WO2010053174A1 - リチウム二次電池用正極及びリチウム二次電池 - Google Patents

リチウム二次電池用正極及びリチウム二次電池 Download PDF

Info

Publication number
WO2010053174A1
WO2010053174A1 PCT/JP2009/069046 JP2009069046W WO2010053174A1 WO 2010053174 A1 WO2010053174 A1 WO 2010053174A1 JP 2009069046 W JP2009069046 W JP 2009069046W WO 2010053174 A1 WO2010053174 A1 WO 2010053174A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
secondary battery
manganese
lithium secondary
Prior art date
Application number
PCT/JP2009/069046
Other languages
English (en)
French (fr)
Inventor
藤井 明博
雄太 柏
Original Assignee
株式会社ジーエス・ユアサコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42152979&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010053174(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社ジーエス・ユアサコーポレーション filed Critical 株式会社ジーエス・ユアサコーポレーション
Priority to KR1020117011569A priority Critical patent/KR20110083680A/ko
Priority to EP09824871.9A priority patent/EP2357693B1/en
Priority to JP2010536811A priority patent/JP5574239B2/ja
Priority to CN200980144517.5A priority patent/CN102210047B/zh
Priority to US13/127,980 priority patent/US20110223482A1/en
Publication of WO2010053174A1 publication Critical patent/WO2010053174A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode for a lithium secondary battery and a lithium secondary battery provided with the positive electrode for a lithium secondary battery.
  • lithium secondary batteries having a relatively high energy density and being difficult to self-discharge and excellent in cycle performance have attracted attention as power sources for portable devices such as mobile phones and notebook computers or electric vehicles.
  • lithium secondary batteries are mainly used for small-sized consumer devices, mainly for mobile phones having a battery capacity of 2 Ah or less.
  • the positive electrode active material of the positive electrode in the lithium secondary battery for small consumer for example, lithium cobalt oxide of the working potential of 4V near (LiCoO 2), lithium nickel oxide (LiNiO 2), or lithium manganese having a spinel structure
  • Lithium-containing transition metal oxides such as oxides (LiMn 2 O 4 ) are known.
  • lithium-containing transition metal oxides are excellent in charge / discharge performance and energy density, so lithium cobalt oxide (LiCoO 2 ) is widely used in small-sized consumer lithium secondary batteries up to a battery capacity of 2 Ah.
  • a capacitor that can be used for a long time even in a high temperature environment is a capacitor, but the capacitor does not satisfy the user's requirement in that the energy density is not sufficient. Therefore, a battery having a sufficient energy density while maintaining safety is required.
  • a polyanionic positive electrode active material having excellent thermal stability has attracted attention. Since the polyanion positive electrode active material is immobilized by covalently bonding oxygen to an element other than the transition metal, it is difficult to release oxygen even at high temperatures, and the safety of the lithium secondary battery can be improved. Conceivable.
  • lithium iron phosphate (LiFePO 4 ) having an olivine structure has been actively studied.
  • lithium iron phosphate (LiFePO 4 ) not only has a relatively low theoretical capacity of 170 mAh / g, but also inserts and desorbs lithium at a base potential of 3.4 V (vs. Li / Li + ). Therefore, the energy density is smaller than that of the lithium-containing transition metal oxide. Therefore, in the polyanionic positive electrode active material, a part of or all of Fe of lithium iron phosphate (LiFePO 4 ) is replaced with Mn to have a reversible potential in the vicinity of 4 V (vs. Li / Li + ). Further, lithium iron manganese phosphate (LiMn x Fe (1-x) PO 4 ) or lithium manganese phosphate (LiMnPO 4 ) has been studied.
  • lithium iron manganese phosphate or lithium manganese phosphate has insufficient electrical conductivity and insufficient lithium ion conductivity, the utilization rate of the active material is relatively low, and the high rate charge / discharge characteristics are also low. It is not satisfactory.
  • the lithium-containing transition metal oxide and the polyanionic positive electrode active material are used for the purpose of enhancing the safety of the lithium secondary battery including the positive electrode including the lithium-containing transition metal oxide.
  • Patent Documents 1 to 7 have been proposed (for example, Patent Documents 1 to 7).
  • this type of positive electrode active material can increase the safety of the battery as compared with the case where the positive electrode active material is a lithium-containing transition metal oxide alone, the safety of the battery is higher than that of a polyanionic positive electrode active material alone. Lower.
  • this type of positive electrode active material has a problem that the initial Coulomb efficiency indicating the ratio of the initial discharge capacity to the initial charge capacity is not always satisfactory.
  • An object of the present invention is to provide a positive electrode for a lithium secondary battery that can improve the initial coulomb efficiency while keeping the safety of the lithium secondary battery relatively high. It is expected that the energy density of the lithium secondary battery will be excellent due to the excellent initial Coulomb efficiency of the lithium secondary battery.
  • the positive electrode for a lithium secondary battery according to the present invention includes lithium manganese iron phosphate and lithium nickel manganese cobalt composite oxide.
  • the positive electrode for a lithium secondary battery according to the present invention has a mass ratio (A: B) of the lithium manganese manganese phosphate (A) and the lithium nickel manganese cobalt composite oxide (B) of 10:90 to 70. : 30 is preferable.
  • the number of manganese atoms contained in the lithium manganese iron phosphate is more than 50% and less than 100% with respect to the total number of manganese atoms and iron atoms.
  • the number of cobalt atoms contained in the lithium nickel manganese cobalt composite oxide is preferably more than 0% and 67% or less with respect to the total number of nickel atoms, manganese atoms, and cobalt atoms.
  • a lithium secondary battery according to the present invention includes the above-described positive electrode for a lithium secondary battery, a negative electrode, and a nonaqueous electrolyte.
  • the positive electrode for a lithium secondary battery according to the present invention has an effect that the initial coulomb efficiency can be improved while keeping the safety of the lithium secondary battery relatively high.
  • the positive electrode for a lithium secondary battery of this embodiment contains lithium manganese iron phosphate and lithium nickel manganese cobalt composite oxide. Moreover, a conductive agent and a binder are usually included. The lithium manganese iron phosphate and the lithium nickel manganese cobalt composite oxide can exhibit the function of a positive electrode active material in a positive electrode for a lithium secondary battery.
  • the lithium manganese iron phosphate is a phosphate compound containing a lithium atom, a manganese atom, and an iron atom. Further, it has an olivine type crystal structure classified as orthorhombic, and manganese atoms and iron atoms are in solid solution with each other.
  • As said lithium manganese iron phosphate it is preferable to use the compound represented by following General formula (1). LiMn x Fe (1-x) PO 4 (0 ⁇ x ⁇ 1) ⁇ formula (1)
  • the compound represented by the general formula (1) may contain a small amount of a transition metal element other than Mn or Fe or a typical element such as Al, for example, within a range where the basic properties of the compound do not change. In this case, an element not represented by the general formula (1) is included in the lithium iron manganese phosphate.
  • examples of the transition metal element other than Mn or Fe include cobalt and nickel.
  • the number of manganese atoms is preferably more than 50% and less than 100% with respect to the total number of manganese atoms and iron atoms, more than 50% and less than 80%. More preferably. That is, in the above general formula (1), 0.5 ⁇ x ⁇ 1 is preferably satisfied, and 0.5 ⁇ x ⁇ 0.8 is more preferable.
  • the number of manganese atoms is 50% of the total number of manganese atoms and iron atoms in that the initial coulomb efficiency of the battery can be further improved. It is preferably more than 100% and more preferably more than 50% and 80% or less.
  • the number of manganese atoms exceeds 50% with respect to the sum of the number of manganese atoms and the number of iron atoms in that the discharge potential can be increased, and the electrode resistance does not become too high.
  • the number of manganese atoms is preferably less than 100% and more preferably 90% or less in that good high rate charge / discharge characteristics can be obtained.
  • the average particle size of the secondary particles is preferably 100 ⁇ m or less, and a particulate material is preferably used for the positive electrode for a lithium secondary battery.
  • the average particle diameter of the secondary particles of particulate lithium iron manganese phosphate is preferably 0.1 ⁇ m to 20 ⁇ m, and the particle diameter of the primary particles constituting the secondary particles is preferably 1 nm to 500 nm.
  • the average particle diameter of the secondary particles of lithium manganese iron phosphate and the average particle diameter of the primary particles are determined by image analysis of the results of transmission electron microscope (TEM) observation.
  • the BET specific surface area of the lithium iron manganese phosphate particles is preferably 1 to 100 m 2 / g, preferably 5 to 100 m 2 / g in that the high rate charge / discharge characteristics of the positive electrode can be improved. More preferred.
  • the lithium iron manganese phosphate particles are preferably provided with carbon supported on the surface from the viewpoint that electrical conductivity can be enhanced.
  • the carbon may be partially provided on the surface of the lithium iron manganese phosphate particles or may be provided so as to cover the whole.
  • the lithium nickel manganese cobalt composite oxide is an oxide containing a lithium atom, a nickel atom, a manganese atom, and a cobalt atom. Further, it has an ⁇ -NaFeO 2 type crystal structure classified as a hexagonal crystal, and nickel atoms, manganese atoms, and cobalt atoms are in solid solution with each other.
  • a compound represented by the following general formula (2) is preferably used as the lithium nickel manganese cobalt composite oxide.
  • the compound represented by the general formula (2) may contain a small amount of a transition metal element other than Mn, Ni, Co, or a typical element such as Al, as long as the basic properties of the compound are not changed. In this case, an element not represented by the general formula (2) is included in the lithium nickel manganese cobalt composite oxide.
  • the number of cobalt atoms is preferably more than 0% and 67% or less with respect to the total of the number of nickel atoms, the number of manganese atoms, and the number of cobalt atoms. That is, in the general formula (2), it is preferable to satisfy 0 ⁇ y + z ⁇ 0.67.
  • the initial Coulomb efficiency can be further improved.
  • the number of cobalt atoms is less than the sum of the number of nickel atoms, the number of manganese atoms and the number of cobalt atoms in that good high rate charge / discharge characteristics can be obtained without excessively increasing the electrode resistance in the battery. It is preferably over 10%, more preferably 30% or more. Further, the number of cobalt atoms is preferably 67% or less in that the thermal stability of the positive electrode can be excellent. In the composite oxide, the number of nickel atoms and the number of manganese atoms are preferably approximately equal, and more preferably the same.
  • the average particle size of secondary particles is preferably 100 ⁇ m or less, and a particulate material is preferably used for a positive electrode for a lithium secondary battery.
  • the average particle diameter of the secondary particles of the particulate lithium nickel manganese cobalt composite oxide is preferably 0.1 ⁇ m to 100 ⁇ m, and more preferably 0.5 ⁇ m to 20 ⁇ m.
  • the average particle diameter of the secondary particles of the lithium nickel manganese cobalt composite oxide is dispersed by ultrasonic irradiation with ion-exchanged water after sufficiently mixing the composite oxide particles and the surfactant. Then, the value of D 50 obtained by measuring at 20 ° C. using a laser diffraction / scattering particle size distribution measuring device (device name “SALD-2000J” manufactured by Shimadzu Corporation) is adopted.
  • the BET specific surface area of the lithium nickel manganese cobalt composite oxide particles is preferably 0.1 to 10 m 2 / g from the viewpoint of improving the high rate charge / discharge characteristics of the positive electrode, and preferably 0.5 to 5 m 2. / G is more preferable.
  • the mass ratio is in such a range, there is an advantage that the initial coulomb efficiency of the battery is further increased.
  • the BET specific surface area of the lithium iron manganese phosphate particles is preferably larger than the BET specific surface area of the lithium nickel manganese cobalt composite oxide particles.
  • the average particle size of lithium manganese manganese cobalt composite oxide particles is that the average particle size of lithium iron manganese phosphate particles can increase the packing density of the positive electrode by mixing those having different particle sizes. Is preferably smaller. Moreover, there is an advantage that the thermal stability of the positive electrode in a charged state can be increased by using a lithium nickel manganese cobalt composite oxide having a larger particle size.
  • lithium manganese iron phosphate with a smaller particle size, the conduction path length of electrons in the solid phase and the diffusion path length of Li ions can be shortened, so the high rate charge / discharge characteristics of lithium manganese iron phosphate can be improved. There is an advantage that it can be greatly improved.
  • conductive agent and the binder conventionally known ones can be used in general compounding amounts.
  • the conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance.
  • natural graphite scale-like graphite, scale-like graphite, earth-like graphite, etc.
  • artificial graphite carbon black, acetylene black , Ketjen Black, carbon whisker, carbon fiber, one type of electronic conductive material such as conductive ceramic material, or a mixture thereof.
  • binder examples include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, and polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene butadiene.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene terpolymer
  • SBR rubber
  • fluororubber fluororubber
  • the lithium manganese manganese phosphate or the lithium nickel manganese cobalt composite oxide contains a lithium atom, a manganese atom, an iron atom, a phosphorus atom, a nickel atom, a cobalt atom, etc., and its content is confirmed by ICP analysis can do.
  • the fact that the metal atoms in the lithium iron manganese phosphate or the lithium nickel manganese cobalt composite oxide are in solid solution with each other, and that they have an olivine type or ⁇ -NaFeO 2 type crystal structure indicates that the X of the particle or electrode It can be confirmed by X-ray diffraction analysis (XRD). Further, more detailed analysis can be performed by electron microscope observation (TEM), scanning electron microscopic X-ray analysis (EPMA), high-resolution electron microscope analysis (HRAEM), or the like.
  • TEM electron microscope observation
  • EPMA scanning electron microscopic X-ray analysis
  • HRAEM high-resolution electron microscope analysis
  • the positive electrode active material may contain an intentionally mixed impurity for the purpose of improving various performances of the positive electrode active material.
  • the positive electrode for a secondary battery is prepared, for example, by synthesizing the particles of lithium iron manganese phosphate and the particles of lithium nickel manganese cobalt composite oxide, and then preparing a paste containing these particles. It can be manufactured by drying the paste after coating on the electric body.
  • a method for synthesizing the lithium manganese iron phosphate is not particularly limited, and becomes a phosphoric acid source and a raw material containing a metal element (Li, Mn, Fe) so as to have a composition ratio of a positive electrode active material to be synthesized. It can be obtained by mixing raw materials and firing the mixture.
  • the method for synthesizing the lithium iron manganese phosphate for example, a particulate raw material containing a metal element (Li, Mn, Fe) and a particulate raw material serving as a phosphoric acid source are mixed and mixed. It is possible to employ a solid phase method of firing the mixed raw material. Further, for example, a liquid phase method for synthesizing lithium manganese iron phosphate from an aqueous solution containing a raw material containing a metal element (Li, Mn, Fe) and a raw material to be a phosphoric acid source can be employed. As the liquid phase method, a sol-gel method, a polyol method, a hydrothermal method, or the like can be employed.
  • lithium manganese iron phosphate it is preferable to mechanically adhere or coat carbon on the surface of lithium manganese iron phosphate particles for the purpose of increasing the electrical conductivity of lithium manganese iron phosphate. Or it is preferable to adhere or coat carbon on the surface of lithium iron manganese phosphate particles by thermal decomposition of organic matter.
  • the composition of the synthesized composite oxide is calculated from the composition ratio of raw materials. It can be slightly different. In order to bring the composition ratio of the raw materials close to the composition ratio of the synthesized composite oxide, in the synthesis of the composite oxide, it is preferable to sinter the material charged with a large amount of Li source.
  • Ni compound, Mn compound and Co compound as raw materials are mixed with Li compound and fired.
  • a coprecipitation precursor Ni-Mn-Co coprecipitation precursor described later
  • a co-precipitation precursor Ni-Mn-Co co-precipitation precursor described later
  • a co-precipitation precursor prepared by co-precipitation is mixed with a Li compound and fired because it can synthesize a more homogeneous composite oxide. It is preferable to do.
  • the method for preparing the Ni—Mn—Co coprecipitation precursor includes Ni, Mn and Co in that Ni, Mn and Co are uniformly mixed in the prepared Ni—Mn—Co coprecipitation precursor. It is preferable to employ a coprecipitation method in which an acidic aqueous solution of Co is precipitated with an alkaline aqueous solution such as an aqueous sodium hydroxide solution.
  • an acidic aqueous solution of Co is precipitated with an alkaline aqueous solution such as an aqueous sodium hydroxide solution.
  • homogeneous and bulky coprecipitation precursor particles can be prepared, so that the nucleus of crystal growth is present in the presence of a larger number of ammonium ions than the total number of metal ions of Ni, Mn, and Co. Is preferably generated. Due to the presence of an excessive amount of ammonium ions, the rate of the precipitation reaction is moderated by going through the metal-ammine complex formation reaction. Therefore, there is an advantage that a precipitate having good crystal orientation and bulky and developed primary particle crystals can be produced. In the absence of ammonium ions, these metal ions rapidly form precipitates by an acid-base reaction, so that the crystal orientation tends to be disordered and precipitates with insufficient bulk density can be formed.
  • the apparatus factors such as the reactor shape and the type of rotor blade, the time that the precipitate stays in the reaction vessel, the reaction vessel temperature, the total ion amount, the liquid pH, the ammonia ion concentration, the oxidation number adjusting agent By appropriately adjusting various factors such as the concentration, the physical properties such as the particle shape, bulk density, and surface area of the coprecipitation precursor particles can be controlled.
  • the firing method in the synthesis of the lithium manganese iron phosphate is not particularly limited, and specifically, for example, a method of firing at 400 to 900 ° C., preferably 500 to 800 ° C. for 1 to 24 hours. Is preferred.
  • the firing method in the synthesis of the lithium nickel manganese cobalt composite oxide is not particularly limited. Specifically, for example, the firing is performed at 700 to 1100 ° C., preferably 800 to 1000 ° C. for 1 to 24 hours. The method is preferred.
  • a pulverizer or a classifier can be used to obtain particles of lithium manganese iron phosphate or lithium nickel manganese cobalt composite oxide in a predetermined shape.
  • pulverizer for example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or the like can be used.
  • wet pulverization in which an organic solvent such as alcohol, hexane, or water coexists may be employed.
  • a sieve or an air classifier can be used. The classification method is not particularly limited, and a dry or wet method using a sieve or an air classifier can be employed.
  • the paste is made by mixing particles of lithium iron manganese phosphate or lithium nickel manganese cobalt composite oxide and a solvent.
  • the solvent is not particularly limited, and for example, an organic solvent such as N-methyl-2-pyrrolidone (NMP), toluene, or alcohol, water, or the like can be used.
  • Examples of the material for the current collector include aluminum, calcined carbon, conductive polymer, conductive glass, and the like. Among these, aluminum is preferable.
  • Examples of the shape of the current collector include a sheet shape and a net shape.
  • the thickness of the current collector is not particularly limited, but usually 1 to 500 ⁇ m.
  • roller coating such as applicator roll, screen coating, blade coating, spin coating, and bar coating can be employed, but are not limited thereto.
  • the amount of water contained in the positive electrode is preferably as small as possible, specifically less than 1000 ppm.
  • a method of drying the positive electrode in a high temperature / depressurized environment or a method of electrochemically decomposing water contained in the positive electrode is suitable.
  • the lithium secondary battery of the present embodiment includes at least the above-described positive electrode for a lithium secondary battery, a negative electrode, and a non-aqueous electrolyte containing an electrolyte salt in a non-aqueous solvent.
  • a separator is provided between the positive electrode and the negative electrode, and an outer package for packaging the positive electrode, the negative electrode, the nonaqueous electrolyte, and the separator is provided.
  • the material of the negative electrode is not particularly limited, and lithium metal, lithium alloy (lithium metal such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy) Alloys), alloys capable of occluding and releasing lithium, carbon materials (eg, graphite, hard carbon, low temperature fired carbon, amorphous carbon, etc.), lithium metal oxides (Li 4 Ti 5 O 12 etc.), etc. A metal oxide, a polyanion compound, etc. are mentioned. Among these, graphite is preferable in that it has an operating potential very close to that of metallic lithium and can realize charge and discharge at a high operating voltage.
  • graphite for example, artificial graphite and natural graphite are preferable.
  • graphite in which the surface of the negative electrode active material particles is modified with amorphous carbon or the like is more preferable in that gas generation during charging is small.
  • the thickness of the electrode mixture layer constituting the electrode such as the positive electrode or the negative electrode is preferably 20 ⁇ m or more and 500 ⁇ m or less in that the energy density does not become too small while having a sufficient energy density.
  • the thickness of the electrode is represented by the sum of the thickness of the current collector and the thickness of the electrode mixture layer.
  • Nonaqueous solvents contained in the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate and ethylene carbonate; cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate.
  • Chain carbonates such as neat; chain esters such as methyl formate, methyl acetate, methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1 Ethers such as 1,4-dibutoxyethane and methyldiglyme; Nitriles such as acetonitrile and benzonitrile; Dioxolane or derivatives thereof; Ethylene sulfide, sulfolane, sultone or derivatives thereof.
  • the non-aqueous solvent include, but are not limited to, one kind alone or a mixture of two or more kinds.
  • Examples of the electrolyte salt contained in the non-aqueous electrolyte include ionic compounds such as LiBF 4 and LiPF 6 .
  • the electrolyte salt one of these ionic compounds can be used alone, or two or more of them can be mixed and used.
  • the concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.5 mol / l or more and 5 mol / l or less in order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics, and is 1 mol / l or more and 2.5 mol / l. The following is more preferable.
  • Examples of the material for the separator include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyimide, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene. A polymer etc. can be mentioned.
  • Examples of the material of the exterior body include nickel-plated iron, stainless steel, aluminum, metal resin composite film, and glass.
  • the lithium secondary battery of this embodiment can be manufactured by a conventionally known general method.
  • the lithium secondary battery positive electrode and the lithium secondary battery of the present embodiment are as illustrated above, but the present invention is not limited to the lithium secondary battery positive electrode and the lithium secondary battery illustrated above. That is, various modes used in a general lithium secondary battery positive electrode and a lithium secondary battery can be adopted as long as the effects of the present invention are not impaired.
  • Example 1 A positive electrode active material having the following composition was prepared as follows, and a positive electrode for a lithium secondary battery was manufactured using the positive electrode active material.
  • (Synthesis of LiMn 0.8 Fe 0.2 PO 4 ) 25 g of manganese acetate tetrahydrate (Mn (CH 3 COO) 2 .4H 2 O) and 7.09 g of iron sulfate heptahydrate (FeSO 4 .7H 2 O) were dissolved in 125 ml of purified water and mixed.
  • a liquid was prepared.
  • a phosphoric acid diluted solution obtained by diluting 14.55 g of phosphoric acid (H 3 PO 4 ) having a purity of 85% to 70 ml with purified water, and 151 ml of lithium hydroxide monohydrate (LiOH ⁇ H 2 O) 16.05 g And an aqueous lithium hydroxide solution dissolved in purified water.
  • the phosphoric acid dilution solution was dripped at this liquid mixture, stirring the liquid mixture of manganese acetate tetrahydrate and iron sulfate heptahydrate.
  • a precursor solution was prepared by dropping a lithium hydroxide aqueous solution in the same manner. Further, the precursor solution was heated and stirred for 1 hour on a 190 ° C. hot stirrer, and after cooling, the precursor was recovered by filtration and vacuum drying (100 ° C.).
  • particles of a lithium secondary battery positive electrode active material LiMn 0.8 Fe 0.2 PO 4 having carbon supported on the surface were prepared.
  • the positive electrode active material particles had a BET specific surface area of 34.6 m 2 / g.
  • the primary particle diameter obtained by carrying out image analysis of the result of transmission electron microscope (TEM) observation was about 100 nm, and the secondary particle diameter was about 10 ⁇ m.
  • the carbon on the active material surface is generated by thermal decomposition of sucrose added before mixing by a ball mill.
  • manganese sulfate pentahydrate 0.585 mol / l
  • nickel sulfate hexahydrate 0.585 mol / l
  • cobalt sulfate heptahydrate 0.588 mol / l
  • hydrazine monohydrate A raw material solution in which 0.0101 mol / l was dissolved was prepared. Subsequently, the raw material solution was continuously dropped into the reaction vessel at a flow rate of 3.17 ml / min while stirring the aqueous solution in the reaction vessel.
  • a 12 mol / l aqueous ammonia solution was dropped into the reaction vessel at a flow rate of 0.22 ml / min to initiate the synthesis reaction.
  • a 32% aqueous sodium hydroxide solution was intermittently added so that the pH of the aqueous solution in the reaction vessel was kept constant at 11.4.
  • the heater was controlled intermittently so that the aqueous solution temperature in the reaction vessel was constant at 50 ° C.
  • argon gas was blown directly into the water / night liquid in the reaction tank so that the reaction tank had a reducing atmosphere.
  • the slurry was discharged out of the system using a flow pump so that the amount of the aqueous solution in the reaction tank was always a fixed amount of 3.5 liters.
  • the mixture was filled in an alumina pot and heated to 1000 ° C. at a rate of 100 ° C./hr under dry air flow using an electric furnace. The temperature of 1000 ° C. was maintained for 15 hours, then cooled to 200 ° C. at a cooling rate of 100 ° C./hr, and then allowed to cool.
  • particles of a positive electrode active material LiNi 0.33 Mn 0.33 Co 0.34 O 2 for a lithium secondary battery were produced.
  • the average particle size (D 50 ) of the particles of this compound was 12.3 ⁇ m, and the specific surface area was 1.0 m 2 / g.
  • NMP N-methyl-2-pyrrolidone
  • this positive electrode paste to the single side
  • the thickness of the positive electrode mixture layer after pressing was 50 ⁇ m, and the mass of the positive electrode mixture layer was about 70 mg.
  • An aluminum positive electrode terminal was connected to the positive electrode by ultrasonic welding.
  • diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 ) and lithium hydroxide monohydrate (LiOH ⁇ H 2 O) are weighed at a molar ratio of 10:20, dissolved in purified water, and solution B was prepared.
  • a hydrothermal reactor portable reactor TPR-1 type manufactured by Pressure Glass Industrial Co., Ltd.
  • the obtained LiMn 0.8 Fe 0.2 PO 4 and polyvinyl alcohol (PVA) (degree of polymerization: about 1500) were weighed so as to have a mass ratio of 1: 1.14, and then ball mill (planet manufactured by FRITSCH) Mill, ball diameter 1 cm), and the mixed mixture is placed in an alumina sagger (outside dimensions 90 ⁇ 90 ⁇ 50 mm), and an atmosphere-replacement type firing furnace (a tabletop vacuum gas replacement furnace KDF- manufactured by Denken) 75) was fired under nitrogen flow (1.0 l / min).
  • the firing temperature was 700 ° C.
  • the firing time time for maintaining the firing temperature
  • the rate of temperature increase was 5 ° C./min, and the temperature was naturally cooled.
  • MnSO 4 .5H 2 O: FeSO 4 .7H 2 O: (NH 4 ) 2 HPO 4 : LiOH ⁇ H 2 O: ascorbic acid 9.5: 0.5: 10: LiMn 0.95 Fe 0.05 PO 4 was synthesized in the same manner as in Example 7 except that the molar ratio was 20: 0.025.
  • Example 1 a point with a positive electrode active material LiNi 0.33 Mn 0.33 Co 0.34 O 2 produced in Example 1 as the lithium nickel manganese cobalt composite oxide, LiMn 0.95 Fe 0.05 PO 4: LiNi
  • Example 1 a point with a positive electrode active material LiNi 0.33 Mn 0.33 Co 0.34 O 2 produced in Example 1 as the lithium nickel manganese cobalt composite oxide, LiMn 0.55 Fe 0.45 PO 4: LiNi
  • a negative electrode was manufactured by attaching a metal lithium foil having a thickness of 100 ⁇ m onto a nickel foil current collector having a thickness of 10 ⁇ m. Moreover, the negative electrode terminal made from nickel was connected to the negative electrode by resistance welding.
  • LiPF 6 as a fluorine-containing electrolyte salt is dissolved at a concentration of 1 mol / l in a mixed non-aqueous solvent in which ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate are mixed at a volume ratio of 1: 1: 1, and a non-aqueous electrolyte is obtained.
  • the nonaqueous electrolyte was prepared so that the amount of water in the nonaqueous electrolyte was less than 50 ppm.
  • a lithium secondary battery was assembled in a dry atmosphere with a dew point of ⁇ 40 ° C. or lower by the following procedure. That is, a positive electrode and a negative electrode, each having a water content of 500 ppm or less (measured by the Karl Fischer method) by vacuum drying at 150 ° C., face each other through a polypropylene separator having a thickness of 20 ⁇ m. It was.
  • a metal resin composite film made of polyethylene terephthalate (15 ⁇ m) / aluminum foil (50 ⁇ m) / metal adhesive polypropylene film (50 ⁇ m) was used.
  • a pole group composed of a positive electrode, a negative electrode, and a separator was hermetically sealed with an exterior body except for a portion serving as a liquid injection hole so that open ends of the positive electrode terminal and the negative electrode terminal were exposed to the outside. After injecting a certain amount of non-aqueous electrolyte from the injection hole, the injection hole part was heat-sealed under reduced pressure to assemble a battery.
  • ⁇ Charge / discharge test> The lithium secondary batteries of each Example and each Comparative Example were subjected to a charging / discharging process of charging / discharging at a temperature of 2 cycles at 20 ° C.
  • the charging conditions were a current of 0.1 ItmA (approximately 10 hour rate), a voltage of 4.3 V, and a constant current constant voltage charge of 15 hours, and the discharging conditions were a current of 0.1 ItmA (approximately 10 hour rate) and a final voltage of 2.5 V. Constant current discharge.
  • Table 1 shows the results of the initial coulomb efficiency (discharge capacity / charge capacity) obtained in the first cycle in the lithium secondary batteries using the positive electrodes of Examples 1 to 6 and Comparative Examples 1 and 2.
  • the initial coulombic efficiency of Examples 1 to 6 is higher than that of Comparative Examples 1 and 2. This result shows that by using a positive electrode active material containing lithium iron manganese phosphate and lithium nickel manganese cobalt composite oxide, the initial Coulomb efficiency is increased as compared with the case where each is used alone.
  • the initial Coulomb efficiency is other than the ratio of lithium iron manganese phosphate and lithium nickel manganese cobalt composite oxide in the positive electrode active material in a mass ratio of 10:90 to 70:30. It can be recognized that it is higher.
  • the mass of lithium manganese iron phosphate contained in the positive electrode is 10% or more and 70% or less based on the total mass of lithium manganese iron phosphate and lithium nickel manganese cobalt composite oxide. It shows that the coulomb efficiency becomes better.
  • Table 2 shows the results of measuring the initial coulomb efficiency (discharge capacity / charge capacity) in the same manner as described above for the lithium secondary batteries using the positive electrodes of Examples 7 to 10 and Comparative Examples 3 to 7.
  • Example 7 exceeds the prediction when compared with the results of Comparative Example 3 and Comparative Example 6. That is, in Comparative Example 3 and Comparative Example 6 using lithium iron manganese phosphate or lithium nickel manganese cobalt composite oxide alone, the initial Coulomb efficiency is 85.0% and 92.7%, respectively. In Example 7, in which lithium iron manganese oxide and lithium nickel manganese cobalt composite oxide were mixed at 50:50, the initial Coulomb efficiency is expected to be about 89%. On the other hand, the initial coulomb efficiency of Example 7 is 92.3%, which is far beyond expectations.
  • Example 7 since lithium manganese iron phosphate and lithium nickel manganese cobalt composite oxide were mixed, the battery was used rather than the lithium nickel manganese cobalt composite oxide used alone as in Comparative Example 6. The safety is kept high. For the same reason, the result of Example 9 is also more than expected when compared with the results of Comparative Example 4 and Comparative Example 1. In Example 9, the safety of the battery is kept relatively high for the same reason as described above.
  • the lithium secondary battery whose initial coulomb efficiency has been increased can reduce the amount of the negative electrode active material as the initial coulomb efficiency has been increased. Therefore, a lithium secondary battery having a relatively high initial Coulomb efficiency can be expected to have a relatively high energy density.
  • the lithium secondary battery can be excellent in initial coulomb efficiency. Therefore, it is expected that a lithium secondary battery having a relatively high energy density can be provided by using the positive electrode for a lithium secondary battery of the present invention.
  • the lithium secondary battery provided with the positive electrode for the lithium secondary battery according to the present invention is suitable for application in fields such as industrial batteries such as electric vehicles, which are required to have a high capacity and demand is increased in the future. The availability is extremely large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 リチウム二次電池の初期クーロン効率を優れたものにし得るリチウム二次電池用正極などを提供することを課題とする。リン酸マンガン鉄リチウムとリチウムニッケルマンガンコバルト複合酸化物とを含むリチウム二次電池用正極を提供する。

Description

リチウム二次電池用正極及びリチウム二次電池
 本発明は、リチウム二次電池用正極及び該リチウム二次電池用正極を備えているリチウム二次電池に関する。
 近年、携帯電話やノートパソコン等の携帯機器用又は電気自動車用などの電源として、エネルギー密度が比較的高く、かつ自己放電しにくくサイクル性能に優れたリチウム二次電池が注目されている。
 従来、リチウム二次電池としては、電池容量2Ah以下の携帯電話用を中心とした小型民生用のものが主流である。小型民生用のリチウム二次電池における正極の正極活物質としては、例えば、作動電位が4V付近のリチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)、又はスピネル構造を持つリチウムマンガン酸化物(LiMn)等のリチウム含有遷移金属酸化物などが知られている。なかでも、リチウム含有遷移金属酸化物においては、充放電性能及びエネルギー密度に優れることから、リチウムコバルト酸化物(LiCoO)が電池容量2Ahまでの小型民生用リチウム二次電池に広く採用されている。
 一方、今後は、リチウム二次電池を中型化又は大型化し特に大きな需要が見込まれる産業用途へ展開することが求められることから、リチウム二次電池の安全性が非常に重要視される。
 しかしながら、従来の小型民生用リチウム二次電池用の正極活物質をそのまま産業用途のリチウム二次電池に適用することは、電池の安全性を必ずしも十分に満足させるものではない。即ち、従来の小型民生用リチウム二次電池用の正極活物質においては、リチウム含有遷移金属酸化物の熱的安定性が必ずしも十分でない。これに対し、リチウム含有遷移金属酸化物の熱的安定性を高めるべく様々な対策がなされてきたが、斯かる対策は未だあまり満足できるものではない。
 また、小型民生用のリチウム二次電池が使用されないような環境下、即ち産業用途のリチウム二次電池が使用され得る高温環境下における使用においては、従来の小型民生用のリチウム二次電池は、ニッケル-カドミウム電池、鉛電池などと同様、電池寿命が非常に短いものとなる。一方、高温環境下でも長期間使用できるものとしては、キャパシターがあるものの、キャパシターはエネルギー密度が十分でないという点でユーザーの要求を満足するものではない。そこで、安全性を保ちつつ十分なエネルギー密度を有する電池が求められる。
 これに対し、リチウム二次電池用の正極活物質においては、熱的安定性に優れるポリアニオン系正極活物質が注目を集めている。ポリアニオン系正極活物質は、酸素が遷移金属以外の元素と共有結合することで固定化されているため、高温においても酸素を放出しにくく、リチウム二次電池の安全性を優れたものにできると考えられる。
 ポリアニオン系正極活物質においては、オリビン構造を有するリン酸鉄リチウム(LiFePO)が盛んに研究されている。ところが、リン酸鉄リチウム(LiFePO)は、理論容量が比較的低い170mAh/gであるだけでなく、3.4V(vs.Li/Li)の卑な電位でリチウムの挿入脱離が行われるため、リチウム含有遷移金属酸化物に比べてエネルギー密度が小さいものとなる。そこで、ポリアニオン系正極活物質においては、リン酸鉄リチウム(LiFePO)のFeの一部又は全てをMnで置換することにより4V(vs.Li/Li)付近に可逆電位を有することとなったリン酸マンガン鉄リチウム(LiMnFe(1-x)PO)、又はリン酸マンガンリチウム(LiMnPO)が検討されている。
 しかしながら、リン酸マンガン鉄リチウム又はリン酸マンガンリチウムは、電気伝導性が十分でなく、リチウムイオン伝導性も十分でないことから、活物質の利用率が比較的低く、また、高率充放電特性が満足できるものでない。
 一方、リチウム二次電池用の正極活物質においては、リチウム含有遷移金属酸化物を含む正極を備えたリチウム二次電池の安全性を高める目的で、リチウム含有遷移金属酸化物とポリアニオン系正極活物質とを混合したものが提案されている(例えば、特許文献1~7)。ところが、この種の正極活物質は、正極活物質がリチウム含有遷移金属酸化物単独である場合より電池の安全性を高くし得るものの、ポリアニオン系正極活物質単独である場合より電池の安全性が低くなる。しかも、この種の正極活物質は、初回充電容量に対する初回放電容量の比率を示す初期クーロン効率が、必ずしも満足できるものではないという問題がある。
日本国特許第3632686号公報 日本国特開2001-307730号公報 日本国特開2002-75368号公報 日本国特開2002-216755号公報 日本国特開2002-279989号公報 日本国特開2005-183384号公報 日本国特表2008-525973号公報
 そこで、リチウム二次電池の安全性を比較的高く保ちつつ初期クーロン効率を優れたものにし得る正極活物質を含むリチウム二次電池用正極が要望される。
 本発明は、リチウム二次電池の安全性を比較的高く保ちつつ初期クーロン効率を優れたものにし得るリチウム二次電池用正極を提供することを課題とする。リチウム二次電池の初期クーロン効率が優れたものになることにより、リチウム二次電池のエネルギー密度が優れたものになることが期待される。
 本発明の構成及び作用効果は以下の通りである。但し、本明細書中に記載する作用機構には推定が含まれており、その正否は本発明を何ら制限するものではない。
 本発明に係るリチウム二次電池用正極は、リン酸マンガン鉄リチウムとリチウムニッケルマンガンコバルト複合酸化物とを含むことを特徴とする。
 また、本発明に係るリチウム二次電池用正極は、前記リン酸マンガン鉄リチウム(A)と前記リチウムニッケルマンガンコバルト複合酸化物(B)との質量比率(A:B)が10:90~70:30であることが好ましい。
 また、本発明に係るリチウム二次電池用正極は、前記リン酸マンガン鉄リチウムに含まれるマンガン原子の数は、マンガン原子及び鉄原子の数の合計に対して50%を超え100%未満であり、前記リチウムニッケルマンガンコバルト複合酸化物に含まれるコバルト原子の数は、ニッケル原子、マンガン原子、及びコバルト原子の数の合計に対して0%を超え67%以下であることが好ましい。
 本発明に係るリチウム二次電池は、上記のリチウム二次電池用正極と、負極と、非水電解質とを備えていることを特徴とする。
 本発明に係るリチウム二次電池用正極は、リチウム二次電池の安全性を比較的高く保ちつつ初期クーロン効率を優れたものにし得るという効果を奏する。
 以下、本発明に係るリチウム二次電池用正極の一実施形態について説明する。
 本実施形態のリチウム二次電池用正極は、リン酸マンガン鉄リチウムとリチウムニッケルマンガンコバルト複合酸化物とを含むものである。また、通常、導電剤及び結着剤を含む。
 前記リン酸マンガン鉄リチウムおよび前記リチウムニッケルマンガンコバルト複合酸化物は、リチウム二次電池用正極において、正極活物質の機能を発揮し得る。
 前記リン酸マンガン鉄リチウムは、リチウム原子とマンガン原子と鉄原子とを含むリン酸塩化合物である。また、斜方晶に分類されるオリビン型の結晶構造を有し、マンガン原子と鉄原子とが互いに固溶してなる。
 前記リン酸マンガン鉄リチウムとしては、下記一般式(1)で表される化合物を用いることが好ましい。
   LiMnFe(1-x)PO (0<x<1)・・・一般式(1)
 一般式(1)で表される化合物は、該化合物の基本的な性質が変わらない範囲内で、たとえばMn又はFe以外の遷移金属元素やAl等の典型元素を微量含み得る。この場合、上記一般式(1)で表されない元素が前記リン酸マンガン鉄リチウムに含まれる。なお、Mn又はFe以外の遷移金属元素としては、たとえば、コバルトやニッケルが挙げられる。
 前記リン酸マンガン鉄リチウムは、マンガン原子の数が、マンガン原子の数と鉄原子の数との合計に対して50%を超え100%未満であることが好ましく、50%を超え80%以下であることがより好ましい。即ち、上記一般式(1)において0.5<x<1を満たすことが好ましく、0.5<x≦0.8を満たすことがより好ましい。
 前記リチウム二次電池用正極においては、電池の初期クーロン効率がさらに優れたものとなり得るという点で、マンガン原子の数が、マンガン原子の数と鉄原子の数との合計に対して50%を超え100%未満であることが好ましく、50%を超え80%以下であることがより好ましい。また、放電電位を高くすることができるという点で、マンガン原子の数が、マンガン原子の数と鉄原子の数との合計に対して50%を超えることが好ましく、電極抵抗が高くなりすぎず良好な高率充放電特性を得ることができるという点で、上記マンガン原子の数が、100%未満であることが好ましく、90%以下であることがより好ましい。
 前記リン酸マンガン鉄リチウムとしては、二次粒子の平均粒子サイズが100μm以下であり粒子状のものをリチウム二次電池用正極に用いることが好ましい。粒子状リン酸マンガン鉄リチウムの二次粒子の平均粒子径は、0.1μm~20μmであることが好ましく、該二次粒子を構成する一次粒子の粒子径は、1nm~500nmであることが好ましい。
 なお、前記リン酸マンガン鉄リチウムの二次粒子の平均粒子径及び一次粒子の平均粒子径は、透過型電子顕微鏡(TEM)観察の結果を画像解析することにより求める。
 前記リン酸マンガン鉄リチウムの粒子のBET比表面積は、正極の高率充放電特性を高め得るという点で、1~100m/gであることが好ましく、5~100m/gであることがより好ましい。
 前記リン酸マンガン鉄リチウムの粒子は、電気伝導性を高めることができるという点で、表面にカーボンが担持されて設けられていることが好ましい。該カーボンは、リン酸マンガン鉄リチウム粒子の表面に部分的に設けられていてもよく、全体を被覆するように設けられていても良い。
 前記リチウムニッケルマンガンコバルト複合酸化物は、リチウム原子とニッケル原子とマンガン原子とコバルト原子とを含む酸化物である。また、六方晶に分類されるα-NaFeO型の結晶構造を有し、ニッケル原子、マンガン原子およびコバルト原子が互いに固溶してなる。
 前記リチウムニッケルマンガンコバルト複合酸化物としては、下記一般式(2)で表わされる化合物を用いることが好ましい。
   LiNi0.5-yMn0.5-zCoy+z ・・・一般式(2)
   (0<a<1.3、 0<y<0.5、 0<z<0.5、 -0.1≦y-z≦0.1)
 一般式(2)で表される化合物は、該化合物の基本的な性質が変わらない範囲内で、たとえばMn、Ni又はCo以外の遷移金属元素やAl等の典型元素を微量含み得る。この場合、上記一般式(2)で表されない元素が前記リチウムニッケルマンガンコバルト複合酸化物に含まれる。
 前記リチウムニッケルマンガンコバルト複合酸化物は、コバルト原子の数が、ニッケル原子の数とマンガン原子の数とコバルト原子の数との合計に対して0%を超え67%以下であることが好ましい。即ち、上記一般式(2)において、0<y+z≦0.67を満たすことが好ましい。
 コバルト原子の数が、ニッケル原子の数とマンガン原子の数とコバルト原子の数との合計に対して0%を超え67%以下であることによって、初期クーロン効率がより優れたものとなり得る。
 また、電池における電極抵抗が高くなりすぎず良好な高率充放電特性が得られるという点で、コバルト原子の数が、ニッケル原子の数とマンガン原子の数とコバルト原子の数との合計に対して10%を超えることが好ましく、30%以上であることがより好ましい。また、正極の熱安定性が優れたものになり得るという点で、上記コバルト原子の数が、67%以下であることが好ましい。
 また、当該複合酸化物においては、ニッケル原子の数とマンガン原子の数とがほぼ等比であることが好ましく、同じであることがより好ましい。
 前記リチウムニッケルマンガンコバルト複合酸化物としては、二次粒子の平均粒子サイズが100μm以下であり粒子状のものをリチウム二次電池用正極に用いることが好ましい。粒子状リチウムニッケルマンガンコバルト複合酸化物の二次粒子の平均粒子径は、0.1μm~100μmであることが好ましく、0.5μm~20μmであることがより好ましい。
 なお、前記リチウムニッケルマンガンコバルト複合酸化物の二次粒子の平均粒子径は、該複合酸化物の粒子と界面活性剤とを十分に混練したのちに、イオン交換水を加えて超音波照射により分散させ、レーザー回折・散乱式の粒度分布測定装置(機器名「SALD-2000J」島津製作所社製)を用いて20℃において測定して得られるD50の値を採用したものである。
 前記リチウムニッケルマンガンコバルト複合酸化物の粒子のBET比表面積は、正極の高率充放電特性を高め得るという点で、0.1~10m/gであることが好ましく、0.5~5m/gであることがより好ましい。
 前記リン酸マンガン鉄リチウムと前記リチウムニッケルマンガンコバルト複合酸化物との混合割合は、質量比率が、リン酸マンガン鉄リチウム:リチウムニッケルマンガンコバルト複合酸化物=10:90~70:30であることが好ましい。質量比率が斯かる範囲であることにより、電池の初期クーロン効率がより高まるという利点がある。
 前記リン酸マンガン鉄リチウムの粒子のBET比表面積は、前記リチウムニッケルマンガンコバルト複合酸化物の粒子のBET比表面積よりも大きいことが好ましい。
 リン酸マンガン鉄リチウムの粒子の平均粒子径は、異なる粒子径を有するものを混合することにより正極の充填密度を高めることができるという点で、リチウムニッケルマンガンコバルト複合酸化物の粒子の平均粒子径よりも小さいことが好ましい。また、より粒子径の大きいリチウムニッケルマンガンコバルト複合酸化物を用いることにより、充電状態における正極の熱安定性が高まり得るという利点がある。また、より粒子径の小さいリン酸マンガン鉄リチウムを用いることにより、固相内の電子の伝導経路長やLiイオンの拡散経路長を短くできるため、リン酸マンガン鉄リチウムの高率充放電特性を大幅に改善することができるという利点がある。
 前記導電剤、前記結着剤としては、従来公知のものを一般的な配合量で用いることができる。
 前記導電剤としては、電池性能に悪影響を及ぼしにくい電子伝導性材料であれば限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、導電性セラミックス材料等の電子導電性材料の1種、又はそれらの混合物が挙げられる。
 前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン等の熱可塑性樹脂、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーのうちの1種単独物、又は2種以上の混合物が挙げられる。
 前記リン酸マンガン鉄リチウム又は前記リチウムニッケルマンガンコバルト複合酸化物がリチウム原子、マンガン原子、鉄原子、リン原子、ニッケル原子、コバルト原子などを含んでいること、およびその含有量は、ICP分析により確認することができる。また、前記リン酸マンガン鉄リチウム又は前記リチウムニッケルマンガンコバルト複合酸化物において金属原子が互いに固溶していること、オリビン型またはα―NaFeO型の結晶構造を持つことは、粒子又は電極のX線回折分析(XRD)により確認することができる。また、電子顕微鏡観察(TEM)、走査電顕X線分析(EPMA)、又は高分解能電子顕微鏡分析(HRAEM)などにより、さらに詳しい分析を行うことができる。
 なお、前記リチウム二次電池用正極においては、正極活物質の各種性能を高めることを目的として、正極活物質が、意図的に配合された不純物を含み得る。
 次に、本実施形態の二次電池用正極の製造方法について説明する。
 前記二次電池用正極は、たとえば、前記リン酸マンガン鉄リチウムの粒子及び前記リチウムニッケルマンガンコバルト複合酸化物の粒子をそれぞれ合成したのちに、これらの粒子を含むペーストを作製し、このペーストを集電体上に塗布した後、ペーストを乾燥することによって製造することができる。
 前記リン酸マンガン鉄リチウムの合成方法は、特に限定されるものでなく、合成する正極活物質の組成比となるように、金属元素(Li,Mn,Fe)を含む原料とリン酸源となる原料とを混合し、混合したものを焼成することにより得ることができる。
 前記リン酸マンガン鉄リチウムの合成方法としては、具体的には、例えば、金属元素(Li,Mn,Fe)を含む粒子状原料とリン酸源となる粒子状原料とを混合し、混合した粒子状混合原料を焼成する固相法を採用することができる。また、例えば、金属元素(Li,Mn,Fe)を含む原料及びリン酸源となる原料を含む水溶液からリン酸マンガン鉄リチウムを合成する液相法を採用することができる。液相法としては、ゾル-ゲル法、ポリオール法、水熱法等を採用することができる。
 前記リン酸マンガン鉄リチウムの合成においては、リン酸マンガン鉄リチウムの電気伝導性を高める目的で、リン酸マンガン鉄リチウム粒子の表面にカーボンを機械的に付着もしくは被覆させることが好ましい。又は、リン酸マンガン鉄リチウム粒子の表面に有機物の熱分解等によってカーボンを付着もしくは被覆させることが好ましい。
 前記リチウムニッケルマンガンコバルト複合酸化物の合成においては、Liがα-NaFeO構造の6aサイトに、Ni、MnおよびCoが6bサイトに、Oが6cサイトにそれぞれ過不足なく占有されるように合成されることが好ましいが、特に限定されるものではない。
 前記リチウムニッケルマンガンコバルト複合酸化物の合成においては、Li源の一部が焼成中に揮発し得ることなどから、合成された複合酸化物の組成が、原料の仕込み組成比から計算される組成と若干異なることがあり得る。原料の仕込み組成比と合成された複合酸化物の組成比とを近づけるべく、該複合酸化物の合成においては、Li源を多めに仕込んだものを焼成することが好ましい。
 前記リチウムニッケルマンガンコバルト複合酸化物の合成においては、原料としてのNi化合物、Mn化合物およびCo化合物をLi化合物と共に混合し焼成する固相法を採用することができる。または、Ni化合物、Mn化合物およびCo化合物を溶解させた水溶液を反応させて共沈により調製した共沈前駆体(後述するNi-Mn-Co共沈前駆体)をLi化合物とともに混合して焼成する方法を採用することができる。なかでも、より均質な複合酸化物を合成できるという点で、共沈により調製した共沈前駆体(後述するNi-Mn-Co共沈前駆体)をLi化合物とともに混合して焼成する方法を採用することが好ましい。
 前記Ni-Mn-Co共沈前駆体の調製方法としては、調製されたNi-Mn-Co共沈前駆体においてNiとMnとCoとが均一に混合されているという点で、Ni、MnおよびCoの酸性水溶液を水酸化ナトリウム水溶液等のアルカリ水溶液で沈澱させる共沈製法を採用することが好ましい。
 前記Ni-Mn-Co共沈前駆体の調製方法において該共沈製法を採用することにより、共沈前駆体におけるNi、Mn、及びCoの混合状態が均質となり、電池の充放電によるLiの脱離・挿入によっても正極活物質に含まれる結晶構造が安定したものとなり得る。従って、該共沈前駆体を経て得られたリチウムニッケルマンガンコバルト複合酸化物を用いたリチウム二次電池は、優れた電池性能を有することができる。
 前記共沈製法においては、均質で嵩高い共沈前駆体粒子が調製できるという点で、Ni、MnおよびCoの金属イオンモル数の合計よりも多いモル数のアンモニウムイオンの存在下で結晶成長の核を発生させることが好ましい。アンモニウムイオンがこのように過剰量存在することにより、沈殿反応の速度が金属-アンミン錯体形成反応を経由することで緩和される。従って、結晶配向性がよく、嵩高くて一次粒子結晶の発達した沈殿を作製することができるという利点がある。なお、アンモニウムイオンが存在しないと、これらの金属イオンが酸-塩基反応によって急速に沈殿を形成するため、結晶配向が無秩序となりやすく嵩密度が十分でない沈殿が形成され得る。
 前記共沈製法においては、反応器形状や回転翼の種類といった装置因子、反応槽内に沈殿物が滞在する時間、反応槽温度、総イオン量、液pH、アンモニアイオン濃度、酸化数調整剤の濃度などの諸因子を適宜調整することにより、共沈前駆体粒子の粒子形状や嵩密度、表面積などの物性を制御することができる。
 前記リン酸マンガン鉄リチウムの合成における焼成方法としては、特に限定されるものではなく、具体的には例えば、400~900℃、好ましくは500~800℃において、1~24時間で焼成する方法が好適である。
 前記リチウムニッケルマンガンコバルト複合酸化物の合成における焼成方法としては、特に限定されるものではなく、具体的には例えば、700~1100℃、好ましくは800~1000℃において、1~24時間で焼成する方法が好適である。
 前記二次電池用正極の製造方法においては、リン酸マンガン鉄リチウム又はリチウムニッケルマンガンコバルト複合酸化物の粒子を所定の形状で得るべく、粉砕機や分級機を用いることができる。
 前記粉砕機としては、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミル等を用いることができる。粉砕時には、アルコール、ヘキサン等の有機溶剤、又は水を共存させた湿式粉砕を採用してもよい。
 前記分級機としては、篩や風力分級機などを用いることができる。分級方法としては、特に限定されず、篩や風力分級機などを用いた乾式あるいは湿式の方法を採用することができる。
 前記ペーストは、リン酸マンガン鉄リチウム又はリチウムニッケルマンガンコバルト複合酸化物の粒子と、溶媒とが混合されてなる。該溶媒としては、特に限定されず、例えば、N-メチル-2-ピロリドン(NMP)、トルエン、又はアルコールなどの有機溶媒や水などを用いることができる。
 前記集電体の材質としては、アルミニウム、焼成炭素、導電性高分子、導電性ガラス等が挙げられ、なかでもアルミニウムが好ましい。
 該集電体の形状としては、シート状、ネット状等が挙げられる。また、該集電体の厚さは特に限定されないが、通常、1~500μmのものが採用される。
 前記集電体にペーストを塗布する方法としては、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ブレードコーティング、スピンコーティング、バーコーティング等の方法を採用することができるが、これらに限定されるものではない。
 前記正極に含まれる水分量は、少ない方が好ましく、具体的には1000ppm未満であることが好ましい。水分量を減少させる手段としては、高温・減圧環境において正極を乾燥する方法や、正極に含まれる水分を電気化学的に分解する方法が好適である。
 続いて、本発明に係るリチウム二次電池の一実施形態について説明する。
 本実施形態のリチウム二次電池は、少なくとも上記のリチウム二次電池用正極と、負極と、電解質塩が非水溶媒に含有された非水電解質とを備えている。また、正極と負極との間にセパレータを備え、正極、負極、非水電解質、及びセパレータを包装する外装体を備えている。
 前記負極の材料としては、特に限定されるものではなく、金属リチウム、リチウム合金(リチウム―アルミニウム、リチウム―鉛、リチウム―錫、リチウム―アルミニウム―錫、リチウム―ガリウム、およびウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)、リチウム金属酸化物(LiTi12等)などの金属酸化物、ポリアニオン化合物等が挙げられる。なかでもグラファイトは、金属リチウムに極めて近い作動電位を有し、高い作動電圧での充放電を実現できるという点で好適であり、グラファイト(黒鉛)としては、例えば、人造黒鉛、天然黒鉛が好ましい。特に、負極活物質粒子表面を不定形炭素等で修飾してあるグラファイトは、充電中のガス発生が少ないという点で、より好適である。
 また、正極や負極などの電極を構成する電極合材層の厚さは、十分なエネルギー密度を有しつつエネルギー密度が小さくなりすぎないという点で、20μm以上500μm以下であることが好ましい。なお、電極の厚さは、集電体の厚さと電極合材層の厚さとの合計で表される。
 前記非水電解質に含有されている非水溶媒としては、プロピレンカーボネート、エチレンカーボネート等の環状炭酸エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネ-ト等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエ-テル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等が挙げられる。非水溶媒としては、これらのうち1種の単独物、または2種以上の混合物を挙げることができるが、これらに限定されるものではない。
 前記非水電解質に含有されている電解質塩としては、例えば、LiBF、LiPF等のイオン性化合物が挙げられる。電解質塩としては、これらのイオン性化合物の1種を単独で、又は2種類以上を混合して用いることができる。
 前記非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.5mol/l以上5mol/l以下が好ましく、1mol/l以上2.5mol/l以下がさらに好ましい。
 前記セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリイミド、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等を挙げることができる。
 前記外装体の材料としては、例えば、ニッケルメッキした鉄、ステンレススチール、アルミニウム、金属樹脂複合フィルム、ガラス等が挙げられる。
 本実施形態のリチウム二次電池は、従来公知の一般的な方法によって製造できる。
 本実施形態のリチウム二次電池正極及びリチウム二次電池は、上記例示の通りであるが、本発明は、上記例示のリチウム二次電池正極及びリチウム二次電池に限定されるものではない。
 即ち、一般的なリチウム二次電池正極及びリチウム二次電池において用いられる種々の態様を、本発明の効果を損ねない範囲において、採用することができる。
 以下に、実施例を例示して本発明をさらに詳細に説明するが、本発明は、以下の実施の形態に限定されるものではない。
 (実施例1)
 以下のようにして、下記組成の正極活物質を作製し、該正極活物質を用いてリチウム二次電池用正極を製造した。
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=20:80]
 (LiMn0.8Fe0.2POの合成)
 酢酸マンガン四水和物(Mn(CHCOO)・4HO)25gと、硫酸鉄七水和物(FeSO・7HO)7.09gとを125mlの精製水に溶解させて混合液を調製した。
 一方、純度85%のリン酸(HPO)14.55gを精製水で70mlに希釈したリン酸希釈溶液と、水酸化リチウム一水和物(LiOH・HO)16.05gを151mlの精製水に溶解させた水酸化リチウム水溶液とをそれぞれ調製した。
 次に、酢酸マンガン四水和物と硫酸鉄七水和物との混合液を撹拌しつつ、この混合液にリン酸希釈溶液を滴下した。続いて、水酸化リチウム水溶液を同様にして滴下して前駆体溶液を調製した。
 さらに、前駆体溶液を190℃のホットスターラー上で1時間加熱及び撹拌を行い、冷却後、ろ過と真空乾燥(100℃)をおこなうことにより前駆体を回収した。
 この前駆体10gにショ糖2.14gと少量の精製水とを加えてペースト状とし、ボ-ルミル(ボール径1cm)を用いて15分間湿式粉砕を行った。粉砕された粉砕物をアルミナ製のこう鉢(外形寸法90×90×50mm)に入れ、雰囲気置換式焼成炉(デンケン社製 卓上真空ガス置換炉 KDF-75)を用いて、窒素ガスの流通下(流速1.0l/min)で焼成を行った。焼成温度は700℃とし、焼成時間(前記焼成温度を維持する時間)は5時間とした。なお、昇温速度は5℃/min、降温時は自然放冷とした。
 以上のようにして、表面にカーボンが担持されて設けられたリチウム二次電池用正極活物質LiMn0.8Fe0.2POの粒子を作製した。この正極活物質の粒子のBET比表面積は34.6m/gであった。また、透過型電子顕微鏡(TEM)観察の結果を画像解析することにより得られた一次粒子径は、100nm程度であり、二次粒子径は、10μm程度であった。なお、活物質表面のカーボンは、ボールミルによる混合の前に加えたショ糖が熱分解して生成したものである。
 (LiNi0.33Mn0.33Co0.34の合成)
 まず、密閉型反応槽に水を3.5リットル入れた。次に、水のpHがpH=11.6となるように32%水酸化ナトリウム水溶液を水に加え水溶液を調製した。パドルタイプの撹拌羽根を備えた撹拌機を用いて、pH調整した水溶液を1200rpmの回転速度で撹拌しつつ、外部ヒーターにより反応槽内の水溶液の温度を50℃に保った。また、反応槽内の水溶液にアルゴンガスを吹き込んで、水溶液内の溶存酸素を除去した。
 一方、硫酸マンガン五水和物(0.585mol/l)と硫酸ニッケル六水和物(0.585mol/l)と硫酸コバルト七水和物(0.588mol/l)とヒドラジン一水和物(0.0101mol/l)とが溶解している原料溶液を調製した。
 続いて、反応槽内の水溶液を撹拌しつつ、該原料溶液を3.17ml/minの流量で反応槽に連続的に滴下した。同時に、12mol/lのアンモニア水溶液を0.22ml/minの流量で反応槽に滴下して合成反応を開始した。
 合成反応中、反応槽内の水溶液のpHが11.4と一定になるように32%水酸化ナトリウム水溶液を断続的に投入した。また、反応槽内の水溶液温度が50℃で一定になるよう断続的にヒーターを制御した。また、反応槽内が還元雰囲気となるようにアルゴンガスを反応槽内の水夜液中に直接吹き込んだ。また、反応槽内の水溶液量が常に3.5リットルの一定量となるようにフローポンプを使ってスラリーを系外に排出した。
 反応開始から60時間経過した時点から5時間の間に、反応晶析物であるNi-Mn-Co複合酸化物のスラリーを採取した。採取したスラリーを水洗、ろ過し、80℃で一晩乾燥させ、Ni-Mn-Co共沈前駆体の乾燥粉末を得た。
 得られたNi-Mn-Co共沈前駆体粉末と、Li/(Ni+Mn+Co)=1.02となるように秤量した水酸化リチウム一水和物粉末とを混合した。混合したものをアルミナ製こう鉢に充填し、電気炉を用いて、ドライエア流通下、100℃/hrの昇温速度で1000℃まで昇温した。1000℃の温度を15hr保持し、次いで、100℃/hrの冷却速度で200℃まで冷却し、その後放冷した。
 以上のようにして、リチウム二次電池用正極活物質LiNi0.33Mn0.33Co0.34の粒子を作製した。この化合物の粒子の平均粒子径(D50)は12.3μm、比表面積は1.0m/gであった。
 (正極の製造)
 作製したそれぞれの正極活物質をLiMn0.8Fe0.2PO:LiNi0.33Mn0.33Co0.34=20:80の質量比率で混合して混合正極活物質を調製した。次に、該混合正極活物質と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを混合正極活物質:導電剤:結着剤=90:5:5の質量比で含有し、さらに溶媒としてN-メチル-2-ピロリドン(NMP)を含有する正極ペーストを調製した。そして、該正極ペーストを厚さ20μmのアルミニウム箔集電体上の片面に塗布し乾燥した後、プレス加工を行い、正極を製造した。プレス後の正極合剤層の厚さは50μmであり、正極合剤層の質量は70mg程度であった。該正極には、アルミニウム製の正極端子を超音波溶接により接続した。
 (実施例2)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=10:90]
 正極の製造において、LiMn0.8Fe0.2PO:LiNi0.33Mn0.33Co0.34=10:90となるように混合した正極活物質を用いた点以外は、実施例1と同様にしてリチウム二次電池用正極を製造した。
 (実施例3)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=30:70]
 正極の製造において、LiMn0.8Fe0.2PO:LiNi0.33Mn0.33Co0.34=30:70となるように混合した正極活物質を用いた点以外は、実施例1と同様にしてリチウム二次電池用正極を製造した。
 (実施例4)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=50:50]
 正極の製造において、LiMn0.8Fe0.2PO:LiNi0.33Mn0.33Co0.34=50:50となるように混合した正極活物質を用いた点以外は、実施例1と同様にしてリチウム二次電池用正極を製造した。
 (実施例5)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=70:30]
 正極の製造において、LiMn0.8Fe0.2PO:LiNi0.33Mn0.33Co0.34=70:30となるように混合した正極活物質を用いた点以外は、実施例1と同様にしてリチウム二次電池用正極を製造した。
 (実施例6)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=80:20]
 正極の製造において、LiMn0.8Fe0.2PO:LiNi0.33Mn0.33Co0.34=80:20となるように混合した正極活物質を用いた点以外は、実施例1と同様にしてリチウム二次電池用正極を製造した。
 (比較例1)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=0:100]
 正極の製造において、LiNi0.33Mn0.33Co0.34のみを正極活物質として用いた点以外は、実施例1と同様にしてリチウム二次電池用正極を製造した。
 (比較例2)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=100:0]
 正極の製造において、LiMn0.8Fe0.2POのみを正極活物質として用いた点以外は、実施例1と同様にしてリチウム二次電池用正極を製造した。
 (実施例7)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=50:50]
 (LiMn0.8Fe0.2POの合成)
 硫酸マンガン五水和物(MnSO・5HO)と、硫酸鉄七水和物(FeSO・7HO)とアスコルビン酸とをモル比で8:2:0.025の比となるように秤量し、精製水に溶解させて溶液Aを調製した。
 一方、リン酸水素二アンモニウム((NHHPO)と水酸化リチウム一水和物(LiOH・HO)を10:20のモル比で秤量し、精製水に溶解させて溶液Bを調製した。
 次に、溶液A及び溶液Bを混合して前駆体溶液を調製した。この前駆体溶液をポリテトラフルオロエチレン製の反応容器に移した。なお、ここまでの作業については窒素ボックス中で実施した。
 続いて、前駆体溶液が入った反応容器を水熱反応装置(耐圧硝子工業株式会社製ポータブルリアクターTPR-1型)にセットし、容器内を窒素置換した後に、170℃で15時間の水熱反応による合成(水熱法)を実施した。水熱反応中、100rpmの回転速度で容器内の撹拌を行った。
 そして、水熱反応により生じた生成物に対して、濾過、洗浄及び真空乾燥をおこなうことによりLiMn0.8Fe0.2POを得た。
 得られたLiMn0.8Fe0.2POとポリビニルアルコール(PVA)(重合度約1500)とを質量比で1:1.14になるように秤量した後、ボールミル(FRITSCH社製プラネタリーミル、ボール径1cm)で乾式混合を行い、混合された混合物をアルミナ製の匣鉢(外形寸法90×90×50mm)に入れ、雰囲気置換式焼成炉(デンケン社製卓上真空ガス置換炉KDF-75)において窒素流通下(1.0 l/min)で焼成を行った。焼成温度は700℃とし、焼成時間(前記焼成温度を維持する時間)は5時間とした。なお、昇温速度は5℃/min、降温は自然放冷とした。
 このようにして、表面にカーボンが担持されて設けられたLiMn0.8Fe0.2POの粒子を作製した。これを正極活物質として用いた。
 (LiNi0.165Mn0.165Co0.67の合成)
 リチウムニッケルマンガンコバルト複合酸化物の作製において、硫酸マンガン五水和物(0.290mol/l)と硫酸ニッケル六水和物(0.290mol/l)と硫酸コバルト七水和物(1.178mol/l)とヒドラジン1水和物(0.0101mol/l)とが溶解している原料溶液を調製した点以外は、実施例1と同様にしてLiNi0.165Mn0.165Co0.67を合成した。
 (正極の製造)
 作製したそれぞれの正極活物質をLiMn0.8Fe0.2PO:LiNi0.165Mn0.165Co0.67=50:50の質量比率で混合した点以外は、実施例1と同様にして正極を製造した。
 (実施例8)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=50:50]
 (LiNi0.45Mn0.45Co0.10の合成)
 リチウムニッケルマンガンコバルト複合酸化物の作製において、硫酸マンガン五水和物(0.791mol/l)と硫酸ニッケル六水和物(0.791mol/l)と硫酸コバルト七水和物(0.176mol/l)とヒドラジン1水和物(0.0101mol/l)とが溶解している原料溶液を調製した点以外は、実施例1と同様にしてLiNi0.45Mn0.45Co0.10を合成した。
 そして、リン酸マンガン鉄リチウムとして実施例7で作製した正極活物質LiMn0.8Fe0.2POを用いた点、LiMn0.8Fe0.2PO:LiNi0.45Mn0.45Co0.10=50:50の質量比率で混合した点以外は、実施例1と同様にして正極を製造した。
 (実施例9)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=50:50]
 (LiMn0.95Fe0.05PO の合成)
 リン酸マンガン鉄リチウムの作製において、MnSO・5HO:FeSO・7HO:(NHHPO:LiOH・HO:アスコルビン酸=9.5:0.5:10:20:0.025のモル比となるように秤量した点以外は、実施例7と同様にしてLiMn0.95Fe0.05POを合成した。
 そして、リチウムニッケルマンガンコバルト複合酸化物として実施例1で作製した正極活物質LiNi0.33Mn0.33Co0.34を用いた点、LiMn0.95Fe0.05PO:LiNi0.33Mn0.33Co0.34=50:50の質量比率で混合した点以外は、実施例1と同様にして正極を製造した。
 (実施例10)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=50:50]
 (LiMn0.55Fe0.45POの合成)
 リン酸マンガン鉄リチウムの作製において、MnSO・5HO:FeSO・7HO:(NHHPO:LiOH・HO:アスコルビン酸=5.5:4.5:10:20:0.025のモル比となるように秤量した点以外は、実施例7と同様にしてLiMn0.55Fe0.45POを合成した。
 そして、リチウムニッケルマンガンコバルト複合酸化物として実施例1で作製した正極活物質LiNi0.33Mn0.33Co0.34を用いた点、LiMn0.55Fe0.45PO:LiNi0.33Mn0.33Co0.34=50:50の質量比率で混合した点以外は、実施例1と同様にして正極を製造した。
 (比較例3)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=100:0]
 正極の製造において、実施例7で用いたLiMn0.8Fe0.2POのみを正極活物質として用いた点以外は、実施例1と同様にしてリチウム二次電池用正極を製造した。
 (比較例4)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=100:0]
 正極の製造において、実施例9で用いたLiMn0.95Fe0.05POのみを正極活物質として用いた点以外は、実施例1と同様にしてリチウム二次電池用正極を製造した。
 (比較例5)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=100:0]
 正極の製造において、実施例10で用いたLiMn0.55Fe0.45POのみを正極活物質として用いた点以外は、実施例1と同様にしてリチウム二次電池用正極を製造した。
 (比較例6)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=0:100]
 正極の製造において、実施例7で用いたLiNi0.165Mn0.165Co0.67のみを正極活物質として用いた点以外は、実施例1と同様にしてリチウム二次電池用正極を製造した。
 (比較例7)
[LiMnFe(1-x)PO:LiNi0.5-yMn0.5-zCoy+z=0:100]
 正極の製造において、実施例8で用いたLiNi0.45Mn0.45Co0.10のみを正極活物質として用いた点以外は、実施例1と同様にしてリチウム二次電池用正極を製造した。
 (負極の作製)
 厚さ100μmの金属リチウム箔を厚さ10μmのニッケル箔集電体上に貼り付けることにより負極を製造した。また、負極には、ニッケル製の負極端子を抵抗溶接により接続した。
 (非水電解質の調製)
 エチレンカーボネート、ジメチルカーボネート及びメチルエチルカーボネートを体積比1:1:1の割合で混合した混合非水溶媒に、含フッ素系電解質塩としてのLiPFを1mol/lの濃度で溶解させ、非水電解質を調製した。なお、該非水電解質中の水分量が50ppm未満となるように非水電解質を調製した。
 (電池の組み立て)
 各実施例、各比較例の正極を用い、下記の手順により、露点-40℃以下の乾燥雰囲気下においてリチウム二次電池を組み立てた。
 即ち、150℃の真空乾燥をおこなうことにより含有水分量を500ppm以下(カールフィッシャー法により測定)とした正極と、負極とを各1枚、厚さ20μmのポリプロピレン製セパレ-タを介して対向させた。また、外装体としては、ポリエチレンテレフタレ-ト(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。正極と負極とセパレータからなる極群を、正極端子及び負極端子の開放端部が外部露出するように、注液孔となる部分以外を外装体によって気密封止した。注液孔から一定量の非水電解質を注液後、減圧状態で注液孔部分を熱封口し、電池を組み立てた。
<充放電試験>
 各実施例、各比較例のリチウム二次電池を20℃において、温度2サイクルの充放電を行う充放電工程に供した。充電条件は、電流0.1ItmA(約10時間率)、電圧4.3V、15時間の定電流定電圧充電とし、放電条件は、電流0.1ItmA(約10時間率)、終止電圧2.5Vの定電流放電とした。
 実施例1~6、比較例1~2の正極を用いたリチウム二次電池において、1サイクル目に得られた初期クーロン効率(放電容量/充電容量)の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から認識できるように、実施例1~6の初期クーロン効率は、比較例1~2のそれと比べて高い。この結果は、リン酸マンガン鉄リチウムとリチウムニッケルマンガンコバルト複合酸化物とを含む正極活物質を用いることによって、それぞれを単独で用いた場合と比べて、初期クーロン効率が高まることを示す。
 さらに、表1から、正極活物質中のリン酸マンガン鉄リチウムとリチウムニッケルマンガンコバルト複合酸化物とが質量比で10:90~70:30であることにより、初期クーロン効率が、それ以外の割合よりも高くなっていることが認識できる。この結果は、正極に含まれるリン酸マンガン鉄リチウムの質量が、リン酸マンガン鉄リチウムとリチウムニッケルマンガンコバルト複合酸化物との合計の質量に対して10%以上70%以下であることにより、初期クーロン効率がより優れたものになることを示す。
 実施例7~10、比較例3~7の正極を用いたリチウム二次電池において、上記と同様にして初期クーロン効率(放電容量/充電容量)を測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2において、実施例7の結果は、比較例3及び比較例6の結果と比較すると予測を超えるものである。即ち、リン酸マンガン鉄リチウム又はリチウムニッケルマンガンコバルト複合酸化物を単独で用いた比較例3及び比較例6においては、初期クーロン効率がそれぞれ85.0%、92.7%であることから、リン酸マンガン鉄リチウム及びリチウムニッケルマンガンコバルト複合酸化物を50:50で混合した実施例7においては、初期クーロン効率が89%程度になると予想される。一方、実施例7の初期クーロン効率は、92.3%であり、予想をはるかに超えるものである。しかも、実施例7においては、リン酸マンガン鉄リチウム及びリチウムニッケルマンガンコバルト複合酸化物が混合されているため、比較例6のようにリチウムニッケルマンガンコバルト複合酸化物を単独で用いたものよりも電池の安全性が高く保たれている。
 同様の理由により、実施例9の結果も、比較例4及び比較例1の結果と比較すると予測を超えるものである。また、実施例9においては、上述の理由と同様の理由により、電池の安全性が比較的高く保たれている。
 初期クーロン効率が高まったリチウム二次電池は、初期クーロン効率が高まった分、負極活物質の量を減らすことができる。従って、初期クーロン効率が比較的高いリチウム二次電池は、比較的高いエネルギー密度を有することが期待できる。
 本発明のリチウム二次電池用正極を備えることにより、リチウム二次電池は、初期クーロン効率が優れたものになり得る。従って、本発明のリチウム二次電池用正極を用いることにより、比較的高いエネルギー密度を有するリチウム二次電池を提供できることが期待される。
 本発明のリチウム二次電池用正極を備えたリチウム二次電池は、特に高容量化が求められ今後需要が高まる電気自動車等の産業用電池などの分野への応用に適しており、産業上の利用可能性は極めて大きい。

Claims (4)

  1.  リン酸マンガン鉄リチウムとリチウムニッケルマンガンコバルト複合酸化物とを含むことを特徴とするリチウム二次電池用正極。
  2.  前記リン酸マンガン鉄リチウム(A)と前記リチウムニッケルマンガンコバルト複合酸化物(B)との質量比率(A:B)が10:90~70:30である請求項1記載のリチウム二次電池用正極。
  3.  前記リン酸マンガン鉄リチウムに含まれるマンガン原子の数は、マンガン原子及び鉄原子の数の合計に対して50%を超え100%未満であり、前記リチウムニッケルマンガンコバルト複合酸化物に含まれるコバルト原子の数は、ニッケル原子、マンガン原子、及びコバルト原子の数の合計に対して0%を超え67%以下である請求項1又は2記載のリチウム二次電池用正極。
  4.  請求項1~3のいずれかに記載のリチウム二次電池用正極と、負極と、非水電解質とを備えていることを特徴とするリチウム二次電池。
PCT/JP2009/069046 2008-11-06 2009-11-09 リチウム二次電池用正極及びリチウム二次電池 WO2010053174A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117011569A KR20110083680A (ko) 2008-11-06 2009-11-09 리튬 2차 전지용 양극 및 리튬 2차 전지
EP09824871.9A EP2357693B1 (en) 2008-11-06 2009-11-09 Positive electrode for lithium secondary battery, and lithium secondary battery
JP2010536811A JP5574239B2 (ja) 2008-11-06 2009-11-09 リチウム二次電池用正極及びリチウム二次電池
CN200980144517.5A CN102210047B (zh) 2008-11-06 2009-11-09 锂二次电池用正极及锂二次电池
US13/127,980 US20110223482A1 (en) 2008-11-06 2009-11-09 Positive electrode for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008285989A JP5381024B2 (ja) 2008-11-06 2008-11-06 リチウム二次電池用正極及びリチウム二次電池
JP2008-285989 2008-11-06

Publications (1)

Publication Number Publication Date
WO2010053174A1 true WO2010053174A1 (ja) 2010-05-14

Family

ID=42152979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069046 WO2010053174A1 (ja) 2008-11-06 2009-11-09 リチウム二次電池用正極及びリチウム二次電池

Country Status (6)

Country Link
US (1) US20110223482A1 (ja)
EP (1) EP2357693B1 (ja)
JP (2) JP5381024B2 (ja)
KR (1) KR20110083680A (ja)
CN (1) CN102210047B (ja)
WO (1) WO2010053174A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190786A (ja) * 2011-03-09 2012-10-04 Samsung Sdi Co Ltd 正極活物質、並びにそれを採用した正極及びリチウム電池
JP2012211072A (ja) * 2011-03-18 2012-11-01 Semiconductor Energy Lab Co Ltd リチウム含有複合酸化物の作製方法
JP2013125712A (ja) * 2011-12-15 2013-06-24 Gs Yuasa Corp 非水電解質電池用正極、それを用いた非水電解質電池、及び、その電池を搭載したプラグインハイブリッド自動車
US20140065462A1 (en) * 2012-08-29 2014-03-06 Apple Inc. Increased energy density and swelling control in batteries for portable electronic devices
JP2015162322A (ja) * 2014-02-27 2015-09-07 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質の製造方法
JP2015170464A (ja) * 2014-03-06 2015-09-28 旭化成株式会社 非水電解質二次電池
JP2015195172A (ja) * 2014-03-24 2015-11-05 株式会社デンソー リチウムイオン二次電池
JP2016524307A (ja) * 2013-07-09 2016-08-12 ダウ グローバル テクノロジーズ エルエルシー リチウム金属酸化物及びリチウム金属リン酸塩を含む混合正活性材料
WO2016139957A1 (ja) * 2015-03-04 2016-09-09 株式会社豊田自動織機 リチウムイオン二次電池用正極及びその製造方法並びにリチウムイオン二次電池
WO2017013827A1 (ja) * 2015-07-22 2017-01-26 株式会社豊田自動織機 リチウムイオン二次電池
JP2017073343A (ja) * 2015-10-09 2017-04-13 株式会社デンソー 充放電制御装置及び組電池装置
US10541408B2 (en) * 2012-04-24 2020-01-21 Lg Chem, Ltd. Active material for lithium secondary battery composite electrode for improving output and lithium secondary battery including the active material
WO2020066909A1 (ja) * 2018-09-25 2020-04-02 東レ株式会社 二次電池用電極およびリチウムイオン二次電池
WO2020116160A1 (ja) 2018-12-05 2020-06-11 東レ株式会社 リチウムイオン二次電池用正極電極、リチウムイオン二次電池用電極ペースト、リチウムイオン二次電池
JP2020100555A (ja) * 2011-08-31 2020-07-02 株式会社半導体エネルギー研究所 複合酸化物の作製方法
US11108038B2 (en) 2012-08-27 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for secondary battery, secondary battery, and method for fabricating positive electrode for secondary battery
US11728475B2 (en) 2020-02-18 2023-08-15 Honda Motor Co., Ltd. Lithium-ion secondary battery positive electrode active material complex, lithium-ion secondary battery positive electrode, and lithium-ion secondary battery

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159681B2 (ja) 2009-03-25 2013-03-06 株式会社東芝 非水電解質電池
KR20120030774A (ko) * 2010-09-20 2012-03-29 삼성에스디아이 주식회사 양극 활물질, 이의 제조방법 및 이를 이용한 리튬 전지
KR102131859B1 (ko) 2011-03-25 2020-07-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 2차 전지
JP6052168B2 (ja) * 2011-04-28 2016-12-27 日本電気株式会社 リチウム二次電池
JP6396799B2 (ja) 2011-07-25 2018-09-26 エイ123・システムズ・リミテッド・ライアビリティ・カンパニーA123 Systems, Llc 混合カソード材料
KR102344325B1 (ko) 2011-08-29 2021-12-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 전지용 양극 활물질의 제작 방법
US9118077B2 (en) 2011-08-31 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
CN102427123B (zh) * 2011-11-14 2016-05-18 东莞新能源科技有限公司 锂离子二次电池及其正极片
JP5766761B2 (ja) * 2011-11-14 2015-08-19 株式会社東芝 非水電解質電池
KR101893955B1 (ko) * 2011-12-16 2018-09-03 삼성에스디아이 주식회사 금속 도핑된 결정성 철인산염, 이의 제조 방법 및 이로부터 제조된 리튬 복합금속인산화물
JP2013246936A (ja) * 2012-05-24 2013-12-09 Hitachi Ltd 非水系二次電池用正極活物質
JP2014001110A (ja) * 2012-06-20 2014-01-09 Taiyo Yuden Co Ltd リチウムチタン複合酸化物、その製造方法及び電池用電極
CA2876237A1 (en) * 2012-06-27 2014-01-03 Dow Global Technologies Llc Low-cost method for making lithium transition metal olivines with high energy density
KR101560862B1 (ko) * 2012-08-02 2015-10-15 주식회사 엘지화학 출력 특성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
EP2894703B1 (en) 2012-09-04 2018-10-31 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
US20140134501A1 (en) * 2012-11-12 2014-05-15 Novolyte Technologies, Inc. Non-Aqueous Electrolytic Solutions And Electrochemical Cells Comprising Same
US9478808B2 (en) 2012-12-12 2016-10-25 Samsung Sdi Co., Ltd. Positive active material, positive electrode and rechargeable lithium battery including same
CN104871350A (zh) * 2012-12-21 2015-08-26 陶氏环球技术有限责任公司 使用水/共溶剂混合物制造锂过渡金属橄榄石的方法
KR101593005B1 (ko) * 2013-01-31 2016-02-11 주식회사 엘지화학 내구성이 향상된 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
CN105359311B (zh) * 2013-07-10 2017-10-31 株式会社杰士汤浅国际 锂二次电池用混合活性物质、锂二次电池用电极、锂二次电池及蓄电装置
JP6469707B2 (ja) * 2013-09-20 2019-02-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se リチウムイオンバッテリーのための電極材料
WO2015136591A1 (ja) * 2014-03-10 2015-09-17 株式会社豊田自動織機 第1正極活物質及び第2正極活物質を有する正極活物質層、並びに該正極活物質層を具備する正極の製造方法
JP5983679B2 (ja) * 2014-05-30 2016-09-06 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法
JP6287651B2 (ja) 2014-07-10 2018-03-07 トヨタ自動車株式会社 非水系二次電池
US20170338469A1 (en) * 2014-11-28 2017-11-23 Basf Se Process for making lithiated transition metal oxides
EP3235028B1 (en) * 2014-12-18 2021-05-12 Dow Global Technologies LLC Lithium ion battery having improved thermal stability
JP6596826B2 (ja) 2015-01-15 2019-10-30 株式会社デンソー 電極及び非水電解質二次電池
FR3036538B1 (fr) * 2015-05-19 2017-05-19 Accumulateurs Fixes Electrode positive pour generateur electrochimique au lithium
JP6151386B2 (ja) * 2015-06-09 2017-06-21 太平洋セメント株式会社 オリビン型リン酸リチウム系正極材料の製造方法
EP3352261A4 (en) 2015-09-14 2019-04-17 Kabushiki Kaisha Toshiba NONAQUEOUS ELECTROLYTE BATTERY AND BATTERY PACK
JP6917161B2 (ja) 2016-03-03 2021-08-11 株式会社半導体エネルギー研究所 リチウムイオン二次電池用の正極活物質、二次電池、電池制御ユニットおよび電子機器
CN105655584B (zh) * 2016-03-07 2017-12-01 昆明理工大学 一种用于制备锂电池正极材料的磷酸锰铁铵的制备方法
CN107658432A (zh) * 2016-07-26 2018-02-02 微宏动力系统(湖州)有限公司 改性金属氧化物正极材料的制备方法及其正极材料
EP3782214A4 (en) * 2018-04-19 2022-01-12 A123 Systems LLC PROCESSES AND SYSTEMS FOR COATED CATHODE MATERIALS AND USE OF COATED CATHODE MATERIALS
WO2020062046A1 (zh) * 2018-09-28 2020-04-02 宁波致良新能源有限公司 正极添加剂及其制备方法、正极及其制备方法和锂离子电池
US11804601B2 (en) 2019-09-12 2023-10-31 Saft America Cathode materials for lithium ion batteries
US20210408524A1 (en) * 2020-06-25 2021-12-30 GM Global Technology Operations LLC Cathode active material for lithium ion batteries for electric vehicles
FR3112030B1 (fr) * 2020-06-26 2022-12-16 Accumulateurs Fixes Utilisation d’éléments électrochimiques secondaires au lithium contenant un mélange d'un oxyde lithié de nickel et d'un phosphate lithié de manganèse et de fer pour des applications automobiles
CN116601794A (zh) * 2021-12-13 2023-08-15 宁德时代新能源科技股份有限公司 一种正极活性材料及其相关的极片、二次电池、电池模块、电池包和装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307730A (ja) 2000-04-25 2001-11-02 Sony Corp 正極及び非水電解質電池
JP2002075368A (ja) 2000-09-05 2002-03-15 Sony Corp 正極活物質及び非水電解質電池並びにそれらの製造方法
JP2002216755A (ja) 2001-01-22 2002-08-02 Denso Corp 非水電解質二次電池
JP2002279989A (ja) 2001-03-16 2002-09-27 Sony Corp 電 池
JP3632686B2 (ja) 2002-08-27 2005-03-23 ソニー株式会社 正極活物質及び非水電解質二次電池
JP2005183384A (ja) 2003-12-23 2005-07-07 Saft (Soc Accumulateurs Fixes Traction) Sa リチウム充電式電気化学的電池の正極用の電気化学的活物質
JP2006252894A (ja) * 2005-03-09 2006-09-21 Sony Corp 正極材料および電池
JP2006252895A (ja) * 2005-03-09 2006-09-21 Sony Corp 電池
JP2006523368A (ja) * 2003-04-03 2006-10-12 ヴァレンス テクノロジー インコーポレーテッド 混合粒子を含む電極
JP2007220658A (ja) * 2006-01-18 2007-08-30 Matsushita Electric Ind Co Ltd 組電池、電源システム及び組電池の製造方法
JP2007234565A (ja) * 2005-03-18 2007-09-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008525973A (ja) 2004-12-28 2008-07-17 ボストン−パワー,インコーポレイテッド リチウムイオン二次電池
JP2008198542A (ja) * 2007-02-15 2008-08-28 Sony Corp 非水電解液およびこれを用いた非水電解液二次電池
JP2008243662A (ja) * 2007-03-28 2008-10-09 Gs Yuasa Corporation:Kk 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1441395B9 (de) 1996-06-26 2012-08-15 OSRAM Opto Semiconductors GmbH Lichtabstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
US20070141468A1 (en) * 2003-04-03 2007-06-21 Jeremy Barker Electrodes Comprising Mixed Active Particles
US8617745B2 (en) * 2004-02-06 2013-12-31 A123 Systems Llc Lithium secondary cell with high charge and discharge rate capability and low impedance growth
CN103531765B (zh) * 2005-05-17 2017-01-11 索尼株式会社 正极活性物质,正极活性物质的制造方法和电池
KR102062521B1 (ko) 2005-10-20 2020-01-06 미쯔비시 케미컬 주식회사 리튬 2 차 전지 및 그것에 사용하는 비수계 전해액
US8133616B2 (en) 2006-02-14 2012-03-13 Dow Global Technologies Llc Lithium manganese phosphate positive material for lithium secondary battery
JP5137312B2 (ja) * 2006-03-17 2013-02-06 三洋電機株式会社 非水電解質電池
KR20080108222A (ko) * 2006-04-07 2008-12-12 미쓰비시 가가꾸 가부시키가이샤 리튬 이차 전지 정극 재료용 리튬 천이 금속계 화합물분체, 그 제조 방법, 그 분무 건조체 및 그 소성 전구체,그리고, 그것을 사용한 리튬 이차 전지용 정극 및 리튬이차 전지
CA2569991A1 (en) 2006-12-07 2008-06-07 Michel Gauthier C-treated nanoparticles and agglomerate and composite thereof as transition metal polyanion cathode materials and process for making
KR100889622B1 (ko) 2007-10-29 2009-03-20 대정이엠(주) 안전성이 우수한 리튬 이차전지용 양극 활물질 및 그제조방법과 이를 포함하는 리튬 이차전지
EP2065887A1 (en) 2007-11-30 2009-06-03 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing magnetic disk unit
CN101978534A (zh) * 2008-03-24 2011-02-16 3M创新有限公司 高电压阴极组合物

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307730A (ja) 2000-04-25 2001-11-02 Sony Corp 正極及び非水電解質電池
JP2002075368A (ja) 2000-09-05 2002-03-15 Sony Corp 正極活物質及び非水電解質電池並びにそれらの製造方法
JP2002216755A (ja) 2001-01-22 2002-08-02 Denso Corp 非水電解質二次電池
JP2002279989A (ja) 2001-03-16 2002-09-27 Sony Corp 電 池
JP3632686B2 (ja) 2002-08-27 2005-03-23 ソニー株式会社 正極活物質及び非水電解質二次電池
JP2006523368A (ja) * 2003-04-03 2006-10-12 ヴァレンス テクノロジー インコーポレーテッド 混合粒子を含む電極
JP2005183384A (ja) 2003-12-23 2005-07-07 Saft (Soc Accumulateurs Fixes Traction) Sa リチウム充電式電気化学的電池の正極用の電気化学的活物質
JP2008525973A (ja) 2004-12-28 2008-07-17 ボストン−パワー,インコーポレイテッド リチウムイオン二次電池
JP2006252894A (ja) * 2005-03-09 2006-09-21 Sony Corp 正極材料および電池
JP2006252895A (ja) * 2005-03-09 2006-09-21 Sony Corp 電池
JP2007234565A (ja) * 2005-03-18 2007-09-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2007220658A (ja) * 2006-01-18 2007-08-30 Matsushita Electric Ind Co Ltd 組電池、電源システム及び組電池の製造方法
JP2008198542A (ja) * 2007-02-15 2008-08-28 Sony Corp 非水電解液およびこれを用いた非水電解液二次電池
JP2008243662A (ja) * 2007-03-28 2008-10-09 Gs Yuasa Corporation:Kk 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2357693A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190786A (ja) * 2011-03-09 2012-10-04 Samsung Sdi Co Ltd 正極活物質、並びにそれを採用した正極及びリチウム電池
JP2012211072A (ja) * 2011-03-18 2012-11-01 Semiconductor Energy Lab Co Ltd リチウム含有複合酸化物の作製方法
US9627686B2 (en) 2011-03-18 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
US11283075B2 (en) 2011-08-31 2022-03-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
JP2021070627A (ja) * 2011-08-31 2021-05-06 株式会社半導体エネルギー研究所 複合酸化物の作製方法
JP2020100555A (ja) * 2011-08-31 2020-07-02 株式会社半導体エネルギー研究所 複合酸化物の作製方法
US11799084B2 (en) 2011-08-31 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Method for making LiFePO4 by hydrothermal method
JP2022179593A (ja) * 2011-08-31 2022-12-02 株式会社半導体エネルギー研究所 複合酸化物の作製方法
JP2013125712A (ja) * 2011-12-15 2013-06-24 Gs Yuasa Corp 非水電解質電池用正極、それを用いた非水電解質電池、及び、その電池を搭載したプラグインハイブリッド自動車
US10541408B2 (en) * 2012-04-24 2020-01-21 Lg Chem, Ltd. Active material for lithium secondary battery composite electrode for improving output and lithium secondary battery including the active material
US11108038B2 (en) 2012-08-27 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for secondary battery, secondary battery, and method for fabricating positive electrode for secondary battery
US20140065462A1 (en) * 2012-08-29 2014-03-06 Apple Inc. Increased energy density and swelling control in batteries for portable electronic devices
JP2016524307A (ja) * 2013-07-09 2016-08-12 ダウ グローバル テクノロジーズ エルエルシー リチウム金属酸化物及びリチウム金属リン酸塩を含む混合正活性材料
KR101938462B1 (ko) * 2013-07-09 2019-01-14 다우 글로벌 테크놀로지스 엘엘씨 리튬 금속 산화물 및 리튬 금속 포스페이트를 포함하는 혼합된 양성 활성 물질
JP2015162322A (ja) * 2014-02-27 2015-09-07 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質の製造方法
JP2015170464A (ja) * 2014-03-06 2015-09-28 旭化成株式会社 非水電解質二次電池
JP2015195172A (ja) * 2014-03-24 2015-11-05 株式会社デンソー リチウムイオン二次電池
JPWO2016139957A1 (ja) * 2015-03-04 2017-12-07 株式会社豊田自動織機 リチウムイオン二次電池用正極及びその製造方法並びにリチウムイオン二次電池
WO2016139957A1 (ja) * 2015-03-04 2016-09-09 株式会社豊田自動織機 リチウムイオン二次電池用正極及びその製造方法並びにリチウムイオン二次電池
WO2017013827A1 (ja) * 2015-07-22 2017-01-26 株式会社豊田自動織機 リチウムイオン二次電池
JP2017073343A (ja) * 2015-10-09 2017-04-13 株式会社デンソー 充放電制御装置及び組電池装置
WO2020066909A1 (ja) * 2018-09-25 2020-04-02 東レ株式会社 二次電池用電極およびリチウムイオン二次電池
WO2020116160A1 (ja) 2018-12-05 2020-06-11 東レ株式会社 リチウムイオン二次電池用正極電極、リチウムイオン二次電池用電極ペースト、リチウムイオン二次電池
KR20210076147A (ko) 2018-12-05 2021-06-23 도레이 카부시키가이샤 리튬 이온 이차 전지용 정극 전극, 리튬 이온 이차 전지용 전극 페이스트, 리튬 이온 이차 전지
US11728475B2 (en) 2020-02-18 2023-08-15 Honda Motor Co., Ltd. Lithium-ion secondary battery positive electrode active material complex, lithium-ion secondary battery positive electrode, and lithium-ion secondary battery

Also Published As

Publication number Publication date
KR20110083680A (ko) 2011-07-20
US20110223482A1 (en) 2011-09-15
JP2011159388A (ja) 2011-08-18
EP2357693A1 (en) 2011-08-17
CN102210047B (zh) 2014-06-25
CN102210047A (zh) 2011-10-05
JP5574239B2 (ja) 2014-08-20
EP2357693B1 (en) 2018-07-11
JPWO2010053174A1 (ja) 2012-04-05
EP2357693A4 (en) 2014-04-30
JP5381024B2 (ja) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5574239B2 (ja) リチウム二次電池用正極及びリチウム二次電池
JP6596405B2 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
CN107710466B (zh) 负极活性物质及二次电池、以及负极材料的制造方法
CN108140823B (zh) 负极活性物质、二次电池、负极材料和二次电池制造方法
JP5272756B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びに、その製造方法
US9437865B2 (en) Active material for lithium ion secondary battery, and lithium ion secondary battery
TWI492443B (zh) 鋰二次電池用正極活性物質、鋰二次電池用電極以及鋰二次電池
JP5103923B2 (ja) 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
JP6448462B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池並びに非水電解質二次電池用負極活物質の製造方法
JP5145994B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法
JP2014072025A (ja) 非水電解質二次電池及びその製造方法
Hwang et al. Mesoporous spinel LiMn2O4 nanomaterial as a cathode for high-performance lithium ion batteries
JP2024516811A (ja) 正極活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
CA2764905A1 (en) Cathode material for a lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2017145654A1 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
JP7040832B1 (ja) リチウムイオン二次電池用負極活物質、その製造方法、及びリチウムイオン二次電池用負極電極
JP5483413B2 (ja) リチウムイオン二次電池
JP5141356B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP5181455B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP5045135B2 (ja) 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
WO2020003692A1 (ja) 非水電解質二次電池用負極活物質の製造方法
JP2010027604A (ja) リチウム二次電池用正極活物質及びリチウム二次電池
JP7106754B2 (ja) 電極、電池及び電池パック
JP2010027603A (ja) リチウム二次電池用正極活物質およびリチウム二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144517.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010536811

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13127980

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117011569

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009824871

Country of ref document: EP