WO2023135970A1 - 負極活物質及び負極 - Google Patents
負極活物質及び負極 Download PDFInfo
- Publication number
- WO2023135970A1 WO2023135970A1 PCT/JP2022/044441 JP2022044441W WO2023135970A1 WO 2023135970 A1 WO2023135970 A1 WO 2023135970A1 JP 2022044441 W JP2022044441 W JP 2022044441W WO 2023135970 A1 WO2023135970 A1 WO 2023135970A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- electrode active
- layer
- plasticizer
- Prior art date
Links
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 161
- 239000002245 particle Substances 0.000 claims abstract description 99
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 78
- 239000004014 plasticizer Substances 0.000 claims abstract description 75
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 70
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 34
- -1 phosphate ester Chemical class 0.000 claims description 34
- 229910052744 lithium Inorganic materials 0.000 claims description 27
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 22
- 238000007600 charging Methods 0.000 claims description 20
- 238000007599 discharging Methods 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 16
- 229910004283 SiO 4 Inorganic materials 0.000 claims description 15
- 239000007784 solid electrolyte Substances 0.000 claims description 11
- 239000004215 Carbon black (E152) Substances 0.000 claims description 9
- 238000002441 X-ray diffraction Methods 0.000 claims description 9
- 239000010426 asphalt Substances 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 9
- 150000002430 hydrocarbons Chemical class 0.000 claims description 9
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 claims description 8
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 claims description 8
- 239000003208 petroleum Substances 0.000 claims description 8
- LMYRWZFENFIFIT-UHFFFAOYSA-N toluene-4-sulfonamide Chemical compound CC1=CC=C(S(N)(=O)=O)C=C1 LMYRWZFENFIFIT-UHFFFAOYSA-N 0.000 claims description 7
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 6
- 229910001386 lithium phosphate Inorganic materials 0.000 claims description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 6
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 6
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- 239000010452 phosphate Substances 0.000 claims description 5
- YCMLQMDWSXFTIF-UHFFFAOYSA-N 2-methylbenzenesulfonimidic acid Chemical compound CC1=CC=CC=C1S(N)(=O)=O YCMLQMDWSXFTIF-UHFFFAOYSA-N 0.000 claims description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 claims description 4
- NATWUQFQFMZVMT-UHFFFAOYSA-N n-ethyl-2-methylbenzenesulfonamide Chemical compound CCNS(=O)(=O)C1=CC=CC=C1C NATWUQFQFMZVMT-UHFFFAOYSA-N 0.000 claims description 4
- ALKCLFLTXBBMMP-UHFFFAOYSA-N 3,7-dimethylocta-1,6-dien-3-yl hexanoate Chemical compound CCCCCC(=O)OC(C)(C=C)CCC=C(C)C ALKCLFLTXBBMMP-UHFFFAOYSA-N 0.000 claims description 3
- GPZYYYGYCRFPBU-UHFFFAOYSA-N 6-Hydroxyflavone Chemical compound C=1C(=O)C2=CC(O)=CC=C2OC=1C1=CC=CC=C1 GPZYYYGYCRFPBU-UHFFFAOYSA-N 0.000 claims description 3
- ZVFDTKUVRCTHQE-UHFFFAOYSA-N Diisodecyl phthalate Chemical compound CC(C)CCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC(C)C ZVFDTKUVRCTHQE-UHFFFAOYSA-N 0.000 claims description 3
- 235000011037 adipic acid Nutrition 0.000 claims description 3
- 239000001361 adipic acid Substances 0.000 claims description 3
- CMCJNODIWQEOAI-UHFFFAOYSA-N bis(2-butoxyethyl)phthalate Chemical compound CCCCOCCOC(=O)C1=CC=CC=C1C(=O)OCCOCCCC CMCJNODIWQEOAI-UHFFFAOYSA-N 0.000 claims description 3
- SAOKZLXYCUGLFA-UHFFFAOYSA-N bis(2-ethylhexyl) adipate Chemical compound CCCCC(CC)COC(=O)CCCCC(=O)OCC(CC)CCCC SAOKZLXYCUGLFA-UHFFFAOYSA-N 0.000 claims description 3
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 claims description 3
- QQVHEQUEHCEAKS-UHFFFAOYSA-N diundecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCC QQVHEQUEHCEAKS-UHFFFAOYSA-N 0.000 claims description 3
- DKYVVNLWACXMDW-UHFFFAOYSA-N n-cyclohexyl-4-methylbenzenesulfonamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC1CCCCC1 DKYVVNLWACXMDW-UHFFFAOYSA-N 0.000 claims description 3
- OHPZPBNDOVQJMH-UHFFFAOYSA-N n-ethyl-4-methylbenzenesulfonamide Chemical compound CCNS(=O)(=O)C1=CC=C(C)C=C1 OHPZPBNDOVQJMH-UHFFFAOYSA-N 0.000 claims description 3
- 239000007858 starting material Substances 0.000 claims description 3
- 229940124530 sulfonamide Drugs 0.000 claims description 3
- 150000003456 sulfonamides Chemical class 0.000 claims description 3
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 claims description 3
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 3
- 239000008158 vegetable oil Substances 0.000 claims description 3
- 239000002002 slurry Substances 0.000 abstract description 38
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 229910007562 Li2SiO3 Inorganic materials 0.000 abstract 1
- 229910010846 Li6Si2O7 Inorganic materials 0.000 abstract 1
- 229910052909 inorganic silicate Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 118
- 238000000034 method Methods 0.000 description 31
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 28
- 229910001416 lithium ion Inorganic materials 0.000 description 26
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 25
- 239000002904 solvent Substances 0.000 description 22
- 239000000203 mixture Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 17
- 239000007774 positive electrode material Substances 0.000 description 16
- 239000011149 active material Substances 0.000 description 15
- 239000010703 silicon Substances 0.000 description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 14
- 239000003792 electrolyte Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 14
- 238000000576 coating method Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 10
- 239000002131 composite material Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 239000003575 carbonaceous material Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000000354 decomposition reaction Methods 0.000 description 9
- 239000008151 electrolyte solution Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 239000012071 phase Substances 0.000 description 9
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 230000002427 irreversible effect Effects 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 230000035699 permeability Effects 0.000 description 8
- 239000002388 carbon-based active material Substances 0.000 description 7
- 239000004020 conductor Substances 0.000 description 7
- 229910052736 halogen Inorganic materials 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 description 7
- 238000002042 time-of-flight secondary ion mass spectrometry Methods 0.000 description 7
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 150000003377 silicon compounds Chemical class 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 150000005676 cyclic carbonates Chemical class 0.000 description 5
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 5
- 239000004210 ether based solvent Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000011255 nonaqueous electrolyte Substances 0.000 description 5
- 230000033116 oxidation-reduction process Effects 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 150000005678 chain carbonates Chemical class 0.000 description 4
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000011883 electrode binding agent Substances 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- GBROPGWFBFCKAG-UHFFFAOYSA-N picene Chemical compound C1=CC2=C3C=CC=CC3=CC=C2C2=C1C1=CC=CC=C1C=C2 GBROPGWFBFCKAG-UHFFFAOYSA-N 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 239000002210 silicon-based material Substances 0.000 description 4
- 239000011871 silicon-based negative electrode active material Substances 0.000 description 4
- 229920003051 synthetic elastomer Polymers 0.000 description 4
- 239000005061 synthetic rubber Substances 0.000 description 4
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000005004 MAS NMR spectroscopy Methods 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000005001 laminate film Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000011863 silicon-based powder Substances 0.000 description 3
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 3
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 2
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000009831 deintercalation Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000002409 silicon-based active material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011115 styrene butadiene Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 150000008053 sultones Chemical class 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 2
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 2
- 125000005580 triphenylene group Chemical group 0.000 description 2
- AVPYLKIIPLFMHQ-UHFFFAOYSA-N 1,2,6-oxadithiane 2,2,6,6-tetraoxide Chemical compound O=S1(=O)CCCS(=O)(=O)O1 AVPYLKIIPLFMHQ-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013842 M2PO 4 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 229910004530 SIMS 5 Inorganic materials 0.000 description 1
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- MOVRNJGDXREIBM-UHFFFAOYSA-N aid-1 Chemical compound O=C1NC(=O)C(C)=CN1C1OC(COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)CO)C(O)C1 MOVRNJGDXREIBM-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005591 charge neutralization Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- VDGKFLGYHYBDQC-UHFFFAOYSA-N difluoromethyl methyl carbonate Chemical compound COC(=O)OC(F)F VDGKFLGYHYBDQC-UHFFFAOYSA-N 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- PIQRQRGUYXRTJJ-UHFFFAOYSA-N fluoromethyl methyl carbonate Chemical compound COC(=O)OCF PIQRQRGUYXRTJJ-UHFFFAOYSA-N 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 238000004008 high resolution magic-angle spinning Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- 229910052912 lithium silicate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009829 pitch coating Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/32—Alkali metal silicates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode active material and a negative electrode.
- lithium-ion secondary batteries are highly expected because they are easy to make smaller and have higher capacity, and they can obtain higher energy density than lead-acid batteries and nickel-cadmium batteries.
- the lithium-ion secondary battery described above includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the negative electrode contains a negative electrode active material involved in charge-discharge reactions.
- the negative electrode active material expands and contracts during charging and discharging, so cracking occurs mainly near the surface layer of the negative electrode active material.
- an ionic substance is generated inside the active material, making the negative electrode active material fragile.
- a new surface is generated thereby increasing the reaction area of the active material.
- a decomposition reaction of the electrolytic solution occurs on the new surface, and a film, which is a decomposition product of the electrolytic solution, is formed on the new surface, so that the electrolytic solution is consumed.
- cycle characteristics tend to deteriorate.
- silicon and amorphous silicon dioxide are simultaneously deposited using a vapor phase method (see Patent Document 1, for example).
- a carbon material electroconductive material
- an active material containing silicon and oxygen is produced, and an active material layer with a high oxygen ratio is formed in the vicinity of the current collector ( For example, see Patent Document 3).
- oxygen is contained in the silicon active material, and the average oxygen content is 40 at % or less, and the oxygen content is increased near the current collector. (See Patent Document 4, for example).
- a nanocomposite containing Si phase, SiO 2 , and M y O metal oxide is used to improve the initial charge/discharge efficiency (see, for example, Patent Document 5).
- the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum value and the minimum value of the molar ratio near the interface between the active material and the current collector is 0.4 or less (see Patent Document 7, for example).
- a metal oxide containing lithium is used (see, for example, Patent Document 8).
- a hydrophobic layer such as a silane compound is formed on the surface layer of the silicon material (see, for example, Patent Document 9).
- silicon oxide is used, and conductivity is imparted by forming a graphite film on the surface layer (see, for example, Patent Document 10).
- broad peaks appear at 1330 cm ⁇ 1 and 1580 cm ⁇ 1 with respect to the shift values obtained from the RAMAN spectrum of the graphite film, and their intensity ratio I 1330 /I 1580 is 1.5 ⁇ I 1330 /I 1580 ⁇ 3.
- Patent Document 11 particles having a silicon microcrystalline phase dispersed in silicon dioxide are used.
- Patent Document 12 a silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1:y (0 ⁇ y ⁇ 2) is used (see Patent Document 12, for example).
- Non-Patent Document 1 Hitachi Maxell began shipments of prismatic secondary batteries for smartphones that adopted nanosilicon composites in June 2010 (see, for example, Non-Patent Document 1). .
- the silicon oxide proposed by Hohl is a composite of Si 0+ to Si 4+ and has various oxidation states (see Non-Patent Document 2).
- Kapaklis also proposed a disproportionated structure in which silicon oxide is divided into Si and SiO 2 by applying a thermal load (see Non-Patent Document 3).
- Miyachi et al. focused on Si and SiO2 that contribute to charging and discharging (see Non-Patent Document 4), and Yamada et al. (See Non-Patent Document 5).
- the above reaction formula indicates that Si and SiO 2 that constitute silicon oxide react with Li and separate into Li silicide, Li silicate, and partly unreacted SiO 2 .
- the Li silicate produced here is irreversible, and is said to be a stable substance that does not release Li once formed.
- the capacity per mass calculated from this reaction formula has a value close to the experimental value, and is recognized as a reaction mechanism of silicon oxide.
- Kim et al. identified Li silicate, an irreversible component associated with charging and discharging of silicon oxide, as Li 4 SiO 4 using 7 Li-MAS-NMR and 29 Si-MAS-NMR (see Non-Patent Document 6). ).
- lithium-ion secondary batteries which are the main power source for these devices, have been required to have increased battery capacity.
- the development of a lithium ion secondary battery comprising a negative electrode using a silicon material as a main material is desired. Further, it is desired that a lithium ion secondary battery using a silicon material has initial charge/discharge characteristics and cycle characteristics that are close to those of a lithium ion secondary battery using a carbon-based active material.
- the present invention has been made in view of the above problems, and provides a negative electrode active material that can improve stability during slurrying while realizing sufficient battery cycle characteristics, and such a negative electrode active material.
- An object of the present invention is to provide a negative electrode comprising:
- the present invention provides a negative electrode active material containing negative electrode active material particles
- the negative electrode active material particles contain silicon oxide particles coated with a carbon layer, At least part of the silicon oxide particles contains at least one selected from the group consisting of Li 2 SiO 3 , Li 4 SiO 4 and Li 6 Si 2 O 7 ,
- a negative electrode active material is provided, wherein at least part of the outermost layer of the negative electrode active material particles is coated with a layer of a plasticizer.
- the negative electrode active material of the present invention contains negative electrode active material particles containing silicon oxide particles, the battery capacity can be improved.
- the negative electrode active material of the present invention at least a part of the silicon oxide particles contains at least one selected from the group consisting of Li 2 SiO 3 , Li 4 SiO 4 and Li 6 Si 2 O 7 ,
- at least part of the outermost layer of the negative electrode active material particles is covered with a layer of a plasticizer, it is possible to obtain excellent Li diffusibility in the bulk while significantly improving the water resistance. By improving the Li diffusibility, the battery cycle characteristics can be improved.
- the negative electrode active material of the present invention can improve stability during slurrying while achieving sufficient battery cycle characteristics.
- the thickness of the plasticizer layer is preferably 0.1 nm or more and 10 nm or less.
- the thickness of the plasticizer layer is within this range, it is easy to control the film thickness and can exhibit sufficient Li permeability.
- the carbon layer partially contain nitrogen atoms.
- Such a carbon layer can exhibit excellent stability and excellent Li permeability.
- the carbon layer is formed using a hydrocarbon material derived from petroleum asphalt as a starting material, and part of it may contain the nitrogen atoms.
- the carbon layer can be formed using a hydrocarbon material derived from petroleum asphalt as a starting material.
- the plasticizer preferably contains at least one selected from the group consisting of phthalate plasticizers, adipate plasticizers, phosphate plasticizers, and sulfonamide plasticizers.
- the outermost layer is covered with a layer containing such a plasticizer, excellent water resistance can be exhibited more reliably.
- the plasticizers include dioctyl phthalate, dibutoxyethyl phthalate, diisononyl phthalate, diisodecyl phthalate, diundecyl phthalate, bis(2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis(2- butoxyethyl), triphenyl phosphate, phthalate-based polyester, adipic acid-based polyester, epoxidized vegetable oil, p-toluenesulfonamide, N-ethyl-o-toluenesulfonamide, N-ethyl-p-toluenesulfonamide, o -toluenesulfonamide, p-toluenesulfonamide, Nn-butylbenzenesulfonamide and N-cyclohexyl-p-toluenes
- the outermost layer is covered with a layer containing such a plasticizer, excellent water resistance can be exhibited more reliably.
- the plasticizer layer preferably further contains a solid electrolyte.
- the solid electrolyte may contain lithium phosphate and/or aluminum oxide.
- the solid electrolyte may contain lithium phosphate and/or aluminum oxide.
- the negative electrode active material particles have a peak attributed to the Si (111) crystal plane obtained by X-ray diffraction using Cu—K ⁇ rays before charging and discharging the negative electrode active material particles, and the crystal plane has a peak.
- the corresponding crystallite size is 5.0 nm or less, and the ratio of the peak intensity A due to the Si (111) crystal face to the peak intensity B due to the Li 2 SiO 3 (111) crystal face is A/ B is the following formula (1) 0.4 ⁇ A/B ⁇ 1.0 (1) is preferably satisfied.
- a negative electrode active material containing such negative electrode active material particles can achieve a high battery capacity while reducing the irreversible capacity.
- the negative electrode active material particles preferably have a median diameter of 4.5 ⁇ m or more and 15 ⁇ m or less.
- the median diameter of the negative electrode active material particles is within this range, it is possible to prevent acceleration of the reaction with the electrolyte, and to prevent loss of electronic contact due to expansion of the active material during charging and discharging. can be done.
- the present invention provides a negative electrode characterized by comprising the negative electrode active material of the present invention.
- the negative electrode of the present invention comprises the negative electrode active material of the present invention, it is possible to achieve sufficient battery cycle characteristics.
- FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a negative electrode of the present invention
- FIG. 1 is an exploded view showing a configuration example (laminate film type) of a lithium ion secondary battery including the negative electrode of the present invention.
- FIG. 4 is an X-ray photoelectron spectroscopy spectrum of the surface of the negative electrode active material of Example 1.
- FIG. 4 is a TOF-SIMS spectrum of the surface of the negative electrode active material of Example 1.
- Lithium ion secondary batteries using this silicon oxide are desired to exhibit initial charge/discharge characteristics that are close to those of lithium ion secondary batteries using a carbonaceous active material.
- Li-doped SiO capable of improving initial charge/discharge characteristics
- cycle characteristics close to those of carbon-based active materials are desired.
- no negative electrode active material has been proposed that satisfies the pot life of the slurry when slurried.
- the present inventors have made extensive studies to obtain a negative electrode active material that can be used as a negative electrode active material for a secondary battery, which is excellent in handleability and capable of obtaining high cycle characteristics.
- the Li silicate phase obtained by doping silicon oxide with Li suppresses the formation of Li 2 Si 2 O 5 with low elution, and Li 2 SiO 3 with high Li diffusivity while eluting easily in water.
- Li 4 SiO 4 and Li 6 Si 2 O 7 and the outermost layer of the negative electrode active material is coated with a layer of a plasticizer to significantly improve the water resistance.
- the inventors have found that excellent Li diffusibility in the bulk can be obtained while improving to 100%, and have completed the present invention.
- the present invention provides a negative electrode active material comprising negative electrode active material particles
- the negative electrode active material particles contain silicon oxide particles coated with a carbon layer, At least part of the silicon oxide particles contains at least one selected from the group consisting of Li 2 SiO 3 , Li 4 SiO 4 and Li 6 Si 2 O 7 ,
- the negative electrode active material is characterized in that at least part of the outermost layer of the negative electrode active material particles is coated with a layer of a plasticizer.
- the present invention also provides a negative electrode comprising the negative electrode active material of the present invention.
- the negative electrode active material of the present invention (hereinafter also referred to as a silicon-based negative electrode active material) contains negative electrode active material particles containing silicon oxide particles (hereinafter also referred to as silicon-based negative electrode active material particles). can improve.
- Li silicate on at least part of the silicon oxide particles, it is possible to stabilize the slurry before coating, and by using a stable slurry, a good electrode can be obtained and battery characteristics are improved. .
- a slurry does not have sufficient long-term storage stability, and the formed Li silicate slowly dissolves in the slurry over time.
- Li silicate When forming Li silicate, for example, by applying a heat load, the crystalline phase of Li silicate is enlarged, thereby reducing the elution of Li into the slurry, but at the same time, the crystallinity of Si increases. .
- the generation of such highly crystalline Si is a factor that significantly degrades battery characteristics.
- the present inventors have found that the Li silicate phase is kept in at least one state selected from the group consisting of Li 2 SiO 3 , Li 4 SiO 4 and Li 6 Si 2 O 7 , and the negative electrode active material
- the outermost layer By coating the outermost layer with a layer of plasticizer, we have developed a material that can obtain excellent Li diffusibility in the bulk while greatly improving water resistance.
- the negative electrode active material of the present invention at least a part of the silicon oxide particles contains at least one selected from the group consisting of Li 2 SiO 3 , Li 4 SiO 4 and Li 6 Si 2 O 7 , and the negative electrode At least part of the outermost layer of the active material particles is covered with a layer of a plasticizer, so that excellent Li diffusibility in the bulk can be obtained while significantly improving the water resistance. By improving the Li diffusibility, the battery cycle characteristics can be improved.
- the negative electrode active material of the present invention it is possible to improve the stability during slurrying while realizing sufficient battery cycle characteristics.
- the negative electrode active material of the present invention will be described in more detail below.
- the negative electrode active material of the present invention can be used, for example, as a negative electrode active material for nonaqueous electrolyte secondary batteries, particularly lithium ion secondary batteries.
- the negative electrode active material of the present invention contains silicon oxide particles.
- Silicon oxide particles can be said to be a silicon oxide material containing a silicon compound containing oxygen.
- the ratio of silicon to oxygen constituting this silicon oxide is preferably in the range of SiO x : 0.8 ⁇ x ⁇ 1.2. If x is 0.8 or more, the oxygen ratio is higher than that of simple silicon, so the cycle characteristics are good. If x is 1.2 or less, it is preferable because the resistance of the silicon oxide does not become too high. Above all, it is preferable that x is close to 1 in the composition of SiO x . This is because high cycle characteristics can be obtained.
- the composition of the silicon compound in the present invention does not necessarily mean 100% purity, and may contain trace amounts of impurity elements.
- the silicon oxide particles is selected from the group consisting of Li compounds, specifically Li 2 SiO 3 , Li 4 SiO 4 and Li 6 Si 2 O 7 contains at least one More specifically, the silicon oxide particles preferably contain Li 2 SiO 3 .
- the SiO 2 component part that becomes unstable when lithium is inserted and detached during charging and discharging of the battery is previously reformed into another lithium silicate, so it is easy to charge.
- the irreversible capacity that sometimes occurs can be reduced.
- the irreversible capacity associated with charging and discharging can be reduced by enlarging the Li silicate within the range in which the crystal growth of Si is suppressed. Therefore, it is desirable that Li 2 SiO 3 among the Li silicates generated in the bulk have crystallinity.
- Li 4 SiO 4 and Li 6 Si 2 O 7 are more unstable than Li 2 SiO 3 because they are highly soluble in water. You can use it by improving it.
- Li 4 SiO 4 has the best Li diffusibility, and it is desirable to use Li 2 SiO 3 together with substantially high structural stability.
- Li silicates such as Li 2 SiO 3 , Li 4 SiO 4 and Li 6 Si 2 O 7 contained inside the bulk of silicon oxide particles can be quantified by NMR (Nuclear Magnetic Resonance). NMR measurement can be performed, for example, under the following conditions. 29 Si-MAS-NMR (magic angle rotating nuclear magnetic resonance) - Apparatus: Bruker 700 NMR spectrometer, ⁇ Probe: 4 mm HR-MAS rotor 50 ⁇ L, ⁇ Sample rotation speed: 10 kHz, - Measurement environmental temperature: 25°C.
- NMR Nuclear Magnetic Resonance
- the degree of enlargement of Li silicate and the degree of crystallization of Si can be confirmed by XRD (X-ray Diffraction: X-ray diffraction method).
- D8 ADVANCE manufactured by Bruker can be used as an X-ray diffractometer.
- the X-ray source uses Cu K ⁇ rays, a Ni filter, an output of 40 kV/40 mA, a slit width of 0.3°, a step width of 0.008°, a counting time of 0.15 seconds per step, and 10- Measure up to 40°.
- the negative electrode active material particles contained in the negative electrode active material of the present invention have a peak attributed to the Si (111) crystal plane obtained by X-ray diffraction using Cu—K ⁇ rays before charging and discharging the negative electrode active material particles. and the crystallite size corresponding to the crystal face is 5.0 nm or less, and the intensity of the peak due to the Si (111) crystal face relative to the intensity B of the peak due to the Li 2 SiO 3 (111) crystal face
- the ratio A/B of A is the following formula (1) 0.4 ⁇ A/B ⁇ 1.0 (1) is preferably satisfied.
- a negative electrode active material containing such negative electrode active material particles can achieve a high battery capacity while reducing the irreversible capacity.
- the crystallite size of Si(111) is 0 nm.
- silicon oxide particles are coated with a carbon layer. Thereby, battery capacity and safety can be improved.
- the carbon covering the silicon oxide particles is derived from hydrocarbon gas and is generally formed using the CVD method. By doing so, a nitrogen atom (N) is contained.
- Asphalt-derived carbon layers have a molecular structure with a high carbon number. The presence of such a carbon layer makes it possible to improve the water resistance during slurrying.
- the molecular structure with a large number of carbon atoms suppresses excessive decomposition of the electrolyte, and exhibits characteristics similar to pitch coating, so it is difficult for the decomposition products of the electrolyte to be excessively generated on the surface, resulting in excellent Li permeability.
- a thick film can be formed. As a result, a carbon layer that is more stable and has excellent Li permeability can be obtained.
- the negative electrode active material of the present invention at least part of the outermost layer of the negative electrode active material particles is coated with a layer of a plasticizer.
- the thickness of the plasticizer layer is preferably 0.1 nm or more and 10 nm or less.
- the thickness of the plasticizer layer is within this range, it is easy to control the film thickness and can exhibit sufficient Li permeability.
- the plasticizer preferably contains at least one selected from the group consisting of phthalate plasticizers, adipate plasticizers, phosphate ester plasticizers, and sulfonamide plasticizers.
- the outermost layer is covered with a layer containing such a plasticizer, excellent water resistance can be exhibited more reliably.
- the plasticizer may contain a sepacate plasticizer, a glycol ester plasticizer, or an epoxy fatty acid ester plasticizer.
- Plasticizers are substantially dioctyl phthalate, dibutoxyethyl phthalate, diisononyl phthalate, diisodecyl phthalate, diundecyl phthalate, bis(2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis adipate (2-butoxyethyl), triphenyl phosphate, phthalate-based polyester, adipic acid-based polyester, epoxidized vegetable oil, p-toluenesulfonamide, N-ethyl-o-toluenesulfonamide, N-ethyl-p-toluenesulfone More preferably, it contains at least one selected from the group consisting of amide, o-toluenesulfonamide, p-toluenesulfonamide, Nn-butylbenzenesulf
- the outermost layer is covered with a layer containing such a plasticizer, excellent water resistance can be exhibited more reliably.
- the outermost plasticizer layer is confirmed by X-ray Photoelectron Spectroscopy (XPS) and/or Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). can do
- XPS can be performed using, for example, PHI Quantera II manufactured by ULVAC-PHI.
- the X-ray beam diameter is 100 ⁇ m, and a neutralization gun can be used.
- TOF-SIMS can be performed using, for example, TOF-SIMS5 manufactured by ION-TOF. Examples of conditions are shown below. Mass range (m/z) 0-1500 Raster size 300 ⁇ m ⁇ Number of scans 16 times Number of pixels 256 Degree of vacuum 4 ⁇ 10 ⁇ 7 Pa or less Primary ion species Bi 3 ++ Accelerating voltage 30kV Pulse width 12.5ns High mass resolution measurement Yes Charge neutralization No Post-stage acceleration 9.5 kV Disassembly of the battery is performed in an Ar atmosphere, and measurement is performed without opening to the atmosphere.
- the material of the solid electrolyte is not particularly limited, but lithium phosphate, aluminum oxide with Li permeability, and the like are desirable.
- the negative electrode active material particles preferably have a median diameter of 4.5 ⁇ m or more and 15 ⁇ m or less.
- the median diameter of the negative electrode active material particles is within this range, it is possible to prevent acceleration of the reaction with the electrolyte, and to prevent loss of electronic contact due to expansion of the active material during charging and discharging. can be done.
- the negative electrode active material of the present invention can be produced, for example, by the following method. However, the negative electrode active material of the present invention may be produced by methods other than the method described below.
- silicon oxide particles containing a silicon compound containing oxygen are produced.
- silicon oxide represented by SiO x (0.8 ⁇ x ⁇ 1.2) as the silicon compound containing oxygen
- the raw material can be a mixture of metallic silicon powder and silicon dioxide powder.
- the mixing molar ratio is preferably in the range of 0.9 ⁇ metallic silicon powder/silicon dioxide powder ⁇ 1.2.
- the generated silicon oxide gas is solidified and deposited on the adsorption plate.
- the silicon oxide deposit is taken out while the temperature in the reaction furnace is lowered to 100° C. or less, and pulverized by using a ball mill, a jet mill, or the like to be powdered.
- silicon oxide particles can be produced.
- the Si crystallites in the silicon oxide particles can be controlled by changing the vaporization temperature of the raw material that generates the silicon oxide gas or by heat treatment after the silicon compound particles are produced.
- a thermal decomposition CVD method can be mentioned as a method for producing a carbon material layer.
- An example of a method of producing a layer of carbon material by pyrolytic CVD is described below.
- silicon oxide particles are set in a furnace.
- a hydrocarbon gas is introduced into the furnace to raise the temperature inside the furnace.
- the decomposition temperature is not particularly limited, it is preferably 950°C or lower, more preferably 850°C or lower. By setting the decomposition temperature to 950° C. or lower, unintended disproportionation of the active material particles can be suppressed.
- a carbon layer is formed on the surfaces of the silicon compound particles.
- the hydrocarbon gas used as the raw material of the carbon material is not particularly limited, but it is desirable that n ⁇ 3 in the C n H m composition. If n ⁇ 3, the production cost can be reduced, and the physical properties of the decomposition products can be improved.
- the carbon covering the silicon oxide particles is derived from the hydrocarbon gas as described above and is formed using the CVD method.
- CVD method By kneading and heat-treating at, for example, 850° C. to 900° C., it is possible to obtain a carbon layer containing nitrogen atoms (N), which is more stable and has excellent Li permeability.
- Li is inserted into the silicon oxide particles (silicon oxide particles coated with a carbon layer) produced as described above.
- negative electrode active material particles containing silicon oxide particles into which lithium is inserted are produced. That is, as a result, the silicon oxide particles coated with the carbon layer are modified, and a Li compound is generated inside the silicon oxide particles.
- the insertion of Li is preferably performed by an oxidation-reduction method.
- lithium can be inserted by first immersing silicon oxide particles coated with a carbon layer in a solution A in which lithium is dissolved in an ether solvent.
- This solution A may further contain a polycyclic aromatic compound or a linear polyphenylene compound.
- active lithium is removed from the carbon layer-coated silicon oxide particles by immersing the silicon active material particles coated with the carbon layer in a solution B containing a polycyclic aromatic compound or a derivative thereof. can be released.
- Solvents for this solution B can be, for example, ether solvents, ketone solvents, ester solvents, alcohol solvents, amine solvents, or mixed solvents thereof.
- the obtained silicon oxide particles coated with a carbon layer may be heat-treated under an inert gas.
- the Li compound can be stabilized by heat treatment. After that, it may be washed with alcohol, alkaline water in which lithium carbonate is dissolved, weak acid, pure water, or the like.
- Ether solvents used for solution A include diethyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, or mixed solvents thereof. can be used. Among these, it is particularly preferable to use tetrahydrofuran, dioxane, and 1,2-dimethoxyethane. These solvents are preferably dehydrated and preferably deoxygenated.
- polycyclic aromatic compound contained in the solution A one or more of naphthalene, anthracene, phenanthrene, naphthacene, pentacene, pyrene, picene, triphenylene, coronene, chrysene and derivatives thereof can be used.
- chain polyphenylene compound one or more of biphenyl, terphenyl, and derivatives thereof can be used.
- polycyclic aromatic compound contained in solution B one or more of naphthalene, anthracene, phenanthrene, naphthacene, pentacene, pyrene, picene, triphenylene, coronene, chrysene, and derivatives thereof can be used.
- ether-based solvent for solution B diethyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and the like can be used. .
- Acetone, acetophenone, etc. can be used as the ketone-based solvent.
- ester solvent methyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and the like can be used.
- Methanol, ethanol, propanol, isopropyl alcohol, etc. can be used as alcohol-based solvents.
- amine-based solvent methylamine, ethylamine, ethylenediamine, etc. can be used.
- the Li silicate produced by modification by the oxidation-reduction method is Li 4 SiO 4 , but can be converted to other Li silicate such as Li 2 SiO 3 by heat treatment.
- the degree of crystallization of Li silicate and Si varies depending on the temperature at this time.
- the reaction temperature during Li insertion is also related to the degree of crystallization of Li silicate and Si.
- the state of Li silicate can be controlled by performing heat treatment at 400°C or higher and 650°C or lower after filtering the material that has been subjected to Li doping treatment by the oxidation-reduction method.
- the heat treatment device is not limited here, it is desirable to use a uniform heat treatment such as a rotary kiln.
- Li silicate states can be created by using the vacuum state, inert gas flow rate (internal pressure), retort thickness, and rotation speed as factors.
- the coating method here is not particularly limited, it can be performed, for example, by the following method.
- a plasticizer solution is obtained by dissolving a plasticizer in a solvent such as diethyl ether that can be used as a solvent for solution A.
- a solvent such as diethyl ether that can be used as a solvent for solution A.
- the particles obtained by the Li-doping treatment are mixed with a solution in which a plasticizer is dissolved, and then spray-drying is used to volatilize the solvent to form a layer of the plasticizer on the surface of the particles. After that, vacuum drying is performed to completely remove the solvent. Thereby, the negative electrode active material of the present invention is obtained.
- the negative electrode of the present invention comprises the negative electrode active material of the present invention.
- FIG. 1 shows a schematic cross-sectional view of an example of the negative electrode of the present invention.
- the negative electrode 10 has a structure having a negative electrode active material layer 12 on a negative electrode current collector 11 .
- the negative electrode active material layer 12 may be provided on both sides of the negative electrode current collector 11 as shown in FIG. 1, or may be provided on only one side.
- the negative electrode current collector 11 may be omitted.
- the negative electrode current collector 11 is made of an excellent conductive material and has high mechanical strength.
- Examples of conductive materials that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
- the negative electrode current collector 11 preferably contains carbon (C) and sulfur (S) in addition to the main elements. This is because the physical strength of the negative electrode current collector 11 is improved. This is because, in particular, in the case of having an active material layer that expands during charging, if the current collector contains the above element, it has the effect of suppressing deformation of the electrode including the current collector.
- the contents of the above-mentioned contained elements are not particularly limited, they are preferably 100 ppm by mass or less. This is because a higher deformation suppression effect can be obtained.
- the surface of the negative electrode current collector 11 may or may not be roughened.
- Roughened negative electrode current collectors are, for example, electrolytically treated, embossed, or chemically etched metal foils.
- the non-roughened negative electrode current collector is, for example, a rolled metal foil.
- the negative electrode active material layer 12 contains the negative electrode active material of the present invention capable of intercalating and deintercalating lithium ions. may contain The negative electrode active material includes negative electrode active material particles, and the negative electrode active material particles include silicon oxide particles coated with a carbon layer.
- the negative electrode active material layer 12 may contain a mixed negative electrode active material containing the negative electrode active material (silicon-based negative electrode active material) of the present invention and a carbon-based active material.
- a mixed negative electrode active material containing the negative electrode active material (silicon-based negative electrode active material) of the present invention and a carbon-based active material As a result, the electrical resistance of the negative electrode active material layer is reduced, and the expansion stress associated with charging can be alleviated.
- Examples of carbon-based active materials that can be used include pyrolytic carbons, cokes, vitreous carbon fibers, baked organic polymer compounds, and carbon blacks.
- the negative electrode binder contained in the negative electrode active material layer 12 for example, one or more of polymer materials, synthetic rubbers, and the like can be used.
- polymeric materials include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, sodium polyacrylate, and carboxymethylcellulose.
- Synthetic rubbers include, for example, styrene-butadiene-based rubber, fluorine-based rubber, and ethylene propylene diene.
- the negative electrode conductive aid for example, one or more of carbon materials such as carbon black, acetylene black, graphite, ketjen black, carbon nanotubes, and carbon nanofibers can be used.
- the negative electrode active material layer 12 is formed by, for example, a coating method.
- the coating method is a method in which the silicon-based negative electrode active material and the above-mentioned binder are mixed, and if necessary, a conductive aid and a carbon-based active material are mixed, and then the mixture is dispersed in an organic solvent or water and applied. .
- the negative electrode active material of the present invention prepared as described above is mixed with other materials such as a negative electrode binder and a conductive aid to form a negative electrode mixture, and then an organic solvent or water is added. Add to slurry. Next, the slurry is applied to the surface of the negative electrode current collector and dried to form a negative electrode active material layer. At this time, heat pressing or the like may be performed as necessary. As described above, the negative electrode of the present invention can be produced.
- the negative electrode active material of the present invention is particularly suitable for forming slurry using water, it can also be applied for forming slurry using an organic solvent.
- the negative electrode of the present invention can be used as a negative electrode for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries.
- the wound electrode body 31 has a separator between the positive electrode and the negative electrode and is wound. There is also a case where a laminate having a separator between the positive electrode and the negative electrode is housed without being wound.
- a positive electrode lead 32 is attached to the positive electrode and a negative electrode lead 33 is attached to the negative electrode.
- the outermost periphery of the electrode body 31 is protected by a protective tape.
- the positive electrode lead 32 and the negative electrode lead 33 are, for example, led out in one direction from the inside of the exterior member 35 toward the outside.
- the positive electrode lead 32 is made of a conductive material such as aluminum
- the negative electrode lead 33 is made of a conductive material such as nickel or copper.
- the exterior member 35 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protection layer are laminated in this order.
- the outer peripheral edges of the fusion layer are fused together or adhered to each other with an adhesive or the like.
- the fused portion is, for example, a film such as polyethylene or polypropylene, and the metal portion is aluminum foil or the like.
- the protective layer is, for example, nylon or the like.
- An adhesive film 34 is inserted between the exterior member 35 and each of the positive electrode lead 32 and the negative electrode lead 33 to prevent outside air from entering.
- This material is, for example, polyethylene, polypropylene, polyolefin resin.
- the positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector, like the negative electrode 10 in FIG.
- the positive electrode current collector is made of a conductive material such as aluminum, for example.
- the positive electrode active material layer contains one or more of positive electrode materials (positive electrode active materials) capable of intercalating and deintercalating lithium ions. It may contain other materials such as
- a lithium-containing compound is desirable as the positive electrode material.
- the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound containing lithium and a transition metal element.
- these positive electrode materials compounds containing at least one of nickel, iron, manganese and cobalt are preferred.
- These chemical formulas are represented by, for example, Li x M1O 2 or Li y M2PO 4 .
- M1 and M2 represent at least one transition metal element.
- the values of x and y vary depending on the state of charge and discharge of the battery, they are generally represented by 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
- Examples of composite oxides containing lithium and a transition metal element include lithium-cobalt composite oxides (Li x CoO 2 ), lithium-nickel composite oxides (Li x NiO 2 ), lithium-nickel-cobalt composite oxides, and the like. .
- Examples of lithium-nickel-cobalt composite oxides include lithium-nickel-cobalt-aluminum composite oxides (NCA) and lithium-nickel-cobalt-manganese composite oxides (NCM).
- Examples of the phosphate compound containing lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) and a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1)). is mentioned.
- LiFePO 4 lithium iron phosphate compound
- LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1) lithium iron manganese phosphate compound
- polymeric materials include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, sodium polyacrylate, and carboxymethylcellulose.
- Synthetic rubbers include, for example, styrene-butadiene-based rubber, fluorine-based rubber, and ethylene propylene diene.
- one or more of carbon materials such as carbon black, acetylene black, graphite, ketjen black, carbon nanotubes, and carbon nanofibers can be used as the positive electrode conductive aid.
- the negative electrode of the present invention is used as the negative electrode of the secondary battery.
- the negative electrode constituting the secondary battery preferably has a larger negative electrode charge capacity than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material. Thereby, deposition of lithium metal on the negative electrode can be suppressed.
- the positive electrode active material layer is provided on part of both surfaces of the positive electrode current collector, and similarly the negative electrode active material layer of the present invention is also provided on part of both surfaces of the negative electrode current collector.
- the negative electrode active material layer provided on the negative electrode current collector has a region where the facing positive electrode active material layer does not exist. This is for the purpose of stably designing a battery.
- the separator separates the lithium metal or the positive electrode from the negative electrode, and allows lithium ions to pass through while preventing current short circuit due to contact between the two electrodes.
- This separator is formed of a porous film made of synthetic resin or ceramic, for example, and may have a laminated structure in which two or more kinds of porous films are laminated.
- synthetic resins include polytetrafluoroethylene, polypropylene, and polyethylene.
- Electrode At least part of each of the positive electrode active material layer and the negative electrode active material layer, or the separator is impregnated with a liquid non-aqueous electrolyte (electrolytic solution).
- electrolytic solution has an electrolytic salt dissolved in a solvent, and may contain other materials such as additives.
- Non-aqueous solvents include, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran and the like.
- ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate it is desirable to use at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate. This is because better characteristics are obtained.
- the solvent contains at least one of a halogenated chain carbonate or a halogenated cyclic carbonate.
- a halogenated chain carbonate is a chain carbonate having halogen as a constituent element (at least one hydrogen is substituted with halogen).
- a halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (that is, at least one hydrogen is substituted with halogen).
- halogen is not particularly limited, but fluorine is preferred. This is because it forms a better film than other halogens. Moreover, the larger the number of halogens, the better. This is because the coating obtained is more stable and the decomposition reaction of the electrolyte is reduced.
- halogenated chain carbonates include fluoromethylmethyl carbonate and difluoromethylmethyl carbonate.
- Halogenated cyclic carbonates include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
- an unsaturated carbon-bonded cyclic carbonate As a solvent additive, it is preferable to contain an unsaturated carbon-bonded cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed.
- unsaturated carbon-bonded cyclic ester carbonates include vinylene carbonate and vinylethylene carbonate.
- sultone cyclic sulfonate
- solvent additive examples include propane sultone and propene sultone.
- the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
- Acid anhydrides include, for example, propanedisulfonic anhydride.
- the electrolyte salt can include, for example, any one or more of light metal salts such as lithium salts.
- lithium salts include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
- the content of the electrolyte salt is preferably 0.5 mol/kg or more and 2.5 mol/kg or less with respect to the solvent. This is because high ionic conductivity can be obtained.
- the laminated film type secondary battery described above can be manufactured, for example, by the following procedure.
- a positive electrode is produced using the positive electrode material described above.
- a positive electrode active material and, if necessary, a positive electrode binder, a positive electrode conductive aid, and the like are mixed to form a positive electrode mixture, which is then dispersed in an organic solvent to obtain a positive electrode mixture slurry.
- the mixture slurry is applied to the positive electrode current collector with a coating device such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer.
- the positive electrode active material layer is compression-molded using a roll press machine or the like. At this time, heating may be performed, and compression may be repeated multiple times.
- a negative electrode is manufactured by forming a negative electrode active material layer on the negative electrode current collector according to the same work procedure as that for manufacturing the negative electrode 10 described above.
- each active material layer is formed on both sides of the positive electrode and negative electrode current collectors. At this time, the active material coating lengths on both sides of both electrodes may be displaced (see FIG. 1).
- the positive electrode lead 32 is attached to the positive electrode current collector, and the negative electrode lead 33 is attached to the negative electrode current collector.
- the positive electrode and the negative electrode are laminated with a separator interposed therebetween, and then wound to produce the wound electrode body 31, and a protective tape is adhered to the outermost periphery thereof.
- the wound electrode body 31 is molded so as to have a flat shape.
- the insulating portions of the exterior members are bonded together by a heat-sealing method, and the wound electrode body is formed in a state where only one direction is open.
- the body 31 is encapsulated. Subsequently, the adhesion film 34 is inserted between the positive electrode lead 32 and the negative electrode lead 33 and the exterior member 35 . Subsequently, a predetermined amount of the electrolyte prepared as described above is introduced from the open portion, and vacuum impregnation is performed. After impregnation, the release portion is adhered by a vacuum heat-sealing method. As described above, the laminate film type secondary battery 30 can be manufactured.
- the negative electrode utilization rate during charging and discharging is preferably 93% or more and 99% or less. If the negative electrode utilization rate is in the range of 93% or more, the first charge efficiency does not decrease, and the battery capacity can be greatly improved. In addition, if the negative electrode utilization rate is in the range of 99% or less, the safety can be ensured without precipitation of Li.
- a negative electrode active material was produced as follows. A raw material obtained by mixing metallic silicon and silicon dioxide was introduced into the reactor. In this reactor, the raw material was vaporized in a vacuum atmosphere of 10 Pa and deposited on the adsorption plate. After cooling sufficiently, the sediment was taken out and ground in a ball mill. The value of x in SiO x of the silicon oxide particles thus obtained was 1.0.
- the particle size of the silicon oxide particles was adjusted by classification. Thereafter, pyrolytic CVD was performed at a temperature in the range of 700° C. to 950° C. to coat the surface of the silicon oxide particles with the carbon material.
- the silicon oxide particles were reformed by inserting lithium into them by an oxidation-reduction method.
- the outermost layer of the silicon oxide particles was coated with a layer of dioctyl phthalate, which is a plasticizer, using the spray drying method described above.
- the thickness of the plasticizer layer was 1 nm.
- the median diameter of the negative electrode active material particles included in each negative electrode active material and the ratio of the peak intensity A due to the Si (111) crystal face to the peak intensity B due to the Li 2 SiO 3 (111) crystal face are as follows. Table 1 shows. The intensity ratio A/B was confirmed by XRD. Moreover, it was confirmed by XRD that Si contained in each negative electrode active material was amorphous.
- the negative electrode active material active material containing modified silicon oxide particles
- graphite graphite
- conductive aid 1 carbon nanotube, CNT
- conductive aid 2 median diameter is about 50 nm
- carbon fine particles sodium polyacrylate
- carboxymethyl cellulose hereinafter referred to as CMC
- the stability of the slurry was observed by pot life, and it was confirmed whether it was stable after 72 hours. This determination can be made by determining whether or not hydrogen gas is emitted from the slurry.
- An electrolytic copper foil having a thickness of 15 ⁇ m was used as the negative electrode current collector.
- This electrolytic copper foil contained carbon and sulfur at a concentration of 70 mass ppm each.
- the negative electrode mixture slurry was applied to the negative electrode current collector and dried at 100° C. for 1 hour in a vacuum atmosphere. After drying, the deposition amount of the negative electrode active material layer per unit area (also referred to as area density) on one side of the negative electrode was 7.0 mg/cm 2 .
- the previously obtained negative electrode was punched out to have a diameter of 15 mm, and this was opposed to a Li foil attached to an aluminum clad with a separator interposed therebetween.
- a 2032 coin battery was produced.
- the initial efficiency was measured under the following conditions. First, the prepared coin battery for the initial efficiency test was charged (initial charge) in the CCCV mode at a charge rate equivalent to 0.03C. CV was 0 V and final current was 0.04 mA. Next, CC discharge (initial discharge) was performed at a discharge rate of 0.03 C and a discharge final voltage of 1.2 V.
- initial efficiency (initial discharge capacity/initial charge capacity) ⁇ 100.
- the counter-positive electrode was designed so that the utilization rate of the negative electrode was 95%.
- the cycle characteristics were investigated as follows. First, two cycles of charge and discharge were performed at 0.2C in an atmosphere of 25°C for battery stabilization, and the discharge capacity of the second cycle was measured. Battery cycle characteristics were calculated from the discharge capacity at the 3rd cycle, and the battery test was stopped at 100 cycles. Charging and discharging were performed at 0.7C for charging and 0.5C for discharging. The charge voltage was 4.3V, the discharge final voltage was 2.5V, and the charge final rate was 0.07C.
- Comparative Examples 1 to 6 In Comparative Examples 1, 3 and 5, negative electrode active materials were produced in the same manner as in Example 2 above, except that the outermost layer of the silicon oxide particles was not covered with a layer of plasticizer. Further, in Comparative Examples 3 and 5, modification treatment was performed after Li doping, and the state of Li silicate was controlled as shown in Table 1 below.
- Comparative Examples 2, 4 and 6 the same negative electrode mixture slurries as in Comparative Examples 1, 3 and 5 were prepared, and the following day, negative electrodes were prepared in the same manner as above using the prepared negative electrode mixture slurries. .
- Example 4-18 In Examples 4 to 18, a negative electrode active material and a negative electrode were produced in the same manner as in Example 1, except that the plasticizer used was changed to one shown in Table 1.
- Example 15 a mixture of N-ethyl-O-toluenesulfonamide and N-ethyl-p-toluenesulfonamide was used.
- Example 16 a mixture of o-toluenesulfonamide and p-toluenesulfonamide was used.
- Example 19-24 A negative electrode active material and a negative electrode were produced in the same manner as in Example 8, except that the thickness of the plasticizer layer was changed to that shown in Table 2.
- Example 25 In Example 25, a negative electrode active material and a negative electrode were produced in the same procedure as in Example 8, except that petroleum asphalt was used to form the carbon layer.
- Example 25 Specifically, petroleum asphalt was dissolved in toluene, separated by spray drying, and then heat-treated. As a result, a hydrocarbon material derived from petroleum asphalt was obtained. Then, the silicon oxide particles prepared by the procedure described above were classified to adjust the particle size, kneaded with a hydrocarbon material derived from petroleum asphalt, and heat-treated at 870°C. After that, modification and coating with a layer of a plasticizer were carried out in the same manner as in Example 8, and a negative electrode active material of Example 25 was obtained.
- Example 26 and 27 when forming the plasticizer layer, the plasticizer solution was mixed with sufficiently crushed lithium phosphate or lithium phosphate and aluminum oxide to be dispersed in the film. A negative electrode active material and a negative electrode were produced in the same manner as in Example 8.
- Example 28 In Example 28, a negative electrode active material and a negative electrode were produced in the same manner as in Example 26, except that the carbon layer was formed in the same manner as in Example 25.
- Example 29 a negative electrode active material and a negative electrode were produced in the same procedure as in Example 27, except that the carbon layer was formed in the same manner as in Example 25.
- Examples 30-34 In Examples 30 to 34, a negative electrode active material and a negative electrode were produced in the same manner as in Example 8, except that the crystallinity of Si and Li silicate was changed as shown in Table 2 below.
- Examples 30 to 34 an ether-based solvent was used, and Li was inserted at a temperature lower than the boiling point of the solvent by 10°C or more.
- the crystallinity of Li silicate and the crystallinity of Si were controlled by changing the subsequent heat treatment temperature in the range of 450° C. or higher and 650° C. or lower.
- Example 35-41 In Examples 35 to 41, the procedure was the same as in Example 8, except that the particle size of the silicon oxide particles was adjusted by classification so that the median size of the produced negative electrode active material particles was the value shown in Table 2 below. to produce a negative electrode active material.
- Tables 1 and 2 below summarize the parameters of the negative electrode active materials of Examples and Comparative Examples.
- Tables 3 and 4 below show the capacity retention rate up to 500 cycles of the lithium ion secondary batteries of Examples and Comparative Examples, and the stability of the negative electrode mixture slurry prepared using each negative electrode active material. Summarize.
- Comparative Examples 1 to 6 are cases where the outermost layer is slurried without using a plasticizer.
- Table 3 As the results of Comparative Examples 1, 3 and 5, but on the next day, gas was generated from the slurry and the thickener As a result, as shown in Table 3 as results for Comparative Examples 2, 4 and 6, the long-term battery characteristics deteriorated significantly.
- the pot life of the slurry prepared using the negative electrode active material of the comparative example was 18 hours or less. Since pot life of slurries is generally required to be 48 hours or more, this result means that the negative electrode active materials of Comparative Examples 1 to 6 are not industrially useful.
- the negative electrode active materials of Examples 1 to 41 exhibited excellent long-term battery characteristics as shown in Tables 3 and 4, even when the negative electrode was prepared by coating the slurry the day after preparation.
- the pot life of the slurries prepared using the negative electrode active materials of Examples 1 to 41 was 48 hours or more, as shown in Tables 3 and 4. This result means that the negative electrode active materials of Examples 1 to 41 are industrially useful because they meet the pot life requirements of general slurries.
- Example 1 Li 2 SiO 3 was formed by applying a heat load after Li doping, and a dioctyl phthalate layer was formed as a plasticizer layer on the outermost layer of the negative electrode active material particles. be.
- a good quality coating film was obtained by the plasticizer, and it is considered that high slurry stability could be obtained.
- Example 2 is an example in which a dioctyl phthalate layer was formed as a plasticizer layer on the outermost layer of the negative electrode active material particles after Li doping.
- Li 4 SiO 4 present inside the bulk is an unstable substance, the minimum required durability (slurry stability) of 48 hours was confirmed.
- Example 3 after Li doping, a plasticizer layer was formed on the outermost layer of the negative electrode active material particles while leaving part of Li 6 Si 2 O 7 inside the bulk.
- the slurry prepared using the negative electrode active material of Example 3 was slightly unstable compared to Example 1, but 72-hour durability (slurry stability) was confirmed.
- the film thickness is calculated from the change in mass before and after the treatment (it is too thin to be observed directly), but the part is not completely covered but partially exposed. think that exists. However, it was confirmed that it was within a range that could withstand actual use.
- Examples 26 to 29 are examples in which the pulverized solid electrolyte is mixed with the plasticizer layer.
- a comparison of the results of Examples 8 and 25 with those of Examples 26 to 29 shows that the cycle characteristics can be further improved by mixing the pulverized solid electrolyte into the plasticizer layer. From this result, it was confirmed that by mixing the pulverized solid electrolyte into the plasticizer layer, the Li ions that permeate the plasticizer layer can enter and exit smoothly, and the battery characteristics are improved.
- FIG. 3 shows the X-ray photoelectron spectroscopy spectrum of the surface of the negative electrode active material of Example 1.
- 4 shows a TOF-SIMS spectrum of the surface of the negative electrode active material of Example 1.
- FIG. Table 5 below shows the TOF-SIMS measurement conditions.
- This Li silicate and the crystallization of Si estimated from XRD are important control parameters, and vary greatly depending on the conditions at the time of Li insertion and the heat treatment conditions.
- Examples 35 to 41 and Example 8 differed in the median diameter of the negative electrode active material particles, but similarly exhibited excellent cycle battery characteristics. I understand.
- the present invention is not limited to the above embodiments.
- the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
前記負極活物質粒子は、炭素層で被覆されたケイ素酸化物粒子を含有し、
前記ケイ素酸化物粒子は少なくともその一部に、Li2SiO3、Li4SiO4及びLi6Si2O7からなる群より選択される少なくとも1種を含み、
前記負極活物質粒子の少なくとも最表層の一部が可塑剤の層で被覆されているものであることを特徴とする負極活物質を提供する。
0.4≦A/B≦1.0 ・・・(1)
を満たすものであることが好ましい。
前記負極活物質粒子は、炭素層で被覆されたケイ素酸化物粒子を含有し、
前記ケイ素酸化物粒子は少なくともその一部に、Li2SiO3、Li4SiO4及びLi6Si2O7からなる群より選択される少なくとも1種を含み、
前記負極活物質粒子の少なくとも最表層の一部が可塑剤の層で被覆されているものであることを特徴とする負極活物質である。
本発明の負極活物質(以下、ケイ素系負極活物質とも呼称する)は、ケイ素酸化物粒子を含む負極活物質粒子(以下、ケイ素系負極活物質粒子とも呼称する)を含むため、電池容量を向上できる。
29Si-MAS-NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR-MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
0.4≦A/B≦1.0 ・・・(1)
を満たすものであることが好ましい。
質量範囲(m/z) 0~1500
ラスターサイズ 300μm□
スキャン数 16回
ピクセル数 256
真空度 4×10-7Pa以下
1次イオン種 Bi3 ++
加速電圧 30kV
パルス幅 12.5ns
高質量分解能測定 あり
帯電中和 なし
後段加速 9.5kV
電池の解体はAr雰囲気で行い、大気開放せずに測定を行う。
本発明の負極活物質は、例えば以下の方法で製造できる。しかし、本発明の負極活物質は、以下に説明する方法以外の方法で製造しても良い。
本発明の負極は、本発明の負極活物質を具備する。
負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)が挙げられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
負極活物質層12は、リチウムイオンを吸蔵及び放出可能な本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。負極活物質は負極活物質粒子を含み、負極活物質粒子は炭素層で被覆されたケイ素酸化物粒子を含む。
本発明の負極は、非水電解質二次電池、例えばリチウムイオン二次電池の負極において使用することができる。
図2に示すラミネートフィルム型のリチウムイオン二次電池30は、主にシート状の外装部材35の内部に巻回電極体31が収納されたものである。この巻回電極体31は正極、負極間にセパレータを有し、巻回されたものである。また、巻回はせずに、正極、負極間にセパレータを有した積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード32が取り付けられ、負極に負極リード33が取り付けられている。電極体31の最外周部は保護テープにより保護されている。
正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
二次電池の負極としては、本発明の負極を用いる。この二次電池を構成する負極は、正極活物質剤から得られる電気容量(電池としての充電容量)に対して、負極充電容量が大きくなることが好ましい。これにより、負極上でのリチウム金属の析出を抑制することができる。
セパレータはリチウムメタル又は正極と負極とを隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有してもよい。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
正極活物質層及び負極活物質層の各々の少なくとも一部、又は、セパレータには、液状の非水電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
以上に説明したラミネートフィルム型二次電池は、例えば、以下の手順で製造することができる。
まず、負極活物質を以下のようにして作製した。金属ケイ素と二酸化ケイ素とを混合して得られた原料を反応炉に導入した。この反応炉内で、原料を10Paの真空度の雰囲気中で気化させ、吸着板上に堆積させた。十分に冷却した後、堆積物を取出しボールミルで粉砕した。このようにして得たケイ素酸化物粒子のSiOxのxの値は1.0であった。
次に、溶媒エチレンカーボネート(EC)及びジメチルカーボネート(DMC)を混合した後、電解質塩(六フッ化リン酸リチウム:LiPF6)を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でEC:DMC=30:70とし、電解質塩の含有量を溶媒に対して1mol/kgとした。添加剤として、ビニレンカーボネート(VC)とフルオロエチレンカーボネート(FEC)をそれぞれ、1.0質量%、2.0質量%の量で添加した。
[初回効率の測定]
初回効率は以下の条件で測定した。まず、作製した初回効率試験用のコイン電池に対し、充電レートを0.03C相当とし、CCCVモードで充電(初回充電)を行った。CVは0Vで終止電流は0.04mAとした。次に、放電レートを同様に0.03Cとし、放電終止電圧を1.2Vとして、CC放電(初回放電)を行った。
得られた初期データから、負極の利用率が95%となるように対正極を設計した。利用率は、対極Liで得られた正負極の容量から、下記式に基づいて算出した。
利用率=(正極容量-負極ロス)/(負極容量-負極ロス)×100
この設計に基づいて実施例及び比較例の各々のリチウムイオン二次電池を製造した。実施例及び比較例の各々のリチウムイオン二次電池について、電池評価を行った。
比較例1、3及び5では、可塑剤の層でケイ素酸化物粒子の最表層を被覆しなかったこと以外は、上記実施例2と同様にして、各比較例の負極活物質を製造した。また、比較例3及び5では、Liドープ後改質処理を行い、Liシリケートの状態を以下の表1に示すように制御した。
実施例4~18では、用いる可塑剤を表1に示したものに変更したこと以外は実施例1と同様の手順で、負極活物質及び負極を作製した。なお、実施例15では、N-エチル-O-トルエンスルホンアミド及びN-エチル-p-トルエンスルホンアミドの混合物を用いた。また、実施例16では、o-トルエンスルホンアミド及びp-トルエンスルホンアミドの混合物を用いた。
可塑剤の層の厚さを表2に示したものに変更したこと以外は実施例8と同様の手順で、負極活物質及び負極を作製した。
実施例25は、炭素層の形成を石油アスファルトを用いて行ったこと以外は実施例8と同様の手順で、負極活物質及び負極を作製した。
実施例26及び27では、可塑剤の層を形成する際に、可塑剤溶液に十分に砕いたリン酸リチウム、またはリン酸リチウム及び酸化アルミニウムを混ぜて、膜に分散する状態としたこと以外は実施例8と同様の手順で、負極活物質及び負極を作製した。
実施例28では、炭素層の形成を実施例25と同様に行ったこと以外は実施例26と同様の手順で、負極活物質及び負極を作製した。
実施例30~34では、Si及びLiシリケートの結晶性を以下の表2のように変化させたこと以外は実施例8と同様の手順で、負極活物質及び負極を作製した。
実施例35~41では、製造する負極活物質粒子のメジアン径が以下の表2に示す値になるようにケイ素酸化物粒子の粒径を分級により調整したこと以外は実施例8と同様の手順で、負極活物質を製造した。
比較例1~6は、最表層に可塑剤を用いず、スラリー化した場合である。各Liシリケートにおいて、塗料化(スラリー化)当日は、表3に比較例1、3及び5の結果として示すように良好な特性が得られるも、翌日はスラリーからガス発生すると共に、増粘剤の粘度低下が発生し、結果として、表3に比較例2、4及び6の結果として示すように長期電池特性は大幅に悪化した。
Claims (11)
- 負極活物質粒子を含む負極活物質であって、
前記負極活物質粒子は、炭素層で被覆されたケイ素酸化物粒子を含有し、
前記ケイ素酸化物粒子は少なくともその一部に、Li2SiO3、Li4SiO4及びLi6Si2O7からなる群より選択される少なくとも1種を含み、
前記負極活物質粒子の少なくとも最表層の一部が可塑剤の層で被覆されているものであることを特徴とする負極活物質。 - 前記可塑剤の層の厚さが0.1nm以上10nm以下のものであることを特徴とする請求項1に記載の負極活物質。
- 前記炭素層がその一部に窒素原子を含有するものであることを特徴とする請求項1又は2に記載の負極活物質。
- 前記炭素層は、石油アスファルトに由来する炭化水素材を出発材として形成されたものであり、その一部に前記窒素原子を含有するものであることを特徴とする請求項3に記載の負極活物質。
- 前記可塑剤が、フタル酸エステル系可塑剤、アジピン酸エステル系可塑剤、リン酸エステル系可塑剤、及びスルホンアミド系可塑剤からなる群より選択される少なくとも1種を含むものであることを特徴とする請求項1~4のいずれか1項に記載の負極活物質。
- 前記可塑剤は、フタル酸ジオクチル、フタル酸ジブトキシエチル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジウンデシル、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ビス(2-ブトキシエチル)、リン酸トリフェニル、フタル酸系ポリエステル、アジピン酸系ポリエステル、エポキシ化植物油、p-トルエンスルホンアミド、N-エチル-o-トルエンスルホンアミド、N-エチル-p-トルエンスルホンアミド、o-トルエンスルホンアミド、p-トルエンスルホンアミド、N-n-ブチルベンゼンスルホンアミド及びN-シクロヘキシル-p-トルエンスルホンアミドからなる群より選択される少なくとも1種を含むものであることを特徴とする請求項5に記載の負極活物質。
- 前記可塑剤の層は、固体電解質を更に含むものであることを特徴とする請求項1~6の何れか1項に記載の負極活物質。
- 前記固体電解質がリン酸リチウム及び/又は酸化アルミニウムを含むものであることを特徴とする請求項7に記載の負極活物質。
- 前記負極活物質粒子は、前記負極活物質粒子を充放電する前において、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因するピークを有し、該結晶面に対応する結晶子サイズは5.0nm以下であり、かつ、Li2SiO3(111)結晶面に起因するピークの強度Bに対する前記Si(111)結晶面に起因するピークの強度Aの比率A/Bは、下記の式(1)
0.4≦A/B≦1.0 ・・・(1)
を満たすものであることを特徴とする請求項1~7の何れか1項に記載の負極活物質。 - 前記負極活物質粒子はメジアン径が4.5μm以上15μm以下であることを特徴とする請求項1~9の何れか1項に記載の負極活物質。
- 請求項1~10の何れか1項に記載の負極活物質を具備するものであることを特徴とする負極。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247022539A KR20240130708A (ko) | 2022-01-11 | 2022-12-01 | 부극 활물질 및 부극 |
CN202280088189.7A CN118451564A (zh) | 2022-01-11 | 2022-12-01 | 负极活性物质及负极 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-002143 | 2022-01-11 | ||
JP2022002143A JP2023101910A (ja) | 2022-01-11 | 2022-01-11 | 負極活物質及び負極 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023135970A1 true WO2023135970A1 (ja) | 2023-07-20 |
Family
ID=87278828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/044441 WO2023135970A1 (ja) | 2022-01-11 | 2022-12-01 | 負極活物質及び負極 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2023101910A (ja) |
KR (1) | KR20240130708A (ja) |
CN (1) | CN118451564A (ja) |
TW (1) | TW202332101A (ja) |
WO (1) | WO2023135970A1 (ja) |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06325765A (ja) | 1992-07-29 | 1994-11-25 | Seiko Instr Inc | 非水電解質二次電池及びその製造方法 |
JP2001185127A (ja) | 1999-12-24 | 2001-07-06 | Fdk Corp | リチウム2次電池 |
JP2002042806A (ja) | 2000-07-19 | 2002-02-08 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2006114454A (ja) | 2004-10-18 | 2006-04-27 | Sony Corp | 電池 |
JP2006164954A (ja) | 2004-11-11 | 2006-06-22 | Matsushita Electric Ind Co Ltd | リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池 |
JP2007234255A (ja) | 2006-02-27 | 2007-09-13 | Sanyo Electric Co Ltd | リチウム二次電池用負極及びその製造方法並びにリチウム二次電池 |
JP2008177346A (ja) | 2007-01-18 | 2008-07-31 | Sanyo Electric Co Ltd | エネルギー貯蔵デバイス |
JP2008251369A (ja) | 2007-03-30 | 2008-10-16 | Matsushita Electric Ind Co Ltd | リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法 |
JP2008282819A (ja) | 2008-07-10 | 2008-11-20 | Toshiba Corp | 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質 |
JP2009070825A (ja) | 2007-09-17 | 2009-04-02 | Samsung Sdi Co Ltd | リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池 |
JP2009205950A (ja) | 2008-02-28 | 2009-09-10 | Shin Etsu Chem Co Ltd | 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池 |
JP2009212074A (ja) | 2008-02-07 | 2009-09-17 | Shin Etsu Chem Co Ltd | 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ |
JP2015156355A (ja) | 2013-08-21 | 2015-08-27 | 信越化学工業株式会社 | 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法 |
WO2017145654A1 (ja) * | 2016-02-24 | 2017-08-31 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法 |
US20170271723A1 (en) * | 2016-03-15 | 2017-09-21 | Ningde Amperex Technology Limited | Negative active material and preparation method thereof and secondary battery |
JP2017188451A (ja) * | 2016-03-31 | 2017-10-12 | 三洋化成工業株式会社 | リチウムイオン電池用被覆負極活物質 |
WO2018061536A1 (ja) * | 2016-09-30 | 2018-04-05 | 信越化学工業株式会社 | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 |
WO2020149079A1 (ja) * | 2019-01-15 | 2020-07-23 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質及びその製造方法 |
WO2020262647A1 (ja) * | 2019-06-26 | 2020-12-30 | 株式会社村田製作所 | 負極活物質、負極および二次電池 |
WO2022039201A1 (ja) * | 2020-08-18 | 2022-02-24 | Apb株式会社 | リチウムイオン電池用被覆負極活物質粒子、リチウムイオン電池用負極、リチウムイオン電池、及び、リチウムイオン電池用被覆負極活物質粒子の製造方法 |
-
2022
- 2022-01-11 JP JP2022002143A patent/JP2023101910A/ja active Pending
- 2022-12-01 CN CN202280088189.7A patent/CN118451564A/zh active Pending
- 2022-12-01 KR KR1020247022539A patent/KR20240130708A/ko unknown
- 2022-12-01 WO PCT/JP2022/044441 patent/WO2023135970A1/ja active Application Filing
- 2022-12-06 TW TW111146665A patent/TW202332101A/zh unknown
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06325765A (ja) | 1992-07-29 | 1994-11-25 | Seiko Instr Inc | 非水電解質二次電池及びその製造方法 |
JP2001185127A (ja) | 1999-12-24 | 2001-07-06 | Fdk Corp | リチウム2次電池 |
JP2002042806A (ja) | 2000-07-19 | 2002-02-08 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2006114454A (ja) | 2004-10-18 | 2006-04-27 | Sony Corp | 電池 |
JP2006164954A (ja) | 2004-11-11 | 2006-06-22 | Matsushita Electric Ind Co Ltd | リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池 |
JP2007234255A (ja) | 2006-02-27 | 2007-09-13 | Sanyo Electric Co Ltd | リチウム二次電池用負極及びその製造方法並びにリチウム二次電池 |
JP2008177346A (ja) | 2007-01-18 | 2008-07-31 | Sanyo Electric Co Ltd | エネルギー貯蔵デバイス |
JP2008251369A (ja) | 2007-03-30 | 2008-10-16 | Matsushita Electric Ind Co Ltd | リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法 |
JP2009070825A (ja) | 2007-09-17 | 2009-04-02 | Samsung Sdi Co Ltd | リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池 |
JP2009212074A (ja) | 2008-02-07 | 2009-09-17 | Shin Etsu Chem Co Ltd | 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ |
JP2009205950A (ja) | 2008-02-28 | 2009-09-10 | Shin Etsu Chem Co Ltd | 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池 |
JP2008282819A (ja) | 2008-07-10 | 2008-11-20 | Toshiba Corp | 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質 |
JP2015156355A (ja) | 2013-08-21 | 2015-08-27 | 信越化学工業株式会社 | 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法 |
WO2017145654A1 (ja) * | 2016-02-24 | 2017-08-31 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法 |
US20170271723A1 (en) * | 2016-03-15 | 2017-09-21 | Ningde Amperex Technology Limited | Negative active material and preparation method thereof and secondary battery |
JP2017188451A (ja) * | 2016-03-31 | 2017-10-12 | 三洋化成工業株式会社 | リチウムイオン電池用被覆負極活物質 |
WO2018061536A1 (ja) * | 2016-09-30 | 2018-04-05 | 信越化学工業株式会社 | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 |
WO2020149079A1 (ja) * | 2019-01-15 | 2020-07-23 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質及びその製造方法 |
WO2020262647A1 (ja) * | 2019-06-26 | 2020-12-30 | 株式会社村田製作所 | 負極活物質、負極および二次電池 |
WO2022039201A1 (ja) * | 2020-08-18 | 2022-02-24 | Apb株式会社 | リチウムイオン電池用被覆負極活物質粒子、リチウムイオン電池用負極、リチウムイオン電池、及び、リチウムイオン電池用被覆負極活物質粒子の製造方法 |
Non-Patent Citations (6)
Title |
---|
"Denchi (battery", BATTERY ASSOCIATION OF JAPAN, NEWSLETTER, 1 May 2010 (2010-05-01), pages 10 |
A. HOHLT. WIEDERP. A. VAN AKENT. E. WEIRICHG. DENNINGERM. VIDALS. OSWALDC. DENEKEJ. MAYERH. FUESS, J. NON-CRYST. SOLIDS, vol. 320, 2003, pages 255 |
HYE JIN KIMSUNGHUN CHOISEUNG JONG LEEMYUNG WON SEOJAE GOO LEEERHAN DENIZYONG JU LEEEUN KYUNG KIMJANG WOOK CHOI, NANO LETT., vol. 16, 2016, pages 282 - 288 |
M. YAMADAA. INABAA. UEDAK. MATSUMOTOT. IWASAKIT. OHZUKU, J. ELECTROCHEM. SOC., vol. 159, 2012, pages A1630 |
MARIKO MIYACHIHIRONORI YAMAMOTOHIDEMASA KAWAI, J. ELECTROCHEM. SOC., vol. 154, 2007, pages A1112 - A1117 |
V. KAPAKLIS, J. NON-CRYSTALLINE SOLIDS, vol. 354, 2008, pages 612 |
Also Published As
Publication number | Publication date |
---|---|
TW202332101A (zh) | 2023-08-01 |
JP2023101910A (ja) | 2023-07-24 |
KR20240130708A (ko) | 2024-08-29 |
CN118451564A (zh) | 2024-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109155407B (zh) | 负极活性物质、混合负极活性物质材料、及负极活性物质的制备方法 | |
JP2022116186A (ja) | リチウムイオン二次電池、モバイル端末、自動車及び電力貯蔵システム | |
WO2020095558A1 (ja) | 負極活物質、混合負極活物質、水系負極スラリー組成物、及び、負極活物質の製造方法 | |
JP7156921B2 (ja) | 負極活物質及びその製造方法 | |
JP7410259B2 (ja) | 非水電解質二次電池 | |
CN113659109A (zh) | 负极活性物质、混合负极活性物质材料、及负极活性物质的制备方法 | |
WO2018051710A1 (ja) | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 | |
WO2023008093A1 (ja) | 負極活物質及びその製造方法 | |
WO2022239676A1 (ja) | 負極活物質及びその製造方法 | |
WO2022168474A1 (ja) | 負極及び負極の製造方法 | |
JP7175254B2 (ja) | 非水電解質二次電池負極用添加剤、及び、非水電解質二次電池用水系負極スラリー組成物 | |
WO2023135970A1 (ja) | 負極活物質及び負極 | |
JP7325458B2 (ja) | 非水電解質二次電池用負極活物質及び非水電解質二次電池用負極活物質の製造方法 | |
WO2023188918A1 (ja) | 負極活物質及び負極活物質の製造方法 | |
WO2023008094A1 (ja) | 負極及びその製造方法 | |
WO2023017689A1 (ja) | 負極 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22920490 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20247022539 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280088189.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022920490 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022920490 Country of ref document: EP Effective date: 20240812 |