JP2023101910A - 負極活物質及び負極 - Google Patents

負極活物質及び負極 Download PDF

Info

Publication number
JP2023101910A
JP2023101910A JP2022002143A JP2022002143A JP2023101910A JP 2023101910 A JP2023101910 A JP 2023101910A JP 2022002143 A JP2022002143 A JP 2022002143A JP 2022002143 A JP2022002143 A JP 2022002143A JP 2023101910 A JP2023101910 A JP 2023101910A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
layer
plasticizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022002143A
Other languages
English (en)
Other versions
JP2023101910A5 (ja
Inventor
貴一 廣瀬
Kiichi Hirose
広太 高橋
Kota Takahashi
祐介 大沢
Yusuke Osawa
脩平 金里
Shuhei Kinri
将来 村山
Masaki Murayama
玲子 酒井
Reiko Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2022002143A priority Critical patent/JP2023101910A/ja
Priority to PCT/JP2022/044441 priority patent/WO2023135970A1/ja
Priority to TW111146665A priority patent/TW202332101A/zh
Publication of JP2023101910A publication Critical patent/JP2023101910A/ja
Publication of JP2023101910A5 publication Critical patent/JP2023101910A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Figure 2023101910000001
【課題】十分な電池サイクル特性を実現しつつ、スラリー化時の安定性を高めることができる負極活物質、及びこのような負極活物質を含む負極を提供すること。
【解決手段】負極活物質粒子を含む負極活物質であって、前記負極活物質粒子は、炭素層で被覆されたケイ素酸化物粒子を含有し、前記ケイ素酸化物粒子は少なくともその一部に、LiSiO、LiSiO及びLiSiからなる群より選択される少なくとも1種を含み、前記負極活物質粒子の少なくとも最表層の一部が可塑剤の層で被覆されているものであることを特徴とする負極活物質。
【選択図】図3

Description

本発明は、負極活物質及び負極に関する。
近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
その中でも、リチウムイオン二次電池は、小型かつ高容量化が行いやすく、また、鉛電池やニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
上記のリチウムイオン二次電池は、正極及び負極、並びにセパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。
この負極活物質としては、炭素系活物質が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金や酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素系活物質では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、及び電極構成についてさまざまな検討がなされている。
具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性を向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値と最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するRAMANスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。
ケイ素酸化物を用いたリチウムイオン二次電池は、日立マクセルが2010年6月にナノシリコン複合体を採用したスマートフォン用の角形の二次電池の出荷を開始した(例えば、非特許文献1参照)。Hohlより提案されたケイ素酸化物はSi0+~Si4+の複合材であり様々な酸化状態を有する(非特許文献2参照)。またKapaklisは、ケイ素酸化物に熱負荷を与える事でSiとSiOにわかれる、不均化構造を提案している(非特許文献3参照)。Miyachiらは不均化構造を有するケイ素酸化物のうち充放電に寄与するSiとSiOに注目しており(非特許文献4参照)、Yamadaらはケイ素酸化物とLiの反応式を次のように提案している(非特許文献5参照)。
2SiO(Si+SiO) + 6.85Li + 6.85e → 1.4Li3.75Si + 0.4LiSiO + 0.2SiO
上記反応式は、ケイ素酸化物を構成するSiとSiOがLiと反応し、Liシリサイド及びLiシリケート、並びに一部未反応であるSiOにわかれることを示している。
ここで生成したLiシリケートは不可逆で、1度形成した後はLiを放出せず安定した物質であるとされている。この反応式から計算される質量当たりの容量は、実験値とも近い値を有しており、ケイ素酸化物の反応メカニズムとして認知されている。Kimらは、ケイ素酸化物の充放電に伴う不可逆成分、LiシリケートをLiSiOとして、Li-MAS-NMRや29Si-MAS-NMRを用いて同定している(非特許文献6参照)。
この不可逆容量はケイ素酸化物の最も不得意とするところであり、改善が求められている。そこでKimらは予めLiシリケートを形成させるLiプレドープ法を用いて、電池として初回効率を大幅に改善し、実使用に耐えうる負極電極を作製している(非特許文献7参照)。
また電極にLiドープを行う手法ではなく、粉末に処理を行う方法も提案され、この方法では不可逆容量の改善を実現している(特許文献13参照)。
特開2001-185127号公報 特開2002-042806号公報 特開2006-164954号公報 特開2006-114454号公報 特開2009-070825号公報 特開2008-282819号公報 特開2008-251369号公報 特開2008-177346号公報 特開2007-234255号公報 特開2009-212074号公報 特開2009-205950号公報 特開平06-325765号公報 特開2015-156355号公報
社団法人電池工業会機関紙「でんち」平成22年5月1日号、第10頁 A. Hohl, T. Wieder, P. A. van Aken, T. E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, and H. Fuess: J. Non-Cryst. Solids, 320, (2003), 255. V. Kapaklis, J. Non-Crystalline Solids, 354 (2008) 612 Mariko Miyachi, Hironori Yamamoto, and Hidemasa Kawai, J. Electrochem. Soc. 2007 volume 154, issue 4, A376-A380 M. Yamada, M. Inaba, A. Ueda, K. Matsumoto, T. Iwasaki, T. Ohzuku, J.Electrochem. Soc., 159, A1630 (2012) Taeahn Kim, Sangjin Park, and Seung M. Oh, J. Electrochem. Soc. volume 154, (2007), A1112-A1117. Hye Jin Kim, Sunghun Choi, Seung Jong Lee, Myung Won Seo, Jae Goo Lee, Erhan Deniz, Yong Ju Lee, Eun Kyung Kim, and Jang Wook Choi,. Nano Lett. 2016, 16, 282-288.
上述したように、近年、モバイル端末などに代表される小型の電子機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。また、ケイ素材を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近い初期充放電特性及びサイクル特性を有することが望まれている。そこで、Liの挿入、及び挿入されたLiの一部脱離により改質された(Liドープされた)ケイ素酸化物を負極活物質として使用することで、サイクル特性、及び初期充放電特性を改善してきた。しかしながら、Liを挿入した負極材は、電極化工程でスラリーに使用される際、スラリー中にLi成分が一部溶出する事から、バインダ(増粘剤)の粘度を低下させるなどの、様々な問題が発生した。
本発明は、上記問題点に鑑みてなされたものであって、十分な電池サイクル特性を実現しつつ、スラリー化時の安定性を高めることができる負極活物質、及びこのような負極活物質を含む負極を提供することを目的とする。
上記課題を解決するために、本発明では、負極活物質粒子を含む負極活物質であって、
前記負極活物質粒子は、炭素層で被覆されたケイ素酸化物粒子を含有し、
前記ケイ素酸化物粒子は少なくともその一部に、LiSiO、LiSiO及びLiSiからなる群より選択される少なくとも1種を含み、
前記負極活物質粒子の少なくとも最表層の一部が可塑剤の層で被覆されているものであることを特徴とする負極活物質を提供する。
本発明の負極活物質は、ケイ素酸化物粒子を含む負極活物質粒子を含むため、電池容量を向上できる。
また、本発明の負極活物質では、ケイ素酸化物粒子が少なくともその一部に、LiSiO、LiSiO及びLiSiからなる群より選択される少なくとも1種を含み、且つ負極活物質粒子の少なくとも最表層の一部が可塑剤の層で被覆されていることで、耐水性を大幅に向上しつつ、バルク内の優れたLi拡散性を得ることができる。Li拡散性を向上させることにより、電池サイクル特性を向上させることができる。
これらの結果、本発明の負極活物質は、十分な電池サイクル特性を実現しつつ、スラリー化時の安定性を高めることができる。
前記可塑剤の層の厚さが0.1nm以上10nm以下のものであることが好ましい。
可塑剤の層は、厚さがこの範囲内であれば、膜厚の制御が容易であり、十分なLiの透過性を示すことができる。
前記炭素層がその一部に窒素原子を含有するものであることが好ましい。
このような炭素層は、優れた安定性及び優れたLi透過性を示すことができる。
この場合、前記炭素層は、石油アスファルトに由来する炭化水素材を出発材として形成されたものであり、その一部に前記窒素原子を含有するものとすることができる。
炭素層は、石油アスファルトに由来する炭化水素材を出発材として形成されたものとすることができる。
前記可塑剤は、フタル酸エステル系可塑剤、アジピン酸エステル系可塑剤、リン酸エステル系可塑剤、及びスルホンアミド系可塑剤からなる群より選択される少なくとも1種を含むものであることが望ましい。
このような可塑剤を含む層で最表層が被覆されたものであれば、優れた耐水性をより確実に示すことができる。
前記可塑剤は、フタル酸ジオクチル、フタル酸ジブトキシエチル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジウンデシル、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ビス(2-ブトキシエチル)、リン酸トリフェニル、フタル酸系ポリエステル、アジピン酸系ポリエステル、エポキシ化植物油、p-トルエンスルホンアミド、N-エチル-o-トルエンスルホンアミド、N-エチル-p-トルエンスルホンアミド、o-トルエンスルホンアミド、p-トルエンスルホンアミド、N-n-ブチルベンゼンスルホンアミド及びN-シクロヘキシル-p-トルエンスルホンアミドからなる群より選択される少なくとも1種を含むものであることがより望ましい。
このような可塑剤を含む層で最表層が被覆されたものであれば、優れた耐水性を更に確実に示すことができる。
前記可塑剤の層は、固体電解質を更に含むものであることが好ましい。
可塑剤の層が固体電解質を更に含むことにより、より優れたLi拡散性を示す負極活物質とすることができる。
この場合、前記固体電解質がリン酸リチウム及び/又は酸化アルミニウムを含むものであってもよい。
例えば、固体電解質は、リン酸リチウム及び/又は酸化アルミニウムを含むものであり得る。
前記負極活物質粒子は、前記負極活物質粒子を充放電する前において、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因するピークを有し、該結晶面に対応する結晶子サイズは5.0nm以下であり、かつ、LiSiO(111)結晶面に起因するピークの強度Bに対する前記Si(111)結晶面に起因するピークの強度Aの比率A/Bは、下記の式(1)
0.4≦A/B≦1.0 ・・・(1)
を満たすものであることが好ましい。
このような負極活物質粒子を含む負極活物質であれば、不可逆容量を低減しながら、高い電池容量を実現できる。
前記負極活物質粒子はメジアン径が4.5μm以上15μm以下であることが好ましい。
負極活物質粒子のメジアン径がこの範囲内であれば、電解液との反応が促進されるのを防ぐことができると共に、充放電に伴う活物質の膨張によって電子コンタクトが欠落するのを防ぐことができる。
また、本発明では、本発明の負極活物質を具備するものであることを特徴とする負極を提供する。
本発明の負極は、本発明の負極活物質を具備するので、十分な電池サイクル特性を実現することができる。
以上のように、本発明の負極活物質であれば、十分な電池サイクル特性を実現しつつ、スラリー化時の安定性を高めることができる。
また、本発明の負極であれば、十分な電池サイクル特性を実現することができる。
本発明の負極の構成の一例を示す概略断面図である。 本発明の負極を含むリチウムイオン二次電池の構成例(ラミネートフィルム型)を表す分解図である。 実施例1の負極活物質の表面のX線光電子分光スペクトルである。 実施例1の負極活物質の表面のTOF-SIMSスペクトルである。
前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素酸化物を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。このケイ素酸化物を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近い初期充放電特性を示すことが望まれている。また初期充放電特性を改善可能なLiドープSiOにおいて、炭素系活物質と同等に近いサイクル特性が望まれている。しかしながら、スラリー化した際、スラリーのポットライフを満足できる負極活物質を提案するには至っていなかった。
そこで、本発明者らは、二次電池の負極活物質として用いた際に、取り扱い性に優れ、高いサイクル特性を得ることが可能な負極活物質を得るために鋭意検討を重ねた。その結果、ケイ素酸化物にLiドープすることによって得られるLiシリケート相を、溶出性が少ないLiSiの生成を抑制し、水に溶出しやすいがLi拡散性が高いLiSiO、LiSiO及びLiSiからなる群より選択される少なくとも1種の状態で留めておき、負極活物質の最表層を可塑剤の層で被覆することで、耐水性を大幅に向上しつつ、バルク内の優れたLi拡散性が得られることを見出し、本発明を完成させた。
即ち、本発明は、負極活物質粒子を含む負極活物質であって、
前記負極活物質粒子は、炭素層で被覆されたケイ素酸化物粒子を含有し、
前記ケイ素酸化物粒子は少なくともその一部に、LiSiO、LiSiO及びLiSiからなる群より選択される少なくとも1種を含み、
前記負極活物質粒子の少なくとも最表層の一部が可塑剤の層で被覆されているものであることを特徴とする負極活物質である。
また、本発明は、本発明の負極活物質を具備するものである負極をも提供する。
以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
[負極活物質]
本発明の負極活物質(以下、ケイ素系負極活物質とも呼称する)は、ケイ素酸化物粒子を含む負極活物質粒子(以下、ケイ素系負極活物質粒子とも呼称する)を含むため、電池容量を向上できる。
また、ケイ素酸化物粒子の少なくとも一部にLiシリケートを形成することで、塗布前、スラリーの安定化が可能となり、安定なスラリーを用いることにより、良好な電極が得られ、電池特性が改善する。しかしながら、このようなスラリーは長期保存性が十分ではなく、形成したLiシリケートが時間と共に緩やかにスラリー中に溶ける事が判明した。
Liシリケート形成の際に、例えば熱負荷を与えることで、Liシリケートの結晶相を肥大化させ、それによりスラリー中へのLi分溶出は低減できるが、同時に、Siの結晶性が高くなってしまう。このような高い結晶性のSiの生成は、電池特性を大幅に低下させる要因となる。
またLiシリケート相が肥大化すると、Liの拡散性が大幅に低下し、電池特性を悪化させてしまう。
そこで、Liシリケートの結晶相を限りなく小さくし、Siの結晶化、Liシリケート相の肥大化を抑制すると、水に対し、緩やかに溶出するLiシリケート相が生成する。
この結果、電池特性は十分な結果が得られるが、電極化工程、特にスラリー作製で、放置時間が長いとバインダを劣化させ電池特性が悪化してしまう事から、スラリー作製後、早期に塗布する必要があった。
そこで、本発明者らは、Liシリケート相は、LiSiO、LiSiO及びLiSiからなる群より選択される少なくとも1種の状態で留めておき、負極活物質の最表層を可塑剤の層で被覆することで、耐水性を大幅に向上しつつ、バルク内の優れたLi拡散性を得ることができる材料を開発した。
本発明の負極活物質では、ケイ素酸化物粒子が少なくともその一部に、LiSiO、LiSiO及びLiSiからなる群より選択される少なくとも1種を含み、且つ負極活物質粒子の少なくとも最表層の一部が可塑剤の層で被覆されていることで、耐水性を大幅に向上しつつ、バルク内の優れたLi拡散性を得ることができる。Li拡散性を向上させることにより、電池サイクル特性を向上させることができる。
よって、本発明の負極活物質であれば、十分な電池サイクル特性を実現しつつ、スラリー化時の安定性を高めることができる。
以下、本発明の負極活物質をより詳細に説明する。
本発明の負極活物質は、例えば、非水電解質二次電池用、特にはリチウムイオン二次電池用の負極活物質として使用することができる。
本発明の負極活物質は、ケイ素酸化物粒子を含む。ケイ素酸化物粒子は、酸素が含まれるケイ素化合物を含有する酸化ケイ素材ということができる。このケイ素酸化物を構成するケイ素と酸素の比は、SiO:0.8≦x≦1.2の範囲であることが好ましい。xが0.8以上であれば、ケイ素単体よりも酸素比が高められたものであるためサイクル特性が良好となる。xが1.2以下であれば、ケイ素酸化物の抵抗が高くなりすぎないため好ましい。中でも、SiOの組成はxが1に近い方が好ましい。なぜならば、高いサイクル特性が得られるからである。なお、本発明におけるケイ素化合物の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。
また、本発明の負極活物質において、ケイ素酸化物粒子は、少なくともその一部に、Li化合物、具体的にはLiSiO、LiSiO及びLiSiからなる群より選択される少なくとも1種を含有している。より具体的には、ケイ素酸化物粒子は、LiSiOを含有していることが好ましい。このようなものは、ケイ素酸化物中の、電池の充放電時のリチウムの挿入及び脱離時に不安定化するSiO成分部を予め別のリチウムシリケートに改質させたものであるので、充電時に発生する不可逆容量を低減することができる。また、Siの結晶成長を抑制した範囲でLiシリケートの肥大化を行うことで、充放電に伴う不可逆容量を低減する事ができる。したがって、バルク内に生成したLiシリケートのうち、LiSiOは結晶性を有する事が望ましい。
ただし、肥大化しすぎると、充放電に寄与しなくなるため、最適な範囲が存在する。
スラリー化時、LiSiOやLiSiは、水への溶出度が大きいため、LiSiOよりも不安定ではあるが、以下に説明する可塑剤を用いて耐水性を向上させることで、使いこなすことができる。
この場合、最もLi拡散性が良いのが、LiSiOであり、実質的には構造安定性の高いLiSiOと併用することが望ましい。
また、ケイ素酸化物粒子のバルク内部に含まれるLiSiO、LiSiO及びLiSiなどのLiシリケートは、NMR(Nuclear Magnetic Resonance:核磁気共鳴)で定量可能である。NMRの測定は、例えば、以下の条件により行うことができる。
29Si-MAS-NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR-MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
Liシリケートの肥大化程度、Siの結晶化程度は、XRD(X-ray Diffraction:X線回折法)で確認する事ができる。X線回折装置としては、Bruker社製のD8 ADVANCEを使用することができる。例えば、X線源はCu Kα線、Niフィルターを使用して、出力40kV/40mA、スリット幅0.3°、ステップ幅0.008°、1ステップあたり0.15秒の計数時間にて10-40°まで測定する。
本発明の負極活物質が含む負極活物質粒子は、負極活物質粒子を充放電する前において、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因するピークを有し、該結晶面に対応する結晶子サイズは5.0nm以下であり、かつ、LiSiO(111)結晶面に起因するピークの強度Bに対するSi(111)結晶面に起因するピークの強度Aの比率A/Bは、下記の式(1)
0.4≦A/B≦1.0 ・・・(1)
を満たすものであることが好ましい。
このような負極活物質粒子を含む負極活物質であれば、不可逆容量を低減しながら、高い電池容量を実現できる。
本発明の負極活物質では、ケイ素酸化物粒子が炭素層で被覆されている。これにより、電池容量及び安全性の向上を図ることができる。
またケイ素酸化物粒子を覆う炭素は、炭化水素ガス由来でCVD法を用いて形成する事が一般的だが、ケイ素酸化物粒子をアスファルト成分(石油アスファルトに由来する炭化水素材)と混ぜ、熱処理を行う事で、窒素原子(N)が含有される。アスファルト由来の炭素層は、炭素数が多い分子構造を有する。このような炭素層の存在により、スラリー化時、耐水性を向上させることが可能となる。また、炭素数が多い分子構造は、電解液の過剰分解を抑制する、ピッチコートに近い特徴を示すことから、表面に電解液の分解物が過剰生成し辛く、結果としてLiの透過性に優れた被膜を形成することができる。その結果、より安定であり且つLi透過性に優れた炭素層を得ることができる。
また、本発明の負極活物質では、負極活物質粒子の少なくとも最表層の一部が可塑剤の層で被覆されている。
可塑剤の層の厚さは、0.1nm以上10nm以下であることが好ましい。
可塑剤の層は、厚さがこの範囲内であれば、膜厚の制御が容易であり、十分なLiの透過性を示すことができる。
可塑剤は、フタル酸エステル系可塑剤、アジピン酸エステル系可塑剤、リン酸エステル系可塑剤、及びスルホンアミド系可塑剤からなる群より選択される少なくとも1種を含むものであることが望ましい。
このような可塑剤を含む層で最表層が被覆されたものであれば、優れた耐水性をより確実に示すことができる。
その他、可塑剤は、セパシン酸エステル系可塑剤、グリコールエステル系可塑剤、又はエポキシ脂肪酸エステル系可塑剤を含むものであってもよい。
可塑剤は、実質的に、フタル酸ジオクチル、フタル酸ジブトキシエチル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジウンデシル、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ビス(2-ブトキシエチル)、リン酸トリフェニル、フタル酸系ポリエステル、アジピン酸系ポリエステル、エポキシ化植物油、p-トルエンスルホンアミド、N-エチル-o-トルエンスルホンアミド、N-エチル-p-トルエンスルホンアミド、o-トルエンスルホンアミド、p-トルエンスルホンアミド、N-n-ブチルベンゼンスルホンアミド及びN-シクロヘキシル-p-トルエンスルホンアミドからなる群より選択される少なくとも1種を含むものであることがより望ましい。
このような可塑剤を含む層で最表層が被覆されたものであれば、優れた耐水性を更に確実に示すことができる。
最表層の可塑剤の層は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)及び/又は飛行時間型二次イオン質量分析法(Time of Flight Secondary Ion Mass Spectrometry:TOF-SIMS)で確認する事ができる。
XPSは、例えば、アルバックファイ社製、PHI Quantera IIを使用して行うことができる。X線のビーム径は直径100μm、中和銃を使用することができる。
TOF-SIMSは、例えば、ION-TOF社製、TOF-SIMS5を使用して行うことができる。条件の例を以下に示す。
質量範囲(m/z) 0~1500
ラスターサイズ 300μm□
スキャン数 16回
ピクセル数 256
真空度 4×10-7Pa以下
1次イオン種 Bi ++
加速電圧 30kV
パルス幅 12.5ns
高質量分解能測定 あり
帯電中和 なし
後段加速 9.5kV
電池の解体はAr雰囲気で行い、大気開放せずに測定を行う。
可塑剤の層で被覆する際、可塑剤は絶縁物であることから、可塑剤の層に固体電解質の粉砕物を混ぜるとより良い。
固体電解質の材料は特に限定されないが、リン酸リチウムや、Li透過性がある酸化アルミニウムなどが望ましい。
前記負極活物質粒子はメジアン径が4.5μm以上15μm以下であることが好ましい。
負極活物質粒子のメジアン径がこの範囲内であれば、電解液との反応が促進されるのを防ぐことができると共に、充放電に伴う活物質の膨張によって電子コンタクトが欠落するのを防ぐことができる。
[負極活物質の製造方法]
本発明の負極活物質は、例えば以下の方法で製造できる。しかし、本発明の負極活物質は、以下に説明する方法以外の方法で製造しても良い。
まず、酸素が含まれるケイ素化合物を含むケイ素酸化物粒子を作製する。以下では、酸素が含まれるケイ素化合物として、SiO(0.8≦x≦1.2)で表される酸化珪素を使用した場合を説明する。まず、酸化珪素ガスを発生する原料を不活性ガスの存在下、減圧下で900℃~1600℃の温度範囲で加熱し、酸化珪素ガスを発生させる。このとき、原料は金属珪素粉末と二酸化珪素粉末の混合物を用いることができる。金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.9<金属珪素粉末/二酸化珪素粉末<1.2の範囲であることが望ましい。
発生した酸化珪素ガスは吸着板上で固体化され堆積される。次に、反応炉内温度を100℃以下に下げた状態で酸化珪素の堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕し、粉末化を行う。以上のようにして、ケイ素酸化物粒子を作製することができる。なお、ケイ素酸化物粒子中のSi結晶子は、酸化珪素ガスを発生する原料の気化温度の変更、又は、ケイ素化合物粒子生成後の熱処理で制御できる。
次に、ケイ素酸化物粒子の表層に炭素材の層を生成する。
炭素材の層を生成する方法としては、熱分解CVD法を挙げることができる。熱分解CVD法で炭素材の層を生成する方法の一例について以下に説明する。
まず、ケイ素酸化物粒子を炉内にセットする。次に、炉内に炭化水素ガスを導入し、炉内温度を昇温させる。分解温度は特に限定しないが、950℃以下が望ましく、より望ましいのは850℃以下である。分解温度を950℃以下にすることで、活物質粒子の意図しない不均化を抑制することができる。所定の温度まで炉内温度を昇温させた後に、ケイ素化合物粒子の表面に炭素層を生成する。また、炭素材の原料となる炭化水素ガスは、特に限定しないが、C組成においてn≦3であることが望ましい。n≦3であれば、製造コストを低くでき、また、分解生成物の物性を良好にすることができる。
ケイ素酸化物粒子を覆う炭素は、以上説明したような炭化水素ガス由来でCVD法を用いて形成する事が一般的だが、ケイ素酸化物粒子をアスファルト成分(石油アスファルトに由来する炭化水素材)と共に混練し、例えば850℃~900℃での熱処理を行う事で、窒素原子(N)が含有され、より安定であり且つLi透過性に優れた炭素層を得ることができる。
次に、上記のように作製したケイ素酸化物粒子(炭素層で被覆されたケイ素酸化物粒子)に、Liを挿入する。これにより、リチウムが挿入されたケイ素酸化物粒子を含む負極活物質粒子を作製する。すなわち、これにより、炭素層で被覆されたケイ素酸化物粒子が改質され、ケイ素酸化物粒子内部にLi化合物が生成する。Liの挿入は、酸化還元法により行うことが好ましい。
酸化還元法による改質では、例えば、まず、エーテル溶媒にリチウムを溶解した溶液Aに炭素層で被覆されたケイ素酸化物粒子を浸漬することで、リチウムを挿入できる。この溶液Aに更に多環芳香族化合物又は直鎖ポリフェニレン化合物を含ませても良い。リチウムの挿入後、多環芳香族化合物やその誘導体を含む溶液Bに炭素層で被覆されたケイ素活物質粒子を浸漬することで、炭素層で被覆されたケイ素酸化物粒子から活性なリチウムを脱離できる。この溶液Bの溶媒は例えば、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、アミン系溶媒、又はこれらの混合溶媒を使用できる。または溶液Aに浸漬させた後、得られた炭素層で被覆されたケイ素酸化物粒子を不活性ガス下で熱処理しても良い。熱処理することにLi化合物を安定化することができる。その後、アルコール、炭酸リチウムを溶解したアルカリ水、弱酸、又は純水などで洗浄する方法などで洗浄しても良い。
溶液Aに用いるエーテル系溶媒としては、ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、又はこれらの混合溶媒等を用いることができる。この中でも特にテトラヒドロフラン、ジオキサン、1,2-ジメトキシエタンを用いることが好ましい。これらの溶媒は、脱水されていることが好ましく、脱酸素されていることが好ましい。
また、溶液Aに含まれる多環芳香族化合物としては、ナフタレン、アントラセン、フェナントレン、ナフタセン、ペンタセン、ピレン、ピセン、トリフェニレン、コロネン、クリセン及びこれらの誘導体のうち1種類以上を用いることができ、直鎖ポリフェニレン化合物としては、ビフェニル、ターフェニル、及びこれらの誘導体のうち1種類以上を用いることができる。
溶液Bに含まれる多環芳香族化合物としては、ナフタレン、アントラセン、フェナントレン、ナフタセン、ペンタセン、ピレン、ピセン、トリフェニレン、コロネン、クリセン及びこれらの誘導体のうち1種類以上を用いることができる。
また、溶液Bのエーテル系溶媒としては、ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、及びテトラエチレングリコールジメチルエーテル等を用いることができる。
ケトン系溶媒としては、アセトン、アセトフェノン等を用いることができる。
エステル系溶媒としては、ギ酸メチル、酢酸メチル、酢酸エチル、酢酸プロピル、及び酢酸イソプロピル等を用いることができる。
アルコール系溶媒としては、メタノール、エタノール、プロパノール、及びイソプロピルアルコール等を用いることができる。
アミン系溶媒としては、メチルアミン、エチルアミン、及びエチレンジアミン等を用いることができる。
酸化還元法での改質により生成したLiシリケートは、LiSiOであるが、熱処理を行う事でLiSiO等の他のLiシリケートへ変換させることができる。この時の温度によってLiシリケート及びSiの結晶化程度が変化する。加えて、Li挿入時の反応温度もLiシリケート及びSiの結晶化程度に関係する。
酸化還元法によりLiドープ処理を行った材料に対して、ろ過後400℃以上650℃以下の熱処理を行う事で、Liシリケートの状態を制御する事ができる。
この時、真空状態、または不活性ガス下で熱処理を行う事が重要である。
また、熱処理装置としては、ここでは装置に限定はしないが、ロータリーキルンのような均一熱処理を用いることが望ましい。
この時、真空状態、不活性ガス流量(内圧)、レトルト厚み、回転数をファクターとし、様々なLiシリケート状態を作り出すことができる。
同様に、シリコンの肥大化、またはシリコンの非晶質化の制御を行うことができる。
次に、Liドープ処理を行ったケイ素酸化物粒子の少なくとも最表層の一部を、可塑剤の層で被覆する。
ここでの被覆方法は、特に限定されないが、例えば以下の方法で行うことができる。
可塑剤を、溶液Aの溶媒として用いることができるジエチルエーテル等の溶媒に溶解させて、可塑剤溶液を得る。次に、Liドープ処理で得られた粒子を、可塑剤を溶解した溶液に混ぜ、次いでスプレードライを用いて溶媒を揮発させ、粒子の表面に可塑剤の層を形成させる。その後、真空乾燥を行い、溶媒を完全に除去する。これにより、本発明の負極活物質が得られる。
[負極]
本発明の負極は、本発明の負極活物質を具備する。
続いて、本発明の負極の構成を例を挙げて説明する。図1は、本発明の負極の一例の概略断面図を表している。図1に示すように、負極10は、負極集電体11の上に負極活物質層12を有する構成を有している。この負極活物質層12は、図1に示すように負極集電体11の両面に設けられていても良いし、又は、片面だけに設けられていても良い。さらに、本発明の負極においては、負極集電体11はなくてもよい。
以下、各部材について説明する。
[負極集電体]
負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)が挙げられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体11の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、それぞれ100質量ppm以下であることが好ましい。これは、より高い変形抑制効果が得られるからである。
負極集電体11の表面は、粗化されていても良いし、粗化されていなくても良い。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は化学エッチングされた金属箔などである。粗化されていない負極集電体は例えば、圧延金属箔などである。
[負極活物質層]
負極活物質層12は、リチウムイオンを吸蔵及び放出可能な本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。負極活物質は負極活物質粒子を含み、負極活物質粒子は炭素層で被覆されたケイ素酸化物粒子を含む。
また、負極活物質層12は、本発明の負極活物質(ケイ素系負極活物質)と炭素系活物質とを含む混合負極活物質材料を含んでいても良い。これにより、負極活物質層の電気抵抗が低下するとともに、充電に伴う膨張応力を緩和することが可能となる。炭素系活物質としては、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、カーボンブラック類などを使用できる。
また、負極活物質層12に含まれる負極結着剤としては、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、ポリアクリル酸ナトリウム、カルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどである。
負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。
負極活物質層12は、例えば、塗布法で形成される。塗布法とは、ケイ素系負極活物質と上記の結着剤など、また、必要に応じて導電助剤、炭素系活物質を混合した後に、有機溶剤や水などに分散させ塗布する方法である。
具体的には例えば以下のとおりである。まず、先に説明したようにして作製した本発明の負極活物質を、負極結着剤、導電助剤などの他の材料と混合して、負極合剤とした後に、有機溶剤又は水などを加えてスラリーとする。次に、負極集電体の表面に、上記のスラリーを塗布し、乾燥させて、負極活物質層を形成する。この時、必要に応じて加熱プレスなどを行ってもよい。以上のようにして、本発明の負極を作製できる。
なお、本発明の負極活物質は、水を用いてスラリーを形成するのに特に適しているが、有機溶剤を用いてスラリーを形成するのにも適用することができる。
<リチウムイオン二次電池>
本発明の負極は、非水電解質二次電池、例えばリチウムイオン二次電池の負極において使用することができる。
次に、本発明の負極を用いることができる非水電解質二次電池の具体例として、ラミネートフィルム型のリチウムイオン二次電池の例について説明する。
[ラミネートフィルム型二次電池の構成]
図2に示すラミネートフィルム型のリチウムイオン二次電池30は、主にシート状の外装部材35の内部に巻回電極体31が収納されたものである。この巻回電極体31は正極、負極間にセパレータを有し、巻回されたものである。また、巻回はせずに、正極、負極間にセパレータを有した積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード32が取り付けられ、負極に負極リード33が取り付けられている。電極体31の最外周部は保護テープにより保護されている。
正極リード32及び負極リード33は、例えば、外装部材35の内部から外部に向かって一方向で導出されている。正極リード32は、例えば、アルミニウムなどの導電性材料により形成され、負極リード33は、例えば、ニッケル、銅などの導電性材料により形成される。
外装部材35は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体31と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
外装部材35と正極リード32及び負極リード33のそれぞれとの間には、外気侵入防止のため密着フィルム34が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。
以下、各部材をそれぞれ説明する。
[正極]
正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。
正極活物質層は、リチウムイオンの吸蔵放出可能な正極材(正極活物質)のいずれか1種又は2種以上を含んでおり、設計に応じて正極結着剤、正極導電助剤、分散剤などの他の材料を含んでいてもよい。
正極材としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素とからなる複合酸化物、又はリチウムと遷移金属元素とを有するリン酸化合物があげられる。これらの正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiM1OあるいはLiM2POで表される。式中、M1、M2は少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。
リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルト複合酸化物などが挙げられる。リチウムニッケルコバルト複合酸化物としては、例えばリチウムニッケルコバルトアルミニウム複合酸化物(NCA)やリチウムニッケルコバルトマンガン複合酸化物(NCM)などが挙げられる。
リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnPO(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量を得ることができるとともに、優れたサイクル特性も得ることができる。
正極結着剤としては、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、ポリアクリル酸ナトリウム、カルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどである。
正極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。
[負極]
二次電池の負極としては、本発明の負極を用いる。この二次電池を構成する負極は、正極活物質剤から得られる電気容量(電池としての充電容量)に対して、負極充電容量が大きくなることが好ましい。これにより、負極上でのリチウム金属の析出を抑制することができる。
この例では、正極活物質層は、正極集電体の両面の一部に設けられており、同様に本発明の負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられていることが好ましい。これは、安定した電池設計を行うためである。
上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため、負極活物質層の状態が形成直後のまま維持され、これによって負極活物質の組成などを、充放電の有無に依存せずに再現性良く正確に調べることができる。
[セパレータ]
セパレータはリチウムメタル又は正極と負極とを隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有してもよい。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[電解液]
正極活物質層及び負極活物質層の各々の少なくとも一部、又は、セパレータには、液状の非水電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタン又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。これは、より良い特性が得られるからである。また、この場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。
合金系負極を用いる場合、特に溶媒として、ハロゲン化鎖状炭酸エステル、又は、ハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。
ハロゲンの種類は特に限定されないが、フッ素が好ましい。これは、他のハロゲンよりも良質な被膜を形成するからである。また、ハロゲン数は多いほど望ましい。これは、得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。
ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどが挙げられる。
溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。
また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。
さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。
電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。
電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。
[ラミネートフィルム型二次電池の製造方法]
以上に説明したラミネートフィルム型二次電池は、例えば、以下の手順で製造することができる。
最初に、上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて正極結着剤、正極導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また圧縮を複数回繰り返してもよい。
次に、上記した負極10の作製と同様の作業手順に従い、負極集電体に負極活物質層を形成し負極を作製する。
正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていてもよい(図1を参照)。
続いて、電解液を調整する。続いて、超音波溶接などにより、正極集電体に正極リード32を取り付けると共に、負極集電体に負極リード33を取り付ける。続いて、正極と負極とをセパレータを介して積層し、次いで巻回させて巻回電極体31を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回電極体31を成型する。続いて、折りたたんだフィルム状の外装部材35の間に巻回電極体31を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体31を封入する。続いて、正極リード32、及び負極リード33と外装部材35との間に密着フィルム34を挿入する。続いて、解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型二次電池30を製造することができる。
上記作製したラミネートフィルム型二次電池30等の非水電解質二次電池において、充放電時の負極利用率が93%以上99%以下であることが好ましい。負極利用率を93%以上の範囲とすれば、初回充電効率が低下せず、電池容量の向上を大きくできる。また、負極利用率を99%以下の範囲とすれば、Liが析出してしまうことがなく安全性を確保できる。
以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1~3)
まず、負極活物質を以下のようにして作製した。金属ケイ素と二酸化ケイ素とを混合して得られた原料を反応炉に導入した。この反応炉内で、原料を10Paの真空度の雰囲気中で気化させ、吸着板上に堆積させた。十分に冷却した後、堆積物を取出しボールミルで粉砕した。このようにして得たケイ素酸化物粒子のSiOのxの値は1.0であった。
続いて、ケイ素酸化物粒子の粒径を分級により調整した。その後、熱分解CVD700℃から950℃の範囲で行うことで、ケイ素酸化物粒子の表面に炭素材を被覆した。
続いて、50ppmまで水分を低減させたエーテル系溶媒を使用し、酸化還元法によりケイ素酸化物粒子にリチウムを挿入し改質した。
実施例1及び3では、その後、450℃~700℃の範囲で加熱し、更に改質を行った。これにより、Liシリケートの状態を以下の表1に示す状態に制御した。
改質後、先に説明したスプレードライ法を用いて、可塑剤であるフタル酸ジオクチルの層でケイ素酸化物粒子の最表層を被覆した。可塑剤の層の厚さは1nmとした。
このようにして、負極活物質粒子を含む各実施例の負極活物質を得た。
各負極活物質が含む負極活物質粒子のメジアン径、及びLiSiO(111)結晶面に起因するピークの強度Bに対するSi(111)結晶面に起因するピークの強度Aの比率を以下の表1に示す。なお、強度比率A/Bは、XRDにより確認した。また、各負極活物質が含むSiは、XRDにより、非晶質であることを確認した。
次に、以上のようにして作製した負極活物質(改質したケイ素酸化物粒子を含む活物質)、グラファイト、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メジアン径が約50nmの炭素微粒子)、ポリアクリル酸ナトリウム、カルボキシメチルセルロース(以下、CMCと称する)を、9.3:83.7:1:1:4:1の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。
この時、スラリーの安定性をポットライフで見ており、72時間後に安定しているか否かを確認した。その判断は、スラリーから水素ガスが出るか否かで判断できる。
また、負極集電体としては、厚さ15μmの電解銅箔を用いた。この電解銅箔には、炭素及び硫黄がそれぞれ70質量ppmの濃度で含まれていた。最後に、負極合剤スラリーを負極集電体に塗布し真空雰囲気中で100℃での1時間にわたる乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は7.0mg/cmであった。
[試験用のコイン電池の組み立て]
次に、溶媒エチレンカーボネート(EC)及びジメチルカーボネート(DMC)を混合した後、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でEC:DMC=30:70とし、電解質塩の含有量を溶媒に対して1mol/kgとした。添加剤として、ビニレンカーボネート(VC)とフルオロエチレンカーボネート(FEC)をそれぞれ、1.0質量%、2.0質量%の量で添加した。
次に、以下のようにしてコイン電池を組み立てた。最初に厚さ1mmのLi箔を直径16mmに打ち抜き、アルミクラッドに張り付けた。
次に、先に得られた負極を直径15mmに打ち抜き、これを、セパレータを介して、アルミクラッドに貼り付けたLi箔と向い合せ、電解液注液後、2032コイン電池を作製した。
[初回効率の測定]
初回効率は以下の条件で測定した。まず、作製した初回効率試験用のコイン電池に対し、充電レートを0.03C相当とし、CCCVモードで充電(初回充電)を行った。CVは0Vで終止電流は0.04mAとした。次に、放電レートを同様に0.03Cとし、放電終止電圧を1.2Vとして、CC放電(初回放電)を行った。
初期充放電特性を調べる場合には、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。
[リチウムイオン二次電池の製造及び電池評価]
得られた初期データから、負極の利用率が95%となるように対正極を設計した。利用率は、対極Liで得られた正負極の容量から、下記式に基づいて算出した。
利用率=(正極容量-負極ロス)/(負極容量-負極ロス)×100
この設計に基づいて実施例及び比較例の各々のリチウムイオン二次電池を製造した。実施例及び比較例の各々のリチウムイオン二次電池について、電池評価を行った。
サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、0.2Cで2サイクル充放電を行い、2サイクル目の放電容量を測定した。電池サイクル特性は3サイクル目の放電容量から計算し、100サイクル数で電池試験を止めた。充電0.7C、放電0.5Cで充放電を行った。充電電圧は4.3V、放電終止電圧は2.5V、充電終止レートは0.07Cとした。
(比較例1~6)
比較例1、3及び5では、可塑剤の層でケイ素酸化物粒子の最表層を被覆しなかったこと以外は、上記実施例2と同様にして、各比較例の負極活物質を製造した。また、比較例3及び5では、Liドープ後改質処理を行い、Liシリケートの状態を以下の表1に示すように制御した。
また、比較例1、3及び5では、各比較例の負極活物質を用いて上記と同様の手順で負極合剤スラリーを作製した。また、負極合材スラリーを作製した日と同日に、作製した負極合材スラリーを用いて上記と同様の手順で負極を作製した。
比較例2、4及び6では、比較例1、3及び5とそれぞれ同じ負極合材スラリーを作製し、その翌日に、作製した負極合材スラリーを用いて上記と同様の手順で負極を作製した。
(実施例4~18)
実施例4~18では、用いる可塑剤を表1に示したものに変更したこと以外は実施例1と同様の手順で、負極活物質及び負極を作製した。なお、実施例15では、N-エチル-O-トルエンスルホンアミド及びN-エチル-p-トルエンスルホンアミドの混合物を用いた。また、実施例16では、o-トルエンスルホンアミド及びp-トルエンスルホンアミドの混合物を用いた。
(実施例19~24)
可塑剤の層の厚さを表2に示したものに変更したこと以外は実施例8と同様の手順で、負極活物質及び負極を作製した。
(実施例25)
実施例25は、炭素層の形成を石油アスファルトを用いて行ったこと以外は実施例8と同様の手順で、負極活物質及び負極を作製した。
具体的には、石油アスファルトをトルエンに溶かし、スプレードライで分離後に熱処理を行った。これにより、石油アスファルトに由来する炭化水素材を得た。そして、先に説明した手順で作製したケイ素酸化物粒子を、分級により粒子径を調整したのち、石油アスファルトに由来する炭化水素材と共に混練し、870℃で熱処理した。その後、実施例8と同様にして、改質及び可塑剤の層での被覆を行い、実施例25の負極活物質を得た。
(実施例26及び27)
実施例26及び27では、可塑剤の層を形成する際に、可塑剤溶液に十分に砕いたリン酸リチウム、またはリン酸リチウム及び酸化アルミニウムを混ぜて、膜に分散する状態としたこと以外は実施例8と同様の手順で、負極活物質及び負極を作製した。
(実施例28及び29)
実施例28では、炭素層の形成を実施例25と同様に行ったこと以外は実施例26と同様の手順で、負極活物質及び負極を作製した。
実施例29では、炭素層の形成を実施例25と同様に行ったこと以外は実施例27と同様の手順で、負極活物質及び負極を作製した。
(実施例30~34)
実施例30~34では、Si及びLiシリケートの結晶性を以下の表2のように変化させたこと以外は実施例8と同様の手順で、負極活物質及び負極を作製した。
具体的には、実施例30~34では、エーテル系溶媒を使用し、溶媒沸点から10℃以上低い温度でLiを挿入した。また、その後の熱処理温度を450℃以上、650℃以下の範囲で変化させ、Liシリケートの結晶性とSiの結晶性とを制御した。
(実施例35~41)
実施例35~41では、製造する負極活物質粒子のメジアン径が以下の表2に示す値になるようにケイ素酸化物粒子の粒径を分級により調整したこと以外は実施例8と同様の手順で、負極活物質を製造した。
以下の表1及び2に、実施例及び比較例の各々の負極活物質のパラメーターをまとめる。また、以下の表3及び4に、実施例及び比較例の各々のリチウムイオン二次電池の500サイクルまでの容量維持率、及び各負極活物質を用いて作製した負極合材スラリーの安定性をまとめる。
Figure 2023101910000002
Figure 2023101910000003
Figure 2023101910000004
Figure 2023101910000005
[評価]
比較例1~6は、最表層に可塑剤を用いず、スラリー化した場合である。各Liシリケートにおいて、塗料化(スラリー化)当日は、表3に比較例1、3及び5の結果として示すように良好な特性が得られるも、翌日はスラリーからガス発生すると共に、増粘剤の粘度低下が発生し、結果として、表3に比較例2、4及び6の結果として示すように長期電池特性は大幅に悪化した。
また、比較例の負極活物質を用いて作製したスラリーのポットライフは、表3に示すように、18時間以下であった。一般的にスラリーのポットライフは48時間以上を求められる事から、この結果は比較例1~6の負極活物質が工業的に有用ではない事を意味している。
一方、実施例1~41の負極活物質は、スラリー作製翌日に塗布して負極を作製しても、表3及び4に示したように、優れた長期電池特性を示した。
また、実施例1~41の負極活物質を用いて作製したスラリーのポットライフは、表3及び表4に示すように、48時間以上であった。この結果は、実施例1~41の負極活物質は、一般的なスラリーのポットライフの要求をかなえられるため、工業的に有用であることを意味している。
以下、各実施例について、述べる。
実施例1では、Liドープ後、熱負荷を与える事で、LiSiOを形成し、負極活物質粒子の最表層に、可塑剤の層として、フタル酸ジオクチルの層を形成させた例である。この例では、可塑剤による良質な被覆膜が得られており、高いスラリーの安定性を得る事ができたと考えられる。
実施例2では、Liドープ後、負極活物質粒子の最表層に、可塑剤の層として、フタル酸ジオクチルの層を形成した例である。この例において、バルク内部に存在するLiSiOは不安定な物質ではあるが、最低限求められる48時間の耐久性(スラリー安定性)を確認した。
実施例3では、Liドープ後、バルク内部にLiSiを一部残した状態で、負極活物質粒子の最表層に、可塑剤の層を形成した例である。実施例3の負極活物質を用いて作製したスラリーは、実施例1に比べやや不安定であるが、72時間の耐久性(スラリー安定性)を確認した。
実施例4~18により、様々な可塑剤を用いて、安定性を確認した。その結果、可塑剤の種類が変わっても、良好なスラリー安定性が得られたことが分かった。
実施例19~24では、可塑剤の層の膜厚を変化させた。可塑剤の層の厚さが0.1nmであっても十分な耐久性(スラリー安定性)が得られることを確認した。
なお、実施例及び比較例においては、処理前後の質量変化から膜厚を計算している(薄すぎて直接観察ができていない)が、完全な被覆ではなく、部分的に露出している部分が存在すると考えている。ただし、実使用に耐え得る範囲である事は確認できた。
実施例8、実施例19~24の結果から、可塑剤の層の厚さが0.1以上10nm以下であれば、より優れたサイクル特性を示したことが分かる。これは、可塑剤の層は、厚さが0.1以上10nm以下の範囲内であれば、十分なLiの透過性を示すことができるからであると考えられる。
実施例25と実施例8との結果の比較から、炭素層の形成を石油アスファルトで行っても、CVDと近しい特性が得られることを確認した。
実施例26~29は、可塑剤の層に固体電解質の粉砕物を混ぜた例である。実施例8及び25と、実施例26~29との結果の比較から、固体電解質の粉砕物を可塑剤の層に混ぜることにより、サイクル特性を更に向上できることが分かる。この結果から、可塑剤の層に固体電解質の粉砕物を混ぜることにより、可塑剤の層を透過するLiイオンがスムーズに出入りする事が可能となり、電池特性が向上される事を確認した。
図3に、実施例1の負極活物質の表面のX線光電子分光スペクトルを示す。また、図4に、実施例1の負極活物質の表面のTOF-SIMSスペクトルを示す。以下の表5に、TOF-SIMSの測定条件を示す。
Figure 2023101910000006
図3に示すX線光電子分光スペクトルからは、実施例1の負極活物質の最表面のフタル酸ジオクチルを確認することはできなかった。一方、図4に示すTOF-SIMSスペクトルから、C2438Liに帰属されるピークが確認された。このピークの存在により、負極活物質粒子の最表面にフタル酸ジオクチルの層が存在することが分かった。
実施例30~34、及び実施例8の結果から、Siの結晶性は、実質的に非晶質が望ましい事が判明した。
このLiシリケートと、XRDから見積もられるSiの結晶化は制御パラメーターとして重要であり、Li挿入時の条件や、熱処理条件で大きく変化する。
また、表3及び表4に示した結果から、実施例35~41、及び実施例8は、負極活物質粒子のメジアン径が異なるが、同様に優れたサイクル電池特性を示すことができたことが分かる。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
10…負極、 11…負極集電体、 12…負極活物質層、 30…リチウムイオン二次電池(ラミネートフィルム型)、 31…電極体、 32…正極リード、 33…負極リード、 34…密着フィルム、 35…外装部材。

Claims (11)

  1. 負極活物質粒子を含む負極活物質であって、
    前記負極活物質粒子は、炭素層で被覆されたケイ素酸化物粒子を含有し、
    前記ケイ素酸化物粒子は少なくともその一部に、LiSiO、LiSiO及びLiSiからなる群より選択される少なくとも1種を含み、
    前記負極活物質粒子の少なくとも最表層の一部が可塑剤の層で被覆されているものであることを特徴とする負極活物質。
  2. 前記可塑剤の層の厚さが0.1nm以上10nm以下のものであることを特徴とする請求項1に記載の負極活物質。
  3. 前記炭素層がその一部に窒素原子を含有するものであることを特徴とする請求項1又は2に記載の負極活物質。
  4. 前記炭素層は、石油アスファルトに由来する炭化水素材を出発材として形成されたものであり、その一部に前記窒素原子を含有するものであることを特徴とする請求項3に記載の負極活物質。
  5. 前記可塑剤が、フタル酸エステル系可塑剤、アジピン酸エステル系可塑剤、リン酸エステル系可塑剤、及びスルホンアミド系可塑剤からなる群より選択される少なくとも1種を含むものであることを特徴とする請求項1~4のいずれか1項に記載の負極活物質。
  6. 前記可塑剤は、フタル酸ジオクチル、フタル酸ジブトキシエチル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジウンデシル、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ビス(2-ブトキシエチル)、リン酸トリフェニル、フタル酸系ポリエステル、アジピン酸系ポリエステル、エポキシ化植物油、p-トルエンスルホンアミド、N-エチル-o-トルエンスルホンアミド、N-エチル-p-トルエンスルホンアミド、o-トルエンスルホンアミド、p-トルエンスルホンアミド、N-n-ブチルベンゼンスルホンアミド及びN-シクロヘキシル-p-トルエンスルホンアミドからなる群より選択される少なくとも1種を含むものであることを特徴とする請求項5に記載の負極活物質。
  7. 前記可塑剤の層は、固体電解質を更に含むものであることを特徴とする請求項1~6の何れか1項に記載の負極活物質。
  8. 前記固体電解質がリン酸リチウム及び/又は酸化アルミニウムを含むものであることを特徴とする請求項7に記載の負極活物質。
  9. 前記負極活物質粒子は、前記負極活物質粒子を充放電する前において、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因するピークを有し、該結晶面に対応する結晶子サイズは5.0nm以下であり、かつ、LiSiO(111)結晶面に起因するピークの強度Bに対する前記Si(111)結晶面に起因するピークの強度Aの比率A/Bは、下記の式(1)
    0.4≦A/B≦1.0 ・・・(1)
    を満たすものであることを特徴とする請求項1~7の何れか1項に記載の負極活物質。
  10. 前記負極活物質粒子はメジアン径が4.5μm以上15μm以下であることを特徴とする請求項1~9の何れか1項に記載の負極活物質。
  11. 請求項1~10の何れか1項に記載の負極活物質を具備するものであることを特徴とする負極。
JP2022002143A 2022-01-11 2022-01-11 負極活物質及び負極 Pending JP2023101910A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022002143A JP2023101910A (ja) 2022-01-11 2022-01-11 負極活物質及び負極
PCT/JP2022/044441 WO2023135970A1 (ja) 2022-01-11 2022-12-01 負極活物質及び負極
TW111146665A TW202332101A (zh) 2022-01-11 2022-12-06 負極活性物質及負極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022002143A JP2023101910A (ja) 2022-01-11 2022-01-11 負極活物質及び負極

Publications (2)

Publication Number Publication Date
JP2023101910A true JP2023101910A (ja) 2023-07-24
JP2023101910A5 JP2023101910A5 (ja) 2024-07-09

Family

ID=87278828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022002143A Pending JP2023101910A (ja) 2022-01-11 2022-01-11 負極活物質及び負極

Country Status (3)

Country Link
JP (1) JP2023101910A (ja)
TW (1) TW202332101A (ja)
WO (1) WO2023135970A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145654A1 (ja) * 2016-02-24 2017-08-31 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
CN107195867A (zh) * 2016-03-15 2017-09-22 宁德新能源科技有限公司 负极活性材料及其制备方法以及二次电池
JP6797734B2 (ja) * 2016-03-31 2020-12-09 三洋化成工業株式会社 リチウムイオン電池用被覆負極活物質
WO2018061536A1 (ja) * 2016-09-30 2018-04-05 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP7186099B2 (ja) * 2019-01-15 2022-12-08 信越化学工業株式会社 非水電解質二次電池用負極活物質及びその製造方法
WO2020262647A1 (ja) * 2019-06-26 2020-12-30 株式会社村田製作所 負極活物質、負極および二次電池
US20230317953A1 (en) * 2020-08-18 2023-10-05 Apb Corporation Coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, lithium ion battery, and method for producing coated negative electrode active material particles for lithium ion batteries

Also Published As

Publication number Publication date
WO2023135970A1 (ja) 2023-07-20
TW202332101A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
KR102613652B1 (ko) 부극재 및 그 부극재의 제조 방법, 그리고 혼합 부극재
JP2022116186A (ja) リチウムイオン二次電池、モバイル端末、自動車及び電力貯蔵システム
JP6861565B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP7368577B2 (ja) 負極及びその製造方法
WO2020095558A1 (ja) 負極活物質、混合負極活物質、水系負極スラリー組成物、及び、負極活物質の製造方法
JP7410259B2 (ja) 非水電解質二次電池
WO2021053951A1 (ja) 負極活物質、負極及びそれらの製造方法
WO2022239676A1 (ja) 負極活物質及びその製造方法
JP7175254B2 (ja) 非水電解質二次電池負極用添加剤、及び、非水電解質二次電池用水系負極スラリー組成物
WO2023135970A1 (ja) 負極活物質及び負極
JP7325458B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池用負極活物質の製造方法
WO2023188918A1 (ja) 負極活物質及び負極活物質の製造方法
WO2023008094A1 (ja) 負極及びその製造方法
CN114503302B (en) Negative electrode active material, negative electrode, and method for producing negative electrode active material
WO2023008093A1 (ja) 負極活物質及びその製造方法
JP7490590B2 (ja) 負極及び負極の製造方法
TW202310474A (zh) 負極及負極的製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231122