(より好ましくは100mm/s~1000mm/s) 
 なお、表1と表2に、Si基板、GaAs基板、水晶基板、リチウムタンタレート基板およびガラス基板に対して熱変性層を形成する場合のレーザ照射条件の一例を示す。また、レーザ照射する場合、単結晶基板のレーザ照射される側の面は鏡面状態であることが特に好ましい。レーザ照射される面を鏡面状態とするためには、例えば、鏡面研磨を実施することができる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本実施形態のエピタキシャル成長用内部改質基板の作製に用いられる単結晶基板を構成する材質としては、レーザ照射により熱変性層の形成が可能な公知の単結晶材料であればいずれも利用できるが、例えば、サファイア、窒化物半導体、Si、GaAs、水晶、SiC等が挙げられる。上記照射条件Aを採用する場合、特にSi、GaAs、水晶またはSiCを好適に用いることができる。また、単結晶基板ではなく、石英やガラス等でも良い。
 また、単結晶基板は、通常、少なくとも片面が鏡面研磨されたものが用いられる。この場合、後のエピタキシャル成長工程において多層膜は、鏡面研磨された面側に形成される。なお、必要に応じて両面が鏡面研磨された単結晶基板を用いてもよい。この場合、任意にいずれか一方の面を成膜面として利用できる。
 単結晶基板の平面方向の形状は特に限定されるものではなく、例えば、方形等でもよいが、公知の各種素子の製造ラインでの適用が容易であるという観点からは、円形状であることが好ましく、特にオリフラ面が設けられた円形状であることが好ましい。
 単結晶基板の形状が円形状またはオリフラ面が設けられた円形状である場合、単結晶基板の直径は50mm以上であることが好ましく、75mm以上であることがより好ましく、150mm以上であることが更に好ましい。なお、直径の上限値は特に限定されるものではないが、実用上の観点からは300mm以下が好ましい。
 また、単結晶基板の厚みは、5.0mm以下であることが好ましく、3.0 mm以下であることが好ましく、2.0mm以下であることがより好ましい。厚みの下限値は特に限定されるものではない、単結晶基板の剛性を確保する観点から0.05mm以上であることが好ましく、0.1mm以上であることがより好ましい。なお、単結晶基板20の形状が、円形状またはオリフラ面が設けられた円形状である場合、直径が50mm以上150mm以下のときは、厚みは0.3mm以上であることが好ましく、直径が150mmを超えるときは、厚みは0.5mm以上が好ましい。
 次に、エピタキシャル成長用内部改質基板を形成する具体例について図面を用いて説明する。図1は、本実施形態のエピタキシャル成長用内部改質基板の製造方法の一例を示す模式説明図である。
 図1に示すように、単結晶基板1を不図示の試料ステージに固定した状態で実施される。なお、固定は、例えば、真空吸着等により、単結晶基板1の反りを矯正できるように実施することが好ましい。そして、試料ステージに固定された単結晶基板1の表面(成膜面)側から、レーザ照射装置2によりレーザを照射する。この際、単結晶基板1の厚み方向の内部にレーザを集光させると共に、レーザ照射装置2と単結晶基板1とを水平方向に相対的に移動させることで、スポット状の改質領域3(熱変性層)が連続的につながったライン状に形成される。
 局所的に見ると、スポット状の改質領域3は、レーザが瞬間的に照射された部分にのみ形成され、その大きさは、レーザのスポットサイズ、レーザ強度およびパルス幅に依存する。レーザのスポットサイズ、レーザパワー、パルス幅等を適宜選択することで、単結晶基板1の平面方向や厚み方向に対する熱変性層のサイズや変性度合等を制御できる。また、ライン状に形成されるスポット状の改質領域3の長さは、単結晶基板1に対するレーザ照射装置1の相対的な移動速度(例えば、試料ステージが移動可能な場合は、試料ステージの走査速度)、レーザの繰り返し周波数を適宜選択することにより、単結晶基板1の平面方向に対する複数個の熱変性層を間隔的に制御することができる。
 これらライン状に形成された改質領域3を複数本組み合わせることで、単結晶基板1の厚み方向の所望の位置に熱変性層を構成する少なくとも1種類の改質領域パターン3を形成する。改質領域3とは、レーザが照射された部分において局所的に多光子吸収を発生させて形成された領域である。
 熱変性層のパターン形状、形成位置、熱変性層の長さ等の条件を最適化することによって、単結晶基板全体の応力をコントロールし、単結晶基板の反り形状および/または反り量を精密に制御することができる。
 単結晶基板の平面方向については、熱変性層は、以下に示されるパターン形状で設けられることが好ましい。すなわち、熱変性層は、単結晶基板の平面方向に対して、下記i)~vii)から選択される少なくともいずれか1つのパターン形状で設けられていることが好ましい。
i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状 
ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状 
iii)同心円状 
iv)単結晶基板の中心点に対して略点対称に形成された形状 
v)単結晶基板の中心点を通じる直線に対して略線対称に形成された形状 
vi)ストライプ形状 
vii)らせん形状 
 また、熱変性層の形成に際して、レーザ走査、すなわち、単結晶基板に対するレーザ照射装置の相対的な移動が、他のパターン形状と比べて比較的単純でレーザ加工が容易となる観点からは、パターン形状は、i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状であることが好ましい。さらに、i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状としては、複数個の同一形状および同一サイズの四角形を個々の四角形を構成する4辺が隣接する四角形のいずれか1辺と互いに重なり合うように規則的に配置した形状、すなわち、格子形状であることが特に好ましい。この場合、レーザ走査が縦方向および横方向の2方向のみでよく、レーザ加工がより容易となる上に、単結晶基板の反り量制御や形状制御の設計もより容易となる。
 ここで、格子形状を成すパターンを構成するラインのピッチは、50μm~2000μmの範囲内であることが好ましく、100μm~1000μmの範囲内であることがより好ましい。ピッチを50μm以上とすることにより、レーザ加工に要する時間が必要以上に増大するのを抑制でき、また、ピッチを2000μm以下とすることにより、単結晶基板の反りをより確実に矯正できる。
 図2は、単結晶基板の平面方向に対する熱変性層の配置パターン形状の一例を示す平面図であり、具体的には、単結晶基板の平面形状がオリフラ面を有する円形状である場合における熱変性層の配置パターン形状の一例を示したものである。熱変性層の配置パターン形状は、図2に示すように、例えば、複数本のラインを基板のオリフラ面に対して垂直または平行に形成したストライプ形状(図2(a)、図2(b))、それら両方を組み合わせた格子形状(図2(c))等が挙げられる。また、この他の配置パターン形状として、同一サイズの複数の正六角形を、正六角形の6つの頂点全てが当該正六角形に隣接する正六角形のいずれか一つの頂点と必ず重なり合うように規則的に配置した形状(図2(d))、同心円形状(図2(e))等も挙げられる。なお、図2(a)に示す幅4は、ライン間のピッチを意味する。
 本実施形態のエピタキシャル成長用内部改質基板では、単結晶基板の厚み方向の内部に熱変性層を設ければ、エピタキシャル成長用内部改質基板の使用用途に応じて、反り形状および/または反り量が任意に制御される。また、多層膜を成膜する場合に、成膜により発生する応力を、熱変性層が形成された単結晶基板の応力で相殺することができるため、成膜中の基板の反りを抑制し、基板の反り挙動を小さくすることができる。しかしながら、熱変性層が、単結晶基板の厚み方向や平面方向に対して、偏った位置に設けられたり、不規則に配置されたり、非対称的に配置されたりすると、反りを矯正することが困難となる場合がある。特に、単結晶基板の厚み方向に対する熱変性層を形成する相対形成位置は、熱変性層形成後の単結晶基板の反り量の変化量に影響し、形成位置が表面に近いほど変化量が大きくなる。
 上述した問題の発生を回避するためには、単結晶基板の厚み方向については、単結晶基板の厚み方向の相対位置5を、成膜面となる片面を0%と仮定し、成膜面と反対側の面を100%とし仮定した際に、熱変性層が、単結晶基板の厚み方向の3%以上95%以下の範囲内に設けられていることが好ましく、3%以上50%以下の範囲内に設けられていることがより好ましい。単結晶基板の厚み方向に対して熱変性層を上記数値範囲内に設けることにより、単結晶基板の反りをより効果的に矯正できる。なお、単結晶基板の厚み方向に対する熱変性層の存在位置は、複数個の熱変性層が、全て同じ位置に存在することが好ましいが、異なる位置に存在していてもよい。この場合は、単結晶基板の平面方向に対する個々の熱変性層の配置位置も考慮の上、熱変性層を設けたことに起因する反りの矯正効果を著しく損失しないように、個々の熱変性層を、単結晶基板の厚み方向に対して異なる位置に配置してもよい。また、単結晶基板の厚み方向に対する熱変性層の長さ6は、レーザのスポットサイズ、照射エネルギー(レーザパワー/繰り返し周波数)、パルス幅に依存して決定され、通常は、数μm~数十μmの範囲内である。
 上述したように、単結晶基板内部に熱変性層を形成し、単結晶基板の応力をコントロールすることによって、単結晶基板の反り形状および/または反り量が効率良く精密に制御されたエピタキシャル成長用内部改質基板を得ることができる。
 また、本実施形態の多層膜付き内部改質基板は、本発明により得られるエピタキシャル成長用内部改質基板の成膜面に2つ層以上の層を有する多層膜が設けられていることを特徴とする。
 本願明細書において「多層膜」とは、2つ以上の層を有するものである。これに加えて、この多層膜を構成する各層が単結晶基板の平面方向に対して同一の膜厚を有する連続した層から構成され、最表層の膜が貫通するような段差を持たない(電極形成部位を持たないことを記載するために、追加。)膜を意味する。多層膜の層構成、ならびに、多層膜を構成する各層の膜厚、材料および結晶性/非結晶性は、本実施形態の多層膜付き内部改質基板を用いて更に後加工することにより作製される素子の種類や、素子を製造する際に適用する製造プロセスに応じて適宜選択される。
 多層膜の成膜方法としては特に限定されず、公知の成膜方法が利用でき、多層膜を構成する各層毎に異なる成膜方法および/または成膜条件を採用して成膜することもできる。成膜法としてはメッキ法等の液相成膜法も挙げられるが、スパッタリング法やCVD法(Chemical Vapor Deposition)等の気相成膜法を用いることが好ましい。なお、窒化物半導体結晶層等の半導体結晶層を成膜する場合、MOCVD法(Metal Organic Chemical Vapor Deposition)、HVPE法(Hydride vapor phase epitaxy)、MBE法
(Molecular Beam Epitaxy)等の気相成膜法を利用することがより好ましい。なお、エピタキシャル成長用内部改質基板の成膜面は、鏡面状態であることが特に好ましい。多層膜が形成される面を鏡面状態とするためには、例えば、鏡面研磨を実施することができる。
 また、多層膜を構成する少なくともいずれか1層が、結晶性の層であることが好ましい。特に、多層膜のうち少なくともいずれか1層が、窒化物半導体結晶層であることがより好ましい。また、エピタキシャル成長用内部改質基板の成膜面に露出する結晶面を利用してエキタピシャル成長させることができるという観点からは、多層膜を構成する各層のうち、少なくともエピタキシャル成長用内部改質基板の成膜面に直接接触する層が結晶性の層であることが好ましく、多層膜を構成する全ての層が結晶性の層であってもよい。なお、エキタピシャル成長とは、同一組成または混晶を含むホモエキタピシャル成長、ヘテロエキタピシャル成長を含む。また、多層膜を構成する各層の材料も、作製する素子に応じて適宜選択されるが、エピタキシャル成長用内部改質基板がサファイア基板等の無機材料で構成されることを考慮すると、各層を構成する材料も、金属材料、金属酸化物材料、無機半導体材料等の無機材料とすることが好ましく、全ての層がこれらの無機材料から構成されることが望ましい。ただし、MOCVD法を用いた場合、この無機材料中に有機金属由来の有機物が微量に混入する可能性はある。 
 多層膜を構成する各層の具体例としては、例えば、面発光レーザ等に用いる発光素子、光センサや太陽電池等に用いる受光素子、電子回路等に用いる半導体素子等の各種の窒化物半導体を利用した素子の製造に適したものとして、GaN系、AlGaN系、InGaN系等の窒化物半導体結晶層を挙げることができる。なお、この場合、単結晶基板として、サファイア基板を用いることが好適である。
 図3は、多層膜の一例である窒化物半導体層のエピタキシャル成長工程を示す図である。 
 多層膜の層構成の具体例としては、例えば、図3に示すように、エピタキシャル成長用内部改質基板としてサファイア基板を用い、はじめに、サファイア基板のサーマルクリーニングを行い(図3(a))、低温バッファ層8の成長を行う(図3(b))。続いて、n-GaN層9(図3(c))、多重量子井戸構造を有するInGaN系活性層10を成長させる(図3(d))。
 図4は、図3に示す窒化物半導体層のエピタキシャル成長工程におけるIn-situ観察例を示す。図5は、基板の反り量と曲率の関係を示す図である。図6は、本実施形態に係る多層膜付き内部改質基板を形成するときのIn-situ観察例を示す図である。
 非特許文献2で開示されているように、In-situ観察によって成膜中のサファイア基板の挙動を定量的に解析することが可能である。すなわち、基板の反り形状や反り量が成膜中にどのように変化しているかを知ることができる。図4において、横軸は時間であり、縦軸は成膜面の基板の曲率(km-1)を表している。縦軸の正の方向は、成膜面が凸面形状であり、負の方向は成膜面が凹面形状であることを示している。
 基板の曲率から基板の反り量を算出することができる。図5において、基板の曲率半径をR、曲率1/Rを有する基板の反り量X、基板の直径を近似的にDとして示した。これらの値の関連性として、三平方の定理を用いることで,(1/R)2=((1/R)-X)2+(D/2)2と示すことができる。この式から、基板の直径が50mmの場合は、0.322×曲率(km-1)、基板の直径が100mmの場合は、1.250×曲率(km-1)としてそり量(um)を求めることができる。 
 図4中のスペクトルAは、熱変性層を形成していない従来のサファイア基板を用いた例を示している。 
 また、図4(a)~(e)は、それぞれ成膜工程の各過程に対応している。すなわち、(a)基板のサーマルクリーニング、(b)低温バッファ層成長、(c)n-GaN層成長、(d)InGaN系活性層成長、(e)クールダウンに対応している。
 図4のスペクトルAを用いて、図4(a)~(e)における基板の挙動について説明する。 
 (a)基板サーマルクリーニングに移行する段階では、サファイア基板の上下面での温度差に起因して、基板成長面の凹面形状がさらに強まり、曲率が大きく変化する。
 続いて、通常500~600℃程度に温度を下降し、(b)低温バッファ層成長に移行する段階では、基板の凹面形状が弱まり、曲率はやや小さくなる。
 続いて、再び1000℃程度に温度を上昇し、(c)n-GaN層成長を行う段階では、窒化ガリウムとサファイアの格子定数差に起因して、基板の凹面形状が強まり曲率は大きくなる。さらに成膜が進行し、膜厚が大きくなるほど曲率が大きくなるため、膜厚および膜品質の基板面内均一性は著しく悪化する。成膜コンディションのみで基板面内均一性を制御することは技術的に難しいと言われている。また、窒化物半導体層中には、応力を緩和するために転位が発生し膜品質が悪化することが問題とされている。
 続いて、温度を700~800℃程度に下降して、(d)InGaN系活性層の成長段階では、InGaN系活性層の膜厚とInGaN中のIn組成の均一性が、発光波長の面内均一性に影響するため、LEDチップの製造歩留まりに影響する。InGaN層の膜厚やIn組成は成膜温度に影響を受けることから、基板面内の温度均一性を向上させるために、成膜中の基板の曲率はできるだけ0に近づけるのが理想的である。
 最終的に、基板を(e)クールダウンする段階で、再び熱膨張係数差によって基板形状が再び大きく反るため、一連の成膜工程終了後の基板の曲率は大きなものとなる。これは、LEDチップ化前のバックグラインド加工やフォトリソグラフィを困難にするという問題を生じさせる。
 以上、図4のスペクトルAに示すように、従来のサファイア基板を用いると、InGaN系活性層成長段階での基板曲率はほぼ0とすることが可能である一方で、成膜工程中の基板の挙動が大きく、成膜終了後の基板の曲率が大きくなってしまうという欠点があることが分かる。
 次に、従来のサファイア基板内部に改質領域パターンを形成することにより、本発明のエピタキシャル成長用内部改質基板を作製し、窒化物半導体層を成膜した場合のIn-situの第1の例を、図4中のスペクトルBに示す。
 スペクトルBにおける内部改質サファイア基板の初期状態は、従来のサファイア基板よりも成膜面が凸面に反るように改質領域パターンが形成されていることが好ましい。それによって、従来のサファイア基板を用いたスペクトルAと比較して基板の反り挙動を小さくすることができる。
 図4中のスペクトルCには、スペクトルBの場合と同様に、従来のサファイア基板内部に改質領域パターンを形成する際、各ライン間のピッチとパターン形成位置を調整し、サファイア基板の初期状態が、スペクトルBよりもさらに凸面に大きく反っている内部改質サファイア基板を用いた例を示す。
 スペクトルCは、成膜工程を通してさらに基板の挙動を小さくすることができる。すなわち、スペクトルA、Bよりもさらに成膜中に発生する応力を基板の応力で相殺する効果が大きいことを示している。
 上述のスペクトルB、Cで得られる窒化物半導体層は、従来のサファイア基板を用いた場合と比較して、成膜中の基板の反りが抑制され、基板の反り挙動が小さくなるため、膜の品質および均一性が向上する。
 しかしながら、同時に、エピタキシャル成長用内部改質基板の初期状態が凸面に大きく反った状態となり、結果として、InGaN系活性層成長段階および成膜終了時点での基板の曲率は、従来のサファイア基板を用いた場合よりも大きくなってしまうという問題が発生する。
 すなわち、本発明のエピタキシャル成長用内部改質基板は、図6中のスペクトルCに示すように、基板の反り挙動を小さくするのと同時に、InGaN系活性層成長段階および成膜終了時点での基板の曲率を小さくすることができるような初期状態とすることが望ましい。
 それによって、窒化物半導体層の膜の品質および均一性を向上させるとともに、窒化物半導体発光素子の発光波長の均一性を向上させることができる。
そのため、熱変性層を形成する前のサファイア基板には、熱変性層の形成によって凸面に大きく反る基板曲率分を、あらかじめ相殺できるようなサファイア基板を用いるのが望ましい。
 前述したように、熱変性層の形成用サファイア基板としては、窒化物半導体層の成膜面が凹面であり、その凹面の曲率が0km-1より大きく160km-1以下のものを用いることができる。また、前述の理由から、窒化物半導体層の成膜面が凹面であり、その凹面の曲率は、40km-1以上150km-1以下が好ましく、さらには85km-1以上150km-1以下がより好ましい。
 以上述べたように、本発明のエピタキシャル成長用内部改質基板を用いることで、窒化物半導体層の膜の品質および均一性を向上させた窒化物半導体層を備える多層膜付き内部改質基板を得ることができる。
 本発明により得られる多層膜付き内部改質基板を用いて、各種半導体デバイスを構成すると、デバイスの品質および歩留まりを向上させることができる。半導体デバイスとしては、例えば、発光素子、電子デバイス、または受光素子等が挙げられる。
 半導体デバイスとしての素子の製造に際して、後工程として、素子部分形成工程以外に、研磨工程、分割予定ライン形成工程および分割工程をこの順に実施してもよい。
 この場合、本実施形態の多層膜付き内部改質基板を用いた素子製造方法は、具体的には以下の(1)~(4)に示す工程を少なくとも順次実施することで、素子部分と当該素子部分に略対応するサイズを有する単結晶基板とを含む素子を作製することができる。
(1)本実施形態の多層膜付き内部改質基板の多層膜をパターニングして個々の素子部分を形成する素子部分形成工程、 
(2)素子部分が片面に形成された素子部分付き単結晶基板の素子部分が形成されていない面を、少なくとも、熱変性層が除去されるまで研磨する研磨工程、
(3)研磨工程において研磨された面側から、個々の素子部分の境界ラインに沿って、レーザを照射することで分割予定ラインを形成する分割予定ライン形成工程、
(4)分割予定ライン形成工程において形成された分割予定ラインに沿って外力を加えることで、素子部分付きの単結晶基板を素子部分単位で分割する分割工程、
ここで、(3)分割予定ライン形成工程、および、(4)分割工程を実施する場合、特許文献3に記載の技術を利用することができる。
 なお、熱変性層を格子状パターンに形成した場合、研磨工程において熱変性層が完全に除去されない程度に研磨した上で、単結晶基板内に残留している熱変性層を分割予定ラインとして利用することで分割工程を実施することも原理的には可能である。しかしながら、多層膜が個々の素子部分に個別化された後でないと、素子部分の存在位置を確認した上でレーザ照射のための位置合わせを行うことができない。このため、個々の素子部分を作製する前に、分割予定ラインの機能も兼ねる熱変性層を形成する上記の方法では、個々の素子部分に対応させて正確に分割予定ラインを形成することが困難である。すなわち、上記の方法では、分割予定ラインは隣接する2つの素子部分間の境界線からずれてしまう可能性が大きくなるため、実用性に欠けやすい。このため、レーザ照射により形成された熱変性層を利用して分割工程を実施する場合、上記(1)~(4)に示す工程をこの順に実施することが特に好ましいといえる。
 また、本発明の多層膜付き内部改質基板を下地材として用い、さらにホモエピタキシャル成長により自立可能な膜厚を有する結晶性膜の厚膜を形成することができる。また、結晶性膜の厚膜を結晶成膜体からなる下地材から分離し、バルク基板を得ることができる。
 さらには、本発明のエピタキシャル成長用内部改質基板上に結晶性膜の厚膜を形成し、エピタキシャル成長用内部改質基板から分離することによっても、結晶性膜の厚膜からなるバルク基板を得ることができる。本発明のエピタキシャル成長用内部改質基板を用いると、成膜中または成膜後に発生する基板の反りを抑制できるため、クラックを発生させずに厚膜を形成することができる。例えば、エピタキシャル成長用内部改質基板に、上述の窒化物半導体層の厚膜を形成させると、成膜中または成膜後に発生する基板の反りを抑制することができ、クラックを発生させずに自立可能な膜厚を有する窒化物半導体層の厚膜を得ることができる。このように得られた窒化物半導体層の厚膜を前記内部改質基板から分離することによって、複雑な工程を用いることなく窒化物半導体バルク基板を得ることができる。窒化物半導体バルク基板として、特に、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)からなる窒化物半導体バルク基板を効率良く製造できる。
 自立可能な膜厚としては、50μm以上が好ましい。また、厚膜の形成方法として、MOCVD法、HVPE法、LPE法等を用いることができる。
 以下に、本発明を実施例を挙げて説明するが、本発明は以下の実施例にのみ限定されるものではない。表3に示すレーザ条件を用いて、サファイア基板内部に熱変性層を形成し、基板の反り形状および反り量の変化に対する影響を調べた。その結果を実施例1および2に示す。
Figure JPOXMLDOC01-appb-T000003
(実施例1) 
 熱変性層を形成するサファイア基板として、片面が研磨された2インチサファイア基板を用いた。基板厚みは430μmであった。熱変性層を形成する前の基板の反り形状および反り量はレーザ干渉計で測定した。
 続いて、サファイア基板をパルスレーザ装置の試料ステージ上に設置し、サファイア基板内部への改質領域パターン形成を行った。
 表4にサンプル1~9のパターン形状、各ライン間のピッチ、形成位置および熱変性層の長さ、一枚あたりの加工時間を示す。改質領域パターン形成後のサファイア基板の基板形状はレーザ干渉計で、反り量および基板厚みはリニアゲージおよびレーザ干渉計で計測した。表4において、⊥O.F.はサファイア基板のオリフラに垂直、//O.F.はオリフラに平行であることを示す。 
Figure JPOXMLDOC01-appb-T000004
 表5に改質領域パターン形成前後の基板の反り形状、反り量、および熱変性層形成後の基板面内における反り形状の対称性を示す。基板の反り形状は、成膜面側の形状を示す。
Figure JPOXMLDOC01-appb-T000005
(実施例2) 
 内部改質領域パターンを形成するサファイア基板として、片面が研磨された4インチサファイア基板を用いた。基板厚みは650μmであった。実施例1と同様に、改質領域パターン形成前の基板の反り形状および反り量はレーザ干渉計で測定した。
 続いて、サファイア基板をパルスレーザ装置の試料ステージ上に設置し、サファイア基板内部への熱変性層の形成を行った。表6にサンプル10~19の熱変性層の形状、ピッチ、形成位置を示す。
Figure JPOXMLDOC01-appb-T000006
 熱変性層を形成した後の基板の反り形状はレーザ干渉計で、反り量はリニアゲージで計測した。表7に熱変性層形成前後の基板形状、反り量、および反り量から算出した曲率を比較して示す。基板の反り形状は、成膜面側の形状を示す。
Figure JPOXMLDOC01-appb-T000007
 また、熱変性層を形成した後の基板曲率の変化量に対する形成位置と各ライン間のピッチ依存性を図7に示す。 
(実施例3) 
 実施例2において熱変性層を形成したサファイア基板のうち、サンプル10,12,14,16,18と、熱変性層未形成の従来のサファイア基板(サンプル20とする)を同時にMOCVD装置に導入し、サファイア基板上への窒化ガリウム層の成長を行った。各成膜工程における成長温度および膜厚を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 各サンプルのIn-situ観察結果を図8a~図8fに、各サンプルの基板の反り形状、反り量および曲率を表9に、各段階における基板曲率の変化量を表10に示す。
 表10中(1)~(4)は、図8aで図示している通り、それぞれ(1)基板初期状態に対するサーマルクリーニング移行時、(2)基板初期状態に対するn-GaN層成長時、(3)n-GaN成長終了時に対するGaN/InGaN活性層成長移行時、(4)基板初期状態に対するクールダウン終了後の曲率の変化量を示している。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 (1)基板初期状態からサーマルクリーニング移行時における基板曲率の変化量から、熱変性層を形成したサンプル10,12,14,16,18と、熱変性層未形成のサンプル20とに曲率変化量の大きな差は認められなかった。
 (2)基板初期状態に対するn-GaN層成長時における基板曲率の変化量から、サファイア基板表面から浅い位置に熱変性層を形成したサンプル10,16,18において、他のサンプルと比較してn-GaN成長時の基板曲率の変化量を抑制する効果が認められた。
 (3)n-GaN成長終了時に対するGaN/InGaN活性層成長移行時における基板曲率の変化量から、n-GaN層成長終了時点からGaN/InGaN活性層成長に移行する段階において、サファイア基板表面から浅い位置に熱変性層を形成したサンプル10,16,18では、他のサンプルと比較して基板曲率の変化量を抑制する効果が認められた。
 (4)基板初期状態に対するクールダウン終了後の基板曲率の変化量から、サファイア基板表面から浅い位置に熱変性層を形成したサンプル10,16,18では、他のサンプルと比較して基板曲率の変化量を抑制する効果が認められた。
 以上の工程により得られたサンプル10,12,14,16,18,20の窒化ガリウム層の膜厚均一性および結晶品質について調べた。
 サンプル10は、熱変性層未形成のサンプル20と比較して膜厚均一性が向上することが分かった。これは、サファイア基板表面から浅い位置に熱変性層を形成することによって、基板形状がよりフラットな状態でn-GaN層成長が行われたためであると考えられる。
 さらに、X線回折ロッキングカーブ測定により求められた窒化ガリウム層の(001)面、(102)面のFWHM値は、サンプル10ではそれぞれ203arcsec、418arcsecであり、熱変性層未形成のサンプル20ではそれぞれ242arcsec、579arcsecであった。この結果から、熱変性層を形成したサンプル10では、熱変性層未形成のサンプル20と比較して窒化ガリウム層の結晶性が向上することが分かった。
 次に、表11に示すレーザ条件を用いて、サファイア基板内部に熱変性層を形成し、基板の反り形状および反り量の変化に対する影響を調べた。その結果を実施例4、6に示す。一方、表3に示すレーザ条件を用いて、同じサファイア基板内部に熱変性層を形成し、基板の反り形状および反り量の変化に対する影響を調べた。実施例5、7に示す。
Figure JPOXMLDOC01-appb-T000011
(実施例4,5) 
 熱変性層を形成するサファイア基板として、片面が研磨された2インチ基板を用いた。基板厚みは430μmであった。熱変性層を形成する前の基板の反り形状および反り量はレーザ干渉計で測定した。
 続いて、2枚の上述のサファイア基板を、それぞれ表11に示すレーザ条件のUVレーザ装置および表3に示すレーザ条件のFsレーザ装置の試料ステージ上に設置し、サファイア基板内部への熱変性層の形成を行った。
 表12に実施例4および実施例5の各ライン間のピッチ、形成位置およびレーザのパルス間隔を示す。熱変性層の形成前後のサファイア基板の基板形状はレーザ干渉計で、反り量および基板厚みはリニアゲージおよびレーザ干渉計で計測した。
Figure JPOXMLDOC01-appb-T000012
 表13に熱変性層形成前後の基板の反り形状、反り量を示す。基板の反り形状は、成膜面側の形状を示す。 
Figure JPOXMLDOC01-appb-T000013
(実施例6,7) 
 熱変性層を形成するサファイア基板として、片面が研磨された2インチ基板を用いた。基板厚みは430μmであった。熱変性層を形成する前の基板の反り形状および反り量はレーザ干渉計で測定した。
 続いて、2枚の上述のサファイア基板を、それぞれ表11に示すレーザ条件のUVレーザ装置および表3に示すレーザ条件のFsレーザ装置の試料ステージ上に設置し、サファイア基板内部への熱変性層の形成を行った。
 表14に実施例6および実施例7の各ライン間のピッチ、形成位置およびレーザのパルス間隔を示す。熱変性層の形成前後のサファイア基板の基板形状はレーザ干渉計で、反り量および基板厚みはリニアゲージおよびレーザ干渉計で計測した。
Figure JPOXMLDOC01-appb-T000014
 表15に熱変性層形成前後の基板の反り形状、反り量を示す。基板の反り形状は、成膜面側の形状を示す。 
Figure JPOXMLDOC01-appb-T000015
 パルス幅が10~15nsのUVレーザを用いる実施例4の場合、レーザ波長に起因するレーザのエネルギーが大きいために、形成される加工ラインの幅が太い。実施例5と比べて、同じ加工条件で、UVレーザ加工では、基板単体の反り量がより増大するので、多層膜の成膜に起因する反りの矯正効果もより大きい。このため、同じ基板単体の反り効果を得る場合、UVレーザを用いることによって、加工時間を短縮できることを証明した。その結果、エピタキシャル成長用内部改質基板の製造コストを削減することができる。
 またパルス幅が10~15nsのUVレーザを用いる実施例6の場合、上記と同様な理由でレーザ照射の加工ラインが太い。このため、実施例7と比べて、同じ基板単体の反り効果を得る加工時間を短縮した。その結果、エピタキシャル成長用内部改質基板の製造コストを削減することができる。
(実施例8,9) 
 実施例6,7において熱変性層を形成したサファイア基板と、熱変性層未形成サファイア基板を同時にMOCVD装置に導入し、基板上への窒化ガリウム層の成長を行った。各成膜工程における成長温度および膜厚を上述の表8に示す条件と同じである。
 In-situ観察結果を図9に、各基板の成膜後の反り形状および反り量を表16に示す。 
Figure JPOXMLDOC01-appb-T000016
 図9および表16に示すように、UVレーザ照射により熱変性層を形成したエピタキシャル成長用内部改質基板は、Fsレーザ照射により熱変性層を形成したエピタキシャル成長用内部改質基板と比較して、基板上への窒化ガリウム層を成長するエピタキシャル中においても、同じような基板挙動抑制効果を確認した。また、強いUVレーザ照射に起因する内部クラックよる割れも生じなかった。
 以上の結果から、本発明のエピタキシャル成長用内部改質基板を用いて窒化物半導体層のエピタキシャル成長を行うと、基板の反りを抑制し、基板の反り挙動を小さくすることができるため、膜の品質および均一性が向上することが分かった。

Claims (38)

  1.  単結晶基板と、 
     上記単結晶基板に対するレーザ照射により、当該単結晶基板の内部に形成される熱変性層と、 
    を含んでなることを特徴とするエピタキシャル成長用内部改質基板。 
  2.  請求項1に記載のエピタキシャル成長用内部改質基板において、 
     前記レーザ照射が、下記AとBに示す少なくともいずれか1つに記載の照射条件を満たすように実施されることを特徴とするエピタキシャル成長用内部改質基板。
    <照射条件A> 
    ・レーザ波長:200nm~400nm 
    ・パルス幅:ナノ秒オーダー 
    <照射条件B> 
    ・レーザ波長:400nm~5000nm 
    ・パルス幅:フェムト秒オーダー~ピコ秒オーダー 
  3.  請求項1または請求項2に記載のエピタキシャル成長用内部改質基板において、 
     前記単結晶基板の厚み方向の相対位置を、成膜面となる片面側を0%と仮定し、上記成膜面と反対側の面を100%とし仮定した際に、
     前記熱変性層が、前記単結晶基板の厚み方向の3%以上95%以下の範囲内に設けられていることを特徴とするエピタキシャル成長用内部改質基板。
  4.  請求項1~3のいずれか1つに記載のエピタキシャル成長用内部改質基板において、 
     前記熱変性層が、前記単結晶基板の平面方向に対して、 
    i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状、 
    ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状、 
    iii)同心円状、 
    iv)前記単結晶基板の中心点に対して略点対称に形成された形状、 
    v)単結晶基板の中心点を通じる直線に対して略線対称に形成された形状、 
    vi)ストライプ形状、ならびに、 
    vii)らせん形状 
     から選択される少なくともいずれか1つのパターン形状で設けられていることを特徴とするエピタキシャル成長用内部改質基板。 
  5.  請求項4に記載のエピタキシャル成長用内部改質基板において、 
     前記複数個の同一形状および同一サイズの多角形を規則的に配置した形状が、格子形状であることを特徴とするエピタキシャル成長用内部改質基板。
  6.  請求項5に記載のエピタキシャル成長用内部改質基板において、 
     前記格子形状を成すパターンを構成するラインのピッチが、50μm以上2000μm以下の範囲内であることを特徴とするエピタキシャル成長用内部改質基板。
  7.  請求項1~6のいずれか1つに記載のエピタキシャル成長用内部改質基板において、 
     前記単結晶基板の材質が、サファイア、窒化物半導体、Si、GaAs、水晶およびSiCから選択される少なくともいずれか1種であることを特徴とするエピタキシャル成長用内部改質基板。
  8.  請求項1~7のいずれか1つに記載のエピタキシャル成長用内部改質基板において、 
     前記熱変性層を形成する前の前記単結晶基板の形状は、その成膜面が凹面であり、上記凹面の曲率が0km-1より大きく160km-1以下であることを特徴とするエピタキシャル成長用内部改質基板。
  9.  請求項1~7のいずれか1つに記載のエピタキシャル成長用内部改質基板において、 
     前記凹面の曲率が40km-1以上150km-1以下であることを特徴とするエピタキシャル成長用内部改質基板。
  10.  請求項1~7のいずれか1つに記載のエピタキシャル成長用内部改質基板において、 
     前記凹面の曲率が85km-1以上150km-1以下であることを特徴とするエピタキシャル成長用内部改質基板。
  11.  請求項1~10のいずれか1つに記載のエピタキシャル成長用内部改質基板において、 
     前記単結晶基板の直径が50mm以上300mm以下であることを特徴とするエピタキシャル成長用内部改質基板。 
  12.  請求項1~11のいずれか1つに記載のエピタキシャル成長用内部改質基板において、 
     前記単結晶基板の厚みが0.05mm以上5.0mm以下であることを特徴とするエピタキシャル成長用内部改質基板。 
  13.  請求項1~12のいずれか1つに記載のエピタキシャル成長用内部改質基板において、 
     前記単結晶基板は、成膜面となる面が研磨面であり、上記単結晶基板に対するレーザ照射が上記研磨面に通じて行われることを特徴とするエピタキシャル成長用内部改質基板。
  14.  単結晶基板と、 
     上記単結晶基板に対するレーザ照射により、当該単結晶基板の内部に形成される熱変性層と、を備え、 
     上記単結晶基板の片面に2つ以上の層を有する多層膜が設けられていることを特徴とする多層膜付き内部改質基板。 
  15.  請求項14に記載の多層膜付き内部改質基板において、 
     前記多層膜を構成する少なくともいずれか1層が、窒化物半導体結晶層であることを特徴とする多層膜付き内部改質基板。 
  16.  請求項14に記載の多層膜付き内部改質基板を備えることを特徴とする半導体デバイス。
  17.  請求項16に記載の半導体デバイスは、発光素子、電子デバイス、受光素子のいずれかであることを特徴とする半導体デバイス。 
  18.  請求項14に記載の多層膜付き内部改質基板が備える前記多層膜からなることを特徴とする半導体バルク基板。 
  19.  請求項18に記載の半導体バルク基板において、 
    AlxInyGazN (x+y+z=1,x≧0,y≧0,z≧0)からなることを特徴とする半導体バルク基板。
  20.  単結晶基板に対するレーザ照射により、上記単結晶基板の内部に熱変性層を形成することを特徴とするエピタキシャル成長用内部改質基板の製造方法。
  21.  請求項20に記載のエピタキシャル成長用内部改質基板の製造方法において、 
     前記レーザ照射が、下記AとBに示す少なくともいずれか1つに記載の照射条件を満たすように実施されることを特徴とするエピタキシャル成長用内部改質基板の製造方法。
    <照射条件A> 
    ・レーザ波長:200nm~400nm 
    ・パルス幅:ナノ秒オーダー 
    <照射条件B> 
    ・レーザ波長:400nm~5000nm 
    ・パルス幅:フェムト秒オーダー~ピコ秒オーダー 
  22.  請求項20または請求項21に記載のエピタキシャル成長用内部改質基板の製造方法において、 
     前記単結晶基板の厚み方向の相対位置を、成膜面となる片面側を0%と仮定し、上記成膜面と反対側の面を100%とし仮定した際に、
    前記熱変性層が、前記単結晶基板の厚み方向の3%以上95%以下の範囲内に位置するように形成されることを特徴とするエピタキシャル成長用内部改質基板の製造方法。
  23.  請求項20~22のいずれか1つに記載のエピタキシャル成長用内部改質基板の製造方法において、 
     前記熱変性層が、前記単結晶基板の平面方向に対して、 
    i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状、 
    ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状、 
    iii)同心円状、 
    iv)前記単結晶基板の中心点に対して略点対称に形成された形状、 
    v)単結晶基板の中心点を通じる直線に対して略線対称に形成された形状、 
    vi)ストライプ形状、ならびに、 
    vii)らせん形状 
     から選択される少なくともいずれか1つのパターン形状を描くように形成されていることを特徴とするエピタキシャル成長用内部改質基板の製造方法。
  24.  請求項23に記載のエピタキシャル成長用内部改質基板の製造方法において、 
     前記複数個の同一形状および同一サイズの多角形を規則的に配置した形状が、格子形状であることを特徴とするエピタキシャル成長用内部改質基板の製造方法。
  25.  請求項24に記載のエピタキシャル成長用内部改質基板において、 
    前記格子形状を成すパターンを構成するラインのピッチが、50μm以上2000μm以下の範囲内であることを特徴とするエピタキシャル成長用内部改質基板の製造方法。
  26.  請求項20~25のいずれか1つに記載のエピタキシャル成長用内部改質基板の製造方法において、 
     前記単結晶基板の材質が、サファイア、窒化物半導体、Si、GaAs、水晶およびSiCから選択される少なくともいずれか1種であることを特徴とするエピタキシャル成長用内部改質基板の製造方法。
  27.  請求項20~26のいずれか1つに記載のエピタキシャル成長用内部改質基板の製造方法において、 
     前記熱変性層を形成する前の前記単結晶基板の形状は、その成膜面が凹面であり、上記凹面の曲率が0km-1より大きく160km-1以下であることを特徴とするエピタキシャル成長用内部改質基板の製造方法。
  28.  請求項20~26のいずれか1つに記載のエピタキシャル成長用内部改質基板の製造方法において、 
     前記凹面の曲率が40km-1以上150km-1以下であることを特徴とするエピタキシャル成長用内部改質基板の製造方法。
  29.  請求項20~26のいずれか1つに記載のエピタキシャル成長用内部改質基板の製造方法において、 
     前記凹面の曲率が85km-1以上150km-1以下であることを特徴とするエピタキシャル成長用内部改質基板の製造方法。
  30.  請求項20~29のいずれか1つに記載のエピタキシャル成長用内部改質基板の製造方法において、 
     前記単結晶基板の直径が50mm以上300mm以下であることを特徴とするエピタキシャル成長用内部改質基板の製造方法。 
  31.  請求項20~30のいずれか1つに記載のエピタキシャル成長用内部改質基板の製造方法において、 
     前記単結晶基板の厚みが0.05mm以上5.0mm以下であることを特徴とするエピタキシャル成長用内部改質基板の製造方法。
  32.  請求項20~31のいずれか1つに記載のエピタキシャル成長用内部改質基板の製造方法において、 
     前記単結晶基板は、成膜面となる面が研磨面であり、当該単結晶基板に対する前記レーザ照射が上記研磨面に通じて行われることを特徴とするエピタキシャル成長用内部改質基板の製造方法。
  33.  単結晶基板に対するレーザ照射により、上記単結晶基板の内部に熱変性層を形成し、 
     さらに上記単結晶基板の片面に2つ以上の層を有する多層膜が形成することを特徴とする多層膜付き内部改質基板の製造方法。 
  34.  請求項33に記載の多層膜付き内部改質基板の製造方法において、 
     前記多層膜を構成する少なくともいずれか1層が、窒化物半導体結晶層であることを特徴とする多層膜付き内部改質基板の製造方法。
  35.  請求項14に記載の多層膜付き内部改質基板を用いて形成することを特徴とする半導体デバイスの製造方法。 
  36.  請求項35に記載の半導体デバイスの製造方法において、 
    前記半導体デバイスは、発光素子、電子デバイス、受光素子のいずれかであることを特徴とする半導体デバイスの製造方法。 
  37.  請求項14に記載の多層膜付き内部改質基板が備える前記多層膜を用いて形成することを特徴とする半導体バルク基板の製造方法。
  38.  請求項37に記載の半導体バルク基板の製造方法において、 
    AlxInyGazN (x+y+z=1,x≧0,y≧0,z≧0)からなることを特徴とする半導体バルク基板の製造方法。
     
     
PCT/JP2011/055055 2010-03-05 2011-03-04 エピタキシャル成長用内部改質基板、多層膜付き内部改質基板、半導体デバイス、半導体バルク基板およびそれらの製造方法 WO2011108698A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/582,550 US20130161794A1 (en) 2010-03-05 2011-03-04 Internally reformed substrate for epitaxial growth, internally reformed substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and manufacturing methods therefor
EP11750807.7A EP2543752A4 (en) 2010-03-05 2011-03-04 SUBSTRATE WITH INTERNAL REFORM FOR EPITACTIC GROWTH, INTERNAL REFORMING SUBSTRATE AND A MULTILAYER FILM, SEMICONDUCTOR ELEMENT, MASS SUBSTRATE SUBSTRATE, AND METHOD OF MANUFACTURING THEREOF
CN201180009519.0A CN102753737B (zh) 2010-03-05 2011-03-04 外延生长用内部改性衬底、带多层膜的内部改性衬底、半导体器件、半导体块状衬底以及它们的制造方法
JP2012503282A JP5802943B2 (ja) 2010-03-05 2011-03-04 エピタキシャル成長用内部改質基板の製造方法および多層膜付き内部改質基板の製造方法
KR1020127022196A KR101527457B1 (ko) 2010-03-05 2011-03-04 에피택셜성장용 내부개질기판, 다층막형성 내부개질기판, 반도체 디바이스, 반도체 벌크 기판 및 그들의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010049857 2010-03-05
JP2010-049857 2010-03-05

Publications (1)

Publication Number Publication Date
WO2011108698A1 true WO2011108698A1 (ja) 2011-09-09

Family

ID=44542343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055055 WO2011108698A1 (ja) 2010-03-05 2011-03-04 エピタキシャル成長用内部改質基板、多層膜付き内部改質基板、半導体デバイス、半導体バルク基板およびそれらの製造方法

Country Status (7)

Country Link
US (1) US20130161794A1 (ja)
EP (1) EP2543752A4 (ja)
JP (1) JP5802943B2 (ja)
KR (1) KR101527457B1 (ja)
CN (1) CN102753737B (ja)
TW (1) TWI508327B (ja)
WO (1) WO2011108698A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017121742A (ja) * 2016-01-07 2017-07-13 株式会社ディスコ ウエーハ生成方法
JP2017168675A (ja) * 2016-03-16 2017-09-21 富士電機株式会社 半導体装置およびその製造方法
KR20190005747A (ko) * 2017-07-06 2019-01-16 가부시기가이샤 디스코 레이저 가공 장치 및 레이저 가공 방법
WO2020130108A1 (ja) * 2018-12-21 2020-06-25 浜松ホトニクス株式会社 レーザ加工方法、及び、半導体デバイス製造方法
US11201126B2 (en) 2019-02-05 2021-12-14 Disco Corporation Method of producing a substrate and system for producing a substrate

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI525664B (zh) * 2010-03-05 2016-03-11 Namiki Precision Jewel Co Ltd A crystalline film, a device, and a method for producing a crystalline film or device
JP2011201759A (ja) * 2010-03-05 2011-10-13 Namiki Precision Jewel Co Ltd 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法
KR101491528B1 (ko) * 2010-03-05 2015-02-09 나미키 세이미쓰 하우세키 가부시키가이샤 단결정 기판, 단결정 기판의 제조 방법, 다층막이 형성된 단결정 기판의 제조 방법 및 소자 제조 방법
TWI499078B (zh) * 2013-01-31 2015-09-01 Just Innovation Corp 元件基板、元件基板的製造方法、光電裝置及其製造方法
CN103367117A (zh) * 2013-07-05 2013-10-23 江苏能华微电子科技发展有限公司 一种基于HVPE工艺的GaN衬底制作方法
JP6119712B2 (ja) * 2014-10-08 2017-04-26 トヨタ自動車株式会社 半導体装置の製造方法
CN104384728B (zh) * 2014-11-18 2016-04-06 蓝思科技股份有限公司 一种激光加工蓝宝石面板的工艺及夹具
JP5986702B1 (ja) * 2014-12-03 2016-09-06 日本碍子株式会社 13族元素窒化物層の分離方法および複合基板
CN104630899B (zh) * 2015-01-17 2017-09-22 王宏兴 金刚石层的分离方法
JP6690983B2 (ja) * 2016-04-11 2020-04-28 株式会社ディスコ ウエーハ生成方法及び実第2のオリエンテーションフラット検出方法
JP6508153B2 (ja) * 2016-09-21 2019-05-08 日亜化学工業株式会社 発光素子の製造方法
CN111712062B (zh) * 2020-06-30 2021-09-28 生益电子股份有限公司 一种芯片与pcb的焊接方法
CN111785814B (zh) * 2020-07-13 2021-10-26 福建晶安光电有限公司 一种衬底及其加工方法、发光二极管及其制造方法
CN112837998B (zh) * 2021-02-05 2023-08-25 福建晶安光电有限公司 一种衬底加工装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250438B2 (ja) 1995-03-29 2002-01-28 日亜化学工業株式会社 窒化物半導体発光素子
JP2003264194A (ja) * 2002-03-11 2003-09-19 Hamamatsu Photonics Kk レーザゲッタリング方法及び半導体基板
JP2006196558A (ja) * 2005-01-12 2006-07-27 Namiki Precision Jewel Co Ltd 窒化物半導体基板の製造方法
JP2006347776A (ja) 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd サファイア基板およびその製造方法
JP2008006492A (ja) 2006-06-30 2008-01-17 Disco Abrasive Syst Ltd サファイア基板の加工方法
JP2010165817A (ja) * 2009-01-15 2010-07-29 Namiki Precision Jewel Co Ltd エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3120825B2 (ja) * 1994-11-14 2000-12-25 信越半導体株式会社 エピタキシャルウエーハ及びその製造方法
US6201262B1 (en) * 1997-10-07 2001-03-13 Cree, Inc. Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure
JP2001253795A (ja) * 2000-03-09 2001-09-18 Sumitomo Metal Ind Ltd シリコンエピタキシャルウェーハとその製造方法
JP4120163B2 (ja) * 2000-12-15 2008-07-16 株式会社Sumco Siエピタキシャルウェーハの製造方法及びSiエピタキシャルウェーハ
KR100550491B1 (ko) * 2003-05-06 2006-02-09 스미토모덴키고교가부시키가이샤 질화물 반도체 기판 및 질화물 반도체 기판의 가공 방법
WO2005071720A1 (en) * 2004-01-26 2005-08-04 Showa Denko K.K. Group iii nitride semiconductor multilayer structure
CN100481337C (zh) * 2004-12-08 2009-04-22 雷射先进科技株式会社 被分割体的分割起点形成方法、被分割体的分割方法
JP4750720B2 (ja) * 2004-12-08 2011-08-17 三星ダイヤモンド工業株式会社 被分割体における分割起点形成方法、被分割体の分割方法
JP4189386B2 (ja) * 2005-01-27 2008-12-03 ローム株式会社 窒化物半導体結晶層の成長方法および窒化物半導体発光素子の製法
WO2007055010A1 (ja) * 2005-11-10 2007-05-18 Renesas Technology Corp. 半導体装置の製造方法および半導体装置
KR100735532B1 (ko) * 2006-03-21 2007-07-04 삼성전자주식회사 기판 내에 팽창부를 포함하는 포토마스크 및 포토마스크의표면 평탄화 방법
JP5183892B2 (ja) * 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法
JP2008108792A (ja) * 2006-10-23 2008-05-08 Disco Abrasive Syst Ltd ウエーハの加工方法
JP5130468B2 (ja) * 2007-07-26 2013-01-30 株式会社エコトロン SiCエピタキシャル基板の製造方法
JP5044329B2 (ja) * 2007-08-31 2012-10-10 株式会社東芝 発光装置
JP5184927B2 (ja) * 2008-03-21 2013-04-17 パナソニック株式会社 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
US8900715B2 (en) * 2008-06-11 2014-12-02 Infineon Technologies Ag Semiconductor device
JP2011201759A (ja) * 2010-03-05 2011-10-13 Namiki Precision Jewel Co Ltd 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法
KR101491528B1 (ko) * 2010-03-05 2015-02-09 나미키 세이미쓰 하우세키 가부시키가이샤 단결정 기판, 단결정 기판의 제조 방법, 다층막이 형성된 단결정 기판의 제조 방법 및 소자 제조 방법
TWI525664B (zh) * 2010-03-05 2016-03-11 Namiki Precision Jewel Co Ltd A crystalline film, a device, and a method for producing a crystalline film or device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250438B2 (ja) 1995-03-29 2002-01-28 日亜化学工業株式会社 窒化物半導体発光素子
JP2003264194A (ja) * 2002-03-11 2003-09-19 Hamamatsu Photonics Kk レーザゲッタリング方法及び半導体基板
JP2006196558A (ja) * 2005-01-12 2006-07-27 Namiki Precision Jewel Co Ltd 窒化物半導体基板の製造方法
JP2006347776A (ja) 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd サファイア基板およびその製造方法
JP2008006492A (ja) 2006-06-30 2008-01-17 Disco Abrasive Syst Ltd サファイア基板の加工方法
JP2010165817A (ja) * 2009-01-15 2010-07-29 Namiki Precision Jewel Co Ltd エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. CRYST. GROWTH, vol. 272, no. 1-4, 2004, pages 94 - 99
JPN. J. APPL. PHYS., vol. 32, 1993, pages 1528 - 1533
See also references of EP2543752A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017121742A (ja) * 2016-01-07 2017-07-13 株式会社ディスコ ウエーハ生成方法
JP2017168675A (ja) * 2016-03-16 2017-09-21 富士電機株式会社 半導体装置およびその製造方法
KR20190005747A (ko) * 2017-07-06 2019-01-16 가부시기가이샤 디스코 레이저 가공 장치 및 레이저 가공 방법
JP2019013953A (ja) * 2017-07-06 2019-01-31 株式会社ディスコ レーザー加工装置およびレーザー加工方法
JP7098284B2 (ja) 2017-07-06 2022-07-11 株式会社ディスコ レーザー加工装置およびレーザー加工方法
KR102537095B1 (ko) 2017-07-06 2023-05-25 가부시기가이샤 디스코 레이저 가공 장치 및 레이저 가공 방법
WO2020130108A1 (ja) * 2018-12-21 2020-06-25 浜松ホトニクス株式会社 レーザ加工方法、及び、半導体デバイス製造方法
JP2020102521A (ja) * 2018-12-21 2020-07-02 浜松ホトニクス株式会社 レーザ加工方法、及び、半導体デバイス製造方法
JP7330695B2 (ja) 2018-12-21 2023-08-22 浜松ホトニクス株式会社 レーザ加工方法、及び、半導体デバイス製造方法
US11201126B2 (en) 2019-02-05 2021-12-14 Disco Corporation Method of producing a substrate and system for producing a substrate
TWI783208B (zh) * 2019-02-05 2022-11-11 日商迪思科股份有限公司 生產襯底的方法以及生產襯底的系統

Also Published As

Publication number Publication date
KR101527457B1 (ko) 2015-06-10
TW201201407A (en) 2012-01-01
TWI508327B (zh) 2015-11-11
KR20120123472A (ko) 2012-11-08
CN102753737A (zh) 2012-10-24
CN102753737B (zh) 2015-12-16
EP2543752A4 (en) 2015-12-02
US20130161794A1 (en) 2013-06-27
JPWO2011108698A1 (ja) 2013-06-27
JP5802943B2 (ja) 2015-11-04
EP2543752A1 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5802943B2 (ja) エピタキシャル成長用内部改質基板の製造方法および多層膜付き内部改質基板の製造方法
JP5552627B2 (ja) エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
JP5732684B2 (ja) 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法
TWI550690B (zh) A single crystal substrate having a multilayer film, a manufacturing method of a single crystal substrate having a multilayer film, and an element manufacturing method
TWI525664B (zh) A crystalline film, a device, and a method for producing a crystalline film or device
JP6424345B2 (ja) GaN基板の製造方法
US20160265140A1 (en) Single crystal substrate, manufacturing method for single crystal substrate, manufacturing method for single crystal substrate with multilayer film, and element manufacturing method
JP2008308384A (ja) Iii族窒化物結晶基板の製造方法、iii族窒化物結晶基板、および半導体デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009519.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750807

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1933/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012503282

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127022196

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011750807

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13582550

Country of ref document: US