WO2017145654A1 - 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法 - Google Patents

非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法 Download PDF

Info

Publication number
WO2017145654A1
WO2017145654A1 PCT/JP2017/003182 JP2017003182W WO2017145654A1 WO 2017145654 A1 WO2017145654 A1 WO 2017145654A1 JP 2017003182 W JP2017003182 W JP 2017003182W WO 2017145654 A1 WO2017145654 A1 WO 2017145654A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
secondary battery
silicon compound
Prior art date
Application number
PCT/JP2017/003182
Other languages
English (en)
French (fr)
Inventor
貴一 廣瀬
博道 加茂
拓史 松野
玲子 酒井
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016192233A external-priority patent/JP6596405B2/ja
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP17756096.8A priority Critical patent/EP3407408B1/en
Priority to US16/077,951 priority patent/US10833323B2/en
Priority to KR1020187023971A priority patent/KR20180114061A/ko
Priority to CN202110624857.0A priority patent/CN113380982B/zh
Priority to CN201780013600.3A priority patent/CN108701825B/zh
Publication of WO2017145654A1 publication Critical patent/WO2017145654A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/28Ammonium phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/36Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • C01B33/325After-treatment, e.g. purification or stabilisation of solutions, granulation; Dissolution; Obtaining solid silicate, e.g. from a solution by spray-drying, flashing off water or adding a coagulant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a negative electrode active material for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, and a method for producing a negative electrode material for a nonaqueous electrolyte secondary battery.
  • This secondary battery is not limited to a small electronic device, but is also considered to be applied to a large-sized electronic device represented by an automobile or the like, or an electric power storage system represented by a house.
  • lithium ion secondary batteries are highly expected because they are small in size and easy to increase in capacity, and can obtain higher energy density than lead batteries and nickel cadmium batteries.
  • the above lithium ion secondary battery includes a positive electrode, a negative electrode, and a separator together with an electrolyte, and the negative electrode includes a negative electrode active material involved in a charge / discharge reaction.
  • the negative electrode active material As the negative electrode active material, a carbon material is widely used, but further improvement in battery capacity is required due to recent market demand.
  • silicon As a negative electrode active material, use of silicon as a negative electrode active material has been studied. This is because the theoretical capacity of silicon (4199 mAh / g) is 10 times or more larger than the theoretical capacity of graphite (372 mAh / g), so that significant improvement in battery capacity can be expected.
  • the development of a siliceous material as a negative electrode active material has been examined not only for silicon itself but also for compounds represented by alloys and oxides.
  • the shape of the active material has been studied from a standard coating type for carbon materials to an integrated type directly deposited on a current collector.
  • the negative electrode active material when silicon is used as the negative electrode active material as the main raw material, the negative electrode active material expands and contracts during charge and discharge, so that it tends to break mainly near the surface of the negative electrode active material. Further, an ionic material is generated inside the active material, and the negative electrode active material is easily broken. When the negative electrode active material surface layer is cracked, a new surface is generated thereby increasing the reaction area of the active material. At this time, a decomposition reaction of the electrolytic solution occurs on the new surface, and a coating that is a decomposition product of the electrolytic solution is formed on the new surface, so that the electrolytic solution is consumed. For this reason, the cycle characteristics are likely to deteriorate.
  • silicon and amorphous silicon dioxide are simultaneously deposited using a vapor phase method (see, for example, Patent Document 1). Further, in order to obtain a high battery capacity and safety, a carbon material (electron conductive material) is provided on the surface layer of the silicon oxide particles (see, for example, Patent Document 2). Furthermore, in order to improve cycle characteristics and obtain high input / output characteristics, an active material containing silicon and oxygen is produced, and an active material layer having a high oxygen ratio in the vicinity of the current collector is formed ( For example, see Patent Document 3). Further, in order to improve the cycle characteristics, oxygen is contained in the silicon active material, the average oxygen content is 40 at% or less, and the oxygen content is increased at a location close to the current collector. (For example, refer to Patent Document 4).
  • Si phase (for example, see Patent Document 5) by using a nanocomposite containing SiO 2, M y O metal oxide in order to improve the initial charge and discharge efficiency.
  • the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum and minimum molar ratios in the vicinity of the active material and current collector interface The active material is controlled within a range of 0.4 or less (see, for example, Patent Document 7).
  • a metal oxide containing lithium is used (see, for example, Patent Document 8).
  • a hydrophobic layer such as a silane compound is formed on the surface layer of the siliceous material (see, for example, Patent Document 9).
  • Patent Document 10 conductivity is imparted by using silicon oxide and forming a graphite film on the surface layer.
  • Patent Document 10 with respect to the shift value obtained from the Raman spectra for graphite coating, with broad peaks appearing at 1330 cm -1 and 1580 cm -1, their intensity ratio I 1330 / I 1580 is 1.5 ⁇ I 1330 / I 1580 ⁇ 3.
  • particles having a silicon microcrystalline phase dispersed in silicon dioxide are used in order to improve high battery capacity and cycle characteristics (see, for example, Patent Document 11).
  • silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1: y (0 ⁇ y ⁇ 2) is used (see, for example, Patent Document 12).
  • a mixed electrode of silicon and carbon is produced and the silicon ratio is designed to be 5 wt% or more and 13 wt% or less (see, for example, Patent Document 13).
  • lithium ion secondary battery As described above, in recent years, small electronic devices typified by mobile terminals and the like have been improved in performance and multifunction, and the lithium ion secondary battery as the main power source is required to increase the battery capacity. ing. As one method for solving this problem, development of a lithium ion secondary battery composed of a negative electrode using a siliceous material as a main material is desired.
  • a lithium ion secondary battery using a siliceous material is desired to have battery characteristics close to those of a lithium ion secondary battery using a carbon material.
  • the use of silicon oxide modified by insertion and partial desorption of Li as the negative electrode active material has improved the cycle retention rate and initial efficiency of the battery.
  • the modified silicon oxide since the modified silicon oxide has been modified using Li, its water resistance is relatively low.
  • the slurry containing the modified silicon oxide prepared during the production of the negative electrode is not sufficiently stabilized, and gas is generated due to the aging of the slurry, or the silicon oxide particles and the binder component are aggregated. Sedimentation (precipitation) sometimes occurred.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a negative electrode active material having high stability with respect to an aqueous slurry, high capacity, and good cycle characteristics and initial efficiency.
  • Another object of the present invention is to provide a method for producing a negative electrode material having high stability with respect to an aqueous slurry, high capacity, and good cycle characteristics and initial efficiency.
  • a negative electrode active material for a non-aqueous electrolyte secondary battery containing negative electrode active material particles
  • the negative electrode active material particles contain silicon compound particles containing a silicon compound containing oxygen
  • the silicon compound particles contain a Li compound
  • the negative electrode active material of the present invention has high water resistance because phosphate is adhered to the outermost layer portion of the silicon compound particles. Therefore, the stability of the aqueous slurry mixed with the negative electrode active material, which is produced at the time of manufacturing the negative electrode, is improved, and generation of gas and sedimentation can be suppressed. Therefore, if the negative electrode active material of the present invention is used, non-water having a high battery capacity and a high cycle maintenance ratio utilizing the original characteristics of silicon oxide (silicon compound containing oxygen) modified with Li. Electrolyte secondary batteries can be produced predominantly in industrial production.
  • the negative electrode active material particles containing silicon compound particles are also referred to as silicon-based active material particles.
  • the negative electrode active material containing the silicon-based active material particles is also referred to as a silicon-based active material.
  • the Li compound is preferably at least one selected from Li 2 SiO 3 and Li 2 Si 2 O 5.
  • Li 2 SiO 3 and Li 2 Si 2 O 5 are preferable because they are less soluble in water than Li 4 SiO 4 and exhibit relatively stable behavior in an aqueous slurry.
  • the phosphate is preferably an aluminum or ammonium phosphate.
  • Such a phosphate is preferable because higher effects (slurry stability, etc.) can be obtained.
  • the aluminum phosphate is preferably tertiary aluminum phosphate.
  • a certain level of effect can also be obtained with the first aluminum phosphate and the second aluminum phosphate, but the third aluminum phosphate is particularly preferable because a higher effect is obtained.
  • the ammonium phosphate is preferably at least one of ammonium phosphate and diammonium phosphate.
  • ammonium phosphates are particularly preferable because higher effects can be obtained.
  • the silicon compound particles have both the aluminum phosphate and the ammonium phosphate adhered to the outermost layer.
  • a negative electrode active material containing silicon compound particles having two types of phosphates adhered to the outermost layer is preferable because particularly high effects (slurry stability, etc.) can be obtained.
  • the content of the phosphate is preferably 0.1% by mass or more and 7% by mass or less with respect to the silicon compound particles.
  • a carbon coating layer is further provided between the phosphate and the silicon compound particles.
  • the ratio of silicon and oxygen constituting the silicon compound, SiO x: is preferably in the range of 0.5 ⁇ x ⁇ 1.6.
  • the negative electrode active material has better cycle characteristics.
  • the oxygen component constituting the silicon compound is present in combination with silicon dioxide, silicon state, among the peaks obtained from 29 Si-MAS-NMR spectrum, a peak derived from the silicon dioxide condition
  • the intensity is preferably smaller than the maximum intensity of the peak derived from Li 2 SiO 3 .
  • Silicon component dioxide is released and hard components after absorbing the Li, to become irreversible component of the anode active material, the smaller is preferable, based on the peaks derived from Li 2 SiO 3, derived from silicon dioxide state A smaller peak is preferred.
  • the silicon compound particles have a half-width (2 ⁇ ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more and a crystallite size due to the crystal plane. Is preferably 7.5 nm or less.
  • the silicon compound particles having such a half width and Si crystallite size have low crystallinity and a small amount of Si crystals, the battery characteristics can be improved.
  • the median diameter of the silicon compound particles is preferably 0.5 ⁇ m or more and 15 ⁇ m or less.
  • the median diameter is 0.5 ⁇ m or more, the area where the side reaction occurs on the surface of the silicon compound particles (area per unit mass of the silicon compound particles) is small, so no extra Li is consumed and the cycle maintenance rate of the battery Can be kept high. Further, if the median diameter is 15 ⁇ m or less, the expansion at the time of inserting Li is small, it is difficult to crack, and cracks are hardly generated. Furthermore, since the expansion of the silicon compound particles is small, the negative electrode active material layer is not easily destroyed during charging and discharging.
  • the present invention provides a nonaqueous electrolyte secondary battery comprising the negative electrode active material for a nonaqueous electrolyte secondary battery of the present invention.
  • Such a secondary battery has a high cycle maintenance ratio and initial efficiency, and can be manufactured industrially.
  • a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery comprising negative electrode active material particles containing silicon compound particles, Producing silicon compound particles containing a silicon compound containing oxygen; Modifying the silicon compound particles by inserting Li into the silicon compound particles; And manufacturing a negative electrode material for a non-aqueous electrolyte secondary battery using the silicon compound particles to which the phosphate is adhered.
  • a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery is provided.
  • a negative electrode material having a high battery capacity and a good cycle maintenance rate utilizing the original characteristics of silicon oxide modified using Li Obtainable. Furthermore, since the negative electrode material manufactured in this way contains the silicon compound particles to which the above-described phosphate is adhered, the slurry produced at the time of manufacturing the negative electrode becomes stable. That is, a negative electrode material capable of industrially producing a secondary battery can be obtained.
  • the negative electrode active material of the present invention can improve the stability of the slurry produced during the production of the secondary battery, and if this slurry is used, an industrially usable coating film can be formed. Capacity, cycle characteristics, and initial charge / discharge characteristics can be improved. Moreover, the secondary battery of the present invention containing this negative electrode active material can be produced industrially superiorly, and the battery capacity, cycle characteristics, and initial charge / discharge characteristics are good. Moreover, the same effect can be acquired also in the electronic device, electric tool, electric vehicle, electric power storage system, etc. which used the secondary battery of this invention.
  • the method for producing a negative electrode material of the present invention provides a negative electrode material that can improve the stability of a slurry produced during the production of a secondary battery and can improve battery capacity, cycle characteristics, and initial charge / discharge characteristics. Can be manufactured.
  • the negative electrode material which can produce the secondary battery excellent in a battery characteristic industrially predominantly can be obtained easily.
  • Lithium ion secondary batteries using silicon-based active materials as the main material are expected to have cycle characteristics and initial efficiency close to those of lithium ion secondary batteries using carbon materials. It is difficult to produce a stable slurry with a silicon-based active material modified with Li in order to obtain cycle characteristics and initial efficiency close to those of a secondary battery. Such an unstable slurry has a problem that it is difficult to produce a high-quality negative electrode because gas generation or sedimentation occurs at a relatively early stage after the slurry is produced.
  • the present inventors have made extensive studies in order to obtain a negative electrode active material capable of easily producing a nonaqueous electrolyte secondary battery having a high battery capacity and good cycle characteristics and initial efficiency.
  • the present invention has been reached.
  • the negative electrode active material of the present invention includes negative electrode active material particles.
  • the negative electrode active material particles contain silicon compound particles including a silicon compound containing oxygen.
  • the silicon compound particles contain a Li compound.
  • silicon compound particles are those in which phosphate is adhered to the outermost layer. That is, the silicon compound particles have a phosphate adhering material (adhered material) on the outermost layer.
  • “attachment” is a concept including “coating”. Therefore, for example, in the present invention, the phosphate may cover at least a part of the outermost layer portion of the silicon compound particles. In this case, the silicon compound particles have a phosphate coating (coating layer) on the outermost layer. Moreover, the phosphate may be contained other than the outermost layer part of the silicon compound particles.
  • a carbon coating layer is further provided between the phosphate and the silicon compound particles.
  • a carbon coating layer carbon film
  • the negative electrode active material of the present invention Since the negative electrode active material of the present invention has phosphate adhered to the outermost layer portion of the silicon compound particles, it has high water resistance against aqueous slurry. Conventionally, an aqueous slurry containing a silicon compound such as silicon oxide modified by insertion or desorption of Li changes with time, and gas generation and sedimentation occur at an early stage. For this reason, it is not suitable for mass production of secondary batteries.
  • the silicon compound particles have the phosphate adhering material as described above, the water resistance is improved, and gas generation and sedimentation due to aging of the slurry hardly occur. Therefore, for example, a stable coating film can be obtained when the slurry is applied to the current collector, and the binding property is improved. Furthermore, the cation side of the stabilized phosphate is likely to react with the carboxyl group of carboxymethyl cellulose (CMC) generally used as a binder, and the binding property is further improved.
  • CMC carboxymethyl cellulose
  • a non-aqueous electrolyte secondary battery having a high battery capacity and a good cycle retention ratio utilizing the original characteristics of silicon oxide modified with Li can be preferentially manufactured in industrial production.
  • Negative electrode for non-aqueous electrolyte secondary battery Then, the structure of the negative electrode of the secondary battery containing such a negative electrode active material of this invention is demonstrated.
  • FIG. 1 shows a cross-sectional view of a negative electrode containing the negative electrode active material of the present invention.
  • the negative electrode 10 is configured to have a negative electrode active material layer 12 on a negative electrode current collector 11.
  • the negative electrode active material layer 12 may be provided on both surfaces or only one surface of the negative electrode current collector 11.
  • the negative electrode current collector 11 may not be provided in the negative electrode of the nonaqueous electrolyte secondary battery of the present invention.
  • the negative electrode current collector 11 is an excellent conductive material and is made of a material that is excellent in mechanical strength.
  • Examples of the conductive material that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
  • the negative electrode current collector 11 preferably contains carbon (C) or sulfur (S) in addition to the main element. This is because the physical strength of the negative electrode current collector is improved.
  • the current collector contains the above-described element, there is an effect of suppressing electrode deformation including the current collector.
  • content of said content element is not specifically limited, Especially, it is preferable that it is 100 mass ppm or less, respectively. This is because a higher deformation suppressing effect can be obtained.
  • the surface of the negative electrode current collector 11 may be roughened or may not be roughened.
  • the roughened negative electrode current collector is, for example, a metal foil subjected to electrolytic treatment, embossing treatment, or chemical etching.
  • the non-roughened negative electrode current collector is, for example, a rolled metal foil.
  • the negative electrode active material layer 12 includes the negative electrode active material (silicon-based active material) of the present invention, and may further include a carbon-based active material in addition to the silicon-based active material as the negative electrode active material. Furthermore, other materials such as a thickener (also referred to as “binder” or “binder”) or a conductive aid may be included in battery design.
  • the shape of the negative electrode active material may be particulate.
  • the negative electrode active material of the present invention contains silicon compound particles containing a silicon compound containing oxygen.
  • the ratio of silicon to oxygen constituting the silicon compound is preferably in the range of SiO x : 0.5 ⁇ x ⁇ 1.6. If x is 0.5 or more, since the oxygen ratio is higher than that of silicon alone, the cycle characteristics are good. If x is 1.6 or less, the resistance of silicon oxide is not too high, which is preferable.
  • the lower the crystallinity of the silicon compound the better.
  • the full width at half maximum (2 ⁇ ) of the diffraction peak attributed to the Si (111) crystal plane obtained by X-ray diffraction of the silicon compound particles is 1.2 ° or more, and the crystallites attributed to the crystal plane It is desirable that the size is 7.5 nm or less.
  • the crystallinity is low and the amount of Si crystals present is small, not only the battery characteristics are improved, but also a stable Li compound can be generated.
  • the median diameter of the silicon compound particles is not particularly limited, but is preferably 0.5 ⁇ m or more and 15 ⁇ m or less. This is because, within this range, it is easy to occlude and release lithium ions during charging and discharging, and the silicon-based active material particles are difficult to break. If the median diameter is 0.5 ⁇ m or more, the surface area is not too large, so that side reactions are unlikely to occur during charging and discharging, and the battery irreversible capacity can be reduced. On the other hand, a median diameter of 15 ⁇ m or less is preferable because the silicon-based active material particles are difficult to break and a new surface is difficult to appear. Furthermore, for example, a negative electrode active material layer in which a carbon active material is mixed with a commonly used silicon-based active material is not easily destroyed during charging.
  • the silicon-based active material is preferably such that the Li compound contained in the silicon compound particles is at least one selected from Li 2 SiO 3 and Li 2 Si 2 O 5 . Since Li silicate is relatively more stable than other Li compounds, a silicon-based active material containing these Li compounds can obtain more stable battery characteristics. These Li compounds can be obtained by selectively changing a part of the SiO 2 component generated inside the silicon compound particles to a Li compound and modifying the silicon compound particles.
  • Li 4 SiO 4 is soluble in relatively water, when using an aqueous slurry, easily put melted during slurrying. Therefore, as the Li compound contained in the silicon compound particles, Li 2 SiO 3 and Li 2 Si 2 O 5 which are less soluble in water and relatively stable in an aqueous slurry as compared to Li 4 SiO 4 are included. preferable.
  • the Li compound inside the silicon compound particles can be quantified by NMR (nuclear magnetic resonance). NMR measurement can be performed, for example, under the following conditions. 29 Si MAS NMR (magic angle rotating nuclear magnetic resonance) Apparatus: 700 NMR spectrometer manufactured by Bruker, ⁇ Probe: 4mmHR-MAS rotor 50 ⁇ L, Sample rotation speed: 10 kHz, -Measurement environment temperature: 25 ° C.
  • an electrochemical method when modifying silicon compound particles, an electrochemical method, a modification by oxidation-reduction reaction, and a physical method such as thermal doping can be used.
  • the negative electrode active material of the present invention at least a part of the oxygen component constituting the silicon compound is present in a silicon dioxide state bonded to silicon, and of the peaks obtained from the 29 Si-MAS-NMR spectrum, silicon dioxide
  • the intensity of the peak derived from the state is preferably smaller than the maximum intensity of the peak derived from Li 2 SiO 3 .
  • the silicon dioxide component is a component that is difficult to release after occluding Li and becomes an irreversible component of the negative electrode active material.
  • the peak derived from Li 2 SiO 3 is given around -75 ppm as a chemical shift value obtained from the 29 Si-MAS-NMR spectrum.
  • the peak derived from the silicon dioxide state (SiO 2 region) is given as -95 to -150 ppm as the chemical shift value.
  • a peak derived from a silicon dioxide state as compared to a peak derived from the Li 2 SiO 3 is sufficiently small, in addition to the peaks derived from Li 2 SiO 3, It is more preferable that a peak derived from Si, Li 2 Si 2 O 5 or the like is also expressed. Further, among these peaks, when peaks derived from Li 2 SiO 3 is largest is more preferred. The stability of water resistance is highest in Li 2 Si 2 O 5, but Li 2 Si 2 O 5 has a smaller amount of Li relative to Si than Li 2 SiO 3 and Li 4 SiO 4, and has an effect of improving the initial efficiency. Slightly thinner.
  • Li 2 SiO 3 dissolves slowly in water, but by attaching phosphate to the outermost layer of the silicon compound particles as in the present invention, the water resistance of the negative electrode active material containing the silicon compound particles is greatly improved. can do.
  • Li 4 SiO 4 is the system that absorbs most Li, but is easily dissolved in water, and the adhesion effect of phosphate is reduced compared to Li 2 SiO 3 and Li 2 Si 2 O 5 .
  • the negative electrode active material of the present invention is one in which the silicon compound particles are adhered to the outermost layer portion with phosphate.
  • the metal contained in the phosphate is preferably a metal other than lithium, and examples thereof include titanium, magnesium, zirconium, and aluminum.
  • the phosphate contains such a metal element, the aqueous slurry in which the negative electrode active material of the present invention is mixed becomes more stable.
  • the phosphate is preferably an aluminum phosphate. This is because a certain level of effect (slurry stability, etc.) can also be obtained with titanium, magnesium, and zirconium, but higher effects can be obtained with an aluminum phosphate.
  • the aluminum phosphate is preferably tertiary aluminum phosphate.
  • the aqueous slurry mixed with the negative electrode active material of the present invention is particularly stable.
  • the first aluminum phosphate and the second aluminum phosphate also have a certain effect (slurry stability and the like), but the third aluminum phosphate is particularly preferable because a higher effect can be obtained.
  • the phosphate may be an ammonium phosphate.
  • the ammonium phosphate is preferably at least one of ammonium phosphate and diammonium phosphate. These ammonium phosphates are particularly preferable because higher effects can be obtained.
  • the silicon compound particles have both the aluminum phosphate and the ammonium phosphate adhered to the outermost layer.
  • a negative electrode active material containing silicon compound particles having two types of phosphates adhered to the outermost layer as described above is preferable because particularly high effects (slurry stability and the like) are obtained.
  • the content of phosphate is preferably 0.1% by mass or more and 7% by mass or less with respect to the silicon compound particles.
  • the phosphate content is 0.1% by mass or more, effects such as slurry stability can be sufficiently exhibited. If the phosphate content is 7% by mass or less, the thixotropy of the slurry mixed with the negative electrode active material does not become too high. Therefore, in the negative electrode obtained using this slurry, the active material layer is difficult to peel off, and the electrode structure is stabilized.
  • the negative electrode material included in the negative electrode is manufactured.
  • the negative electrode material can be produced as follows by the production method of the present invention. First, silicon compound particles containing a silicon compound containing oxygen are prepared. Next, a carbon coating layer is formed on the surface of the silicon compound particles. However, this step is not essential. Next, the silicon compound particles are modified by inserting Li into the silicon compound particles. At this time, part of Li inserted into the silicon compound particles may be detached. Furthermore, at the same time, a Li compound can be generated inside or on the surface of the silicon compound particles.
  • phosphate is adhered to the surface of the modified silicon compound particles.
  • a silicon compound particle can be used as a negative electrode active material particle, and a negative electrode material and a negative electrode can be manufactured by mixing with a conductive support agent or a binder.
  • the negative electrode material is manufactured by the following procedure, for example.
  • silicon compound particles containing a silicon compound containing oxygen are prepared.
  • the silicon compound contained oxygen the case of using silicon oxide represented by SiO x (0.5 ⁇ x ⁇ 1.6 ).
  • a raw material for generating silicon oxide gas is heated in a temperature range of 900 ° C. to 1600 ° C. in the presence of an inert gas or under reduced pressure to generate silicon oxide gas.
  • the raw material is a mixture of metal silicon powder and silicon dioxide powder, and considering the surface oxygen of the metal silicon powder and the presence of trace amounts of oxygen in the reactor, the mixing molar ratio is 0.8 ⁇ metal silicon powder / It is desirable that the silicon dioxide powder is in the range of ⁇ 1.3.
  • the Si crystallites in the particles are controlled by changing the preparation range and vaporization temperature, and by heat treatment after generation.
  • the generated gas is deposited on the adsorption plate.
  • the deposit is taken out with the temperature in the reactor lowered to 100 ° C. or lower, and pulverized and powdered using a ball mill, a jet mill or the like.
  • a carbon coating layer is formed on the surface layer of the obtained powder material (silicon oxide particles).
  • this step is not essential.
  • the carbon coating layer is effective for further improving the battery characteristics of the negative electrode active material.
  • Pyrolysis CVD is desirable as a method for forming a carbon coating layer on the surface layer of the powder material.
  • Pyrolysis CVD sets a powder material in a furnace, fills the furnace with a hydrocarbon gas, and raises the temperature in the furnace.
  • the decomposition temperature is not particularly limited, but is particularly preferably 1200 ° C. or lower. More desirably, the temperature is 950 ° C. or lower, and unintended disproportionation of silicon oxide can be suppressed.
  • Hydrocarbon gas is not particularly limited, 3 ⁇ n of C n H m composition it is desirable. This is because the low production cost and the physical properties of the decomposition products are good.
  • the silicon oxide particles are modified by inserting Li into the silicon oxide particles.
  • the modification of the silicon oxide particles by the insertion and desorption of lithium can be performed using a thermal doping method.
  • the modification can be performed by mixing silicon oxide particles with LiH powder or Li powder and heating in a non-oxidizing atmosphere.
  • an Ar atmosphere can be used as the non-oxidizing atmosphere.
  • LiH powder or Li powder and silicon oxide particles are sufficiently mixed in an Ar atmosphere, sealed, and homogenized by stirring the sealed container. Thereafter, heating is performed in the range of 700 ° C. to 750 ° C. for reforming.
  • the heated powder is sufficiently cooled, and then washed with an alkaline water, weak acid, or pure water in which alcohol or lithium carbonate is dissolved. Etc. can be used.
  • phosphate is adhered to the surface of the modified silicon oxide particles.
  • phosphate can be attached to the surface of the modified silicon oxide particles by the following method (wet mixing method). That is, in a liquid in which phosphate is dispersed in ethanol or water, it is mixed with silicon oxide particles, filtered, and the resulting powder is dried to form phosphate on the surface of the modified silicon oxide particles. Can be attached. At this time, a part of lithium silicate contained in the silicon oxide particles may react with the phosphate to generate silicate. This reaction proceeds according to the state of lithium silicate contained in the silicon oxide particles.
  • the phosphate and the lithium silicate may partially react, and the lithium silicate and the unreacted phosphate may remain on at least a part of the surface of the silicon oxide particles, the surface of the carbon coating, or both. Further, the reaction does not proceed, and phosphate may adhere to the surface of the modified silicon oxide particles, and silicate may not adhere. In this way, phosphate can be adhered to the surface of the modified silicon oxide particles. More specifically, for example, phosphate can be adhered to the surface of the modified silicon oxide particles by the following procedure.
  • ethanol, silicon oxide particles after modification of one quarter of the mass of ethanol, and tertiary aluminum phosphate equivalent to 3.0% by mass of the modified silicon oxide particles in a container Charge and stir for 3 and a half hours. After stirring, ethanol is removed by suction filtration, and the silicon oxide particles are vacuum-dried at 30 ° C. for 12 hours. At this time, the mass of the phosphate adhering material can be controlled by changing the mass of the third aluminum phosphate added simultaneously with the modified silicon oxide particles.
  • the reaction conditions are not limited to the above-mentioned conditions, and the type and amount of the solvent, reaction time, etc. can be appropriately changed as long as the phosphate can be adhered to the surface of the modified silicon oxide particles. It is.
  • the method of attaching phosphate to the surface of the silicon oxide particles is not limited to the above wet mixing method.
  • phosphate can be adhered to the surface of the silicon oxide particles by dry mixing.
  • silicon oxide particles and phosphate are dry-mixed by using a known processing apparatus (Hosokawa Micron Nobilta (R) NOB, Hosokawa Micron Nauta Mixer (R) DBX, etc.), and phosphate on the surface of the silicon oxide particles. Can be attached.
  • a known processing apparatus Hosokawa Micron Nobilta (R) NOB, Hosokawa Micron Nauta Mixer (R) DBX, etc.
  • the silicon-based active material particles including the silicon oxide particles having the phosphate adhering material are mixed with the carbon-based active material as necessary. And after mixing these negative electrode active materials and other materials, such as a binder and a conductive support agent, to make a negative electrode mixture, an organic solvent or water is added to make a slurry.
  • the negative electrode mixture slurry is applied to the surface of the negative electrode current collector 11 and dried to form the negative electrode active material layer 12. At this time, a heating press or the like may be performed as necessary. As described above, the negative electrode of the nonaqueous electrolyte secondary battery of the present invention can be produced.
  • the nonaqueous electrolyte secondary battery of the present invention includes the negative electrode active material for a nonaqueous electrolyte secondary battery of the present invention.
  • the nonaqueous electrolyte secondary battery of the present invention will be described using a laminate film type secondary battery as an example.
  • a laminated film type lithium ion secondary battery 30 shown in FIG. 2 is one in which a wound electrode body 31 is accommodated mainly in a sheet-like exterior member 35.
  • the wound electrode body 31 has a separator between a positive electrode and a negative electrode, and is wound.
  • a separator is provided between the positive electrode and the negative electrode and a laminate is accommodated.
  • the positive electrode lead 32 is attached to the positive electrode
  • the negative electrode lead 33 is attached to the negative electrode.
  • the outermost peripheral part of the electrode body is protected by a protective tape.
  • the positive and negative electrode leads 32 and 33 are led out in one direction from the inside of the exterior member 35 to the outside, for example.
  • the positive electrode lead 32 is formed of a conductive material such as aluminum
  • the negative electrode lead 33 is formed of a conductive material such as nickel or copper.
  • the exterior member 35 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order.
  • This laminate film is formed of two films so that the fusion layer faces the electrode body 31.
  • the outer peripheral edges of the fusion layer are bonded together with an adhesive or an adhesive.
  • the fused part is, for example, a film such as polyethylene or polypropylene, and the metal part is aluminum foil or the like.
  • the protective layer is, for example, nylon.
  • An adhesion film 34 is inserted between the exterior member 35 and the positive and negative electrode leads to prevent intrusion of outside air.
  • This material is, for example, polyethylene, polypropylene, or polyolefin resin.
  • the positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector, similarly to the negative electrode 10 of FIG.
  • the positive electrode current collector is made of, for example, a conductive material such as aluminum.
  • the positive electrode active material layer includes any one or more of positive electrode materials capable of occluding and releasing lithium ions, and other materials such as a positive electrode binder, a positive electrode conductive additive, and a dispersant depending on the design. May be included. In this case, details regarding the positive electrode binder and the positive electrode conductive additive are the same as, for example, the negative electrode binder and negative electrode conductive additive already described.
  • a lithium-containing compound is desirable.
  • the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound having lithium and a transition metal element.
  • compounds having at least one of nickel, iron, manganese and cobalt are preferable.
  • These chemical formulas are represented by, for example, Li x M 1 O 2 or Li y M 2 PO 4 .
  • M 1 and M 2 represent at least one transition metal element.
  • the values of x and y vary depending on the battery charge / discharge state, but are generally expressed as 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
  • Examples of the composite oxide having lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt composite oxide.
  • Examples of the lithium nickel cobalt composite oxide include lithium nickel cobalt aluminum composite oxide (NCA) and lithium nickel cobalt manganese composite oxide (NCM).
  • Examples of the phosphate compound having lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1)). Is mentioned. If these positive electrode materials are used, a high battery capacity can be obtained, and excellent cycle characteristics can also be obtained.
  • the negative electrode has the same configuration as the negative electrode 10 for lithium ion secondary battery in FIG. 1 described above, and has, for example, a negative electrode active material layer on both sides of the current collector.
  • This negative electrode preferably has a negative electrode charge capacity larger than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material agent. Thereby, precipitation of lithium metal on the negative electrode can be suppressed.
  • the positive electrode active material layer is provided on a part of both surfaces of the positive electrode current collector, and similarly, the negative electrode active material layer is provided on a part of both surfaces of the negative electrode current collector.
  • the negative electrode active material layer provided on the negative electrode current collector is provided with a region where there is no opposing positive electrode active material layer. This is to perform a stable battery design.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing a short circuit due to contact between the two electrodes.
  • the separator is formed of a porous film made of, for example, a synthetic resin or ceramic.
  • the separator may have a laminated structure in which two or more porous films are laminated. Examples of the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
  • Electrode At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolytic solution).
  • This electrolytic solution has an electrolyte salt dissolved in a solvent, and may contain other materials such as additives.
  • a non-aqueous solvent for example, a non-aqueous solvent can be used.
  • the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran.
  • a high viscosity solvent such as ethylene carbonate or propylene carbonate
  • a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate. This is because the dissociation property and ion mobility of the electrolyte salt are improved.
  • the solvent additive contains an unsaturated carbon bond cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed.
  • unsaturated carbon bond cyclic ester carbonate include vinylene carbonate and vinyl ethylene carbonate.
  • sultone cyclic sulfonic acid ester
  • solvent additive examples include propane sultone and propene sultone.
  • the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
  • the acid anhydride include propanedisulfonic acid anhydride.
  • the electrolyte salt can contain, for example, any one or more of light metal salts such as lithium salts.
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
  • the content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ion conductivity is obtained.
  • a positive electrode is manufactured using the positive electrode material described above.
  • a positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conductive additive are mixed to form a positive electrode mixture, which is then dispersed in an organic solvent to form a positive electrode mixture slurry.
  • the mixture slurry is applied to the positive electrode current collector with a coating apparatus such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer.
  • the positive electrode active material layer is compression molded with a roll press or the like. At this time, heating may be performed or compression may be repeated a plurality of times.
  • a negative electrode is produced by forming a negative electrode active material layer on the negative electrode current collector using the same operating procedure as the production of the negative electrode 10 for lithium ion secondary batteries described above.
  • an electrolyte solution is prepared.
  • the positive electrode lead 32 is attached to the positive electrode current collector and the negative electrode lead 33 is attached to the negative electrode current collector by ultrasonic welding or the like (see FIG. 2).
  • the positive electrode and the negative electrode are laminated or wound via a separator to produce a wound electrode body 31, and a protective tape is bonded to the outermost periphery.
  • the wound body is molded so as to have a flat shape.
  • the insulating portions of the exterior member are bonded to each other by a thermal fusion method, and the wound electrode body is opened in only one direction. Enclose.
  • the laminated film type secondary battery 30 can be manufactured as described above.
  • the negative electrode utilization rate during charge / discharge is preferably 93% or more and 99% or less. If the negative electrode utilization rate is in the range of 93% or more, the initial charge efficiency does not decrease, and the battery capacity can be greatly improved. Moreover, if the negative electrode utilization rate is in the range of 99% or less, Li is not precipitated and safety can be ensured.
  • Example 1-1 The laminate film type secondary battery 30 shown in FIG. 2 was produced by the following procedure.
  • the positive electrode active material is 95 parts by mass of lithium nickel cobalt aluminum composite oxide (LiNi 0.7 Co 0.25 Al 0.05 O), 2.5 parts by mass of positive electrode conductive additive (acetylene black), and a positive electrode binder. (Polyvinylidene fluoride, PVDF) 2.5 parts by mass were mixed to obtain a positive electrode mixture.
  • the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone, NMP) to obtain a paste slurry.
  • the slurry was applied to both surfaces of the positive electrode current collector with a coating apparatus having a die head, and dried with a hot air drying apparatus. At this time, a positive electrode current collector having a thickness of 15 ⁇ m was used. Finally, compression molding was performed with a roll press.
  • a negative electrode was produced.
  • a silicon-based active material was prepared as follows. A raw material (vaporization starting material) mixed with metallic silicon and silicon dioxide is placed in a reactor, and the vaporized material in a vacuum atmosphere of 10 Pa is deposited on an adsorption plate and cooled sufficiently. By taking out and pulverizing with a ball mill, silicon oxide particles (silicon compound particles) were obtained. After adjusting the particle size of the silicon oxide particles, a carbon coating layer was formed by performing thermal CVD.
  • LiH powder having a mass corresponding to 4% by mass with respect to the silicon oxide particles on which the carbon coating layer was formed was mixed in an argon atmosphere and stirred with a shaker. Thereafter, the stirred powder was subjected to a heat treatment at 740 ° C. in an atmosphere control furnace, whereby lithium was inserted into the silicon oxide particles to perform modification.
  • the modified silicon oxide particles were put into a mixed solution of ethanol and primary aluminum phosphate, stirred, filtered and dried to remove ethanol.
  • the first aluminum phosphate was adhered to the surface of the silicon oxide particles and the surface of the carbon coating layer.
  • the modified silicon oxide particles were covered with the first aluminum phosphate. In this way, silicon-based active material particles composed of silicon oxide particles having a carbon coating layer and a phosphate coating on the surface were produced.
  • the silicon-based active material particles and the carbon-based active material were blended at a mass ratio of 1: 9 to prepare a negative electrode active material.
  • a carbon-based active material a mixture of natural graphite and artificial graphite coated with a pitch layer at a mass ratio of 5: 5 was used.
  • the median diameter of the carbon-based active material was 20 ⁇ m.
  • the produced negative electrode active material conductive additive 1 (carbon nanotube, CNT), conductive additive 2 (carbon fine particles having a median diameter of about 50 nm), styrene butadiene rubber (styrene butadiene copolymer, hereinafter referred to as SBR), Carboxymethylcellulose (hereinafter referred to as CMC) was mixed at a dry mass ratio of 92.5: 1: 1: 2.5: 3, and then diluted with pure water to obtain a negative electrode mixture slurry.
  • SBR and CMC are negative electrode binders (negative electrode binder).
  • the negative electrode mixture slurry in order to measure the stability of the negative electrode mixture slurry, 30 g of a part of the prepared negative electrode mixture slurry is taken out separately from the one for preparing the secondary battery, stored at 20 ° C., and the negative electrode mixture slurry is prepared. After 6 hours, 24 hours, 48 hours, 72 hours, 96 hours, 120 hours, 144 hours, and 1 week (168 hours), gas generation and sedimentation after 48 hours It was confirmed.
  • the negative electrode current collector an electrolytic copper foil (thickness 15 ⁇ m) was used. Finally, the negative electrode mixture slurry was applied to the negative electrode current collector and dried in a vacuum atmosphere at 100 ° C. for 1 hour. The amount of deposition (also referred to as area density) of the negative electrode active material layer per unit area on one side of the negative electrode after drying was 5 mg / cm 2 .
  • an electrolyte salt lithium hexafluorophosphate: LiPF 6
  • FEC fluoroethylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • an electrolyte salt lithium hexafluorophosphate: LiPF 6
  • the content of the electrolyte salt was 1.0 mol / kg with respect to the solvent.
  • 1.5% by mass of vinylene carbonate (VC) was added to the obtained electrolytic solution.
  • a secondary battery was assembled as follows. First, an aluminum lead was ultrasonically welded to one end of the positive electrode current collector, and a nickel lead was welded to the negative electrode current collector. Subsequently, a positive electrode, a separator, a negative electrode, and a separator were laminated in this order and wound in the longitudinal direction to obtain a wound electrode body. The end portion was fixed with a PET protective tape. As the separator, a laminated film 12 ⁇ m in which a film mainly composed of porous polyethylene was sandwiched between films mainly composed of porous polypropylene was used.
  • the outer peripheral edges except for one side were heat-sealed, and the electrode body was housed inside.
  • the exterior member a nylon film, an aluminum foil, and an aluminum laminate film in which a polypropylene film was laminated were used.
  • an electrolyte prepared from the opening was injected, impregnated in a vacuum atmosphere, and then heat-sealed and sealed.
  • the cycle characteristics were examined as follows. First, in order to stabilize the battery, charge and discharge was performed for 2 cycles at 0.2 C in an atmosphere at 25 ° C., and the discharge capacity at the second cycle was measured. Subsequently, charge and discharge were performed until the total number of cycles reached 499 cycles, and the discharge capacity was measured each time. Finally, the discharge capacity at the 500th cycle obtained by 0.2 C charge / discharge was divided by the discharge capacity at the second cycle to calculate a capacity retention rate (hereinafter also simply referred to as a retention rate). In the normal cycle, that is, from the 3rd cycle to the 499th cycle, charging and discharging were performed with a charge of 0.7 C and a discharge of 0.5 C.
  • the initial efficiency of the silicon-based active material alone was calculated as follows. First, the produced silicon-based active material and polyacrylic acid were mixed at a mass ratio of 85:15, and this mixture was applied to a copper foil. The area density of the mixture applied at this time was about 2 mg / cm 2 . Thereafter, after vacuum drying at 90 ° C. for 1 hour, constant current and constant voltage charging was started at a voltage of 0 V and a current density of 0.2 mA / cm 2 using a counter electrode Li in the form of a 2032 size coin battery. And constant current constant voltage charge was stopped when the electric current value became 0.1 mA. Subsequently, constant current discharge was performed and the discharge was stopped when the voltage reached 1.2V.
  • the current density during discharging was the same as that for charging.
  • the initial efficiency of the silicon-based active material alone is (discharge capacity) / (charge capacity) ⁇ 100 ( %).
  • the initial efficiency of SiOx alone was calculated using this formula.
  • Example 1-2 The cycle characteristics of the secondary battery were evaluated in the same procedure as in Example 1-1 except that second aluminum phosphate was used as the coating material (adhesive material).
  • Example 1-3 The cycle characteristics of the secondary battery were evaluated in the same procedure as in Example 1-1 except that tertiary aluminum phosphate was used as the coating material.
  • Example 1-4 The cycle characteristics of the secondary battery were evaluated in the same procedure as in Example 1-1 except that ammonium phosphate was used as the coating material.
  • Example 1-5 The cycle characteristics of the secondary battery were evaluated in the same procedure as in Example 1-1 except that diammonium phosphate was used as the coating material.
  • Example 1-6 The cycle characteristics of the secondary battery were evaluated in the same procedure as in Example 1-1 except that tertiary aluminum phosphate and ammonium phosphate were used as the coating material. At this time, the content of the third aluminum phosphate was 2% by mass with respect to the silicon compound particles, and the content of the ammonium phosphate was 1% by mass with respect to the silicon compound particles.
  • Example 1--7 The cycle characteristics of the secondary battery were evaluated in the same procedure as in Example 1-1, except that tertiary aluminum phosphate and diammonium phosphate were used as the coating materials. At this time, the content of the third aluminum phosphate was 2% by mass with respect to the silicon compound particles, and the content of the diammonium phosphate was 1% by mass with respect to the silicon compound particles.
  • Example 1-8 The method of attaching the phosphate to the surface of the silicon oxide particles was changed from wet mixing to dry mixing using Hosokawa Micron Nobilta (R) NOB in the same procedure as in Example 1-3.
  • the cycle characteristics were evaluated. Specifically, 3 g of tertiary aluminum phosphate was added to 100 g of silicon oxide particles (SiOx), and a treatment using nobilta (nobilta treatment) was performed to attach the third aluminum phosphate to the surface of the silicon oxide particles.
  • the nobilta treatment time was 30 seconds.
  • Example 1-9 The method for adhering phosphate to the surface of the silicon oxide particles was changed from wet mixing to dry mixing using Hosokawa Micron Nautamixer (R) DBX, in the same procedure as in Example 1-3.
  • the cycle characteristics were evaluated. Specifically, 3 g of tertiary aluminum phosphate was added to 100 g of silicon oxide particles (SiOx), and mixing was performed using a Nauta mixer to attach the third aluminum phosphate to the surface of the silicon oxide particles. The mixing time was 1 hour.
  • FIG. 3 shows a 29 Si-MAS-NMR spectrum measured from the silicon compound particles in Example 1-3. As shown in FIG. 3, in Example 1-3, the relationship between “A” and “B” was A> B.
  • Table 1 shows the evaluation results of Examples 1-1 to 1-9 and Comparative Examples 1-1 to 1-2.
  • Comparative Example 1-1 when reforming is not performed (Comparative Example 1-1), the initial efficiency of SiOx alone is low and the battery capacity is difficult to increase. However, the slurry is stable and has good battery cycle characteristics. Comparative Example 1-2 is an example in which modification was performed using a Li source in order to increase the battery capacity. At this time, Li silicate is generated inside the silicon compound particles containing the Li compound. Li silicate has low stability to aqueous slurry and elutes. Therefore, hydrogen is generated from the slurry, which is not industrially feasible. Examples 1-1 to 1-3 are examples in which first to third aluminum phosphates were adhered to the outermost layer portion of silicon compound particles to produce a slurry.
  • Examples 1-4 and 1-5 are examples in which ammonium phosphate was adhered to the outermost layer portion of silicon compound particles to produce a slurry. Good results were also obtained in this case.
  • Examples 1-6 and 1-7 are examples in which both aluminum phosphate and ammonium phosphate were adhered to the outermost layer portion of the silicon compound particles to produce a slurry. In this case, particularly good results were obtained.
  • Examples 1-8 and 1-9 are examples in which a dry mixing method was used as a method of attaching phosphate to the surface of silicon oxide particles. Even in this case, good results were obtained as in Examples 1-1 to 1-7 using the wet mixing method.
  • Examples 2-1 to 2-7 The cycle characteristics of the secondary battery were evaluated in the same procedure as in Example 1-3, except that the amount of the third aluminum phosphate serving as the coating material was changed as shown in Table 2. The results are shown in Table 2. In addition, as the quantity of the coating material in Table 2, the quantity with respect to the mass of silicon compound particles is used. In Tables 2 to 7, “with Li silicate” means that the silicon compound particles contain Li 2 SiO 3 and Li 2 Si 2 O 5 .
  • the slurry be stable for 3 days (for example, it is possible to make a slurry on Friday and apply from Monday). From the above viewpoint, it is considered that the more industrial case is when the amount of the coating material is 0.1% by mass or more. However, even when the amount of the coating material is small, the stability of the slurry is improved as compared with Comparative Example 1-2. When the content of the coating material is 7% by mass or less, gas generation and the like are suppressed, and the thixotropy of the slurry does not become too strong, so that problems in the coating process are unlikely to occur. Therefore, the electrode state is stable and the battery characteristics are good.
  • Examples 3-1 to 3-4 The cycle characteristics of the secondary battery were evaluated in the same procedure as in Example 1-3, except that the oxygen amount of the silicon compound was changed as shown in Table 3. The results are shown in Table 3.
  • Example 4-1 The cycle characteristics of the secondary battery were evaluated in the same procedure as in Example 1-3, except that the amount of LiH charged was about half that in Example 1-3 and the amount of Li compound produced was adjusted. . The results are shown in Table 4.
  • Example 4-1 in which the amount of LiH charged was about half that of Example 1-3, the initial efficiency of SiOx alone was improved compared to Comparative Example 1-1, but the increase was increased.
  • the width was about half that of Example 1-3.
  • A> B in Example 1-3 but A ⁇ B in Example 4-1. From this, it was found that the A and B values have a relationship of A> B when the initial efficiency of SiOx alone is 80% or more, especially when the efficiency is high.
  • Example 5-6 The cycle characteristics of the secondary battery were evaluated in the same procedure as in Example 1-3 except that the crystallinity of the silicon compound particles was changed. The results are shown in Table 5.
  • the full width at half maximum (2 ⁇ ) of the diffraction peak attributable to the Si (111) crystal plane obtained by X-ray diffraction of the modified silicon compound particles of Example 1-3 is 1.271 °, and the crystal plane Si ( 111), the crystallite size was 6.63 nm. This is because part of the silicon compound was disproportionated and crystallization progressed because the thermal doping method was used for the modification.
  • the modified silicon compound particles contained lithium silicate. When the crystallinity is low, since the Si grains do not easily grow even after repeated charge and discharge, the battery cycle characteristics tend not to deteriorate. As shown in Table 5, the slurry stability required from the time until gas generation and the like could be maintained even when the crystallinity of the silicon compound particles was changed.
  • Example 6-1 The cycle characteristics of the secondary battery were evaluated in the same procedure as in Example 1-3 except that the carbon coating layer was not formed. The results are shown in Table 6.
  • the carbon coating layer was formed as in Example 1-3, the conductivity was improved and the battery characteristics were improved.
  • Example 7-1 to 7-6 The cycle characteristics of the secondary battery were evaluated in the same procedure as in Example 1-3, except that the median diameter of the silicon compound particles was changed as shown in Table 7. The results are shown in Table 7.
  • the median diameter of the silicon compound particles was 0.5 ⁇ m or more, the specific surface area was not too large, and as a result, gas generation hardly occurred. If the median diameter of the silicon compound particles is 15 ⁇ m or less, the expansion / contraction stress due to charge / discharge becomes small, and the negative electrode active material layer is not easily destroyed during charge / discharge. In addition, the silicon compound particles are difficult to break, and the battery cycle characteristics are not easily lowered.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、負極活物質粒子を含む非水電解質二次電池用負極活物質であって、前記負極活物質粒子は、酸素が含まれるケイ素化合物を含むケイ素化合物粒子を含有し、前記ケイ素化合物粒子は、Li化合物を含有し、前記ケイ素化合物粒子が、最表層部にリン酸塩が付着したものであることを特徴とする非水電解質二次電池用負極活物質である。これにより、水系スラリーに対する安定性が高く、高容量であるとともに、サイクル特性及び初回効率が良好な負極活物質が提供される。

Description

非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
 本発明は、非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法に関する。
 近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
 その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
 上記のリチウムイオン二次電池は、正極及び負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。
 この負極活物質としては、炭素材料が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素材では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
 しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張及び収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
 これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討がなされている。
 具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性を向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
 また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。
 また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するラマンスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。また、高い電池容量、サイクル特性の改善のため、ケイ素と炭素の混合電極を作製しケイ素比率を5wt%以上13wt%以下で設計している(例えば、特許文献13参照)。
特開2001-185127号公報 特開2002-042806号公報 特開2006-164954号公報 特開2006-114454号公報 特開2009-070825号公報 特開2008-282819号公報 特開2008-251369号公報 特開2008-177346号公報 特開2007-234255号公報 特開2009-212074号公報 特開2009-205950号公報 特許第2997741号明細書 特開2010-092830号公報
 上述したように、近年、モバイル端末などに代表される小型の電子機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。
 また、ケイ素材を用いたリチウムイオン二次電池は、炭素材を用いたリチウムイオン二次電池と同等に近い電池特性が望まれている。そこで、Liの挿入、一部脱離により改質されたケイ素酸化物を負極活物質として使用することで、電池のサイクル維持率、及び初回効率を改善してきた。しかしながら、改質後のケイ素酸化物はLiを用いて改質されたため、比較的耐水性が低い。これにより、負極の製造時に作製する、上記改質後のケイ素酸化物を含むスラリーの安定化が不十分となりスラリーの経時変化によってガスが発生する、またはケイ素酸化物の粒子とバインダ成分が凝集した沈降(沈殿)が発生することがあった。そのため、炭素系活物質の塗布に従来から一般的に使われている装置等を使用することができない場合が有ったり、または使用しづらいという問題があった。このように、Liを用いた改質によって、初期効率及びサイクル維持率を改善したケイ素酸化物を使用する場合、水を含むスラリーの安定性が不十分となるため、二次電池の工業的な生産において優位な非水電解質二次電池用負極活物質を提案するには至っていなかった。
 本発明は前述のような問題に鑑みてなされたもので、水系スラリーに対する安定性が高く、高容量であるとともに、サイクル特性及び初回効率が良好な負極活物質を提供することを目的とする。
 また、本発明は、水系スラリーに対する安定性が高く、高容量であるとともに、サイクル特性及び初回効率が良好な負極材の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明では、負極活物質粒子を含む非水電解質二次電池用負極活物質であって、
 前記負極活物質粒子は、酸素が含まれるケイ素化合物を含むケイ素化合物粒子を含有し、
 前記ケイ素化合物粒子は、Li化合物を含有し、
 前記ケイ素化合物粒子が、最表層部にリン酸塩が付着したものであることを特徴とする非水電解質二次電池用負極活物質を提供する。
 本発明の負極活物質は、ケイ素化合物粒子の最表層部にリン酸塩が付着したものであるため耐水性が高い。よって負極製造時に作製する、この負極活物質を混合した水系スラリーの安定性が向上し、ガス及び沈降の発生を抑制できる。そのため、本発明の負極活物質を使用すれば、Liを用いて改質されたケイ素酸化物(酸素が含まれるケイ素化合物)本来の特性を生かした高い電池容量及び高いサイクル維持率を有する非水電解質二次電池を工業的な生産において優位に生産可能となる。なお、以下、ケイ素化合物粒子を含有する負極活物質粒子のことを、ケイ素系活物質粒子とも呼称する。また、このケイ素系活物質粒子を含む負極活物質のことを、ケイ素系活物質とも呼称する。
 また、前記Li化合物は、LiSiO及びLiSiから選ばれる1種以上であることが好ましい。
 LiSiO及びLiSiは、LiSiOと比べて、水に溶けづらく、水系スラリー中で比較的安定な挙動を示すため好ましい。
 また、前記リン酸塩は、アルミニウムまたはアンモニウムのリン酸塩であることが好ましい。
 このようなリン酸塩であれば、より高い効果(スラリー安定性等)が得られるため好ましい。
 この場合、前記アルミニウムのリン酸塩は、第3リン酸アルミニウムであることが好ましい。
 第1リン酸アルミニウム及び第2リン酸アルミニウムにおいても一定以上の効果(スラリー安定性等)が得られるが、第3リン酸アルミニウムは、より高い効果が得られるため、特に好ましい。
 また、前記アンモニウムのリン酸塩は、リン酸アンモニウム及びリン酸二アンモニウムのうち少なくとも1種であることが好ましい。
 これらのアンモニウムのリン酸塩は、より高い効果が得られるため、特に好ましい。
 また、ケイ素化合物粒子が、最表層部にアルミニウムのリン酸塩及びアンモニウムのリン酸塩の両方が付着したものであることが好ましい。
 このように最表層部に2種類のリン酸塩が付着したケイ素化合物粒子を含有する負極活物質であれば、特に高い効果(スラリー安定性等)が得られるため好ましい。
 また、前記リン酸塩の含有量は、前記ケイ素化合物粒子に対して、0.1質量%以上7質量%以下であることが好ましい。
 このような含有量であれば、スラリー安定性等の効果を十分発現しつつ、この負極活物質を混合したスラリーのチキソ性が高くなるのを防ぐことができる。
 また、前記リン酸塩と前記ケイ素化合物粒子との間に、更に炭素被覆層を有することが好ましい。
 このように、炭素被覆層を有することで、導電性に優れた負極活物質となる。
 また、前記ケイ素化合物を構成するケイ素と酸素の比は、SiO:0.5≦x≦1.6の範囲であることが好ましい。
 このようなケイ素化合物、すなわち、SiO(0.5≦x≦1.6)で表される酸化珪素を含む負極活物質であれば、サイクル特性がより良好な負極活物質となる。
 また、前記ケイ素化合物を構成する酸素成分の少なくとも一部は二酸化ケイ素状態でケイ素と結合して存在し、29Si-MAS-NMRスペクトルから得られるピークのうち、前記二酸化ケイ素状態に由来するピークの強度が、LiSiOに由来するピークの最大強度よりも小さいことが好ましい。
 二酸化ケイ素成分は、Liを吸蔵した後に放出しづらい成分であり、負極活物質の不可逆成分になるため、少ない方が好ましく、LiSiOに由来するピークを基準として、二酸化ケイ素状態に由来するピークが小さい方が好ましい。
 また、前記ケイ素化合物粒子は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズが7.5nm以下であることが好ましい。
 このような半値幅及びSi結晶子サイズを有するケイ素化合物粒子は、結晶性が低くSi結晶の存在量が少ないため、電池特性を向上させることができる。
 また、前記ケイ素化合物粒子のメディアン径が0.5μm以上15μm以下であることが好ましい。
 メディアン径が0.5μm以上であれば、ケイ素化合物粒子の表面における副反応が起きる面積(ケイ素化合物粒子の単位質量当たりの面積)が小さいため、Liを余分に消費せず、電池のサイクル維持率を高く維持できる。また、メディアン径が15μm以下であれば、Li挿入時の膨張が小さく、割れ難くなり、かつ、亀裂が生じにくい。さらに、ケイ素化合物粒子の膨張が小さいため、負極活物質層が充放電時に破壊され難い。
 さらに本発明では、上記本発明の非水電解質二次電池用負極活物質を含むことを特徴とする非水電解質二次電池を提供する。
 このような二次電池は、高いサイクル維持率及び初回効率を有するとともに、工業的に優位に製造することが可能なものである。
 さらに本発明では、ケイ素化合物粒子を含有する負極活物質粒子を含む非水電解質二次電池用負極材の製造方法であって、
 酸素が含まれるケイ素化合物を含むケイ素化合物粒子を作製する工程と、
 前記ケイ素化合物粒子に、Liを挿入することで、前記ケイ素化合物粒子を改質する工程と、
 前記改質後のケイ素化合物粒子の表面に、リン酸塩を付着させる工程とを有し、前記リン酸塩を付着させたケイ素化合物粒子を用いて、非水電解質二次電池用負極材を製造することを特徴とする非水電解質二次電池用負極材の製造方法を提供する。
 このような非水電解質二次電池用負極材の製造方法であれば、Liを用いて改質されたケイ素酸化物本来の特性を生かした高い電池容量及び良好なサイクル維持率を有する負極材を得ることができる。さらにこのようにして製造された負極材は、上記のようなリン酸塩を付着させたケイ素化合物粒子を含有しているため、負極の製造時に作製するスラリーが安定なものとなる。すなわち、二次電池を工業的に優位に生産可能な負極材を得ることができる。
 本発明の負極活物質は、二次電池の製造時に作製するスラリーの安定性を向上させることができ、このスラリーを用いれば、工業的に使用可能な塗膜を形成できるので、実質的に電池容量、サイクル特性、及び初回充放電特性を向上させることができる。また、この負極活物質を含む本発明の二次電池は、工業的に優位に生産可能であり、電池容量、サイクル特性、及び初回充放電特性が良好なものとなる。また、本発明の二次電池を用いた電子機器、電動工具、電気自動車及び電力貯蔵システム等でも同様の効果を得ることができる。
 また、本発明の負極材の製造方法は、二次電池の製造時に作製するスラリーの安定性を向上させ、かつ、電池容量、サイクル特性、及び初回充放電特性を向上させることができる負極材を製造できる。このように、電池特性に優れる二次電池を工業的に優位に生産可能な負極材を容易に得ることができる。
本発明の負極活物質を含む負極の構成を示す断面図である。 本発明の負極活物質を含むリチウムイオン二次電池の構成例(ラミネートフィルム型)を表す分解図である。 実施例1-3におけるケイ素化合物粒子から測定された29Si-MAS-NMRスペクトルである。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素系活物質を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。ケイ素系活物質を主材として用いたリチウムイオン二次電池は、炭素材を用いたリチウムイオン二次電池と同等に近いサイクル特性、初期効率が望まれているが、炭素材を用いたリチウムイオン二次電池と同等に近いサイクル特性、初期効率を得るためにLiを用いて改質したケイ素系活物質では安定したスラリーの作製が難しい。このような不安定なスラリーでは、スラリーの製造後、比較的早い段階でガスの発生が起きたり、沈降が生じたりしたため、良質な負極電極を製造することは困難であるという問題があった。
 そこで、本発明者らは、高電池容量であるとともに、サイクル特性及び初回効率が良好な非水電解質二次電池を容易に製造することが可能な負極活物質を得るために鋭意検討を重ね、本発明に至った。
 本発明の負極活物質は、負極活物質粒子を含む。そして、負極活物質粒子は、酸素が含まれるケイ素化合物を含むケイ素化合物粒子を含有する。また、このケイ素化合物粒子は、Li化合物を含有する。また、本発明の負極活物質は、ケイ素化合物粒子が、最表層部にリン酸塩が付着したものである。すなわち、ケイ素化合物粒子は、最表層部にリン酸塩の付着材(付着物)を有する。ここでいう、「付着」は「被覆」も含む概念である。従って、例えば、本発明においてリン酸塩は、ケイ素化合物粒子の最表層部の少なくとも一部を被覆していても良い。この場合、ケイ素化合物粒子は、最表層部にリン酸塩の被膜(被覆層)を有するものとなる。また、リン酸塩は、ケイ素化合物粒子の最表層部以外にも含まれていてもよい。
 また、本発明の負極活物質において、リン酸塩とケイ素化合物粒子との間に、更に炭素被覆層を有することが好ましい。このように、炭素被覆層(炭素被膜)を有することで、導電性に優れた負極活物質となる。
 本発明の負極活物質は、ケイ素化合物粒子の最表層部にリン酸塩が付着したものであるため、水系スラリーに対しての耐水性が高いものとなる。従来、Liの挿入、脱離によって改質したケイ素酸化物などのケイ素化合物を含む水系スラリーは経時変化して、早い段階でガス発生、沈降が起こる。そのため、二次電池の量産化に使用するには不向きであった。
 しかしながら、本発明では、ケイ素化合物粒子が、上記のようなリン酸塩の付着材を有することで耐水性が向上し、スラリーの経時変化に伴うガス発生、沈降が起こりづらくなる。そのため、例えば、集電体に上記スラリーを塗布する際などに安定した塗膜を得ることができ、結着性が向上する。さらに、安定化したリン酸塩のカチオン側は、結着剤として一般的に用いられているカルボキシメチルセルロース(CMC)のカルボキシル基と反応しやすくなり、結着性がより向上する。
 以上のことから、本発明の負極活物質を使用すれば、Liを用いて改質されたケイ素酸化物本来の特性を生かした高い電池容量及び良好なサイクル維持率を有する非水電解質二次電池を工業的な生産において優位に製造可能となる。
<1.非水電解質二次電池用負極>
 続いて、このような本発明の負極活物質を含む二次電池の負極の構成について説明する。
[負極の構成]
 図1は、本発明の負極活物質を含む負極の断面図を表している。図1に示すように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の非水電解質二次電池の負極においては、負極集電体11はなくてもよい。
[負極集電体]
 負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)が挙げられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
 負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、それぞれ100質量ppm以下であることが好ましい。これは、より高い変形抑制効果が得られるからである。
 負極集電体11の表面は、粗化されていても良いし、粗化されていなくても良い。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は化学エッチングされた金属箔などである。粗化されていない負極集電体は例えば、圧延金属箔などである。
[負極活物質層]
 負極活物質層12は、本発明の負極活物質(ケイ素系活物質)を含んでおり、さらに、負極活物質として、ケイ素系活物質の他に炭素系活物質などを含んでいて良い。さらに、電池設計上、増粘剤(「結着剤」、「バインダー」とも呼称する)や導電助剤等の他の材料を含んでいても良い。また、負極活物質の形状は粒子状であって良い。
 上述のように、本発明の負極活物質は、酸素が含まれるケイ素化合物を含むケイ素化合物粒子を含有する。このケイ素化合物を構成するケイ素と酸素の比は、SiO:0.5≦x≦1.6の範囲であることが好ましい。xが0.5以上であれば、ケイ素単体よりも酸素比が高められたものであるためサイクル特性が良好となる。xが1.6以下であれば、ケイ素酸化物の抵抗が高くなりすぎないため好ましい。
 また、本発明において、ケイ素化合物の結晶性は低いほどよい。具体的には、ケイ素化合物粒子のX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズが7.5nm以下であることが望ましい。このように、特に結晶性が低くSi結晶の存在量が少ないことにより、電池特性を向上させるだけでなく、安定的なLi化合物の生成をすることができる。
 また、ケイ素化合物粒子のメディアン径は特に限定されないが、中でも0.5μm以上15μm以下であることが好ましい。この範囲であれば、充放電時においてリチウムイオンの吸蔵放出がされやすくなるとともに、ケイ素系活物質粒子が割れにくくなるからである。このメディアン径が0.5μm以上であれば、表面積が大きすぎないため、充放電時に副反応を起こしにくく、電池不可逆容量を低減することができる。一方、メディアン径が15μm以下であれば、ケイ素系活物質粒子が割れにくく新生面が出にくいため好ましい。さらに、例えば、一般的に使用されているケイ素系活物質に炭素活物質を混合した負極活物質層などが充電時に破壊され難い。
 さらに、本発明において、ケイ素系活物質は、ケイ素化合物粒子に含まれるLi化合物が、LiSiO及びLiSiから選ばれる1種以上であることが好ましい。Liシリケートは、他のLi化合物よりも比較的安定しているため、これらのLi化合物を含むケイ素系活物質は、より安定した電池特性を得ることができる。これらのLi化合物は、ケイ素化合物粒子の内部に生成するSiO成分の一部をLi化合物へ選択的に変更し、ケイ素化合物粒子を改質することにより得ることができる。
 なお、電気化学的に、ケイ素酸化物とLiとを反応させるとLiSiOも生じるが、LiSiOは比較的水に溶けやすく、水系スラリーを用いる場合、スラリー化時に溶け出しやすい。従って、ケイ素化合物粒子に含まれるLi化合物としては、LiSiOと比べて、水に溶けづらく、水系スラリー中で比較的安定な挙動を示す、LiSiO及びLiSiが好ましい。
 ケイ素化合物粒子の内部のLi化合物はNMR(核磁気共鳴)で定量可能である。NMRの測定は、例えば、以下の条件により行うことができる。
29Si MAS NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR-MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
 また、本発明において、ケイ素化合物粒子の改質を行う際に、電気化学的手法や、酸化還元反応による改質、及び物理的手法である熱ドープ等の手法を用いることができる。
 また、本発明の負極活物質では、ケイ素化合物を構成する酸素成分の少なくとも一部は二酸化ケイ素状態でケイ素と結合して存在し、29Si-MAS-NMRスペクトルから得られるピークのうち、二酸化ケイ素状態に由来するピークの強度が、LiSiOに由来するピークの最大強度よりも小さいことが好ましい。ケイ素化合物粒子中において、二酸化ケイ素成分を基準とした場合にLiSiOの量が比較的多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる。二酸化ケイ素成分は、Liを吸蔵した後に放出しづらい成分であり、負極活物質の不可逆成分になるため、少ない方が好ましい。なお、LiSiOに由来するピークは、29Si-MAS-NMRスペクトルから得られるケミカルシフト値として-75ppm近辺に与えられるものである。また、二酸化ケイ素状態(SiO領域)に由来するピークは、上記のケミカルシフト値として-95~-150ppmに与えられるものである。
 また、29Si-MAS-NMRスペクトルから得られるピークにおいて、LiSiOに由来するピークに比べて二酸化ケイ素状態に由来するピークが十分に小さく、LiSiOに由来するピークに加えて、SiやLiSiなどに由来するピークも発現する場合がより好ましい。また、これらのピークのうち、LiSiOに由来するピークが最も大きい場合がさらに好ましい。なお、耐水性の安定性はLiSiが最も高いが、LiSiはLiSiO及びLiSiOと比べてSiに対するLi量が少なく、初期効率改善効果がやや薄くなる。LiSiOは水に緩やかに溶けるが、本発明のようにケイ素化合物粒子の最表層部にリン酸塩を付着させることで、このケイ素化合物粒子を含む負極活物質の耐水性を大幅に改善することができる。なお、LiSiOは最もLiを吸蔵する系ではあるが、水に溶けやすく、LiSiO及びLiSiと比べるとリン酸塩の付着効果が低減する。
 また、上記のように、本発明の負極活物質は、ケイ素化合物粒子が、最表層部にリン酸塩が付着したものである。リン酸塩に含まれる金属としては、リチウム以外の金属とすることが好ましく、例えば、チタニウム、マグネシウム、ジルコニウム、アルミニウム等が挙げられる。リン酸塩がこれらのような金属元素を含むことで、本発明の負極活物質を混合した水系スラリーがより安定する。中でも、リン酸塩は、アルミニウムのリン酸塩であることが好ましい。チタニウム、マグネシウム、ジルコニウムにおいても一定以上の効果(スラリー安定性等)が得られるが、アルミニウムのリン酸塩であればより高い効果が得られるからである。
 この場合、アルミニウムのリン酸塩は、第3リン酸アルミニウムであることが好ましい。この場合、本発明の負極活物質を混合した水系スラリーは特に安定したものとなる。なお、第1リン酸アルミニウム及び第2リン酸アルミニウムにおいても一定以上の効果(スラリー安定性等)が得られるが、第3リン酸アルミニウムは、より高い効果が得られるため、特に好ましい。
 また、リン酸塩は、アンモニウムのリン酸塩であっても良い。この場合、アンモニウムのリン酸塩は、リン酸アンモニウム及びリン酸二アンモニウムのうち少なくとも1種であることが好ましい。これらのアンモニウムのリン酸塩は、より高い効果が得られるため、特に好ましい。
 また、ケイ素化合物粒子が、最表層部にアルミニウムのリン酸塩及びアンモニウムのリン酸塩の両方が付着したものであることが好ましい。このように最表層部に2種類のリン酸塩が付着したケイ素化合物粒子を含有する負極活物質であれば、特に高い効果(スラリー安定性等)が得られるため好ましい。
 また、リン酸塩の含有量は、ケイ素化合物粒子に対して、0.1質量%以上7質量%以下であることが好ましい。リン酸塩の含有量が0.1質量%以上であれば、スラリー安定性等の効果を十分発現することができる。リン酸塩の含有量が7質量%以下であれば、この負極活物質を混合したスラリーのチキソ性が高くなり過ぎない。そのため、このスラリーを用いて得られた負極は、活物質層が剥離しにくいものとなり、電極構造が安定する。
[負極の製造方法]
 続いて、非水電解質二次電池の負極の製造方法の一例を説明する。
 最初に負極に含まれる負極材を製造する。負極材は本発明の製造方法により以下のように製造できる。まず、酸素が含まれるケイ素化合物を含むケイ素化合物粒子を作製する。次に、ケイ素化合物粒子の表面に炭素被覆層を形成する。但し、この工程は必須ではない。次に、ケイ素化合物粒子に、Liを挿入することで、ケイ素化合物粒子を改質する。また、このとき、ケイ素化合物粒子に挿入したLiを一部脱離しても良い。さらに、このとき同時にケイ素化合物粒子の内部や表面にLi化合物を生成させることができる。
 次に、改質後のケイ素化合物粒子の表面に、リン酸塩を付着させる。そしてこのようなケイ素化合物粒子を負極活物質粒子として用いて、導電助剤やバインダと混合するなどして、負極材及び負極電極を製造できる。
 より具体的には、負極材は、例えば、以下の手順により製造される。
 まず、酸素が含まれるケイ素化合物を含むケイ素化合物粒子を作製する。以下では、酸素が含まれるケイ素化合物として、SiO(0.5≦x≦1.6)で表される酸化珪素を使用した場合を説明する。まず、酸化珪素ガスを発生する原料を不活性ガスの存在下もしくは減圧下900℃~1600℃の温度範囲で加熱し、酸化ケイ素ガスを発生させる。この場合、原料は金属珪素粉末と二酸化珪素粉末との混合であり、金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。粒子中のSi結晶子は仕込み範囲や気化温度の変更、また生成後の熱処理で制御される。発生したガスは吸着板に堆積される。反応炉内温度を100℃以下に下げた状態で堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕、粉末化を行う。
 次に、得られた粉末材料(酸化珪素粒子)の表層に炭素被覆層を形成する。但し、この工程は必須ではない。炭素被覆層は、負極活物質の電池特性をより向上させるには効果的である。
 粉末材料の表層に炭素被覆層を形成する手法としては、熱分解CVDが望ましい。熱分解CVDは炉内に粉末材料をセットし、炉内に炭化水素ガスを充満させ炉内温度を昇温させる。分解温度は特に限定しないが特に1200℃以下が望ましい。より望ましいのは950℃以下であり、意図しないケイ素酸化物の不均化を抑制することが可能である。炭化水素ガスは特に限定することはないが、C組成のうち3≧nが望ましい。低製造コスト及び分解生成物の物性が良いからである。
 次に、酸化珪素粒子に、Liを挿入することで、酸化珪素粒子を改質する。リチウムの挿入、脱離による酸化珪素粒子の改質は熱ドープ法を使用して行うことができる。この場合、例えば、酸化珪素粒子をLiH粉やLi粉と混合し、非酸化雰囲気下で加熱をすることで改質可能である。非酸化雰囲気としては、例えば、Ar雰囲気などが使用できる。より具体的には、まず、Ar雰囲気下でLiH粉又はLi粉と酸化珪素粒子を十分に混ぜ、封止を行い、封止した容器ごと撹拌することで均一化する。その後、700℃~750℃の範囲で加熱し改質を行う。またこの場合、Liを酸化珪素粒子から一部脱離するには、加熱後の粉末を十分に冷却し、その後、アルコール、炭酸リチウムを溶解したアルカリ水、弱酸、又は純水などで洗浄する方法などを使用できる。
 続いて、改質後の酸化珪素粒子の表面に、リン酸塩を付着させる。例えば、リン酸塩は、以下の方法(湿式混合法)で改質後の酸化珪素粒子の表面に付着させることができる。すなわち、リン酸塩をエタノールまたは水中に分散させた液体に、酸化珪素粒子と混合させ、濾過を行い、得られた粉末を乾燥することで改質後の酸化珪素粒子の表面にリン酸塩を付着させることができる。このときに、酸化珪素粒子に含まれるリチウムシリケートの一部とリン酸塩とが反応し、ケイ酸塩が生成する可能性もある。この反応は酸化珪素粒子に含まれるリチウムシリケートの状態に応じて進む。例えば、リン酸塩とリチウムシリケートが部分的に反応し、リチウムシリケートと未反応のリン酸塩が、酸化珪素粒子の表面若しくは炭素被膜の表面又はこれらの両方の少なくとも一部に残ることがある。また、反応が進行せず、改質後の酸化珪素粒子の表面にリン酸塩が付着し、ケイ酸塩が付着しないことも有る。このようにして、改質後の酸化珪素粒子の表面にリン酸塩を付着させることができる。より具体的には、例えば、以下のような手順で改質後の酸化珪素粒子の表面にリン酸塩を付着させることができる。
 まず、エタノールと、エタノールの質量の四分の一の質量分の改質後の酸化珪素粒子と、改質後の酸化珪素粒子の3.0質量%相当の第3リン酸アルミニウムとを容器に投入し、3時間半撹拌する。撹拌後は吸引濾過でエタノールを除去し、酸化珪素粒子を、30℃で12時間真空乾燥する。この時、リン酸塩の付着材の質量は改質後の酸化珪素粒子と同時に添加する第3リン酸アルミニウムの質量を変えることで制御可能である。なお、反応条件はもちろん上記の条件に限られず、改質後の酸化珪素粒子の表面にリン酸塩を付着させることができる条件である限り、溶媒の種類や量、反応時間等を適宜変更可能である。
 酸化珪素粒子の表面にリン酸塩を付着させる方法は、上記の湿式混合法に限定されない。例えば、乾式混合によって酸化珪素粒子の表面にリン酸塩を付着させることもできる。この場合、公知の処理装置(ホソカワミクロン ノビルタ(R)NOB、ホソカワミクロン ナウタミキサ(R)DBX等)を使用することによって、酸化珪素粒子とリン酸塩を乾式混合し、酸化珪素粒子の表面にリン酸塩を付着させることができる。
 続いて、上記のリン酸塩の付着材を有する酸化珪素粒子を含むケイ素系活物質粒子と必要に応じて炭素系活物質を混合する。そして、これらの負極活物質とバインダ、導電助剤など他の材料とを混合し負極合剤としたのち、有機溶剤又は水などを加えてスラリーとする。
 次に、図1に示したように、負極集電体11の表面に、この負極合剤のスラリーを塗布し、乾燥させて、負極活物質層12を形成する。この時、必要に応じて加熱プレスなどを行っても良い。以上のようにして、本発明の非水電解質二次電池の負極を製造することができる。
<2.リチウムイオン二次電池>
 本発明の非水電解質二次電池は、上記本発明の非水電解質二次電池用負極活物質を含むものである。以下、本発明の非水電解質二次電池について、ラミネートフィルム型二次電池を例にして説明する。
[ラミネートフィルム型二次電池の構成]
 図2に示すラミネートフィルム型のリチウムイオン二次電池30は、主にシート状の外装部材35の内部に巻回電極体31が収納されたものである。この巻回電極体31は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード32が取り付けられ、負極に負極リード33が取り付けられている。電極体の最外周部は保護テープにより保護されている。
 正負極リード32、33は、例えば、外装部材35の内部から外部に向かって一方向で導出されている。正極リード32は、例えば、アルミニウムなどの導電性材料により形成され、負極リード33は、例えば、ニッケル、銅などの導電性材料により形成される。
 外装部材35は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体31と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
 外装部材35と正負極リードとの間には、外気侵入防止のため密着フィルム34が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。
 正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
 正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。
 正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて正極結着剤、正極導電助剤、分散剤などの他の材料を含んでいても良い。この場合、正極結着剤、正極導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。
 正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物が挙げられる。これらの正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiあるいはLiPOで表される。式中、M、Mは少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。
 リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルト複合酸化物などが挙げられる。リチウムニッケルコバルト複合酸化物としては、例えばリチウムニッケルコバルトアルミニウム複合酸化物(NCA)やリチウムニッケルコバルトマンガン複合酸化物(NCM)などが挙げられる。
 リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnPO(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量を得ることができるとともに、優れたサイクル特性も得ることができる。
[負極]
 負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体の両面に負極活物質層を有している。この負極は、正極活物質剤から得られる電気容量(電池としての充電容量)に対して、負極充電容量が大きくなることが好ましい。これにより、負極上でのリチウム金属の析出を抑制することができる。
 正極活物質層は、正極集電体の両面の一部に設けられており、同様に負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。
 上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため、負極活物質層の状態が形成直後のまま維持され、これによって負極活物質の組成などを、充放電の有無に依存せずに再現性良く正確に調べることができる。
[セパレータ]
 セパレータは正極と負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されている。また、セパレータは2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[電解液]
 活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
 溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタン、又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。これは、電解質塩の解離性やイオン移動度が向上するためである。
 溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。
 また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。
 さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。
 電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。
 電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。これは、高いイオン伝導性が得られるからである。
[ラミネートフィルム型二次電池の製造方法]
 最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて正極結着剤、正極導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また圧縮を複数回繰り返しても良い。
 次に、上記したリチウムイオン二次電池用負極10の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。
 正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていても良い(図1を参照)。
 続いて、電解液を調製する。続いて、超音波溶接などにより、正極集電体に正極リード32を取り付けると共に、負極集電体に負極リード33を取り付ける(図2を参照)。続いて、正極と負極とをセパレータを介して積層、又は巻回させて巻回電極体31を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材35の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ開放状態にて、巻回電極体を封入する。続いて、正極リード、及び負極リードと外装部材の間に密着フィルムを挿入する。続いて、開放部から上記調製した電解液を所定量投入し、真空含浸を行う。含浸後、開放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型二次電池30を製造することができる。
 上記作製したラミネートフィルム型二次電池30等の本発明の非水電解質二次電池において、充放電時の負極利用率が93%以上99%以下であることが好ましい。負極利用率を93%以上の範囲とすれば、初回充電効率が低下せず、電池容量の向上を大きくできる。また、負極利用率を99%以下の範囲とすれば、Liが析出してしまうことがなく安全性を確保できる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1-1)
 以下の手順により、図2に示したラミネートフィルム型の二次電池30を作製した。
 最初に正極を作製した。正極活物質はリチウムニッケルコバルトアルミニウム複合酸化物(LiNi0.7Co0.25Al0.05O)95質量部と、正極導電助剤(アセチレンブラック)2.5質量部と、正極結着剤(ポリフッ化ビニリデン、PVDF)2.5質量部とを混合し正極合剤とした。続いて正極合剤を有機溶剤(N-メチル-2-ピロリドン、NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時、正極集電体は厚み15μmのものを用いた。最後にロールプレスで圧縮成型を行った。
 次に負極を作製した。まず、ケイ素系活物質を以下のように作製した。金属ケイ素と二酸化ケイ素を混合した原料(気化出発材)を反応炉へ設置し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取出しボールミルで粉砕し、酸化珪素粒子(ケイ素化合物粒子)を得た。酸化珪素粒子の粒径を調整した後、熱CVDを行うことで炭素被覆層を形成した。
 続いて、炭素被覆層を形成した酸化珪素粒子に対して4質量%に相当する質量のLiH粉末をアルゴン雰囲気下で混合し、シェイカーで撹拌した。その後、雰囲気制御炉で、攪拌した粉末を740℃の熱処理を行うことで、酸化珪素粒子にリチウムを挿入し、改質を行った。
 次に、改質後の酸化珪素粒子をエタノールと第1リン酸アルミニウムの混合溶液に投入し、撹拌、濾過、乾燥しエタノールを除去した。これにより、第1リン酸アルミニウムを酸化珪素粒子の表面及び炭素被覆層の表面に付着させた。このとき、第1リン酸アルミニウムによって、改質後の酸化珪素粒子が被覆されていた。このようにして、表面に炭素被覆層及びリン酸塩の被膜を有する酸化珪素粒子から成るケイ素系活物質粒子を作製した。
 続いて、ケイ素系活物質粒子と、炭素系活物質を1:9の質量比で配合し、負極活物質を作製した。ここで、炭素系活物質としては、ピッチ層で被覆した天然黒鉛及び人造黒鉛を5:5の質量比で混合したものを使用した。また、炭素系活物質のメディアン径は20μmであった。
 次に、作製した負極活物質、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メディアン径が約50nmの炭素微粒子)、スチレンブタジエンゴム(スチレンブタジエンコポリマー、以下、SBRと称する)、カルボキシメチルセルロース(以下、CMCと称する)92.5:1:1:2.5:3の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。尚、上記のSBR、CMCは負極バインダー(負極結着剤)である。ここで、負極合剤スラリーの安定性を測定するため、作製した負極合剤スラリーの一部を二次電池の作製用のものとは別に30g取り出し、20℃で保存し、負極合剤スラリー作製後から、6時間後、24時間後、48時間後、72時間後、96時間後、120時間後、144時間後、及び1週間(168時間)後のガス発生状況及び48時間後の沈降状況を確認した。
 また、負極集電体としては、電解銅箔(厚さ15μm)を用いた。最後に、負極合剤スラリーを負極集電体に塗布し真空雰囲気中で100℃×1時間の乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は5mg/cmであった。
 次に、溶媒として、フルオロエチレンカーボネート(FEC)、エチレンカーボネート(EC)及びジエチルカーボネート(DEC))を混合したのち、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でFEC:EC:DEC=1:2:7とし、電解質塩の含有量を溶媒に対して1.0mol/kgとした。さらに、得られた電解液にビニレンカーボネート(VC)を1.5質量%添加した。
 次に、以下のようにして二次電池を組み立てた。最初に、正極集電体の一端にアルミリードを超音波溶接し、負極集電体にはニッケルリードを溶接した。続いて、正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に巻回させ巻回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムが挟まれた積層フィルム12μmを用いた。続いて、外装部材間に電極体を挟んだのち、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔及び、ポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調製した電解液を注入し、真空雰囲気下で含浸した後、熱融着し封止した。
 以上のようにして作製した二次電池のサイクル特性を評価した。
 サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、0.2Cで2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて、総サイクル数が499サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に、0.2C充放電で得られた500サイクル目の放電容量を2サイクル目の放電容量で割り、容量維持率(以下、単に維持率ともいう)を算出した。通常サイクル、すなわち3サイクル目から499サイクル目までは、充電0.7C、放電0.5Cで充放電を行った。
 また、以下のようにして、ケイ素系活物質単独(SiOx単独)の初回効率を算出した。まず、上記作製したケイ素系活物質とポリアクリル酸を85:15の質量比で混ぜ、この混合物を銅箔に塗布した。この時塗布した混合物の面積密度は約2mg/cmであった。その後、90℃で1時間真空乾燥した後に2032サイズのコイン電池形態で、対極Liを用いて、電圧0Vで電流密度0.2mA/cmで定電流定電圧充電を開始した。そして、電流値が0.1mAとなった時点で定電流定電圧充電を終止させた。続いて、定電流放電を行い電圧が1.2Vに達した時点で放電を終止させた。放電時の電流密度は充電と同じとした。この時、負極にLiをインプットする条件を充電、負極からLiを取り出す条件を放電とした場合、ケイ素系活物質単独(SiOx単独)の初回効率は(放電容量)/(充電容量)×100(%)となる。この式を用いてSiOx単独の初回効率を算出した。
(実施例1-2)
 被覆材(付着材)として、第2リン酸アルミニウムを使用したこと以外、実施例1-1と同様の手順で、二次電池のサイクル特性の評価等を行った。
(実施例1-3)
 被覆材として、第3リン酸アルミニウムを使用したこと以外、実施例1-1と同様の手順で、二次電池のサイクル特性の評価等を行った。
(実施例1-4)
 被覆材として、リン酸アンモニウムを使用したこと以外、実施例1-1と同様の手順で、二次電池のサイクル特性の評価等を行った。
(実施例1-5)
 被覆材として、リン酸二アンモニウムを使用したこと以外、実施例1-1と同様の手順で、二次電池のサイクル特性の評価等を行った。
(実施例1-6)
 被覆材として、第3リン酸アルミニウム及びリン酸アンモニウムを使用したこと以外、実施例1-1と同様の手順で、二次電池のサイクル特性の評価等を行った。このとき、第3リン酸アルミニウムの含有量は、ケイ素化合物粒子に対して、2質量%とし、リン酸アンモニウムの含有量は、ケイ素化合物粒子に対して、1質量%とした。
(実施例1-7)
 被覆材として、第3リン酸アルミニウム及びリン酸二アンモニウムを使用したこと以外、実施例1-1と同様の手順で、二次電池のサイクル特性の評価等を行った。このとき、第3リン酸アルミニウムの含有量は、ケイ素化合物粒子に対して、2質量%とし、リン酸二アンモニウムの含有量は、ケイ素化合物粒子に対して、1質量%とした。
(実施例1-8)
 酸化珪素粒子の表面にリン酸塩を付着させる方法を、湿式混合から、ホソカワミクロン ノビルタ(R)NOBを用いた乾式混合に変更した以外、実施例1-3と同様の手順で、二次電池のサイクル特性の評価等を行った。具体的には、酸化珪素粒子(SiOx)100gに第3リン酸アルミニウム3gを加え、ノビルタを用いた処理(ノビルタ処理)を行い、酸化珪素粒子の表面に第3リン酸アルミニウムを付着させた。ノビルタ処理の時間は30秒とした。
(実施例1-9)
 酸化珪素粒子の表面にリン酸塩を付着させる方法を、湿式混合から、ホソカワミクロン ナウタミキサ(R)DBXを用いた乾式混合に変更した以外、実施例1-3と同様の手順で、二次電池のサイクル特性の評価等を行った。具体的には、酸化珪素粒子(SiOx)100gに第3リン酸アルミニウム3gを加え、ナウタミキサを用いた混合を行い、酸化珪素粒子の表面に第3リン酸アルミニウムを付着させた。混合時間は1時間とした。
(比較例1-1)
 酸化珪素粒子へのリチウムの挿入及びリン酸塩の付着を行わなかったこと以外、実施例1-1と同様の手順で、二次電池のサイクル特性の評価等を行った。
(比較例1-2)
 リン酸塩の付着を行わなかったこと以外、実施例1-1と同様の手順で、二次電池のサイクル特性の評価等を行った。
 下記表1に示すように、上記の全ての実施例及び比較例においてSiOで表されるケイ素化合物のxの値が1であり、ケイ素化合物粒子のメディアン径D50は4μmであった。なお、表1において、「A」はLiSiOに由来するピークの最大強度であり、「B」は、二酸化ケイ素状態(SiO領域)に由来するピークの強度である。図3に、実施例1-3におけるケイ素化合物粒子から測定された29Si-MAS-NMRスペクトルを示す。図3に示すように、実施例1-3では、上記「A」と「B」の関係はA>Bであった。
 実施例1-1~1-9、比較例1-1~1-2の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、改質を行わない(比較例1-1)場合、SiOx単独初回効率が低く、電池容量が増加しづらい。しかしながら、スラリーは安定しており、電池サイクル特性も良好である。比較例1-2は、電池容量を増加させるためにLi源を用い、改質を行った例である。この時、Li化合物を含んだケイ素化合物粒子内部にLiシリケートが生成している。Liシリケートは水系スラリーに対する安定性が低く、溶出する。そのため、スラリーから水素が発生し、工業的に成り立たない。実施例1-1~1-3は、第1リン酸~第3リン酸アルミニウムをケイ素化合物粒子の最表層部に付着させ、スラリーを作製した例である。この場合、比較例1-2と比べて、スラリーの安定性が大幅に改善した。実施例1-4、1-5は、アンモニウムのリン酸塩をケイ素化合物粒子の最表層部に付着させ、スラリーを作製した例である。この場合も良好な結果が得られた。また、実施例1-6、1-7は、アルミニウムのリン酸塩及びアンモニウムのリン酸塩の両方をケイ素化合物粒子の最表層部に付着させ、スラリーを作製した例である。この場合は特に良好な結果が得られた。また、実施例1-8、1-9は、酸化珪素粒子の表面にリン酸塩を付着させる方法として、乾式混合法を用いた例である。この場合であっても、湿式混合法を用いた実施例1-1~1-7と同様、良好な結果が得られた。
(実施例2-1~2-7)
 被覆材である、第3リン酸アルミニウムの量を表2のように変化させたこと以外、実施例1-3と同様の手順で、二次電池のサイクル特性の評価等を行った。結果を表2に示す。なお、表2における被覆材の量としては、ケイ素化合物粒子の質量当たりに対する量を用いている。また、表2~7において、「Liシリケート有り」とは、ケイ素化合物粒子がLiSiO及びLiSiを含むことを意味する。
Figure JPOXMLDOC01-appb-T000002
 一般的に、スラリーは3日間、安定的であることが望ましい(例えば、金曜日にスラリーを作製し、月曜日から塗布することが起こりうる)。上記視点より、より工業的であるのは被覆材の量が0.1質量%以上である場合と考えられる。但し、被覆材の量が少量であっても、比較例1-2に比べてスラリーの安定性は改善している。被覆材の含有量が7質量%以下である場合、ガス発生等は抑制され、かつ、スラリーのチキソ性が強くなりすぎないため、塗布工程に不具合が生じにくい。そのため、電極状態が安定し、電池特性が良好となる。
(実施例3-1~3-4)
 ケイ素化合物の酸素量を表3に示すように変えたこと以外、実施例1-3と同様の手順で、二次電池のサイクル特性の評価等を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、ケイ素化合物中の酸素量が増える、すなわち0.5≦xとなると、容量維持率が増加した。また、0.5≦x、特に1≦xとなる場合、Liドープ時にLiシリケートの存在率が十分になるためバルクが安定になり、スラリーにおいてガス発生や沈降が進行しにくくなったと考えられる。x≦1.6となる場合、ケイ素酸化物の抵抗が高くなりすぎず、電池評価を容易に行うことができ、容量維持率も良好であった。
(実施例4-1)
 仕込むLiHの量を実施例1-3の約半分にし、Li化合物の生成量を調整したこと以外は、実施例1-3と同様の手順で、二次電池のサイクル特性の評価等を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、仕込むLiHの量を実施例1-3の約半分にした実施例4-1では、SiOx単独初回効率は比較例1-1に対して向上しているものの、その上昇幅は実施例1-3の約半分程度となった。また、上記「A」と「B」の関係については、実施例1-3ではA>Bであったが、実施例4-1ではA<Bとなった。このことから、特に効率が高い、SiOx単独初回効率が80%以上の場合、A,B値はA>Bの関係となるということが分かった。
(実施例5-1~5-6)
 ケイ素化合物粒子の結晶性を変化させたこと以外、実施例1-3と同様の手順で、二次電池のサイクル特性の評価等を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例1-3の改質後のケイ素化合物粒子のX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)は1.271°であり、その結晶面Si(111)に起因する結晶子サイズは6.63nmであった。これは、改質に熱ドープ法を用いたため、ケイ素化合物の一部が不均化し、結晶化が進んだためである。改質後のケイ素化合物粒子はリチウムシリケートを含んでいた。結晶性が低い場合、充放電を繰り返してもSiグレインが大きく成長しにくいため、電池サイクル特性が低下しにくい傾向にある。表5に示すように、ガス発生までの時間等から求められるスラリー安定性は、ケイ素化合物粒子の結晶性を変化させた場合であっても維持することができた。
(実施例6-1)
 炭素被覆層を形成しなかったこと以外、実施例1-3と同様の手順で、二次電池のサイクル特性の評価等を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 実施例1-3のように炭素被覆層が形成されたことにより導電性が向上し電池特性が向上した。
(実施例7-1~7-6)
 ケイ素化合物粒子のメディアン径を表7のように変化させたこと以外、実施例1-3と同様の手順で、二次電池のサイクル特性の評価等を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、ケイ素化合物粒子のメディアン径が0.5μm以上であれば、比表面積が大きすぎず、結果としてガス発生が起こりにくくなった。ケイ素化合物粒子のメディアン径が15μm以下であれば、充放電による膨張収縮応力が小さくなり、負極活物質層が充放電時に破壊され難い。また、ケイ素化合物粒子が割れにくくなり、電池サイクル特性が低下しにくくなる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (14)

  1.  負極活物質粒子を含む非水電解質二次電池用負極活物質であって、
     前記負極活物質粒子は、酸素が含まれるケイ素化合物を含むケイ素化合物粒子を含有し、
     前記ケイ素化合物粒子は、Li化合物を含有し、
     前記ケイ素化合物粒子が、最表層部にリン酸塩が付着したものであることを特徴とする非水電解質二次電池用負極活物質。
  2.  前記Li化合物は、LiSiO及びLiSiから選ばれる1種以上であることを特徴とする請求項1に記載の非水電解質二次電池用負極活物質。
  3.  前記リン酸塩は、アルミニウムまたはアンモニウムのリン酸塩であることを特徴とする請求項1又は請求項2に記載の非水電解質二次電池用負極活物質。
  4.  前記アルミニウムのリン酸塩は、第3リン酸アルミニウムであることを特徴とする請求項3に記載の非水電解質二次電池用負極活物質。
  5.  前記アンモニウムのリン酸塩は、リン酸アンモニウム及びリン酸二アンモニウムのうち少なくとも1種であることを特徴とする請求項3に記載の非水電解質二次電池用負極活物質。
  6.  前記ケイ素化合物粒子が、最表層部にアルミニウムのリン酸塩及びアンモニウムのリン酸塩の両方が付着したものであることを特徴とする請求項1から請求項5のいずれか1項に記載の非水電解質二次電池用負極活物質。
  7.  前記リン酸塩の含有量は、前記ケイ素化合物粒子に対して、0.1質量%以上7質量%以下であることを特徴とする請求項1から請求項6のいずれか1項に記載の非水電解質二次電池用負極活物質。
  8.  前記リン酸塩と前記ケイ素化合物粒子との間に、更に炭素被覆層を有することを特徴とする請求項1から請求項7のいずれか1項に記載の非水電解質二次電池用負極活物質。
  9.  前記ケイ素化合物を構成するケイ素と酸素の比は、SiO:0.5≦x≦1.6の範囲であることを特徴とする請求項1から請求項8のいずれか1項に記載の非水電解質二次電池用負極活物質。
  10.  前記ケイ素化合物を構成する酸素成分の少なくとも一部は二酸化ケイ素状態でケイ素と結合して存在し、29Si-MAS-NMRスペクトルから得られるピークのうち、前記二酸化ケイ素状態に由来するピークの強度が、LiSiOに由来するピークの最大強度よりも小さいことを特徴とする請求項1から請求項9のいずれか1項に記載の非水電解質二次電池用負極活物質。
  11.  前記ケイ素化合物粒子は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズが7.5nm以下であることを特徴とする請求項1から請求項10のいずれか1項に記載の非水電解質二次電池用負極活物質。
  12.  前記ケイ素化合物粒子のメディアン径が0.5μm以上15μm以下であることを特徴とする請求項1から請求項11のいずれか1項に記載の非水電解質二次電池用負極活物質。
  13.  請求項1から請求項12のいずれか1項に記載の非水電解質二次電池用負極活物質を含むことを特徴とする非水電解質二次電池。
  14.  ケイ素化合物粒子を含有する負極活物質粒子を含む非水電解質二次電池用負極材の製造方法であって、
     酸素が含まれるケイ素化合物を含むケイ素化合物粒子を作製する工程と、
     前記ケイ素化合物粒子に、Liを挿入することで、前記ケイ素化合物粒子を改質する工程と、
     前記改質後のケイ素化合物粒子の表面に、リン酸塩を付着させる工程とを有し、前記リン酸塩を付着させたケイ素化合物粒子を用いて、非水電解質二次電池用負極材を製造することを特徴とする非水電解質二次電池用負極材の製造方法。
PCT/JP2017/003182 2016-02-24 2017-01-30 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法 WO2017145654A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17756096.8A EP3407408B1 (en) 2016-02-24 2017-01-30 Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries
US16/077,951 US10833323B2 (en) 2016-02-24 2017-01-30 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode material for non-aqueous electrolyte secondary battery
KR1020187023971A KR20180114061A (ko) 2016-02-24 2017-01-30 비수 전해질 이차 전지용 부극 활물질, 비수 전해질 이차 전지 및 비수 전해질 이차 전지용 부극재의 제조 방법
CN202110624857.0A CN113380982B (zh) 2016-02-24 2017-01-30 非水电解质二次电池用负极及其制造方法、以及非水电解质二次电池及其制造方法
CN201780013600.3A CN108701825B (zh) 2016-02-24 2017-01-30 负极活性物质、非水电解质二次电池、及非水电解质二次电池用负极材料的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016033557 2016-02-24
JP2016-033557 2016-02-24
JP2016-192233 2016-09-29
JP2016192233A JP6596405B2 (ja) 2016-02-24 2016-09-29 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法

Publications (1)

Publication Number Publication Date
WO2017145654A1 true WO2017145654A1 (ja) 2017-08-31

Family

ID=59685088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003182 WO2017145654A1 (ja) 2016-02-24 2017-01-30 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法

Country Status (3)

Country Link
CN (1) CN113380982B (ja)
TW (1) TWI786024B (ja)
WO (1) WO2017145654A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123322A1 (ja) * 2016-12-29 2018-07-05 株式会社 村田製作所 負極活物質、負極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2020149079A1 (ja) * 2019-01-15 2020-07-23 信越化学工業株式会社 非水電解質二次電池用負極活物質及びその製造方法
US20210399288A1 (en) * 2018-10-12 2021-12-23 Albemarle Corporation Particles comprising silicon and lithium
WO2023135970A1 (ja) * 2022-01-11 2023-07-20 信越化学工業株式会社 負極活物質及び負極

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290773A (ja) * 1993-03-30 1994-10-18 Nippondenso Co Ltd リチウム二次電池
JP2010021100A (ja) * 2008-07-14 2010-01-28 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP2014082118A (ja) * 2012-10-17 2014-05-08 Toyota Industries Corp リチウムイオン二次電池用負極材料、並びにそれを用いた負極及び二次電池
WO2015125784A1 (ja) * 2014-02-19 2015-08-27 東ソー株式会社 リチウムイオン2次電池用負極活物質およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070153A1 (ja) * 2010-11-26 2012-05-31 トヨタ自動車株式会社 リチウムイオン二次電池用負極活物質
KR20200124329A (ko) * 2013-08-21 2020-11-02 신에쓰 가가꾸 고교 가부시끼가이샤 부극 활물질, 부극 활물질 재료, 부극 전극, 리튬 이온 이차 전지, 부극 활물질의 제조 방법, 및 리튬 이온 이차 전지의 제조 방법
JP6359836B2 (ja) * 2014-02-07 2018-07-18 信越化学工業株式会社 非水電解質二次電池用負極材、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池
JP6596405B2 (ja) * 2016-02-24 2019-10-23 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290773A (ja) * 1993-03-30 1994-10-18 Nippondenso Co Ltd リチウム二次電池
JP2010021100A (ja) * 2008-07-14 2010-01-28 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP2014082118A (ja) * 2012-10-17 2014-05-08 Toyota Industries Corp リチウムイオン二次電池用負極材料、並びにそれを用いた負極及び二次電池
WO2015125784A1 (ja) * 2014-02-19 2015-08-27 東ソー株式会社 リチウムイオン2次電池用負極活物質およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123322A1 (ja) * 2016-12-29 2018-07-05 株式会社 村田製作所 負極活物質、負極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US20210399288A1 (en) * 2018-10-12 2021-12-23 Albemarle Corporation Particles comprising silicon and lithium
WO2020149079A1 (ja) * 2019-01-15 2020-07-23 信越化学工業株式会社 非水電解質二次電池用負極活物質及びその製造方法
JP2020113465A (ja) * 2019-01-15 2020-07-27 信越化学工業株式会社 非水電解質二次電池用負極活物質及びその製造方法
JP7186099B2 (ja) 2019-01-15 2022-12-08 信越化学工業株式会社 非水電解質二次電池用負極活物質及びその製造方法
WO2023135970A1 (ja) * 2022-01-11 2023-07-20 信越化学工業株式会社 負極活物質及び負極

Also Published As

Publication number Publication date
CN113380982A (zh) 2021-09-10
TW202240956A (zh) 2022-10-16
TWI786024B (zh) 2022-12-01
CN113380982B (zh) 2024-08-09

Similar Documents

Publication Publication Date Title
JP6596405B2 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
JP6389159B2 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、非水電解質二次電池用負極材の製造方法、及び非水電解質二次電池の製造方法
JP6407804B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP6359836B2 (ja) 非水電解質二次電池用負極材、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池
JP6181590B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP6474548B2 (ja) 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
JP7186099B2 (ja) 非水電解質二次電池用負極活物質及びその製造方法
JP6353329B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP6239476B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP2019029297A (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP6448462B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池並びに非水電解質二次電池用負極活物質の製造方法
JP2018060771A (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP2017188319A (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
TW202029558A (zh) 負極活性物質、混合負極活性物質、水系負極漿料組成物、及負極活性物質的製造方法
JP6215804B2 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに負極活物質粒子の製造方法
WO2017145654A1 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
KR20200013661A (ko) 비수전해질 이차 전지용 부극 활물질 및 비수전해질 이차 전지, 그리고 비수전해질 이차 전지용 부극재의 제조 방법
WO2017110040A1 (ja) 負極活物質、負極電極、リチウムイオン二次電池、負極活物質の製造方法及びリチウムイオン二次電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017756096

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017756096

Country of ref document: EP

Effective date: 20180824