WO2020116160A1 - リチウムイオン二次電池用正極電極、リチウムイオン二次電池用電極ペースト、リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極電極、リチウムイオン二次電池用電極ペースト、リチウムイオン二次電池 Download PDF

Info

Publication number
WO2020116160A1
WO2020116160A1 PCT/JP2019/045400 JP2019045400W WO2020116160A1 WO 2020116160 A1 WO2020116160 A1 WO 2020116160A1 JP 2019045400 W JP2019045400 W JP 2019045400W WO 2020116160 A1 WO2020116160 A1 WO 2020116160A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
iron phosphate
ion secondary
lithium ion
active material
Prior art date
Application number
PCT/JP2019/045400
Other languages
English (en)
French (fr)
Inventor
川村博昭
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2019565481A priority Critical patent/JP7259766B2/ja
Priority to CN201980078106.4A priority patent/CN113039669A/zh
Priority to US17/298,366 priority patent/US20220006076A1/en
Priority to EP19892727.9A priority patent/EP3893296A4/en
Priority to KR1020217016843A priority patent/KR102305491B1/ko
Publication of WO2020116160A1 publication Critical patent/WO2020116160A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a lithium ion secondary battery, an electrode paste for a lithium ion secondary battery, and a lithium ion secondary battery.
  • lithium-ion secondary batteries Despite the high energy density of lithium-ion secondary batteries, if a malfunction occurs, the stored energy will be released in a short time, and there is a risk that the battery will ignite or burn. Therefore, for lithium-ion secondary batteries, improvement of energy density and safety are important issues.
  • the positive electrode active material greatly affects the safety of lithium-ion secondary batteries.
  • a positive electrode active material called a layered oxide-based material which is often used in smartphones, electric vehicles, and the like, is an active material having a high energy density among the positive electrode active materials of lithium-ion secondary batteries.
  • a problem in safety such that there is a risk of releasing oxygen in the battery due to overcharging and leading to ignition.
  • olivine-based positive electrode active materials often used in stationary batteries such as lithium iron phosphate, do not release oxygen easily because oxygen is covalently bound to phosphorus, and are relatively stable even at high temperatures. Is known to be.
  • olivine-based positive electrode active materials have the advantage of being highly safe, but since the discharge voltage is constant, there is the problem that it is difficult to estimate the remaining capacity of the battery from the discharge voltage.
  • Patent Document 1 attempts to improve the Coulombic efficiency by mixing the layered oxide positive electrode active material and lithium manganese iron phosphate.
  • Patent Document 1 attempts to improve the Coulombic efficiency by mixing the layered oxide positive electrode active material and lithium manganese iron phosphate.
  • there is no idea to control the discharge characteristics by the mixing ratio of the active material and when the ratio of lithium manganese iron phosphate is increased to improve safety, it is difficult to manage the remaining capacity of the battery. there were.
  • Patent Document 2 discloses that low temperature characteristics are improved by mixing three types of active materials and adding an additive. However, in the disclosed example, lithium iron phosphate was only mixed at a maximum of 20%, and safety still had a problem.
  • the object of the present invention is to provide an electrode for a lithium ion secondary battery, which has high safety and can be manufactured into a lithium ion battery with improved accuracy of remaining capacity management.
  • the present invention is a lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery of the present invention.
  • the weight ratio of lithium iron phosphate particles, lithium manganese iron phosphate particles and layered oxide active material particles is x:y:z (0.10 ⁇ x ⁇ 0.60, 0.10 ⁇ y ⁇ 0.
  • the present invention relates to a lithium-ion secondary battery having a discharge curve and a discharge capacity, which has one non-plateau region between two plateau regions and the width of the non-plateau region is 20% or more in terms of SOC. Is.
  • the present invention it is possible to obtain a lithium-ion secondary battery having high safety and capable of estimating the remaining capacity of the battery.
  • lithium iron phosphate is a compound represented by LiFePO 4 .
  • a compound to which a metal other than Fe is added in the range of 0.5 wt% or more and 5 wt% or less as doping is also included in lithium iron phosphate.
  • the compound is lithium manganese iron phosphate, but in the present specification, this is not distinguished from lithium manganese iron phosphate and may be referred to as lithium manganese iron phosphate.
  • a compound in which a metal other than Mn and Fe is added in a range of 0.5 wt% or more and 5 wt% or less as doping is also included in lithium manganese iron phosphate.
  • a compound in which a metal other than the above is added in a range of 0.5 wt% or more and 5 wt% or less as a doping is also included in the layered oxide positive electrode active material.
  • each particle of lithium iron phosphate, lithium manganese iron phosphate and the layered oxide-based active material may be a mixture of particles having different compositions as long as the above weight ratio is satisfied as a whole. Good.
  • lithium manganese iron phosphate two or more kinds of active material particles having different ⁇ and ⁇ in the composition formula LiMn ⁇ Fe ⁇ PO 4 can be used, and in that case, the total weight of them is calculated as that of lithium manganese iron phosphate particles. Think of it as weight.
  • SOC state of charge
  • the layered oxide-based active material generally has no plateau region in the discharge curve and the discharge voltage gradually decreases from around 4.1 V to 2.5 V, so the SOC can be easily estimated from the discharge voltage.
  • the discharge curve of lithium iron phosphate has a long plateau region near the discharge voltage of 3.4V.
  • Lithium manganese iron phosphate has two plateau regions near 4 V corresponding to the oxidation of manganese and around 3.4 V corresponding to the oxidation of iron. Therefore, even if lithium iron phosphate and lithium manganese iron phosphate are combined, the discharge curve still has a two-stage plateau region, and it is difficult to estimate the SOC from the discharge voltage.
  • the plateau region of the discharge voltage is defined as a portion in which the amount of change in voltage is 4 mV or less per 1 mAh/g discharge.
  • the discharge voltage in the present specification means the voltage in the half cell evaluation using lithium metal for the negative electrode.
  • the non-plateau region is not located at the end of the discharge curve, that is, near SOC 0% as shown in FIG. 2, but is located at the center of the discharge curve as shown in FIG. That is, it is necessary to provide a non-plateau region between the plateau near 4 V immediately after the start of discharge and the plateau near 3.4 V immediately before the completion of discharge.
  • the accuracy of the battery remaining capacity management is improved, and the plateau region is located at the center of the discharge curve, so that the SOC is highly accurate in the most frequently used capacity region. Can be estimated.
  • the ratio of the layered oxide-based active material particles is a certain value or less. Therefore, assuming that the lithium iron phosphate particles, the lithium manganese iron phosphate particles, and the layered oxide-based active material particles have a weight ratio x:y:z, z is 0.40 or less, that is, x+y is 0.60 or more. Is preferred. From the viewpoint of making the battery safer, z is preferably 0.30 or less.
  • the discharge in the non-plateau region at the center of the discharge curve has many parts corresponding to the oxidation reaction of the layered oxide-based active material, a high proportion of the layered oxide-based active material leads to the expansion of the non-plateau region. .. If the non-plateau region is short, the range of SOC that can be accurately measured is narrowed, and it becomes difficult to manage the remaining capacity of the battery. In order to accurately manage the remaining capacity of the battery, the width of the non-plateau region needs to occupy 20% or more in terms of SOC, and for that purpose, z is preferably 0.10. In order to accurately manage the remaining capacity of the battery, the width of the non-plateau region is preferably 30% or more in terms of SOC.
  • the SOC conversion for expressing the width of the non-plateau region is to obtain the difference between the SOCs at both ends of the non-plateau region.
  • lithium iron phosphate particles lithium manganese iron phosphate particles and layered oxide-based active material particles
  • the proportion of lithium iron phosphate and lithium iron manganese iron phosphate in the positive electrode is important, and in the present invention, it is preferable that 0.10 ⁇ x ⁇ 0.60 and 0.10 ⁇ y ⁇ 0.70. ..
  • the non-plateau region is located at the center of the discharge curve, but as shown in FIG. 4, the discharge voltage at SOC 50% is higher than that in the non-plateau region. As shown in FIG. 3, it is preferable that the discharge voltage at SOC 50% is included in the non-plateau region so that the non-plateau region is the most frequently used capacity region.
  • lithium iron phosphate having a plateau region near 3.4 V lithium manganese iron phosphate mainly having a plateau region near 4 V, and plateau
  • the mixing weight ratio is 0.20 ⁇ x ⁇ 0.45 and 0.30 ⁇ . It is preferable that y ⁇ 0.60.
  • the lithium-ion secondary battery of the present invention is a lithium-ion secondary battery having one non-plateau region between two plateau regions in the discharge curve consisting of discharge voltage and discharge capacity. Also for a positive electrode that does not use an olivine-based active material and/or a layered oxide-based active material, by using two types of positive electrode active materials having different plateau regions and one type of positive electrode active material having no plateau region in combination, It is possible to obtain a battery whose SOC management is easy.
  • the lithium iron phosphate particles used in the present invention preferably have an average primary particle size of 50 nm to 300 nm. If the average primary particle size is less than 50 nm, the specific surface area becomes large and the cycle resistance may deteriorate. If the average primary particle size exceeds 300 nm, the electron conductivity and the ionic conductivity may start to control the rapid charge/discharge.
  • the lithium iron phosphate particles can be obtained by a known method such as a solid phase method or a liquid phase method, and commercially available lithium iron phosphate can also be used.
  • the lithium manganese iron phosphate particles used in the present invention have an average primary particle size of 30 nm to 100 nm. Preferably. If the average primary particle size is less than 30 nm, the specific surface area becomes large and the cycle resistance may deteriorate. Further, when the average primary particle size exceeds 100 nm, the electron conductivity and the ionic conductivity may start to control the rapid charge/discharge.
  • Lithium manganese iron phosphate particles can be obtained by known methods such as a solid phase method and a liquid phase method, but the liquid phase method is preferable in that particles having a particle size of 30 nm or more and 100 nm or less can be more easily obtained. is there.
  • an organic solvent in the liquid phase in order to reduce the particle size to nanoparticles, and the solvent species thereof is an alcohol solvent, specifically ethylene glycol, diethylene glycol, triethylene glycol. , Tetraethylene glycol, 2-propanol, 1,3-propanediol, 1,4-butanediol or dimethyl sulfoxide is preferable.
  • pressure may be applied in order to enhance the crystallinity of the particles during the synthesis process.
  • the layered oxide-based active material particles can be obtained by a solid phase method according to a known method, but a commercially available active material can also be used.
  • the layered oxide-based particles preferably have an average primary particle size of 100 nm or more and 10 ⁇ m or less. If the average primary particle size is less than 100 nm, the specific surface area becomes large and the cycle resistance may deteriorate. Further, when the average primary particle size exceeds 1 ⁇ m, the electron conductivity and the ionic conductivity may start to control the rapid charge/discharge.
  • lithium iron phosphate and lithium manganese iron phosphate be used by coating the surface of the primary particles with carbon in order to compensate for the low electron conductivity.
  • a method of mixing the active material particles and the saccharide and then firing at 600 to 750° C. is preferably used.
  • the saccharide glucose or sucrose is preferable from the viewpoint of low ash content after firing.
  • the lithium iron phosphate particles, the lithium manganese iron phosphate particles, and the layered oxide-based active material particles are preferably each granulated to have an average secondary particle diameter of 1 ⁇ m or more and 20 ⁇ m or less.
  • the average secondary particle size is less than 1 ⁇ m, a large amount of solvent is required to make the active material particles into an electrode paste.
  • the average secondary particle size exceeds 20 ⁇ m, it becomes difficult to obtain a smooth electrode with an electrode thickness of 50 to 100 ⁇ m which is generally used for lithium ion secondary batteries.
  • Various methods can be used for the granulation, but it is preferable to use a spray dryer in order to narrow the particle size distribution of the obtained granule as much as possible. Since the layered oxide active material particles are superior in electron conductivity and lithium ion conductivity to lithium iron phosphate, it is also preferable to use them without granulation.
  • the average primary particle diameter and the average secondary particle diameter of the active material particles in the present specification are the average values obtained by measuring the primary particle diameter of 100 particles with a scanning electron microscope.
  • the non-spherical particles have the average value of the long axis and the short axis that can be measured by a two-dimensional image as the particle size.
  • the positive electrode of the present invention lithium iron phosphate particles, lithium manganese iron phosphate particles, as long as containing a layered oxide-based active material particles in a predetermined ratio, other configurations are not particularly limited, but typically,
  • additives such as binders and conduction aids are dispersed in a dispersion medium such as N-methylpyrrolidinone and water to form an electrode paste, which is then applied to a current collector such as an aluminum foil and dried. It can be obtained by pressing.
  • the weight ratio of the binder in the positive electrode is preferably 0.3% or more and 10% or less. If it is less than 0.3%, the effect of addition is low and it is not preferable. In addition, if the binder that is an insulator is added in an amount larger than 10%, the electrical conductivity of the electrode is significantly reduced, which is not preferable.
  • the binder styrene-butadiene rubber or the like can be used in addition to polyvinyldene fluoride.
  • the weight ratio of the conductive additive in the positive electrode is preferably 0.3% or more and 10% or less. If it is less than 0.3%, the effect of addition is low and it is not preferable. Also, addition of an amount larger than 10% is not preferable because the effect of inhibiting the movement of lithium ions becomes remarkable.
  • the conductive additive acetylene black, Ketjen black, carbon fiber, carbon nanotube, graphene or the like can be used.
  • the solid content concentration of the electrode paste can be appropriately adjusted according to the coating process, but it is preferably 30% or more and 80 or less in order to have appropriate viscosity so that the coating film thickness becomes uniform.
  • the thickness of the mixture layer generated by solidifying the electrode paste after pressing is preferably 10 ⁇ m or more and 200 ⁇ m or less. If it is less than 10 ⁇ m, the energy density of the battery tends to decrease, and if it exceeds 200 ⁇ m, the high-speed charge/discharge characteristics tend to deteriorate.
  • Electrode plates prepared in each of the examples and comparative examples were cut out to a diameter of 15.9 mm as a positive electrode, and a lithium foil cut out to a diameter of 16.1 mm and a thickness of 0.2 mm was used as a negative electrode.
  • a 20 mm diameter settera (registered trademark) (manufactured by Toray Industries, Inc.) separator, a solution of ethylene carbonate:diethyl carbonate 3:7 (volume ratio) containing 1 M of LiPF 6 was used as an electrolytic solution, and a 2032 type was used.
  • a coin battery was produced and electrochemically evaluated.
  • the cutoff potential was 2.5 V
  • the maximum charging voltage was 4.3 V
  • the charge/discharge was performed 3 times at a rate of 0.1 C.
  • the non-plateau region was the central part of the discharge curve, It was judged whether or not it exists in a portion sandwiched between a plateau near 4.0 V and a plateau near 3.4 V. In the case where the non-plateau region is formed of SOC 25% or less, it is a position that is not suitable for managing the remaining capacity of the battery. Further, when the non-plateau region continues over the entire discharge curve, it is defined as “entire discharge curve”.
  • the crush test was performed by pressing a round bar having a radius of 10 mm at a speed of 10 mm/sec against the center of a fully charged battery with a maximum load of 10 kN. Further, a thermocouple was attached at a position 10 mm away from the place where the round bar was pressed, and the maximum temperature cell temperature at the time of crushing was measured. Also, the presence or absence of ignition and smoke was visually confirmed.
  • Example 1 To 350 g of pure water, 360 mmol of lithium hydroxide monohydrate was added. To the resulting solution was added an additional 85 mmol of phosphoric acid using an 85% phosphoric acid aqueous solution, and further 120 mmol of iron(II) sulfate heptahydrate. The obtained solution was transferred to an autoclave, and heated and held for 4 hours so that the inside of the container was maintained at 190°C. After heating, the supernatant of the solution was discarded to obtain lithium iron phosphate as a precipitate. The obtained lithium iron phosphate was washed with pure water, and then the supernatant was removed by centrifugation 5 times, and finally, pure water was added again to obtain a dispersion liquid.
  • glucose having the same weight as 15% by weight of lithium manganese iron phosphate in the dispersion liquid was added to and dissolved in the dispersion liquid, and then pure water was added to adjust the solid content concentration of the dispersion liquid to 50%. ..
  • the resulting dispersion was dried and granulated with a spray dryer (MDL-050B manufactured by Fujisaki Electric Co., Ltd.) using hot air at 200°C.
  • the obtained powder was heated in a rotary kiln (desktop rotary kiln manufactured by Takasago Industry Co., Ltd.) under a nitrogen atmosphere at 700° C. for 4 hours to obtain carbon-coated lithium manganese iron phosphate.
  • Obtained lithium iron phosphate particles, lithium manganese iron phosphate particles, and layered oxide-based active material particles LiNi 0.5 Co 0.2 Mn 0.3 O 2 manufactured by Umicore Co., Ltd., granules having an average particle diameter of 13 ⁇ m
  • the obtained electrode slurry was applied to an aluminum foil (thickness 18 ⁇ m) using a doctor blade (300 ⁇ m), dried at 80° C. for 30 minutes, and then pressed to produce an electrode plate.
  • Example 2 An electrode plate was prepared in the same manner as in Example 1 except that the mixing ratio of lithium iron phosphate particles, lithium manganese iron phosphate particles, and layered oxide-based active material particles was 0.30:0.55:0.15. did.
  • Example 3 An electrode plate was produced in the same manner as in Example 1 except that the mixing ratio of lithium iron phosphate particles, lithium manganese iron phosphate particles, and layered oxide-based active material particles was 0.40:0.40:0.20. did.
  • Example 4 An electrode plate was prepared in the same manner as in Example 1 except that the mixing ratio of lithium iron phosphate particles, lithium manganese iron phosphate particles, and layered oxide-based active material particles was 0.30:0.35:0.35. did.
  • Example 5 An electrode plate was produced in the same manner as in Example 1 except that the mixing ratio of lithium iron phosphate particles, lithium manganese iron phosphate particles, and layered oxide-based active material particles was 0.55:0.20:0.25. did.
  • Example 6 An electrode plate was prepared in the same manner as in Example 1 except that the mixing ratio of lithium iron phosphate particles, lithium manganese iron phosphate particles, and layered oxide-based active material particles was 0.23:0.65:0.12. did.
  • Example 3 Example 1 except that the mixing ratio of the lithium iron phosphate particles, the lithium manganese iron phosphate particles, and the layered oxide-based active material particles was 0.00:0.00:1.00, that is, the layered oxide was used alone. An electrode plate was produced in the same manner.
  • Example 4 An electrode plate was prepared in the same manner as in Example 1 except that the mixing ratio of lithium iron phosphate particles, lithium manganese iron phosphate particles, and layered oxide-based active material particles was 0.50:0.50:0.00. did.
  • Example 5 An electrode plate was produced in the same manner as in Example 1 except that the mixing ratio of lithium iron phosphate particles, lithium manganese iron phosphate particles, and layered oxide-based active material particles was 0.00:0.80:0.20. did.
  • Example 6 An electrode plate was produced in the same manner as in Example 1 except that the mixing ratio of lithium iron phosphate particles, lithium manganese iron phosphate particles, and layered oxide-based active material particles was 0.80:0.10:0.10. did.
  • Example 7 An electrode plate was prepared in the same manner as in Example 1 except that the mixing ratio of lithium iron phosphate particles, lithium manganese iron phosphate particles, and layered oxide-based active material particles was 0.10:0.80:0.10. did.
  • Example 7 An electrode plate was produced in the same manner as in Example 1 except that lithium manganate LiMn 2 O 4 (manufactured by Hosen Co., Ltd.) particles were used instead of lithium manganese iron phosphate particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の目的は、安全性が高く、かつ高いエネルギー密度を有し、放電電圧から電池の残容量を推定することが可能なリチウムイオン電池を得ることである。本発明は、リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子および層状酸化物系活物質粒子を重量比x:y:z(0.10≦x≦0.60、0.10≦y≦0.70、0.10≦z≦0.40、x+y+z=1)で含有するリチウムイオン二次電池用正極電極である。本発明は、放電電圧と放電容量からなる放電曲線において、2つのプラトー領域の間に1つの非プラトー領域を有し、非プラトー領域の幅がSOC換算で20%以上であるリチウムイオン2次電池である。

Description

リチウムイオン二次電池用正極電極、リチウムイオン二次電池用電極ペースト、リチウムイオン二次電池
 本発明は、リチウムイオン二次電池用正極電極、リチウムイオン二次電池用電極ペースト、リチウムイオン二次電池に関するものである。
 リチウムイオン二次電池は高いエネルギー密度を有する反面、不具合が生じると貯蔵されているエネルギーが短時間に放出され、電池が発火・炎上する危険性がある。そのためリチウムイオン二次電池にとっては、エネルギー密度の向上とともに、安全性の向上が重要な課題である。
 リチウムイオン二次電池の安全性を大きく左右するのが正極活物質であることはよく知られている。特にスマートフォンや電気自動車などに用いられることが多い層状酸化物系と呼ばれる正極活物質は、リチウムイオン二次電池の正極活物質の中でも高エネルギー密度を有する活物質である。しかし、過充電によって電池内で酸素を放出し、発火に至る危険性があるなど、安全性に課題がある。
 一方で、定置用電池などに用いられることが多いオリビン系正極活物質、例えばリン酸鉄リチウムは酸素がリンと共有結合しているために容易には酸素を放出せず、高温でも比較的安定であることが知られている。
 そこでエネルギー密度に優れる層状酸化物系正極活物質と安全性に優れるオリビン系正極活物質を混合することで、エネルギー密度と安全性を両立することが検討されている(例えば特許文献1~2)。電気抵抗が大きいオリビン系正極活物質を層状酸化物系正極活物質と混合することで、電池が内部短絡したときなどに流れる電流を、層状酸化物系正極活物質のみを用いた場合に比べて小さくすることが期待できる。これは、リチウムイオン電池の正負極間の電圧が3~4.4V程度であり、オームの法則(I=V/R)をそのまま当てはめると、内部短絡時の短絡電流の大きさが内部抵抗に反比例することから説明される。
国際公開第2010/053174号 特開2006-252895号公報
 一般に、オリビン系正極活物質は安全性に優れるというメリットがあるものの、放電電圧が一定であるため、放電電圧から電池の残容量を推定することが困難であるという課題がある。
 特許文献1においては、層状酸化物系正極活物質とリン酸マンガン鉄リチウムを混合することによるクーロン効率の向上が試みられている。しかしながら、活物質の混合割合によって放電特性を制御する思想はなく、安全性を向上させるためにリン酸マンガン鉄リチウムの割合を多くした場合には、電池の残容量管理が困難であるという課題があった。
 特許文献2においては3種類の活物質を混合し、添加剤を加えることで低温特性を向上させることが開示されている。しかし、開示されている例においてはリン酸鉄リチウムが最大で20%混合されているだけであり、安全性はなお課題があった。
 本発明の目的は、高い安全性を有しつつも、残容量管理の精度を向上させたリチウムイオン電池を作製できるリチウムイオン二次電池用電極を提供することである。
 上記の課題を解決するための本発明は、リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子および層状酸化物系活物質粒子を重量比x:y:z(0.10≦x≦0.60、0.10≦y≦0.70、0.10≦z≦0.40、x+y+z=1)で含有するリチウムイオン二次電池用正極電極である。本発明は、本発明のリチウムイオン二次電池用正極電極を用いてなるリチウムイオン二次電池である。本発明は、リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子および層状酸化物系活物質粒子を重量比x:y:z(0.10≦x≦0.60、0.10≦y≦0.70、0.10≦z≦0.40、x+y+z=1)で含有するリチウムイオン二次電池用電極ペーストである。本発明は、放電電圧と放電容量からなる放電曲線において、2つのプラトー領域の間に1つの非プラトー領域を有し、非プラトー領域の幅がSOC換算で20%以上であるリチウムイオン2次電池である。
 本発明により、安全性が高く、さらに電池の残容量の推定が可能なリチウムイオン二次電池を得ることができる。
放電曲線における非プラトー領域が放電曲線中央に位置する場合の概念図である。 放電曲線における非プラトー領域が放電曲線末期に位置する場合の概念図である。 放電曲線においてSOC50%が非プラトー領域に含まれる場合の概念図である。 放電曲線においてSOC50%が非プラトー領域に含まれない場合の概念図である。 実施例1で作製した電極板の、測定例Aによって得られた放電曲線である。
 本明細書におけるリン酸鉄リチウムとはLiFePOで表される化合物である。ただし、ドーピングとしてFe以外の金属が0.5wt%以上5wt%以下の範囲で添加されている化合物もリン酸鉄リチウムに含めるものとする。
 本明細書におけるリン酸マンガン鉄リチウムとはLiMnαFeβPO(α+β=1,かつ0.6≦α≦1)で表される化合物である。α=1の場合は鉄を含まないため、該化合物はリン酸マンガンリチウムとなるが、本明細書ではこれをリン酸マンガン鉄リチウムと区別せず、リン酸マンガン鉄リチウムと表すことがある。また、上記一般式を満たす限り、ドーピングとしてMn及びFe以外の金属が0.5wt%以上5wt%以下の範囲で添加されている化合物もリン酸マンガン鉄リチウムに含めるものとする。
 本明細書における層状酸化物系正極活物質とはLi(NiCoMn)O(ただし、x+y+z=1、0≦x、y、z、≦1)もしくはLi(NiCoAl)O(ただし、x+y+z=1、0.7≦x<1,0≦y≦0.2、0≦z≦0.2)で表される化合物である。ただし、上記一般式を満たす限り、ドーピングとして上記以外の金属が0.5wt%以上5wt%以下の範囲で添加されている化合物も層状酸化物系正極活物質に含めるものとする。
 本発明のリチウムイオン二次電池用正極電極(以下、単に「正極電極」という場合がある)は、リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子および層状酸化物系活物質粒子を重量比x:y:z(0.10≦x≦0.60、0.10≦y≦0.70,0.10≦z≦0.40、x+y+z=1)で含有することが好ましい。このような割合で活物質粒子を混合することにより、高い安全性を有し、高精度な電池の残容量管理を実現したリチウムイオン二次電池を作製することができる。なお、本発明においては、全体として上記の重量比を満たす限り、リン酸鉄リチウム、リン酸マンガン鉄リチウムおよび層状酸化物系活物質のそれぞれの粒子は、異なる組成の粒子の混合物であってもよい。例えば、リン酸マンガン鉄リチウムとしては組成式LiMnαFeβPOにおいてαおよびβが異なる2種類以上の活物質粒子を用いることもでき、その場合それらの合計重量をリン酸マンガン鉄リチウム粒子の重量と考える。
 電池の残容量(State of charge:以下「SOC」とする)を推定するには、電池の残容量に応じて放電電圧が変化することが必要である。しかしながら、放電曲線が長いプラトー領域を有すると、SOCが変化しても放電電圧がほとんど変化しないため、放電電圧からのSOCの推定が困難となる。
 層状酸化物系活物質は、一般に放電曲線にプラトー領域がなく、4.1V付近から2.5Vまで放電電圧が徐々に低下していくため、放電電圧からSOCを容易に推定することができる。一方、リン酸鉄リチウムの放電曲線は放電電圧3.4V付近に長いプラトー領域を有する。リン酸マンガン鉄リチウムはマンガンの酸化に対応する4V付近と鉄の酸化に対応する3.4V付近に2段のプラトー領域を有する。したがってリン酸鉄リチウムとリン酸マンガン鉄リチウムを組み合わせても放電カーブは2段のプラトー領域を有したままであり、放電電圧からSOCを推定することは困難である。
 なお、本発明書において放電電圧のプラトー領域とは、1mAh/gの放電あたりに電圧の変化量が4mV以下である部分と定義される。また、電池おける放電電圧は正極と負極の組み合わせで決定されるものであるため、本明細書における放電電圧とは負極にリチウム金属を用いたハーフセル評価での電圧をいうものとする。
 オリビン系活物質の割合が半分以上を占める本発明の正極電極を用いたリチウムイオン二次電池(以下、単に「電池」という場合がある)において、放電電圧からSOCを正確に推定するには、放電曲線において、図2に示すように、放電曲線の末期、すなわちSOC0%付近に非プラトー領域が位置するのではなく、図1に示すように、放電曲線の中央部に非プラトー領域が位置する、すなわち放電開始直後の4V付近のプラトーと放電完了直前の3.4V付近のプラトーの間に非プラトー領域を設けることが必要である。該非プラトー領域の電圧をSOCと対応させることで電池の残容量管理の精度が向上するだけなく、該プラトー領域が放電曲線の中央部にあることで最も使用頻度の高い容量域でSOCを高精度に推定することが可能となる。
 本発明においてはまず、電池の安全性を確保するため、層状酸化物系活物質粒子の割合が一定以下であることが好ましい。従って、リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子および層状酸化物系活物質粒子を重量比x:y:zとすると、zは0.40以下、すなわちx+yを0.60以上とすることが好ましい。より電池を安全にできる点において、zは0.30以下であることが好ましい。
 一方、放電曲線中央部の非プラトー領域での放電は層状酸化物系活物質の酸化反応に対応する部分が多いため、層状酸化物系活物質の割合が高いことは該非プラトー領域の拡大につながる。該非プラトー領域が短いと正確に測定できるSOCの範囲も狭まり、電池の残容量管理を困難にする。電池の残容量を精度よく管理していくためには該非プラトー領域の幅はSOC換算で20%以上を占める必要があり、そのためにはzは0.10以上であることが好ましい。電池の残容量を精度よく管理していくためには、該非プラトー領域の幅はSOC換算で30%以上であることが好ましい。
 ここで、非プラトー領域の幅を表すためのSOC換算とは、非プラトー領域の両端のSOCの差を求めることである。
 また、リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子および層状酸化物系活物質粒子を含有する正極を用いた電池において、非プラトー領域が放電曲線の中央部に位置するようにするためには、正極電極中におけるリン酸鉄リチウムおよびリン酸マンガン鉄リチウムの割合が重要であり、本発明においては0.10≦x≦0.60、0.10≦y≦0.70とすることが好ましい。
 本発明の正極電極を用いた電池は、非プラトー領域が放電曲線の中央部に位置するが、図4に示すように、SOC50%時の放電電圧が非プラトー領域に含まれていないよりも、非プラトー領域が使用頻度の最も高い容量領域となるように、図3に示すように、SOC50%時の放電電圧が非プラトー領域に含まれていることが好ましい。
 SOC50%時の放電電圧が非プラトー領域に含まれるようにするためには、3.4V付近にプラトー領域を有するリン酸鉄リチウム、主に4V付近にプラトー領域を有するリン酸マンガン鉄リチウム、プラトー領域を持たない層状酸化物の3種類の活物質粒子を適切な割合で混合することが好ましい。特に、xが大きければ非プラトー領域は高SOC側に寄り、yが大きければ低SOC側に寄ることを考慮して、その混合重量比は0.20≦x≦0.45かつ0.30≦y≦0.60、であることが好ましい。
 本発明のリチウムイオン2次電池は、放電電圧と放電容量からなる放電曲線において、2つのプラトー領域の間に1つの非プラトー領域を有するリチウムイオン2次電池である。オリビン系活物質及び/もしくは層状酸化物系活物質を用いない正極についても、互いに異なるプラトー領域を持つ正極活物質を2種類及びプラトー領域を持たない正極活物質1種類を組み合わせて用いることで、SOC管理を容易とした電池を得ることができる。
 放電曲線において、放電曲線の中央部に非プラトー領域が位置する、すなわち放電開始直後のプラトーと放電完了直前のプラトーの間に非プラトー領域が設けられた場合、2つのプラトー領域の間に1つの非プラトー領域を有すると解される。放電曲線において、放電曲線の末期、すなわちSOC0%付近に、非プラトー領域が位置する場合、2つのプラトー領域の間に1つの非プラトー領域を有するとは解されない。
 リン酸鉄リチウムは電子電導性及びリチウムイオン電導性が低いため、本発明に用いるリン酸鉄リチウム粒子は、平均1次粒径が50nm以上300nm以下であることが好ましい。平均1次粒径が50nm未満であると比表面積が大きくなりサイクル耐性が劣化する場合がある。また、平均1次粒径が300nmを超えると電子電導性及びイオン電導性が高速充放電を律速し始める場合がある。リン酸鉄リチウム粒子は固相法、液相法らの公知の手法によって得ることができる他、市販のリン酸鉄リチウムを用いることもできる。
 リン酸マンガン鉄リチウムはリン酸鉄リチウムと比較してさらに電子電導性及びリチウムイオン電導性が低いため、本発明に用いるリン酸マンガン鉄リチウム粒子は、平均1次粒径が30nm以上100nm以下であることが好ましい。平均1次粒径が30nm未満であると比表面積が大きくなりサイクル耐性が劣化する場合がある。また、平均1次粒径が100nmを超えると電子電導性及びイオン電導性が高速充放電を律速し始める場合がある。
 リン酸マンガン鉄リチウム粒子は、固相法、液相法らの公知の手法によって得ることができるが、粒径が30nm以上100nm以下の粒子をより簡便に得られる点において液相法が好適である。液相には水の他、粒径をナノ粒子まで微細化するために有機溶媒を用いることも好適であり、その溶媒種としてはアルコール系溶媒、具体的にはエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、2-プロパノール、1,3-プロパンジオール、1,4-ブタンジオールもしくはジメチルスルホキシドを含むことが好ましい。また合成の過程で粒子の結晶性を高めるために加圧してもかまわない。
 層状酸化物系活物質粒子については公知の方法に従って固相法で得ることもできるが、市販の活物質も用いることができる。層状酸化物系粒子は平均1次粒子径が100nm以上10μm以下であることが好ましい。平均1次粒径が100nm未満であると比表面積が大きくなりサイクル耐性が劣化する場合がある。また、平均1次粒径が1μm超えると電子電導性及びイオン電導性が高速充放電を律速し始める場合がある。
 リン酸鉄リチウム及びリン酸マンガン鉄リチウムは、電子電導性の低さを補うために、1次粒子表面をカーボンコーティングして用いることが好ましい。カーボンコーティングを施すには、活物質粒子と糖類を混合した後に600℃から750℃で焼成する方法が好ましく用いられる。糖類としては、焼成後の灰分が少ない点から、グルコースもしくはスクロースが好ましい。
 本発明において、リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子、層状酸化物系活物質粒子は、それぞれ平均2次粒径1μm以上20μm以下に造粒されていることが好ましい。平均2次粒径が1μm未満の場合、活物質粒子を電極ペーストにするために大量の溶媒が必要となる。平均2次粒径が20μmを超える場合、リチウムイオン二次電池用として一般的に用いられる電極厚みである50~100μmにて平滑な電極を得ることが難しくなる。造粒には種々の方法を用いることができるが、得られる造粒体の粒度分布をできるだけ狭くするためにスプレードライヤーを用いることが好適である。なお、層状酸化物形活物質粒子については、リン酸鉄リチウムよりも電子電導性及びリチウムイオン電導性に優れるため、造粒せずに用いることも好ましい態様である。
 なお、本明細書における活物質粒子の平均1次粒径および平均2次粒径は、走査型電子顕微鏡で100個の粒子の1次粒径を測定した平均値とする。この場合において、球形でない粒子は、2次元像で測定できる長軸と短軸の平均値をその粒径とする。
 本発明の正極電極は、リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子、層状酸化物系活物質粒子を所定の割合で含有する限り、その他の構成は特に限定されないが、典型的には、活物質粒子の他バインダーや導電助剤などの添加剤をN-メチルピロリジノンや水などの分散媒に分散させて電極ペーストとした後に、アルミ箔等の集電体への塗工し、乾燥及びプレスすることによって得ることができる。
 正極電極中におけるバインダーの重量割合は0.3%以上10%以下であることが好ましい。0.3%未満であると添加の効果が低く好ましくない。また絶縁体であるバインダーが10%よりも大きい量を添加されると電極の電導性を大きく低下させるため好ましくない。バインダーとしてはポリフッ化ビニルデンの他、スチレンブタジエンゴムなどを用いることができる。
 また、正極電極中における導電助剤の重量割合は0.3%以上10%以下であることが好ましい。0.3%未満であると添加の効果が低く好ましくない。また、10%よりも大きい量を添加するとリチウムイオンの移動を阻害する効果が顕著となるため好ましくない。導電助剤としてはアセチレンブラック、ケッチェンブラック、カーボンファイバー、カーボンナノチューブ、グラフェンなどを用いることができる。
 電極ペーストの固形分濃度は塗工プロセスに合わせて適宜調整可能であるが、塗膜厚みが均一となる適度な粘性をもたせるために、30%以上80以下であることが好適である。
 プレス後に電極ペーストが固化して生じる合剤層の厚みは10μm以上200μm以下であることが好適である。10μm未満では電池のエネルギー密度が低下する傾向があり、200μmよりも大きいと高速充放電特性が低下する傾向がある。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに制限されるものではない。
 [測定A]正極電極の放電特性の測定
 各実施例および比較例で作製した電極板を直径15.9mmに切り出して正極電極とし、直径16.1mm厚さ0.2mmに切り出したリチウム箔を負極電極とし、直径20mmに切り出したセティーラ(登録商標)(東レ株式会社製)セパレータとして、LiPFを1M含有するエチレンカーボネート:ジエチルカーボネート=3:7(体積比)の溶液を電解液として、2032型コイン電池を作製し、電気化学評価を行った。
 測定は、カットオフ電位を2.5V、最大充電電圧4.3Vとし、充放電を0.1Cレートで3回行い、3回目の放電における放電曲線において非プラトー領域が放電曲線の中央部、すなわち4.0V付近のプラトーと3.4V付近のプラトーに挟まれる部分に存在するか否かを判断した。非プラトー領域がSOC25%以下から形成される場合については、電池の残容量管理には適さない位置であるため、非プラトー領域の位置は「放電末期」として中央部に位置する場合と区別した。また、放電曲線全体に渡って非プラトー領域が続く場合は「放電曲線全体」とした。
 また、該放電曲線から、非プラトー領域がSOC換算で何%続くか、SOC50%が放電曲線の非プラトー領域内に存在するかについても評価した。非プラトー領域とプラトー領域の区別については、放電開始から1mAh/g放電する度に低下する電圧を測定し、4mV以上低下した領域を非プラトー領域とした。
 [測定B]圧壊試験時の最大セル温度
 測定Aと同様に作製した正極電極と、負極電極として市販のカーボン系負極(負極活物質:日立化成株式会社製 人造黒鉛MAG)、セパレータとしてセティーラ(登録商標)、電解液としてLiPFを1M含有するエチレンカーボネート:ジエチルカーボネート=3:7(体積比)を用いて3Ahセルの積層ラミネートセルを作製した。積層数は正極(サイズ:70mm×40mm)を21層、負極(サイズ:74mm×44mm)を22層とし、対向する正極と負極の容量比率(NP比)は1.05とした。
 作製した電池を0.1Cで3回充放電させた後、0.1Cで再度満充電状態にし、圧壊試験に供した。圧壊試験は半径10mmの丸棒を10mm/秒の速度で満充電状態の電池の中央部に最大荷重10kNで押しつけることで行った。また、丸棒が押しつけられる場所から10mm離れた箇所に熱電対を貼り付け、圧壊時の最大温セル温度を測定した。また、発火および発煙の有無を目視にて確認した。
 [実施例1]
 純水350gに水酸化リチウム1水和物を360ミリモル添加した。得られた溶液に、85%リン酸水溶液を用いてリン酸を120ミリモルさらに添加し、さらに硫酸鉄(II)7水和物を120ミリモル添加した。得られた溶液をオートクレーブに移し、容器内が190℃を維持するように4時間加熱保持した。加熱後に溶液の上澄みを捨て、沈殿物としてリン酸鉄リチウムを得た。得られたリン酸鉄リチウムは純水にて洗浄した後に、遠心分離にて上澄みを除去することを5回繰り返し、最後に再度純水を加えて分散液とした。
 続いて分散液中のリン酸鉄リチウムの12重量%と同重量のグルコースを分散液に添加して溶解させた後、純水を加えることで分散液の固形分濃度を50%に調整した。得られた分散液をスプレードライヤー(藤崎電機社製 MDL-050B)にて200℃の熱風を用いて乾燥・造粒した。得られた粉体をロータリーキルン(高砂工業社製 デスクトップロータリーキルン)にて窒素雰囲気下700℃4時間加熱し、カーボンコートされたリン酸鉄リチウムを得た。
 純水150gにジメチルスルホキシド200gを加え、水酸化リチウム1水和物を360ミリモル添加した。得られた溶液に、85%リン酸水溶液を用いてリン酸を120ミリモルさらに添加し、さらに硫酸マンガン1水和物を84ミリモル、硫酸鉄(II)7水和物を36ミリモル添加した。得られた溶液をオートクレーブに移し、容器内が150℃を維持するように4時間加熱保持した。加熱後に溶液の上澄みを捨て、沈殿物としてリン酸マンガン鉄リチウムを得た。得られたリン酸マンガン鉄リチウムは純水にて洗浄した後に、遠心分離にて上澄みを除去することを5回繰り返し、最後に再度純水を加えて分散液とした。
 続いて分散液中のリン酸マンガン鉄リチウムの15重量%と同重量のグルコースを分散液に添加して溶解させた後、純水を加えることで分散液の固形分濃度を50%に調整した。得られた分散液をスプレードライヤー(藤崎電機社製 MDL-050B)にて200℃の熱風を用いて乾燥・造粒した。得られた粉体をロータリーキルン(高砂工業社製 デスクトップロータリーキルン)にて窒素雰囲気下700℃4時間加熱し、カーボンコートされたリン酸マンガン鉄リチウムを得た。
 得られたリン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子(ユミコア社製LiNi0.5Co0.2Mn0.3 平均粒径13μmの造粒体)を重量比にて0.30:0.50:0.20で自転公転ミキサー(株式会社シンキー製 あわとり練太郎(登録商標)ARE-310)を用いて攪拌モード2000rpm5分間の条件で混合した。
 アセチレンブラック(デンカ株式会社製 Li-400)とバインダー(株式会社クレハKFポリマー L#9305)を混合した後、混合した活物質を添加して乳鉢で固練りを実施した。その際、含まれる各材料の質量比は活物質:アセチレンブラック:バインダーが90:5:5となるようにした。その後、N-メチルピロリジノンを添加して固形分が45質量%となるように調整し電極スラリーを得た。得られたスラリーに流動性がない場合には、N-メチルピロリジノンをスラリーに流動性が得られるまで、適宜追加した。
 得られた電極スラリーをアルミニウム箔(厚さ18μm)にドクターブレード(300μm)を用いて塗布し、80℃30分間の乾燥後、プレスを施し電極板を作製した。
 当該電極板を、測定Aに従って放電特性を測定した結果得られた放電曲線を図5に示す。
 [実施例2]
 リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子の混合割合を0.30:0.55:0.15とした以外は実施例1と同様にして電極板を作製した。
 [実施例3]
 リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子の混合割合を0.40:0.40:0.20とした以外は実施例1と同様にして電極板を作製した。
 [実施例4]
 リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子の混合割合を0.30:0.35:0.35とした以外は実施例1と同様にして電極板を作製した。
 [実施例5]
 リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子の混合割合を0.55:0.20:0.25とした以外は実施例1と同様にして電極板を作製した。
 [実施例6]
 リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子の混合割合を0.23:0.65:0.12とした以外は実施例1と同様にして電極板を作製した。
 [比較例1]
 リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子の混合割合を1:0:0、すなわちリン酸鉄リチウムの単体とした以外は実施例1と同様にして電極板を作製した。
 [比較例2]
 リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子の混合割合を0:1:0、すなわちリン酸マンガン鉄リチウムの単体とした以外は実施例1と同様にして電極板を作製した。
 [比較例3]
 リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子の混合割合を0.00:0.00:1.00、すなわち層状酸化物の単体とした以外は実施例1と同様にして電極板を作製した。
 [比較例4]
 リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子の混合割合を0.50:0.50:0.00とした以外は実施例1と同様にして電極板を作製した。
 [比較例5]
 リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子の混合割合を0.00:0.80:0.20とした以外は実施例1と同様にして電極板を作製した。
 [比較例6]
 リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子の混合割合を0.80:0.10:0.10とした以外は実施例1と同様にして電極板を作製した。
 [比較例7]
 リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子及び層状酸化物系活物質粒子の混合割合を0.10:0.80:0.10とした以外は実施例1と同様にして電極板を作製した。
 [実施例7]
 リン酸マンガン鉄リチウム粒子の代わりにマンガン酸リチウムLiMn(宝泉株式会社製)粒子を用いた以外は実施例1と同様にして電極板を作製した。
 各実施例、比較例で得られた正極電極について測定A及びBを実施し、得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (6)

  1. リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子および層状酸化物系活物質粒子を重量比x:y:z(0.10≦x≦0.60、0.10≦y≦0.70、0.10≦z≦0.40、x+y+z=1)で含有するリチウムイオン二次電池用正極電極。
  2. z≦0.30である、請求項1記載のリチウムイオン二次電池用正極電極。
  3. 0.20≦x≦0.45かつ0.30≦y≦0.60である、請求項1または2に記載のリチウムイオン二次電池用正極電極。
  4. 請求項1~3のいずれかに記載のリチウムイオン二次電池用正極電極を用いてなるリチウムイオン二次電池。
  5. リン酸鉄リチウム粒子、リン酸マンガン鉄リチウム粒子および層状酸化物系活物質粒子を重量比x:y:z(0.10≦x≦0.60、0.10≦y≦0.70、0.10≦z≦0.40、x+y+z=1)で含有するリチウムイオン二次電池用電極ペースト。
  6. 放電電圧と放電容量からなる放電曲線において、2つのプラトー領域の間に1つの非プラトー領域を有し、非プラトー領域の幅がSOC換算で20%以上であるリチウムイオン2次電池。
PCT/JP2019/045400 2018-12-05 2019-11-20 リチウムイオン二次電池用正極電極、リチウムイオン二次電池用電極ペースト、リチウムイオン二次電池 WO2020116160A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019565481A JP7259766B2 (ja) 2018-12-05 2019-11-20 リチウムイオン二次電池用正極電極、リチウムイオン二次電池用電極ペースト、リチウムイオン二次電池
CN201980078106.4A CN113039669A (zh) 2018-12-05 2019-11-20 锂离子二次电池用正极电极、锂离子二次电池用电极糊料、锂离子二次电池
US17/298,366 US20220006076A1 (en) 2018-12-05 2019-11-20 Positive electrode for lithium ion secondary batteries, electrode paste for lithium ion secondary batteries, and lithium ion secondary battery
EP19892727.9A EP3893296A4 (en) 2018-12-05 2019-11-20 POSITIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY, ELECTRODE PASTE FOR LITHIUM-ION SECONDARY BATTERY AND LITHIUM-ION SECONDARY BATTERY
KR1020217016843A KR102305491B1 (ko) 2018-12-05 2019-11-20 리튬 이온 이차 전지용 정극 전극, 리튬 이온 이차 전지용 전극 페이스트, 리튬 이온 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-227889 2018-12-05
JP2018227889 2018-12-05

Publications (1)

Publication Number Publication Date
WO2020116160A1 true WO2020116160A1 (ja) 2020-06-11

Family

ID=70975444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045400 WO2020116160A1 (ja) 2018-12-05 2019-11-20 リチウムイオン二次電池用正極電極、リチウムイオン二次電池用電極ペースト、リチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20220006076A1 (ja)
EP (1) EP3893296A4 (ja)
JP (1) JP7259766B2 (ja)
KR (1) KR102305491B1 (ja)
CN (1) CN113039669A (ja)
WO (1) WO2020116160A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022199681A1 (zh) * 2021-03-25 2022-09-29 比亚迪股份有限公司 锂离子电池及动力车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252895A (ja) 2005-03-09 2006-09-21 Sony Corp 電池
WO2010053174A1 (ja) 2008-11-06 2010-05-14 株式会社ジーエス・ユアサコーポレーション リチウム二次電池用正極及びリチウム二次電池
JP2012043682A (ja) * 2010-08-20 2012-03-01 Toshiba Corp 組電池システム
JP2013089522A (ja) * 2011-10-20 2013-05-13 Tdk Corp 組電池及び蓄電装置
JP2018063191A (ja) * 2016-10-13 2018-04-19 カルソニックカンセイ株式会社 充電状態推定装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262143B2 (ja) 2008-01-31 2013-08-14 トヨタ自動車株式会社 正極体およびその製造方法
KR101182428B1 (ko) * 2010-07-20 2012-09-12 삼성에스디아이 주식회사 양극 및 이를 포함한 리튬 전지
US20120231341A1 (en) * 2011-03-09 2012-09-13 Jun-Sik Kim Positive active material, and electrode and lithium battery containing the positive active material
JP5939253B2 (ja) * 2011-07-04 2016-06-22 昭栄化学工業株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池
KR101560862B1 (ko) * 2012-08-02 2015-10-15 주식회사 엘지화학 출력 특성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
JP5847329B2 (ja) * 2012-11-14 2016-01-20 古河電気工業株式会社 正極活物質及びその製造方法、並びに非水電解質二次電池用正極、非水電解質二次電池
KR101895903B1 (ko) * 2012-12-21 2018-09-07 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN104300123B (zh) * 2014-03-20 2017-05-31 中航锂电(江苏)有限公司 一种混合正极材料、使用该正极材料的正极片及锂离子电池
CN105449269B (zh) * 2016-01-08 2018-07-24 深圳市沃特玛电池有限公司 一种锂离子电池
CN113299876B (zh) * 2018-02-26 2023-03-10 宁德新能源科技有限公司 极片和锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252895A (ja) 2005-03-09 2006-09-21 Sony Corp 電池
WO2010053174A1 (ja) 2008-11-06 2010-05-14 株式会社ジーエス・ユアサコーポレーション リチウム二次電池用正極及びリチウム二次電池
JP2012043682A (ja) * 2010-08-20 2012-03-01 Toshiba Corp 組電池システム
JP2013089522A (ja) * 2011-10-20 2013-05-13 Tdk Corp 組電池及び蓄電装置
JP2018063191A (ja) * 2016-10-13 2018-04-19 カルソニックカンセイ株式会社 充電状態推定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3893296A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022199681A1 (zh) * 2021-03-25 2022-09-29 比亚迪股份有限公司 锂离子电池及动力车辆

Also Published As

Publication number Publication date
KR102305491B1 (ko) 2021-09-27
EP3893296A4 (en) 2022-08-10
KR20210076147A (ko) 2021-06-23
CN113039669A (zh) 2021-06-25
JPWO2020116160A1 (ja) 2021-10-14
JP7259766B2 (ja) 2023-04-18
US20220006076A1 (en) 2022-01-06
EP3893296A1 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6946836B2 (ja) リチウム固体電池、およびリチウム固体電池の製造方法
JP2016021393A (ja) 二次電池用負極活物質及びその製造方法
JP4779323B2 (ja) 非水電解質リチウムイオン二次電池用正極材料およびその製造方法
JP6756279B2 (ja) 正極活物質の製造方法
JP2010095432A (ja) オリビン構造を有する多元系リン酸型リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池
JP5818115B2 (ja) 非水電解液二次電池およびその利用
KR102468252B1 (ko) 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극 및 이차 전지
EP2738844B1 (en) High capacity anode active material and rechargeable lithium battery comprising same
JP2017520892A (ja) リチウム電池用正極
KR20200092310A (ko) 전기 화학 소자용 도전재 페이스트, 전기 화학 소자 정극용 슬러리 조성물 및 그 제조 방법, 전기 화학 소자용 정극, 그리고 전기 화학 소자
JP7318569B2 (ja) 硫化物固体電解質、硫化物固体電解質の前駆体、全固体電池および硫化物固体電解質の製造方法
JP5392585B2 (ja) 非水電解液型リチウムイオン二次電池
JP2021009838A (ja) リチウムイオン二次電池用正極
JP6070222B2 (ja) 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系二次電池用正極を有する非水系二次電池
US20220077468A1 (en) Method of Manufacturing Electrode of All-Solid-State Battery and Electrode of All-Solid-State Battery Manufactured Using the Same
JP6805940B2 (ja) リチウムイオン二次電池およびその製造方法
WO2020116160A1 (ja) リチウムイオン二次電池用正極電極、リチウムイオン二次電池用電極ペースト、リチウムイオン二次電池
JP7371388B2 (ja) リチウムイオン二次電池用正極材料
WO2020261879A1 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
CN111788723B (zh) 用于锂离子电池的正极浆料
RU2542721C1 (ru) Композитный катодный материал литий-ионного аккумулятора на основе li3v2(po4)3со структурой насикон и способ его получения
WO2021060043A1 (ja) 硫黄変性ポリアクリロニトリル
WO2019189146A1 (ja) リチウムイオン二次電池、及びその作動方法
JP7264306B1 (ja) 電極およびリチウムイオン二次電池
JP7318789B1 (ja) 電極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565481

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217016843

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019892727

Country of ref document: EP

Effective date: 20210705