WO2010044179A1 - 半導体装置の製造方法及び半導体装置 - Google Patents

半導体装置の製造方法及び半導体装置 Download PDF

Info

Publication number
WO2010044179A1
WO2010044179A1 PCT/JP2009/003359 JP2009003359W WO2010044179A1 WO 2010044179 A1 WO2010044179 A1 WO 2010044179A1 JP 2009003359 W JP2009003359 W JP 2009003359W WO 2010044179 A1 WO2010044179 A1 WO 2010044179A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive film
semiconductor device
semiconductor element
semiconductor
manufacturing
Prior art date
Application number
PCT/JP2009/003359
Other languages
English (en)
French (fr)
Inventor
佐々木暁嗣
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to EP09820358A priority Critical patent/EP2341529A4/en
Priority to US13/122,034 priority patent/US8436479B2/en
Priority to CN2009801411978A priority patent/CN102187442A/zh
Priority to KR1020117010506A priority patent/KR101225306B1/ko
Publication of WO2010044179A1 publication Critical patent/WO2010044179A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3205Shape
    • H01L2224/32057Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01059Praseodymium [Pr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/1579Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15798Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a semiconductor device.
  • a paste-like adhesive has been used for bonding a semiconductor element and a lead frame, but it is not always easy to apply an appropriate amount of the paste-like adhesive, and the adhesive is applied to the outer periphery of the semiconductor element. Sometimes protruded.
  • a film-like adhesive in which an adhesive is applied to a heat-resistant substrate such as a hot-melt adhesive film using a polyimide resin
  • a hot-melt adhesive film using a polyimide resin has been used.
  • a hot-melt adhesive film needs to be bonded at a high temperature, it may cause thermal damage to a high-density semiconductor element and lead frame.
  • Organic substrates used in semiconductor devices with a chip-on-chip (COC) structure in which semiconductor elements are stacked in multiple stages on a semiconductor element have poor heat resistance compared to a lead frame, and therefore are not suitable for bonding at high temperatures. It is unsuitable.
  • the semiconductor element is made thinner as the thickness thereof is reduced, and the semiconductor element is warped significantly at the past high temperature. From these things, the request
  • a hot-melt type adhesive film made of a mixture of a thermoplastic resin and a thermosetting resin has been proposed (see, for example, Patent Documents 2 to 4).
  • Patent Document 2 since a polyimide resin is used as a thermoplastic resin and an epoxy resin is used as a thermosetting resin, such an adhesive film is excellent in heat resistance and reliability, but in a high temperature state. Since the melt viscosity is reduced for the first time and the minimum melt viscosity is high, the wettability at low temperatures is insufficient, so that it is difficult to stick at low temperatures of about 80 ° C to 150 ° C, and the semiconductor element is thin. In addition, there is a problem that it is difficult to apply to multi-layered semiconductor devices.
  • Patent Document 3 a resin mainly composed of acrylic rubber is used as a thermoplastic resin having a low glass transition temperature in order to improve wettability at a low temperature, but the molecular weight of the thermoplastic resin is high. For this reason, the fluidity of the film adhesive is poor, the step due to the circuit provided on the organic substrate cannot be filled, a gap remains, and a problem that peeling easily occurs at a high temperature occurs.
  • Patent Document 4 describes that an adhesive member having two types of adhesive layers, that is, an adhesive layer A having a high adhesive force during thermosetting and an adhesive layer B having a high wiring embedding property is described.
  • an adhesive layer A having a high adhesive force during thermosetting and an adhesive layer B having a high wiring embedding property is described.
  • the adhesive layer B having a large flow amount is included in order to improve the wiring embedding property, there remains a problem that the protrusion of the adhesive to the outer peripheral portion of the semiconductor element cannot be suppressed.
  • An object of the present invention is to provide a method of manufacturing a semiconductor device that can suppress the generation of voids.
  • Another object of the present invention is to provide a highly reliable semiconductor device manufactured by the semiconductor device manufacturing method described above.
  • the method for manufacturing a semiconductor device of the present invention is a method for manufacturing a semiconductor device in which a semiconductor element and a support member are bonded via a cured product of an adhesive film, and (a) a step of preparing a semiconductor element with an adhesive film And (b) thermocompression bonding the semiconductor element with the adhesive film to the support member to obtain a semiconductor component comprising the semiconductor element with the adhesive film and the support member, and (c) with the adhesive film.
  • a pressure curing step in which the semiconductor component comprising the semiconductor element and the support member is heated and pressurized with a pressurized fluid to advance the curing of the adhesive film; and (d) the semiconductor element with the adhesive film and the support.
  • the step of electrically connecting the members is performed in the order of the steps (a) to (d).
  • the pressure curing step (c) for advancing the curing of the adhesive film is performed.
  • generation of voids inside the adhesive film can be suppressed, and a gap between the interface between the adhesive film and the semiconductor element and the interface between the adhesive film and the support member can be filled.
  • the adhesive film has not been completely cured in the thermocompression bonding step (b), and has a degree of curing that can be softened or moved by further heating, so in the pressure curing step (c) This is because the adhesive film is further cured by pressing at the same time as heating, and the void can be crushed and moved to fill the gap.
  • the pressurized fluid may be a pressurized gas.
  • the pressurized fluid may be pressurized air.
  • the pressure curing step (c) is performed using a pressure vessel, and a semiconductor component including the semiconductor element with the adhesive film and a support member is installed in the pressure vessel, Heating and pressurization can be performed with a pressurized fluid.
  • the heating and pressing conditions in the pressure curing step (c) are heating temperature of 80 ° C. or higher and 180 ° C. or lower, pressing force of 0.1 MPa or higher and 10 MPa or lower, pressing time of 1 It can be not less than 480 minutes.
  • the melt viscosity at 100 to 150 ° C. of the adhesive film before performing the step (a) may be 10 Pa ⁇ s or more and 1000 Pa ⁇ s or less.
  • voids and gaps are reduced by the pressure curing step (c), and after passing through the pressure curing step (c), a void having a diameter of 30 ⁇ m or more is formed inside the adhesive film. Can be absent.
  • the adhesive film may contain a (meth) acrylic resin.
  • the adhesive film contains a (meth) acrylic resin, and the content of the (meth) acrylic resin with respect to the entire resin is 10% or more and 50% or less. Can do.
  • the adhesive film may further contain a thermosetting resin.
  • the content of the (meth) acrylic resin with respect to 100 parts by weight of the thermosetting resin may be 10 parts by weight or more and 100 parts by weight or less.
  • the method for manufacturing a semiconductor device of the present invention includes a step of laminating an adhesive film with a dicing tape on the back surface of the wafer so that the step (a) is in the order of (a1) wafer, adhesive film, and dicing tape, (A2) a step of integrally dicing the wafer and the laminated adhesive film with the dicing tape, and (a3) a step of peeling the dicing tape to form a semiconductor element with the adhesive film. It can be performed in the order of (a3).
  • the semiconductor device of the present invention is manufactured by the above-described manufacturing method.
  • a semiconductor element and a support member for mounting a semiconductor element such as a lead frame or an organic substrate can be bonded to each other even in a relatively low temperature range without hindering adhesion and workability, and voids are provided. It is possible to obtain a method of manufacturing a semiconductor device that can suppress the occurrence of the above. Further, according to the present invention, it is possible to obtain a highly reliable semiconductor device manufactured by the above-described method for manufacturing a semiconductor device.
  • the method for manufacturing a semiconductor device of the present invention is a method for manufacturing a semiconductor device in which a semiconductor element and a support member are bonded via a cured product of an adhesive film, and (a) a step of preparing a semiconductor element with an adhesive film And (b) a thermocompression bonding step of thermocompression bonding the semiconductor element with the adhesive film to the support member to obtain a semiconductor component comprising the semiconductor element with the adhesive film and the support member; A pressure curing step in which the semiconductor component is heated and pressurized using a pressurized fluid to advance the curing of the adhesive film, and (d) a step of electrically connecting the semiconductor element and the support member.
  • the semiconductor element and the support member for mounting a semiconductor element such as a lead frame or an organic substrate can be bonded without impairing the adhesiveness and workability even at a relatively low temperature range below 150 ° C.
  • the manufacturing method of the semiconductor device which can suppress generation
  • the semiconductor device of the present invention is manufactured by the above-described manufacturing method. Thereby, a semiconductor device having excellent reliability can be obtained.
  • the present invention will be described in detail.
  • the method for manufacturing a semiconductor device of the present invention includes (a) a step of preparing a semiconductor element with an adhesive film.
  • the step of preparing a semiconductor element with an adhesive film is not particularly limited.
  • the method of adhering an adhesive film to the back surface of an individual semiconductor element, bonding to the back surface of a wafer using a spin coater, etc. examples thereof include a method of applying a film to a uniform thickness and dividing the film into pieces, but from the viewpoint of avoiding complicated processes, a method of performing the steps shown in the following (a1) to (a3) in this order is more preferable. .
  • FIG. 1 is a cross-sectional view illustrating an example of a process for preparing a semiconductor element with an adhesive film, and details thereof will be described later.
  • the method for manufacturing a semiconductor device of the present invention includes (b) a thermocompression bonding step of thermocompression bonding a semiconductor element with an adhesive film to a support member to obtain a semiconductor component comprising the semiconductor element with an adhesive film and the support member.
  • a normal chip mounter or the like is used in the thermocompression bonding process.
  • the thermocompression bonding method is a method of placing a supporting member on a hot plate and pressing a semiconductor element with an adhesive film, or pressing a semiconductor element with an adhesive film on the supporting member.
  • the temperature conditions for thermocompression bonding are not particularly limited, but are preferably 60 ° C.
  • thermocompression bonding at a temperature equal to or higher than the lower limit value the adhesion between the semiconductor element with an adhesive film and the support member becomes sufficient, and the dropping of the semiconductor element with an adhesive film during transportation is suppressed. Further, by thermocompression bonding at a temperature equal to or lower than the above upper limit value, warpage of the support member and the semiconductor element with the adhesive film can be suppressed, and bonding can be performed without shifting the bonding position.
  • thermocompression bonding by suppressing the curing of the adhesive film by thermocompression bonding at a temperature equal to or lower than the above upper limit value, the voids are crushed by the heating and pressurization in the pressure curing step (c) and moved so as to fill the gap. be able to.
  • the time condition for thermocompression bonding is not particularly limited, but is preferably 0.1 seconds or more and 60 seconds or less, more preferably 0.5 seconds or more and 5 seconds or less.
  • thermocompression bonding by suppressing the curing of the adhesive film by thermocompression bonding in a time equal to or shorter than the above upper limit value, the void is crushed and moved so as to fill the gap by heating and pressurization in the pressure curing step (c). be able to.
  • the pressure condition for thermocompression bonding is not particularly limited, but is preferably 1 kPa or more and 1 MPa or less, more preferably 3 kPa or more and 0.5 MPa or less.
  • the support member referred to in the present invention includes an organic substrate such as a bismaleimide-triazine substrate or a polyimide substrate, and a laminate in which one or more semiconductor elements or spacers are laminated on the organic substrate.
  • the method for manufacturing a semiconductor device of the present invention includes: (c) a pressure curing step in which a semiconductor component comprising a semiconductor element with an adhesive film and a supporting member is heated and pressurized using a pressurized fluid to advance the curing of the adhesive film. Is included.
  • the pressure curing step (c) for proceeding the curing of the adhesive film is performed.
  • the adhesive film does not reach at least complete curing in the thermocompression bonding step (b) and has a degree of curing that can be softened or moved by further heating, so that the pressure curing step (c) This is because the adhesive film is further hardened by heating at the same time as the heating in, and the void can be crushed and moved so as to fill the gap.
  • FIG. 2 shows a cross-sectional view for explaining an example of the state after the thermocompression bonding step (b), and FIG. 3 shows a cross-sectional view for explaining an example of the state after the pressure curing step (c).
  • the support member is a substrate 13 made of an organic material having a circuit
  • the semiconductor element 11 with the adhesive film 12 is present because there are irregularities derived from the circuit on the surface of the substrate 13 that becomes the adherend surface.
  • the gap 14 is likely to remain at the interface between the adhesive film 12 and the substrate 13, but by performing the pressure curing step (c), as shown in FIG. Even if there is, the gap 14 can be filled.
  • the voids in the adhesive film, the interface between the adhesive film and the semiconductor element, and the gap between the interface between the adhesive film and the support member are the gap between the interface between the adhesive film and the support member that could not be embedded in the thermocompression bonding process.
  • the gap at the interface between the adhesive film and the support member is to be filled only by the thermocompression bonding step (b) without performing the pressure curing step (c)
  • thermocompression bonding is performed using an adhesive film having a lower viscosity.
  • step (b) a method of completing the filling of the gaps at the interface and further curing the adhesive film by performing only the heat treatment is conceivable, but in this case, it is caused by the gas generated from the organic substrate of the support member. Regeneration of voids and gaps is considered to appear prominently.
  • the method for manufacturing a semiconductor device of the present invention without adding a step of drying the support member and removing moisture absorbed in the support member immediately before the thermocompression bonding step (b), etc.
  • the pressurized fluid used in the pressurized curing step (c) means a fluid used for pressurization, and such a fluid is not particularly limited, but may be a gas such as nitrogen gas, argon gas, or air. preferable. Thereby, the influence on a semiconductor element with an adhesive film and a support member can be suppressed rather than the case where a liquid is used. In addition, air is preferable among the gases from the viewpoint that a semiconductor device can be manufactured at a lower cost than when nitrogen gas, argon gas, or the like is used.
  • the method of heating and pressurizing using a pressurized fluid is not particularly limited, but it is preferable to use a pressure vessel.
  • a pressure vessel By using a pressure vessel, pressure can be applied evenly to the adhesive film, without causing bleeding, suppressing the generation of voids inside the adhesive film, the interface between the adhesive film and the semiconductor element, and the adhesive film and the support member The gap at the interface can be filled.
  • a semiconductor component including a semiconductor element with an adhesive film and a supporting member is installed in a pressure vessel, and heated and pressurized with a pressurized fluid.
  • FIG. 4 As a more specific method of directly heating and pressurizing with a pressurized fluid, as shown in FIG. 4, (i) from a semiconductor element 11 with an adhesive film 12 and a substrate 13 (support member) in a pressure vessel 16 A method of heating the pressure vessel as needed (FIG. 4A) and (ii) the pressure vessel 16 while installing the semiconductor component 15 to be introduced and causing the pressurized fluid to flow into the pressure vessel 16 from the pressurized fluid inlet 17.
  • a semiconductor component 15 comprising a semiconductor element 11 with an adhesive film 12 and a substrate 13 (supporting member) is installed therein, and a cover film 18 is installed so as to cover the semiconductor component 15, and then the cover film of the pressure vessel 16.
  • a method of injecting pressurized fluid from the side 18 and heating the pressure vessel 16 as necessary (iii) Semiconductor with adhesive film 12 in the pressure vessel 16
  • a semiconductor component 15 composed of the element 11 and the substrate 13 (support member) is installed, and a bag-like film 19 is installed so that the semiconductor component 15 can be pressed from above.
  • Examples of the method include a method in which a pressurized fluid is caused to flow into the film film 19 and the pressure vessel 16 is heated if necessary (FIG. 4C).
  • the method of installing the semiconductor component including the semiconductor element with the adhesive film and the support member in the pressure vessel is not particularly limited.
  • a plurality of semiconductor elements are mounted on a large substrate as in the MAP method.
  • a method of arranging a plurality of elements arranged in a matrix form with a gap may be used.
  • the above method (i) even when a large number of large substrates are pressure-cured at a time by arranging a plurality of substrate storage magazines or the like containing a plurality of large substrates at intervals, It is possible to apply pressure evenly to the adhesive film. In this respect, it is desirable to use the method (i).
  • the heating conditions in a pressure curing process (c) are not specifically limited, 80 to 180 degreeC is preferable and 100 to 150 degreeC is more preferable.
  • the said lower limit hardening of an adhesive film can be advanced rapidly, and a pressure curing process (c) can be shortened.
  • production of the clearance gap between the adhesive film and a support member by the outgas from adhesive film itself and the outgas from a support member can be suppressed.
  • the pressure condition in the pressure curing step (c) is not particularly limited, but is preferably 0.1 MPa or more and 10 MPa or less, more preferably 0.2 MPa or more and 2 MPa or less.
  • the pressure condition in the pressure curing step (c) is not particularly limited, but is preferably 0.1 MPa or more and 10 MPa or less, more preferably 0.2 MPa or more and 2 MPa or less.
  • the pressurization time in the pressure curing step (c) is not particularly limited, it is preferably 1 minute or more and 480 minutes or less, more preferably 3 minutes or more and 240 minutes or less.
  • the pressing time is equal to or higher than the lower limit value, the adhesive film is cured, and (d) stable connection can be performed in the step of electrically connecting the semiconductor element and the support member.
  • the adhesive film is cured, and (d) stable connection can be performed in the step of electrically connecting the semiconductor element and the support member.
  • by being below an upper limit overcuring of an adhesive film can be prevented and the curvature of a supporting member can be prevented.
  • voids having a diameter of 30 ⁇ m or more do not exist in the adhesive film after the pressure curing step (c), and it is more preferable that voids having a diameter of 10 ⁇ m or more do not exist. .
  • the absence of voids having a diameter of 30 ⁇ m or more makes it difficult for interfacial delamination to occur at high temperatures, so that sufficient reflow resistance of the semiconductor device of the present invention can be maintained.
  • the method for manufacturing a semiconductor device of the present invention includes a step (d) of electrically connecting a semiconductor element and a support member.
  • a step (d) of electrically connecting a semiconductor element and a support member As shown in FIG. 5, as a method of electrically connecting the semiconductor element 21 with the adhesive film 22 and the substrate 23 (support member), a wire bonding method in which a connection is made using a bonding wire 24 is widely used. . In addition, you may further advance hardening of an adhesive film by a process (d).
  • the manufacturing method of the semiconductor device of the present invention is not particularly limited, but after performing the above steps (a) to (d), the semiconductor element 21 with the adhesive film 22 and the substrate as shown in FIG.
  • One side of the semiconductor component 15 composed of 23 (support member) on which the semiconductor element 21 is mounted is molded and cured by a molding method such as transfer molding, compression molding, injection molding or the like with a resin composition for semiconductor encapsulation.
  • a molding method such as transfer molding, compression molding, injection molding or the like with a resin composition for semiconductor encapsulation.
  • a semiconductor device in which a semiconductor element or the like is sealed with a cured product of a semiconductor sealing resin composition that is a sealing material is used as it is or as a post cure at a temperature of about 80 ° C. to 200 ° C. for 10 minutes to 10 minutes.
  • a post cure at a temperature of about 80 ° C. to 200 ° C. for 10 minutes to 10 minutes.
  • a MAP system in which a semiconductor component composed of a semiconductor element with an adhesive film and a supporting member is a MAP system in which a plurality of semiconductor elements are arranged in a matrix on a large substrate
  • the semiconductor element is mounted with a semiconductor sealing resin composition. After one side of the formed side is collectively sealed, it can be diced into individual packages.
  • FIG. 1 (a1) an adhesive film with a dicing tape is formed on the back surface of the wafer 1 in the order of the wafer 1, the adhesive film 2, the adhesive layer 3 of the dicing tape 5, and the base film 4 of the dicing tape 5. Then, the wafer ring 6 is fixed on a dicing table (not shown). Next, the wafer 1 and the laminated adhesive film 2 with the dicing tape 5 are integrally diced to separate the semiconductor element 1 into individual pieces (FIG. 1 (a2-1)).
  • the dicing tape 5 is stretched by an expanding device (not shown), and the separated semiconductor elements 1 are opened at regular intervals (FIG. 1 (a2-2)), and then the semiconductor with an adhesive film peeled off from the dicing tape 5 is used.
  • the element 7 is picked up (FIG. 1 (a3)) and thermocompression bonded to the substrate 13 to obtain a semiconductor component 15 (FIG. 2).
  • the substrate 13 for example, a substrate in which glass fiber is impregnated with an epoxy resin, a polyimide substrate, a bismaleimide-triazine resin substrate, or the like can be used.
  • the semiconductor component 15 was pressure-cured in the pressure vessel 16 (FIG. 4 (i)
  • the semiconductor element 21 and the substrate 23 (support member) were electrically connected by wire bonding.
  • the semiconductor component 15 is sealed by the sealing material 31 (FIG. 6).
  • the adhesive film used in the method for producing a semiconductor device of the present invention preferably has a melt viscosity at 100 to 150 ° C. before the step (a) of 10 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more. Thereby, the protrusion of the adhesive film to the outer peripheral portion of the semiconductor element can be suppressed in the thermocompression bonding step (b).
  • the adhesive film has a melt viscosity at 100 to 150 ° C. before the step (a) of preferably 1000 Pa ⁇ s or less, more preferably 500 Pa ⁇ s or less, and particularly preferably 350 Pa ⁇ s or less.
  • the melt viscosity in the present invention can be measured, for example, using a rheometer which is a viscoelasticity measuring device by applying shear shear at a frequency of 1 Hz to a film-like sample at a heating rate of 10 ° C./min.
  • the melt viscosity in the present invention represents a physical property of a solution different from dynamic viscoelasticity.
  • each component of the resin composition constituting the adhesive film will be described.
  • Each component may be a single compound or a combination of a plurality of compounds.
  • the resin composition constituting the adhesive film according to the present invention is not particularly limited, but preferably contains a (meth) acrylic resin.
  • (Meth) acrylic resin is a copolymer of (meth) acrylic acid ester and other monomers, and is a (meth) acrylic resin mainly composed of (meth) acrylic acid and its derivatives. Preferably there is.
  • (meth) acrylic acid esters examples include acrylic acid esters such as methyl acrylate and ethyl acrylate, and methacrylic acid esters such as methyl methacrylate and ethyl methacrylate. Moreover, acrylic acid, methacrylic acid, acrylonitrile, acrylamide etc. are mentioned as another monomer.
  • the initial adhesion can be improved by blending it in the resin composition.
  • the initial adhesion is adhesion when the adhesive film is bonded to the semiconductor element, and particularly means adhesion to the back surface of the wafer when the semiconductor element is in a wafer state.
  • the (meth) acrylic resin is preferably a (meth) acrylic acid ester copolymer having an epoxy group, a hydroxyl group, a carboxyl group, a nitrile group or the like.
  • the adhesiveness to adherends such as the back surface of a semiconductor element, and a supporting member, can be improved more.
  • Specific examples of the compound having such a functional group include glycidyl (meth) acrylate having a glycidyl ether group, hydroxy (meth) acrylate having a hydroxyl group, carboxy (meth) acrylate having a carboxyl group, and (meth) having a nitrile group. Examples include acrylonitrile.
  • the content of the (meth) acrylic acid ester copolymer containing a monomer unit having a carboxyl group is, for example, (meth) from the viewpoint of more firmly bonding the pressure curing step (c) to the adherend in a short time.
  • the content is preferably 0.5% by mass or more, more preferably 1% by mass or more, based on the entire acrylic resin.
  • the content of the carboxyl group-containing compound is preferably 10% by mass or less, for example, preferably 5% by mass or less, based on the entire (meth) acrylic resin, from the viewpoint of further improving the storage stability of the adhesive film. It is more preferable.
  • the weight average molecular weight of the (meth) acrylic resin is preferably 100,000 or more and 1.3 million or less, and more preferably 150,000 or more and 1,000,000 or less.
  • the content of the (meth) acrylic resin with respect to the entire resin is preferably 10% or more, and more preferably 25% or more. This leads to improved adhesion.
  • the content of the (meth) acrylic resin with respect to the entire resin is preferably 50% or less, and more preferably 40% or less. This leads to an improvement in workability.
  • the weight average molecular weight of the (meth) acrylic resin can be measured, for example, by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a high-speed GPC SC-8020 apparatus manufactured by Tosoh Corporation and the column is TSK- GEL GMHXL-L, temperature 40 ° C., solvent tetrahydrofuran and the like.
  • the glass transition temperature of the (meth) acrylic resin is, for example, preferably 0 ° C. or higher, preferably 5 ° C. or higher, from the viewpoint of further improving workability by suppressing the adhesion of the adhesive film from becoming too strong. Is more preferable. Further, the glass transition temperature of the acrylic resin is preferably, for example, 30 ° C. or less, and more preferably 20 ° C. or less, from the viewpoint of further improving the adhesion at low temperatures.
  • the glass transition temperature of the (meth) acrylic resin is, for example, from ⁇ 65 ° C. to a temperature rising rate of 5 ° C. at a constant load (10 mN) using a thermomechanical characteristic analyzer (manufactured by Seiko Instruments Inc., TMA / SS6100). It can be measured from the inflection point when it is pulled while raising the temperature at / min.
  • the resin composition constituting the adhesive film according to the present invention is not particularly limited, but preferably includes a thermosetting resin, and particularly preferably includes an epoxy resin.
  • the epoxy resin refers to any of a monomer, an oligomer and a polymer having an epoxy group.
  • epoxy resins include novolac epoxy resins such as phenol novolac epoxy resins and cresol novolac epoxy resins; bisphenol epoxy resins such as bisphenol A epoxy resins and bisphenol F epoxy resins; hydroquinone epoxy resins; biphenyl types Epoxy resin; stilbene type epoxy resin; triphenolmethane type epoxy resin; triazine nucleus-containing epoxy resin; dicyclopentadiene modified phenol type epoxy resin; naphthol type epoxy resin and phenol aralkyl type epoxy resin having phenylene and / or biphenylene skeleton, Examples thereof include aralkyl type epoxy resins such as naphthol aralkyl type epoxy resins having a phenylene and / or biphenylene skeleton.
  • novolac type epoxy resins aralkyl type epoxy resins and the like are preferably used.
  • an aralkyl epoxy resin By using an aralkyl epoxy resin, the change in complex viscosity
  • the glass transition temperature after hardening of an adhesive film can be raised by using a novolak-type epoxy resin, and the adhesiveness of an adhesive film and a to-be-adhered body can be improved.
  • the content of the (meth) acrylic resin with respect to 100 parts by weight of the thermosetting resin is preferably 10 parts by weight or more, and more preferably 30 parts by weight or more. Thereby, workability
  • content of an epoxy resin is not specifically limited, 100 mass parts or more and 1000 mass parts or less are preferable with respect to 100 mass parts of (meth) acrylic acid ester copolymers, 200 mass parts or more, 500 Part by mass or less is particularly preferable.
  • the low linear expansion coefficient after adhesive film hardening and toughness can be made compatible. More preferably, it is 350 parts by mass or less. Thereby, coexistence of the low linear expansion coefficient and toughness after adhesive film hardening can be improved more.
  • the content of the aralkyl type epoxy resin is not particularly limited, but is preferably 30 to 80% by mass, and particularly preferably 40 to 70% by mass with respect to the entire epoxy resin.
  • of the adhesive film can be kept constant at around 100 ° C. to 150 ° C., which is a temperature at which a general semiconductor element is thermocompression bonded. It becomes possible to suppress the fluctuation
  • the softening point of the epoxy resin is not particularly limited as long as it has compatibility with the (meth) acrylic resin, but it is preferably 40 ° C or higher and 100 ° C or lower, 50 ° C or higher and 90 ° C or lower. Is particularly preferred. Since the tack property of the adhesive film can be reduced by setting it to the above lower limit value or more, after the wafer is separated into pieces by dicing, the peelability of the semiconductor element with the adhesive film from the dicing tape is improved, and the pickup property is improved. Can be improved. Moreover, the raise of the melt viscosity before a pressure curing process (c) can be suppressed by setting it as the said upper limit or less.
  • a plurality of epoxy resins having different softening points may be used in combination.
  • a combination of a plurality of epoxy resins having different softening points includes a combination of an epoxy resin having a softening point of 40 ° C. or higher and lower than 70 ° C. and an epoxy resin having a softening point of 70 ° C. or higher and 100 ° C. or lower.
  • the resin composition constituting the adhesive film according to the present invention is not particularly limited, but preferably contains a curing agent.
  • the curing agent can be appropriately selected and used as long as it acts as a curing agent for the epoxy resin.
  • polyamines including aliphatic polyamines such as diethylenetriamine, triethylenetetramine, metaxylylenediamine, aromatic polyamines such as diaminodiphenylmethane, m-phenylenediamine, and diaminodiphenylsulfone, dicyandiamide, and organic acid dihydrazide.
  • Amine-based curing agents such as compounds, aliphatic acid anhydrides such as hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, aromatic acid anhydrides such as tritometic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid, etc.
  • Acid anhydride curing agent phenol novolac resin, cresol novolac resin, phenol aralkyl (including phenylene and biphenylene skeleton) resin, naphthol aralkyl (including phenylene and biphenylene skeleton) resin
  • Triphenol methane resin dicyclopentadiene type phenol resin, bis (mono- or di-t-butylphenol) propane, methylene bis (2-propenyl) phenol, propylene bis (2-propenyl) phenol, bis [(2-propenyloxy) phenyl] Methane, bis [(2-propenyloxy) phenyl] propane, 4,4 ′-(1-methylethylidene) bis [2- (2-propenyl) phenol], 4,4 ′-(1-methylethylidene) bis [ 2- (1-phenylethyl) phenol], 4,4 ′-(1-methylethylidene) bis [2-methyl-6-hydroxy
  • the content of the curing agent in the resin composition constituting the adhesive film used in the present invention can be determined by calculating the epoxy equivalent of the epoxy resin and the equivalent ratio of the curing agent.
  • the equivalent ratio of the epoxy equivalent of the epoxy resin to the functional group of the curing agent is preferably 0.5 or more and 1.5 or less, particularly preferably 0.7 or more and 1.3 or less. By setting it as the said range, heat resistance and preservability of an adhesive film can be made compatible.
  • the curing agent is preferably a liquid curing agent having a viscosity of 30 Pa ⁇ s (30,000 cps) or less at 25 ° C. Further, a liquid curing agent having a viscosity of 10 Pa ⁇ s (10,000 cps) or less at 25 ° C. is more preferable. By setting the viscosity of the curing agent at 25 ° C. to the specified value or less, the initial adhesion of the adhesive film and the reliability of the semiconductor device are improved.
  • the content of the liquid curing agent having a viscosity of 30 Pa ⁇ s (30,000 cps) or less at 25 ° C. is not particularly limited, but is preferably 30 to 80% by mass, particularly 40 to 70% by mass with respect to the entire curing agent. preferable.
  • liquid curing agent having a viscosity of 30 Pa ⁇ s (30,000 cps) or less at 25 ° C.
  • liquid phenol compounds include liquid phenol compounds. Specifically, bis (mono or di-t-butylphenol) propane, methylene bis (2-propenyl) phenol, propylene bis (2-propenyl) phenol, bis [(2-propenyloxy) phenyl] methane, bis [(2- Propenyloxy) phenyl] propane, 4,4 ′-(1-methylethylidene) bis [2- (2-propenyl) phenol], 4,4 ′-(1-methylethylidene) bis [2- (1-phenylethyl) Phenol], 4,4 '-(1-methylethylidene) bis [2-methyl-6-hydroxymethylphenol], 4,4'-(1-methylethylidene) bis [2-methyl-6- (2- Propenyl) phenol], 4,4 ′-(1
  • the curing agent it is also possible to add a solid phenol resin in addition to the liquid phenol compound.
  • Solid means a solid state at 25 ° C. and normal pressure.
  • the solid phenol resin refers to monomers, oligomers, and polymers in general having at least two phenolic hydroxyl groups capable of forming a crosslinked structure by curing reaction with the above-described epoxy resin.
  • phenol novolak resin Cresol novolac resin
  • phenol aralkyl including phenylene and biphenylene skeleton
  • naphthol aralkyl including phenylene and biphenylene skeleton
  • triphenol methane resin dicyclopentadiene type phenol resin, and the like. A plurality of them may be used.
  • the content of the solid phenol resin is not particularly limited, but the ratio of the epoxy equivalent of the epoxy resin to the functional group equivalent of the liquid phenol compound and the solid phenol resin is preferably 0.5 or more and 1.5 or less. 7 or more and 1.3 or less are especially preferable. By setting it as the said range, heat resistance and preservability of an adhesive film can be made compatible.
  • the content of the (meth) acrylic resin is not particularly limited, but is preferably less than the total amount of the epoxy resin and the curing agent. By doing so, it is possible to effectively suppress the generation of outgas coming out of the adhesive film when the adhesive film is heated in the pressure curing step (c), thereby preventing contamination of the adherend due to outgas. It is possible to improve the adhesion between the adhesive film and the adherend.
  • the resin composition constituting the adhesive film according to the present invention may contain a curing accelerator.
  • the curing accelerator can be appropriately selected and used as long as it accelerates the curing reaction between the epoxy resin and the curing agent.
  • Specific examples include imidazoles, amine-based catalysts such as 1,8-diazabicyclo (5,4,0) undecene, and phosphorus compounds such as molecular compounds of triphenylphosphine and tetra-substituted phosphonium and polyfunctional phenol compounds. .
  • a phosphorus compound that achieves both fast curing of the adhesive film and corrosivity of the aluminum pad on the semiconductor element is preferable.
  • the content of the curing accelerator is preferably from 0.01 to 10 parts by weight, particularly preferably from 0.1 to 5 parts by weight, based on a total of 100 parts by weight of the epoxy resin and the curing agent. By setting it as the said range, it becomes possible to maintain the balance of the quick-hardening property and preservability of an adhesive film, and the physical property after hardening.
  • phosphorus compounds a molecular compound of a tetra-substituted phosphonium and a polyfunctional phenol compound, which is excellent in quick curing of the adhesive film, corrosiveness to the aluminum pad of the semiconductor element, and storage stability of the adhesive film is particularly preferable.
  • a molecular compound of a tetra-substituted phosphonium and a polyfunctional phenol compound is not a mere mixture but a compound having a structure such as a salt structure or a supramolecular structure.
  • the tetra-substituted phosphonium which is a molecular compound of a tetra-substituted phosphonium and a polyfunctional phenol compound, is preferably a compound in which four alkyl groups or aromatic compounds are coordinated to the phosphorus atom from the balance between curability and storage stability of the adhesive film. .
  • the substituents of the tetra-substituted phosphonium are not particularly limited, and may be the same or different from each other, and a tetra-substituted phosphonium ion having a substituted or unsubstituted aryl group or alkyl group as a substituent is heated. It is stable and preferred for hydrolysis.
  • tetra-substituted phosphonium examples include tetraphenylphosphonium, tetratolylphosphonium, tetraethylphenylphosphonium, tetramethoxyphenylphosphonium, tetranaphthylphosphonium, tetrabenzylphosphonium, ethyltriphenylphosphonium, n-butyltriphenylphosphonium, 2-hydroxyethyl.
  • Examples include triphenylphosphonium, trimethylphenylphosphonium, methyldiethylphenylphosphonium, methyldiallylphenylphosphonium, tetra-n-butylphosphonium and the like. Among these, tetraphenylphosphonium is preferred from the balance of fast curability and storage stability of the adhesive film.
  • the polyfunctional phenol compound of the molecular compound of the tetra-substituted phosphonium and the polyfunctional phenol compound is a compound having a phenolic hydroxyl group, and at least one of the hydroxyl groups is removed to form a phenoxide type compound.
  • Specific examples include a hydroxybenzene compound, a biphenol compound, a bisphenol compound, a hydroxynaphthalene compound, a phenol novolac resin, and a phenol aralkyl resin.
  • polyfunctional phenol compound examples include bis (4-hydroxy-3,5-dimethylphenyl) methane (common name: tetramethylbisphenol F), 4,4′-sulfonyldiphenol, and 4,4′-isopropylidenediphenol.
  • the resin composition constituting the adhesive film according to the present invention may contain a coupling agent. Thereby, the adhesiveness of an adhesive film and the adhesiveness of the interface of the resin component in an adhesive film and a filler can be improved further.
  • Examples of the coupling agent include silane-based, titanium-based, and aluminum-based, among which a silane-based coupling agent that is excellent in the storage stability of the adhesive film and the adhesion between the adhesive film and the adherend is preferable.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -glycid.
  • the compounding amount of the coupling agent is preferably 0.01 parts by mass or more and 10 parts by mass or less, and particularly preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the acrylic resin.
  • the resin composition constituting the adhesive film may contain an inorganic filler.
  • the inorganic filler examples include silver, titanium oxide, silica, mica and the like. Among these, silica is preferable.
  • silica is preferable.
  • the silica filler it is possible to further improve the pick-up property by improving the peelability of the semiconductor element with the adhesive film from the dicing tape after dicing the wafer into individual pieces.
  • a shape of a silica filler although there exists crushing silica and spherical silica, spherical silica is preferable.
  • the average particle diameter of the inorganic filler is not particularly limited, but is preferably 0.01 ⁇ m or more and 20 ⁇ m or less, and particularly preferably 0.1 ⁇ m or more and 5 ⁇ m or less. By setting it as the said range, aggregation of a filler can be suppressed in an adhesive film, an external appearance can be improved, and also it can suppress destroying a chip
  • content of an inorganic filler is not specifically limited, 1 mass part or more and 200 mass parts or less are preferable with respect to 100 mass parts of resin components except (F) inorganic filler, 5 mass parts or more, 100 masses Part or less is particularly preferable.
  • the resin composition which comprises the adhesive film which concerns on this invention may contain components other than the said component.
  • the thickness of the adhesive film according to the present invention is not particularly limited, but is preferably 3 to 100 ⁇ m, particularly preferably 5 to 70 ⁇ m. When the thickness is within the above range, the thickness accuracy can be easily controlled.
  • the adhesive film of the present invention is prepared by, for example, dissolving the above resin composition in a solvent such as methyl ethyl ketone, acetone, toluene, dimethylformaldehyde, etc. to form a varnish, and then releasing using a comma coater, die coater, gravure coater, etc. It can be obtained by removing the release sheet after coating the sheet and drying to evaporate the solvent.
  • a solvent such as methyl ethyl ketone, acetone, toluene, dimethylformaldehyde, etc.
  • the adhesive film used in the method for manufacturing a semiconductor device of the present invention can be used as an adhesive film with a dicing tape by joining with a dicing film, for example.
  • Example 1 Preparation of resin varnish for adhesive film
  • a (meth) acrylic resin an acrylic ester copolymer (ethyl acrylate-butyl acrylate-acrylonitrile-acrylic acid-hydroxyethyl methacrylate copolymer, manufactured by Nagase ChemteX Corporation, SG-708-6, Tg: 6 ° C., (Weight average molecular weight: 800,000) 100 parts by mass;
  • As an epoxy resin EOCN-1020-80 (orthocresol novolac type epoxy resin, epoxy equivalent 200 g / eq, softening point 80 ° C., Nippon Kayaku Co., Ltd.) 105 parts by mass and NC3000P (aralkyl type epoxy resin, epoxy equivalent 272 g / eq, Softening point 58 ° C., manufactured by Nippon Kayaku Co., Ltd.)
  • NC3000P aralkyl type epoxy resin, epoxy equivalent 272 g / eq,
  • dicing sheet base film As a dicing sheet base film, Cleartech CT-H717 (manufactured by Kuraray Co., Ltd.) consisting of 60 parts by weight of Hibler and 40 parts by weight of polypropylene was used to form a base film having a thickness of 100 ⁇ m using an extruder, and the surface was subjected to corona treatment. Next, a copolymer having a weight average molecular weight of 500,000 obtained by copolymerizing 50 parts by mass of 2-ethylhexyl acrylate, 10 parts by mass of butyl acrylate, 37 parts by mass of vinyl acetate and 3 parts by mass of 2-hydroxyethyl methacrylate.
  • An adhesive film with a dicing tape is obtained by adhering an adhesive film to the above dicing sheet in a size larger than the semiconductor wafer and smaller than the inner diameter of the wafer ring, and a base film, an adhesive layer, and an adhesive film are laminated in this order. It was.
  • a semiconductor device was manufactured by the following procedure.
  • a simulated organic substrate (circuit level difference of 5 to 10 ⁇ m) containing bismaleimide triazine coated with a solder resist (AUS308, manufactured by Taiyo Ink Co., Ltd.) as a base material was prepared as a semiconductor device substrate.
  • copper foil, nickel plating, and gold plating are patterned in order on one side of the simulated organic substrate where the solder resist is not applied to form a wire bonding terminal, and a solder ball mounting area provided on the opposite side of the simulated organic substrate Conducted via hole.
  • An adhesive film with a dicing tape was attached to an 8-inch 200 ⁇ m wafer on which a semiconductor element was formed at 40 ° C. to obtain a wafer with an adhesive film with a dicing tape.
  • this wafer was diced (cut) into a size of each semiconductor element of 10.5 mm ⁇ 10.5 mm square at a spindle rotation speed of 30,000 rpm and a cutting speed of 50 mm / sec using a dicing saw. Next, it pushed up from the back surface of the adhesive film with a dicing tape and peeled between the base film and the adhesive layer to obtain a semiconductor element with an adhesive film.
  • the semiconductor element with the adhesive film is thermocompression bonded on the simulated organic substrate using a die bonder (manufactured by ASM, AD898) under the conditions of 130 ° C., 10 N, and 2 seconds, and then the semiconductor element with the adhesive film and the simulated organic substrate are
  • the semiconductor component consisting of was placed in a pressure vessel, and pressurized curing was performed using pressurized air under the conditions of 130 ° C., 0.5 MPa, and 60 minutes.
  • wire bonding was performed between the die pad portion of the semiconductor element and the wire bonding terminal of the substrate using a wire bonding apparatus (manufactured by ASM, Eagle 60).
  • sealing molding with sealing resin EME-G790 manufactured by Sumitomo Bakelite Co., Ltd.
  • heat treatment was performed at 175 ° C. for 2 hours to cure the sealing resin and the adhesive film, and a total of 10 semiconductor devices were manufactured. Obtained.
  • the degree of cure of the adhesive film separately measured by differential scanning calorimetry, (i) after thermocompression bonding, (ii) after pressure curing, (iii) after wire bonding, and (iv) after sealing molding and postcuring. And (i) 0%, (ii) 45%, (iii) 50%, and (iv) 100%, respectively, assuming that the degree of cure of the adhesive film before thermocompression bonding was 0%.
  • Example 1 A semiconductor device was obtained in the same manner as in Example 1 except that the pressure curing process was not performed.
  • the degree of cure of the adhesive film separately measured by differential scanning calorimetry is the adhesive film before thermocompression bonding.
  • the degree of cure of each was 0%, (i) 0%, (iii) 5%, and (iv) 100%, respectively.
  • thermocompression bonding After thermocompression bonding, heat treatment, (iii) after wire bonding, and (iv) after sealing molding and post-curing.
  • degree of cure of the adhesive film before thermocompression bonding was 0%, they were (i) 0%, (ii) 45%, (iii) 50%, and (iv) 100%, respectively.
  • the low temperature sticking property is obtained by sticking the adhesive film obtained in each example and comparative example to the back surface of a wafer having a thickness of 550 ⁇ m at a temperature of 40 ° C., a pressure of 0.3 MPa, a laminating speed of 10 mm / sec, and a 180 ° peel strength. Evaluated.
  • the 180 ° peel strength was measured by using Tensilon (RTC-1250A manufactured by ORIENTEC Co., Ltd.) and peeling in a 180 ° direction at a peeling speed of 50 mm / min and a peeling width of 25 mm.
  • the peel strength was 200 N / m or more.
  • the peel strength was 100 N / m or more and less than 200 N / m.
  • the peel strength was 50 N / m or more and less than 100 N / m.
  • X The peel strength was less than 50 N / m.
  • Presence or absence of voids and gaps before sealing molding Presence and absence of voids and gaps are measured with a scanning ultrasonic flaw detector (SAT) for the semiconductor devices before resin sealing obtained in each Example and Comparative Example. evaluated.
  • SAT scanning ultrasonic flaw detector
  • Each code is as follows. ⁇ : No more than 10 out of 10 semiconductor devices with voids or gaps of 30 ⁇ m or more. ⁇ : No. 1 to 3 semiconductor devices with no more than 30 ⁇ m voids or gaps. ⁇ : Voids of 30 ⁇ m or more.
  • the number of semiconductor devices in which 10 or more of the semiconductor devices with gaps remained is 4 to 9 in 10 ⁇ : 10 of 10 semiconductor devices in which the voids or the clearances of 30 ⁇ m or more remained were 10% in all the semiconductor devices in Example 1 No voids or gaps of 10 ⁇ m or more remained.
  • Presence / absence of voids and gaps after sealing molding and post-cure The presence of voids and gaps after sealing molding and post-cure is determined by scanning ultrasonic flaw detectors after sealing in the semiconductor devices manufactured in the examples and comparative examples.
  • SAT scanning ultrasonic flaw detectors after sealing in the semiconductor devices manufactured in the examples and comparative examples.
  • Each code is as follows. ⁇ : No more than 10 out of 10 semiconductor devices with voids or gaps of 30 ⁇ m or more. ⁇ : No. 1 to 3 semiconductor devices with no more than 30 ⁇ m voids or gaps. ⁇ : Voids of 30 ⁇ m or more.
  • the number of semiconductor devices in which 10 or more of the semiconductor devices with gaps remained is 4 to 9 in 10 ⁇ : 10 of 10 semiconductor devices in which the voids or the clearances of 30 ⁇ m or more remained were 10% in all the semiconductor devices in Example 1 No voids or gaps of 10 ⁇ m or more remained.
  • Example 1 which is the method for manufacturing a semiconductor device of the present invention, voids inside the adhesive film exceeding 30 ⁇ m, and the interface between the adhesive film and the semiconductor element and the adhesive film and the substrate There was no gap at the interface with the adhesive, and no adhesive sticking out. Also, good results were obtained that no cracks or peeling occurred even by the solder reflow treatment after moisture absorption in the semiconductor device.

Abstract

本発明の半導体装置の製造方法は、半導体素子と、支持部材と、を接着フィルムの硬化物を介して接着する半導体装置の製造方法であって、(a)接着フィルム付き半導体素子を準備する工程と、(b)接着フィルム付き半導体素子を支持部材に熱圧着して、接着フィルム付き半導体素子と支持部材とからなる半導体部品を得る熱圧着工程と、(c)接着フィルム付き半導体素子と支持部材とからなる半導体部品を、加圧流体を用いて加熱、加圧して接着フィルムの硬化を進行させる加圧キュア工程と、(d)半導体素子と支持部材とを電気的に接続する工程と、を工程(a)~(d)の順で行うことを特徴とする。

Description

半導体装置の製造方法及び半導体装置
 本発明は、半導体装置の製造方法及び半導体装置に関する。
 近年、電子機器の高機能化等に対応して半導体装置の高密度化、高集積化の要求が強まり、半導体装置(以下、「半導体パッケージ」又は「パッケージ」とも称す。)の大容量高密度化が進んでいる。このような要求に対応するため、例えば半導体素子(以下、「半導体チップ」又は「チップ」とも称す。)の上にリードフレームを接着するリード・オン・チップ(LOC)構造が採用されている。LOC構造では、半導体素子とリードフレームとを接合するため、その接合部での接着信頼性が半導体装置の信頼性に大きく影響することとなる。
 従来、半導体素子とリードフレームとの接着には、ペースト状の接着剤が用いられていたが、ペースト状の接着剤を適量に塗布することは必ずしも容易ではなく、半導体素子の外周部に接着剤がはみ出す場合があった。
 このような不具合に対する対策として、例えばLOC構造では、ポリイミド樹脂を用いたホットメルト型の接着剤フィルム等、耐熱性基材に接着剤を塗布したフィルム状接着剤が用いられるようになってきている(例えば、特許文献1参照)。しかし、このようなホットメルト型の接着剤フィルムは、高温で接着する必要があるため、高密度化した半導体素子、リードフレームに熱損傷を与える場合があった。
 また、近年の半導体装置においては、半導体素子の上に半導体素子を多段で積層することで、半導体装置の小型化、薄型化、大容量化を図るものも出てきている。そういった半導体装置には、リードフレームに代わり、ビスマレイミド-トリアジン基板やポリイミド基板のような有機基板の使用が増加している。こういった有機基板の増加とともに、半導体装置をはんだ付けするための赤外線リフロー時における半導体装置内部の吸湿水分によるクラックの発生を防止することが、重要な技術課題となってきており、このような技術課題に対しては、特に半導体素子接着剤の寄与するところが大きいことが分かってきている。
 半導体素子の上に半導体素子を多段で積層するチップ・オン・チップ(COC)構造の半導体装置において使用される有機基板は、リードフレームと比較して耐熱性に乏しいため、高温での接着には不向きである。また、COC構造の半導体装置では、その薄型化に伴い、半導体素子の薄型化が進み、これまでの高温での貼りつけ温度では半導体素子の反りが顕著になるという不具合が生じることとなる。これらのことから、これまで以上に低温での熱圧着が可能なフィルム状接着剤の要求が高まっている。このようなフィルム状接着剤としては、熱可塑性樹脂と熱硬化性樹脂の混合物からなるホットメルト型の接着フィルムが提案されている(例えば、特許文献2~4参照)。
特開平6-264035号公報 特開2002-121530号公報 特開2002-256235号公報 特開2003-096426号公報
発明の概要
 しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を有していた。第一に、特許文献2では、熱可塑性樹脂としてポリイミド樹脂、熱硬化性樹脂としてエポキシ樹脂が用いられているため、このような接着フィルムは、耐熱性・信頼性には優れるものの、高温状態で初めて溶融粘度が低下し、さらに最低溶融粘度が高いことより、低温での濡れ性が不足することとなるため、80℃~150℃程度の低温での貼り付けが困難であり、半導体素子が薄型かつ多段に積層された半導体装置に適用するのが困難であるという課題を有していた。
 第二に、特許文献3では、低温での濡れ性を改善するためにガラス転移温度の低い熱可塑性樹脂としてアクリルゴムを主成分とする樹脂が用いられているが、熱可塑性樹脂の分子量が高いため、フィルム状接着剤の流動性が乏しく、有機基板に設けられた回路による段差を埋めることができず、隙間が残り、高温時に剥離が起こりやすいという不具合を生じるものであった。
 第三に、特許文献4では、熱硬化時の接着力が高い接着剤層Aと、配線埋め込み性が高い接着剤層Bの2種類の接着剤層を有する接着部材とすることが記載されているが、配線埋め込み性を上げるためにフロー量が大きい接着剤層Bを含むものであるため、半導体素子の外周部への接着剤のはみ出しを抑えることができないなどの課題を残したものであった。
 第四に、低分子量の熱硬化成分の含有量を高くすることで流動性を持たせ、有機基板の段差を埋める方法も考えられるが、フィルム状接着剤が可とう性に乏しくなり、ダイシングテープ付き接着フィルムをウエハの裏面にラミネートする場合等において、フィルム状接着剤の割れが発生し易くなるという不具合を生じるものとなることが容易に予想される。
 本発明の目的は、半導体素子と、リードフレーム、有機基板等の半導体素子搭載用支持部材と、を比較的低温域においても接着性、作業性に支障を来たすことなく接着することができ、かつボイドの発生を抑えることができる半導体装置の製造方法を提供することにある。また、本発明の目的は、上述の半導体装置の製造方法により製造してなる信頼性に優れた半導体装置を提供することにある。
 本発明の半導体装置の製造方法は、半導体素子と、支持部材と、を接着フィルムの硬化物を介して接着する半導体装置の製造方法であって、(a)接着フィルム付き半導体素子を準備する工程と、(b)前記接着フィルム付き半導体素子を前記支持部材に熱圧着して、前記接着フィルム付き半導体素子と前記支持部材とからなる半導体部品を得る熱圧着工程と、(c)前記接着フィルム付き半導体素子と前記支持部材とからなる前記半導体部品を、加圧流体を用いて加熱、加圧し、接着フィルムの硬化を進行させる加圧キュア工程と、(d)前記接着フィルム付き半導体素子と前記支持部材とを電気的に接続する工程と、を前記工程(a)~(d)の順で行うことを特徴とする。本発明の半導体装置の製造方法においては、接着フィルム付き半導体素子を支持部材に熱圧着する熱圧着工程(b)を行った後に、接着フィルムの硬化を進行させる加圧キュア工程(c)を行うことにより、接着フィルム内部のボイドの発生を抑えることができ、また、接着フィルムと半導体素子との界面、及び接着フィルムと支持部材との界面の隙間を埋めることも可能となる。これは、接着フィルムが、熱圧着工程(b)では完全硬化には至っておらず、さらなる加熱により軟化又は移動することができる程度の硬化度合いとなっているため、加圧キュア工程(c)において加熱を行うと同時に、加圧も行うことによって、接着フィルムの硬化がさらに進行するとともに、ボイドを押し潰し、隙間を埋めるように移動することができることによるものである。
 本発明の半導体装置の製造方法は、前記加圧流体が加圧ガスであるものとすることができる。
 本発明の半導体装置の製造方法は、前記加圧流体が加圧空気であるものとすることができる。
 本発明の半導体装置の製造方法は、前記加圧キュア工程(c)を、圧力容器を用いて、該圧力容器内に前記接着フィルム付き半導体素子と支持部材とからなる半導体部品を設置し、前記加圧流体により加熱、加圧を行うものとすることができる。
 本発明の半導体装置の製造方法は、前記加圧キュア工程(c)における加熱、加圧条件が、加熱温度80℃以上、180℃以下、加圧力0.1MPa以上、10MPa以下、加圧時間1分以上、480分以下であるものとすることができる。
 本発明の半導体装置の製造方法は、前記工程(a)を行う前における前記接着フィルムの100~150℃での溶融粘度が10Pa・s以上、1000Pa・s以下であるものとすることができる。
 本発明の半導体装置の製造方法は、前記加圧キュア工程(c)によりボイドと隙間とが低減され、前記加圧キュア工程(c)を経た後において、前記接着フィルム内部に直径30μm以上のボイドが存在しないものとすることができる。
 本発明の半導体装置の製造方法は、前記接着フィルムが(メタ)アクリル系樹脂を含むものであるものとすることができる。
 本発明の半導体装置の製造方法は、前記接着フィルムが(メタ)アクリル系樹脂を含み、樹脂全体に対する前記(メタ)アクリル系樹脂の含有量が、10%以上50%以下であるものとすることができる。
 本発明の半導体装置の製造方法は、前記接着フィルムがさらに熱硬化性樹脂を含むものであるものとすることができる。
 本発明の半導体装置の製造方法は、前記熱硬化性樹脂100重量部に対する前記(メタ)アクリル系樹脂の含有量が10重量部以上100重量部以下であるものとすることができる。
 本発明の半導体装置の製造方法は、前記工程(a)が、(a1)ウエハ、接着フィルム、ダイシングテープの順になるように、前記ウエハの裏面に、ダイシングテープ付き接着フィルムをラミネートする工程と、(a2)前記ウエハとラミネートした前記ダイシングテープ付き接着フィルムとを一体にダイシングする工程と、(a3)前記ダイシングテープを剥離し、接着フィルム付き半導体素子を形成する工程と、を上記(a1)~(a3)の順で行うものとすることができる。
 本発明の半導体装置は、上述の製造方法により製造されることを特徴とする。
 本発明に従うと、半導体素子と、リードフレーム、有機基板等の半導体素子搭載用支持部材と、を比較的低温域においても接着性、作業性に支障を来たすことなく接着することができ、かつボイドの発生を抑えることができる半導体装置の製造方法を得ることができる。また、本発明に従うと、上述の半導体装置の製造方法により製造してなる信頼性に優れた半導体装置を得ることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
接着フィルム付き半導体素子を準備する工程の一例を説明する断面図である。 熱圧着後の状態の一例を説明する断面図である。 加圧キュア後の状態の一例を説明する断面図である。 圧力容器内に接着フィルム付き半導体素子と支持部材を設置した状態の一例を説明する断面図である。 ワイヤーボンディング後の状態の一例を説明する断面図である。 封止成形後の状態の一例を説明する断面図である。
発明を実施するための形態
 以下、本発明の半導体装置の製造方法及び半導体装置について説明する。本発明の半導体装置の製造方法は、半導体素子と、支持部材と、を接着フィルムの硬化物を介して接着する半導体装置の製造方法であって、(a)接着フィルム付き半導体素子を準備する工程と、(b)接着フィルム付き半導体素子を支持部材に熱圧着して、接着フィルム付き半導体素子と支持部材とからなる半導体部品を得る熱圧着工程と、(c)接着フィルム付き半導体素子と支持部材とからなる半導体部品を、加圧流体を用いて加熱、加圧して接着フィルムの硬化を進行させる加圧キュア工程と、(d)半導体素子と支持部材とを電気的に接続する工程と、を工程(a)~(d)の順で行うことを特徴とする。これにより、半導体素子と、リードフレーム、有機基板等の半導体素子搭載用支持部材と、を150℃を下回るような比較的低温域においても接着性、作業性に支障を来たすことなく接着することができ、かつボイドの発生を抑えることができる半導体装置の製造方法を得ることができる。また、本発明の半導体装置は、上述の製造方法により製造してなることを特徴とする。これにより、信頼性に優れた半導体装置を得ることができる。以下、本発明について詳細に説明する。
 本発明の半導体装置の製造方法は、(a)接着フィルム付き半導体素子を準備する工程を含むものである。(a)接着フィルム付き半導体素子を準備する工程は、特に限定するものではなく、例えば、個片化された半導体素子の裏面に接着フィルムを貼り付ける方法、スピンコーター等を用いてウエハ裏面に接着フィルムを均一の厚みに塗布して、個片化させる方法等が挙げられるが、工程の煩雑さを避ける観点から、下記(a1)~(a3)で示す工程をこの順で行う方法がより好ましい。
(a1)ウエハ、接着フィルム、ダイシングテープの順になるように、ウエハの裏面に、ダイシングテープ付き接着フィルムをラミネートする工程、
(a2)ウエハとラミネートしたダイシングテープ付き接着フィルムとを一体にダイシングする工程、
(a3)ダイシングテープを剥離し、接着フィルム付き半導体素子を形成する工程。
 図1に、接着フィルム付き半導体素子を準備する工程の一例を説明する断面図を示すが、その詳細は後述する。
 本発明の半導体装置の製造方法は、(b)接着フィルム付き半導体素子を支持部材に熱圧着して、接着フィルム付き半導体素子と支持部材とからなる半導体部品を得る熱圧着工程を含むものである。熱圧着工程は通常のチップマウンター等を使用するが、熱圧着の方法は支持部材を熱板上に載せて接着フィルム付き半導体素子を押し当てる方法や、支持部材上に接着フィルム付き半導体素子を押し当てると同時に、押し当て冶具を通して熱を伝える方法、またはその両方の方法を組み合わせた方法などがある。熱圧着の温度条件は、特に限定されないが、60℃以上、180℃以下が好ましく、80℃以上、150℃以下がより好ましい。上記下限値以上の温度で熱圧着することにより、接着フィルム付き半導体素子と支持部材の接着が十分となり、搬送中の接着フィルム付き半導体素子の脱落が抑えられる。また、上記上限値以下の温度で熱圧着することにより、支持部材及び接着フィルム付き半導体素子の反りが抑えられ、接着位置がずれることなく貼り付けが可能となる。また、上記上限値以下の温度で熱圧着することで、接着フィルムの硬化を抑えることにより、加圧キュア工程(c)における加熱、加圧によって、ボイドを押し潰し、隙間を埋めるように移動することができる。また熱圧着の時間条件は特に限定されないが、0.1秒以上、60秒以下が好ましく、0.5秒以上、5秒以下がより好ましい。上記下限値以上の時間で熱圧着することにより、接着フィルム付き半導体素子と支持部材の接着が十分となり、搬送中に接着フィルム付き半導体素子の脱落が抑えられる。また、上記上限値以下の時間で熱圧着することで、接着フィルムの硬化を抑えることにより、加圧キュア工程(c)における加熱、加圧によって、ボイドを押し潰し、隙間を埋めるように移動することができる。熱圧着の圧力条件は特に限定されないが、1kPa以上、1MPa以下が好ましく、3kPa以上、0.5MPa以下がさらに好ましい。上記上限値以下の圧力で熱圧着することにより、半導体素子の破損が抑えられる。また、上記下限値以上の圧力で熱圧着することにより、接着フィルム付き半導体素子と支持部材の接着が十分となり、搬送中の接着フィルム付き半導体素子の脱落を抑えることができる。尚、本発明でいう支持部材とは、ビスマレイミド-トリアジン基板やポリイミド基板のような有機基板、及び該有機基板に半導体素子やスペーサー等を一段以上積層したもの等も含むものである。
 本発明の半導体装置の製造方法は、(c)接着フィルム付き半導体素子と支持部材とからなる半導体部品を、加圧流体を用いて加熱、加圧して接着フィルムの硬化を進行させる加圧キュア工程を含むものである。本発明の半導体装置の製造方法においては、接着フィルム付き半導体素子を支持部材に熱圧着する熱圧着工程(b)を行った後に、接着フィルムの硬化を進行させる加圧キュア工程(c)を行うことにより、接着フィルム内部のボイドの発生を抑え、かつ、接着フィルムと半導体素子との界面、及び接着フィルムと支持部材との界面の隙間を埋めることができる。これは、接着フィルムが、熱圧着工程(b)では少なくとも完全硬化には至っておらず、さらなる加熱により軟化又は移動することができる程度の硬化度合いとなっているため、加圧キュア工程(c)において加熱を行うと同時に、加圧も行うことによって、接着フィルムの硬化がさらに進行するとともに、ボイドを押し潰し、隙間を埋めるように移動することができることによるものである。
 図2に熱圧着工程(b)後の状態の一例を説明する断面図を、図3に加圧キュア工程(c)後の状態の一例を説明する断面図を示した。図2に示すように、例えば支持部材が回路を有する有機材料からなる基板13である場合、被着面となる基板13表面に回路に由来する凹凸が存在するため、接着フィルム12付き半導体素子11の接着フィルム12と基板13との界面に隙間14が残り易いこととなるが、加圧キュア工程(c)を行うことで、図3に示すように、被着面となる基板13表面に凹凸があっても隙間14を埋めることが可能となる。
 尚、接着フィルム内部のボイド、並びに接着フィルムと半導体素子との界面、及び接着フィルムと支持部材との界面の隙間とは、熱圧着工程で埋め込み切れなかった接着フィルムと支持部材との界面の隙間や、加熱により接着フィルム自身で発生するガスに起因するもののみではなく、支持部材の有機基板から発生するガスに起因するものも含むものである。加圧キュア工程(c)を行わずに、熱圧着工程(b)のみで接着フィルムと支持部材との界面の隙間を埋め込もうとする場合、より低粘度となる接着フィルムを用いて熱圧着工程(b)で界面の隙間の埋め込みを完了させ、さらに加熱処理のみを行って接着フィルムの硬化を進行させる手法も考えられるが、この場合には、支持部材の有機基板から発生するガスに起因するボイドや隙間の再発生が顕著に現れるものと考えられ、例えば、熱圧着工程(b)の直前に支持部材を乾燥させて支持部材中の吸湿水分を除去する工程等を追加する必要性が想定されるものである。これに対して、本発明の半導体装置の製造方法によれば、熱圧着工程(b)の直前に支持部材を乾燥させて支持部材中の吸湿水分を除去する工程等を追加することなしに、接着フィルム内部のボイドの発生を抑え、かつ、接着フィルムと半導体素子との界面、及び接着フィルムと支持部材との界面の隙間を埋めることができるものである。また、加熱、加圧をプレス等ではなく、加圧流体を用いて行うことにより、接着フィルム付き半導体素子と支持部材とからなる半導体部品に全方向から均等に圧力をかけることができるため、半導体素子の周囲へ接着フィルムがブリードすること防ぐことができる。
 加圧キュア工程(c)で用いられる加圧流体とは、加圧に用いられる流体の意味であり、このような流体としては、特に限定されないが、窒素ガス、アルゴンガス、空気等のガスが好ましい。これにより、液体を用いる場合よりも接着フィルム付き半導体素子や支持部材への影響を抑えることができる。また、窒素ガスやアルゴンガス等を使用する場合よりも安価に半導体装置を製造することができるという観点からは、ガスの中でも空気が好ましい。
 加圧キュア工程(c)において、加圧流体を用いて加熱、加圧する方法は特に限定されないが、圧力容器を用いて行うことが好ましい。圧力容器を使用することで、接着フィルムに均等に圧力をかけることができ、ブリードすること無く、接着フィルム内部のボイドの発生を抑え、接着フィルムと半導体素子との界面、及び接着フィルムと支持部材との界面の隙間を埋めることができる。具体的には、圧力容器内に接着フィルム付き半導体素子と支持部材とからなる半導体部品を設置し、加圧流体により加熱、加圧を行う方法が挙げられる。
 加圧流体により直接的に加熱、加圧するより具体的な方法としては、図4に示すように、(i)圧力容器16内に接着フィルム12付き半導体素子11と基板13(支持部材)とからなる半導体部品15を設置し、加圧流体注入口17から、加圧流体を圧力容器16に流入させるとともに、必要により圧力容器を加熱する方法(図4(a))、(ii)圧力容器16内に接着フィルム12付き半導体素子11と基板13(支持部材)とからなる半導体部品15を設置し、さらにこの半導体部品15を覆うようにカバーフィルム18を設置したうえで、圧力容器16のカバーフィルム18側から加圧流体を流入させるとともに、必要により圧力容器16を加熱する方法(図4(b))、(iii)圧力容器16内に接着フィルム12付き半導体素子11と基板13(支持部材)とからなる半導体部品15を設置し、さらにこの半導体部品15を上から押圧することができるように袋状フィルム19を設置したうえで、圧力容器16内の袋状フィルム19に加圧流体を流入させるとともに、必要により圧力容器16を加熱する方法(図4(c))等が挙げられる。
 また、接着フィルム付き半導体素子と支持部材とからなる半導体部品の圧力容器内への設置方法については、特に限定するものではないが、例えば、MAP方式のように複数の半導体素子を大型基板上にマトリクス状に配置したものを、間隙を設けて複数個並べる方法等が挙げられる。さらに、上記(i)の方法では、複数枚の大型基板を入れた基板収納マガジン等を、間隔を設けて複数個並べることにより、一度に大量の大型基板の加圧キュアを行っても、全ての接着フィルムに均等に圧力をかけることができる。このような点で、上記(i)の方法を用いるのが望ましい。
 加圧キュア工程(c)における加熱条件は、特に限定されないが、80℃以上、180℃以下が好ましく、100℃以上、150℃以下がより好ましい。上記下限値以上であることで、接着フィルムの硬化を速やかに進めることで、加圧キュア工程(c)を短縮することができる。また、上記上限値以下であることで、接着フィルム自身からのアウトガス及び支持部材からのアウトガスによる、接着フィルムと支持部材との界面の隙間の再発生を抑えることができる。
 加圧キュア工程(c)における加圧条件は、特に限定されないが、0.1MPa以上、10MPa以下が好ましく、0.2MPa以上、2MPa以下がより好ましい。上記下限値以上であることで、接着フィルム内部のボイドの発生を抑え、接着フィルムと半導体素子との界面、及び接着フィルムと支持部材との界面の隙間を埋めることができ、上限値以下であることで、加圧キュア工程(c)での半導体素子の破損を防ぐことができる。
 加圧キュア工程(c)における加圧時間は、特に限定されないが、1分以上、480分以下が好ましく、3分以上、240分以下がより好ましい。加圧時間が下限値以上であることで、接着フィルムが硬化し、(d)半導体素子と支持部材とを電気的に接続する工程において、安定した接続を行うことができる。また上限値以下であることにより、接着フィルムの過硬化を防ぐことができ、支持部材の反りを防ぐことができる。
 本発明の半導体装置の製造方法は、加圧キュア工程(c)を経た後において、接着フィルム内部に直径30μm以上のボイドが存在しないことが好ましく、直径10μm以上のボイドが存在しないことがより好ましい。直径30μm以上のボイドが存在しないことにより、高温時に界面剥離が発生し難くなり、本発明の半導体装置の十分な耐リフロー性を保つことができる。
 本発明の半導体装置の製造方法は、(d)半導体素子と支持部材とを電気的に接続する工程を含むものである。図5に示すように、接着フィルム22付き半導体素子21と基板23(支持部材)とを電気的に接続する方式としては、ボンディングワイヤー24を用いて接続を行うワイヤーボンディング法が広く用いられている。尚、工程(d)により、接着フィルムの硬化をさらに進行させてもよい。
 本発明の半導体装置の製造方法は、特に限定するものではないが、上述の工程(a)~工程(d)を行った後に、図6に示すように、接着フィルム22付き半導体素子21と基板23(支持部材)とからなる半導体部品15の半導体素子21が搭載された側の片面を、半導体封止用樹脂組成物をトランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形、硬化させることにより、半導体素子21とその電気的接合部を封止材31により封止して、保護することができる。
 さらに、封止材である半導体封止用樹脂組成物の硬化物により半導体素子等が封止された半導体装置は、そのまま、或いは、ポストキュアとして80℃から200℃程度の温度で、10分から10時間程度の時間をかけて半導体封止用樹脂組成物を完全硬化させた後、電子機器等に搭載することができる。尚、半導体封止用樹脂の成形工程、ポストキュア工程により、接着フィルムの硬化をさらに進行させてもよい。尚、接着フィルム付き半導体素子と支持部材とからなる半導体部品が、複数の半導体素子を大型基板上にマトリクス状に配置したMAP方式の場合には、半導体封止用樹脂組成物により半導体素子が搭載された側の片面を一括で封止成形した後に、個々のパッケージにダイシングすることができる。
 次に、接着フィルムを用いて半導体装置を製造する方法の詳細について、工程の流れに沿ってその一例を説明する。
 図1(a1)に示すように、ウエハ1の裏面に、ダイシングテープ付き接着フィルムを、ウエハ1、接着フィルム2、ダイシングテープ5の粘着剤層3、ダイシングテープ5の基材フィルム4の順になるようにラミネートし、図示しないダイシングテーブルの上に、ウエハリング6で固定する。次に、ウエハ1とラミネートしたダイシングテープ5付き接着フィルム2とを一体にダイシングし、半導体素子1を個片化する(図1(a2-1))。
 次に、ダイシングテープ5を図示しないエキスパンド装置で伸ばして、個片化した半導体素子1を一定の間隔に開き(図1(a2-2))、その後にダイシングテープ5から剥離した接着フィルム付き半導体素子7をピックアップして(図1(a3))、基板13に熱圧着し、半導体部品15を得る(図2)。基板13としては、例えばガラス繊維にエポキシ樹脂を含浸した基板、ポリイミド基板及びビスマレイミド-トリアジン樹脂基板等を用いることができる。
 次に、得られた半導体部品15を圧力容器16内で加圧キュアを行った(図4(i))後、ワイヤーボンディングにより半導体素子21と基板23(支持部材)とを電気的に接続し(図5)、封止材31により半導体部品15の封止等を行う(図6)。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 次に本発明の半導体装置の製造方法で用いる接着フィルムについて説明する。
 本発明の半導体装置の製造方法で用いる接着フィルムは、工程(a)を行う前における100~150℃での溶融粘度が10Pa・s以上が好ましく、50Pa・s以上がより好ましい。これにより、熱圧着工程(b)で半導体素子の外周部への接着フィルムのはみ出しを抑えることができる。一方、接着フィルムは、工程(a)を行う前における100~150℃での溶融粘度が1000Pa・s以下が好ましく、500Pa・s以下より好ましく、特に350Pa・s以下が好ましい。これにより、加圧キュア工程(c)における加熱、加圧によって、ボイドを押し潰し、隙間を埋めるように移動することができる。
 本発明における溶融粘度は、例えば、粘弾性測定装置であるレオメーターを用いて、フィルム状態のサンプルに10℃/分の昇温速度で、周波数1Hzのずり剪断を与えて測定することができる。また、本発明における溶融粘度は、動的粘弾性とは異なる溶液の物性を表すものである。
 次に、接着フィルムを構成する樹脂組成物の各成分について説明する。なお、各成分は、一種類の化合物としてもよいし、複数の化合物を組み合わせて用いてもよい。
 本発明に係る接着フィルムを構成する樹脂組成物は、特に限定はされないが、(メタ)アクリル系樹脂を含むことが好ましい。(メタ)アクリル系樹脂は、(メタ)アクリル酸エステルと他の単量体との共重合体であって、(メタ)アクリル酸およびその誘導体を主なモノマーとする(メタ)アクリル系樹脂であることが好ましい。
 (メタ)アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル等のアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸エステルが挙げられる。また、他の単量体として、アクリル酸、メタクリル酸、アクリロニトリル、アクリルアミド等が挙げられる。
 (メタ)アクリル系樹脂は、ガラス転移温度が低いため、樹脂組成物中に配合することにより、初期密着性を向上することができる。ここで、初期密着性とは、接着フィルムを半導体素子に接着した際の密着性であり、特に半導体素子がウエハ状態である時のウエハ裏面への密着性を意味する。
 また、(メタ)アクリル系樹脂は、エポキシ基、水酸基、カルボキシル基、ニトリル基等を持つ(メタ)アクリル酸エステル共重合体であることが好ましい。これにより、半導体素子の裏面、及び支持部材等の被着体への密着性をより向上することができる。こうした官能基を有する化合物として、具体的には、グリシジルエーテル基を有するグリシジル(メタ)クリレート、水酸基を有するヒドロキシ(メタ)クリレート、カルボキシル基を有するカルボキシ(メタ)クリレート、ニトリル基を有する(メタ)アクリロニトリル等が挙げられる。
 これらの中でも、特に、カルボキシル基を有するモノマー単位を含む(メタ)アクリル酸エステル共重合体を用いることが好ましい。これにより、接着フィルムの硬化がさらに促進されるため、加圧キュア工程(c)を短時間にかつ強固に被着体へ接着させることができる。
 カルボキシル基を有するモノマー単位を含む(メタ)アクリル酸エステル共重合体の含有量は、より加圧キュア工程(c)を短時間でかつ強固に被着体へ接着させる観点では、たとえば(メタ)アクリル系樹脂全体の0.5質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、カルボキシル基を有する化合物の含有量は、接着フィルムの保存性をより一層向上させる観点では、たとえば(メタ)アクリル系樹脂全体の10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 (メタ)アクリル系樹脂の重量平均分子量は、たとえば10万以上、130万以下が好ましく、15万以上、100万以下とすることがさらに好ましい。上記下限値以上とすることにより、接着フィルムの成膜性をさらに向上させることができ、上記上限値以下とすることにより接着時の流動性を確保することが可能となる。
 樹脂全体に対する(メタ)アクリル系樹脂の含有量は、好ましくは10%以上、より好ましくは、25%以上である。これにより接着性の向上に繋がる。樹脂全体に対する(メタ)アクリル系樹脂の含有量は、好ましくは50%以下、より好ましくは、40%以下である。これにより、作業性の向上に繋がる。
 (メタ)アクリル系樹脂の重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)で測定することができ、測定条件例としては東ソー株式会社製、高速GPC SC-8020装置でカラムはTSK-GEL GMHXL-L、温度40℃、溶媒テトラヒドロフラン等が挙げられる。
 (メタ)アクリル系樹脂のガラス転移温度は、接着フィルムの粘着が強くなりすぎることを抑制して作業性をさらに向上させる観点では、たとえば0℃以上であることが好ましく、5℃以上であることがより好ましい。また、アクリル系樹脂のガラス転移温度は、低温での接着性をさらに向上させる観点では、たとえば30℃以下であることが好ましく、20℃以下であることがより好ましい。
 (メタ)アクリル系樹脂のガラス転移温度は、例えば、熱機械特性分析装置(セイコーインスツル株式会社製、TMA/SS6100)を用いて、一定荷重(10mN)で-65℃から昇温速度5℃/分で温度を上昇させながら引っ張った際の変極点より測定することができる。
 本発明に係る接着フィルムを構成する樹脂組成物は、特に限定されるものではないが、熱硬化性樹脂を含むことが好ましく、エポキシ樹脂を含むことが特に好ましい。エポキシ樹脂は、エポキシ基を有するモノマー、オリゴマーおよびポリマーのいずれかをいう。エポキシ樹脂の具体例として、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;ビフェニル型エポキシ樹脂;スチルベン型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂;トリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂;ナフトール型エポキシ樹脂、およびフェニレンおよび/またはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂等が挙げられる。
 これらの中でも、ノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂等が好ましく用いられる。アラルキル型エポキシ樹脂を用いることにより、熱圧着工程(b)における100℃~150℃付近で、接着フィルムの複素粘性率|c*|の変化を一定に抑えることができるため、一般的な熱圧着温度である100℃~150℃の温度範囲で接着フィルムのフロー量の変動を抑制することができる。またノボラック型エポキシ樹脂を用いることにより、接着フィルムの硬化後のガラス転移温度を高めることができ、また、接着フィルムと被着体との密着性を向上させることができる。
 熱硬化性樹脂100重量部に対する(メタ)アクリル系樹脂の含有量は、10重量部以上が好ましく、30重量部以上がより好ましい。これにより、接着フィルムの作業性を良好にできる。また、熱硬化性樹脂100重量部に対する(メタ)アクリル系樹脂の含有量は、100重量部以下が好ましく、80重量部以下がより好ましい。
 エポキシ樹脂の含有量は、特に限定されるものではないが、(メタ)アクリル酸エステル共重合体100質量部に対して、100質量部以上、1000質量部以下が好ましく、200質量部以上、500質量部以下が特に好ましい。上記範囲とすることで、接着フィルム硬化後の低い線膨張係数と靭性を両立することができる。さらに好ましくは、350質量部以下である。これにより接着フィルム硬化後の低い線膨張係数と靭性の両立をより向上できる。
 アラルキル型エポキシ樹脂の含有量は、特に限定されないが、エポキシ樹脂全体に対して30~80質量%が好ましく、40~70質量%が特に好ましい。上記範囲とすることで、一般的な半導体素子を熱圧着させる温度である100℃~150℃付近で、接着フィルムの複素粘性率|c*|の変化を一定に抑えることができるため、接着フィルムのフロー量の変動を抑制することが可能となり、さらに、硬化後の接着フィルムのガラス転移温度を高めることが可能となる。
 エポキシ樹脂の軟化点は、(メタ)アクリル系樹脂との相溶性を有するものであれば、特に限定されるものではないが、40℃以上、100℃以下が好ましく、50℃以上、90℃以下が特に好ましい。上記下限値以上とすることで、接着フィルのタック性を低減することができるため、ダイシングによるウエハの個片化後に、ダイシングテープからの接着フィルム付き半導体素子の剥がれ性が向上し、ピックアップ性を向上させることができる。また、上記上限値以下とすることで、加圧キュア工程(c)前の溶融粘度の上昇を抑えることができる。
 また、エポキシ樹脂として、軟化点の異なる複数のエポキシ樹脂を組み合わせて用いてもよい。これにより、接着フィルムのタック性を低減する効果と加圧キュア工程(c)前の溶融粘度の上昇を抑制する効果をより両立させやすくするという利点がある。たとえば、軟化点の異なる複数のエポキシ樹脂の組み合わせとしては、軟化点が40℃以上、70℃未満のエポキシ樹脂と軟化点が70℃以上、100℃以下のエポキシ樹脂の組み合わせ等が挙げられる。
 本発明に係る接着フィルムを構成する樹脂組成物には、特に限定されるものではないが、硬化剤を含めることが好ましい。硬化剤は、エポキシ樹脂の硬化剤として作用するものであれば適宜選択して用いることができる。具体的には、ジエチレントリアミン、トリエチレンテトラミン、メタキシレリレンジアミン、などの脂肪族ポリアミン、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジフェニルスルフォン、などの芳香族ポリアミン、ジシアンジアミド、有機酸ジヒドラジドなどを含むポリアミン化合物等のアミン系硬化剤、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、などの脂肪族酸無水物、無水トリトメット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸、などの芳香族酸無水物等の酸無水物系硬化剤、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル(フェニレン、ビフェニレン骨格を含む)樹脂、ナフトールアラルキル(フェニレン、ビフェニレン骨格を含む)樹脂、トリフェノールメタン樹脂、ジシクロペンタジエン型フェノール樹脂、ビス(モノまたはジt-ブチルフェノール)プロパン、メチレンビス(2-プロペニル)フェノール、プロピレンビス(2-プロペニル)フェノール、ビス[(2-プロペニルオキシ)フェニル]メタン、ビス[(2-プロペニルオキシ)フェニル]プロパン、4,4'-(1-メチルエチリデン)ビス[2-(2-プロペニル)フェノール]、4,4'-(1-メチルエチリデン)ビス[2-(1-フェニルエチル)フェノール]、4,4'-(1-メチルエチリデン)ビス[2-メチル-6-ヒドロキシメチルフェノール]、4,4'-(1-メチルエチリデン)ビス[2-メチル-6-(2-プロペニル)フェノール]、4,4'-(1-メチルテトラデシリデン)ビスフェノールなどのフェノール系硬化剤等が挙げられる。
 本発明で用いられる接着フィルムを構成する樹脂組成物における硬化剤の含有量は、エポキシ樹脂のエポキシ当量と硬化剤の当量比を計算して求めることができる。硬化剤がフェノール樹脂の場合、エポキシ樹脂のエポキシ当量と硬化剤の官能基の当量比は、0.5以上、1.5以下が好ましく、0.7以上、1.3以下が特に好ましい。上記範囲とすることで、接着フィルムの耐熱性と保存性を両立することができる。
 硬化剤は、25℃において粘度が30Pa・s(30,000cps)以下の液状の硬化剤を用いることが好ましい。更に25℃において粘度が10Pa・s(10,000cps)以下の液状の硬化剤がより好ましい。硬化剤の25℃における粘度を上記規定値以下とすることで、接着フィルムの初期密着性や半導体装置の信頼性が向上する。
 25℃において粘度が30Pa・s(30,000cps)以下の液状の硬化剤の含有量は、特に限定されないが、硬化剤全体に対して30~80質量%が好ましく、40~70質量%が特に好ましい。上記下限値以上とすることで、加圧キュア工程(c)前の溶融粘度の上昇を抑えることができ、上記上限値以下とすることで、接着フィルのタック性を低減することができるため、作業性を向上することができる。
 25℃において粘度が30Pa・s(30,000cps)以下の液状の硬化剤としては、液状フェノール化合物が挙げられる。具体的には、ビス(モノまたはジt-ブチルフェノール)プロパン、メチレンビス(2-プロペニル)フェノール、プロピレンビス(2-プロペニル)フェノール、ビス[(2-プロペニルオキシ)フェニル]メタン、ビス[(2-プロペニルオキシ)フェニル]プロパン、4,4'-(1-メチルエチリデン)ビス[2-(2-プロペニル)フェノール]、4,4'-(1-メチルエチリデン)ビス[2-(1-フェニルエチル)フェノール]、4,4'-(1-メチルエチリデン)ビス[2-メチル-6-ヒドロキシメチルフェノール]、4,4'-(1-メチルエチリデン)ビス[2-メチル-6-(2-プロペニル)フェノール]、4,4'-(1-メチルテトラデシリデン)ビスフェノールが挙げられる。これらの液状フェノール化合物粘度は核体数nやベンゼン環置換基の種類により制御することができる。
 硬化剤としては、液状フェノール化合物の他に固形フェノール樹脂を併用して添加することも可能である。固形とは、25℃常圧において固体状態であることを意味する。固形フェノール樹脂を併用することで、室温での半導体用接着フィルムのタック性を軽減し、作業性を向上させることができる。また、この固形フェノール樹脂は、前述のエポキシ樹脂と硬化反応をして架橋構造を形成することができる少なくとも2個以上のフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般を指し、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル(フェニレン、ビフェニレン骨格を含む)樹脂、ナフトールアラルキル(フェニレン、ビフェニレン骨格を含む)樹脂、トリフェノールメタン樹脂、ジシクロペンタジエン型フェノール樹脂等が挙げられ、これらは単独で用いるだけでなく、複数用いてもよい。
 固形フェノール樹脂の含有量は、特に限定されないが、エポキシ樹脂のエポキシ当量と、液状フェノール化合物および固形フェノール樹脂を併せた官能基当量の比が0.5以上、1.5以下が好ましく、0.7以上、1.3以下が特に好ましい。上記範囲とすることで、接着フィルムの耐熱性と保存性を両立することができる。
 (メタ)アクリル系樹脂の含有量は、特に限定されるものではないが、エポキシ樹脂と硬化剤の配合量の合計よりも少ないことが好ましい。こうすることにより、加圧キュア工程(c)で接着フィルムが加熱された際に接着フィルム外に出てくるアウトガスの発生を効果的に抑制することができるため、アウトガスによる被着体の汚染防止と接着フィルムと被着体との密着性向上を図ることができる。
 本発明に係る接着フィルムを構成する樹脂組成物には硬化促進剤を含んでもよい。硬化促進剤は、エポキシ樹脂と硬化剤との硬化反応を促進させるものであれば適宜選択して用いることができる。具体的には、イミダゾール類、1,8-ジアザビシクロ(5,4,0)ウンデセン等のアミン系触媒、トリフェニルホスフィンやテトラ置換ホスホニウムと多官能フェノール化合物との分子化合物等のリン化合物が挙げられる。これらの中でも、接着フィルムの速硬化性と半導体素子上のアルミパッド腐食性を両立するリン化合物が好ましい。
 硬化促進剤の含有量は、エポキシ樹脂と硬化剤の合計100質量部に対して、0.01~10質量部が好ましく、0.1~5質量部が特に好ましい。上記範囲とすることで、接着フィルムの速硬化性および保存性、硬化後の物性のバランスを保つことが可能となる。
 リン化合物の中でも、接着フィルムの速硬化性、半導体素子のアルミパッドへの腐食性、さらには接着フィルムの保存性により優れる、テトラ置換ホスホニウムと多官能フェノール化合物との分子化合物が特に好ましい。
 テトラ置換ホスホニウムと多官能フェノール化合物との分子化合物は、単なる混合物ではなく、塩構造、超分子構造等の構造を有する化合物である。
 テトラ置換ホスホニウムと多官能フェノール化合物との分子化合物のテトラ置換ホスホニウムは、接着フィルムの硬化性と保存性のバランスから、アルキル基や芳香族化合物がリン原子に4つ配位している化合物が好ましい。
 テトラ置換ホスホニウムの置換基は、特に限定されるものではなく、互いに同一であっても異なっていてもよく、置換又は無置換のアリール基やアルキル基を置換基として有するテトラ置換ホスホニウムイオンが、熱や加水分解に対して安定であり好ましい。具体的にテトラ置換ホスホニウムとしては、テトラフェニルホスホニウム、テトラトリルホスホニウム、テトラエチルフェニルホスホニウム、テトラメトキシフェニルホスホニウム、テトラナフチルホスホニウム、テトラベンジルホスホニウム、エチルトリフェニルホスホニウム、n-ブチルトリフェニルホスホニウム、2-ヒドロキシエチルトリフェニルホスホニウム、トリメチルフェニルホスホニウム、メチルジエチルフェニルホスホニウム、メチルジアリルフェニルホスホニウム、テトラ-n-ブチルホスホニウム等が例示でき、これらの中でもテトラフェニルホスホニウムが接着フィルムの速硬化性と保存性のバランスから好ましい。
 テトラ置換ホスホニウムと多官能フェノール化合物との分子化合物の多官能フェノール化合物とは、フェノール性の水酸基を有するもので少なくともその1つの水酸基の水素が外れてフェノキシド型の化合物となっているものであり、具体的には、ヒドロキシベンゼン化合物、ビフェノール化合物、ビスフェノール化合物、ヒドロキシナフタレン化合物、フェノールノボラック樹脂、フェノールアラルキル樹脂等が挙げられる。
 多官能フェノール化合物としては、例えば、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタン(通称テトラメチルビスフェノールF)、4,4'-スルホニルジフェノール及び、4,4'-イソプロピリデンジフェノール(通称ビスフェノールA)、ビス(4-ヒドロキシフェニル)メタン、ビス(2-ヒドロキシフェニル)メタン、(2-ヒドロキシフェニル)(4-ヒドロキシフェニル)メタン及びこれらの内ビス(4-ヒドロキシフェニル)メタン、ビス(2-ヒドロキシフェニル)メタン、(2-ヒドロキシフェニル)(4-ヒドロキシフェニル)メタンの3種の混合物(例えば、本州化学工業株式会社製、ビスフェノールF-D)等のビスフェノール類、1,2-ベンゼンジオール、1,3-ベンゼンジオール、1,4-ベンゼンジオール等のジヒドロキシベンゼン類、1,2,4-ベンゼントリオール等のトリヒドロキシベンゼン類、1,6-ジヒドロキシナフタレン等のジヒドロキシナフタレン類の各種異性体、2,2'-ビフェノール、4,4'-ビフェノール等のビフェノール類の各種異性体等の化合物が挙げられるが、速硬化性と保存性のバランスに優れる1,2-ジヒドロキシナフタレン、4,4'-スルホニルジフェノールが好ましい。
 本発明に係る接着フィルムを構成する樹脂組成物は、カップリング剤を含んでいてもよい。これにより、接着フィルムの密着性および接着フィルム中の樹脂成分と充填材との界面の密着性をより一層向上させることができる。
 カップリング剤としては、シラン系、チタン系、アルミニウム系などが挙げられるが、これらの中でも接着フィルムの保存性と接着フィルムと被着体との密着性に優れる、シラン系カップリング剤が好ましい。
 シランカップリング剤としては、例えばビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等が挙げられる。
 カップリング剤の配合量は、アクリル系樹脂100質量部に対して、0.01質量部以上、10質量部以下が好ましく、0.1質量部以上、5質量部以下が特に好ましい。上記範囲とすることで、接着フィルムと被着体との密着性とアウトガスやボイドの抑制効果が両立する。
 また、接着フィルムを構成する樹脂組成物は、無機充填材を含んでいてもよい。これにより、ダイシングによるウエハの個片化後に、ダイシングテープからの接着フィルム付き半導体素子の剥がれ性の向上によるピックアップ性の向上、および硬化後の線膨張係数を低減する機能を付与することができる。
 無機充填材としては、例えば銀、酸化チタン、シリカ、マイカ等を挙げることができるが、これらの中でもシリカが好ましい。シリカフィラーを用いることにより、ダイシングによる、ウエハの個片化後に、ダイシングテープからの接着フィルム付き半導体素子の剥がれ性の向上によるピックアップ性をさらに向上させることができる。また、シリカフィラーの形状としては、破砕シリカと球状シリカがあるが、球状シリカが好ましい。
 無機充填材の平均粒径は、特に限定されないが、0.01μm以上、20μm以下が好ましく、0.1μm以上、5μm以下が特に好ましい。上記範囲とすることで、接着フィルム内でフィラーの凝集を抑制し、外観を向上させることができ、さらに熱圧着時にチップを破壊することを抑制できる。
 無機充填材の含有量は、特に限定されないが、(F)無機充填材を除いた樹脂成分100質量部に対して、1質量部以上、200質量部以下が好ましく、5質量部以上、100質量部以下が特に好ましい。上記範囲とすることで、硬化後の接着フィルムと被接着物との間の線膨張係数差が小さくなり、熱衝撃の際に発生する応力を低減させることができるため、被接着物の剥離をさらに確実に抑制することができる。さらに、硬化後の接着フィルムの弾性率が高くなりすぎるのを抑制することができるため、半導体装置の信頼性が上昇する。
 なお、本発明に係る接着フィルムを構成する樹脂組成物は、上記成分以外の成分を含んでいてもよい。
 本発明に係る接着フィルムの厚さは、特に限定されないが、3~100μmが好ましく、5~70μmが特に好ましい。厚さが上記範囲内であることにより、厚さ精度の制御が容易に実施できる。
 次に、本発明の半導体装置の製造方法で用いる接着フィルムの製造方法について説明する。
 本発明の接着フィルムは、例えば前述の樹脂組成物をメチルエチルケトン、アセトン、トルエン、ジメチルホルムアルデヒド等の溶剤に溶解して、ワニス状態にした後、コンマコーター、ダイコーター、グラビアコーター等を用いて離型シートに塗工し、乾燥することにより溶剤を揮散させた後、離型シートを除去することによって得ることができる。
 本発明の半導体装置の製造方法で用いる接着フィルムは、例えばダイシングフィルムと接合してダイシングテープ付き接着フィルムとして用いることもできる。
 以下、本発明を実施例および比較例に基づいてさらに詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1)
(接着フィルム用樹脂ワニスの調製)
 (メタ)アクリル系樹脂として、アクリル酸エステル共重合体(エチルアクリレート-ブチルアクリレート-アクリロニトリル-アクリル酸-ヒドロキシエチルメタクリレート共重合体、ナガセケムテックス社製、SG-708-6、Tg:6℃、重量平均分子量:800,000)100質量部;
エポキシ樹脂としてEOCN-1020-80(オルソクレゾールノボラック型エポキシ樹脂、エポキシ当量200g/eq、軟化点80℃、日本化薬社製)105質量部およびNC3000P(アラルキル型エポキシ樹脂、エポキシ当量272g/eq、軟化点58℃、日本化薬社製)157質量部;
硬化剤として液状フェノール化合物MEH-8000H(水酸基当量141g/OH基、明和化成株式会社製)82質量部と固形フェノール樹脂PR-HF-3(水酸基当量104g/OH基、住友ベークライト社製)55質量部;
硬化促進剤として式(1)で表されるテトラ置換ホスホニウムと多官能フェノール化合物との分子化合物0.8質量部;
Figure JPOXMLDOC01-appb-C000001
カップリング剤としてγ-グリシドキシプロピルトリメトキシシラン(KBM403E、信越化学工業社製)0.5質量部;および
無機充填材として球状シリカ(SE2050、平均粒径0.5μm、アドマテックス社製)56質量部をメチルエチルケトン(MEK)に溶解して、樹脂固形分41%の樹脂ワニスを得た。
(離型シート付き接着フィルムの製造)
 上述の方法で得られた樹脂ワニスを、コンマコーターを用いて離型シートであるポリエチレンテレフタレートフィルム(三菱化学ポリエステルフィルム社製、品番MRX50、厚さ50μm)に塗布した後、100℃、5分間、さらに150℃、2分間乾燥して、厚さ30μmの接着フィルムを得た。得られた接着フィルムを、レオメーターを用いて、10℃/分の昇温速度で、周波数1Hzのずり剪断を与えて測定した際の100℃、125℃、150℃での溶融粘度は、それぞれ、300Pa・s、280Pa・s、260Pa・sであった。
(ダイシングシートの製造)
 ダイシングシート基材フィルムとして、ハイブラー60質量部、ポリプロピレン40質量部からなるクリアテックCT-H717(クラレ製)を、押し出し機で、厚み100μmの基材フィルムを形成し、表面をコロナ処理した。次に、アクリル酸2-エチルヘキシル50質量部とアクリル酸ブチル10質量部、酢酸ビニル37質量部、メタクリル酸2-ヒドロキシエチル3質量部とを共重合して得られた重量平均分子量500000の共重合体を剥離処理した厚さ38μmのポリエステルフィルムに乾燥後の厚さが10μmになるように塗工し、80℃で5分間乾燥し、粘着剤層を得た。その後粘着剤層を基材フィルムのコロナ処理面にラミネートしてダイシングシートを得た。
(ダイシングシート付き接着フィルムの製造)
 上述のダイシングシートに接着フィルムを半導体ウエハよりも大きく、ウエハリングの内径よりも小さいサイズで貼り付け、基材フィルム、粘着剤層、接着フィルムがこの順に積層されてなるダイシングテープ付き接着フィルムを得た。
(半導体装置の製造)
 以下の手順で、半導体装置を製造した。
 半導体装置の基板としてソルダーレジスト(太陽インキ株式会社製、AUS308)で被覆されたビスマレイミド・トリアジンを主剤とする模擬有機基板(回路段差5~10μm)を用意した。なお模擬有機基板の片面のソルダーレジストが無塗布の部分に銅箔、ニッケルメッキおよび金メッキを順にパターン処理してワイヤーボンディング用の端子とし、模擬有機基板の反対面に設けたハンダボール搭載用エリアとビアホールで導通させた。
 半導体素子が形成された8インチ200μmウエハに、ダイシングテープ付き接着フィルムを40℃で貼り付け、ダイシングテープ付き接着フィルム付きウエハを得た。
 その後、このウエハを、ダイシングソーを用いて、スピンドル回転数30,000rpm、切断速度50mm/secで10.5mm×10.5mm角の各半導体素子のサイズにダイシング(切断)した。次に、ダイシングテープ付き接着フィルムの裏面から突上げし、基材フィルムおよび粘着剤層間で剥離し接着フィルム付き半導体素子を得た。
 上記接着フィルム付き半導体素子を、模擬有機基板上にダイボンター(ASM社製、AD898)を用いて、130℃、10N、2secの条件にて熱圧着し、次いで接着フィルム付き半導体素子と模擬有機基板とからなる半導体部品を圧力容器内に設置し、加圧空気を用いて130℃、0.5MPa、60分間の条件で加圧キュアを行った。次にワイヤーボンディング装置(ASM社製、Eagle60)により半導体素子のダイパッド部と基板のワイヤーボンディング用の端子とのワイヤーボンディングを行った。さらに封止樹脂EME-G790(住友ベークライト株式会社製)で封止成形した後、ポストキュア175℃で2時間熱処理を行い、封止樹脂および接着フィルムの硬化を行い、合計10個の半導体装置を得た。尚、示差走査熱量測定によって別途測定した、(i)熱圧着後、(ii)加圧キュア後、(iii)ワイヤーボンディング後、並びに(iv)封止成形及びポストキュア後における接着フィルムの硬化度は、熱圧着前の接着フィルムの硬化度を0%とすると、それぞれ、(i)0%、(ii)45%、(iii)50%、並びに(iv)100%であった。
(比較例1)
 加圧キュア工程を行わなかった他は、実施例1と同様にして半導体装置を得た。尚、示差走査熱量測定によって別途測定した、(i)熱圧着後、(iii)ワイヤーボンディング後、並びに(iv)封止成形及びポストキュア後における接着フィルムの硬化度は、熱圧着前の接着フィルムの硬化度を0%とすると、それぞれ、(i)0%、(iii)5%、並びに(iv)100%であった。
(比較例2)
 加圧キュア工程を行う代わりに、130℃、60分間の条件で加熱処理を行った他は、実施例1と同様にして半導体装置を得た。尚、示差走査熱量測定によって別途測定した、(i)熱圧着後、(ii)加熱処理後、(iii)ワイヤーボンディング後、並びに(iv)封止成形及びポストキュア後における接着フィルムの硬化度は、熱圧着前の接着フィルムの硬化度を0%とすると、それぞれ、(i)0%、(ii)45%、(iii)50%、並びに(iv)100%であった。
 各実施例及び比較例で得られた半導体用接着フィルム及び半導体装置に関して次の評価を行った。評価項目を内容と共に示す。得られた結果を表1に示す。
1.低温貼付性
 低温貼付性は、各実施例および比較例で得られた接着フィルムを、厚み550μmのウエハ裏面に温度40℃、圧力0.3MPa、ラミネート速度10mm/secで貼り付け、180°ピール強度を評価した。
 180°ピール強度は、テンシロン(ORIENTEC株式会社製RTC-1250A)を用い、剥離速度:50mm/min、剥離幅25mmにて180°方向に剥離させることにより測定した。
 ◎:ピール強度が、200N/m以上であった。
 ○:ピール強度が、100N/m以上、200N/m未満であった。
 △:ピール強度が、50N/m以上、100N/m未満であった。
 ×:ピール強度が、50N/m未満であった。
2.接着フィルムのはみ出し
 接着フィルムのはみ出しは、各実施例、比較例で製造した半導体装置において、ワイヤーボンディング後に半導体素子の側面より接着フィルムがはみ出していないか、SEMにより観察した。各符号は、以下の通りである。
 ◎:側面からのはみ出し長さが、20μm未満であった。
 ○:側面からのはみ出し長さが、20μm以上、50μm未満であった。
 △:側面からのはみ出し長さが、50μm以上、100μm未満であった。
 ×:側面からのはみ出し長さが、100μm以上であった。
3.封止成形前のボイド、隙間の有無
 封止成形前のボイド、隙間の有無は、各実施例および比較例で得られる樹脂封止前の半導体装置について、走査型超音波探傷機(SAT)で評価した。各符号は、以下の通りである。
 ◎:30μm以上のボイド又は隙間が残った半導体装置が、10個中0個
 ○:30μm以上のボイド又は隙間が残った半導体装置が、10個中1個以上3個以下
 △:30μm以上のボイド又は隙間が残った半導体装置が、10個中4個以上9個以下
 ×:30μm以上のボイド又は隙間が残った半導体装置が、10個中10個
 尚、実施例1においては、全ての半導体装置において10μm以上のボイド又は隙間も残っていなかった。
4.封止成形+ポストキュア後のボイド、隙間の有無
 封止成形及びポストキュア後のボイド、隙間の有無は、各実施例、比較例で製造した半導体装置において、封止後に走査型超音波探傷機(SAT)で評価した。各符号は、以下の通りである。
 ◎:30μm以上のボイド又は隙間が残った半導体装置が、10個中0個
 ○:30μm以上のボイド又は隙間が残った半導体装置が、10個中1個以上3個以下
 △:30μm以上のボイド又は隙間が残った半導体装置が、10個中4個以上9個以下
 ×:30μm以上のボイド又は隙間が残った半導体装置が、10個中10個
 尚、実施例1においては、全ての半導体装置において10μm以上のボイド又は隙間も残っていなかった。
5.耐クラック性
 耐クラック性は、各実施例および比較例で得られた半導体装置を85℃/60%RH/168時間吸湿処理をした後、260℃のIRリフローを3回行い走査型超音波探傷機(SAT)でリフローにより発生したクラックを観察評価した。各符号は、以下の通りである。
 ◎:発生したクラックが、10個中0個
 ○:発生したクラックが、10個中1個以上3個以下
 △:発生したクラックが、10個中4個以上9個以下
 ×:発生したクラックが、10個中10個
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明の半導体装置の製造方法となる実施例1では、30μmを超えるような、接着フィルム内部のボイド、並びに、接着フィルムと半導体素子との界面及び接着フィルムと基板との界面の隙間はなく、接着剤のはみ出しもないという、良好な結果が得られた。また、半導体装置における吸湿後の耐半田リフロー処理によってもクラックや剥離の発生がないという、良好な結果が得られた。
 一方、加圧キュア工程を行わなかった比較例1及び2では、30μmを超えるような、接着フィルム内部のボイド、並びに、接着フィルムと半導体素子との界面及び接着フィルムと基板との界面の隙間が発生するという結果となった。そのため、半導体装置における吸湿後の耐半田リフロー処理によって、クラックや剥離が発生する結果となった。
 この出願は、日本出願特願2008-267030及び特願2009-105605を基礎とする優先権を主張し、その開示のすべてをここに取り込む。

Claims (11)

  1.  半導体素子と、支持部材と、を接着フィルムの硬化物を介して接着する半導体装置の製造方法であって、
    (a)接着フィルム付き半導体素子を準備する工程と、
    (b)前記接着フィルム付き半導体素子を前記支持部材に熱圧着して、前記接着フィルム付き半導体素子と前記支持部材とからなる半導体部品を得る熱圧着工程と、
    (c)前記接着フィルム付き半導体素子と前記支持部材とからなる前記半導体部品を、加圧流体を用いて加熱、加圧し、接着フィルムの硬化を進行させる加圧キュア工程と、
    (d)前記接着フィルム付き半導体素子と前記支持部材とを電気的に接続する工程と、
    を前記工程(a)~(d)の順で行うことを特徴とする半導体装置の製造方法。
  2.  前記工程(a)を行う前における前記接着フィルムの100℃~150℃での溶融粘度が10Pa・s以上、1000Pa・s以下であることを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記加圧流体が加圧ガスであることを特徴とする請求項1または2に記載の半導体装置の製造方法。
  4.  前記加圧流体が加圧空気であることを特徴とする請求項1乃至3いずれかに記載の半導体装置の製造方法。
  5.  前記加圧キュア工程(c)を、圧力容器を用いて、該圧力容器内に前記接着フィルム付き半導体素子と前記支持部材とからなる前記半導体部品を設置し、前記加圧流体により加熱、加圧を行うことを特徴とする請求項1乃至4いずれかに記載の半導体装置の製造方法。
  6.  前記加圧キュア工程(c)における加熱、加圧条件が、加熱温度80℃以上、180℃以下、加圧力0.1MPa以上、10MPa以下、加圧時間1分以上、480分以下であることを特徴とする請求項1乃至5いずれかに記載の半導体装置の製造方法。
  7.  前記接着フィルムが(メタ)アクリル系樹脂を含み、樹脂全体に対する前記(メタ)アクリル系樹脂の含有量が、10%以上50%以下であることを特徴とする請求項1乃至6いずれかに記載の半導体装置の製造方法。
  8.  前記接着フィルムがさらに熱硬化性樹脂を含み、前記熱硬化性樹脂100重量部に対する前記(メタ)アクリル系樹脂の含有量が、10重量部以上100重量部以下であることを特徴とする請求項7に記載の半導体装置の製造方法。
  9.  前記加圧キュア工程(c)によりボイドと隙間とが低減され、
    前記加圧キュア工程(c)を経た後において、前記接着フィルム内部に直径30μm以上のボイドが存在しないことを特徴とする請求項1乃至8いずれかに記載の半導体装置の製造方法。
  10.  前記工程(a)が、
    (a1)ウエハ、接着フィルム、ダイシングテープの順になるように、前記ウエハの裏面に、ダイシングテープ付き接着フィルムをラミネートする工程と、
    (a2)前記ウエハとラミネートした前記ダイシングテープ付き接着フィルムとを一体にダイシングする工程と、
    (a3)前記ダイシングテープを剥離し、接着フィルム付き半導体素子を形成する工程と、
    を上記(a1)~(a3)の順で行うことを特徴とする請求項1乃至9のいずれかに記載の半導体装置の製造方法。
  11.  請求項1乃至10のいずれかに記載の半導体装置の製造方法により製造されることを特徴とする半導体装置。
PCT/JP2009/003359 2008-10-16 2009-07-16 半導体装置の製造方法及び半導体装置 WO2010044179A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09820358A EP2341529A4 (en) 2008-10-16 2009-07-16 METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE
US13/122,034 US8436479B2 (en) 2008-10-16 2009-07-16 Semiconductor device having a chip bonding using a resin adhesive film and method of manufacturing the same
CN2009801411978A CN102187442A (zh) 2008-10-16 2009-07-16 半导体装置的制造方法及半导体装置
KR1020117010506A KR101225306B1 (ko) 2008-10-16 2009-07-16 반도체 장치의 제조방법 및 반도체 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008267030 2008-10-16
JP2008-267030 2008-10-16
JP2009105605A JP4360446B1 (ja) 2008-10-16 2009-04-23 半導体装置の製造方法及び半導体装置
JP2009-105605 2009-04-23

Publications (1)

Publication Number Publication Date
WO2010044179A1 true WO2010044179A1 (ja) 2010-04-22

Family

ID=41393510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003359 WO2010044179A1 (ja) 2008-10-16 2009-07-16 半導体装置の製造方法及び半導体装置

Country Status (7)

Country Link
US (1) US8436479B2 (ja)
EP (1) EP2341529A4 (ja)
JP (2) JP4360446B1 (ja)
KR (1) KR101225306B1 (ja)
CN (1) CN102187442A (ja)
TW (2) TW201421553A (ja)
WO (1) WO2010044179A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233599A (ja) * 2010-04-23 2011-11-17 Toshiba Corp 半導体装置の製造方法
EP2800131A1 (en) * 2013-04-29 2014-11-05 ABB Technology AG Method for sinter bonding semiconductor devices
JP2015105346A (ja) * 2013-11-29 2015-06-08 チェイル インダストリーズ インコーポレイテッド 接着剤層用塗布組成物、半導体用接着フィルムおよびその製造方法、ならびに、これを用いた半導体装置の製造方法
JP2015199814A (ja) * 2014-04-08 2015-11-12 住友ベークライト株式会社 樹脂組成物、接着フィルム、接着シート、ダイシングテープ一体型接着シート、バックグラインドテープ一体型接着シート、ダイシングテープ兼バックグラインドテープ一体型接着シート、および、電子装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5903779B2 (ja) * 2011-06-06 2016-04-13 日立化成株式会社 半導体装置及びその製造方法
TW201309772A (zh) * 2011-07-08 2013-03-01 Sumitomo Bakelite Co 切割膠帶一體型接著片、半導體裝置、多層電路基板及電子零件
JP2013125787A (ja) * 2011-12-13 2013-06-24 Hitachi Chemical Co Ltd 半導体装置及びその製造方法
JP5892780B2 (ja) * 2011-12-19 2016-03-23 日東電工株式会社 半導体装置の製造方法
JP2014090173A (ja) * 2013-11-01 2014-05-15 Sumitomo Bakelite Co Ltd 接着フィルム、半導体装置、多層回路基板および電子部品
TWI620360B (zh) * 2014-02-18 2018-04-01 緯創資通股份有限公司 電子元件封裝體及其製作方法
US10435601B2 (en) * 2014-05-23 2019-10-08 Dexerials Corporation Adhesive agent and connection structure
TWI546934B (zh) * 2014-10-20 2016-08-21 Playnitride Inc Led陣列擴張方法及led陣列單元
KR102570822B1 (ko) * 2016-02-26 2023-08-24 가부시끼가이샤 레조낙 접착 필름 및 다이싱·다이 본딩 필름
KR102012789B1 (ko) 2016-03-28 2019-08-21 주식회사 엘지화학 반도체 장치
JP6651228B2 (ja) 2016-03-31 2020-02-19 エルジー・ケム・リミテッド 半導体装置および半導体装置の製造方法
US10756119B2 (en) * 2016-04-20 2020-08-25 Samsung Display Co., Ltd. Display device and method for manufacturing same
JP7007827B2 (ja) * 2017-07-28 2022-01-25 日東電工株式会社 ダイボンドフィルム、ダイシングダイボンドフィルム、および半導体装置製造方法
JP7046586B2 (ja) * 2017-12-14 2022-04-04 日東電工株式会社 接着フィルムおよびダイシングテープ付き接着フィルム
KR102530763B1 (ko) 2018-09-21 2023-05-11 삼성전자주식회사 반도체 패키지의 제조방법
CN113348221B (zh) * 2019-01-28 2024-01-09 株式会社力森诺科 胶黏剂组合物、膜状胶黏剂、胶黏剂片及半导体装置的制造方法
JP7258421B2 (ja) * 2019-02-15 2023-04-17 株式会社ディスコ ウェーハの加工方法
KR102428191B1 (ko) * 2019-07-03 2022-08-02 주식회사 엘지화학 점착 필름, 이의 제조 방법 및 이를 포함하는 플라스틱 유기 발광 디스플레이
KR102428187B1 (ko) * 2019-07-03 2022-08-02 주식회사 엘지화학 점착 필름, 이의 제조 방법 및 이를 포함하는 플라스틱 유기 발광 디스플레이
KR102428192B1 (ko) * 2019-07-03 2022-08-02 주식회사 엘지화학 점착 필름, 이의 제조 방법 및 이를 포함하는 플라스틱 유기 발광 디스플레이
KR102428188B1 (ko) * 2019-07-03 2022-08-01 주식회사 엘지화학 점착 필름, 이의 제조 방법 및 이를 포함하는 플라스틱 유기 발광 디스플레이
KR102428193B1 (ko) * 2019-07-03 2022-08-02 주식회사 엘지화학 점착 필름, 이의 제조 방법 및 이를 포함하는 플라스틱 유기 발광 디스플레이
KR102428179B1 (ko) * 2019-07-03 2022-08-02 주식회사 엘지화학 점착 필름, 이의 제조 방법 및 이를 포함하는 플라스틱 유기 발광 디스플레이
JP2021015823A (ja) * 2019-07-10 2021-02-12 株式会社ディスコ ウェーハの加工方法
US10991621B2 (en) * 2019-08-05 2021-04-27 Texas Instruments Incorporated Semiconductor die singulation
JP7413804B2 (ja) * 2020-02-03 2024-01-16 三菱ケミカル株式会社 粘接着剤組成物、粘接着剤、粘接着シート、及び積層体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264035A (ja) 1993-03-16 1994-09-20 Hitachi Chem Co Ltd 接着フィルム、その製造法及び接着法
JPH1050930A (ja) * 1996-08-06 1998-02-20 Hitachi Chem Co Ltd マルチチップ実装法
JP2002121530A (ja) 2000-10-16 2002-04-26 Hitachi Chem Co Ltd 接着フィルム、その製造法及び接着フィルム付き半導体装置
JP2002256235A (ja) 2001-03-01 2002-09-11 Hitachi Chem Co Ltd 接着シート、半導体装置の製造方法および半導体装置
JP2003096426A (ja) 2001-09-26 2003-04-03 Hitachi Chem Co Ltd 接着部材
JP2008159819A (ja) * 2006-12-22 2008-07-10 Tdk Corp 電子部品の実装方法、電子部品内蔵基板の製造方法、及び電子部品内蔵基板
JP2008267030A (ja) 2007-04-23 2008-11-06 Tokyo Neji Seisakusho:Kk 建築構造用アンカーボルトサポート工法及び装置
JP2009064903A (ja) * 2007-09-05 2009-03-26 Canon Machinery Inc 半導体チップの実装装置及びその方法
JP2009105605A (ja) 2007-10-23 2009-05-14 Nissan Motor Co Ltd 車載情報通信端末および情報通信方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169029A (ja) * 1989-11-28 1991-07-22 Mitsubishi Electric Corp 半導体装置の実装方法
US5583375A (en) * 1990-06-11 1996-12-10 Hitachi, Ltd. Semiconductor device with lead structure within the planar area of the device
US5286679A (en) * 1993-03-18 1994-02-15 Micron Technology, Inc. Method for attaching a semiconductor die to a leadframe using a patterned adhesive layer
KR0174983B1 (ko) * 1996-05-10 1999-02-01 김광호 유체상태의 접착제를 이용한 반도체 칩 실장 방법 및 그에 이용되는 loc형 반도체 칩 패키지의 리드 프레임
JP3928753B2 (ja) * 1996-08-06 2007-06-13 日立化成工業株式会社 マルチチップ実装法、および接着剤付チップの製造方法
JP3094948B2 (ja) * 1997-05-26 2000-10-03 日本電気株式会社 半導体素子搭載用回路基板とその半導体素子との接続方法
US6204093B1 (en) * 1997-08-21 2001-03-20 Micron Technology, Inc. Method and apparatus for applying viscous materials to a lead frame
US6387732B1 (en) * 1999-06-18 2002-05-14 Micron Technology, Inc. Methods of attaching a semiconductor chip to a leadframe with a footprint of about the same size as the chip and packages formed thereby
US6472758B1 (en) * 2000-07-20 2002-10-29 Amkor Technology, Inc. Semiconductor package including stacked semiconductor dies and bond wires
JP3829325B2 (ja) * 2002-02-07 2006-10-04 日本電気株式会社 半導体素子およびその製造方法並びに半導体装置の製造方法
KR100730629B1 (ko) * 2002-11-29 2007-06-20 히다치 가세고교 가부시끼가이샤 필름상 접착제, 회로접속용 필름상 접착제, 접속체 및 반도체장치
WO2005103180A1 (ja) * 2004-04-20 2005-11-03 Hitachi Chemical Co., Ltd. 接着シート、半導体装置、及び半導体装置の製造方法
WO2006097982A1 (ja) 2005-03-11 2006-09-21 Renesas Technology Corp. 半導体集積回路装置の製造方法
JP2008098608A (ja) * 2006-09-15 2008-04-24 Lintec Corp 半導体装置の製造方法
ES2611605T3 (es) 2006-12-18 2017-05-09 Nokia Solutions And Networks Gmbh & Co. Kg Método y sistema para garantizar el intercambio de datos entre un sistema servidor y un sistema cliente

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264035A (ja) 1993-03-16 1994-09-20 Hitachi Chem Co Ltd 接着フィルム、その製造法及び接着法
JPH1050930A (ja) * 1996-08-06 1998-02-20 Hitachi Chem Co Ltd マルチチップ実装法
JP2002121530A (ja) 2000-10-16 2002-04-26 Hitachi Chem Co Ltd 接着フィルム、その製造法及び接着フィルム付き半導体装置
JP2002256235A (ja) 2001-03-01 2002-09-11 Hitachi Chem Co Ltd 接着シート、半導体装置の製造方法および半導体装置
JP2003096426A (ja) 2001-09-26 2003-04-03 Hitachi Chem Co Ltd 接着部材
JP2008159819A (ja) * 2006-12-22 2008-07-10 Tdk Corp 電子部品の実装方法、電子部品内蔵基板の製造方法、及び電子部品内蔵基板
JP2008267030A (ja) 2007-04-23 2008-11-06 Tokyo Neji Seisakusho:Kk 建築構造用アンカーボルトサポート工法及び装置
JP2009064903A (ja) * 2007-09-05 2009-03-26 Canon Machinery Inc 半導体チップの実装装置及びその方法
JP2009105605A (ja) 2007-10-23 2009-05-14 Nissan Motor Co Ltd 車載情報通信端末および情報通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2341529A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233599A (ja) * 2010-04-23 2011-11-17 Toshiba Corp 半導体装置の製造方法
EP2800131A1 (en) * 2013-04-29 2014-11-05 ABB Technology AG Method for sinter bonding semiconductor devices
JP2015105346A (ja) * 2013-11-29 2015-06-08 チェイル インダストリーズ インコーポレイテッド 接着剤層用塗布組成物、半導体用接着フィルムおよびその製造方法、ならびに、これを用いた半導体装置の製造方法
JP2015199814A (ja) * 2014-04-08 2015-11-12 住友ベークライト株式会社 樹脂組成物、接着フィルム、接着シート、ダイシングテープ一体型接着シート、バックグラインドテープ一体型接着シート、ダイシングテープ兼バックグラインドテープ一体型接着シート、および、電子装置

Also Published As

Publication number Publication date
TWI427685B (zh) 2014-02-21
KR101225306B1 (ko) 2013-01-22
US20110180939A1 (en) 2011-07-28
KR20110082558A (ko) 2011-07-19
EP2341529A4 (en) 2012-06-27
JP4360446B1 (ja) 2009-11-11
US8436479B2 (en) 2013-05-07
TW201017738A (en) 2010-05-01
TW201421553A (zh) 2014-06-01
CN102187442A (zh) 2011-09-14
JP2010118640A (ja) 2010-05-27
EP2341529A1 (en) 2011-07-06
JP2010118636A (ja) 2010-05-27

Similar Documents

Publication Publication Date Title
JP4360446B1 (ja) 半導体装置の製造方法及び半導体装置
EP2068352A1 (en) Film for semiconductor, method for producing film for semiconductor, and semiconductor device
EP2136393A1 (en) Adhesive film for semiconductor and semiconductor device made with the same
JP5115096B2 (ja) 接着フィルム
JP2011018805A (ja) 半導体用フィルムおよび半導体装置の製造方法
JP4466397B2 (ja) 半導体用接着フィルム及びこれを用いた半導体装置
JPWO2008105169A1 (ja) 半導体用接着フィルムおよびそれを用いた半導体装置
JP2006269887A (ja) 半導体用接着フィルム及びこれを用いた半導体装置
JP4050290B2 (ja) 半導体用接着フィルム及びこれを用いた半導体装置
JP2012089630A (ja) 半導体用フィルムおよび半導体装置
JP3754700B1 (ja) 半導体用接着フィルム及びこれを用いた半導体装置
JP4661889B2 (ja) ダイシングシート機能付きダイアタッチフィルム及びそれを用いた半導体装置の製造方法
JP5003090B2 (ja) 接着フィルムおよびこれを用いた半導体装置
JP4400609B2 (ja) 半導体用接着フィルムおよび半導体装置
JP2006165074A (ja) ダイシングシート機能付きダイアタッチフィルム及びそれを用いた半導体装置の製造方法
JP4319108B2 (ja) 半導体用接着フィルムおよび半導体装置
JP2011151110A (ja) 半導体用接着フィルム、半導体用接着フィルムの製造方法及び半導体装置の製造方法
JP2012216651A (ja) 半導体装置
JP2005203401A (ja) 半導体装置の製造方法および半導体装置
JP2008300862A (ja) 半導体用接着フィルムおよび半導体装置
JP2006182919A (ja) 半導体用接着フィルム及びこれを用いた半導体装置
JP2006233084A (ja) 半導体用接着フィルム及びこれを用いた半導体装置
WO2022201687A1 (ja) ダイシングダイアタッチフィルム及びその製造方法、並びに半導体パッケージ及びその製造方法
JP2011018803A (ja) 半導体装置の製造方法
JP4844229B2 (ja) 半導体装置およびその製造方法ならびに電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141197.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820358

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12011500650

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 13122034

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009820358

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117010506

Country of ref document: KR

Kind code of ref document: A