WO2010067852A1 - 玉軸受及びハイブリッド車用変速機 - Google Patents

玉軸受及びハイブリッド車用変速機 Download PDF

Info

Publication number
WO2010067852A1
WO2010067852A1 PCT/JP2009/070711 JP2009070711W WO2010067852A1 WO 2010067852 A1 WO2010067852 A1 WO 2010067852A1 JP 2009070711 W JP2009070711 W JP 2009070711W WO 2010067852 A1 WO2010067852 A1 WO 2010067852A1
Authority
WO
WIPO (PCT)
Prior art keywords
cage
ball bearing
axial
bearing according
ball
Prior art date
Application number
PCT/JP2009/070711
Other languages
English (en)
French (fr)
Inventor
武始 前島
孝道 田中
湯川 謹次
松本 洋一
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42242838&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010067852(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN200980131125.5A priority Critical patent/CN102119281B/zh
Priority to US13/059,077 priority patent/US8523450B2/en
Priority to JP2010542129A priority patent/JP5531966B2/ja
Publication of WO2010067852A1 publication Critical patent/WO2010067852A1/ja
Priority to US13/959,088 priority patent/US8777489B2/en
Priority to US16/593,123 priority patent/USRE49737E1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • F16C33/412Massive or moulded comb cages, e.g. snap ball cages
    • F16C33/414Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages
    • F16C33/416Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages made from plastic, e.g. injection moulded comb cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • F16C33/418Details of individual pockets, e.g. shape or ball retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6674Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6681Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/65Gear shifting, change speed gear, gear box

Definitions

  • the present invention relates to a ball bearing and a transmission for a hybrid vehicle.
  • FIG. 42 shows a ball bearing according to a first conventional example that is widely used to support various rotating parts.
  • an inner ring 102 having an inner ring raceway 101 on an outer peripheral surface and an outer ring 104 having an outer ring raceway 103 on an inner peripheral surface are arranged concentrically, and a plurality of balls are arranged between the inner ring raceway 101 and the outer ring raceway 103.
  • 105 has a structure in which it can freely roll.
  • a plurality of balls 105 are movably held in a holder 107 as shown in FIGS.
  • the cage 107 is called a crown type cage, and is integrally formed by injection molding a synthetic resin.
  • the cage 107 includes an annular base portion 108 and a plurality of pockets 109 provided on one end surface in the axial direction of the base portion 108.
  • Each pocket 109 is formed of a concave portion 110 provided on one end surface in the axial direction of the base portion 108 and a pair of elastic pieces 111 disposed opposite to each other at an edge of the concave portion 110.
  • the mutually opposing surfaces of the pair of elastic pieces 111 and the inner surface of the recess 110 continuously form one spherical concave surface or cylindrical surface.
  • the cage 107 pushes the balls 105 between the pair of elastic pieces 111 while elastically expanding the interval between the elastic pieces 111, thereby holding the balls 105 in the respective pockets 109 so as to roll freely.
  • the cage 107 is made of, for example, a synthetic resin such as nylon 46, nylon 66, polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK), or the like.
  • a synthetic resin such as nylon 46, nylon 66, polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK), or the like.
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • PEEK polyether ether ketone
  • Such ball bearings are often used under severe conditions such as high temperature and high speed.
  • a ball bearing incorporated in a rotation support part of a drive motor or an alternator for a hybrid vehicle it is often used at a high temperature (100 ° C. or higher) and at a high speed (rotational speed 10,000 min ⁇ 1 or higher or dmn 600,000 or higher).
  • dm of dmn is a bearing pitch circle diameter (unit: mm)
  • n is a rotational speed of the bearing (unit: min ⁇ 1 ).
  • the cage 107 in the ball bearing rotates at a high speed together with the lubricating oil and grease existing between the outer peripheral surface of the inner ring 102 and the inner peripheral surface of the outer ring 104.
  • the cage 107 during high-speed rotation is combined with a radially outward force based on centrifugal force, a restraining force based on the revolution of the ball 105 (rotational force), agitation resistance of lubricating oil and grease, and the like. Complex power is added.
  • the cage 107 repeats irregular motions by such a complicated force, and receives a complex external stress accompanied by an impact. Therefore, if the operation is continued for a long time under the high-speed use condition as described above, it is elastically deformed or plastically deformed by the action of centrifugal force. These deformations tend to be accelerated at high temperatures. As a result, the variation in the gap between the inner surface of each pocket 109 and the rolling surface of each ball 105 increases. Furthermore, the inner surface of each pocket 109 wears due to the force received from the rolling surface of the ball 105. And when this gap becomes large, the following problems occur.
  • the cage 107 vibrates finely with the rotation of the ball bearing, which not only further promotes wear of each pocket 109, but also generates harmful vibration and noise.
  • the cage 107 is partially or entirely displaced or decentered, so that a part of the cage 107 becomes the inner ring 102 or the outer ring. 104 rubs against each other.
  • the elastic piece 111 of the pocket 109 is displaced radially outward based on the centrifugal force (see FIG. 45), and the outer peripheral surface of each elastic piece 111 and the inner peripheral surface of the outer ring 104 rub against each other. If such rubbing occurs, there is a risk that the drag torque of the bearing will increase or the cage 107 will break. Further, when the wear further progresses, the cage 107 is detached from the bearing and the bearing is disassembled, which may cause serious damage to the bearing unit.
  • the ball bearing of the second conventional example includes an inner ring 201 having an inner ring raceway surface 201a (track groove) on the outer peripheral surface, and an outer ring 202 having an outer ring raceway surface 202a (track groove) on the inner peripheral surface.
  • a plurality of balls 203 that are rotatably arranged between the inner ring raceway surface 201a and the outer ring raceway surface 202a, and an annular base portion 204a and one axial end surface of the base portion 204a that protrude from the tip.
  • a resin-made crown-shaped cage 204 that accommodates the ball 203 in a spherical pocket 204c formed between the pillar portions 204b.
  • the balls 203 are held at predetermined intervals in the circumferential direction by the crown type holder 204 and revolve together with the holder 204.
  • Such ball bearings are often used in a forced lubrication system in which lubricating oil is supplied by a pump or the like when used in a rotating part of an automobile transmission or the like. It flows through in the direction and circulates and lubricates in the transmission unit.
  • the center Oc of the spherical pocket 204c of the crown-shaped cage 204 is arranged on the outer diameter side from the center T1 of the radial width of the crown-shaped cage 204, that is, the crown-shaped cage.
  • the inner width Q1 is made larger than the outer width Q2 from the center Oc of the spherical pocket 204c to secure a large amount of ball holding on the inner diameter side. It has been proposed to suppress torsional deformation of the mold cage 204 toward the outer diameter side (see, for example, Japanese Utility Model Publication No. 5-34317).
  • the present invention is directed to addressing one or more of the problems set forth above.
  • a ball bearing includes an inner ring having a raceway surface, an outer ring having a raceway surface, and a plurality of rolling elements that are freely rollable between the raceway surface of the inner ring and the raceway surface of the outer ring. And a resin cage for holding a plurality of rolling elements between the inner ring and the outer ring.
  • the cage is a crown type cage that includes an annular base portion and a plurality of pockets formed on one end surface in the axial direction of the annular base portion, and the plurality of pockets hold the plurality of rolling elements.
  • the axial distance between the axial position of the center of gravity of the cage and the center of curvature of each spherical or cylindrical inner surface of the pocket is at least 0.6 times the radius of curvature of the inner surface.
  • a hybrid vehicle transmission includes the ball bearing.
  • FIG. 3 is a partial cross-sectional view of the cage in FIG. 2.
  • FIG. 2 It is a fragmentary sectional view of the ball bearing which shows the center position of radial direction thickness of a cage.
  • It is explanatory drawing which shows the example of the radial direction clearance gap between the inner ring
  • FIG. 24 It is explanatory drawing which shows angle (theta) which the straight line which connects the radial direction innermost contact point of a ball
  • an explanation is given of an angle ⁇ formed by a straight line connecting the radially innermost contact point between the ball and the pocket and the center of the ball and a straight line passing through the center of the ball and perpendicular to the radial direction.
  • FIG. It is a graph which shows the relationship between angle (theta) and the moving amount
  • FIG. 1 is a partial longitudinal sectional view of a ball bearing according to a first embodiment of the present invention.
  • 2 is a perspective view of the cage of the ball bearing of FIG. 1
  • FIG. 3 is a partial cross-sectional view of the cage of FIG.
  • the ball bearing of the first embodiment includes an inner ring 1, an outer ring 2, and a plurality of balls 3 (rolling elements) arranged between the inner ring 1 and the outer ring 2 so as to freely roll. And a resin cage 4 that holds a plurality of balls 3 between the inner ring 1 and the outer ring 2.
  • the bearing space in which the balls 3 are arranged between the inner ring 1 and the outer ring 2 is filled with a lubricant (for example, lubricating oil or grease) (not shown) for initial lubrication or supplied with lubricant.
  • a lubricant for example, lubricating oil or grease
  • the contact surface between the raceway surfaces of the inner ring 1 and the outer ring 2 and the balls 3 is lubricated by the lubricant.
  • ATF which is one of lubricating oils, is usually used.
  • the material of the inner ring 1 and the outer ring 2 is not particularly limited, but bearing steel such as SUJ2 is preferable, and bearing steel subjected to carburizing or carbonitriding is particularly preferable.
  • a material obtained by carburizing or carbonitriding an alloy steel obtained by adding an alloying element such as silicon, manganese, chromium, and molybdenum to medium carbon steel can also be used.
  • a material obtained by carburizing or carbonitriding the alloy steel with an increased amount of silicon added is preferable.
  • the material of the ball 3 is not particularly limited, and for example, the same bearing steel, alloy steel, or ceramic as the inner ring 1 and the outer ring 2 can be used.
  • the cage 4 is a crown type cage integrally formed by injection molding a resin material.
  • the retainer 4 includes an annular base portion 10 and a plurality of pockets 11 that are provided on one end surface in the axial direction of the base portion 10 and hold the ball 3 in a rollable manner.
  • Each pocket 11 is formed of a concave portion 11a provided on one end surface in the axial direction of the base portion 10, and a pair of elastic pieces 11b disposed opposite to each other at an edge of the concave portion 11a.
  • the mutually opposing surfaces of the pair of elastic pieces 11b and the inner surface of the recess 11a continuously form one spherical concave surface or cylindrical surface.
  • the type of resin material constituting the cage 4 is not particularly limited as long as it has properties such as strength and heat resistance necessary for the cage, but nylon 46, nylon 66, polyphenylene sulfide (PPS). ), Synthetic resins such as polytetrafluoroethylene (PTFE) and polyetheretherketone (PEEK).
  • a resin composition containing about 10 to 40% by mass of a reinforcing material such as glass fiber (GF) or carbon fiber (CF) in the resin is particularly preferable because of high toughness and mechanical strength at high temperatures.
  • the axial distance A between the axial position of the center of gravity G of the cage 4 and the center of curvature O11 of the spherical or cylindrical inner surface of the pocket 11 is 0.6 times or more the radius of curvature r of the inner surface of the pocket 11. 9 times or less.
  • the ball bearing is suitable as a bearing for supporting a rotating shaft of a drive motor or a generator (for example, an alternator) for a hybrid vehicle.
  • a generator for example, an alternator
  • the cage 4 does not include a metal reinforcing member, the ball bearing can be manufactured at low cost.
  • the range of the axial distance A between the axial position of the center of gravity G of the cage 4 and the center of curvature O11 of the inner surface of the pocket 11 will be described in more detail with reference to FIG.
  • the elastic piece 11b of the pocket 11 is deformed radially outward. This is because since the elastic piece 11b has a cantilever structure, the centrifugal force acts as a moment on the axial position of the center of gravity G of the cage 4 with the rigid center S of the cage 4 as a fulcrum.
  • the rigidity center S is located at a substantially intermediate position between the other axial end surface of the base portion 10 (the end surface of the both axial end surfaces of the base portion 10 where the pocket 11 is not formed) and the bottom portion of the pocket 11.
  • the axial distance A between the axial position of the center of gravity G of the cage 4 and the center of curvature O11 of the inner surface of the pocket 11 is set to be not less than 0.6 times and not more than 0.9 times the radius of curvature r of the inner surface of the pocket 11. For example, since the axial position of the center of gravity G of the cage 4 and the rigid center S are close to each other, deformation of the elastic piece 11b in the radially outward direction is suppressed even when centrifugal force acts on the cage 4. .
  • the axial position of the center of gravity G of the cage 4 is Moving in the direction of the other axial end surface, the axial distance A increases. That is, the axial position of the center of gravity G of the cage 4 approaches the rigidity center S.
  • the axial distance A is less than 0.6 times the radius of curvature r, the moment acting on the axial position of the center of gravity G of the cage 4 increases, and the cage 4 may be deformed.
  • the axial distance A is more than 0.9 times the radius of curvature r, the width (axial length) of the cage 4 becomes large, and when the ball bearing has a seal member, the cage 4 And the seal member may come into contact with each other. Even when the ball bearing does not have a seal member, the cage 4 may protrude outward from the side surface of the ball bearing.
  • the axial distance A is preferably 0.65 to 0.85 times the radius of curvature r, and preferably 0.75 to 0.85 times. More preferably.
  • the cage 4 has a structure in which the central position of the radial thickness is positioned radially inward from the center of the ball 3. Since the rigidity of the cage 4 is improved by having such a structure, deformation of the cage 4 due to centrifugal force is suppressed.
  • the magnitude of the moment based on the centrifugal force acting on the cage when the ball bearing is rotated was calculated.
  • the results are shown in FIG.
  • the vertical axis of this graph is the magnitude of the moment acting on the cage
  • the horizontal axis is the inner surface of the pocket at the axial distance between the axial position of the center of gravity of the cage and the center of curvature of the inner surface of the pocket.
  • the graph shows the axial position of the center of gravity of the cage).
  • the axial distance A is preferably at least 0.6 times the radius of curvature of the inner surface of the pocket, more preferably at least 0.65 times, most preferably at least 0.75 times. It is.
  • the moment suppression effect becomes more prominent as dmn increases to 1.13 million and 1.7 million.
  • the cage 4 has a structure in which the central position of the radial thickness is positioned radially inward from the center of the ball 3. And the deformation
  • ⁇ Ball bearings that support the rotating shafts of drive motors and generators (for example, alternators) for hybrid vehicles may have a bearing temperature as low as -40 ° C when used in cold regions. Since the cage 4 made of resin is more easily contracted by lowering the temperature than the metal inner ring 1, the difference between the inner diameter of the cage 4 and the outer diameter of the inner ring 1 (hereinafter referred to as radial clearance) becomes zero, and the bearing There is a risk that it will not lock and rotate.
  • the size of the radial gap at normal temperature can be set so that the radial gap does not become zero even when the temperature of the bearing changes from normal temperature to ⁇ 40 ° C. and the cage 4 and the inner ring 1 contract.
  • the radial clearance at normal temperature is preferably larger than the contraction amount of the inner diameter of the retainer 4 when the retainer 4 contracts due to temperature change from normal temperature to ⁇ 40 ° C.
  • the amount of contraction of the inner diameter of the cage 4 can be obtained from the product of the inner diameter of the cage 4, the linear expansion coefficient of the material of the cage 4, and the amount of temperature change.
  • the temperature change amount is, for example, a difference between normal temperature and ⁇ 40 ° C., and when the normal temperature is 20 ° C., the temperature change amount is 60 ° C.
  • the cage 4 may rattle in the radial direction. If this backlash amount is too large, the inner peripheral surface of the cage 4 and the outer peripheral surface of the inner ring 1 may come into contact with each other, which may increase the torque of the bearing.
  • the radial clearance is larger than the radial play of the cage 4 so that the inner circumferential surface of the cage 4 and the outer circumferential surface of the inner ring 1 do not come into contact with each other even when the cage 4 is rattled in the radial direction. It is preferable to do.
  • the radial play amount of the cage is the maximum distance that the cage can move in one radial direction and the maximum distance that the cage can move 180 ° opposite to the one direction. It means sum.
  • ball bearings that support the rotating shafts of drive motors and generators (for example, alternators) for hybrid vehicles are often lubricated with lubricating oil.
  • the lubricating oil introduced into the bearing through the opening in the axial end of the bearing flows radially outward due to centrifugal force, so the inner peripheral surface of the cage 4 and the inner ring 1 It is difficult for lubricating oil to enter between the outer peripheral surface and the lubricating oil tends to be insufficient (see FIG. 7). As a result, the cage 4 may be worn, seized, or skid.
  • the radial gap is preferably 0.15 times or more the diameter of the ball 3, and more preferably 0.2 times or more. If it does so, as FIG. 6 shows, lubricating oil will enter easily between the inner peripheral surface of the holder
  • the radial clearance is preferably 2% to 10%, more preferably 2% to 7% of the outer diameter of the inner ring 1.
  • the axial end surface of the retainer 4 on the side where the pocket 11 is not formed be close to the axial end of the bearing.
  • the axial length L is 0.15 times or less the diameter of the ball 3, as shown in FIG. 8, it is between the inner peripheral surface of the cage 4 and the outer peripheral surface of the inner ring 1.
  • Lubricating oil easily enters and lubrication is good.
  • the axial length L is preferably 5 mm or less, more preferably 2 mm or less.
  • the retainer 4 does not protrude from the end face of the inner ring 1 or the outer ring 2. Therefore, it is most preferable that the axial length L is 0.1 mm or more and 2 mm or less, including the amount of movement due to the gap between the pocket 11 of the cage 4 and the ball 3.
  • FIG. 10 shows a first modification of the first embodiment.
  • a lubricant that guides the lubricant into the bearing from the opening in the axial end portion in the vicinity of the axial end portion of the bearing.
  • a guide 25 may be provided. If it does so, lubricating oil will enter easily between the inner peripheral surface of the holder
  • FIG. 10 shows a first modification of the first embodiment.
  • a plate-like lubricant guide 25 is attached to the axial end surface of the bearing, and the lubricant supplied by the axial oil supply is reflected by the lubricant guide 25 in the direction toward the inside of the bearing. Thus, it is introduced into the bearing through the opening at the axial end of the bearing.
  • a member having the same structure as that of the lubricant guide 25 is located near the end in the axial direction opposite to the side on which the lubricant guide 25 is provided (that is, the end on the side from which the lubricant flows out of the bearing). It may be provided. Thus, the same effect can be obtained even if the above-mentioned members are provided at both axial ends.
  • the lubricant guide 25 can also be constituted by a general shield plate or seal. In this case, the lubricant is easily introduced from the gap between the inner peripheral surface of the shield plate or the seal and the outer peripheral surface of the inner ring 1. Seal members such as seals and shield plates may be provided on both sides in the axial direction, or may be provided only on one side in the axial direction.
  • FIG. 11 shows a second modification of the first embodiment.
  • the lubricant is at one end of the bearing in the axial direction (the end on the side where the axial end surface on the side where the pocket 11 of the base portion 10 of the cage 4 is not formed). It is introduced into the bearing through the opening, and is discharged to the outside through the opening at the other axial end (the end on the side where the axial end surface on the side where the pocket 11 of the base portion 10 of the retainer 4 is formed).
  • the outer diameter of the shoulder portion of the outer ring 2 is larger on the lubricant discharge side than on the lubricant introduction side. According to this configuration, the lubricant is easily drawn into the bearing from the opening at the axial end portion on the lubricant introduction side of the bearing, so that the amount of the lubricant passing through the bearing increases.
  • the outer diameter of the shoulder portion of the inner ring 1 is larger on the lubricant discharge side than on the lubricant introduction side as in the third modification of the first embodiment shown in FIG.
  • the outer diameter at the shoulder portion may be set so that the lubricant discharge side is larger than the lubricant introduction side.
  • FIGS. 11 and 12 an example in which the lubricant is introduced into the bearing from the opening of the end portion of the base portion 10 of the cage 4 where the pocket 11 is not formed on the side facing the axial end surface.
  • the inside of the bearing is opened from the opening at the opposite end, that is, the opening at the end facing the axial end surface on the side where the pocket 11 of the base portion 10 of the cage 4 is formed.
  • the same effect as described above is also obtained when a lubricant is introduced into.
  • FIG. 13 is a partial longitudinal sectional view of a ball bearing according to a second embodiment of the present invention.
  • 14 is a perspective view of the cage of the ball bearing of FIG. 13
  • FIG. 15 is a partial cross-sectional view of the cage of FIG.
  • the same or similar parts as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment. Further, a detailed description of the same configuration as that of the first embodiment is omitted.
  • the ball bearing shown in FIG. 13 includes an inner ring 21, an outer ring 22, a plurality of balls 3 (rolling elements) that are movably arranged between the inner ring 21 and the outer ring 22, and a plurality of balls between the inner ring 21 and the outer ring 22. And a resin cage 24 that holds the balls 3.
  • the raceway surface 21a (trackway groove) of the inner ring 21 and the raceway surface 22a (trackway groove) of the outer ring 22 are offset from the axial center position of the inner ring 21 and the outer ring 22 to one side (right side in FIG. 13) in the axial direction. It is arranged at the position.
  • the offset amount is not particularly limited. However, it is preferable that the ball 3 does not protrude from at least one axial end surface of the inner ring 1 and the outer ring 22 even if the axial clearance of the ball bearing is included.
  • the bearing space in which the balls 3 are arranged between the inner ring 21 and the outer ring 22 is filled with a lubricant (for example, lubricating oil or grease) (not shown) or supplied with a lubricant. With this lubricant, the contact surfaces of the raceway surfaces of the inner ring 21 and the outer ring 22 and the balls 3 are lubricated.
  • the ball bearing may include a seal member such as a seal or a shield.
  • the seal members may be provided on both sides in the axial direction, but may be provided only on one side in the axial direction.
  • the material of the inner ring 21 and the outer ring 22 is not particularly limited, but bearing steel such as SUJ2 is preferable, and bearing steel subjected to carburizing or carbonitriding is particularly preferable. Moreover, the raw material which performed the carburizing process or the carbonitriding process to the alloy steel which added alloy elements, such as silicon, manganese, chromium, molybdenum, etc. to the medium carbon steel as needed can also be used. In particular, when the bearing is used under high-speed and high-temperature conditions, a material obtained by carburizing or carbonitriding the alloy steel with an increased amount of silicon among the alloy steels is preferable.
  • the material of the ball 3 is not particularly limited, and bearing steel or ceramic can be suitably used.
  • the cage 24 is a crown type cage integrally formed by injection molding of a resin material.
  • the retainer 24 includes an annular base portion 20 and a plurality of pockets 11 that are provided on one end surface in the axial direction of the base portion 20 and hold the ball 3 in a rollable manner.
  • Each pocket 11 is formed of a concave portion 11a provided on one end surface in the axial direction of the base portion 20, and a pair of elastic pieces 11b arranged opposite to each other at an edge of the concave portion 11a.
  • the mutually opposing surfaces of the pair of elastic pieces 11b and the inner surface of the recess 11a continuously form one spherical concave surface or cylindrical surface.
  • the cage 24 has a base portion on the side where the raceway surfaces 21a and 22a are offset (hereinafter referred to as the offset side), that is, the pocket 11 is directed to the right side in FIG. 13, and the opposite side to the offset side (hereinafter referred to as the anti-offset side). It is arranged with 20 facing.
  • raceway surfaces 21a and 22a are arranged at positions offset from the central position of the inner ring 21 and the outer ring 22 in the axial direction to one side in the axial direction, they are on the opposite side of the bearing (on the left side in FIG. 13). Has a larger space than the offset side. Therefore, when the ball bearing has a seal member, the base portion 20 of the cage 24 is unlikely to contact the seal member. Further, the base portion 20 of the cage 24 is unlikely to protrude outside from the opening at the axial end portion of the bearing.
  • the base portion 20 of the cage 24 has a shape that is longer in the axial direction (see FIG. 13). Is possible. With such a shape, the rigidity of the cage 24 is increased and deformation is less likely to occur.
  • the type of resin material constituting the cage 24 is not particularly limited as long as it has properties such as strength and heat resistance necessary for the cage, but nylon 46, nylon 66, polyphenylene sulfide (PPS). ), Synthetic resins such as polytetrafluoroethylene (PTFE) and polyetheretherketone (PEEK).
  • a resin composition containing about 10 to 40% by mass of a reinforcing material such as glass fiber (GF) or carbon fiber (CF) in the resin is particularly preferable because of high toughness and mechanical strength at high temperatures. .
  • the axial distance A between the axial position of the center of gravity G of the cage 24 and the center of curvature O11 of the spherical or cylindrical inner surface of the pocket 11 is 0.6 times or more the radius of curvature r of the inner surface of the pocket 11. It is supposed to be 2 times or less.
  • this ball bearing can be suitably used under high temperature and high speed conditions.
  • it is suitable as a bearing for supporting a rotating shaft of a drive motor or a generator (for example, an alternator) for a hybrid vehicle.
  • the cage 24 does not include a metal reinforcing member, this ball bearing can be manufactured at low cost.
  • the range of the axial distance A between the axial position of the center of gravity G of the cage 24 and the center of curvature O11 of the inner surface of the pocket 11 will be described in more detail with reference to FIG.
  • the elastic piece 11b of the pocket 11 is deformed radially outward. This is because since the elastic piece 11b has a cantilever structure, the centrifugal force acts as a moment on the axial position of the center of gravity G of the cage 24 with the rigid center S of the cage 24 as a fulcrum.
  • the rigidity center S is at a substantially intermediate position between the other end surface in the axial direction of the base portion 20 (the end surface of the both axial end surfaces of the base portion 20 where the pocket 11 is not formed) and the bottom portion of the pocket 11.
  • the axial distance A between the axial position of the center of gravity G of the cage 24 and the center of curvature O11 of the inner surface of the pocket 11 should be 0.6 times or more and 1.2 times or less the radius of curvature r of the inner surface of the pocket 11. For example, since the axial position of the center of gravity G of the cage 24 and the rigid center S are close to each other, deformation of the elastic piece 11b in the radially outward direction is suppressed even if centrifugal force acts on the cage 24. .
  • the axial position of the center of gravity G of the cage 24 is Moving in the direction of the other axial end surface, the axial distance A increases. That is, the axial position of the center of gravity G of the cage 24 approaches the rigidity center S. Further, since the track surfaces 21a and 22a are offset, the axial distance A can be increased.
  • the axial distance A is less than 0.6 times the radius of curvature r, the moment acting on the axial position of the center of gravity G of the cage 24 increases, and the cage 24 may be deformed.
  • the axial distance A exceeds 1.2 times the radius of curvature r, the width of the cage 24 (length in the axial direction) increases, and the cage 24 has a seal member when the ball bearing has a seal member. And the seal member may come into contact with each other. Even when the ball bearing does not have a seal member, the cage 24 may protrude outward from the side surface of the ball bearing.
  • the axial distance A is preferably 0.65 times to 1.1 times the radius of curvature r, and preferably 0.75 times to 1.1 times. More preferably, it is 0.85 times or more and 1.1 times or less, and it is most preferably 0.9 times or more and 1.1 times or less under use conditions exceeding dmn 1 million.
  • the result of calculating the magnitude of the moment based on the centrifugal force acting on the cage when the ball bearing of the second example is rotated is the same as the graph of FIG. 5 showing the calculation result in the first example. That is, as shown in the graph of FIG. 5, the axial distance A is preferably 0.6 times or more, more preferably 0.65 times or more the radius of curvature of the inner surface of the pocket. In particular, as the dmn becomes 1.13 million and 1.7 million and dmn increases, the moment suppressing effect becomes more prominent.
  • the cage 24 may have a structure in which the central position of the radial thickness is positioned radially inward from the center of the ball 3. Since the rigidity of the cage 24 is improved by having such a structure, deformation of the cage 24 due to centrifugal force is suppressed.
  • the difference between the inner diameter of the cage 24 at the normal temperature and the outer diameter of the inner ring 21 (hereinafter referred to as the radial gap) is the temperature of the cage 24 changed from normal temperature to ⁇ 40 ° C.
  • the amount of contraction of the inner diameter of the cage 24 when contracted may be larger. According to this configuration, even when the temperature of the bearing changes from normal temperature to ⁇ 40 ° C. and the cage 24 and the inner ring 21 contract, the radial clearance does not become zero, and the bearing locks and does not rotate. Can be prevented.
  • the radial gap may be larger than the radial play of the cage 24.
  • the radial gap may be 0.15 times or more of the diameter of the ball 3, and more preferably 0.2 times or more. If it does so, lubricating oil will enter easily between the internal peripheral surface of the holder
  • retainer 24 is formed faces the pocket of the base part 20 of the holder
  • 17 and 18 show an example in which the lubricating oil is introduced into the bearing from the opening at the latter end, but the lubricating oil is introduced from the opening at the opposite end, that is, the opening at the former end.
  • the axial end surface of the base portion 20 of the retainer 24 on the side where the pocket 11 is not formed be close to the axial end portion of the bearing.
  • the axial length L is 0.15 times or less the diameter of the ball 3, as shown in FIG.
  • Lubricating oil easily enters the gap between the outer peripheral surface 21 and lubrication.
  • the axial length L is preferably 5 mm or less, more preferably 2 mm or less.
  • the retainer 4 does not protrude from the end face of the inner ring 1 or the outer ring 2. Therefore, it is most preferable that the axial length L is 0.1 mm or more and 2 mm or less, including the amount of movement due to the gap between the pocket 11 of the cage 4 and the ball 3.
  • FIG. 21 shows a first modification of the second embodiment.
  • the lubricant is provided in the vicinity of the axial end portion of the bearing from the opening of the axial end portion inside the bearing.
  • a leading lubricant guide 25 is provided. Therefore, the lubricating oil is likely to enter between the inner peripheral surface of the cage 24 and the outer peripheral surface of the inner ring 21, and lubrication is unlikely to be insufficient.
  • a plate-like lubricant guide 25 is attached to the axial end surface of the bearing, and the lubricant supplied by the axial lubrication is reflected by the lubricant guide 25 in the direction toward the inside of the bearing. Thus, it is introduced into the bearing through the opening at the axial end of the bearing.
  • a member having the same structure as that of the lubricant guide 25 is located near the end in the axial direction opposite to the side on which the lubricant guide 25 is provided (that is, the end on the side from which the lubricant flows out of the bearing). It may be provided. Thus, the same effect can be obtained even if the above-mentioned members are provided at both axial ends.
  • the lubricant guide 25 can also be constituted by a general shield plate or seal. In this case, the lubricant is easily introduced from the gap between the inner peripheral surface of the shield plate or the seal and the outer peripheral surface of the inner ring 21. Seal members such as seals and shield plates may be provided on both sides in the axial direction, or may be provided only on one side in the axial direction.
  • FIG. 22 shows a second modification of the second embodiment.
  • the lubricant is at one end of the bearing in the axial direction (the end on the side where the axial end surface on the side where the pocket 11 of the base portion 20 of the cage 24 is not formed). It is introduced into the inside of the bearing through the opening, and is discharged to the outside from the opening at the other axial end (the end on the side where the axial end face on the side where the pocket 11 of the base portion 20 of the cage 24 is formed) faces.
  • the outer diameter of the shoulder portion of the outer ring 22 is greater on the lubricant discharge side than on the lubricant introduction side. large. Therefore, the lubricant is easily drawn into the bearing from the opening at the axial end portion on the lubricant introduction side of the bearing, and the amount of the lubricant passing through the bearing increases.
  • the bearings are opened from the opening at the end on the side facing the axial end surface on the side where the pocket 11 of the base portion 20 of the cage 24 is not formed, in both axial ends of the bearing.
  • An example in which the lubricant is introduced is shown, but the opening at the opposite end, that is, the axial end surface on the side where the pocket 11 of the base portion 20 of the cage 24 is formed faces.
  • the edge of the inner surface of the pocket 11 (particularly, the edge on the radially inner side) has a sharp shape (sharp edge), and if the ball 3 collides with it, the sharp edge may be damaged and the fragments may fall off. .
  • the edge of the inner surface of the pocket 11 is chamfered to form a substantially flat chamfered portion 11c.
  • chamfered portion 11c the lubricating oil is easily taken into the pocket 11 of the cage 4. Therefore, particularly in a bearing lubricated with lubricating oil, the effect of improving the lubricating performance of the bearing is achieved by the formation of the chamfered portion 11c.
  • the chamfering amount was variously changed to investigate the ease of debris falling off by rotation. That is, the value obtained by dividing the radial distance between the central position of the radial thickness of the cage and the center of the ball by the radius of curvature of the inner surface of the pocket (hereinafter, the amount of deviation of the central position of the cage) is 0%. For the bearings of 4.3% and 12.9%, the ease of dropping of fragments by rotation was investigated. The results are shown in FIG.
  • the chamfering amount is a value (unit:%) obtained by dividing the radial length M of the chamfered portion 11c by the radius of curvature of the inner surface of the pocket 11 (see FIG. 24). Also, the ease of dropping off is the stress value that acts on the edge of the inner surface of the pocket due to contact with the ball.
  • the stress value of the bearing with 0% displacement and 0% chamfering at the center position of the cage The relative value in the case of 1 is shown.
  • the chamfering amount is preferably 0.5% or more and 5% or less, and more preferably 2.5% or more and 4.5% or less.
  • the inner diameter of the cages 4, 24 is too large due to the thin radial thickness of the cages 4, 24, the amount of movement (backlash) in the radial direction of the cages 4, 24 increases and the bearing Harmful vibration and noise are likely to occur. Therefore, it is preferable to set the inner diameter of the cage 4 to a suitable value.
  • an imaginary straight line L1 connecting the radially innermost contact point P of the contact points between the ball 3 and the inner surface of the pocket 11 and the center of the ball 3 is drawn.
  • the inner diameter of the cage 4 is defined by an angle ⁇ formed by the virtual straight line L1 and a straight line L2 extending in a direction orthogonal to the radial direction and passing through the center of the ball 3.
  • the angle ⁇ is preferably 25 ° or more, and more preferably 30 ° or more.
  • the angle ⁇ is set to 50 ° or less, more preferably 40 ° or less. More specifically, the angle ⁇ is in the above range, and as described above, the gap between the inner diameter of the cage and the outer diameter of the inner ring is preferably 2% or more and 10% or less of the outer diameter of the inner ring, more preferably. Is 2% or more and 7% or less.
  • the ball bearings of the first and second embodiments described above are suitable as ball bearings for supporting the rotating shafts of drive motors and generators (for example, alternators) for hybrid vehicles. Therefore, the hybrid vehicle transmission incorporating the ball bearings of the first and second embodiments can be suitably used even under high temperature and high speed conditions.
  • FIG. 31 shows a ball bearing according to a third embodiment of the present invention.
  • this ball bearing includes an inner ring 31 having a raceway surface 1 a (track groove) on the outer peripheral surface, an outer ring 32 having a raceway surface 2 a (track groove) on the inner peripheral surface, and a raceway of the inner ring 31.
  • a plurality of balls (steel balls) 3 that are rotatably arranged between the surface 1a and the raceway surface 2a of the outer ring 32, and a resin crown-shaped cage that holds the balls 3 at predetermined intervals in the circumferential direction.
  • 34 and an annular lubricant guide 5 made of a thin plate provided on one end face side in the axial direction of the inner ring 31 and the outer ring 32.
  • the crown-shaped cage 34 includes an annular base portion 4a, a plurality of column portions 4b protruding from one axial end surface of the base portion 4a and arranged at regular intervals, and adjacent columns.
  • the crown-shaped cage 34 holds the balls 3 at predetermined intervals in the circumferential direction by housing the balls 3 in the respective spherical pockets 4c.
  • the resin constituting the crown-shaped cage 34 examples include polyamide resins such as 46 nylon and 66 nylon, polybutylene terephthalate, polyferensalside (PPS), polyamideimide (PAI), thermoplastic polyimide, polyetheretherketone. (PEEK), polyether nitrile (PEN) and the like. Further, the rigidity and dimensional accuracy of the crown-shaped cage 34 can be improved by appropriately adding 10 to 40 wt% of a fibrous filler (for example, glass fiber or carbon fiber) to the above-described resin.
  • a fibrous filler for example, glass fiber or carbon fiber
  • the crown type retainer 34 is preferably manufactured by injection molding of a multipoint gate. Then, the dimensional accuracy of the crown-shaped cage 34 can be improved as compared with the one-point gate. In addition, since the weld portion can be displaced from the pocket bottom, which is the weakest part of the cage, by manufacturing with a multipoint gate, it is possible to prevent a decrease in strength due to the weld portion.
  • This ball bearing is used in an environment where lubricating oil for lubricating the inside of the bearing is supplied from the one axial side S1 to the ball 3 and discharged from the other axial side S2 to the ball 3. Is done.
  • the crown-shaped cage 34 is arranged so that the base portion 4a is directed to the lubricating oil supply side S1, which is one side in the axial direction, and the supplied lubricating oil is disposed along the inner peripheral surface of the base portion 4a. 3 and the sliding part of the cage 34.
  • a lubricant guide 5 is caulked and fixed to the lubricant supply side S1 of the outer ring 32.
  • the lubricant guide 5 is fixed to the outer ring 32 by engaging the outer peripheral end 5a with an engagement groove 2b formed in a shoulder on the side of the outer ring raceway surface 2a of the outer ring 32, and the lubricant guide part 5b. Is extended toward the side shoulder 1b of the inner ring raceway surface 1a.
  • An annular opening 51 to which lubricating oil is supplied is formed between the inner peripheral portion 5 c of the lubricant guide 5 and the outer peripheral portion of the shoulder portion 1 b of the inner ring 31.
  • the shoulder 1b of the inner ring 31 facing the inner peripheral portion 5c of the lubricant guide 5 is provided with a tapered notch 1c, and the outer peripheral surface of the tapered notch 1c and the lubricant guide 5 are provided.
  • An annular opening 51 to which lubricating oil is supplied is formed between the inner peripheral portion 5c and the inner peripheral portion 5c.
  • the tapered notch 1c extends to the inner side in the axial direction from the bottom of the spherical pocket of the crown type retainer 34 in order to improve the inflow of lubricating oil.
  • the central position 4h of the radial width of the crown-shaped cage 34 is biased toward the inner diameter side of the bearing with respect to the center O3 of the ball 3 in order to increase the holding amount of the ball 3.
  • the crown-shaped cage 34 is unevenly distributed on the inner diameter side, and the ball 3 is held.
  • the radial gap e2 between the edge 4e of the inner peripheral portion of the cage 34 and the ball 3 can be made smaller than the gap e1 in FIG. Therefore, the deformation of the cage 34 toward the outer diameter side can be suppressed to a small level.
  • the torsional deformation can be suppressed as compared with the case where the holding amount is small as shown in FIG. 33B, and the cage 34 contacts the outer ring 32. Can be prevented.
  • the outer diameter surface of the inner ring 31 serves as a guide for rotation of the cage 34, and the radial direction of the cage 34 is increased.
  • the effect of suppressing the play and preventing the cage 34 from swinging can be expected.
  • the cage 34 is guided by a ball, and the cage 34 and the inner ring 31 are not in contact with each other, so that the bearing torque does not increase.
  • the cage 34 and the inner ring 31 may come into contact with each other, but even in that case, the cage 34 comes into contact with the outer ring 32.
  • the increase in bearing torque is small.
  • the guide of the cage 34 may be changed from the ball guide to the inner ring guide, particularly when used under a condition where an impact force acts.
  • a curved surface is attached to the edge 4e of the inner peripheral portion of the spherical pocket 4c.
  • the edge 4e of the inner peripheral portion of the spherical pocket 4c becomes acute as shown by an imaginary line in FIG. 34A, and this portion is easily worn. Therefore, wear can be prevented by using the curved edge 4e.
  • the edge 4e may be chamfered. In these cases, the ball 3 is formed on the bottom of the spherical pocket 4c where the ball 3 is easily in contact with the cage 34 or the tip of the nail. Only partially curved surfaces and chamfers may be provided.
  • the center O3 of the ball 3 is more suitable for the lubricating oil discharge side S2 than the center position C of the axial width of the inner ring 31 and the outer ring 32. Is offset by a certain dimension F.
  • F the axial distance between the lubricant guide 5 and the ball 3 disposed on the lubricating oil supply side S1 is increased.
  • the bottom thickness J of the spherical pocket 4c of the crown type retainer 34 (the thickness of the base portion 4a) can be ensured by a corresponding amount.
  • the bottom thickness J of the spherical pocket 4c of the retainer 34 is increased, the rigidity of the crown retainer 34 can be increased accordingly, and the effect of suppressing torsional deformation due to centrifugal force is enhanced.
  • a bent wall 5d that is bent toward the inside of the bearing is provided on the inner peripheral portion of the lubricant guide 5.
  • the lubricating oil flowing in from the annular opening 51 is guided to the bending wall 5d without being directed to the outer diameter side due to the centrifugal force, so that the crown-shaped holding is performed.
  • the lubricating oil can flow positively into the portion requiring lubrication.
  • the inner diameter Ds of the inner peripheral portion 5c of the lubricant guide 5 is not more than the revolution diameter PCD of the ball 3, more preferably not more than the inner diameter Dh of the crown type cage 34.
  • the annular opening 51 is formed on the axial supply side between the inner peripheral portion 5 c of the lubricant guide 5 fixed to the outer ring 32 and the outer peripheral portion of the inner ring 31. Therefore, the lubricating oil can be introduced into the bearing from the annular opening 51.
  • the lubricating oil that has entered the inside of the bearing flows into the inner diameter side of the crown-shaped cage 34, then flows into the sliding portion of the ball 3 and the cage 34 by centrifugal force, and further increases the flow velocity by centrifugal force. Then, it is discharged to the outside of the bearing from the annular opening on the axial discharge side between the opened inner and outer rings 1 and 2.
  • the arrow in FIG. 31 has shown the flow of lubricating oil.
  • the lubricating oil supplied to the inside of the bearing flows into the sliding portion of the ball 3 and the retainer 34 from the inner diameter side of the crown-shaped retainer 34 by centrifugal force, extra space and cost such as a lubrication nozzle Without using such a device, it is possible to suppress wear of the cage 34 due to sliding with the balls 3 that are likely to occur during high-speed rotation. As a result, the crown-type cage 34 can be prevented from swinging and the life of the bearing can be extended. Further, since the lubricating oil can be discharged to the outside of the bearing while the flow velocity is increased by centrifugal force, the replacement of the lubricating oil can be performed effectively, and the temperature rise and torque increase of the bearing can be prevented. .
  • the resin crown-shaped cage 34 can be injection-molded, it can be mass-produced, and the lubrication state can be improved while suppressing the cost. Moreover, the crown-shaped cage 34 which is a ball guide can contribute to a reduction in torque.
  • the inner diameter Ds of the lubricant guide 5 is set to be equal to or smaller than the inner diameter Dh of the crown-shaped cage 34, the lubricating oil that has entered the bearing from the annular opening 51 is more reliably located on the inner diameter side of the crown-shaped cage 34. Can flow into. Further, excessive lubricant can be prevented from entering the bearing.
  • the central position 4h of the radial width of the crown type cage 34 is biased toward the inner diameter side of the bearing with respect to the center O3 of the ball 3, the amount of the ball 3 held by the crown type cage 34 can be increased. The torsional deformation of the crown type cage 34 can be suppressed.
  • the center O3 of the ball 3 is offset to the lubricating oil discharge side S2
  • the distance between the lubricant guide 5 and the ball 3 arranged on the lubricating oil supply side S1 can be increased. Therefore, when the gap between the ball 3 and the lubricant guide 5 is increased, the axial thickness of the base portion 4a of the crown type retainer 34 facing the lubricating oil supply side S1, that is, the bottom thickness of the spherical pocket 4c. J can be increased.
  • the rigidity of the crown-shaped cage 34 can be improved, and the swing-around deformation of the crown-shaped cage 34 can be suppressed.
  • the tapered notch 1c is provided in the shoulder 1b of the inner ring 31 on the side where the lubricant guide 5 is disposed, while ensuring a large annular opening 51 into which the lubricating oil flows, The inner diameter Ds of the lubricant guide 5 can be reduced. As a result, the lubricating oil can be reliably introduced into the inner diameter side of the crown-shaped cage 34, and the lubricating oil can be easily guided to the sliding portion between the spherical pocket 4c and the ball 3.
  • the inner peripheral portion 5c of the lubricant guide 5 is provided with a bent wall 5d extending toward the bearing inner side, an annular ring secured between the inner peripheral portion 5c of the lubricant guide 5 and the outer peripheral portion of the inner ring 31 is provided. Lubricating oil flowing from the opening 51 can be actively guided toward the inner peripheral portion of the crown-shaped cage 34 without losing centrifugal force.
  • the inner diameter Ds of the lubricant guide 5 is set to be equal to or less than the revolution diameter PCD of the ball 3, and more preferably equal to or less than the inner diameter of the crown type cage, the performance of feeding the lubricating oil to the necessary portion by the lubricant guide 5 is improved.
  • the lubrication state of the bearing can be improved.
  • the shortest distance y between the outer peripheral portion of the inner ring 31 and the inner peripheral portion 5c of the lubricant guide 5 is set to 9% or more of the diameter Dw of the ball 3, it is possible to reduce the whirling of the crown-shaped cage 34. it can.
  • the swinging of the crown-shaped cage 34 is more reliably reduced. can do.
  • FIG. 35 shows a ball bearing according to a first modification of the third embodiment.
  • a through hole 5 e that allows passage of the lubricating oil is provided in the vicinity of the outer periphery of the lubricant guide 5 on the inner diameter side of the inner peripheral portion of the outer ring 32.
  • the lubricating oil can freely escape through the through hole 5e provided in the vicinity of the outer periphery of the lubricant guide 5, so that the lubricating oil replacement efficiency can be improved in the region R inside the bearing on the outer peripheral side of the bearing. It is possible to prevent heat generation at that portion.
  • Other configurations and effects are the same as those of the third embodiment.
  • 36A to 36E show ball bearings according to second to sixth modifications of the third embodiment.
  • the configurations of these modified examples have the same configurations and effects as those of the third embodiment except for the portions described below.
  • the ball bearing according to the second modified example of FIG. 36A is provided with a stepped notch 1d in place of the tapered notch 1c on the shoulder 1b of the inner ring 31.
  • the bending wall 5 d extends to a position where it enters the inner peripheral side of the base portion 4 a of the crown type retainer 34.
  • the ball bearing according to the fourth modification of FIG. 36C has a stepped notch 1d instead of the tapered notch 1c on the shoulder 1b of the inner ring 31.
  • the lubricant guide 5 does not have the bending wall 5d.
  • the lubricating oil flowing in from the annular opening 51 tends to go in the outer diameter direction by centrifugal force.
  • the kinetic energy is imparted to the lubricating oil when it flows into the bearing from the annular opening 51, the lubricating oil can be sufficiently guided to the inner peripheral portion of the crown-shaped cage 34.
  • 36D has a configuration in which the shoulder 1b of the inner ring 31 has no notch, and the inner peripheral portion of the crown-shaped cage 34 and the outer diameter surface of the inner ring 31 approach each other. Further, the lubricant guide 5 does not have the bending wall 5d.
  • the ball bearing according to the sixth modification of FIG. 36E has a configuration in which the shoulder 1b of the inner ring 31 has no notch 1d.
  • the crown type cage 34 is used in which the center of the radial width of the cage 34 coincides with the center of the ball 3, and the contact between the inner peripheral portion of the crown type cage 34 and the outer diameter surface of the inner ring 31 is used. Is suppressed. Further, by using this cage 34, the inner diameter of the lubricant guide 5 becomes smaller than the inner diameter of the cage 34, and the lubricating oil can easily pass between the inner peripheral side of the cage 34 and the inner ring 31.
  • the lubricant guide 5 is directly attached to the shoulder portion of the outer ring 32, but on the outer surface of the outer ring 32 as in the seventh and eighth modifications shown in FIGS. 37A and 37B.
  • the side plates 35 and 45 may be provided, and the annular protrusion 35a provided on the side plate 35 or the side plate 45 itself may be used as a lubricant guide. Further, as in the ninth and tenth modifications shown in FIGS.
  • inward flange portions 55 and 65 are provided on the housings 50 and 60 for fixing the outer ring 32, and the annular convex portion 35a provided on the flange portion 55 is provided.
  • the flange portion 65 itself may be used as a lubricant guide.
  • Such a configuration can reduce the number of parts, and can omit the step of crimping the outer peripheral end of the lubricant guide into the engagement groove of the outer ring, thereby reducing the cost. Further, in these seventh to tenth modified examples, compared to the configuration in which the lubricant guide is fixed to the outer ring 32, it is easier to provide a space on one side in the axial direction between the inner ring 31 and the outer ring 32, and the cage 34 The base part 4a can be thickened.
  • a shield plate that is not in contact with the outer peripheral surface of the shoulder portion 1b of the inner ring 31 is used as the lubricant guide.
  • the inner periphery of the lubricant guide is used.
  • a supply hole may be provided on the part side.
  • a cage used it can be applied to other cages such as a corrugated press cage or a combined cage formed by engaging two members.
  • the ball bearing has substantially the same configuration as that according to the fourth modification shown in FIG. 36C.
  • Test 1 the outer diameter D1 of the shoulder 1b of the inner ring 31 is changed.
  • Test 2 The inner diameter Ds of the lubricant guide 15 is changed.
  • Test 1 the inner diameter Ds of the lubricant guide 15 is fixed to 51.8 mm, and the end outer diameter D1 of the shoulder 1b of the inner ring 31 is changed to change y / Dw (gap / ball diameter).
  • y / Dw gap / ball diameter
  • the wear test results show that the amount of wear has decreased from the point where the inner diameter of the lubricant guide has started to become less than or equal to the bearing PCD. It can be considered that this is because the lubricating oil hardly flows between the cages 34 and much of the lubricating oil starts to flow into the inner diameter of the cage 34. This effect is almost saturated when the inner diameter Ds of the lubricant guide 15 is less than or equal to the inner diameter Dh of the cage 34. From these, it can be seen that the inner diameter Ds of the lubricant guide 15 should be less than or equal to the bearing PCD, preferably less than or equal to the inner diameter Dh of the cage 34.
  • the deep groove ball bearing has been described as an example of the ball bearing.
  • the present invention is not limited to various types of ball bearings (for example, angular ball bearings, self-aligning ball bearings). ).
  • the present invention provides a ball bearing and a hybrid vehicle transmission that can be suitably used under high temperature and high speed conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 玉軸受は、軌道面を有する内輪と、軌道面を有する外輪と、内輪の軌道面及び外輪の軌道面の間に転動自在に配された複数の転動体と、内輪及び外輪の間で複数の転動体を保持する樹脂製の保持器と、を備える。保持器は、環状ベース部と、環状ベース部の軸方向一端面に形成された複数のポケットと、を備え、複数のポケットが前記複数の転動体を保持する冠型保持器である。保持器の重心の軸方向位置とポケットのそれぞれの球状もしくは円筒状の内面の曲率中心との間の軸方向距離は、内面の曲率半径の0.6倍以上である。ハイブリッド車用変速機は、この玉軸受を備える。

Description

玉軸受及びハイブリッド車用変速機
 本発明は、玉軸受及びハイブリッド車用変速機に関する。
 図42は、各種回転部分を支持するために広く使用されている第1の従来例に係る玉軸受を示している。この玉軸受は、外周面に内輪軌道101を有する内輪102と、内周面に外輪軌道103を有する外輪104と、が同心に配され、内輪軌道101と外輪軌道103との間に複数の玉105が転動自在に配された構造を有している。
 複数の玉105は、図43,44に示すような保持器107に転動自在に保持されている。保持器107は、冠型保持器と呼ばれるもので、合成樹脂を射出成形することにより一体に形成されている。保持器107は、円環状のベース部108と、ベース部108の軸方向一端面に設けられた複数のポケット109と、を備えている。各ポケット109は、ベース部108の軸方向一端面に設けられた凹部110と、凹部110の縁に互いに間隔をあけ対向して配置された1対の弾性片111とから形成されている。この1対の弾性片111の互いに対向する面と凹部110の内面とは、連続して1つの球状凹面又は円筒面を形成している。
 保持器107は、弾性片111の間隔を弾性的に押し広げつつ、1対の弾性片111の間に玉105を押し込むことにより、各ポケット109内に玉105を転動自在に保持する。
 保持器107は、例えば、ナイロン46、ナイロン66、ポリフェニレンサルファイド(PPS)、ポリ四弗化エチレン(PTFE)、ポリエーテルエーテルケトン(PEEK)等の合成樹脂により形成されている。また、これらの合成樹脂中にガラス繊維(GF)、炭素繊維(CF)等の補強材を10~40質量%程度含有させることにより、高温下での靱性及び機械的強度を高められることが知られている。
 このような玉軸受は、高温,高速等の過酷な条件下で使用される場合が多くなっている。例えば、ハイブリッド車用の駆動モータやオルタネータの回転支持部分に組み込まれる玉軸受の場合は、高温(100℃以上)且つ高速(回転速度10000min-1以上又はdmn60万以上)で使用される場合が多い。なお、dmnのdmは軸受ピッチ円径(単位はmm)であり、nは軸受の回転速度(単位はmin-1)である。このような使用条件下においては、玉軸受内の保持器107は、内輪102の外周面と外輪104の内周面との間に存在する潤滑油やグリースと共に高速で回転する。そして高速回転時の保持器107には、遠心力に基づく径方向外方に向く力、玉105の公転に基づく拘束力(回転方向の力)、潤滑油やグリースの攪拌抵抗等が組み合わされた複雑な力が加わる。
 このような複雑な力によって保持器107は不規則な運動を繰り返し、衝撃を伴なう複雑な外部応力を受ける。よって、上記のような高速の使用条件下で長時間運転を継続すると、遠心力の作用により弾性変形又は塑性変形する。高温になると、これらの変形は促進されやすい。その結果、各ポケット109の内面と各玉105の転動面との間の隙間のバラツキが大きくなる。さらには、各ポケット109の内面が、玉105の転動面から受ける力も加わって摩耗する。そして、この隙間が大きくなると、次のような問題を生じる。
 第一に、玉軸受の回転に伴って保持器107が細かく振動し、各ポケット109の摩耗を更に促進するだけでなく、有害な振動や騒音を発生する。第二に、玉105による保持器107の拘束が解かれる結果、保持器107が部分的に又は全体的に変位したり、偏心したりして、保持器107の一部が内輪102、もしくは外輪104と擦れ合う。
 例えば、ポケット109の弾性片111が、遠心力に基づいて径方向外方に変位し(図45を参照)、各弾性片111の外周面と外輪104の内周面とが擦れ合う。このような擦れ合いが生じると、軸受の引きずりトルクが上昇したり保持器107が破断したりするおそれがある。また、摩耗がさらに進行すると、保持器107が軸受から外れて軸受が分解し、軸受ユニットに重大な損傷が発生するおそれがある。
 このような問題を解決するため、金属製の補強部材を備えた樹脂製保持器が提案されている(例えば、日本国特開平8-145061号公報及び日本国特開平9-79265号公報参照)。金属製の補強部材により保持器の剛性が高められるので、高温,高速条件下で使用されても前述のような変形が生じにくくなっている。
 しかしながら、樹脂製保持器に金属製の補強部材を設けるため、玉軸受の製造コストアップの要因になる。
 第2従来例の玉軸受は、図46に示すように、外周面に内輪軌道面201a(軌道溝)を有する内輪201と、内周面に外輪軌道面202a(軌道溝)を有する外輪202と、内輪軌道面201aと外輪軌道面202aとの間に転動自在に配置された複数の玉203と、円環状のベース部204a及びベース部204aの片方の軸方向端面に突設され、先端に爪部を備えた柱部204bを有し、該柱部204b間に形成された球面ポケット204cに玉203を収容する樹脂製の冠型保持器204と、を有する。玉203は、冠型保持器204によって円周方向に所定の間隔で保持され、保持器204と共に公転する。
 このような玉軸受は、例えば、自動車の変速機等の回転部に使用される場合、ポンプ等で潤滑油を供給する強制潤滑方式で使用されることが多く、潤滑油は軸受の内部を軸方向に貫通して流れ、変速機ユニット内を循環及び潤滑している。
 この玉軸受を高速回転させると、遠心力により、図47A及び47Bに示すように、冠型保持器204のベース部204aを捩れ軸として、柱部204bが外径側に開く。その結果、冠型保持器204の球面ポケット204cの内径側と玉203との接触面圧が増大し、ポケット204cの内径側部分204pが摩耗し、発熱が大きくなる。
 ポケット204cの内径側部分204pの摩耗が進行すると、冠型保持器204の振れ回りが大きくなり、冠型保持器204が振動する。さらには、図48に示すように、冠型保持器204の外径側と外輪202の内周面とが接触して、柱部204bが摩耗し、最悪の場合は保持器204が破損する場合もある。
 一方、図49A及び49Bに示すように、冠型保持器204の球面ポケット204cの中心Ocを冠型保持器204の径方向幅の中心T1よりも外径側に配置、つまり、冠型保持器204の径方向の全幅寸法をQとした場合に、球面ポケット204cの中心Ocより外側の幅Q2よりも内側の幅Q1を大きくして、内径側の玉抱え込み量を大きく確保することで、冠型保持器204の外径側への捩れ変形を抑制することが提案されている(例えば、日本国実開平5-34317号公報参照)。
 しかしながら、図49A及び49Bに示した玉軸受において、軸受を高速回転させたときには、球面ポケット204cの内径側が遠心力によって潤滑油不足になることで摩耗し、最終的には捩れ変形を抑えられなくなり、上記した振れ回りによる問題が発生する虞がある。
 また、冠型保持器204の内周部に潤滑油を供給するため、内輪201側に直接潤滑油ノズルを近づけて配置することが考えられる。しかしながら、この場合、潤滑ノズルが別途必要であり、潤滑ノズルを設置するスペースも必要となる。
 本発明は、前述の問題の一以上に対応することを目的とする。
 本発明の一態様によれば、玉軸受は、軌道面を有する内輪と、軌道面を有する外輪と、内輪の軌道面及び外輪の軌道面の間に転動自在に配された複数の転動体と、内輪及び外輪の間で複数の転動体を保持する樹脂製の保持器と、を備える。保持器は、環状ベース部と、環状ベース部の軸方向一端面に形成された複数のポケットと、を備え、複数のポケットが前記複数の転動体を保持する冠型保持器である。保持器の重心の軸方向位置とポケットのそれぞれの球状もしくは円筒状の内面の曲率中心との間の軸方向距離は、内面の曲率半径の0.6倍以上である。
 本発明の別の態様によれば、ハイブリッド車用変速機は、上記玉軸受を備える。
 本発明の他の態様、及び効果は、以下の記載、図面、並びに請求項より明らかとなる。
本発明の第1実施例に係る玉軸受の部分断面図である。 図1の玉軸受の保持器の斜視図である。 図2の保持器の部分断面図である。 保持器の径方向厚さの中央位置を示す玉軸受の部分断面図である。 保持器の重心の軸方向位置と保持器に作用するモーメントとの関係を示すグラフである。 玉軸受の内輪と保持器との径方向隙間の例を示す説明図である。 玉軸受の内輪と保持器との径方向隙間の他の例を示す説明図である。 玉軸受の軸方向端部と保持器との軸方向距離の例を示す説明図である。 玉軸受の軸方向端部と保持器との軸方向距離の他の例を示す説明図である。 第1実施例の第1変形例に係る玉軸受の部分断面図である。 第1実施例の第2変形例に係る玉軸受の部分断面図である。 第1実施例の第3変形例に係る玉軸受の部分断面図である。 本発明の第2実施例に係る玉軸受の部分断面図である。 図13の玉軸受の保持器の斜視図である。 図14の保持器の部分断面図である。 保持器の径方向厚さの中央位置の例を示す第2実施例の玉軸受の部分断面図である。 第2実施例の玉軸受の内輪と保持器との径方向隙間の例を示す説明図である。 第2実施例の玉軸受の内輪と保持器との径方向隙間の例の例を示す説明図である。 第2実施例の玉軸受の軸方向端部と保持器との軸方向距離の例を示す説明図である。 第2実施例の玉軸受の軸方向端部と保持器との軸方向距離の他の例を示す説明図である。 第2実施例の第1変形例に係る玉軸受の部分断面図である。 第2実施例の第2変形例に係る玉軸受の部分断面図である。 第2実施例の第3変形例に係る玉軸受の部分断面図である。 保持器のポケットの径方向内側縁部が面取りされている構成の説明図である。 保持器のポケットの径方向内側縁部が面取りされていない構成の説明図である。 保持器の径方向厚さの中央位置が玉の中心と一致する構成の説明図である。 面取り量と破片の脱落しやすさとの関係を示すグラフである。 玉とポケットの径方向最内方接触点と玉の中心とを結ぶ直線と、玉の中心を通って径方向と直交する直線と、がなす角度θを示す説明図である。 図24に示される構成において、玉とポケットの径方向最内方接触点と玉の中心とを結ぶ直線と、玉の中心を通って径方向と直交する直線と、がなす角度θを示す説明図である。 角度θと保持器の径方向の移動量との関係を示すグラフである。 本発明の第3実施例に係る玉軸受の断面図である。 冠型保持器の構成例を示す斜視図である。 保持器の径方向幅の中心位置が玉の中心より内径側に偏っている構成を示す図である。 保持器の径方向幅の中心位置が玉の中心と一致する構成を示す図である。 保持器の球面ポケットの内周部のエッジに曲面を付けた構成を示す図である。 保持器の球面ポケットの内周部のエッジを面取りした構成を示す図である。 保持器の球面ポケットの内周部のエッジを面取りした他の構成を示す図である。 本発明の第3実施例の第1変形例の玉軸受の要部断面図である。 第3実施例の第2変形例に係る玉軸受の断面図である。 第3実施例の第3変形例に係る玉軸受の断面図である。 第3実施例の第4変形例に係る玉軸受の断面図である。 第3実施例の第5変形例に係る玉軸受の断面図である。 第3実施例の第6変形例に係る玉軸受の断面図である。 第3実施例の第7に係る玉軸受の断面図である。 第3実施例の第8変形例に係る玉軸受の断面図である。 第3実施例の第9変形例に係る玉軸受の断面図である。 第3実施例の第10変形例に係る玉軸受の断面図である。 試験1及び試験2に使用される玉軸受の断面図である。 試験1の結果を示すグラフである。 試験2の結果を示すグラフである。 試験3の結果を示すグラフである。 第1の従来例に係る玉軸受の部分断面図である。 図42の玉軸受の保持器の斜視図である。 図43の保持器の部分平面図である。 弾性片が径方向外方に変形した保持器の側面図である。 第2従来例に係る玉軸受の部分断面図である。 第2従来例の保持器の軸方向断面図である。 第2従来例の保持器の円周方向断面図である。 第2従来例の保持器が摩耗した場合の問題点を説明するための図である。 第2従来例の保持器の部分断面図である。 第2従来例の保持器の部分側面図である。
 以下、本発明の実施例について、図面を参照して詳細に説明する。
 図1は、本発明の第1実施例に係る玉軸受の部分縦断面図である。図2は、図1の玉軸受の保持器の斜視図であり、図3は、図2の保持器の部分断面図である。
 図1に示されるように、第1実施例の玉軸受は、内輪1と、外輪2と、内輪1及び外輪2の間に転動自在に配された複数の玉3(転動体)と、内輪1及び外輪2の間で複数の玉3を保持する樹脂製の保持器4と、を備えている。内輪1と外輪2との間で玉3が配された軸受空間には、図示しない潤滑剤(例えば潤滑油やグリース)が初期潤滑用に充填されるか、もしくは潤滑剤が供給される。潤滑剤により、内輪1及び外輪2の軌道面と玉3との接触面が潤滑される。潤滑剤としては、潤滑油の一つであるATFが通常用いられる。
 内輪1及び外輪2の素材は特に限定されるものではないが、SUJ2等の軸受鋼が好ましく、特に浸炭処理又は浸炭窒化処理を施した軸受鋼がより好ましい。中炭素鋼にケイ素,マンガン,クロム,モリブデン等の合金元素を添加した合金鋼に、浸炭処理又は浸炭窒化処理を施した素材を使用することもできる。特に、軸受が高速且つ高温条件下で使用される場合には、合金鋼の中でもケイ素の添加量を多くした合金鋼に浸炭処理又は浸炭窒化処理を施した素材が好ましい。
 玉3の素材も特に限定されるものではなく、例えば、内輪1及び外輪2と同様の軸受鋼や合金鋼、あるいはセラミックを好適に使用することができる。
 次に、保持器4の構造について、図2及び3を参照しながら説明する。保持器4は、樹脂材料を射出成形することにより一体に形成された冠型保持器である。保持器4は、円環状のベース部10と、ベース部10の軸方向一端面に設けられ、玉3を転動自在に保持する複数のポケット11を備えている。各ポケット11は、ベース部10の軸方向一端面に設けられた凹部11aと、凹部11aの縁に互いに間隔をあけ対向して配置された1対の弾性片11bとから形成されている。この1対の弾性片11bの互いに対向する面と凹部11aの内面とは、連続して1つの球状凹面もしくは円筒面を形成している。
 保持器4を構成する樹脂材料の種類は、保持器に必要な強度,耐熱性等の特性を有しているならば特に限定されるものではないが、ナイロン46、ナイロン66、ポリフェニレンサルファイド(PPS)、ポリ四弗化エチレン(PTFE)、ポリエーテルエーテルケトン(PEEK)等の合成樹脂が好ましい。樹脂中にガラス繊維(GF)、炭素繊維(CF)等の補強材を10~40質量%程度含有させた樹脂組成物は、高温下での靱性及び機械的強度が高いことから特に好ましい。
 保持器4の重心Gの軸方向位置とポケット11の球状もしくは円筒状の内面の曲率中心O11との間の軸方向距離Aは、ポケット11の内面の曲率半径rの0.6倍以上0.9倍以下とされている。この構成であれば、玉軸受が高温(100℃以上)且つ高速(回転速度10000min-1以上、dmn60万以上若しくはdmn100万以上)で使用されても、保持器4に変形が生じにくい。よって、保持器4を有する玉軸受は高温,高速条件下で好適に使用可能であり、例えばハイブリッド車用の駆動モータやジェネレータ(例えばオルタネータ)の回転軸を支承する軸受として好適である。また、保持器4が金属製の補強部材を備えていないので、玉軸受を安価に製造することができる。
 保持器4の重心Gの軸方向位置とポケット11の内面の曲率中心O11との間の軸方向距離Aの範囲について、図3を参照しながらさらに詳細に説明する。玉軸受が高温,高速条件下で使用されて保持器4に大きな遠心力が作用すると、ポケット11の弾性片11bが径方向外方に変形する。これは、弾性片11bが片持ち構造であるために、遠心力が保持器4の剛性中心Sを支点として保持器4の重心Gの軸方向位置にモーメントとして作用するからである。剛性中心Sは、ベース部10の軸方向他端面(ベース部10の軸方向両端面のうちポケット11が形成されていない方の端面)とポケット11の底部とのほぼ中間位置にある。
 したがって、保持器4の重心Gの軸方向位置が剛性中心Sの近傍に位置するようにすれば、大きな遠心力が保持器4に作用しても前記モーメントが小さくなるため、ポケット11の弾性片11bが径方向外方に変形してベース部10が捩り変形することを抑制することができる。すなわち、図45に示すような大きな変形が保持器に生じることを抑制することができる。
 保持器4の重心Gの軸方向位置とポケット11の内面の曲率中心O11との間の軸方向距離Aを、ポケット11の内面の曲率半径rの0.6倍以上0.9倍以下とすれば、保持器4の重心Gの軸方向位置と剛性中心Sとが近い位置となるため、遠心力が保持器4に作用しても弾性片11bの径方向外方への変形が抑制される。ベース部10の軸方向他端面とポケット11の底部との間の長さ、すなわちベース部10の厚さBを大きくしていくと、保持器4の重心Gの軸方向位置はベース部10の軸方向他端面の方向へ移動し、前記軸方向距離Aは大きくなる。すなわち、保持器4の重心Gの軸方向位置が剛性中心Sに近づく。
 前記軸方向距離Aが曲率半径rの0.6倍未満であると、保持器4の重心Gの軸方向位置に作用するモーメントが大きくなり、保持器4に変形が生じるおそれがある。一方、前記軸方向距離Aが曲率半径rの0.9倍超過であると、保持器4の幅(軸方向長さ)が大きくなって、玉軸受がシール部材を有する場合には保持器4とシール部材とが接触するおそれがある。また、玉軸受がシール部材を有していない場合でも、保持器4が玉軸受の側面から外側に突出するおそれがある。このような不都合がより生じにくくするためには、前記軸方向距離Aを曲率半径rの0.65倍以上0.85倍以下とすることが好ましく、0.75倍以上0.85倍以下とすることがより好ましい。
 さらに、保持器4は、図4に示すように、その径方向厚さの中央位置が玉3の中心よりも径方向内方に位置するような構造となっている。このような構造を有することによって保持器4の剛性が向上するため、遠心力による保持器4の変形が抑制される。
 玉軸受を回転させた際に保持器に作用する遠心力に基づくモーメントの大きさを、計算した。結果を図5に示す。このグラフの縦軸は、保持器に作用するモーメントの大きさであり、横軸は、保持器の重心の軸方向位置とポケットの内面の曲率中心との間の軸方向距離の、ポケットの内面の曲率半径に対する割合である(グラフには、保持器の重心の軸方向位置と記してある)。このグラフから、前記軸方向距離Aは、ポケットの内面の曲率半径の0.6倍以上であることが好ましく、0.65倍以上であることがより好ましいく、最も好ましくは0.75倍以上である。特に、dmn113万、170万とdmnが大きくなるほどモーメント抑制効果は顕著である。
 上述したように、保持器4は、その径方向厚さの中央位置が玉3の中心よりも径方向内方に位置するような構造となっている。そして、保持器4の径方向厚さの中央位置の直径が小さいほど、遠心力による保持器4の変形が生じにくい。
 ただし、保持器4の径方向厚さの中央位置の直径が小さすぎると、以下のような問題が発生するおそれが出てくる。
 ハイブリッド車用の駆動モータやジェネレータ(例えばオルタネータ)の回転軸を支承する玉軸受は、寒冷地で使用される場合には、軸受の温度が-40℃程度の低温になることもある。樹脂製の保持器4は、金属製の内輪1よりも低温化により収縮しやすいので、保持器4の内径と内輪1の外径との差(以下、径方向隙間)がゼロとなり、軸受がロックして回転しなくなるおそれがある。
 したがって、軸受が常温から-40℃に温度変化して保持器4及び内輪1が収縮しても、径方向隙間がゼロとならないように、常温時の径方向隙間の大きさを設定することが好ましい。すなわち、常温時の径方向隙間は、保持器4が常温から-40℃に温度変化して収縮した場合の保持器4の内径の収縮量よりも大きいことが好ましい。
 保持器4の内径の収縮量は、保持器4の内径と、保持器4の素材の線膨張係数と、温度変化量との積により求めることができる。温度変化量は、例えば、常温と-40℃との差であり、常温が20℃である場合、温度変化量は60℃となる。
 また、保持器4のポケット11の内面の曲率半径rは、玉3の半径よりも僅かに大きいため、保持器4は径方向にガタつくことがある。このガタツキ量が大き過ぎると、保持器4の内周面と内輪1の外周面とが接触し、軸受のトルクが増大するおそれがある。
 したがって、保持器4が径方向にガタついても保持器4の内周面と内輪1の外周面とが接触しないように、前記径方向隙間は、保持器4の径方向のガタツキ量よりも大きくすることが好ましい。保持器の径方向のガタツキ量とは、保持器が径方向の一方向に移動することができる最大距離と、保持器が該一方向と180°反対方向へ移動することができる最大距離との和を意味する。
 また、ハイブリッド車用の駆動モータやジェネレータ(例えばオルタネータ)の回転軸を支承する玉軸受は、潤滑油により潤滑されることが多い。玉軸受が高速回転する場合には、軸受の軸方向端部の開口から軸受内部に導入された潤滑油が、遠心力により径方向外方に流れるため、保持器4の内周面と内輪1の外周面との間に潤滑油が入り込みにくく、潤滑が不十分となりやすい(図7参照)。その結果、保持器4に摩耗,焼付き,スキッディングが発生するおそれがある。
 したがって、前記径方向隙間を、玉3の直径の0.15倍以上とすることが好ましく、0.2倍以上に設定することがより好ましい。そうすれば、図6に示されるように、保持器4の内周面と内輪1の外周面との間に潤滑油が入り込みやすく、潤滑が不十分となりにくい。これらを総合的に考えると、20℃において、前記径方向隙間を、内輪1の外径寸法の2%以上10%以下としておくのが好ましく、より好ましくは2%以上7%以下とする。
 なお、軸受の軸方向端部としては、保持器4のベース部10のポケット11が形成されている側の軸方向端面が向いている側の端部と、保持器4のベース部10のポケット11が形成されていない側の軸方向端面が向いている側の端部とがある。図6及び7においては、後者の端部の開口から潤滑油が軸受内部に導入される例が示されているが、反対側の端部の開口、すなわち前者の端部の開口から潤滑油が軸受内部に導入される場合も、上記と同様の効果が奏される。
 上述のように前記径方向隙間を十分に確保しても、図9に示されるような構造であると、大部分の潤滑油が保持器4の内周面と内輪1の外周面との間の隙間に辿り着く前に遠心力により径方向外方に流れるため、潤滑が不十分となるおそれがある。すなわち、図9に示されるように、軸受の軸方向端部と、保持器4のベース部10のポケット11が形成されていない側の軸方向端面との間に形成される空間の軸方向長さLが大きいと、潤滑が不十分となるおそれがある。
 したがって、保持器4のベース部10のポケット11が形成されていない側の軸方向端面を、軸受の軸方向端部に近接させることが好ましい。具体的には、前記軸方向長さLを玉3の直径の0.15倍以下とすれば、図8に示すように、保持器4の内周面と内輪1の外周面との間に潤滑油が入り込みやすく、潤滑が良好となる。より具体的には、前記軸方向長さLは、5mm以下が好ましく、より好ましくは2mm以下である。ただし、内輪1もしくは外輪2の端面から保持器4が突出しないようにすることが好ましい。そのため、保持器4のポケット11と玉3との間の隙間による動き量を含めて、前記軸方向長さLを0.1mm以上2mm以下とすることが最も好ましい。
 図10は、第1実施例の第1変形例を示す。図10に示されるように、上述のような潤滑不十分の問題に対応するために、軸受の軸方向端部の近傍に、該軸方向端部の開口から軸受内部に潤滑剤を導く潤滑剤ガイド25を設けてもよい。そうすれば、保持器4の内周面と内輪1の外周面との間に潤滑油が入り込みやすく、潤滑が不十分となりにくい。図10の例であれば、板状の潤滑剤ガイド25が軸受の軸方向端面に取り付けられており、軸心給油で供給された潤滑油が潤滑剤ガイド25で軸受内部に向かう方向に反射されて、軸受の軸方向端部の開口から軸受内部に導入される。
 なお、潤滑剤ガイド25と同様の構造の部材を、潤滑剤ガイド25を設けた側とは反対側の軸方向端部(すなわち、潤滑剤が軸受内部から流出する側の端部)の近傍に設けてもよい。このように上記部材を軸方向両端部に設けても、同様の効果が得られる。また、この潤滑剤ガイド25は、一般的なシールド板やシールなどにより構成することもできる。この場合は、シールド板やシールの内周面と内輪1の外周面との間の隙間から、潤滑剤が導入されやすい。シールやシールド板等のシール部材は、軸方向両側に備えられていてもよいし、軸方向片側のみに備えられていてもよい。
 図11は、第1実施例の第2変形例を示す。図11に示される玉軸受において、潤滑剤は、軸受の軸方向一端部(保持器4のベース部10のポケット11が形成されていない側の軸方向端面が向いている側の端部)の開口から軸受内部に導入され、軸方向他端部(保持器4のベース部10のポケット11が形成されている側の軸方向端面が向いている側の端部)の開口から外部へ排出される。外輪2の肩の部分における外径は、潤滑剤導入側よりも潤滑剤排出側の方が大きい。この構成によれば、軸受の潤滑剤導入側の軸方向端部の開口から軸受内部に潤滑剤が引き込まれやすくなるので、軸受内部を通過する潤滑剤の量が増加する。
 なお、図12に示される第1実施例の第3変形例のように、内輪1の肩の部分における外径を、潤滑剤導入側よりも潤滑剤排出側の方が大きしても、上記と同様の効果が得られる。また、内輪1と外輪2の両方について、肩の部分における外径を、潤滑剤導入側よりも潤滑剤排出側の方が大きくなるように設定してもよい。
 さらに、図11及び12においては、保持器4のベース部10のポケット11が形成されていない側の軸方向端面が向いている側の端部の開口から軸受内部に潤滑剤が導入される例が示されているが、反対側の端部の開口、すなわち、保持器4のベース部10のポケット11が形成されている側の軸方向端面が向いている側の端部の開口から軸受内部に潤滑剤が導入される場合も、上記と同様の効果が奏される。
 図13は、本発明の第2実施例に係る玉軸受の部分縦断面図である。図14は、図13の玉軸受の保持器の斜視図であり、図15は、図14の保持器の部分断面図である。第2実施例の説明において、第1実施例と同じ又は同様の部分には第1実施例と同じ符号を付してある。また、第1実施例と同様の構成に関する詳細な説明は省略する。
 図13の玉軸受は、内輪21と、外輪22と、内輪21及び外輪22の間に転動自在に配された複数の玉3(転動体)と、内輪21及び外輪22の間で複数の玉3を保持する樹脂製の保持器24と、を備えている。内輪21の軌道面21a(軌道溝)及び外輪22の軌道面22a(軌道溝)は、内輪21と外輪22の軸方向幅中央位置から軸方向の一方側(図13においては右側)にオフセットされた位置に配置されている。なお、オフセット量は、特に限定されるものではない。ただし、玉軸受の軸方向隙間を含めても、内輪1と外輪22の少なくとも一方の軸方向端面から玉3が突出しないことが好ましい。
 内輪21と外輪22との間で玉3が配された軸受空間には、図示しない潤滑剤(例えば潤滑油やグリース)が充填されるか、もしくは潤滑剤が供給される。この潤滑剤により、内輪21及び外輪22の軌道面と玉3との接触面が潤滑されている。玉軸受は、シールやシールド等のシール部材を備えていてもよい。シール部材は、軸方向両側に備えられていてもよいが、軸方向片側のみに備えられていてもよい。
 内輪21及び外輪22の素材は特に限定されるものではないが、SUJ2等の軸受鋼が好ましく、特に浸炭処理又は浸炭窒化処理を施した軸受鋼がより好ましい。また、中炭素鋼にケイ素,マンガン,クロム,モリブデン等の合金元素を必要に応じて添加した合金鋼に、浸炭処理又は浸炭窒化処理を施した素材を使用することもできる。特に、軸受が高速且つ高温条件下で使用される場合には、上記合金鋼の中でもケイ素の添加量を多くした合金鋼に浸炭処理又は浸炭窒化処理を施した素材が好ましい。
 また、玉3の素材も特に限定されるものではなく、軸受鋼やセラミックを好適に使用することができる。
 次に、保持器24の構造について、図14及び15を参照しながら説明する。保持器24は、樹脂材料を射出成形することにより一体に形成された冠型保持器である。保持器24は、円環状のベース部20と、ベース部20の軸方向一端面に設けられ、玉3を転動自在に保持する複数のポケット11を備えている。
 各ポケット11は、ベース部20の軸方向一端面に設けられた凹部11aと、凹部11aの縁に互いに間隔をあけ対向して配置された1対の弾性片11bとから形成されている。1対の弾性片11bの互いに対向する面と凹部11aの内面とは、連続して1つの球状凹面もしくは円筒面を形成している。
 保持器24は、軌道面21a,22aがオフセットされた側(以下、オフセット側)、すなわち、図13の右側にポケット11を向け、オフセット側とは反対側(以下、反オフセット側)にベース部20を向けて配されている。
 軌道面21a,22aが内輪21と外輪22の軸方向幅の中央位置から軸方向の一方側にオフセットされた位置に配置されているので、軸受内部の反オフセット側(図13においては左側)にはオフセット側と比べて大きな空間が形成されている。そのため、玉軸受がシール部材を有する場合には、保持器24のベース部20がシール部材に接触しにくい。また、保持器24のベース部20が軸受の軸方向端部の開口から外部に突出しにくい。さらに、軌道面21a,22aが内輪21と外輪22の軸方向幅の中央位置に配置されている場合と比べて、保持器24のベース部20を軸方向に長い形状(図13を参照)とすることが可能である。そのような形状とすれば、保持器24の剛性が高められ変形が生じにくくなる。
 保持器24を構成する樹脂材料の種類は、保持器に必要な強度,耐熱性等の特性を有しているならば特に限定されるものではないが、ナイロン46、ナイロン66、ポリフェニレンサルファイド(PPS)、ポリ四弗化エチレン(PTFE)、ポリエーテルエーテルケトン(PEEK)等の合成樹脂が好ましい。そして、樹脂中にガラス繊維(GF)、炭素繊維(CF)等の補強材を10~40質量%程度含有させた樹脂組成物は、高温下での靱性及び機械的強度が高いことから特に好ましい。
 保持器24の重心Gの軸方向位置とポケット11の球状もしくは円筒状の内面の曲率中心O11との間の軸方向距離Aは、ポケット11の内面の曲率半径rの0.6倍以上1.2倍以下とされている。この構成であれば、玉軸受が高温(100℃以上)且つ高速(回転速度10000min-1以上、dmn60万以上若しくはdmn100万以上)で使用されても、保持器24に変形が生じにくい。特に、dmn110万以上の高速条件、さらにはdmn150万以上の超高速条件では顕著な効果を得ることができる。よって、この玉軸受は高温,高速条件下で好適に使用可能であり、例えばハイブリッド車用の駆動モータやジェネレータ(例えばオルタネータ)の回転軸を支承する軸受として好適である。また、保持器24が金属製の補強部材を備えていないので、この玉軸受は安価に製造することができる。
 保持器24の重心Gの軸方向位置とポケット11の内面の曲率中心O11との間の軸方向距離Aの範囲について、図15を参照しながらさらに詳細に説明する。玉軸受が高温,高速条件下で使用されて保持器24に大きな遠心力が作用すると、ポケット11の弾性片11bが径方向外方に変形する。これは、弾性片11bが片持ち構造であるために、遠心力が保持器24の剛性中心Sを支点として保持器24の重心Gの軸方向位置にモーメントとして作用するからである。剛性中心Sは、ベース部20の軸方向他端面(ベース部20の軸方向両端面のうちポケット11が形成されていない方の端面)とポケット11の底部とのほぼ中間位置にある。
 したがって、保持器24の重心Gの軸方向位置が剛性中心Sの近傍に位置するようにすれば、大きな遠心力が保持器24に作用しても前記モーメントが小さくなるため、ポケット11の弾性片11bが径方向外方に変形してベース部20が捩り変形することを抑制することができる。すなわち、図45に示すような大きな変形が保持器に生じることを抑制することができる。
 保持器24の重心Gの軸方向位置とポケット11の内面の曲率中心O11との間の軸方向距離Aを、ポケット11の内面の曲率半径rの0.6倍以上1.2倍以下とすれば、保持器24の重心Gの軸方向位置と剛性中心Sとが近い位置となるため、遠心力が保持器24に作用しても弾性片11bの径方向外方への変形が抑制される。ベース部20の軸方向他端面とポケット11の底部との間の長さ、すなわちベース部20の厚さBを大きくしていくと、保持器24の重心Gの軸方向位置はベース部20の軸方向他端面の方向へ移動し、前記軸方向距離Aは大きくなる。すなわち、保持器24の重心Gの軸方向位置が剛性中心Sに近づく。また、軌道面21a,22aがオフセットされているため、前記軸方向距離Aを大きくとることが可能となっている。
 前記軸方向距離Aが曲率半径rの0.6倍未満であると、保持器24の重心Gの軸方向位置に作用するモーメントが大きくなり、保持器24に変形が生じるおそれがある。一方、前記軸方向距離Aが曲率半径rの1.2倍超過であると、保持器24の幅(軸方向長さ)が大きくなって、玉軸受がシール部材を有する場合には保持器24とシール部材とが接触するおそれがある。また、玉軸受がシール部材を有していない場合でも、保持器24が玉軸受の側面から外側に突出するおそれがある。このような不都合がより生じにくくするためには、前記軸方向距離Aを曲率半径rの0.65倍以上1.1倍以下とすることが好ましく、0.75倍以上1.1倍以下がより好ましく、0.85倍以上1.1倍以下がさらに好ましく、dmn100万を超える使用条件では、0.9倍以上1.1倍以下とするのが最も好ましい。
 第2実施例の玉軸受を回転させた際に保持器に作用する遠心力に基づくモーメントの大きさを計算した結果は、第1実施例における計算結果を示す図5のグラフと同様である。すなわち、図5のグラフに示されるように、前記軸方向距離Aは、ポケットの内面の曲率半径の0.6倍以上であることが好ましく、0.65倍以上であることがより好ましい。特に、dmn113万、170万とdmnが大きくなるほど、モーメント抑制効果は顕著である。
 図16に示されるように、保持器24は、その径方向厚さの中央位置が玉3の中心よりも径方向内方に位置するような構造としてもよい。このような構造を有することによって保持器24の剛性が向上するため、遠心力による保持器24の変形が抑制される。
 また、第1実施例と同様に、常温時の保持器24の内径と内輪21の外径との差(以下、径方向隙間)を、保持器24が常温から-40℃に温度変化して収縮した場合の保持器24の内径の収縮量よりも大きくしてもよい。この構成によれば、軸受が常温から-40℃に温度変化して保持器24及び内輪21が収縮しても、前記径方向隙間がゼロとならず、軸受がロックして回転しなくなることを防止できる。
 また、第1実施例と同様に、前記径方向隙間を、保持器24の径方向のガタツキ量よりも大きくしてもよい。この構成により、保持器24が径方向にガタついても保持器24の内周面と内輪21の外周面との接触を防止することできる。
 また、第1実施例と同様に、前記径方向隙間を、玉3の直径の0.15倍以上としてもよく、0.2倍以上とすることがより好ましい。そうすれば、保持器24の内周面と内輪21の外周面との間に潤滑油が入り込みやすく、潤滑が不十分となりにくい(図17及び18参照)。したがって、第1実施例と同様に、20℃において、前記径方向隙間を、内輪1の外径寸法の2%以上10%以下としておくのが好ましく、より好ましくは2%以上7%以下とする。
 なお、軸受の軸方向端部としては、保持器24のベース部20のポケット11が形成されている側の軸方向端面が向いている側の端部と、保持器24のベース部20のポケット11が形成されていない側の軸方向端面が向いている側の端部とがある。図17,18においては、後者の端部の開口から潤滑油が軸受内部に導入される例が示されているが、反対側の端部の開口、すなわち前者の端部の開口から潤滑油が軸受内部に導入される場合も、上記と同様の効果が奏される。
 上述のように前記径方向隙間を十分に確保しても、図20のような構造であると、大部分の潤滑油が保持器24の内周面と内輪21の外周面との間の隙間に辿り着く前に遠心力により径方向外方に流れるため、潤滑が不十分となるおそれがある。すなわち、図20のように、軸受の軸方向端部と、保持器24のベース部20のポケット11が形成されていない側の軸方向端面との間に形成される空間の軸方向長さLが大きいと、潤滑が不十分となるおそれがある。
 したがって、保持器24のベース部20のポケット11が形成されていない側の軸方向端面を、軸受の軸方向端部に近接させることが好ましい。具体的には、第1実施例と同様に、前記軸方向長さLを玉3の直径の0.15倍以下とすれば、図19に示すように、保持器24の内周面と内輪21の外周面との間の隙間に潤滑油が入り込みやすく、潤滑が良好となる。より具体的には、前記軸方向長さLは、5mm以下が好ましく、より好ましくは2mm以下である。ただし、内輪1もしくは外輪2の端面から保持器4が突出しないようにすることが好ましい。そのため、保持器4のポケット11と玉3との間の隙間による動き量を含めて、前記軸方向長さLを0.1mm以上2mm以下とすることが最も好ましい。
 図21は、第2実施例の第1変形例を示す。第2実施例の第1変形例によれば、第1実施例の第1変形例と同様に、軸受の軸方向端部の近傍に、該軸方向端部の開口から軸受内部に潤滑剤を導く潤滑剤ガイド25を設けられている。したがって、保持器24の内周面と内輪21の外周面との間に潤滑油が入り込みやすく、潤滑が不十分となりにくい。図21の例であれば、板状の潤滑剤ガイド25が軸受の軸方向端面に取り付けられており、軸心給油で供給された潤滑油が潤滑剤ガイド25で軸受内部に向かう方向に反射されて、軸受の軸方向端部の開口から軸受内部に導入される。
 なお、潤滑剤ガイド25と同様の構造の部材を、潤滑剤ガイド25を設けた側とは反対側の軸方向端部(すなわち、潤滑剤が軸受内部から流出する側の端部)の近傍に設けてもよい。このように上記部材を軸方向両端部に設けても、同様の効果が得られる。また、この潤滑剤ガイド25は、一般的なシールド板やシールなどにより構成することもできる。この場合は、シールド板やシールの内周面と内輪21の外周面との間の隙間から、潤滑剤が導入されやすい。シールやシールド板等のシール部材は、軸方向両側に備えられていてもよいし、軸方向片側のみに備えられていてもよい。
 図22は、第2実施例の第2変形例を示す。図22に示される玉軸受において、潤滑剤は、軸受の軸方向一端部(保持器24のベース部20のポケット11が形成されていない側の軸方向端面が向いている側の端部)の開口から軸受内部に導入され、軸方向他端部(保持器24のベース部20のポケット11が形成されている側の軸方向端面が向いている側の端部)の開口から外部へ排出される。第2実施例の第2変形例によれば、第1実施例の第2変形例と同様に、外輪22の肩の部分における外径は、潤滑剤導入側よりも潤滑剤排出側の方が大きい。したがって、軸受の潤滑剤導入側の軸方向端部の開口から軸受内部に潤滑剤が引き込まれやすくなり、軸受内部を通過する潤滑剤の量が増加する。
 なお、図23に示される第2実施例の第3変形例のように、内輪21の肩の部分における外径を、潤滑剤導入側よりも潤滑剤排出側の方が大きくしても、上記と同様の効果が得られる。また、内輪21と外輪22の両方について、肩の部分における外径を、潤滑剤導入側よりも潤滑剤排出側の方が大きくなるように設定してもよい。
 さらに、図22及び23においては、軸受の軸方向両端部のうち、保持器24のベース部20のポケット11が形成されていない側の軸方向端面が向いている側の端部の開口から軸受内部に潤滑剤が導入される例が示されているが、反対側の端部の開口、すなわち、保持器24のベース部20のポケット11が形成されている側の軸方向端面が向いている側の端部の開口から軸受内部に潤滑剤が導入される場合も、上記と同様の効果が奏される。
 上記第1実施例及び第2実施例のように、保持器4,24の径方向厚さの中央位置が玉3の中心よりも径方向内方に位置させた場合、図25に示すように、ポケット11の内面の縁部(特に径方向内方側の縁部)は先鋭な形状(シャープエッジ)となり、ここに玉3が衝突するとシャープエッジ部が損傷して破片が脱落するおそれがある。
 脱落した破片が内輪1,21と玉3との間、及び/或いは、外輪2,22と玉3との間に挟み込まれると、内輪1,21及び/或いは外輪2,22、及び玉3に圧痕が生じ、軸受の寿命が短くなる。また、脱落する破片の量が多いと、ポケット11の内面と玉3との間の隙間が大きくなり、軸受に有害な振動や騒音が発生するおそれがある。
 このような問題に対応するために、図24に示すように、ポケット11の内面の縁部(特に径方向内方側の縁部)を面取りして、ほぼ平坦な面取り部11cを形成することが好ましい。面取りを施してあれば、シャープエッジ部がないので、破片が脱落するおそれがほとんどない。また、面取り部11cを形成することにより、保持器4のポケット11内に潤滑油が取り込まれやすくなる。よって、特に潤滑油で潤滑される軸受においては、面取り部11cの形成により軸受の潤滑性能が向上するという効果が奏される。
 なお、保持器の構造が、その径方向厚さの中央位置が玉の中心と一致するような構造(図26参照)である場合は、上記のように面取りを施すと、保持器の径方向の移動量が増加して、軸受に有害な振動や騒音が発生しやすくなる。
 ここで、シャープエッジ部の損傷による破片の脱落しやすさについて評価した結果を説明する。
 保持器の径方向厚さの中央位置が玉の中心よりも径方向内方に位置した軸受について、面取り量を種々変更し、回転による破片の脱落しやすさを調査した。すなわち、保持器の径方向厚さの中央位置と玉の中心との間の径方向距離をポケットの内面の曲率半径で除した値(以下、保持器の中心位置のズレ量)が0%、4.3%、及び12.9%である軸受について、回転による破片の脱落しやすさを調査した。結果を図27に示す。
 なお、面取り量とは、面取り部11cの径方向長さMをポケット11の内面の曲率半径で除した値(単位は%)である(図24参照)。また、破片の脱落しやすさとは、玉との接触によりポケットの内面の縁部に作用する応力値であり、保持器の中心位置のズレ量0%、面取り量0%の軸受の応力値を1とした場合の相対値で示してある。
 図27のグラフから、保持器の中心位置のズレ量が大きいほど、破片が脱落しにくいことが分かる。また、少しでも面取りがあれば破片の脱落防止に効果があり、面取り量が2.5%以上であれば、十分に破片が脱落しにくいことが分かる。ただし、面取り量が5%を超えるとかえって破片が脱落しやすくなる場合もある。したがって、面取り量は、0.5%以上5%以下とするのが好ましく、2.5%以上4.5%以下とするのがより好ましい。
 保持器4,24の径方向厚さが薄いなどの理由により保持器4,24の内径が大きすぎると、保持器4,24の径方向の移動量(ガタツキ量)が増加して、軸受に有害な振動や騒音が発生しやすくなる。よって、保持器4の内径を好適な値に設定することが好ましい。
 そこで、玉3とポケット11の内面との接触点のうち径方向最内方側の接触点Pと、玉3の中心とを結ぶ仮想直線L1を引く。そして、この仮想直線L1と、径方向に直交する方向に延び玉3の中心を通る直線L2とがなす角度θをもって、保持器4の内径を規定する。このとき、保持器4の径方向の移動量を小さくするためには、角度θは25°以上とすることが好ましく、30°以上とすることがより好ましい。
 なお、ポケット11の内面の縁部に面取りが施されている場合には、図29に示すように、面取り部11cの径方向最外方部が玉3と接触するので、該部分と玉3の中心とを結んで仮想直線L1を引く。また、その他の手段により、ポケット11の内面の縁部の径方向内方側で保持器4の径方向位置を位置決めしている場合には、保持器4を径方向内方に移動させた際に最初に玉3に接触する部分と玉3の中心とを結んで仮想直線L1を引く。
 ここで、角度θと保持器の径方向の移動量との関係を評価した結果について説明する。ポケットの内面の曲率半径と玉の半径との比(ポケット曲率半径/玉半径)及び前記角度θが種々異なる軸受を用意して、回転時の保持器の径方向の移動量を調査した。ポケット曲率半径/玉半径は、101%、103%、106%の3種類とした。結果を図30に示す。なお、保持器の径方向の移動量は、玉の直径に対する比(保持器の移動量/玉直径(単位は%))で示した。
 図30のグラフから、角度θが25°以上であると保持器の径方向の移動量が小さく、30°以上であると保持器の径方向の移動量がより小さいことが分かる。しかしながら、角度θを大きくとりすぎると、保持器が内輪外周と接触しやすくなる。したがって、角度θは50°以下、より好ましくは40°以下とする。さらに具体的には、角度θを前記範囲とし、且つ、前述の通り、保持器内径と内輪外径の隙間が、内輪外径の2%以上10%以下となっていることが好ましく、より好ましくは2%以上7%以下である。
 上述の第1実施例及び第2実施例の玉軸受は、ハイブリッド車用の駆動モータやジェネレータ(例えばオルタネータ)の回転軸を支承する玉軸受として好適である。よって、第1実施例及び第2実施例の玉軸受を組み込んだハイブリッド車用変速機は、高温,高速条件でも好適に使用可能である。
 図31は、本発明の第3実施例に係る玉軸受を示す。図31に示されるように、この玉軸受は、外周面に軌道面1a(軌道溝)を有する内輪31と、内周面に軌道面2a(軌道溝)を有する外輪32と、内輪31の軌道面1aと外輪32の軌道面2aとの間に転動自在に配置された複数の玉(鋼球)3と、玉3を円周方向に所定の間隔で保持する樹脂製の冠型保持器34と、内輪31と外輪32の軸方向の一方の端面側に設けられた薄板よりなる環状の潤滑剤ガイド5と、を備えている。
 冠型保持器34は、図32に示すように、円環状のベース部4aと、ベース部4aの片方の軸方向端面に突設されて一定間隔で並ぶ複数の柱部4bと、隣接する柱部4b間に確保された球面状内側面を有する球面ポケット4cと、を備える。冠型保持器34は、玉3を各球面ポケット4cに収容することで、玉3を円周方向に所定の間隔で保持している。
 冠型保持器34を構成する樹脂の例としては、46ナイロンや66ナイロンなどのポリアミド系樹脂、ポリブチレンテレフタレート、ポリフェレンサルサイド(PPS)、ポリアミドイミド(PAI)、熱可塑性ポリイミド、ポリエーテルエーテルケトン(PEEK)、ポリエーテルニトリル(PEN)などが挙げられる。また、上記した樹脂に10~40wt%の繊維状充填材(例えば、ガラス繊維や炭素繊維など)を適宜添加することにより、冠型保持器34の剛性および寸法精度を向上させることができる。
 冠型保持器34は、好ましくは多点ゲートの射出成形で製作する。そうすれば、冠型保持器34の寸法精度を、1点ゲートのものに比べて向上させることができる。また、多点ゲートで製作することで、ウェルド部を保持器の最弱部位であるポケット底からずらすことができるので、ウェルド部による強度低下を防止できる。
 この玉軸受は、軸受内部を潤滑するための潤滑油が、玉3に対して軸方向一方側S1から供給され、玉3に対して軸方向他方側S2から排出されるような環境下で使用される。冠型保持器34は、ベース部4aを軸方向一方側である潤滑油の供給側S1に向けるように配置されており、供給された潤滑油をベース部4aの内周面に沿って、玉3と保持器34の摺動部に導く。
 外輪32の潤滑油の供給側S1には、潤滑剤ガイド5が加締め固定されている。潤滑剤ガイド5は、外輪32の外輪軌道面2aの側方の肩部に形成された係合溝2bに外周端5aを係合させることにより外輪32に固定されており、潤滑剤ガイド部5bを内輪31の内輪軌道面1aの側方の肩部1bに向けて延ばしている。潤滑剤ガイド5の内周部5cと内輪31の肩部1bの外周部との間に、潤滑油が供給される環状の開口部51が形成される。
 この場合、潤滑剤ガイド5の内周部5cと対向する内輪31の肩部1bにはテーパ状の切欠き1cが設けられており、テーパ状の切欠き1cの外周面と潤滑剤ガイド5の内周部5cとの間に、潤滑油の供給される環状の開口部51が形成される。このテーパ状の切欠き1cは、潤滑油の流入性向上のために、冠型保持器34の球面ポケットの底よりも軸方向内側まで延びている。
 図33Aに示されるように、冠型保持器34の径方向幅の中央位置4hは、玉3の抱きかかえ量を増やすため、玉3の中心O3よりも軸受の内径側に偏っている。このように、保持器34の径方向幅の中心が玉3の中心と一致する場合(図33B参照)と比較して、冠型保持器34を内径側に偏在させて、玉3の抱きかかえ量を大きくすると、冠型保持器34が遠心力によって外側に広がるときに、保持器34の内周部のエッジ4eと玉3との径方向隙間e2を、図33Bの隙間e1より小さくできる。従って、外径側への保持器34の変形を小さく抑えることができ、その結果、図33Bのように抱え込み量が小さい場合よりも、捩れ変形を抑制でき、保持器34の外輪32との接触を防止できる。
 また、内輪31の外径面と保持器34の内周部との距離が小さくなることにより、内輪31の外径面が保持器34の回転のガイド作用をなし、保持器34の半径方向のガタを抑制して、保持器34の振れ回りを防止する効果を期待できる。なお、通常回転時には、保持器34は玉案内され、保持器34と内輪31は接触しないため、軸受トルクが増加することがない。また、保持器34に衝撃力などの突発的な力が加わった場合には、保持器34と内輪31が接触する可能性があるが、その場合でも、保持器34が外輪32と接触する場合に比べて、軸受トルクの増加が少なくてすむ。なお、特に衝撃力が作用する条件下で使用される場合には、保持器34の案内を玉案内から内輪案内に変更してもかまわない。
 さらに、図34Aに示されるように、球面ポケット4cの内周部のエッジ4eには曲面が付けられている。上記したように、保持器34の内径が小さくなると、図34Aの仮想線のように、球面ポケット4cの内周部のエッジ4eが鋭角的になり、この部分が摩耗しやすくなる。そこで、断面曲面状のエッジ4eとすることで、摩耗を防止することができる。なお、図34Bや図34Cに示すように、エッジ4eには、面取りが施されてもよく、また、これらの場合、玉3が保持器34に接触しやすい球面ポケット4cの底や爪先端にのみ、部分的に曲面や面取りを設けてもよい。また、図34Cに示す円筒形状の面取りの場合には、図34Aや図34Bに示すような曲面や面取りに比べ、射出成形用の金型の製作が容易であり、コストが抑えられるためより好ましい。
 また、図31に示されるように、第3実施例の玉軸受では、玉3の中心O3が、内輪31と外輪32の軸方向幅の中心位置Cよりも、潤滑油の排出側S2に適当な寸法Fだけオフセットされている。このように玉3の位置を潤滑油の排出側S2にオフセットした場合、潤滑油の供給側S1に配設した潤滑剤ガイド5と玉3の間の軸方向距離が開く。従って、その分だけ、冠型保持器34の球面ポケット4cの底厚J(ベース部4aの肉厚)を大きく確保することができる。このように、保持器34の球面ポケット4cの底厚Jを増やすと、それだけ冠型保持器34の剛性アップを図ることができ、遠心力による捩れ変形を抑制する効果が高まる。
 また、潤滑剤ガイド5の内周部には、軸受内部側に折り曲げられた折り曲げ壁5dが設けられている。このように軸受内部側に延びる折り曲げ壁5dを設けると、環状の開口部51から流入した潤滑油が、遠心力により直ぐに外径側に向かわずに、折り曲げ壁5dに誘導されて、冠型保持器34の内周部に向かうようになり、潤滑の必要な部位に積極的に潤滑油を流れ込ませることができる。
 また、潤滑剤ガイド5の内周部5cの内径Dsは、玉3の公転直径PCD以下、より好ましくは、冠型保持器34の内径Dh以下としている。
 また、環状の開口部51を形成している内輪31の外周部と潤滑剤ガイド5の内周部5cとの最短距離yは、玉3の直径Dwの9%以上、より好ましくは11%以上に設定されている。この場合、最短距離yは、潤滑剤ガイド5の内径をDs、内輪31の肩部1bの外径をD1とした場合、
  y=(Ds-D1)/2
となる。
 第3実施例の玉軸受によれば、外輪32に固定された潤滑剤ガイド5の内周部5cと内輪31の外周部との間の軸方向供給側に、環状の開口部51が形成されているので、その環状の開口部51から軸受内部に潤滑油を導入することができる。そして、軸受内部に入り込んだ潤滑油は、冠型保持器34の内径側に流入した後に、遠心力によって、玉3と保持器34の摺動部に流れ込み、さらに遠心力によって流速を増した状態で、開放された内外輪1、2間の軸方向排出側の環状の開口部から軸受外部に排出される。なお、図31中の矢印は潤滑油の流れを示している。
 このように、軸受内部に供給された潤滑油が、遠心力によって、冠型保持器34の内径側から玉3と保持器34の摺動部に流れ込むため、潤滑ノズル等の余分なスペースやコストのかかる装置を使用せずに、高速回転時に発生しやすい玉3との摺動による保持器34の摩耗を抑制することができる。その結果、冠型保持器34の振れ回りを防止することができ、軸受の長寿命化を図ることができる。また、遠心力によって流速を増した状態で潤滑油を軸受外部に排出することができるので、潤滑油の入れ替わりを効果的に行うことができ、軸受の温度上昇およびトルク増加を防止することができる。
 また、樹脂製の冠型保持器34は射出成形が可能であるため、大量生産ができ、コストを抑制しながら、潤滑状態の改善を図ることができる。また、玉案内である冠型保持器34は、低トルク化に寄与することができる。
 また、潤滑剤ガイド5の内径Dsを、冠型保持器34の内径Dh以下とすることで、環状の開口部51から軸受内部に入り込んだ潤滑油が、冠型保持器34の内径側により確実に流入することができる。また、軸受内に過剰な潤滑材が入ることも防止できる。
 また、冠型保持器34の径方向幅の中央位置4hを、玉3の中心O3よりも軸受の内径側に偏らせているので、冠型保持器34による玉3の抱え込み量を増やすことができ、冠型保持器34の捩れ変形を抑制することができる。
 また、玉3の中心O3を潤滑油の排出側S2にオフセットしているので、潤滑油の供給側S1に配置した潤滑剤ガイド5と玉3との間の距離を大きくとることができる。したがって、玉3と潤滑剤ガイド5との間隔が開くことにより、潤滑油の供給側S1を向いた冠型保持器34のベース部4aの軸方向の厚さ、つまり、球面ポケット4cの底厚Jを大きくすることができる。その結果、冠型保持器34の剛性向上させることができ、冠型保持器34の振れ回り変形を抑制することができる。
 また、潤滑剤ガイド5が配設された側の内輪31の肩部1bに、テーパ状の切欠き1cを設けているので、潤滑油の流入する環状の開口部51を大きめに確保しつつ、潤滑剤ガイド5の内径Dsを小さくすることができる。その結果、冠型保持器34の内径側に潤滑油を確実に導入することができ、球面ポケット4cと玉3との摺動部へ潤滑油を導きやすくなる。
 また、潤滑剤ガイド5の内周部5cに軸受内部側に延びる折り曲げ壁5dを設けているので、潤滑剤ガイド5の内周部5cと内輪31の外周部との間に確保された環状の開口部51から流入する潤滑油を、遠心力に負けずに、冠型保持器34の内周部の方向に積極的に導くことができる。
 また、冠型保持器34の球面ポケット4cの内周部のエッジ4eに面取りまたは曲面が形成されるので、エッジ4eが玉3に接触した場合にも、保持器34側の応力集中を緩和することができ、保持器34の摩耗を減らすことができる。特に、冠型保持器34の内径が小さくなった場合、エッジ4eがシャープになるが、そのエッジ4eに面取りまたは曲面を形成することにより、摩耗の軽減を図ることができる。
 また、潤滑剤ガイド5の内径Dsを玉3の公転直径PCD以下、より好ましくは、冠型保持器の内径以下としているので、潤滑剤ガイド5により潤滑油を必要箇所に送り込む性能を向上させることができ、軸受の潤滑状態をよくすることができる。特に、内輪31の外周部と潤滑剤ガイド5の内周部5cとの最短距離yを玉3の直径Dwの9%以上とした場合は、冠型保持器34の振れ回り低減を図ることができる。さらに、内輪31の外周部と潤滑剤ガイド5の内周部5cとの最短距離yを玉3の直径Dwの11%以上とした場合は、より確実に冠型保持器34の振れ回りを低減することができる。
 図35は、第3実施例の第1変形例に係る玉軸受を示す。この玉軸受では、外輪32の内周部より内径側の潤滑剤ガイド5の外周近傍に、潤滑油の通過を許容する通孔5eが設けられている。このように構成することで、潤滑剤ガイド5の外周近傍に設けた通孔5eを通して潤滑油が自由に逃げることができるので、軸受内部外周側の軸受内部の領域Rにおいて、潤滑油の交換効率を上げることができ、その部分の発熱防止を図ることができる。その他の構成及び効果は、第3実施例のものと同様である。
 図36A乃至36Eは、第3実施例の第2乃至第6変形例に係る玉軸受を示す。なお、これら変形例の構成は、以下に説明する部分を除いて、第3実施例と同様の構成及び効果を有する。
 図36Aの第2変形例に係る玉軸受は、内輪31の肩部1bに、テーパ状の切欠き1cの代わりに、段差状の切欠き1dを設けている。
 図36Bの第3変形例に係る玉軸受は、内輪31の肩部1bに、テーパ状の切欠き1cの代わりに、段差状の切欠き1dを設けている。さらに、折り曲げ壁5dは、冠型保持器34のベース部4aの内周側に入る位置まで延びている。
 図36Cの第4変形例に係る玉軸受は、内輪31の肩部1bに、テーパ状の切欠き1cの代わりに、段差状の切欠き1dを設けている。ただし、潤滑剤ガイド5は、折り曲げ壁5dを有していない。この場合、折り曲げ壁5dがないので、環状の開口部51から流入した潤滑油が、遠心力によって外径方向に行きがちである。しかしながら、環状の開口部51から軸受内部に流入する時点で、潤滑油には運動エネルギーが付与されているので、十分に冠型保持器34の内周部に潤滑油を導くことができる。
 図36Dの第5変形例に係る玉軸受は、内輪31の肩部1bに切欠きが無い構成であり、冠型保持器34の内周部と内輪31の外径面が接近する。また、潤滑剤ガイド5は折り曲げ壁5dを有さない。
 図36Eの第6変形例に係る玉軸受は、内輪31の肩部1bに切欠き1dが無い構成である。また、冠型保持器34は、保持器34の径方向幅の中心が玉3の中心と一致するものが使用され、冠型保持器34の内周部と内輪31の外径面との接触を抑制している。また、この保持器34を使用することで、潤滑剤ガイド5の内径は、保持器34の内径より小さくなり、保持器34の内周側と内輪31との間に潤滑油が通りやすくなる。
 図37A乃至37Dは、第3実施例の第7乃至第10変形例に係る玉軸受を示す。例えば、第3実施例では、外輪32の肩部に直接、潤滑剤ガイド5が取り付けられているが、図37A及び37Bに示す第7及び第8変形例のように、外輪32の外側面に側板35、45を配設して、その側板35に設けた環状凸部35aや側板45そのものを潤滑剤ガイドとして用いてもよい。また、図37C及び37Dに示す第9及び第10変形例のように、外輪32を固定するハウジング50、60に内向きフランジ部55、65を設け、そのフランジ部55に設けた環状凸部35aやフランジ部65そのものを潤滑剤ガイドとして用いてもよい。
 このように構成することで、部品点数を削減することができ、また、潤滑剤ガイドの外周端を外輪の係合溝に加締める工程も省略でき、コストが削減できる。また、これら第7乃至第10変形例では、外輪32に潤滑剤ガイドが固定される構成と比べて、内輪31と外輪32との間の軸方向一方側にスペースを設けやすく、保持器34のベース部4aを厚くすることができる。
 さらに、第3実施例では、潤滑剤ガイドとして、内輪31の肩部1bの外周面と非接触なシールド板が使用されているが、接触シールを使用する場合には、潤滑剤ガイドの内周部側に供給孔が設けられてもよい。
 また、使用される保持器としては、波型プレス保持器や2つの部材を係合してなる組み合わせ型の保持器など、他の保持器にも適用できる。
 次に、図38に示す玉軸受を用いて、保持器半径方向ガタ測定試験の例について述べる。なお、この玉軸受は、図36Cに示す第4変形例に係るものと略同様の構成であり、試験1では、内輪31の肩部1bの端部外径D1を変化させ、試験2では、潤滑剤ガイド15の内径Dsを変化させている。
<試験1>
 本試験1では、潤滑剤ガイド15の内径Dsを51.8mmに固定し、内輪31の肩部1bの端部外径D1を変化させることにより、y/Dw(隙間/玉径)を変化させ、摩耗量の指針として、新品と比べた保持器半径方向ガタ増加量を調査した。なお、軸受構成及び試験条件は、以下の通りである。
 <軸受構成>
  ・ 軸受形式:6909(PCD=56.5mm)
  ・ 玉径:6.7mm
  ・ 保持器:球面ポケットを有する冠型保持器
  ・ 保持器材料:ガラス繊維25%強化46ナイロン
  ・ 保持器ベース部と潤滑剤ガイドの潤滑剤ガイド部間の距離Db:1mm
  ・ 保持器内径Dh:51.8mm
<試験条件>
  ・回転数:30000rpm
  ・給油温度:120℃
  ・潤滑方法VG24の鉱油を強制潤滑給油(0.1L/min)
  ・荷重:2500N
  ・試験時間:20Hr
 結果は、表1及び図39の通りであった。
Figure JPOXMLDOC01-appb-T000001
 図39に示した摩耗試験結果により、y/Dwが9%以上となると、玉軸受の振れ回り開始時間の向上がほぼ飽和し、y/Dwが11%以上となると、振れ回り開始時間の向上が完全に飽和することが分かる。これより、y/Dwは9%以上、好ましくは11%以上であると、振れ回り低減に対して大きな効果が得られることが検証された。また、y/Dwが3%以下だと、環状の開口部51が狭すぎて、潤滑油が十分に供給できずに軸受が焼きついた。
<試験2>
 本試験2では、図38に示すような玉軸受において、内輪31の外径D1を48.4mmに固定し、潤滑剤ガイド15の内径Dsを変化させ、摩耗量の指針として、新品と比べた保持器半径方向ガタ増加量を調査した。但し、y/Dwは、常に試験1において飽和領域となる11%以上に設定している。なお、軸受構成及び試験条件は試験1と同様である。
 結果は、表2及び図40の通りであった。
Figure JPOXMLDOC01-appb-T000002
 図40に示した摩耗試験結果により、潤滑剤ガイドの内径を軸受PCD以下にし始めた辺りから摩耗量が減少していることが分かる。これは保持器34の間に潤滑油が流入し難くなり、潤滑油の多くが保持器34の内径に流れ始めるからであると考えることができる。この効果は、潤滑剤ガイド15の内径Dsを保持器34の内径Dh以下にするとほぼ飽和している。これらのことより、潤滑剤ガイド15の内径Dsは、軸受PCD以下、好ましくは保持器34の内径Dh以下にすべきであることが分かる。
<試験3>
 次に、試験1に使用した軸受の中で最もガタが少なかった内輪外径49.8mm、開口量1.0mm、y/Dw15%の軸受の寸法のうち、内輪及び外輪の軌道面の溝の曲率半径Rのみを変化させ、発熱量を比較した。試験条件は試験1と同様であり、20時間後の外輪温度での比較である。図41に、試験3の結果を示す。図41のグラフにおいて、横軸は、Ri=内輪の軌道面の溝の曲率半径R/玉径であり、縦軸は、Re=外輪の軌道面の溝の曲率半径R/玉径=0.52、及びRi=0.52のときの発熱量を1.0とした場合の発熱量の比である。図41に示した試験結果より、外輪の軌道面の溝の曲率半径Rにかかわらず、内輪の軌道面の溝の曲率半径Rが玉径の53%以上(Ri≧0.53)であれば、発熱が少なく良好である。
 以上、本発明の実施例及びその変形例にについて説明したが、本発明は上述した実施例及びその変形例に限定されず、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることは当業者にとって明らかである。例えば、上述した実施例及びその変形例の各構成要素の材質、形状、寸法、数、配置箇所等は、適宜変更または修正可能である。
 また、上述した実施例及びその変形例の特徴は、組み合わされてもよい。
 また、上述した実施例及びその変形例では、玉軸受として深溝玉軸受を例示して説明したが、本発明は、他の種類の様々な玉軸受(例えば、アンギュラ玉軸受,自動調心玉軸受)に対して適用することができる。
 本発明は、高温及び高速条件でも好適に使用可能な玉軸受、及びハイブリッド車用変速機を提供する。

Claims (34)

  1.  軌道面を有する内輪と、
     軌道面を有する外輪と、
     前記内輪の軌道面及び前記外輪の軌道面の間に転動自在に配された複数の転動体と、
     前記内輪及び前記外輪の間で前記複数の転動体を保持する樹脂製の保持器と、
    を備え、
     前記保持器は、環状ベース部と、環状ベース部の軸方向一端面に形成された複数のポケットと、を備え、複数のポケットが前記複数の転動体を保持する冠型保持器であり、
     前記保持器の重心の軸方向位置と前記ポケットのそれぞれの球状もしくは円筒状の内面の曲率中心との間の軸方向距離は、前記内面の曲率半径の0.6倍以上である玉軸受。
  2.  前記保持器の径方向厚さの中央位置は、前記転動体のそれぞれの中心よりも径方向内方に位置する、請求項1に記載の玉軸受。
  3.  前記保持器の重心の軸方向位置と前記ポケットのそれぞれの内面の曲率中心との間の軸方向距離は、前記内面の曲率半径の0.9倍以下である、請求項2に記載の玉軸受。
  4.  前記軸方向距離は、前記内面の曲率半径の0.65倍以上0.85倍以下である、請求項3に記載の玉軸受。
  5.  前記内輪の軌道面及び前記外輪の軌道面は、内輪と外輪の軸方向幅の中央位置から軸方向の一方側にオフセットされた位置に配置され、
     前記保持器の重心の軸方向位置と前記ポケットのそれぞれの内面の曲率中心との間の軸方向距離は、前記内面の曲率半径の1.2倍以下である、請求項1に記載の玉軸受。
  6.  前記軸方向距離は、前記内面の曲率半径の0.65倍以上1.1倍以下である、請求項5に記載の玉軸受。
  7.  前記保持器の内径と前記内輪の外径との差が、前記保持器が常温から-40℃に温度変化して収縮した場合の前記保持器の内径の収縮量よりも大きい、請求項2に記載の玉軸受。
  8.  前記保持器の内径と前記内輪の外径との差が、前記保持器の径方向のガタツキ量よりも大きい、請求項2に記載の玉軸受。
  9.  前記保持器の内径と前記内輪の外径との差が、前記転動体の直径の0.15倍以上である、請求項2に記載の玉軸受。
  10.  前記保持器の内径と前記内輪の外径との差が、前記転動体の直径の0.2倍以上である、請求項9に記載の玉軸受。
  11.  前記外輪に固定され、前記内輪の軸方向端部と前記外輪の軸方向端部の間の開口から玉軸受の内部に潤滑剤を導く潤滑剤ガイドを備える、請求項1~10のいずれか一項に記載の玉軸受。
  12.  前記内輪の軸方向端部と前記外輪の軸方向端部の間の開口と前記環状ベース部の軸方向他端面との間に形成される空間の軸方向長さが、前記転動体の直径の0.15倍以下である、請求項1~10のいずれか一項に記載の玉軸受。
  13.  前記ポケットのそれぞれは、前記内面の縁部を面取りして形成した面取り部を備える、請求項1~10のいずれか一項に記載の玉軸受。
  14.  前記面取り部の径方向長さが、前記内面の曲率半径の2.5%以上である、請求項13に記載の玉軸受。
  15.  前記ポケットのそれぞれに関して、ポケットによって保持される転動体とポケットの内面とが径方向最内方側で接触する接触点と前記転動体の中心とを結ぶ直線と、径方向に直交して前記転動体の中心を通る直線とがなす角度は、25°以上である、請求項1~10のいずれか一項に記載の玉軸受。
  16.  前記角度が30°以上である、請求項15に記載の玉軸受。
  17.  潤滑油により潤滑される、請求項1~10のいずれか一項に記載の玉軸受。
  18.  潤滑剤が前記内輪の軸方向一端部と前記外輪の軸方向一端部の間の開口から玉軸受の内部に導入され、前記内輪の軸方向他端部と前記外輪の軸方向他端部の間の開口から玉軸受の外部へ排出され、前記内輪及び前記外輪の少なくとも一方の肩の部分における外径は、潤滑剤導入側よりも潤滑剤排出側の方が大きい、請求項1~10のいずれか一項に記載の玉軸受。
  19.  軸受温度100℃以上且つdmn60万以上の条件で使用される、請求項1~10のいずれか一項に記載の玉軸受。
  20.  dmn100万以上の条件で使用される、請求項19に記載の玉軸受。
  21.  ハイブリッド車用の駆動モータ又はジェネレータの回転支持部分に組み込まれる、請求項1~10のいずれか一項に記載の玉軸受。
  22.  請求項21に記載の玉軸受を備える、ハイブリッド車用変速機。
  23.  外周面に軌道面を有する内輪と、
     内周面に軌道面を有する外輪と、
     前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配置された複数の玉と、
     該複数の玉を円周方向に所定の間隔で保持する保持器と、
     前記外輪の軸方向一端部に固定され、前記内輪の肩部に向けて延びる環状の潤滑剤ガイドと、
    を備え、
     前記潤滑剤ガイドの内周部と前記内輪の外周部との間には、玉軸受の内部に潤滑油を供給するための環状の開口部が形成され、
     前記潤滑油が前記玉に対して軸方向一方側から供給され、前記玉に対して軸方向他方側から排出される環境下で使用される玉軸受。
  24.  前記保持器は、ベース部と、前記ベース部の一方の軸方向端面に突設された複数の柱部と、を備え、柱部間に形成された球面ポケットに前記玉を収容する樹脂製の冠型保持器であり、
     前記保持器の前記ベース部は、前記軸方向一方側に向けて配置され、
     前記保持器の径方向幅の中央位置が、前記玉のそれぞれの中心よりも径方向内方に偏っている、請求項23に記載の玉軸受。
  25.  前記玉のそれぞれの中心が、前記内輪と外輪の軸方向幅の中心位置よりも、前記軸方向他方側にオフセットされている、請求項23に記載の玉軸受。
  26.  前記潤滑剤ガイドの内周部と対向する前記内輪の肩部は、テーパ状の切欠き部と段差状の切欠き部の少なくとも一方を備える、請求項23に記載の玉軸受。
  27.  前記潤滑剤ガイドの内周部は、軸受内部側に折り曲げられた折り曲げ壁を備える、請求項23に記載の玉軸受。
  28.  前記保持器の球面ポケットの内周部のエッジには、面取りまたは曲面が形成されている、請求項23に記載の玉軸受。
  29.  前記潤滑剤ガイドの内径は、前記玉の公転直径以下である、請求項23に記載の玉軸受。
  30.  前記潤滑剤ガイドの内径は、前記保持器の内径以下である、請求項29に記載の玉軸受。
  31.  前記環状の開口部を形成する前記内輪の外周部と前記潤滑剤ガイドの内周部との最短距離は、前記玉の直径の9%以上である、請求項23に記載の玉軸受。
  32.  前記最短距離は、前記玉の直径の11%以上である、請求項31に記載の玉軸受。
  33.  前記潤滑剤ガイドと、前記外輪が固定されるハウジングとが、一体構造として形成されている、請求項23に記載の玉軸受。
  34.  前記外輪の内周部より内径側の前記潤滑剤ガイドの外周近傍に、潤滑油の通過を許容する通孔が形成されている、請求項23に記載の玉軸受。
PCT/JP2009/070711 2008-12-10 2009-12-10 玉軸受及びハイブリッド車用変速機 WO2010067852A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980131125.5A CN102119281B (zh) 2008-12-10 2009-12-10 滚珠轴承以及混合动力车用变速器
US13/059,077 US8523450B2 (en) 2008-12-10 2009-12-10 Ball bearing and hybrid vehicle transmission
JP2010542129A JP5531966B2 (ja) 2008-12-10 2009-12-10 玉軸受及びハイブリッド車用変速機
US13/959,088 US8777489B2 (en) 2008-12-10 2013-08-05 Ball bearing and hybrid vehicle transmission
US16/593,123 USRE49737E1 (en) 2008-12-10 2019-10-04 Ball bearing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008314390 2008-12-10
JP2008-314389 2008-12-10
JP2008-314390 2008-12-10
JP2008314389 2008-12-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/059,077 A-371-Of-International US8523450B2 (en) 2008-12-10 2009-12-10 Ball bearing and hybrid vehicle transmission
US13/959,088 Division US8777489B2 (en) 2008-12-10 2013-08-05 Ball bearing and hybrid vehicle transmission

Publications (1)

Publication Number Publication Date
WO2010067852A1 true WO2010067852A1 (ja) 2010-06-17

Family

ID=42242838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070711 WO2010067852A1 (ja) 2008-12-10 2009-12-10 玉軸受及びハイブリッド車用変速機

Country Status (4)

Country Link
US (3) US8523450B2 (ja)
JP (1) JP5531966B2 (ja)
CN (1) CN102119281B (ja)
WO (1) WO2010067852A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207699A (ja) * 2011-03-29 2012-10-25 Nsk Ltd 玉軸受
JP2013015180A (ja) * 2011-07-04 2013-01-24 Nsk Ltd 単列深溝型ラジアル玉軸受
WO2013035745A1 (ja) * 2011-09-06 2013-03-14 日本精工株式会社 転がり軸受用保持器、及び転がり軸受
JP2014101899A (ja) * 2012-11-16 2014-06-05 Ntn Corp 冠形保持器
JP7326648B1 (ja) * 2022-04-27 2023-08-15 ミネベアミツミ株式会社 玉軸受
WO2023210092A1 (ja) * 2022-04-27 2023-11-02 ミネベアミツミ株式会社 玉軸受

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5615649B2 (ja) * 2010-09-28 2014-10-29 Ntn株式会社 玉軸受
DE102014212072A1 (de) * 2014-06-24 2015-12-24 Aktiebolaget Skf Lagerkäfig oder Lagerkäfigsegment
JP6339433B2 (ja) * 2014-07-22 2018-06-06 Ntn株式会社 モータ内蔵スピンドル用玉軸受
DE102015201101A1 (de) * 2015-01-23 2016-07-28 Schaeffler Technologies AG & Co. KG Wälzlager
JP2016217488A (ja) * 2015-05-22 2016-12-22 Ntn株式会社 油圧式無段変速機用スラスト軸受
JP6582566B2 (ja) 2015-06-03 2019-10-02 株式会社ジェイテクト 転がり軸受
JP2017116008A (ja) * 2015-12-25 2017-06-29 株式会社ジェイテクト 転がり軸受
JP6957836B2 (ja) 2016-01-26 2021-11-02 株式会社ジェイテクト 転がり軸受
JP6717028B2 (ja) * 2016-04-22 2020-07-01 株式会社ジェイテクト 玉軸受
JP6714856B2 (ja) * 2016-08-03 2020-07-01 日本精工株式会社 玉軸受、及び工作機械用主軸装置
JP6874455B2 (ja) * 2017-03-22 2021-05-19 株式会社ジェイテクト 転がり軸受
JP6946697B2 (ja) 2017-03-31 2021-10-06 株式会社ジェイテクト 転がり軸受
US10247233B1 (en) 2017-09-19 2019-04-02 Schaeffler Technologies AG & Co. KG Tandem ball bearing with labyrinth oil path and method thereof
JP6950430B2 (ja) 2017-10-04 2021-10-13 株式会社ジェイテクト 玉軸受
CN107939838A (zh) * 2017-12-26 2018-04-20 瓦房店轴承集团有限责任公司 角接触球轴承径向钻孔圆弧兜孔半保持架
DE102018108523A1 (de) * 2018-04-10 2019-10-10 Gebr. Reinfurt Gmbh & Co. Kg Kugellager-Käfig und Kugellager
CN108772422B (zh) * 2018-08-15 2023-10-10 常州克劳诺斯特种轴承制造有限公司 外圈防拉毛侧辊支撑轴承及其十八辊轧机
US11162533B2 (en) * 2018-10-22 2021-11-02 Aktiebolaget Skf Rolling bearing
DE102019206594B4 (de) * 2019-05-08 2023-11-02 Aktiebolaget Skf Lagerkäfig für ein Wälzlager
US11286987B2 (en) * 2019-07-03 2022-03-29 Ntn-Snr Roulements Bearing cage, associated assembly and associated mounting and dismantling methods
CN112240347A (zh) * 2019-07-17 2021-01-19 斯凯孚公司 轴承保持架及其应用
CN110439926A (zh) * 2019-08-02 2019-11-12 杰尚(无锡)精密机械制造有限公司 一种汽车中控旋钮轴承
CN112594279A (zh) * 2019-10-01 2021-04-02 株式会社捷太格特 滚动轴承

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120703A (ja) * 1998-10-14 2000-04-25 Koyo Mach Ind Co Ltd 軸受装置およびスピンドル装置
JP2000291662A (ja) * 1999-04-07 2000-10-20 Ntn Corp 玉軸受
JP2001208076A (ja) * 2000-01-24 2001-08-03 Nsk Ltd ころ軸受
JP2001336535A (ja) * 2000-05-26 2001-12-07 Nsk Ltd 転がり軸受用保持器
JP2004084768A (ja) * 2002-08-26 2004-03-18 Nsk Ltd 転がり軸受装置
JP2006017178A (ja) * 2004-06-30 2006-01-19 Koyo Seiko Co Ltd 合成樹脂製の冠形保持器
JP2006214470A (ja) * 2005-02-01 2006-08-17 Jtekt Corp 転がり軸受装置
JP2007032674A (ja) * 2005-07-26 2007-02-08 Nsk Ltd 転がり軸受
JP2008175257A (ja) * 2007-01-17 2008-07-31 Nsk Ltd 深溝玉軸受
JP2008202798A (ja) * 2008-04-08 2008-09-04 Jtekt Corp 転がり軸受装置
JP2008202682A (ja) * 2007-02-20 2008-09-04 Ntn Corp 転がり軸受

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2272757A (en) * 1940-12-19 1942-02-10 Gen Electric Bearing and supporting structure
JPS534317U (ja) 1976-06-29 1978-01-14
DE3640391A1 (de) 1986-11-26 1988-06-01 Skf Gmbh Giess- oder spritzwerkzeug zur herstellung eines schnappkaefigs fuer rillenkugellager und schnappkaefig, der in diesem werkzeug hergestellt ist
JPS63141329U (ja) * 1987-03-09 1988-09-19
JPH0534317U (ja) * 1991-10-14 1993-05-07 光洋精工株式会社 合成樹脂製冠型保持器
JPH08145061A (ja) 1994-11-24 1996-06-04 Nippon Seiko Kk 合成樹脂製冠型保持器
JPH0979265A (ja) 1995-09-11 1997-03-25 Nippon Seiko Kk 玉軸受用冠型保持器
JP2001027253A (ja) 1999-07-14 2001-01-30 Nsk Ltd 転がり軸受
DE19937664A1 (de) * 1999-08-10 2001-02-15 Schaeffler Waelzlager Ohg Schnappkäfig für Kugellager
JP4131312B2 (ja) * 2000-10-27 2008-08-13 日本精工株式会社 軸受装置
JP2002295480A (ja) 2001-04-03 2002-10-09 Nsk Ltd 玉軸受
JP4285017B2 (ja) 2002-12-19 2009-06-24 株式会社ジェイテクト ディファレンシャル装置
CN1322245C (zh) * 2004-07-30 2007-06-20 胡先根 外定位轴承
JP2006125485A (ja) 2004-10-28 2006-05-18 Ntn Corp 転がり軸受の潤滑装置
FR2900996B1 (fr) * 2006-05-12 2008-08-08 Skf Ab Cage pour roulement a billes
JP2007303600A (ja) 2006-05-12 2007-11-22 Nsk Ltd 転がり軸受
DE102007061589B4 (de) * 2007-01-29 2017-06-22 Nsk Ltd. Kugellager und Halterungskonstruktion
JP5012498B2 (ja) * 2007-12-27 2012-08-29 日本精工株式会社 深溝玉軸受
JP5012500B2 (ja) * 2007-12-28 2012-08-29 日本精工株式会社 深溝玉軸受
JP2009174603A (ja) * 2008-01-23 2009-08-06 Nsk Ltd 転がり軸受
JP2009275759A (ja) * 2008-05-13 2009-11-26 Nsk Ltd 深溝玉軸受

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120703A (ja) * 1998-10-14 2000-04-25 Koyo Mach Ind Co Ltd 軸受装置およびスピンドル装置
JP2000291662A (ja) * 1999-04-07 2000-10-20 Ntn Corp 玉軸受
JP2001208076A (ja) * 2000-01-24 2001-08-03 Nsk Ltd ころ軸受
JP2001336535A (ja) * 2000-05-26 2001-12-07 Nsk Ltd 転がり軸受用保持器
JP2004084768A (ja) * 2002-08-26 2004-03-18 Nsk Ltd 転がり軸受装置
JP2006017178A (ja) * 2004-06-30 2006-01-19 Koyo Seiko Co Ltd 合成樹脂製の冠形保持器
JP2006214470A (ja) * 2005-02-01 2006-08-17 Jtekt Corp 転がり軸受装置
JP2007032674A (ja) * 2005-07-26 2007-02-08 Nsk Ltd 転がり軸受
JP2008175257A (ja) * 2007-01-17 2008-07-31 Nsk Ltd 深溝玉軸受
JP2008202682A (ja) * 2007-02-20 2008-09-04 Ntn Corp 転がり軸受
JP2008202798A (ja) * 2008-04-08 2008-09-04 Jtekt Corp 転がり軸受装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207699A (ja) * 2011-03-29 2012-10-25 Nsk Ltd 玉軸受
JP2013015180A (ja) * 2011-07-04 2013-01-24 Nsk Ltd 単列深溝型ラジアル玉軸受
WO2013035745A1 (ja) * 2011-09-06 2013-03-14 日本精工株式会社 転がり軸受用保持器、及び転がり軸受
US8944693B2 (en) 2011-09-06 2015-02-03 Nsk Ltd. Rolling bearing cage and rolling bearing
JP2014101899A (ja) * 2012-11-16 2014-06-05 Ntn Corp 冠形保持器
JP7326648B1 (ja) * 2022-04-27 2023-08-15 ミネベアミツミ株式会社 玉軸受
WO2023210092A1 (ja) * 2022-04-27 2023-11-02 ミネベアミツミ株式会社 玉軸受

Also Published As

Publication number Publication date
JP5531966B2 (ja) 2014-06-25
US20130322802A1 (en) 2013-12-05
JPWO2010067852A1 (ja) 2012-05-24
CN102119281A (zh) 2011-07-06
US8777489B2 (en) 2014-07-15
CN102119281B (zh) 2014-02-26
USRE49737E1 (en) 2023-11-28
US20110142388A1 (en) 2011-06-16
US8523450B2 (en) 2013-09-03

Similar Documents

Publication Publication Date Title
JP5531966B2 (ja) 玉軸受及びハイブリッド車用変速機
US8292512B2 (en) Ball bearing and supporting construction
JP5012498B2 (ja) 深溝玉軸受
JP5845662B2 (ja) 単列深溝型ラジアル玉軸受
JP2006300261A (ja) 玉軸受
JP2009281399A (ja) 深溝玉軸受用保持器及び深溝玉軸受
WO2019065603A1 (ja) 玉軸受用保持器及び玉軸受
JP7221711B2 (ja) 玉軸受
JP2022036002A (ja) 玉軸受
JP2007292093A (ja) 深溝玉軸受
JP2009174603A (ja) 転がり軸受
JP2009275719A (ja) 深溝玉軸受
JP2008286319A (ja) クリーナモータ軸受用合成樹脂製冠型保持器、クリーナモータ用転がり軸受
JPH1151061A (ja) ころ軸受用合成樹脂製保持器
JP2014020528A (ja) 転がり軸受
JP2011047474A (ja) 軸受用保持器および軸受
JP7221723B2 (ja) 玉軸受
JP2013036608A (ja) 冠形保持器及び転がり軸受
JP5109653B2 (ja) 深溝玉軸受
JP4992562B2 (ja) 玉軸受
WO2022039057A1 (ja) 玉軸受
JP5703894B2 (ja) 玉軸受
WO2024019012A1 (ja) 外輪案内保持器付き玉軸受および偏心回転装置
JP7270409B2 (ja) 玉軸受
JP2013117238A (ja) 玉軸受用保持器および玉軸受

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131125.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010542129

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13059077

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831956

Country of ref document: EP

Kind code of ref document: A1