WO2010038868A1 - ポリアルキレングリコール製造触媒、及びそれを用いたポリアルキレングリコールの製造方法 - Google Patents

ポリアルキレングリコール製造触媒、及びそれを用いたポリアルキレングリコールの製造方法 Download PDF

Info

Publication number
WO2010038868A1
WO2010038868A1 PCT/JP2009/067252 JP2009067252W WO2010038868A1 WO 2010038868 A1 WO2010038868 A1 WO 2010038868A1 JP 2009067252 W JP2009067252 W JP 2009067252W WO 2010038868 A1 WO2010038868 A1 WO 2010038868A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyalkylene glycol
carbon atoms
group
producing
general formula
Prior art date
Application number
PCT/JP2009/067252
Other languages
English (en)
French (fr)
Inventor
敏秀 山本
善彰 井上
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to US13/120,852 priority Critical patent/US8871973B2/en
Priority to EP09817900.5A priority patent/EP2338927B1/en
Priority to CN200980139109.0A priority patent/CN102171272B/zh
Publication of WO2010038868A1 publication Critical patent/WO2010038868A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2669Non-metals or compounds thereof
    • C08G65/2672Nitrogen or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/535Organo-phosphoranes
    • C07F9/5355Phosphoranes containing the structure P=N-
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2669Non-metals or compounds thereof
    • C08G65/2675Phosphorus or compounds thereof

Definitions

  • the present invention relates to a catalyst for economically producing polyalkylene glycol by ring-opening polymerization of alkylene oxide.
  • Polyalkylene oxide is an important polymer that is used as a raw material for polyurethane foam, elastomer, or the like, or a surfactant by reacting with an isocyanate compound.
  • a catalyst for producing polyalkylene oxide by ring-opening polymerization of alkylene oxide for example, an active hydrogen compound and a compound represented by Zn 3 [Fe (CN) 6 ] 2 ⁇ H 2 O ⁇ dioxane are known.
  • a zinc hexacyanocobaltate complex is used as a catalyst (for example, refer patent document 2).
  • a product obtained by adding a diethylzinc hexane solution to a dispersion obtained by adding 1,4-butanediol and a nonionic surfactant to a fumed silica hexane slurry may be used.
  • Patent Document 3 It is known (see, for example, Patent Document 3).
  • the catalysts described in these documents all contain a special metal component, and if these metal components remain in the produced polyalkylene oxide, the reaction during the production of polyurethane or the physical properties of the polyurethane will be caused.
  • a special method and a complicated process for sufficiently removing these metal components are required.
  • Patent Document 4 describes a catalyst in which an active hydrogen compound, alkane polyol, and a boron trifluoride ether adduct are combined.
  • Patent Document 5 describes that an alkylene oxide polymer is obtained using alcohols and aminophenol as catalysts
  • Patent Document 6 describes propylene oxide using sorbitol and tetramethylammonium hydroxide. Is described.
  • the catalysts described in these documents all have problems such as insufficient polymerization activity and residual amine-based odor.
  • n represents the number of integers a and phosphazenium cation of 1 ⁇ 8, Z n-from active hydrogen compound having a maximum of 8 active hydrogen atoms on an oxygen atom or a nitrogen atom n It is an anion of an n-valent active hydrogen compound in a form in which one proton is released and guided.
  • a, b, c and d are each a positive integer of 3 or less or 0, but all are not 0 at the same time.
  • R is the same or different hydrocarbon group having 1 to 10 carbon atoms, and two Rs on the same nitrogen atom may be bonded to each other to form a ring structure.
  • m is an integer of 1 to 3 and represents the number of phosphazenium cations
  • X m ⁇ is an m-valent inorganic anion.
  • a, b, c and d are each a positive integer of 3 or less or 0, but all are not 0 at the same time.
  • R is the same or different hydrocarbon group having 1 to 10 carbon atoms, and two Rs on the same nitrogen atom may be bonded to each other to form a ring structure.
  • N is an integer of 1 to 8
  • the phosphazenium salt is useful as a catalyst for ring-opening polymerization of propylene oxide (for example, the same as n- ).
  • Patent Document 7 since this phosphazenium salt requires many steps in the production method, the operation is complicated and has a problem in economical efficiency.
  • Patent Document 8 does not show an example of preparing a polyalkylene polyol, and how to prepare a polyalkylene polyol using the nitrogen-containing phosphonium salt of the above formula (III) is further described. It is not clear at all what kind of polyalkylene polyol is prepared.
  • the present invention has been made in view of the above-mentioned background art, and its object is to easily synthesize, to contain no metal component, and to leave no odor in the product and an active hydrogen compound anion. And a production method thereof, and an economical and efficient production method of a polyalkylene oxide using the catalyst.
  • the present inventors have found that when ring-opening polymerization of alkylene oxide using a catalyst obtained by heat-treating a specific phosphazenium salt and an active hydrogen compound, The inventors have found that polyalkylene glycol can be produced effectively and economically, and have completed the present invention. That is, the present invention relates to a polyalkylene glycol production catalyst as shown below and a polyalkylene glycol production method using the same. [1] The following general formula (2)
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, an unsubstituted or substituted phenyl group having 6 to 10 carbon atoms, or an unsubstituted or This represents a phenylalkyl group having 6 to 10 carbon atoms having a substituent.
  • R 1 and R 2 , or R 2 may be bonded to each other to form a ring structure.
  • n is a real number of 1 to 8
  • Y n ⁇ represents an anion of the active hydrogen compound from which n protons in the active hydrogen compound Y are eliminated.
  • a polyalkylene glycol production catalyst comprising a salt of a phosphazenium cation and an active hydrogen compound anion represented by the formula:
  • R 1 and R 2 are both methyl groups, or R 1 is a methyl group or an isopropyl group, and R 2 is bonded to each other.
  • the organic compound having a partial structural formula —OH is an alcohol having 1 to 20 carbon atoms, a polyhydric alcohol having 2 to 20 carbon atoms having 2 to 8 hydroxyl groups, a saccharide or a derivative thereof, and 2 to It is one or more selected from the group consisting of polyalkylene oxides having a number average molecular weight of 200 to 20,000 having 8 ends and 1 to 8 hydroxyl groups at the ends.
  • the production catalyst for polyalkylene glycol according to [3].
  • the organic compound having the partial structural formula —NH— is a C2-20 polyvalent amine having 2 to 3 primary or secondary amino groups, or a saturated cyclic secondary amine having 4 to 10 carbon atoms. And one or more selected from the group consisting of cyclic polyamines having 4 to 10 carbon atoms containing 2 to 3 secondary amino groups, Polyalkylene glycol production catalyst.
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, an unsubstituted or substituted phenyl group having 6 to 10 carbon atoms, or an unsubstituted or This represents a phenylalkyl group having 6 to 10 carbon atoms having a substituent. However, R 1 and R 2 , or R 2 may be bonded to each other to form a ring structure.
  • X ⁇ represents a hydroxy anion, an alkoxy anion, or a carboxy anion.
  • R 1 and R 2 are both methyl groups, or R 1 is a methyl group or an isopropyl group, and R 2 is bonded to each other to form a dimethylene group.
  • X ⁇ of the phosphazenium salt represented by the general formula (1) is derived from a hydroxy anion, an alkoxy anion derived from a saturated alkyl alcohol having 1 to 4 carbon atoms or a phenol, and a carboxylic acid having 2 to 4 carbon atoms.
  • the active hydrogen compound Y is a compound selected from water or an organic compound having the partial structural formula —OH or —NH—, according to any one of the above [6] to [9] A method for producing a polyalkylene glycol production catalyst.
  • the organic compound having the partial structural formula —OH is an alcohol having 1 to 20 carbon atoms, a polyhydric alcohol having 2 to 20 carbon atoms having 2 to 8 hydroxyl groups, a saccharide or a derivative thereof, and 2 to It is one or more selected from the group consisting of polyalkylene oxides having a number average molecular weight of 200 to 20,000 having 8 ends and 1 to 8 hydroxyl groups at the ends [10]
  • the organic compound having the partial structural formula —NH— is a C2-20 polyvalent amine having 2 to 3 primary or secondary amino groups, or a saturated cyclic secondary amine having 4 to 10 carbon atoms. And one or more selected from the group consisting of cyclic polyamines having 4 to 10 carbon atoms containing 2 to 3 secondary amino groups, A method for producing a polyalkylene glycol production catalyst.
  • the phosphazenium salt represented by the general formula (1) and the active hydrogen compound Y are mixed in an amount of 0.2 to 1,000 mol with respect to 1 mol of the phosphazenium salt, and then heat-treated.
  • a method for producing polyalkylene glycol comprising subjecting alkylene oxide to ring-opening polymerization in the presence of the polyalkylene glycol production catalyst according to any one of [1] to [5].
  • a method for producing a polyalkylene glycol comprising subjecting an alkylene oxide to ring-opening polymerization in the presence of a polyalkylene glycol production catalyst obtained by the production method according to any one of [6] to [13]. .
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, an unsubstituted or substituted phenyl group having 6 to 10 carbon atoms, or an unsubstituted or This represents a phenylalkyl group having 6 to 10 carbon atoms having a substituent.
  • R 1 and R 2 , or R 2 may be bonded to each other to form a ring structure.
  • X ⁇ represents a hydroxy anion, an alkoxy anion, or a carboxy anion.
  • a method for producing a polyalkylene glycol comprising mixing a phosphazenium salt represented by the formula (I) and an active hydrogen compound Y, heat-treating, adding an alkylene oxide, and subjecting the alkylene oxide to ring-opening polymerization.
  • alkylene oxide is one or more selected from the group consisting of ethylene oxide, propylene oxide, 1,2-butylene oxide, and styrene oxide.
  • the total degree of unsaturation obtained by the production method according to any one of [14] to [17] is 0.07 meq.
  • the hydroxyl value obtained by the production method according to any one of [14] to [17] is not more than 60 mgKOH / g and the number average molecular weight is in the range of 3,000 to 50,000.
  • the polyalkylene glycol production catalyst of the present invention does not use a special metal component, a special method or a complicated process for sufficiently removing the metal component is not necessary.
  • the method for producing polyalkylene glycol using the polyalkylene glycol production catalyst of the present invention facilitates temperature control during the reaction of alkylene oxide, has a narrow molecular weight distribution, high molecular weight and low total unsaturation. Oxides can be produced simply and efficiently without leaving odors. Therefore, the present invention is extremely useful industrially.
  • the polyalkylene glycol production catalyst of the present invention has the following general formula (1)
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, an unsubstituted or substituted phenyl group having 6 to 10 carbon atoms, or an unsubstituted or This represents a phenylalkyl group having 6 to 10 carbon atoms having a substituent. However, R 1 and R 2 , or R 2 may be bonded to each other to form a ring structure.
  • X ⁇ represents a hydroxy anion, an alkoxy anion, or a carboxy anion.
  • the mixing ratio at that time is preferably such that the active hydrogen compound Y is in the range of 0.2 to 1000 mol with respect to 1 mol of the phosphazenium salt represented by the general formula (1). If the mixing ratio is too smaller than this range, high activity is obtained, but control of reaction heat becomes difficult, and the physical properties of the resulting polyalkylene glycol are lowered. On the other hand, if the mixing ratio is too larger than this range, sufficient activity may not be obtained. From the viewpoint of obtaining high activity, the mixing ratio is preferably in the range of 1 to 500 mol. Further, from the viewpoint of easy reaction temperature, it is more preferably in the range of 10 to 300 mol.
  • the catalyst of the present invention is formed by heat-treating a phosphazenium salt represented by the above general formula (1) and an active hydrogen compound, the following general formula (2)
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, an unsubstituted or substituted phenyl group having 6 to 10 carbon atoms, or an unsubstituted or This represents a phenylalkyl group having 6 to 10 carbon atoms having a substituent.
  • R 1 and R 2 , or R 2 may be bonded to each other to form a ring structure.
  • n is a real number of 1 to 8
  • Y n ⁇ represents an anion of the active hydrogen compound from which n protons in the active hydrogen compound are eliminated.
  • It consists of the salt of the phosphazenium cation and active hydrogen compound anion shown by these.
  • n is preferably a real number greater than 1 and 6 or less.
  • the substituent R 1 or R 2 in the general formula (1) or the general formula (2) is independently an alkyl group having 1 to 10 carbon atoms, an unsubstituted or substituted carbon number.
  • fatty acids having 1 to 10 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, tert-pentyl group, 1,1-dimethyl-3,3-dimethylbutyl group, etc.
  • a group hydrocarbon group is preferred, and a methyl group is particularly preferred.
  • the substituent R 1 or R 2 in the general formula (1) or the general formula (2) has a ring structure in which R 1 and R 2 , or R 2 are bonded to each other. Also good. Specific examples include a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and the like, and a dimethylene group, a trimethylene group, and a tetramethylene group are preferable.
  • R 1 or R 2 examples include those in which both R 1 and R 2 are methyl groups, R 1 is a methyl group or isopropyl group, and —N ⁇ C [—NR 1 R 2 ] 2 Suitable examples include those in which R 2 is a dimethylene group in which R 2 is bonded to form a ring structure.
  • X ⁇ in the general formula (1) is one or more anions selected from the group consisting of a hydroxy anion, a hydrocarbon anion, a bicarbonate ion, an alkoxy anion, and a carboxy anion.
  • X in the general formula (1) - of, as the alkoxy anion for example, methanol, ethanol, n- propanol, isopropanol, allyl alcohol, n- butanol, sec- butanol, tert- butanol, Examples thereof include alkoxy anions derived from alcohols having 1 to 8 carbon atoms such as cyclohexanol, 2-heptanol, 1-octanol and phenol.
  • Examples of the carboxy anion include carboxy anions derived from carboxylic acids having 1 to 6 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, and caproic acid.
  • the hydroxy anion and alkoxy anion are more preferable as the acetic acid anion.
  • the phosphazenium salt represented by the general formula (1) may be used alone or in combination of two or more.
  • the active hydrogen compound Y is a compound having active hydrogen, and is a compound selected from water or an organic compound having a partial structural formula —OH or —NH—.
  • Examples of the organic compound having the partial structural formula —OH used in the present invention include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, lauric acid, stearic acid, oleic acid, phenylacetic acid, dihydrocinnamic acid, and cyclohexanecarboxylic acid.
  • Carboxylic acids having 1 to 20 carbon atoms such as acid, benzoic acid, paramethylbenzoic acid and 2-carboxynaphthalene; 2 having 2 to 20 carbon atoms such as succinic acid, malonic acid, succinic acid, maleic acid, fumaric acid, adipic acid, itaconic acid, butanetetracarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid Polycarboxylic acids having -6 carboxyl groups; Carbamic acids such as N, N-diethylcarbamic acid, N-carboxypyrrolidone, N-carboxyaniline, N, N′-dicarboxy-2,4-toluenediamine; Methanol, ethanol, n-propanol, isopropanol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isopentyl alcohol, tert-
  • Examples of the organic compound having the partial structural formula —NH— used in the present invention include, for example, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine.
  • Aliphatic or aromatic primary amines having 1 to 20 carbon atoms such as cyclohexylamine, benzylamine, ⁇ -phenylethylamine, aniline, o-toluidine, m-toluidine, and p-toluidine; C2-C20 aliphatic such as dimethylamine, methylethylamine, diethylamine, di-n-propylamine, ethyl-n-butylamine, methyl-sec-butylamine, dipentylamine, dicyclohexylamine, N-methylaniline, diphenylamine or the like Aromatic secondary amines; Ethylenediamine, di (2-aminoethyl) amine, hexamethylenediamine, 4,4'-diaminodiphenylmethane, melamine, tri (2-aminoethyl) amine, N, N'-dimethylethylenediamine, di (2-methylamin
  • the organic compound having the partial structural formula —OH used in the present invention is preferably methanol, ethanol, n-propanol, isopropanol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isopentyl alcohol, tert- Pentyl alcohol, n-octyl alcohol, lauryl alcohol, cetyl alcohol, cyclopentanol, cyclohexanol, allyl alcohol, crotyl alcohol, methyl vinyl carbinol, benzyl alcohol, 1-phenylethyl alcohol, triphenyl carbinol, cinnamyl alcohol Alcohols having 1 to 20 carbon atoms, such as Ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 1,
  • the organic compound having the partial structural formula —NH— is preferably ethylenediamine, di (2-aminoethyl) amine, hexamethylenediamine, 4,4′-diaminodiphenylmethane, (2-aminoethyl) amine, N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, di (2-methylaminoethyl) amine, etc.
  • Polyvalent amines having an amino group saturated cyclic secondary amines having 4 to 10 carbon atoms such as pyrrolidine, piperidine, morpholine, 1,2,3,4-tetrahydroquinoline; piperazine, pyrazine, 1,4,7- Examples include cyclic polyamines containing 2 to 3 secondary amino groups having 4 to 10 carbon atoms such as triazacyclononane.
  • active hydrogen compounds more preferably, those having 2 to 20 carbon atoms such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, pentaerythritol, dipentaerythritol and the like.
  • an organic compound having a partial structural formula —OH such as polyalkylene oxides having a number average molecular weight of 200 to 10,000 having 2 to 6 hydroxyl groups at the ends.
  • the heat treatment is usually performed under a reduced pressure of 1.3 kPa or less, preferably in the range of 1.0 to 0.05 kPa, more preferably 0.5 to 0.01 kPa. Range. If the degree of vacuum is low, not only will the heat treatment time be prolonged, but the formation of the salt between the target phosphazenium cation and the active hydrogen compound anion will not proceed sufficiently, and there is a risk that sufficient polymerization activity will not be obtained. is there. On the other hand, even if the degree of vacuum is higher than necessary, it does not affect the formation of the salt of the phosphazenium cation and the active hydrogen compound anion, which is uneconomical.
  • the treatment temperature in the heat treatment is usually 60 ° C. or higher, preferably 70 to 110 ° C., more preferably 80 to 100 ° C. If the treatment temperature is low, salt formation between the target phosphazenium cation and the active hydrogen compound anion does not proceed sufficiently, so that sufficient polymerization activity cannot be obtained. Conversely, if the treatment temperature is too high, active hydrogen In some cases, the polymerization activity may be reduced due to thermal deterioration of the salt of the compound or the formed phosphazenium cation and the active hydrogen compound anion.
  • the time required for the heat treatment is not particularly limited, but it is usually sufficient to perform the heat treatment for 1 hour or more, preferably 2 to 10 hours, more preferably 3-6 hours. If the treatment time is short, the formation of the desired salt of the phosphazenium cation and the active hydrogen compound anion does not proceed sufficiently, leading to a decrease in polymerization activity, and conversely, if the treatment time is longer than necessary, it is uneconomical. In addition, the polymerization activity may be reduced due to thermal degradation of the active hydrogen compound or the salt of the formed phosphazenium cation and the active hydrogen compound anion.
  • the phosphazenium salt represented by the general formula (1) and the active hydrogen compound Y lead to the salt of the phosphazenium cation represented by the general formula (2) and the anion of the active hydrogen compound, it is usually excessive.
  • the excess of the active hydrogen compound used in is left as it is, but in addition to this, water, alcohol or carboxylic acid is by-produced depending on the type of phosphazenium salt.
  • these by-products can be removed prior to the polymerization reaction of the alkylene oxide compound.
  • a method of distilling off by heating or reduced pressure, a method of passing an inert gas, a method of using an adsorbent, or the like is used according to the properties of these by-products.
  • the method for producing the phosphazenium salt represented by the general formula (1) is not particularly limited.
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, an unsubstituted or substituted phenyl group having 6 to 10 carbon atoms, or an unsubstituted group. Alternatively, it represents a phenylalkyl group having 6 to 10 carbon atoms having a substituent. However, R 1 and R 2 , or R 2 may be bonded to each other to form a ring structure. ] It can manufacture by making 4 equivalent reaction of the guanidine derivative represented by these.
  • the phosphorus pentahalide represented by the general formula (3) used in the above reaction is phosphorus pentachloride or phosphorus pentabromide, preferably phosphorus pentachloride.
  • the substituents R 1 and R 2 of the guanidine derivative represented by the general formula (4) used in the above reaction are each independently an alkyl group having 1 to 10 carbon atoms, an unsubstituted or substituted carbon.
  • a phenyl group having 6 to 10 carbon atoms, or an unsubstituted or substituted phenylalkyl group having 6 to 10 carbon atoms, and R 1 and R 2 , or R 2 are bonded to each other to form a ring structure. May be.
  • the substituent R 1 or R 2 in the general formula (4) is not particularly limited, but specifically, each independently an alkyl group having 1 to 10 carbon atoms, unsubstituted Or a phenyl group having 6 to 10 carbon atoms having a substituent or an unsubstituted or substituted phenylalkyl group having 6 to 10 carbon atoms.
  • fatty acids having 1 to 10 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, tert-pentyl group, 1,1-dimethyl-3,3-dimethylbutyl group, etc.
  • a group hydrocarbon group is preferred, and a methyl group is particularly preferred.
  • the substituent R 1 or R 2 in the general formula (4) may be formed by bonding R 1 and R 2 , or R 2 to each other.
  • Specific examples include a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and the like, and a dimethylene group, a trimethylene group, and a tetramethylene group are preferable.
  • Examples of the guanidine derivative represented by the general formula (4) include those in which R 1 and R 2 are both methyl groups, and dimethylene groups in which R 1 is a methyl group or isopropyl group and R 2 is bonded to each other. Thus, those that form a ring structure are preferred.
  • the amount of the guanidine derivative represented by the general formula (4) used is usually in the range of 6 to 20 mol, preferably in the range of 8 to 12 mol, with respect to 1 mol of phosphorus pentahalide. If the amount of the guanidine derivative used is small, the amount of the desired phosphazenium salt produced is greatly reduced. Conversely, if the amount used is too large, the reaction is hardly affected, but it is uneconomical.
  • the solvent used for the reaction between phosphorus pentahalide and the guanidine derivative is not particularly limited as long as it does not inhibit the reaction.
  • examples thereof include aromatic hydrocarbons such as benzene, toluene and xylene, and halogen aromatic hydrocarbons such as chlorobenzene and orthodichlorobenzene.
  • Aromatic hydrocarbons such as toluene and xylene are preferred.
  • These solvents may be used alone or in combination of two or more.
  • the reaction preferably proceeds in a uniform state, but there is no problem even in a non-uniform state.
  • the solvent used is preferably used after dehydration treatment.
  • the amount of the solvent used for the reaction between phosphorus pentahalide and the guanidine derivative is usually in the range of 0.1 to 80 L (liter) with respect to 1 mol (mol) of phosphorus pentahalide, preferably Is in the range of 0.5 to 40 L, more preferably in the range of 1 to 20 L. If the amount of the solvent is small, it is difficult to control the temperature and may cause a side reaction. On the other hand, if the amount of the solvent is too large, the treatment after the reaction is not only complicated, but also uneconomical.
  • the reaction between phosphorus pentahalide and a guanidine derivative is usually carried out in an atmosphere of an inert gas such as helium, nitrogen, or argon.
  • the reaction temperature in the reaction of phosphorus pentahalide with the guanidine derivative is usually in the range of ⁇ 50 ° C. to 150 ° C., preferably in the range of ⁇ 30 ° C. to 120 ° C. If the reaction temperature is high, the exotherm cannot be controlled and a side reaction may occur. If the reaction temperature is too low, the reaction rate decreases and the reaction time increases.
  • the reaction temperature is preferably controlled in two stages.
  • the reaction pressure in the above reaction can be any of reduced pressure, normal pressure and increased pressure, but is preferably 0.01 to 1 MPa, more preferably 0.05 to 0.3 MPa.
  • the reaction time in the above reaction is not uniform depending on the reaction temperature, the state of the reaction system, etc., but is usually in the range of 1 minute to 48 hours, preferably 1 minute to 24 hours, more preferably 5 minutes to 10 hours. It is.
  • the separation method is not particularly limited, and the separation method varies depending on the type of salt to be produced and the type and amount of the solvent used.
  • the target salt can be obtained by removing a by-product hydrogen halide salt of a guanidine derivative by a method such as washing, extraction or filtration.
  • a salt produced as a by-product is mixed in the target salt, it can be extracted as it is or after re-dissolution and extracted with an appropriate other solvent. Furthermore, if necessary, it can be purified by recrystallization or column chromatography.
  • Ion exchange is possible.
  • Polyalkylene glycol is produced by ring-opening polymerization of alkylene oxide in the presence of the catalyst of the present invention described above.
  • the phosphazenium salt represented by the above general formula (1) and the active hydrogen compound are mixed and subjected to heat treatment, and then alkylene oxide is added to cause ring-opening polymerization of the alkylene oxide.
  • Polyalkylene glycols can also be produced. That is, by the heat treatment described above, the salt of the phosphazenium cation represented by the general formula (2) and the anion of the active hydrogen compound Y (from the phosphazenium salt represented by the general formula (1) and the active hydrogen compound ( That is, it is considered that the formation of a catalyst) of the present invention facilitates temperature control during the reaction of the alkylene oxide, and the polyalkylene oxide can be prepared easily and efficiently.
  • the above heat treatment can be carried out in the same manner as the conditions in the method for producing a catalyst of the present invention.
  • alkylene oxide used in the method for producing the polyalkylene glycol of the present invention examples include epoxy compounds such as ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, styrene oxide, and cyclohexene oxide. be able to. Of these, ethylene oxide, propylene oxide, 1,2-butylene oxide or styrene oxide is preferable, and ethylene oxide and propylene oxide are more preferable.
  • the above alkylene oxide may be used alone or in combination of two or more.
  • the combined use of propylene oxide and ethylene oxide is particularly preferable.
  • the method of adding several alkylene oxide simultaneously, the method of adding sequentially, the method of adding sequentially, etc. can be taken.
  • the type of ring-opening polymerization reaction in the method for producing polyalkylene glycol of the present invention is not particularly limited.
  • the phosphazenium salt represented by the general formula (1) and the active hydrogen compound Y are heat-treated to prepare a salt of the phosphazenium cation and the active hydrogen compound anion represented by the general formula (2), After removing the active hydrogen compound Y that usually remains from the obtained reaction solution and, if necessary, by-products, it is charged into the reactor, and when a solvent is used, the reaction is further charged with the solvent.
  • a method of supplying alkylene oxide in a batch to the vessel, or a method of supplying intermittently or continuously is used.
  • the reaction temperature of the ring-opening polymerization reaction in the production method of the polyalkylene glycol of the present invention is represented by the alkylene oxide used, the phosphazenium salt represented by the general formula (1), the active hydrogen compound, or the general formula (2). It is not uniform depending on the type and amount of the salt or the like of the phosphazenium cation and the active hydrogen compound anion, and it is difficult to define, but for example, it is usually 150 ° C. or lower, preferably 20 to 130 ° C. More preferably, it is in the range of 80 to 130 ° C, particularly preferably 90 to 110 ° C.
  • the pressure during the ring-opening polymerization reaction in the method for producing polyalkylene glycol of the present invention is the alkylene oxide used, the phosphazenium salt represented by the general formula (1), the active hydrogen compound, or the phosphine represented by the general formula (2). Although it is not uniform because it depends on the type or amount of the salt of the fazenium cation and the active hydrogen compound anion, or the polymerization temperature, etc., the pressure during the polymerization reaction is usually 3 MPa or less, preferably 0.01 to The pressure is in the range of 1.5 MPa, more preferably 0.1 to 1.0 MPa.
  • the reaction time is not uniform depending on the alkylene oxide used, the type or amount of the catalyst substance, or the polymerization temperature or pressure, but is usually 40 hours or less, preferably 0.1 to 30 hours, more preferably 0.8. 5 to 24 hours.
  • the catalyst of the present invention and a conventionally known initiator may be used in combination for the purpose of reducing the burden of removing the initiator after polymerization.
  • a solvent can be used as necessary in the ring-opening polymerization reaction of alkylene oxide.
  • the solvent to be used is not particularly limited as long as it does not inhibit the ring-opening polymerization reaction. Specifically, aliphatic hydrocarbons such as pentane, hexane, heptane and cyclohexane, and aromatic carbonization such as benzene and toluene.
  • the polymerization reaction of alkylene oxide can be carried out in the presence of an inert gas such as nitrogen or argon if necessary.
  • an inert gas such as nitrogen or argon if necessary.
  • a high molecular weight polyalkylene glycol having a hydroxyl value of 60 to 4 mgKOH / g and a molecular weight (number average molecular weight) of 3,000 to 50,000 can be produced.
  • the polyalkylene glycol obtained by the method for producing a polyalkylene glycol of the present invention is 0.07 meq.
  • the resulting polyalkylene glycol has a narrow molecular weight distribution (Mw / Mn) of 1.1 or less, and has excellent physical properties as a polyalkylene glycol.
  • the polyalkylene glycol obtained by the method for producing a polyalkylene glycol of the present invention can be used as it is as a raw material for polyurethane foam or elastomer or as a surfactant just by removing the solvent when used in the polymerization reaction.
  • it is usually used as a raw material or surfactant after treatment with mineral acids such as hydrochloric acid, phosphoric acid, sulfuric acid, etc., organic carboxylic acids such as formic acid, acetic acid, propionic acid, carbon dioxide or acid type ion exchange resins. it can.
  • conventional purification such as washing with water, an organic solvent or a mixture thereof may be performed.
  • NMR spectrum measurement Using a nuclear magnetic resonance spectrum measuring apparatus (manufactured by JEOL Ltd., trade name: GSX270WB), measurement was performed using tetramethylsilane (TMS) as an internal standard and deuterated chloroform as a heavy solvent.
  • TMS tetramethylsilane
  • Number average molecular weight measurement Using gel permeation chromatography (GPC) (trade name: HLC8020GPC, manufactured by Tosoh Corporation), it was measured as a standard polystyrene conversion value from an elution curve measured at 40 ° C. using tetrahydrofuran as a solvent.
  • GPC gel permeation chromatography
  • GC-MS measurement Using a gas chromatography-mass spectrometer (trade name: JMS-700, manufactured by JEOL Ltd.), measurement was performed using “FAB +” as the ionization mode.
  • Measurement of hydroxyl value and total unsaturation It measured according to the measuring method of JISK1557.
  • Ethylene oxide content It calculated based on the proton ratio of the peak derived from the obtained polyol using the nuclear magnetic resonance spectrum measuring device (the JEOL company make, brand name: GSX270WB).
  • Starting material used Polyalkylene glycol A: glycerin polypropylene glycol having a molecular weight of 400
  • Polyalkylene glycol B propylene glycol-based polypropylene glycol having a molecular weight of 400
  • Polyalkylene glycol C glycerin polypropylene glycol having a molecular weight of 1000.
  • the slurry solution was placed in a cooling bath cooled to ⁇ 30 ° C. with dry ice-acetone to adjust the internal temperature to ⁇ 30 ° C. and then subjected to 22.1 g (1,1,3,3-tetramethylguanidine with strong stirring). 20 mmol) was added dropwise from the dropping funnel over 1 hour. After stirring for 1 hour at ⁇ 30 ° C., the cooling bath was removed and the temperature was slowly raised to room temperature. Further, this slurry solution was heated at 100 ° C. for 10 hours to obtain a white slurry solution. After cooling to room temperature, the slurry was filtered off and the filter residue was washed with acetone.
  • Tetrakis (tetramethylguanidino) phosphonium hydroxide [(Me 2 N) 2 C ⁇ N] 4 P + OH ⁇ was synthesized as follows. Tetrakis [(dimethylamino) imino] phosphonium chloride (3.2 g, 6 mmol) was dissolved in 100 ml of ion-exchanged water to prepare a 0.06 mol / L solution.
  • This solution was circulated at room temperature through a column (diameter 30 mm, height 600 mm) packed with 100 ml of a hydroxyl type anion exchange resin (manufactured by Organo, Amberlite IRA410OH) at a flow rate of 300 ml / hour, and further 150 ml of ion exchange. Water was circulated at the same flow rate. After concentrating the effluent, it was dried at 40 ° C. and 1 mmHg to give tetrakis (tetramethylguanidino) phosphonium hydroxide: [(Me 2 N) 2 C ⁇ N] 4 P + OH ⁇ 3.1 g in white Obtained as crystals. The yield was 99%.
  • Tetrakis (1,3-diisopropylimidazolidineimino) phosphonium chloride was synthesized as follows. Into a 200 ml four-necked flask equipped with a thermometer, dropping funnel, condenser and magnetic rotor, 2.3 g (11 mmol) of phosphorus pentachloride is taken, and 23 ml of dehydrated toluene (manufactured by Wako Pure Chemical Industries, Ltd.) is added thereto. A slurry solution was obtained. This slurry solution was placed in a cooling bath cooled to ⁇ 30 ° C.
  • Tetrakis (1,3-diisopropylimidazolidineimino) phosphonium hydroxide was synthesized as follows. A solution of 0.01 mol / L was prepared by dissolving 1.5 g (2 mmol) of tetrakis (1,3-diisopropylimidazolidineimino) phosphonium chloride in 200 ml of ion-exchanged water.
  • This solution was circulated at room temperature through a column (diameter 30 mm, height 600 mm) filled with 50 ml of a hydroxyl type anion exchange resin (manufactured by Organo, Amberlite IRA410OH) at a flow rate of 200 ml / hour, and further 150 ml of ion exchange. Water was circulated at the same flow rate. The effluent was concentrated and dried at 40 ° C. and 1 mmHg to obtain 1.5 g of tetrakis (1,3-diisopropylimidazolidineimino) phosphonium hydroxide as white crystals. The yield was 98%.
  • a hydroxyl type anion exchange resin manufactured by Organo, Amberlite IRA410OH
  • Tetrakis (1,3-dimethylimidazolidineimino) phosphonium chloride was synthesized as follows. Into a 200 ml four-necked flask equipped with a thermometer, dropping funnel, condenser and magnetic rotor, 2.3 g (11 mmol) of phosphorus pentachloride is taken, and 40 ml of dehydrated toluene (manufactured by Wako Pure Chemical Industries, Ltd.) is added thereto. A slurry solution was obtained. The slurry solution was placed in a cooling bath cooled to ⁇ 30 ° C.
  • Tetrakis (1,3-dimethylimidazolidineimino) phosphonium hydroxide was synthesized as follows. Tetrakis (1,3-dimethylimidazolidineimino) phosphonium chloride (2.0 g, 4 mmol) was dissolved in 40 ml of ion-exchanged water to prepare a 0.1 mol / L solution. This solution was circulated at room temperature through a column (diameter 30 mm, height 600 mm) packed with 40 ml of hydroxyl type anion exchange resin (manufactured by Organo, Amberlite IRA410OH) at a flow rate of 150 ml / hour, and further 150 ml of ion exchange.
  • hydroxyl type anion exchange resin manufactured by Organo, Amberlite IRA410OH
  • Synthesis Example 8 The phosphonium hydroxide 5.04g synthesize
  • combined in the synthesis example 2 and 3.3 g of polyalkylene glycol C were mixed, and the heat processing were performed under reduced pressure of 1.3 kPa at 80 degreeC for 3 hours. As a result of collecting water produced by the treatment, it was 0.18 g. From this result, 3 equivalents of a phosphonium salt reacted with polyalkylene glycol C to obtain 8.2 g of a catalyst corresponding to n 3 in the general formula (2).
  • Synthesis Example 9 Phosphonium hydroxide 5.04 g synthesized in Synthesis Example 2 and 10 g of polyalkylene glycol C were mixed and heat-treated at 80 ° C. under a reduced pressure of 1.3 kPa for 3 hours. It was 0.18g as a result of collecting the water produced
  • generated by a process. From this result, 3 equivalents of a phosphonium salt reacted with polyalkylene glycol C to obtain 14.8 g of a catalyst corresponding to n 1 in the general formula (2).
  • Synthesis Example 11 The phosphonium hydroxide 5.04g synthesize
  • combined in the synthesis example 2 and glycerol 0.3g were mixed, and it heat-processed under reduced pressure of 1.3 kPa at 80 degreeC for 3 hours. As a result of collecting water produced by the treatment, it was 0.18 g. As a result, 3 equivalents of a phosphonium salt reacted with glycerin to obtain 5.1 g of a catalyst corresponding to n 1 in the general formula (2).
  • Synthesis Example 12 The phosphonium hydroxide 5.04g synthesize
  • combined in the synthesis example 2 and glycerol 0.9g were mixed, and it heat-processed under reduced pressure of 1.3 kPa at 80 degreeC for 3 hours. As a result of collecting water produced by the treatment, it was 0.18 g. As a result, 1 equivalent of a phosphonium salt reacted with glycerin to obtain 5.7 g of a catalyst corresponding to n 1 in the general formula (2).
  • Example 1 The phosphazenium salt obtained in Synthesis Example 2 [In the above general formula (1), R 1 and R 2 are methyl groups, and X ⁇ is a hydroxy anion.
  • 0.2 g (0.4 mmol) and 4.0 g (10 mmol) of polyalkylene glycol A were charged into a 200-ml glass autoclave equipped with a thermocouple, pressure gauge, stirrer, and alkylene oxide introduction tube. . Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and heat treatment was performed under reduced pressure for 3 hours.
  • the pressure is returned to normal pressure with nitrogen, the temperature is raised to 90 ° C., and 30 g of propylene oxide is allowed to react at 90 ° C. for 6 hours while being intermittently supplied into the reactor so as to maintain a reaction pressure of 0.3 MPa or less. It was.
  • the contents were cooled to room temperature and then returned to normal pressure.
  • 31 g of colorless and odorless polyoxypropylene triol was obtained.
  • the obtained polyoxypropylene triol had a hydroxyl value of 37 mgKOH / g, a total unsaturation of 0.028 meq / g, and a molecular weight distribution (Mw / Mn) determined by GPC of 1.03.
  • Comparative Example 1 Except for the phosphazenium salt used in Example 1, 5 mmol of potassium hydroxide and the reaction temperature was 105 ° C., the same operation as in the polymerization reaction of Example 1 was performed. The contents were cooled to room temperature and then returned to normal pressure. 30 g of colorless and odorless polyoxypropylene triol was obtained. The obtained polyoxypropylene triol had a hydroxyl value of 39 mgKOH / g, a total degree of unsaturation of 0.114 meq / g, and a molecular weight distribution determined by GPC of 1.7.
  • Example 2 An actual volume of 200 ml equipped with 0.2 g (0.4 mmol) of the phosphazenium salt synthesized in Synthesis Example 2 and 4.0 g (4 mmol) of polyalkylene glycol C and equipped with a thermocouple, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. In a glass autoclave. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and heat treatment was performed under reduced pressure for 3 hours. After the heat treatment, the temperature is returned to normal pressure with nitrogen, the temperature is raised to 90 ° C., and a temperature range of 88 to 92 ° C.
  • the obtained polyoxypropylene triol had a hydroxyl value of 8 mgKOH / g, a total degree of unsaturation of 0.067 meq / g, and a molecular weight distribution (Mw / Mn) of 1.05.
  • FIG. An actual volume of 200 ml equipped with 0.2 g (0.4 mmol) of the phosphazenium salt synthesized in Synthesis Example 2 and 4.0 g (10 mmol) of polyalkylene glycol A and equipped with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube.
  • a glass autoclave Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and heat treatment was performed under reduced pressure for 3 hours. After the heat treatment, the temperature was raised to 90 ° C., and the reaction was carried out for 6 hours in the temperature range of 88 to 92 ° C.
  • the obtained polyoxypropylene triol had a hydroxyl value of 22 mgKOH / g, a total degree of unsaturation of 0.072 meq / g, and a molecular weight distribution (Mw / Mn) of 1.05.
  • Example 4 0.1 g (0.2 mmol) of the phosphazenium salt synthesized in Synthesis Example 2 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and heat treatment was performed under reduced pressure for 3 hours. After the heat treatment, the temperature was raised to 90 ° C., and 55 g of propylene oxide was reacted in the temperature range of 88 to 92 ° C.
  • the obtained polyoxypropylene triol had a hydroxyl value of 20 mgKOH / g, a total degree of unsaturation of 0.028 meq / g, and a molecular weight distribution (Mw / Mn) of 1.04.
  • Embodiment 5 FIG. 0.2 g (0.4 mmol) of the phosphazenium salt synthesized in Synthesis Example 2 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and heat treatment was performed under reduced pressure for 3 hours. After dehydration, the temperature was raised to 90 ° C., and 55 g of propylene oxide was reacted in the temperature range of 88 to 92 ° C.
  • the obtained polyoxypropylene triol had a hydroxyl value of 21 mgKOH / g, a total degree of unsaturation of 0.026 meq / g, and a molecular weight distribution (Mw / Mn) of 1.05.
  • Example 6 0.1 g (0.2 mmol) of the phosphazenium salt synthesized in Synthesis Example 2 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours. After the dehydration treatment, the temperature was raised to 90 ° C., and 46 g of propylene oxide was reacted in the temperature range of 88 to 92 ° C.
  • the resulting polyalkylene oxide has an ethylene oxide content of 15.1% by weight, a hydroxyl value of 22 mg KOH / g, a total unsaturation of 0.026 meq / g, and a molecular weight distribution (Mw / Mn) of 1. .05.
  • Example 7 0.15 g (0.2 mmol) of the phosphazenium salt synthesized in Synthesis Example 4 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours. After dehydration, the temperature was raised to 90 ° C., and 55 g of propylene oxide was allowed to react for 6 hours in the temperature range of 88 to 92 ° C.
  • the obtained polyoxypropylene triol had a hydroxyl value of 22 mgKOH / g, a total degree of unsaturation of 0.024 meq / g, and a molecular weight distribution (Mw / Mn) of 1.06.
  • Example 8 FIG. 0.1 g (0.2 mmol) of the phosphazenium salt synthesized in Synthesis Example 6 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours. After the dehydration treatment, the temperature was raised to 90 ° C., and 58 g of propylene oxide was allowed to react for 6 hours in the temperature range of 88 to 92 ° C.
  • the obtained polyoxypropylene triol had a hydroxyl value of 22 mg KOH / g, a total degree of unsaturation of 0.025 meq / g, and a molecular weight distribution (Mw / Mn) of 1.05.
  • Example 9 The phosphazenium salt synthesized in Synthesis Example 7 (0.8 g, 0.4 mmol) and polyalkylene glycol C (8.7 g, 8.7 mmol) were mixed with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and the mixture was heated under reduced pressure for 3 hours. After dehydration, the temperature was raised to 90 ° C., and 60 g of propylene oxide was reacted in the temperature range of 88 to 92 ° C.
  • the obtained polyoxypropylene triol had a hydroxyl value of 20 mgKOH / g, a total degree of unsaturation of 0.025 meq / g, and a molecular weight distribution (Mw / Mn) of 1.04.
  • Example 10 The phosphazenium salt 0.8 g (0.4 mmol) synthesized in Synthesis Example 7 and the polyalkylene glycol A 3.5 g (8.7 mmol) were mixed with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and the mixture was heated under reduced pressure for 3 hours. After dehydration, the temperature is raised to 90 ° C., and 65 g of propylene oxide is reacted in the temperature range of 88 to 92 ° C.
  • the obtained polyoxypropylene triol had a hydroxyl value of 20 mg KOH / g, a total degree of unsaturation of 0.027 meq / g, and a molecular weight distribution (Mw / Mn) of 1.04.
  • Example 11 A phosphazenium salt synthesized in Synthesis Example 7 (0.5 g, 0.2 mmol) and polyalkylene glycol C (8.7 g, 8.7 mmol) were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours. After the dehydration treatment, the temperature was raised to 90 ° C., and the reaction was carried out in the temperature range of 88 to 92 ° C.
  • the obtained polyalkylene oxide has an ethylene oxide content of 14.9% by weight, a hydroxyl value of 22 mgKOH / g, a total unsaturation of 0.024 meq / g, and a molecular weight distribution (Mw / Mn) of 1. 0.06.
  • FIG. 1 A phosphazenium salt synthesized in Synthesis Example 8 (0.3 g, 0.2 mmol) and polyalkylene glycol C (8.7 g, 8.7 mmol) were mixed with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube.
  • a glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours. After the dehydration treatment, the temperature was raised to 90 ° C., and the reaction was carried out in the temperature range of 88 to 92 ° C.
  • the obtained polyalkylene oxide had a hydroxyl value of 15.3% by weight of ethylene oxide, a hydroxyl value of 23 mg KOH / g, a total unsaturation of 0.024 meq / g, and a molecular weight distribution (Mw / Mn ) Was 1.05.
  • Example 13 A phosphazenium salt synthesized in Synthesis Example 10 (0.3 g, 0.2 mmol) and polyalkylene glycol B (3.5 g, 8.7 mmol) were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours. After the dehydration treatment, the temperature was raised to 90 ° C., and the reaction was carried out in the temperature range of 88 to 92 ° C.
  • the obtained polyalkylene oxide has an ethylene oxide content of 14.5% by weight, a hydroxyl value of 17 mgKOH / g, a total unsaturation of 0.024 meq / g, and a molecular weight distribution (Mw / Mn) of 1 .07.
  • Example 2 instead of 0.2 g (0.4 mmol) of the phosphazenium salt obtained in Synthesis Example 2, the phosphazene catalyst 1-tert-butyl-4,4,4-tris (dimethylamino) -2,2-bis [Tris (dimethylamino) phosphoranylideneamino] -2 ⁇ 5,4 ⁇ 5-catenadi (phosphazene) 0.5 mol / L A hexane solution was used except that 0.8 mL (0.4 mmol) was used. The temperature was raised to 90 ° C., and propylene oxide was intermittently supplied so as to maintain a reaction pressure of 0.3 MPa or less.
  • the obtained polyoxypropylene triol had a hydroxyl value of 25 mg KOH / g, a total degree of unsaturation of 0.072 meq / g, and a molecular weight distribution (Mw / Mn) of 1.11.
  • Example 14 The phosphazenium salt synthesized in Synthesis Example 9 (0.3 g, 0.2 mmol) and polyalkylene glycol C (8.7 g, 8.7 mmol) were mixed with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours. After dehydration, the temperature was raised to 90 ° C., and propylene oxide was reacted for 6 hours in the temperature range of 88 to 92 ° C.
  • the obtained polyalkylene oxide had a hydroxyl value of 28 mgKOH / g, a total degree of unsaturation of 0.031 meq / g, and a molecular weight distribution (Mw / Mn) of 1.06.
  • Example 15 An actual volume equipped with 0.3 g (0.2 mmol) of the phosphazenium salt synthesized in Synthesis Example 9 and 8.7 g (8.7 mmol) of polyalkylene glycol C and equipped with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A 200 ml glass autoclave was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours. After dehydration, the temperature was raised to 90 ° C., and 55 g of propylene oxide was allowed to react for 6 hours in the temperature range of 88 to 92 ° C.
  • the resulting polyalkylene oxide has an ethylene oxide content of 13.1% by weight, a hydroxyl value of 25 mg KOH / g, a total unsaturation of 0.030 meq / g, and a molecular weight distribution (Mw / Mn) of 1. .07.
  • Example 16 A phosphazenium salt synthesized in Synthesis Example 11 (0.6 g, 0.4 mmol) and glycerin (5.0 g, 54 mmol) were made of glass having an actual volume of 200 ml equipped with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. The autoclave was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours. After the dehydration treatment, the temperature was raised to 90 ° C., and 65 g of propylene oxide was reacted in the temperature range of 88 to 92 ° C.
  • the obtained polyalkylene oxide had a hydroxyl value of 150 mgKOH / g, a total degree of unsaturation of 0.005 meq / g, and a molecular weight distribution (Mw / Mn) of 1.07.
  • Example 17 A 0.24 g (0.4 mmol) phosphazenium salt synthesized in Synthesis Example 12 and 5.0 g (54 mmol) glycerin were made of glass having a real volume of 200 ml equipped with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. The autoclave was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours. After dehydration, the temperature was raised to 90 ° C., and 55 g of propylene oxide was allowed to react for 8 hours in the temperature range of 88 to 95 ° C.
  • the obtained polyalkylene oxide had a hydroxyl value of 156 mgKOH / g, a total degree of unsaturation of 0.011 meq / g, and a molecular weight distribution (Mw / Mn) of 1.07.
  • This slurry solution was placed in a cooling bath cooled to ⁇ 30 ° C. with dry ice-acetone to adjust the internal temperature to ⁇ 30 ° C. Then, 22.2 g (20 mmol) of tetramethylguanidine was added from the dropping funnel under vigorous stirring. It was added dropwise over time. After stirring for 1 hour at ⁇ 30 ° C., the cooling bath was removed and the temperature was slowly raised to room temperature. Further, this slurry solution was heated at 100 ° C. for 10 hours to obtain a white slurry solution. After cooling to room temperature, the slurry was filtered off and the filter residue was washed with acetone.
  • Example 18 The phosphazenium salt obtained in Synthesis Example 14 [In the general formula (1), R 1 and R 2 are methyl groups, and X ⁇ is a hydroxy anion. 0.2 g (0.4 mmol) and 5.0 g (58 mmol) of glycerin were charged into a 200-ml glass autoclave equipped with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours. After the dehydration treatment, the pressure was returned to normal pressure with nitrogen, and the reaction was performed at 90 ° C.
  • the contents were cooled to room temperature to obtain 33 g of colorless and odorless liquid polyoxypropylene triol.
  • the obtained polyoxypropylene triol had a hydroxyl value of 131 mgKOH / g.
  • Example 19 The phosphazenium salt obtained in Synthesis Example 14 [In the general formula (1), R 1 and R 2 are methyl groups, and X ⁇ is a hydroxy anion. 0.2 g (0.4 mmol) and 4.0 g (10 mmol) of polyalkylene glycol A were charged into a 200 ml glass autoclave equipped with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. . Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours.
  • the pressure was returned to normal pressure with nitrogen, the temperature was raised to 90 ° C., and 30 g of propylene oxide was reacted at 90 ° C. for 6 hours while being intermittently supplied so as to keep the reaction pressure at 0.3 MPa or less.
  • the contents were cooled to room temperature and then returned to normal pressure.
  • 31 g of colorless and odorless polyoxypropylene triol was obtained.
  • the obtained polyoxypropylene triol had a hydroxyl value of 37 mgKOH / g, a total unsaturation of 0.03 meq / g, and a molecular weight distribution determined by GPC of 1.03.
  • Comparative Example 3 The same polymerization reaction as in Example 18 was carried out except that the phosphazenium salt used in Example 19 was not used. Propylene oxide was not consumed at all, and the reactor content was 4.01 g, almost equal to the weight of glycerin itself charged in the reactor, and no polyoxypropylene triol was obtained.
  • Example 20 A glass having a real volume of 200 ml equipped with 1.0 g (2 mmol) of the phosphazenium salt synthesized in Synthesis Example 14 and 4.0 g (10 mmol) of polyalkylene glycol B and equipped with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube.
  • the autoclave was made.
  • the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 90 ° C., and the reaction was carried out for 6 hours in the temperature range of 88 to 92 ° C. while supplying 38 g of propylene oxide intermittently so as to maintain the reaction pressure of 0.3 MPa or less. It was.
  • Example 21 An actual volume of 200 ml equipped with 0.2 g (0.4 mmol) of the phosphazenium salt synthesized in Synthesis Example 14 and 4.0 g (10 mmol) of polyalkylene glycol A and equipped with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. In a glass autoclave. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under reduced pressure for 3 hours. After the dehydration treatment, the temperature was raised to 90 ° C., and the reaction was carried out for 6 hours in the temperature range of 88 to 92 ° C.
  • Example 22 0.2 g (0.4 mmol) of the phosphazenium salt synthesized in Synthesis Example 2 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under a reduced pressure of 0.2 kPa for 3 hours. After dehydration, the temperature was raised to 100 ° C., and 58 g of propylene oxide was reacted in the temperature range of 98 to 102 ° C.
  • Example 23 The same operation as in Example 22 was performed, except that the reaction was carried out at a temperature range of 78 to 82 ° C. for 6 hours. 28 g of colorless and odorless polyoxypropylene triol was obtained. The obtained polyoxypropylene triol had a hydroxyl value of 56 mgKOH / g.
  • Example 24 The same operation as in Example 22 was performed, except that the reaction was performed in the temperature range of 108 to 112 ° C. for 6 hours. 66 g of colorless and odorless polyoxypropylene triol was obtained. The obtained polyoxypropylene triol had a hydroxyl value of 23 mgKOH / g.
  • Example 25 The same operation as in Example 22 was performed, except that the reaction was performed in the temperature range of 118 to 122 ° C. for 6 hours. 44 g of colorless and odorless polyoxypropylene triol was obtained. The obtained polyoxypropylene triol had a hydroxyl value of 40 mgKOH / g.
  • Example 26 0.1 g (0.2 mmol) of the phosphazenium salt synthesized in Synthesis Example 2 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under a reduced pressure of 0.2 kPa for 3 hours. After the dehydration treatment, the temperature was raised to 90 ° C., and 58 g of propylene oxide was allowed to react for 6 hours in the temperature range of 88 to 92 ° C.
  • Example 27 0.1 g (0.2 mmol) of the phosphazenium salt synthesized in Synthesis Example 2 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under a reduced pressure of 0.2 kPa for 3 hours. After the dehydration treatment, the temperature was raised to 90 ° C., and 46 g of propylene oxide was reacted in the temperature range of 88 to 92 ° C.
  • Example 28 0.1 g (0.2 mmol) of the phosphazenium salt synthesized in Synthesis Example 2 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under a reduced pressure of 0.2 kPa for 3 hours. After the dehydration treatment, the temperature was raised to 90 ° C., and 46 g of propylene oxide was reacted in the temperature range of 88 to 92 ° C.
  • Example 29 A phosphazenium salt synthesized in Synthesis Example 4 (0.3 g, 0.4 mmol) and polyalkylene glycol A (3.5 g, 8.7 mmol) were mixed with a temperature measuring tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and the mixture was heated under a reduced pressure of 0.2 kPa for 3 hours. After dehydration, the temperature was raised to 90 ° C., and 65 g of propylene oxide was reacted in the temperature range of 88 to 92 ° C.
  • Example 30 FIG. 0.15 g (0.2 mmol) of the phosphazenium salt synthesized in Synthesis Example 4 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 80 ° C., and dehydration was performed under a reduced pressure of 0.2 kPa for 3 hours. After the dehydration treatment, the temperature was raised to 90 ° C., and 46 g of propylene oxide was reacted in the temperature range of 88 to 92 ° C.
  • Example 31 0.1 g (0.2 mmol) of the phosphazenium salt synthesized in Synthesis Example 2 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 100 ° C., and dehydration treatment was performed under reduced pressure of 1.3 kPa for 3 hours. After the dehydration treatment, the temperature was set to 90 ° C., and 46 g of propylene oxide was reacted in the temperature range of 88 to 92 ° C.
  • Example 32 0.1 g (0.2 mmol) of the phosphazenium salt synthesized in Synthesis Example 2 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 100 ° C., and dehydration treatment was performed for 1 hour under a reduced pressure of 0.2 kPa. After the dehydration treatment, the temperature was set to 90 ° C., and 46 g of propylene oxide was reacted in the temperature range of 88 to 92 ° C.
  • Example 33 0.1 g (0.2 mmol) of the phosphazenium salt synthesized in Synthesis Example 2 and 8.7 g (8.7 mmol) of polyalkylene glycol C were mixed with a temperature measurement tube, a pressure gauge, a stirrer, and an alkylene oxide introduction tube. A glass autoclave having a volume of 200 ml was charged. Thereafter, the inside of the reactor was replaced with dry nitrogen, the temperature was raised to 60 ° C., and dehydration was performed under a reduced pressure of 0.2 kPa for 5 hours. After the dehydration treatment, the temperature was raised to 90 ° C., and the reaction was carried out in the temperature range of 88 to 92 ° C.
  • the obtained polyalkylene oxide had a hydroxyl value of 28 mgKOH / g.
  • Example 21 Comparative Example 4 In Example 21, the same operation except that 0.2 g (0.4 mmol) of the phosphazenium salt obtained in Synthesis Example 13 was used instead of 0.2 g (0.4 mmol) of the phosphazenium salt obtained in Synthesis Example 14. Went. The temperature was raised to 90 ° C., and propylene oxide was intermittently supplied so as to maintain a reaction pressure of 0.3 MPa or less. The obtained polyol had almost the same weight as the polyol A before the start, and the reaction did not proceed at all.
  • Comparative Example 5 In Comparative Example 2, the phosphazene catalyst 1-tert-butyl-4,4,4-tris (dimethylamino) -2,2-bis [tris (dimethylamino) phosphoranylideneamino] -2 ⁇ 5,4 ⁇ 5-catenadi (phosphazene) The same except that 0.3 g (0.4 mmol) of tetrakis [tris (dimethylamino) phosphoranylideneamino] phosphonium hydroxide was used instead of 0.8 mL (0.4 mmol) of 0.5 mol / L hexane solution. Was performed.
  • the temperature was raised to 90 ° C., and propylene oxide was intermittently supplied so as to maintain a reaction pressure of 0.3 MPa or less. At this time, propylene oxide was slowly supplied to control the temperature at 90 ° C., but the reaction temperature fluctuated between 88 ° C. and 95 ° C. due to the endotherm during the supply of propylene oxide and the heat generated by the reaction heat. It was difficult. Further, as a result of further reducing the supply rate in order to control the temperature within the above range, the reaction time was 2 hours longer than Example 18 and 8 hours. As is clear from the above examples and comparative examples, the polyalkylene glycol production method of the present invention is easy to control the temperature during the reaction.
  • the polyalkylene glycol production catalyst of the present invention is easy to synthesize and does not contain a special metal component. Further, the polyalkylene glycol production method using the polyalkylene glycol production catalyst has a temperature during the reaction of alkylene oxide. Industrial applicability, such as easy to control, low molecular weight distribution, high molecular weight and low polyunsaturation of polyalkylene oxide easily and efficiently without producing odor residue Is big.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polyethers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

 合成が容易で、金属成分を全く含まず、生成物に臭気を残留させないホスファゼニウムカチオンと活性水素化合物アニオンとの塩からなる触媒、その製造方法、及びそれをして用いたポリアルキレンオキシドの経済的かつ効率的な製造方法を提供する。  下記一般式(2);[上記一般式(2)中、R,Rは各々独立して炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基を表す。ただし、RとR、又はR同士が互いに結合して環構造を形成していても良い。nは1~8の実数であり、Yn-は活性水素化合物Y中のn個のプロトンが脱離した活性水素化合物のアニオンを表す。] で示されるホスファゼニウムカチオンと活性水素化合物アニオンとの塩をポリアルキレングリコール製造触媒として用いる。

Description

ポリアルキレングリコール製造触媒、及びそれを用いたポリアルキレングリコールの製造方法
 本発明は、アルキレンオキシドの開環重合により、経済的にポリアルキレングリコールを製造するための触媒に関する。ポリアルキレンオキシドはイソシアネート化合物と反応させることによりポリウレタンフォームやエラストマー等の原料又は界面活性剤等として用いられる重要な重合体である。
 アルキレンオキシドの開環重合により、ポリアルキレンオキシドを製造するための触媒としては、例えば、活性水素化合物とZn[Fe(CN)・HO・ジオキサンで表される化合物が知られている(例えば、特許文献1参照)。また、触媒として、亜鉛ヘキサシアノコバルテート錯体が用いられることが知られている(例えば、特許文献2参照)。さらに、触媒として、ヒュームドシリカのヘキサンスラリーに1,4-ブタンジオールと非イオン系界面活性剤を加えた分散物に、ジエチル亜鉛のヘキサン溶液を添加して得られた生成物を用いることが知られている(例えば、特許文献3参照)。しかしながら、これらの文献に記載された触媒は、いずれも特別な金属成分を含有しており、生成したポリアルキレンオキシド中にこれらの金属成分が残存すると、ポリウレタン製造の際の反応又はポリウレタンの物性に悪影響を与えるため、ポリアルキレンオキシドの製造にあたっては、これらの金属成分を充分に除去する特別の方法や煩雑な工程が必要であった。
 一方、金属を含まない触媒としては、特許文献4には、活性水素化合物であるアルカンポリオールと三ふっ化ほう素のエーテル付加物との組み合わせた触媒が記載されている。しかしながら、この触媒系で得られる重合体中の特異な不純物が、ポリウレタンの物性に悪影響を及ぼすことが知られており、充分に除去するには煩雑な工程が必要である。また、特許文献5には、アルコール類とアミノフェノールを触媒として用い、アルキレンオキシドの重合体を得ることが記載されており、特許文献6には、ソルビトールとテトラメチルアンモニウムヒドロオキシドを用いてプロピレンオキシドを重合させることが記載されている。しかしながら、これら文献に記載された触媒を用いた場合には、何れも重合活性が充分でないうえ、アミン系の臭気が残留する等の問題を抱えている。
 また、下記式
Figure JPOXMLDOC01-appb-C000004
[上記式中、nは1~8の整数であってホスファゼニウムカチオンの数を表し、Zn-は最大8個の活性水素原子を酸素原子又は窒素原子上に有する活性水素化合物からn個のプロトンが離脱して導かれる形のn価の活性水素化合物のアニオンである。a、b、c及びdはそれぞれ3以下の正の整数又は0であるが、全てが同時に0ではない。Rは同種又は異種の、炭素数1~10個の炭化水素基であり、同一窒素原子上の2個のRが互いに結合して環構造を形成する場合もある。]
で表される活性水素化合物のホスファゼニウム塩が、下記式
Figure JPOXMLDOC01-appb-C000005
[上記式中、mは1~3の整数であってホスファゼニウムカチオンの数を表し、Xm-はm価の無機アニオンである。a、b、c及びdはそれぞれ3以下の正の整数又は0であるが、全てが同時に0ではない。Rは同種又は異種の、炭素数1~10個の炭化水素基であり、同一窒素原子上の2個のRが互いに結合して環構造を形成する場合もある。]
で表されるホスファゼニウムカチオンと無機アニオンとの塩、及びM n-(M はn個のアルカリ金属カチオンを表す。nは1~8の整数であり、Zn-は最大8個の活性水素原子を酸素原子又は窒素原子上に有する活性水素化合物からn個のプロトンが離脱して導かれる形のn価の活性水素化合物のアニオンであり、上記ホスファゼニウム塩中のZn-と同一である。)で表される活性水素化合物のアルカリ金属塩を反応させることにより得られ、上記ホスファゼニウム塩はプロピレンオキシドの開環重合触媒として有用であることが知られている(例えば、特許文献7参照)。しかしながら、このホスファゼニウム塩は、製造方法に多くの工程を必要とするため、操作が煩雑であり、経済性に問題を有していた。
 さらに、下記式(III)
   [R]-Y  X       (III)
(式中、n=2~4、m=0,1又は2、n+m=4である。Rは、-N=C(NR)(NR)であり、Yは、-N(R)(R)である。R~Rは、それぞれ独立に置換基を有してもよい炭素数1~10の環状、脂肪族、又は芳香族炭化水素であって、少なくとも一つのヘテロ原子若しくは少なくとも一つのキラル中心、又は(-CH-CH-O-)-CHCH-Oalk(o=1~12)を含む。Xは、活性酸素に結合したO、N,Sをもつ無機酸又は有機酸から得られるアニオンである。)
で示される窒素含有ホスホニウム塩が、非金属触媒として、ハロゲン交換反応や相間移動触媒反応、ポリアルキレンポリオールポリマーの製造、ラクタムの重合やポリウレタン、ハロゲン炭化水素重合反応やハロゲン脱保護反応等に有用であるとの報告がなされている(例えば、特許文献8参照。)。
 しかしながら、特許文献8には、ポリアルキレンポリオールを調製した例は示されておらず、上記式(III)の窒素含有ホスホニウム塩を用いて、どのようにポリアルキレンポリオールを調製するのか、さらにそれによって、どのような性状のポリアルキレンポリオールが調製されるのか、全く明らかになっていない。
米国特許第3,829,505号明細書 特開平2-276821号公報 特開昭62-232433号公報 特開昭50-159595号公報 特開昭57-12026号公報 特開昭56-38323号公報 特許第3497054号明細書(特開平10-77289号公報) ドイツ特許第102006010034号出願公開明細書
 本発明は、上記の背景技術に鑑みてなされたものであり、その目的は、合成が容易で、金属成分を全く含まず、生成物に臭気を残留させないホスファゼニウムカチオンと活性水素化合物アニオンとの塩からなる触媒、その製造方法、及びそれを用いたポリアルキレンオキシドの経済的かつ効率的な製造方法を提供することである。
 本発明者らは、上記の目的を達成するために鋭意検討を行った結果、特定のホスファゼニウム塩と活性水素化合物を加熱処理して得られる触媒を用いてアルキレンオキシドを開環重合させると、極めて効果的かつ経済的にポリアルキレングリコールを製造可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下に示すとおりのポリアルキレングリコール製造触媒、及びそれを用いたポリアルキレングリコールの製造方法に関するものである。
 [1]下記一般式(2)
Figure JPOXMLDOC01-appb-C000006
[上記一般式(2)中、R,Rは各々独立して炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基を表す。ただし、RとR、又はR同士が互いに結合して環構造を形成していても良い。nは1~8の実数であり、Yn-は活性水素化合物Y中のn個のプロトンが脱離した活性水素化合物のアニオンを表す。]
で示されるホスファゼニウムカチオンと活性水素化合物アニオンとの塩からなることを特徴とするポリアルキレングリコール製造触媒。
 [2]一般式(2)で示されるホスファゼニウムカチオンにおいて、R、Rが共にメチル基であるか、又はRがメチル基若しくはイソプロピル基であり、R同士が結合してジメチレン基となって環構造を形成していることを特徴とする上記[1]に記載のポリアルキレングリコール製造触媒。
 [3]活性水素化合物Yが、水、又は部分構造式-OH若しくは-NH-を有する有機化合物から選ばれる化合物であることを特徴とする上記[1]又は[2]に記載のポリアルキレングリコール製造触媒。
 [4]部分構造式-OHを有する有機化合物が、炭素数1~20のアルコール類、2~8個の水酸基を有する炭素数2~20の多価アルコール類、糖類若しくはその誘導体、及び2~8個の末端を有しその末端に1~8個の水酸基を有する数平均分子量200~20,000のポリアルキレンオキシド類からなる群より選ばれる一種又は二種以上であることを特徴とする上記[3]に記載のポリアルキレングリコールの製造触媒。
 [5]部分構造式-NH-を有する有機化合物が、2~3個の一級若しくは二級アミノ基を有する炭素数2~20の多価アミン類、炭素数4~10の飽和環状二級アミン、及び2~3個の二級アミノ基を含む炭素数4~10の環状の多価アミン類からなる群より選ばれる一種又は二種以上であることを特徴とする上記[3]に記載のポリアルキレングリコール製造触媒。
 [6]下記一般式(1)
Figure JPOXMLDOC01-appb-C000007
[上記一般式(1)中、R,Rは各々独立して炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基を表す。ただし、RとR、又はR同士が互いに結合して環構造を形成していても良い。Xは、ヒドロキシアニオン、アルコキシアニオン、又はカルボキシアニオンを表す。]
で示されるホスファゼニウム塩と活性水素化合物Yを混合した後、加熱処理することを特徴とする上記[1]乃至[5]のいずれかに記載のポリアルキレングリコール製造触媒の製造方法。
 [7]一般式(1)で示されるホスファゼニウム塩において、R、Rが共にメチル基であるか、又はRがメチル基若しくはイソプロピル基であり、R同士が結合してジメチレン基となって環構造を形成していることを特徴とする上記[6]に記載のポリアルキレングリコール製造触媒の製造方法。
 [8]一般式(1)で示されるホスファゼニウム塩のXが、ヒドロキシアニオン、炭素数1~4の飽和のアルキルアルコール又はフェノールから導かれるアルコキシアニオン、及び炭素数2~4のカルボン酸から導かれるカルボキシアニオンからなる群より選ばれる一種又は二種以上のアニオンであることを特徴とする上記[6]又は[7]に記載のポリアルキレングリコール製造触媒の製造方法。
 [9]一般式(1)で示されるホスファゼニウム塩のXが、ヒドロキシアニオンであることを特徴とする上記[6]乃至[8]のいずれかに記載のポリアルキレングリコール製造触媒の製造方法。
 [10]活性水素化合物Yが、水、又は部分構造式-OH若しくは-NH-を有する有機化合物から選ばれる化合物であることを特徴とする上記[6]乃至[9]のいずれかに記載のポリアルキレングリコール製造触媒の製造方法。
 [11]部分構造式-OHを有する有機化合物が、炭素数1~20のアルコール類、2~8個の水酸基を有する炭素数2~20の多価アルコール類、糖類若しくはその誘導体、及び2~8個の末端を有しその末端に1~8個の水酸基を有する数平均分子量200~20,000のポリアルキレンオキシド類からなる群より選ばれる一種又は二種以上であることを特徴とする上記[10]に記載のポリアルキレングリコールの製造触媒の製造方法。
 [12]部分構造式-NH-を有する有機化合物が、2~3個の一級若しくは二級アミノ基を有する炭素数2~20の多価アミン類、炭素数4~10の飽和環状二級アミン、及び2~3個の二級アミノ基を含む炭素数4~10の環状の多価アミン類からなる群より選ばれる一種又は二種以上であることを特徴とする上記[10]に記載のポリアルキレングリコール製造触媒の製造方法。
 [13]一般式(1)で示されるホスファゼニウム塩と活性水素化合物Yを、前記ホスファゼニウム塩1モルに対し前記活性水素化合物Yを0.2~1,000モルの範囲で混合した後、加熱処理することを特徴とする上記[6]乃至[12]のいずれかに記載のポリアルキレングリコール製造触媒の製造方法。
 [14]上記[1]乃至[5]のいずれかに記載のポリアルキレングリコール製造触媒の存在下に、アルキレンオキシドを開環重合させることを特徴とするポリアルキレングリコールの製造方法。
 [15]上記[6]乃至[13]のいずれかに記載の製造方法により得られるポリアルキレングリコール製造触媒の存在下に、アルキレンオキシドを開環重合させることを特徴とするポリアルキレングリコールの製造方法。
 [16]下記一般式(1)
Figure JPOXMLDOC01-appb-C000008
[上記一般式(1)中、R,Rは各々独立して炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基を表す。ただし、RとR、又はR同士が互いに結合して環構造を形成していても良い。Xは、ヒドロキシアニオン、アルコキシアニオン、又はカルボキシアニオンを表す。]
で示されるホスファゼニウム塩と活性水素化合物Yを混合し、加熱処理した後、アルキレンオキシドを添加して、アルキレンオキシドを開環重合させることを特徴とするポリアルキレングリコールの製造方法。
 [17]アルキレンオキシドが、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、及びスチレンオキシドよりなる群から選ばれる一種又は二種以上であることを特徴とする上記[14]乃至[16]のいずれかに記載のポリアルキレングリコールの製造方法。
 [18]上記[14]乃至[17]のいずれかに記載の製造方法により得られる、総不飽和度が0.07meq./g以下であり、且つ分子量分布(Mw/Mn)が1.1以下であることを特徴とするポリアルキレングリコール。
 [19]上記[14]乃至[17]のいずれかに記載の製造方法により得られる、水酸基価が60mgKOH/g以下であり、且つ数平均分子量が3,000~50,000の範囲にあることを特徴とするポリアルキレングリコール。
 本発明のポリアルキレングリコール製造触媒は、特別な金属成分を使用することがないので、当該金属成分を充分に除去するための特別な方法や煩雑な工程が不要である。
 また、本発明のポリアルキレングリコール製造触媒を用いたポリアルキレングリコールの製造方法は、アルキレンオキシドの反応時の温度制御が容易となり、狭い分子量分布を持ち、高分子量で総不飽和度の低いポリアルキレンオキシドを、簡便に、効率よく、臭気を残留させないで製造することができる。
 したがって、本発明は工業的に極めて有用である。
 本発明のポリアルキレングリコール製造触媒は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000009
[上記一般式(1)中、R,Rは各々独立して炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基を表す。ただし、RとR、又はR同士が互いに結合して環構造を形成していても良い。Xは、ヒドロキシアニオン、アルコキシアニオン、又はカルボキシアニオンを表す。]
で表されるホスファゼニウム塩と活性水素化合物Yとを加熱処理することにより得られる。その際の混合比は、上記一般式(1)で表されるホスファゼニウム塩1モルに対して、活性水素化合物Yが0.2~1000モルの範囲であることが好ましい。混合比がこの範囲より小さくなりすぎると、高い活性は得られるものの、反応熱の制御が難しくなり、得られるポリアルキレングリコールの物性が低下してしまう。また逆に、混合比がこの範囲よりが大きくなりすぎると、十分な活性が得られなくなる場合がある。高い活性を得られるという観点から、混合比は好ましくは1~500モルの範囲である。また、反応温度が容易であるという観点から、より好ましくは、10~300モルの範囲である。
 本発明の触媒は、上記一般式(1)で表されるホスファゼニウム塩と活性水素化合物を加熱処理することにより形成される、下記一般式(2)
Figure JPOXMLDOC01-appb-C000010
[上記一般式(2)中、R,Rは各々独立して炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基を表す。ただし、RとR、又はR同士が互いに結合して環構造を形成していても良い。nは1~8の実数であり、Yn-は活性水素化合物中のn個のプロトンが脱離した活性水素化合物のアニオンを表す。]
で示されるホスファゼニウムカチオンと活性水素化合物アニオンとの塩からなる。ここで、nは1より大、かつ6以下の実数であることが好ましい。
 本発明において、上記一般式(1)又は一般式(2)中の置換基R又はRは、各々独立して炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基である。
 具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、2-ブチル基、1-ペンチル基、2-ペンチル基、3-ペンチル基、2-メチル-1-ブチル基、イソペンチル基、tert-ペンチル基、3-メチル-2-ブチル基、ネオペンチル基、n-ヘキシル基、4-メチル-2-ペンチル基、シクロペンチル基、シクロヘキシル基、1-ヘプチル基、3-ヘプチル基、1-オクチル基、2-オクチル基、2-エチル-1-ヘキシル基、1,1-ジメチル-3,3-ジメチルブチル基、ノニル基、デシル基、フェニル基、4-トルイル基、ベンジル基、1-フェニルエチル基、2-フェニルエチル基等の脂肪族又は芳香族の炭化水素基が例示される。これらのうち、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、tert-ペンチル基、1,1-ジメチル-3,3-ジメチルブチル基等の炭素数1~10の脂肪族炭化水素基が好ましく、メチル基が特に好ましい。
 本発明においては、上記一般式(1)又は一般式(2)中の置換基R又はRは、RとR、又はR同士が互いに結合して環構造を形成していても良い。具体的には、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が例示され、好ましくはジメチレン基、トリメチレン基、テトラメチレン基である。置換基R又はRとしては、例えば、R、Rが共にメチル基であるものや、Rがメチル基又はイソプロピル基であり、且つ-N=C[-NRの部分でR同士が結合したジメチレン基となって、環構造を形成しているもの等が好適なものとして挙げられる。
 本発明において、上記一般式(1)中のXは、ヒドロキシアニオン、炭化水素アニオン、炭酸水素イオン、アルコキシアニオン、及びカルボキシアニオンよりなる群から選ばれる一種又は二種以上のアニオンである。
 本発明においては、上記一般式(1)中のXのうち、アルコキシアニオンとしては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、アリルアルコール、n-ブタノール、sec-ブタノール、tert-ブタノール、シクロヘキサノール、2-ヘプタノール、1-オクタノール、フェノール等の炭素数1~8のアルコール類から導かれるアルコキシアニオンが挙げられる。また、カルボキシアニオンとしては、例えば、蟻酸、酢酸、プロピオン酸、酪酸、イソ酪酸、カプロン酸等の炭素数1~6のカルボン酸から導かれるカルボキシアニオンが挙げられる。
 本発明においては、これらのうち、ヒドロキシアニオン、アルコキシアニオンとして、メトキシアニオン、エトキシアニオン、カルボキシアニオンとして、酢酸アニオンがより好ましい。
 本発明において、上記一般式(1)で示されるホスファゼニウム塩は、単独で用いても2種以上を混合して用いても良い。
 本発明において、活性水素化合物Yとは、活性水素を有する化合物であり、水、又は部分構造式-OH若しくは-NH-を有する有機化合物から選ばれる化合物である。
 本発明に用いられる、部分構造式-OHを有する有機化合物としては、例えば、蟻酸、酢酸、プロピオン酸、酪酸、イソ酪酸、ラウリン酸、ステアリン酸、オレイン酸、フェニル酢酸、ジヒドロ桂皮酸、シクロヘキサンカルボン酸、安息香酸、パラメチル安息香酸、2-カルボキシナフタレン等の炭素数1~20のカルボン酸類;
 蓚酸、マロン酸、こはく酸、マレイン酸、フマル酸、アジピン酸、イタコン酸、ブタンテトラカルボン酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸等の炭素数2~20の2~6個のカルボキシル基を有する多価カルボン酸類;
 N,N-ジエチルカルバミン酸、N-カルボキシピロリドン、N-カルボキシアニリン、N,N’-ジカルボキシ-2,4-トルエンジアミン等のカルバミン酸類;
 メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソペンチルアルコール、tert-ペンチルアルコール、n-オクチルアルコール、ラウリルアルコール、セチルアルコール、シクロペンタノール、シクロヘキサノール、アリルアルコール、クロチルアルコール、メチルビニルカルビノール、ベンジルアルコール、1-フェニルエチルアルコール、トリフェニルカルビノール、シンナミルアルコール等の炭素数1~20のアルコール類;
 エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、トリメチロールプロパン、グリセリン、ジグリセリン、トリメチロールメラミン、ペンタエリスリトール、ジペンタエリスリトール等の2~8個の水酸基を有する炭素数2~20の多価アルコール類;
 グルコース、ソルビトール、デキストロース、フラクトース又はシュクロース等の糖類又はその誘導体;
 フェノール、2-ナフトール、2,6-ジヒドロキシナフタレン、ビスフェノールA等の炭素数6~20の1~3個の水酸基を有する芳香族化合物類;
 ポリエチレンオキシド、ポリプロピレンオキシド又はそれらのコポリマー等であって、2~8個の末端を有し、その末端に1~8個の水酸基を有する数平均分子量200~50,000のポリアルキレンオキシド類等が挙げられる。
 なお、本発明においては、本発明の趣旨に反しない限り、上記に例示した以外の部分構造式-OHを有する有機化合物を使用しても良い。
 また、本発明に用いられる、部分構造式-NH-を有する有機化合物としては、例えば、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、シクロヘキシルアミン、ベンジルアミン、β-フェニルエチルアミン、アニリン、o-トルイジン、m-トルイジン、p-トルイジン等の炭素数1~20の脂肪族又は芳香族一級アミン類;
 ジメチルアミン、メチルエチルアミン、ジエチルアミン、ジ-n-プロピルアミン、エチル-n-ブチルアミン、メチル-sec-ブチルアミン、ジペンチルアミン、ジシクロヘキシルアミン、N-メチルアニリン、ジフェニルアミン等の炭素数2~20の脂肪族又は芳香族二級アミン類;
 エチレンジアミン、ジ(2-アミノエチル)アミン、ヘキサメチレンジアミン、4,4’-ジアミノジフェニルメタン、メラミン、トリ(2-アミノエチル)アミン、N,N’-ジメチルエチレンジアミン、ジ(2-メチルアミノエチル)アミン等の炭素数2~20の2~3個の一級又は二級アミノ基を有する多価アミン類;
 ピロリジン、ピペリジン、モルホリン、1,2,3,4-テトラヒドロキノリン等の炭素数4~20の飽和環状二級アミン類;
 3-ピロリン、ピロール、インドール、カルバゾール、イミダゾール、ピラゾール、プリン等の炭素数4~20の不飽和環状二級アミン類;
 ピペラジン、ピラジン、1,4,7-トリアザシクロノナン等の2~3個の二級アミノ基を含む炭素数4~20の環状の多価アミン類;
 アセトアミド、プロピオンアミド、N-メチルプロピオンアミド、N-メチル安息香酸アミド、N-エチルステアリン酸アミド等の炭素数2~20の無置換又はN-一置換の酸アミド類;
 2-ピロリドン、ε-カプロラクタム等の5~7員環の環状アミド類;
 こはく酸イミド、マレイン酸イミド、フタルイミド等の炭素数4~10のジカルボン酸のイミド類等が挙げられる。
 なお、本発明においては、本発明の趣旨に反しない限り、上記に例示した以外の部分構造式-NH-を有する有機化合物を使用しても良い。
 本発明に用いられる、部分構造式-OHを有する有機化合物として好ましくは、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソペンチルアルコール、tert-ペンチルアルコール、n-オクチルアルコール、ラウリルアルコール、セチルアルコール、シクロペンタノール、シクロヘキサノール、アリルアルコール、クロチルアルコール、メチルビニルカルビノール、ベンジルアルコール、1-フェニルエチルアルコール、トリフェニルカルビノール、シンナミルアルコール等の炭素数1~20のアルコール類;
 エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、トリメチロールプロパン、グリセリン、ジグリセリン、ペンタエリスリトール、ジペンタエリスリトール等の炭素数2~20の2~8個の水酸基を有する多価アルコール類;グルコース、ソルビトール、デキストロース、フラクトース、シュクロース等の糖類又はその誘導体;ポリエチレンオキシド、ポリプロピレンオキシド又はそれらのコポリマー等であって2~8個の末端を有し、その末端に1~8個の水酸基を有する数平均分子量200~50,000のポリアルキレンオキシド類等が例示される。
 また、本発明の触媒又はその製造方法において、部分構造式-NH-を有する有機化合物として好ましくは、エチレンジアミン、ジ(2-アミノエチル)アミン、ヘキサメチレンジアミン、4,4’-ジアミノジフェニルメタン、トリ(2-アミノエチル)アミン、N,N’-ジメチルエチレンジアミン、N、N’-ジエチルエチレンジアミン、ジ(2-メチルアミノエチル)アミン等の炭素数2~20の2~3個の一級又は二級アミノ基を有する多価アミン類;ピロリジン、ピペリジン、モルホリン、1,2,3,4-テトラヒドロキノリン等の炭素数4~10の飽和環状二級アミン類;ピペラジン、ピラジン、1,4,7-トリアザシクロノナン等の炭素数4~10の2~3個の二級アミノ基を含む環状の多価アミン類等が例示される。
 さらに本発明において、これらの活性水素化合物のうち、より好ましくは、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトール等の炭素数2~20の2~8個の水酸基を有する多価アルコール類;グルコース、ソルビトール、デキストロース、フラクトース、シュクロース等の糖類又はその誘導体;ポリエチレンオキシド、ポリプロピレンオキシド又はそれらのコポリマー等であって2~6個の末端を有し、その末端に2~6個の水酸基を有する数平均分子量200~10,000のポリアルキレンオキシド類等の部分構造式-OHを有する有機化合物である。
 本発明の触媒の製造方法において、上記加熱処理は、通常1.3kPa以下の減圧下で行われ、好ましくは1.0~0.05kPaの範囲であり、より好ましくは0.5~0.01kPaの範囲である。減圧度が低いと加熱処理の時間が長くなるばかりではなく、目的のホスファゼニウムカチオンと活性水素化合物アニオンとの塩の形成が十分に進行しないため、十分な重合活性が得られないおそれがある。一方、必要以上に減圧度が高くてもホスファゼニウムカチオンと活性水素化合物アニオンとの塩の形成への影響はなく不経済となる。
 本発明の触媒の製造方法において、上記加熱処理における処理温度は、通常60℃以上の温度であり、好ましくは70~110℃、より好ましくは80~100℃の範囲の温度である。処理温度が低いと、目的のホスファゼニウムカチオンと活性水素化合物アニオンとの塩の形成が十分に進行しないため、十分な重合活性が得られず、逆に処理温度が高すぎると、活性水素化合物や形成されたホスファゼニウムカチオンと活性水素化合物アニオンとの塩の熱劣化による重合活性の低下を招く場合がある。
 本発明の触媒の製造において、加熱処理に必要とされる時間としては、特に限定するものではないが、通常は1時間以上加熱処理すれば十分であり、好ましくは2~10時間、より好ましくは3~6時間である。処理時間が短いと、望みのホスファゼニウムカチオンと活性水素化合物アニオンとの塩の形成が十分に進行せず、重合活性の低下を招き、逆に処理時間が必要以上に長いと不経済となるばかりではなく、活性水素化合物や形成されたホスファゼニウムカチオンと活性水素化合物アニオンとの塩の熱劣化による重合活性の低下を招く場合がある。
 上記一般式(1)で示されるホスファゼニウム塩と活性水素化合物Yから、上記一般式(2)で示されるホスファゼニウムカチオンと活性水素化合物のアニオンとの塩が導かれる際には、通常過剰に用いられる活性水素化合物の過剰分はそのまま残存するが、この他に、水、アルコール又はカルボン酸が、ホスファゼニウム塩の種類に応じて副生する。本発明の触媒の製造方法においては、これらの副生成物をアルキレンオキシド化合物の重合反応に先だって除去しておくこともできる。その方法としては、それらの副生成物の性質に応じて、加熱若しくは減圧で留去する方法、不活性気体を通ずる方法又は吸着剤を用いる方法等が用いられる。
 本発明の触媒の製造方法において、上記一般式(1)で示されるホスファゼニウム塩の製造方法は、特に限定するものではないが、例えば、下記一般式(3)
Figure JPOXMLDOC01-appb-C000011
[上記一般式(3)中、Xは塩素原子又は臭素原子を表す。]
で表される五ハロゲン化リンに、下記一般式(4)
Figure JPOXMLDOC01-appb-C000012
[上記一般式(4)中、R,Rは、各々独立して炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基を表す。ただし、RとR、又はR同士が互いに結合して環構造を形成していても良い。]
で表されるグアニジン誘導体を4当量反応させることにより製造することができる。
 上記反応で使用される上記一般式(3)で示される五ハロゲン化リンとしては、五塩化リン又は五臭化リンであり、好ましくは五塩化リンである。
 上記反応で使用される上記一般式(4)で示されるグアニジン誘導体の置換基R及びRは、各々独立して、炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基であり、RとR、又はR同士が互いに結合して環構造を形成していても良い。
 上記反応において、上記一般式(4)中の置換基R又はRとしては、特に限定するものではないが、具体的には、各々独立して炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基である。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、2-ブチル基、1-ペンチル基、2-ペンチル基、3-ペンチル基、2-メチル-1-ブチル基、イソペンチル基、tert-ペンチル基、3-メチル-2-ブチル基、ネオペンチル基、n-ヘキシル基、4-メチル-2-ペンチル基、シクロペンチル基、シクロヘキシル基、1-ヘプチル基、3-ヘプチル基、1-オクチル基、2-オクチル基、2-エチル-1-ヘキシル基、1,1-ジメチル-3,3-ジメチルブチル基、ノニル基、デシル基、フェニル基、4-トルイル基、ベンジル基、1-フェニルエチル基、2-フェニルエチル基等の脂肪族又は芳香族の炭化水素基が例示される。これらのうち、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、tert-ペンチル基、1,1-ジメチル-3,3-ジメチルブチル基等の炭素数1~10の脂肪族炭化水素基が好ましく、メチル基が特に好ましい。
 上記反応において、上記一般式(4)中の置換基R又はRは、RとR、又はR同士が互いに結合して環構造を形成していても良い。具体的には、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が例示され、好ましくはジメチレン基、トリメチレン基、テトラメチレン基である。一般式(4)で示されるグアニジン誘導体としては、例えば、R、Rが共にメチル基であるものや、Rがメチル基又はイソプロピル基であり、且つR同士が結合したジメチレン基となって、環構造を形成しているもの等が好適なものとして挙げられる。
 上記一般式(4)で示されるグアニジン誘導体の使用量は、五ハロゲン化リン1モルに対して通常は6~20モルの範囲であり、好ましくは8~12モルの範囲である。グアニジン誘導体の使用量が少ないと、目的のホスファゼニウム塩の生成量が大きく低下し、逆に使用量が多すぎると反応には殆ど影響はないが、不経済となる。
 上記反応において、五ハロゲン化リンとグアニジン誘導体との反応に用いられる溶媒としては、反応を阻害しないものであればよく、特に限定するものではない。例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、クロロベンゼン、オルトジクロロベンゼン等のハロゲン芳香族炭化水素類を挙げることができる。好ましくはトルエン、キシレン等の芳香族炭化水素類である。これらの溶媒は、単独でも2種以上を混合して用いてもよい。反応は均一状態で進行することが好ましいが、不均一状態であっても問題はない。また、使用される溶媒は、脱水処理を行った後に使用することが好ましい。
 上記反応において、五ハロゲン化リンとグアニジン誘導体との反応に用いられる溶媒の量は、五ハロゲン化リン1モル(mol)に対して、通常0.1~80L(liter)の範囲であり、好ましくは0.5~40Lの範囲、より好ましくは1~20Lの範囲である。溶媒量が少ないと、温度の制御が難しくなり、副反応を引き起こす可能性があり、反対に溶媒量が多すぎると、反応後の処理が煩雑となるばかりでなく、不経済である。
 上記反応において、五ハロゲン化リンとグアニジン誘導体との反応は、ヘリウム、窒素、アルゴン等の不活性ガスの雰囲気下で、通常実施される。
 上記反応において、五ハロゲン化リンとグアニジン誘導体との反応における反応温度は、通常-50℃~150℃の範囲であり、好ましくは-30℃~120℃の範囲である。反応温度が高いと、発熱を制御できず、副反応が起こる可能性があり、反応温度が低すぎると反応速度が低下し、反応時間が長くなる。また、反応温度は二段階で制御することが好ましい。
 上記反応における反応圧力は、減圧、常圧及び加圧の何れでも実施し得るが、好ましくは0.01~1MPaであり、より好ましくは0.05~0.3MPaの範囲である。
 上記反応における反応時間は、反応温度や反応系の状態等によって一様ではないが、通常、1分~48時間の範囲であり、好ましくは1分~24時間、より好ましくは5分~10時間である。
 上記反応の反応液から、目的のホスファゼニウム塩を分離するには、常套の手段を組み合わせた常用の方法が用いられる。分離方法は、生成する塩の種類や用いた溶媒の種類や量等により、分離方法は異なり、特に限定するものではない。例えば、副生するグアニジン誘導体のハロゲン化水素塩を洗浄、抽出、濾過等の方法で除去することにより、目的の塩を得ることができる。目的の塩に副生する塩が混入している場合には、そのまま又は再溶解後に、適切な他の溶媒で抽出しこれらを分離することができる。さらに、必要であれば再結晶又はカラムクロマトグラフィー等で精製することもできる。
 得られるハロゲンアニオンを他のアニオン種との塩に変換するためには、通常の方法、例えば、アルカリ金属カチオンと所望のアニオンとの塩で処理する方法やイオン交換樹脂を利用する方法等により、イオン交換することができる。
 上記した本発明の触媒の存在下に、アルキレンオキシドを開環重合させることにより、ポリアルキレングリコールが製造される。
 また、本発明においては、上記一般式(1)で表されるホスファゼニウム塩と活性水素化合物とを混合し、加熱処理した後で、アルキレンオキシドを添加し、アルキレンオキシドを開環重合させることにより、ポリアルキレングリコールを製造することもできる。
 すなわち、上記の加熱処理により、上記一般式(1)で示されるホスファゼニウム塩と活性水素化合物から、上記一般式(2)で示されるホスファゼニウムカチオンと活性水素化合物Yのアニオンとの塩(すなわち、本発明の触媒に該当)が形成されることにより、アルキレンオキシドの反応時の温度制御が容易となり、ポリアルキレンオキシドを、簡便に、効率よく調製することができるものと考えられる。
 上記の加熱処理は、本発明の触媒の製造法における条件と同様に実施することができるが、1.3kPa以下の減圧下、60℃以上の温度で1時間以上行うことが好ましい。
 本発明のポリアルキレングリコールの製造方法において使用されるアルキレンオキシドとしては、例えば、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、2,3-ブチレンオキシド、スチレンオキシド又はシクロヘキセンオキシド等のエポキシ化合物を挙げることができる。これらのうち、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド又はスチレンオキシドが好ましく、エチレンオキシド及びプロピレンオキシドがより好ましい。
 本発明のポリアルキレングリコールの製造方法では、上記のアルキレンオキシドを単独で使用してもよいし、2種以上を併用してもよい。2種類以上のアルキレンオキシドを併用する場合、プロピレンオキシドとエチレンオキシドとの併用が特に好ましい。併用する場合には、複数のアルキレンオキシドを同時に添加する方法、順次に添加する方法、又は順次を繰り返して添加する方法等をとることができる。
 本発明のポリアルキレングリコールの製造方法における、開環重合反応の形式は特に制限されるものではない。例えば、上記一般式(1)で示されるホスファゼニウム塩と活性水素化合物Yを加熱処理して、上記一般式(2)で示されるホスファゼニウムカチオンと活性水素化合物アニオンとの塩を調製し、得られた反応液から通常残存する活性水素化合物Y、及び必要に応じて副生成物の除去処理を講じた後で反応器に仕込み、溶媒を使用する場合には、更にその溶媒を仕込んだ反応器に対して、アルキレンオキシドを一括して供給する方法、又は間欠的若しくは連続的に供給する方法が用いられる。
 本発明のポリアルキレングリコールの製造方法における開環重合反応の反応温度は、使用するアルキレンオキシド、上記一般式(1)で示されるホスファゼニウム塩、活性水素化合物、又は上記一般式(2)で示されるホスファゼニウムカチオンと活性水素化合物アニオンとの塩等の種類や量により一様ではなく、規定することは困難ではあるが、あえて例示すると、通常150℃以下であり、好ましくは20~130℃、より好ましくは80~130℃、特に好ましくは90~110℃の範囲である。
 本発明のポリアルキレングリコールの製造方法における開環重合反応時の圧力は、用いるアルキレンオキシド、上記一般式(1)で示されるホスファゼニウム塩、活性水素化合物、又は上記一般式(2)で示されるホスファゼニウムカチオンと活性水素化合物アニオンとの塩等の種類若しくは量又は重合温度等に依存するため、一様ではないが、重合反応時の圧力として通常3MPa以下であり、好ましくは0.01~1.5MPa、より好ましくは0.1~1.0MPaの範囲である。反応時間は、用いるアルキレンオキシド、触媒物質の種類若しくは量又は重合温度や圧力に依存して一様ではないが、通常40時間以下であり、好ましくは0.1~30時間、より好ましくは0.5~24時間である。
 本発明のポリアルキレングリコールの製造方法においては、重合後の開始剤除去の負担を軽減するため等の目的で、本発明の触媒と、従来公知の開始剤とを併用しても良い。
 本発明のポリアルキレングリコールの製造方法において、アルキレンオキシドの開環重合反応に際しては、必要に応じて溶媒を使用することもできる。使用する溶媒としては、開環重合反応を阻害しなければ、特に制限はないが、具体的には、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、1,3-ジオキサン、アニソール等のエーテル類、ジメチルスルホキシド、N,N-ジメチルホルムアミド、ヘキサメチルホスホルアミド、N,N’-ジメチルイミダゾリジノン等の非プロトン性極性溶媒等を挙げることができる。
 本発明のポリアルキレングリコールの製造方法において、アルキレンオキシドの重合反応を、必要であれば窒素又はアルゴン等の不活性ガスの存在下に実施することもできる。
 本発明のポリアルキレングリコールの製造方法によれば、水酸基価で60~4mgKOH/g、分子量(数平均分子量)として3,000~50,000を有する高分子量のポリアルキレングリコールを製造することができるが、水酸基価で40~9mgKOH/g、分子量(数平均分子量)として4,500~20,000を有する高分子量のポリアルキレングリコールを製造することが好ましい。
 また、本発明のポリアルキレングリコールの製造方法により得られるポリアルキレングリコールは0.07meq./g以下の低い総不飽和度を示す。加えて、得られるポリアルキレングリコールは1.1以下の狭い分子量分布(Mw/Mn)を有しており、ポリアルキレングリコールとして優れた物性を有している。
 本発明のポリアルキレングリコールの製造方法により得られるポリアルキレングリコールは、重合反応に溶媒を用いた場合にはそれを除去するだけで、そのままポリウレタンフォームやエラストマーの原料又は界面活性剤として使用し得る場合もある。しかしながら、通常は、塩酸、燐酸、硫酸等の鉱酸、蟻酸、酢酸、プロピオン酸等の有機カルボン酸、二酸化炭素又は酸型イオン交換樹脂等で処理した後に上記原料又は界面活性剤として用いることもできる。更には水、有機溶媒又はそれらの混合物で洗浄する等の常用の精製を行っても良い。
 次に実施例により本発明を更に詳細に説明するが、本発明はこれらに限定して解釈されるものではない。なお、以下の実施例においては、NMRスペクトル、GC-MS、水酸基価を以下のとおり測定した。
 NMRスペクトルの測定:
 核磁気共鳴スペクトル測定装置(日本電子社製、商品名:GSX270WB)を用い、内部標準にテトラメチルシラン(TMS)及び重溶媒として重クロロホルムを用い測定した。
 数平均分子量の測定:
 ゲル・パーミエーション・クロマトグラフィー(GPC)(東ソー社製、商品名:HLC8020GPC)を用い、テトラヒドロフランを溶媒として40℃で測定した溶出曲線より標準ポリスチレン換算値として測定した。
 GC-MSの測定:
 ガスクロマトグラフィー-質量分析装置(日本電子社製、商品名:JMS-700)を用い、イオン化モードとして「FAB+」を用いて測定を行った。
 水酸基価、総不飽和度の測定:
 JIS K 1557に記載の測定法に従い測定した。
 エチレンオキシド含有量:
 核磁気共鳴スペクトル測定装置(日本電子社製、商品名:GSX270WB)を用い、得られたポリオールに由来するピークのプロトン比を基に算出した。
 使用する開始物質:
 ポリアルキレングリコールA:分子量400のグリセリン系ポリプロピレングリコール、
 ポリアルキレングリコールB:分子量400のプロピレングリコール系ポリプロピレングリコール、
 ポリアルキレングリコールC:分子量1000のグリセリン系ポリプロピレングリコール。
 合成例1.
 テトラキス(テトラメチルグアニジノ)ホスフォニウムクロライド:[(MeN)C=N]P+ Cl(式中、Meはメチル基を表す。以下同様である。)を以下のとおり合成した。
 温度計、滴下ロート、冷却管及び磁気回転子を付した300mlの4つ口フラスコに五塩化リン4.01g(10.0mmol)を採り、これに60mlの脱水トルエン(和光純薬社製)を加えてスラリー溶液とした。このスラリー溶液をドライアイス-アセトンにて、-30℃に冷却したクーリングバスにつけて内温を-30℃とした後、強撹拌下に1,1,3,3-テトラメチルグアニジン22.2g(20mmol)を滴下ロートから1時間かけて滴下した。そのまま-30℃で1時間撹拌した後、クーリングバスをはずして室温までゆっくり昇温した。更にこのスラリー溶液を100℃で10時間加熱して白色のスラリー溶液を得た。室温まで冷却した後、スラリーを濾別し、濾過残渣をアセトンで洗浄した。アセトン溶液を濃縮後、クロロホルムと水を用いて抽出を行い、クロロホルム相を硫酸ナトリウムで乾燥させた。乾燥後、クロロホルムを除去してテトラキス(テトラメチルグアニジノ)ホスフォニウム塩:[(MeN)C=N] Clを白色粉体として7.9g得た。収率は78%であった。
 H-NMR測定結果(重溶媒:CDCl,内部標準:テトラメチルシラン):
  化学シフト:2.83ppm(メチル基)。
 GC-MS(FAB+)測定結果:
  m/z=487(テトラキス(テトラメチルグアニジノ)ホスフォニウムカチオンに一致した)。
 生成物の元素分析の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000013
 合成例2.
 テトラキス(テトラメチルグアニジノ)ホスフォニウムヒドロキサイド:[(MeN)C=N] OHを以下のとおり合成した。
 テトラキス[(ジメチルアミノ)イミノ]ホスフォニウムクロリド3.2g(6mmol)を100mlのイオン交換水に溶解させて、0.06mol/Lの溶液を調製した。この溶液を300ml/時の流速で、100mlの水酸基型陰イオン交換樹脂(オルガノ社製、アンバーライトIRA410OH)を充填したカラム(直径30mm,高さ600mm)に室温で流通し、さらに150mlのイオン交換水を同流速で流通した。流出液を濃縮した後、40℃、1mmHgで乾固して、テトラキス(テトラメチルグアニジノ)ホスフォニウムヒドロキシド:[(MeN)C=N] OH 3.1gを白色結晶として得た。収率は99%であった。
 H-NMR測定結果(重溶媒:CDCl,内部標準:テトラメチルシラン):
  化学シフト:2.83ppm(メチル基)。
 GC-MS(FAB+)測定結果:
  m/z=487(テトラキス(テトラメチルグアニジノ)ホスフォニウムカチオンに一致した)。
 生成物の元素分析の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000014
 合成例3.
 テトラキス(1,3-ジイソプロピルイミダゾリジンイミノ)ホスフォニウムクロライドを以下のとおり合成した。
 温度計、滴下ロート、冷却管及び磁気回転子を付した200mlの4つ口フラスコに五塩化リン2.3g(11mmol)を採り、これに23mlの脱水トルエン(和光純薬社製)を加えてスラリー溶液とした。このスラリー溶液をドライアイス-アセトンにて、-30℃に冷却したクーリングバスにつけて内温を-30℃とした後、強撹拌下に1,3-ジイソプロピルイミダゾリジンイミン18.5g(110mmol)を滴下ロートから1時間かけて滴下した。そのまま-30℃で1時間撹拌した後、クーリングバスをはずして室温までゆっくり昇温した。更にこのスラリー溶液を100℃で10時間加熱して白色のスラリー溶液を得た。室温まで冷却した後、スラリーを濾別し、濾過残渣をアセトンで洗浄した。アセトン溶液を濃縮後、クロロホルムと水を用いて抽出を行い、クロロホルム相を硫酸ナトリウムで乾燥させた。乾燥後、クロロホルムを除去してテトラキス(1,3-ジイソプロピルイミダゾリジンイミノ)ホスフォニウム塩を白色粉体として5.5g得た。収率は67%であった。
 H-NMR測定結果(重溶媒:CDCl,内部標準:テトラメチルシラン):
  化学シフト:1.04ppm(48H,d,メチル),3.28ppm(16H,s,メチレン),4.46ppm(m,8H,メチン)。
 GC-MS(FAB+)測定結果:
  m/z=704(テトラキス(1,3-ジイソプロピルイミダゾリジンイミノ)ホスフォニウムカチオンに一致した)。
 合成例4.
 テトラキス(1,3-ジイソプロピルイミダゾリジンイミノ)ホスフォニウムヒドロキサイドを以下のとおり合成した。
 テトラキス(1,3-ジイソプロピルイミダゾリジンイミノ)ホスフォニウムクロリド1.5g(2mmol)を200mlのイオン交換水に溶解させて、0.01mol/Lの溶液を調製した。この溶液を200ml/時の流速で、50mlの水酸基型陰イオン交換樹脂(オルガノ社製、アンバーライトIRA410OH)を充填したカラム(直径30mm,高さ600mm)に室温で流通し、さらに150mlのイオン交換水を同流速で流通した。流出液を濃縮した後、40℃、1mmHgで乾固して、テトラキス(1,3-ジイソプロピルイミダゾリジンイミノ)ホスフォニウムヒドロキサイド1.5gを白色結晶として得た。収率は98%であった。
 H-NMR測定結果(重溶媒:CDCl,内部標準:テトラメチルシラン):
  化学シフト:1.04ppm(48H,d,メチル),3.28ppm(16H,s,メチレン),4.46ppm(m,8H,メチン)。
 GC-MS(FAB+)測定結果:
  m/z=704(テトラキス(1,3-ジイソプロピルイミダゾリジンイミノ)ホスフォニウムカチオンに一致した)。
 合成例5.
 テトラキス(1,3-ジメチルイミダゾリジンイミノ)ホスフォニウムクロライドを以下のとおり合成した。
 温度計、滴下ロート、冷却管及び磁気回転子を付した200mlの4つ口フラスコに五塩化リン2.3g(11mmol)を採り、これに40mlの脱水トルエン(和光純薬社製)を加えてスラリー溶液とした。このスラリー溶液をドライアイス-アセトンにて、-30℃に冷却したクーリングバスにつけて内温を-30℃とした後、強撹拌下に1,3-ジメチルイミダゾリジンイミン13g(110mmol)を滴下ロートから1時間かけて滴下した。そのまま-30℃で1時間撹拌した後、クーリングバスをはずして室温までゆっくり昇温した。更にこのスラリー溶液を100℃で10時間加熱して白色のスラリー溶液を得た。室温まで冷却した後、スラリーを濾別し、濾過残渣をアセトンで洗浄した。アセトン溶液を濃縮後、ジクロロメタンと水を用いて抽出を行い、ジクロロメタン相を硫酸ナトリウムで乾燥させた。乾燥後、ジクロロメタンを除去してテトラキス(1,3-ジメチルイミダゾリジンイミノ)ホスフォニウム塩を白色粉体として4.7g得た。収率は84%であった。
 H-NMR測定結果(重溶媒:CDCl,内部標準:テトラメチルシラン):
  化学シフト:2.91ppm(24H,メチル基)、3.39ppm(16H,メチレン基)。
 GC-MS(FAB+)測定結果:
  m/z=479(テトラキス(1,3-ジメチルイミダゾリジンイミノ)ホスフォニウムカチオンに一致した)。
 合成例6.
 テトラキス(1,3-ジメチルイミダゾリジンイミノ)ホスフォニウムヒドロキサイドを以下のとおり合成した。
 テトラキス(1,3-ジメチルイミダゾリジンイミノ)ホスフォニウムクロリド2.0g(4mmol)を40mlのイオン交換水に溶解させて、0.1mol/Lの溶液を調製した。この溶液を150ml/時の流速で、40mlの水酸基型陰イオン交換樹脂(オルガノ社製、アンバーライトIRA410OH)を充填したカラム(直径30mm,高さ600mm)に室温で流通し、さらに150mlのイオン交換水を同流速で流通した。流出液を濃縮した後、40℃、1mmHgで乾固して、テトラキス(1,3-ジメチルイミダゾリジンイミノ)ホスフォニウムヒドロキサイド1.9gを白色結晶として得た。収率は99%であった。
 H-NMR測定結果(重溶媒:CDCl,内部標準:テトラメチルシラン):
  化学シフト:2.91ppm(24H,メチル基)、3.39ppm(16H,メチレン基)。
 GC-MS(FAB+)測定結果:
  m/z=479(テトラキス(1,3-ジメチルイミダゾリジンイミノ)ホスフォニウムカチオンに一致した)。
 合成例7.
 合成例2で合成したホスフォニウムヒドロキシド5.04gとポリアルキレングリコールC 5gを混合し、80℃で1.3kPaの減圧下で3時間加熱処理を行った。処理により生成する水を捕集した結果、0.18gであった。この結果よりポリアルキレングリコールCに対して2当量のホスフォニウム塩が反応し、上記一般式(2)においてn=1.5(n>1)に相当する触媒9.8gを得た。
 合成例8.
 合成例2で合成したホスフォニウムヒドロキシド5.04gとポリアルキレングリコールC 3.3gを混合し、80℃で1.3kPaの減圧下で3時間加熱処理を行った。処理により生成する水を捕集した結果、0.18gであった。この結果よりポリアルキレングリコールCに対して3当量のホスフォニウム塩が反応し、一般式(2)においてn=3に相当する触媒8.2gを得た。
 合成例9.
 合成例2で合成したホスフォニウムヒドロキシド5.04gとポリアルキレングリコールC 10gを混合し、80℃で1.3kPaの減圧下で3時間加熱処理を行った。処理により生成する水を捕集した結果0.18gであった。この結果よりポリアルキレングリコールCに対して3当量のホスフォニウム塩が反応し、一般式(2)においてn=1に相当する触媒14.8gを得た。
 合成例10.
 合成例2で合成したホスフォニウムヒドロキシド5.04gとポリアルキレングリコールB 2gを混合し、80℃で1.3kPaの減圧下で3時間加熱処理を行った。処理により生成する水を捕集した結果、0.18gであった。この結果よりポリアルキレングリコールBに対して2当量のホスフォニウム塩が反応し、一般式(2)においてn=2に相当する触媒6.9gを得た。
 合成例11.
 合成例2で合成したホスフォニウムヒドロキシド5.04gとグリセリン0.3gを混合し、80℃で1.3kPaの減圧下で3時間加熱処理を行った。処理により生成する水を捕集した結果、0.18gであった。この結果よりグリセリンに対して3当量のホスフォニウム塩が反応し、一般式(2)においてn=1に相当する触媒5.1gを得た。
 合成例12.
 合成例2で合成したホスフォニウムヒドロキシド5.04gとグリセリン0.9gを混合し、80℃で1.3kPaの減圧下で3時間加熱処理を行った。処理により生成する水を捕集した結果、0.18gであった。この結果よりグリセリンに対して1当量のホスフォニウム塩が反応し一般式(2)においてn=1に相当する触媒5.7gを得た。
 実施例1.
 合成例2で得られたホスファゼニウム塩[上記一般式(1)においてR、Rがメチル基、Xがヒドロキシアニオンである。]0.2g(0.4mmol)とポリアルキレングリコールA 4.0g(10mmol)とを、熱伝対、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間加熱処理を行った。
 加熱処理後、窒素により常圧に戻し、90℃に昇温して、プロピレンオキシド30gを反応圧力0.3MPa以下を保つように間欠的に反応器内に供給しながら90℃で6時間反応させた。内容物を室温まで冷却した後、常圧に戻した。無色無臭のポリオキシプロピレントリオール31gを得た。得られたポリオキシプロピレントリオールの水酸基価は37mgKOH/gであり、総不飽和度は0.028meq/gであり、GPCにより求めた分子量分布(Mw/Mn)は1.03であった。
 比較例1.
 実施例1で使用した、ホスファゼニウム塩に代えて水酸化カリウム5mmol、反応温度を105℃とした以外は実施例1の重合反応と全く同様の操作を行った。内容物を室温まで冷却した後、常圧に戻した。無色無臭のポリオキシプロピレントリオール30gを得た。得られたポリオキシプロピレントリオールの水酸基価は39mgKOH/gであり、総不飽和度は0.114meq/gであり、GPCにより求めた分子量分布は1.7であった。
 実施例2.
 合成例2で合成したホスファゼニウム塩0.2g(0.4mmol)とポリアルキレングリコールC 4.0g(4mmol)とを、熱伝対、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間加熱処理を行った。
 加熱処理後、窒素により常圧に戻し、90℃に昇温して、プロピレンオキシド78gを反応圧力0.3MPa以下を保つように間欠的に反応器内に供給しながら88~92℃の温度範囲で6時間反応させた。窒素で常圧に戻し、内容物を室温まで冷却した。無色無臭のポリオキシプロピレントリオール78gを得た。得られたポリオキシプロピレントリオールは、水酸基価8mgKOH/gであり、総不飽和度は0.067meq/gであり、分子量分布(Mw/Mn)は1.05であった。
 実施例3.
 合成例2で合成したホスファゼニウム塩0.2g(0.4mmol)とポリアルキレングリコールA 4.0g(10mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間加熱処理を行った。
 加熱処理後、90℃に昇温して、プロピレンオキシド72gを反応圧力0.3MPa以下を保つように間欠的に反応器内に供給しながら88~92℃の温度範囲で6時間反応させた。窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留プロピレンオキシドを除去した後、無色無臭のポリオキシプロピレントリオール74gを得た。得られたポリオキシプロピレントリオールの水酸基価は22mgKOH/gであり、総不飽和度は0.072meq/gであり、分子量分布(Mw/Mn)は1.05であった。
 実施例4.
 合成例2で合成したホスファゼニウム塩0.1g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で3時間加熱処理を行った。
 加熱処理後、90℃に昇温して、プロピレンオキシド55gを反応圧力0.3MPa以下を保つように間欠的に反応器内に供給しながら88~92℃の温度範囲で6時間反応させた。窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留プロピレンオキシドを除去した後、無色無臭のポリオキシプロピレントリオール61gを得た。得られたポリオキシプロピレントリオールの水酸基価は20mgKOH/gであり、総不飽和度は0.028meq/gであり、分子量分布(Mw/Mn)は1.04であった。
 実施例5.
 合成例2で合成したホスファゼニウム塩0.2g(0.4mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で3時間加熱処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド55gを反応圧力0.3MPa以下を保つように間欠的に反応器内に供給しながら88~92℃の温度範囲で7.5時間反応させた。窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留プロピレンオキシドを除去した後、無色無臭のポリオキシプロピレントリオール65gを得た。得られたポリオキシプロピレントリオールの水酸基価は21mgKOH/gであり、総不飽和度は0.026meq/gであり、分子量分布(Mw/Mn)は1.05であった。
 実施例6.
 合成例2で合成したホスファゼニウム塩0.1g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド46gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した。プロピレンオキシド除去後に90℃で、エチレンオキシド12gを反応圧力が0.4MPa(ゲージ)以下となるように供給した。エチレンオキシド供給後、2時間同じ温度で熟成を行った。熟成後、窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留エチレンオキシドを除去した後、無色無臭のポリアルキレンオキシド63gを得た。得られたポリアルキレンオキシドのエチレンオキシド含有量は15.1重量%であり、水酸基価は22mgKOH/gであり、総不飽和度は0.026meq/gであり、分子量分布(Mw/Mn)は1.05であった。
 実施例7.
 合成例4で合成したホスファゼニウム塩0.15g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド55gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留プロピレンオキシドを除去した後、無色無臭のポリオキシプロピレントリオール64gを得た。得られたポリオキシプロピレントリオールの水酸基価は22mgKOH/gであり、総不飽和度は0.024meq/gであり、分子量分布(Mw/Mn)は1.06であった。
 実施例8.
 合成例6で合成したホスファゼニウム塩0.1g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド58gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留プロピレンオキシドを除去した後、無色無臭のポリオキシプロピレントリオール65gを得た。得られたポリオキシプロピレントリオールの水酸基価は22mgKOH/gであり、総不飽和度は0.025meq/gであり、分子量分布(Mw/Mn)は1.05であった。
 実施例9.
 合成例7で合成したホスファゼニウム塩0.8g(0.4mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で3時間加熱した。
 脱水処理後、90℃に昇温して、プロピレンオキシド60gを反応圧力0.3MPa以下を保つように間欠的に反応器内に供給しながら88~92℃の温度範囲で7.5時間反応させた。窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留プロピレンオキシドを除去した後、無色無臭のポリオキシプロピレントリオール67gを得た。得られたポリオキシプロピレントリオールの水酸基価は20mgKOH/gであり、総不飽和度は0.025meq/gであり、分子量分布(Mw/Mn)は1.04であった。
 実施例10.
 合成例7で合成したホスファゼニウム塩0.8g(0.4mmol)とポリアルキレングリコールA 3.5g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で3時間加熱した。
 脱水処理後、90℃に昇温して、プロピレンオキシド65gを反応圧力0.35MPa以下を保つように間欠的に反応器内に供給しながら88~92℃の温度範囲で7.5時間反応させた。窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留プロピレンオキシドを除去した後、無色無臭のポリオキシプロピレントリオール66gを得た。得られたポリオキシプロピレントリオールの水酸基価は20mgKOH/gであり、総不飽和度は0.027meq/gであり、分子量分布(Mw/Mn)は1.04であった。
 実施例11.
 合成例7で合成したホスファゼニウム塩0.5g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド48gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した。プロピレンオキシド除去後に、エチレンオキシド12gを反応圧力が0.45MPa(ゲージ)以下となるように供給した。窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留エチレンオキシドを除去した後、無色無臭のポリアルキレンオキシド67gを得た。得られたポリアルキレンオキシドのエチレンオキシド含有量は14.9重量%であり、水酸基価は22mgKOH/gであり、総不飽和度は0.024meq/gであり、分子量分布(Mw/Mn)は1.06であった。
 実施例12.
 合成例8で合成したホスファゼニウム塩0.3g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド48gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した。プロピレンオキシド除去後に、エチレンオキシド12gを反応圧力が0.4MPa(ゲージ)以下となるように供給した。窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留エチレンオキシドを除去した後、無色無臭のポリアルキレンオキシド66gを得た。得られたポリアルキレンオキシドの水酸基価はエチレンオキシド含有量は15.3重量%であり、水酸基価は23mgKOH/gであり、総不飽和度は0.024meq/gであり、分子量分布(Mw/Mn)は1.05であった。
 実施例13.
 合成例10で合成したホスファゼニウム塩0.3g(0.2mmol)とポリアルキレングリコールB 3.5g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド48gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した。プロピレンオキシド除去後に、エチレンオキシド12gを反応圧力が0.4MPa(ゲージ)以下となるように供給した。窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留エチレンオキシドを除去した後、無色無臭のポリアルキレンオキシド63gを得た。得られたポリアルキレンオキシドのエチレンオキシド含有量は14.5重量%であり、水酸基価は17mgKOH/gであり、総不飽和度は0.024meq/gであり、分子量分布(Mw/Mn)は1.07であった。
 比較例2.
 実施例2において、合成例2で得られたホスファゼニウム塩0.2g(0.4mmol)の代わりにホスファゼン触媒1-tert-ブチル-4,4,4-トリス(ジメチルアミノ)-2,2-ビス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]-2λ5,4λ5-カテナジ(ホスファゼン)0.5mol/Lヘキサン溶液を0.8mL(0.4mmol)用いた以外は同様の操作を行った。90℃に昇温して、プロピレンオキシドを反応圧力0.3MPa以下を保つように間欠的に供給した。この際、90℃で温度制御を行うため、ゆっくりプロピレンオキシドを供給したが、プロピレンオキシド供給時の吸熱や、反応熱による発熱により反応温度は88~95℃の間で変動し、温度の制御は困難であった。また、温度を上記の範囲で制御するため、供給速度をさらに低下させた結果、反応時間は実施例1に比べ1時間長くなり、7時間となった。
 次いで、窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留プロピレンオキシドを除去した後、無色無臭のポリオキシプロピレントリオール74gを得た。得られたポリオキシプロピレントリオールの水酸基価は25mgKOH/gであり、総不飽和度は0.072meq/gであり、分子量分布(Mw/Mn)は1.11であった。
 実施例14.
 合成例9で合成したホスファゼニウム塩0.3g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシドを55g反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留プロピレンオキシドを除去した後、無色無臭のポリアルキレンオキシド52gを得た。得られたポリアルキレンオキシドの水酸基価は28mgKOH/gであり、総不飽和度は0.031meq/gであり、分子量分布(Mw/Mn)は1.06であった。
 実施例15.
 合成例9で合成したホスファゼニウム塩0.3g(0.2mmol)とポリアルキレングリコールC8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド55gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した。プロピレンオキシド除去後に、エチレンオキシド12gを反応圧力が0.4MPa(ゲージ)以下となるように供給した。窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留エチレンオキシドを除去した後、無色無臭のポリアルキレンオキシド51gを得た。得られたポリアルキレンオキシドのエチレンオキシド含有量は13.1重量%であり、水酸基価は25mgKOH/gであり、総不飽和度は0.030meq/gであり、分子量分布(Mw/Mn)は1.07であった。
 実施例16.
 合成例11で合成したホスファゼニウム塩0.6g(0.4mmol)とグリセリン5.0g(54mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド65gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した後、無色無臭のポリアルキレンオキシド64gを得た。得られたポリアルキレンオキシドの水酸基価は150mgKOH/gであり、総不飽和度は0.005meq/gであり、分子量分布(Mw/Mn)は1.07であった。
 実施例17.
 合成例12で合成したホスファゼニウム塩0.24g(0.4mmol)とグリセリン5.0g(54mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド55gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~95℃の温度範囲で8時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した後、無色無臭のポリアルキレンオキシド54gを得た。得られたポリアルキレンオキシドの水酸基価は156mgKOH/gであり、総不飽和度は0.011meq/gであり、分子量分布(Mw/Mn)は1.07であった。
 合成例13.
 テトラキス[(ジメチルアミノ)イミノ]ホスフォニウムクロライド:[(MeN)C=N] Cl(式中、Meはメチル基を表す。以下同様。)の合成.
 温度計、滴下ロート、冷却管及び磁気回転子を付した300mlの4つ口フラスコに五塩化リン4.01g(10.0mmol)を採り、これに60mlの脱水トルエン(和光純薬工業社製)を加えてスラリー溶液とした。このスラリー溶液をドライアイス-アセトンにて、-30℃に冷却したクーリングバスにつけて、内温を-30℃とした後、強撹拌下にテトラメチルグアニジン22.2g(20mmol)を滴下ロートから1時間かけて滴下した。そのまま-30℃で1時間撹拌した後、クーリングバスをはずして室温までゆっくり昇温した。更にこのスラリー溶液を100℃で10時間加熱して白色のスラリー溶液を得た。室温まで冷却した後、スラリーを濾別し、濾過残渣をアセトンで洗浄した。アセトン溶液を濃縮することにより、テトラキス[(ジメチルアミノ)イミノ]ホスフォニウム塩:[(MeN)C=N] Clを9.6g得た。収率は98%であった。
 H-NMR測定結果(重溶媒:CDCl,内部標準:テトラメチルシラン):
  化学シフト:2.51ppm(メチル基)。
 GC-MS(FAB+)測定結果:
  m/z=487(テトラキス[(ジメチルアミノ)イミノ]ホスフォニウムカチオンに一致した)。
 生成物の元素分析の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000015
 合成例14.
 テトラキス[(ジメチルアミノ)イミノ]ホスフォニウムヒドロキサイド:[(MeN)C=N] OHの合成.
 テトラキス[(ジメチルアミノ)イミノ]ホスフォニウムクロリド3.2g(6mmol)を100mlのイオン交換水に溶解させて、0.06mol/Lの溶液を調製した。この溶液を300ml/時の流速で、100mlの水酸基型陰イオン交換樹脂(オルガノ社製、製品名:アンバーライトIRA410OH)を充填したカラム(直径30mm,高さ600mm)に室温で流通し、さらに150mlのイオン交換水を同流速で流通した。流出液を濃縮した後、40℃、1mmHgで乾固して、テトラキス[トリス(ジメチルアミノ)イミノ]ホスフォニウムヒドロキシド:[(MeN)C=N] OH 3.1gを白色結晶として得た。収率は99%であった。
 H-NMR測定結果(重溶媒:CDCl,内部標準:テトラメチルシラン):
  化学シフト:2.51ppm(メチル基)。
 GC-MS(FAB+)測定結果:
  m/z=487(テトラキス[(ジメチルアミノ)イミノ]ホスフォニウムカチオンに一致した)。
 生成物の元素分析の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000016
 実施例18.
 合成例14で得られたホスファゼニウム塩[上記一般式(1)においてR、Rがメチル基、Xがヒドロキシアニオンである。]0.2g(0.4mmol)とグリセリン5.0g(58mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。脱水処理後、窒素により常圧に戻し、90℃にてプロピレンオキシド48gを反応圧力0.3MPa以下を保つように間欠的に供給しながら6時間反応させた。内容物を室温まで冷却し、無色無臭の液状のポリオキシプロピレントリオール33gを得た。得られたポリオキシプロピレントリオールの水酸基価は131mgKOH/gであった。
 実施例19.
 合成例14で得られたホスファゼニウム塩[上記一般式(1)においてR、Rがメチル基、Xがヒドロキシアニオンである。]0.2g(0.4mmol)とポリアルキレングリコールA 4.0g(10mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。
 脱水処理後、窒素により常圧に戻し、90℃に昇温して、プロピレンオキシド30gを反応圧力0.3MPa以下を保つように間欠的に供給しながら90℃で6時間反応させた。内容物を室温まで冷却した後、常圧に戻した。無色無臭のポリオキシプロピレントリオール31gを得た。得られたポリオキシプロピレントリオールの水酸基価は37mgKOH/gであり、総不飽和度は0.03meq/gであり、GPCにより求めた分子量分布は1.03であった。
 比較例3.
 実施例19で使用した、ホスファゼニウム塩を用いなかった以外は実施例18の重合反応と全く同様に行った。プロピレンオキシドは全く消費されず、反応器内容物は4.01gであり、反応器に仕込んだグリセリンそのものの重量とほぼ等しく、ポリオキシプロピレントリオールは得られなかった。
 実施例20.
 合成例14で合成したホスファゼニウム塩1.0g(2mmol)とポリアルキレングリコールB 4.0g(10mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。反応器内を乾燥窒素で置換し、90℃に昇温して、プロピレンオキシド38gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、窒素で常圧に戻し、内容物を室温まで冷却した。無色無臭のポリオキシプロピレンジオール39gを得た。得られたポリオキシプロピレンジオールの水酸基価は32mgKOH/gであった。
 実施例21.
 合成例14で合成したホスファゼニウム塩0.2g(0.4mmol)とポリアルキレングリコールA 4.0g(10mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド72gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留プロピレンオキシドを除去した後、無色無臭のポリオキシプロピレントリオール74gを得た。得られたポリオキシプロピレントリオールの水酸基価は22mgKOH/gであった。
 実施例22.
 合成例2で合成したホスファゼニウム塩0.2g(0.4mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、0.2kPaの減圧下で、3時間脱水処理を行った。
 脱水処理後、100℃に昇温して、プロピレンオキシド58gを反応圧力0.3MPa以下を保つように間欠的に供給しながら98~102℃の温度範囲で6時間反応させた。次いで、窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留プロピレンオキシドを除去した後、無色無臭のポリオキシプロピレントリオール64gを得た。得られたポリオキシプロピレントリオールの水酸基価は24mgKOH/gであった。
 実施例23.
 78~82℃の温度範囲で6時間反応した以外は、実施例22と同様の操作を行った。無色無臭のポリオキシプロピレントリオール28gを得た。得られたポリオキシプロピレントリオールの水酸基価は56mgKOH/gであった。
 実施例24.
 108~112℃の温度範囲で6時間反応した以外は、実施例22と同様の操作を行った。無色無臭のポリオキシプロピレントリオール66gを得た。得られたポリオキシプロピレントリオールの水酸基価は23mgKOH/gであった。
 実施例25.
 118~122℃の温度範囲で6時間反応した以外は、実施例22と同様の操作を行った。無色無臭のポリオキシプロピレントリオール44gを得た。得られたポリオキシプロピレントリオールの水酸基価は40mgKOH/gであった。
 実施例26.
 合成例2で合成したホスファゼニウム塩0.1g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、0.2kPaの減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド58gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した。プロピレンオキシド除去後に、90℃で、エチレンオキシドを反応圧力が0.4MPa以下となるように供給した。エチレンオキシド供給後、2時間同じ温度で熟成を行った。熟成後、窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留エチレンオキシドを除去した後、無色無臭のポリアルキレンオキシド64gを得た。得られたポリアルキレンオキシドのエチレンオキシド含有率は15.8重量%であり、水酸基価は22mgKOH/gであった。
 実施例27.
 合成例2で合成したホスファゼニウム塩0.1g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、0.2kPaの減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド46gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した。プロピレンオキシド除去後に、90℃で、エチレンオキシド12gを反応圧力が0.4MPa以下となるように供給した。エチレンオキシド供給後、2時間同じ温度で熟成を行った。熟成後、窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留エチレンオキシドを除去した後、無色無臭のポリアルキレンオキシド58gを得た。得られたポリアルキレンオキシドのエチレンオキシド含有率は9.4重量%であり、水酸基価は27mgKOH/gであった。
 実施例28.
 合成例2で合成したホスファゼニウム塩0.1g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、0.2kPaの減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド46gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した。プロピレンオキシド除去後に、90℃で、エチレンオキシド24gを反応圧力が0.4MPa以下となるように供給した。エチレンオキシド供給後、2時間同じ温度で熟成を行った。熟成後、窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留エチレンオキシドを除去した後、無色無臭のポリアルキレンオキシド65gを得た。得られたポリアルキレンオキシドのエチレンオキシド含有率は32.6重量%であり、水酸基価は20mgKOH/gであった。
 実施例29.
 合成例4で合成したホスファゼニウム塩0.3g(0.4mmol)とポリアルキレングリコールA 3.5g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、0.2kPaの減圧下で3時間加熱した。
 脱水処理後、90℃に昇温して、プロピレンオキシド65gを反応圧力0.3MPa以下を保つように間欠的に反応器内に供給しながら88~92℃の温度範囲で7.5時間反応させた。次いで、窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留プロピレンオキシドを除去した後、無色無臭のポリオキシプロピレントリオール64gを得た。得られたポリオキシプロピレントリオールの水酸基価は22mgKOH/gであった。
 実施例30.
 合成例4で合成したホスファゼニウム塩0.15g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、80℃に昇温して、0.2kPaの減圧下で、3時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド46gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した。プロピレンオキシド除去後に、90℃で、エチレンオキシド11gを反応圧力が0.4MPa以下となるように供給した。窒素で常圧に戻し、内容物を室温まで冷却した。0.2kPaの減圧下で残留エチレンオキシドを除去した後、無色無臭のポリアルキレンオキシド64gを得た。得られたポリアルキレンオキシドのエチレンオキシドの含有量は14.8重量%であり、水酸基価は22mgKOH/gであった。
 実施例31.
 合成例2で合成したホスファゼニウム塩0.1g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、100℃に昇温して、1.3kPaの減圧下で、3時間脱水処理を行った。
 脱水処理後、温度を90℃として、プロピレンオキシド46gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した。プロピレンオキシド除去後に、90℃のまま、エチレンオキシド12gを反応圧力が0.4MPa以下となるように供給した。エチレンオキシド供給後、2時間同じ温度で熟成を行った。熟成後、窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留エチレンオキシドを除去した後、無色無臭のポリアルキレンオキシド63gを得た。得られたポリアルキレンオキシドのエチレンオキシドの含有量は14.5重量%であり、水酸基価は22mgKOH/gであった。
 実施例32.
 合成例2で合成したホスファゼニウム塩0.1g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、100℃に昇温して、0.2kPaの減圧下で、1時間脱水処理を行った。
 脱水処理後、温度を90℃として、プロピレンオキシド46gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した。プロピレンオキシド除去後に、90℃でエチレンオキシド12gを反応圧力が0.4MPa以下となるように供給した。エチレンオキシド供給後、2時間同じ温度で熟成を行った。熟成後、窒素で常圧に戻し、内容物を室温まで冷却した。減圧下で残留エチレンオキシドを除去した後、無色無臭のポリアルキレンオキシド53gを得た。得られたポリアルキレンオキシドのエチレンオキシド含有量は15.5重量%であり、水酸基価は33mgKOH/gであった。
 実施例33.
 合成例2で合成したホスファゼニウム塩0.1g(0.2mmol)とポリアルキレングリコールC 8.7g(8.7mmol)とを、温度測定管、圧力計、攪拌装置及びアルキレンオキシド導入管を装備した実容積200mlのガラス製オートクレーブに仕込んだ。その後、反応器内を乾燥窒素で置換し、60℃に昇温して、0.2kPaの減圧下で、5時間脱水処理を行った。
 脱水処理後、90℃に昇温して、プロピレンオキシド48gを反応圧力0.3MPa以下を保つように間欠的に供給しながら88~92℃の温度範囲で6時間反応させた。次いで、90℃で1時間かけて減圧下に残留プロピレンオキシドを除去した。窒素で常圧に戻し、内容物を室温まで冷却して無色無臭のポリアルキレンオキシド55gを得た。得られたポリアルキレンオキシドの水酸基価は28mgKOH/gであった。
 比較例4.
 実施例21において、合成例14で得られたホスファゼニウム塩0.2g(0.4mmol)の代わりに合成例13で得られたホスファゼニウム塩を0.2g(0.4mmol)用いた以外は同様の操作を行った。90℃に昇温して、プロピレンオキシドを反応圧力0.3MPa以下を保つように間欠的に供給した。得られたポリオールは開始前のポリオールAとほぼ同じ重量であり、反応は全く進行しなかった。
 比較例5.
 比較例2において、ホスファゼン触媒1-tert-ブチル-4,4,4-トリス(ジメチルアミノ)-2,2-ビス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]-2λ5,4λ5-カテナジ(ホスファゼン)0.5mol/Lヘキサン溶液0.8mL(0.4mmol)に代えて、テトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスフォニウムヒドロキシド0.3g(0.4mmol)を用いた以外は同様の操作を行った。90℃に昇温して、プロピレンオキシドを反応圧力0.3MPa以下を保つように間欠的に供給した。
 この際、90℃で温度制御を行うため、ゆっくりプロピレンオキシドを供給したが、プロピレンオキシド供給時の吸熱や、反応熱による発熱により、反応温度は88~95℃の間で変動し温度の制御は困難であった。また、温度を上記の範囲で制御するため供給速度をさらに低下させた結果、反応時間は実施例18に比べ2時間長くなり、8時間となった。
 以上の実施例、比較例から明らかなとおり、本発明のポリアルキレングリコールの製造方法は、反応時の温度制御が容易である。
 本発明のポリアルキレングリコール製造触媒は、合成が容易であり、特別な金属成分を含まず、さらに、該ポリアルキレングリコール製造触媒を用いたポリアルキレングリコールの製造方法は、アルキレンオキシドの反応時の温度制御が容易であり、狭い分子量分布を持ち、高分子量で総不飽和度の低いポリアルキレンオキシドを、簡便に、効率よく、臭気を残留させないで製造することができるなど、産業上の利用可能性が大きい。
 なお、2008年10月2日に出願された日本特許出願2008-257286号、及び2008年11月20日に出願された日本特許出願2008-296909号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (19)

  1. 下記一般式(2)
    Figure JPOXMLDOC01-appb-C000001
    [上記一般式(2)中、R,Rは各々独立して炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基を表す。ただし、RとR、又はR同士が互いに結合して環構造を形成していても良い。nは1~8の実数であり、Yn-は活性水素化合物Y中のn個のプロトンが脱離した活性水素化合物のアニオンを表す。]
    で示されるホスファゼニウムカチオンと活性水素化合物アニオンとの塩からなることを特徴とするポリアルキレングリコール製造触媒。
  2.  一般式(2)で示されるホスファゼニウムカチオンにおいて、R、Rが共にメチル基であるか、又はRがメチル基若しくはイソプロピル基であり、R同士が結合してジメチレン基となって環構造を形成していることを特徴とする請求項1に記載のポリアルキレングリコール製造触媒。
  3.  活性水素化合物Yが、水、又は部分構造式-OH若しくは-NH-を有する有機化合物から選ばれる化合物であることを特徴とする請求項1又は請求項2に記載のポリアルキレングリコール製造触媒。
  4.  部分構造式-OHを有する有機化合物が、炭素数1~20のアルコール類、2~8個の水酸基を有する炭素数2~20の多価アルコール類、糖類若しくはその誘導体、及び2~8個の末端を有しその末端に1~8個の水酸基を有する数平均分子量200~20,000のポリアルキレンオキシド類からなる群より選ばれる一種又は二種以上であることを特徴とする請求項3に記載のポリアルキレングリコールの製造触媒。
  5.  部分構造式-NH-を有する有機化合物が、2~3個の一級若しくは二級アミノ基を有する炭素数2~20の多価アミン類、炭素数4~10の飽和環状二級アミン、及び2~3個の二級アミノ基を含む炭素数4~10の環状の多価アミン類からなる群より選ばれる一種又は二種以上であることを特徴とする請求項3に記載のポリアルキレングリコール製造触媒。
  6.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000002
    [上記一般式(1)中、R,Rは各々独立して炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基を表す。ただし、RとR、又はR同士が互いに結合して環構造を形成していても良い。Xは、ヒドロキシアニオン、アルコキシアニオン、又はカルボキシアニオンを表す。]
    で示されるホスファゼニウム塩と活性水素化合物Yを混合した後、加熱処理することを特徴とする請求項1乃至請求項5のいずれかに記載のポリアルキレングリコール製造触媒の製造方法。
  7.  一般式(1)で示されるホスファゼニウム塩において、R、Rが共にメチル基であるか、又はRがメチル基若しくはイソプロピル基であり、R同士が結合してジメチレン基となって環構造を形成していることを特徴とする請求項6に記載のポリアルキレングリコール製造触媒の製造方法。
  8.  一般式(1)で示されるホスファゼニウム塩のXが、ヒドロキシアニオン、炭素数1~4の飽和のアルキルアルコール又はフェノールから導かれるアルコキシアニオン、及び炭素数2~4のカルボン酸から導かれるカルボキシアニオンからなる群より選ばれる一種又は二種以上のアニオンであることを特徴とする請求項6又は請求項7に記載のポリアルキレングリコール製造触媒の製造方法。
  9.  一般式(1)で示されるホスファゼニウム塩のXが、ヒドロキシアニオンであることを特徴とする請求項6乃至請求項8のいずれかに記載のポリアルキレングリコール製造触媒の製造方法。
  10.  活性水素化合物Yが、水、又は部分構造式-OH若しくは-NH-を有する有機化合物から選ばれる化合物であることを特徴とする請求項6乃至請求項9のいずれかに記載のポリアルキレングリコール製造触媒の製造方法。
  11.  部分構造式-OHを有する有機化合物が、炭素数1~20のアルコール類、2~8個の水酸基を有する炭素数2~20の多価アルコール類、糖類若しくはその誘導体、及び2~8個の末端を有しその末端に1~8個の水酸基を有する数平均分子量200~20,000のポリアルキレンオキシド類からなる群より選ばれる一種又は二種以上であることを特徴とする請求項10に記載のポリアルキレングリコールの製造触媒の製造方法。
  12.  部分構造式-NH-を有する有機化合物が、2~3個の一級若しくは二級アミノ基を有する炭素数2~20の多価アミン類、炭素数4~10の飽和環状二級アミン、及び2~3の二級アミノ基を含む炭素数4~10の環状の多価アミン類からなる群より選ばれる一種又は二種以上であることを特徴とする請求項10に記載のポリアルキレングリコール製造触媒の製造方法。
  13.  一般式(1)で示されるホスファゼニウム塩と活性水素化合物Yを、前記ホスファゼニウム塩1モルに対し前記活性水素化合物Yを0.2~1,000モルの範囲で混合した後、加熱処理することを特徴とする請求項6乃至請求項12のいずれかに記載のポリアルキレングリコール製造触媒の製造方法。
  14.  請求項1乃至請求項5のいずれかに記載のポリアルキレングリコール製造触媒の存在下に、アルキレンオキシドを開環重合させることを特徴とするポリアルキレングリコールの製造方法。
  15.  請求項6乃至請求項13のいずれかに記載の製造方法により得られるポリアルキレングリコール製造触媒の存在下に、アルキレンオキシドを開環重合させることを特徴とするポリアルキレングリコールの製造方法。
  16.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000003
    [上記一般式(1)中、R,Rは各々独立して炭素数1~10のアルキル基、無置換の若しくは置換基を有する炭素数6~10のフェニル基、又は無置換の若しくは置換基を有する炭素数6~10のフェニルアルキル基を表す。ただし、RとR、又はR同士が互いに結合して環構造を形成していても良い。Xは、ヒドロキシアニオン、アルコキシアニオン、又はカルボキシアニオンを表す。]
    で示されるホスファゼニウム塩と活性水素化合物Yを混合し、加熱処理した後、アルキレンオキシドを添加して、アルキレンオキシドを開環重合させることを特徴とするポリアルキレングリコールの製造方法。
  17.  アルキレンオキシドが、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、及びスチレンオキシドよりなる群から選ばれる一種又は二種以上であることを特徴とする請求項14乃至請求項16のいずれかに記載のポリアルキレングリコールの製造方法。
  18.  請求項14乃至請求項17のいずれかに記載の製造方法により得られる、総不飽和度が0.07meq./g以下であり、且つ分子量分布(Mw/Mn)が1.1以下であることを特徴とするポリアルキレングリコール。
  19.  請求項14乃至請求項17のいずれかに記載の製造方法により得られる、水酸基価が60mgKOH/g以下であり、且つ数平均分子量が3,000~50,000の範囲にあることを特徴とするポリアルキレングリコール。
PCT/JP2009/067252 2008-10-02 2009-10-02 ポリアルキレングリコール製造触媒、及びそれを用いたポリアルキレングリコールの製造方法 WO2010038868A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/120,852 US8871973B2 (en) 2008-10-02 2009-10-02 Polyalkylene glycol producing catalyst, and method for producing polyalkylene glycol using same
EP09817900.5A EP2338927B1 (en) 2008-10-02 2009-10-02 Polyalkylene glycol producing catalyst, and method for producing polyalkylene glycol using same
CN200980139109.0A CN102171272B (zh) 2008-10-02 2009-10-02 聚亚烷基二醇制造用催化剂、以及使用其制造聚亚烷基二醇的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-257286 2008-10-02
JP2008257286 2008-10-02
JP2008296909 2008-11-20
JP2008-296909 2008-11-20

Publications (1)

Publication Number Publication Date
WO2010038868A1 true WO2010038868A1 (ja) 2010-04-08

Family

ID=42073625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067252 WO2010038868A1 (ja) 2008-10-02 2009-10-02 ポリアルキレングリコール製造触媒、及びそれを用いたポリアルキレングリコールの製造方法

Country Status (6)

Country Link
US (1) US8871973B2 (ja)
EP (1) EP2338927B1 (ja)
JP (1) JP5663856B2 (ja)
KR (1) KR101611590B1 (ja)
CN (1) CN102171272B (ja)
WO (1) WO2010038868A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116379A (ja) * 2008-11-14 2010-05-27 Tosoh Corp ホスファゼニウム塩の製造法
JP2010116378A (ja) * 2008-11-14 2010-05-27 Tosoh Corp ホスファゼニウム塩の製造方法
JP2012021108A (ja) * 2010-07-16 2012-02-02 Tosoh Corp ポリアルキレングリコール製造用触媒溶液及びそれを用いたポリアルキレングリコールの製造方法
JP2012020981A (ja) * 2010-07-16 2012-02-02 Tosoh Corp 保存安定性に優れる塩基性イミノホスファゼニウム塩溶液
JP2016204468A (ja) * 2015-04-17 2016-12-08 東ソー株式会社 ウレタンプレポリマー、及びそれを用いた2液型ウレタン粘着剤
JP2016204466A (ja) * 2015-04-17 2016-12-08 東ソー株式会社 ウレタンプレポリマーおよびそれを用いた2液型ウレタン粘着剤
JP2017141358A (ja) * 2016-02-10 2017-08-17 東ソー株式会社 ポリアルキレンオキシド

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5618194B2 (ja) * 2010-09-09 2014-11-05 国立大学法人筑波大学 アザカリックス[3]ピリジニウム塩、その製造方法、及びそれを用いてなるポリアルキレングリコールの製造方法
JP5716382B2 (ja) * 2010-12-21 2015-05-13 東ソー株式会社 ポリアルキレングリコールの製造方法
JP5874285B2 (ja) * 2011-10-04 2016-03-02 東ソー株式会社 ポリアルキレングリコールの製造方法
JP5825028B2 (ja) * 2011-10-07 2015-12-02 東ソー株式会社 ポリアルキレングリコールの製造方法
JP2013082790A (ja) * 2011-10-07 2013-05-09 Tosoh Corp ポリアルキレングリコールの製造法
JP5776518B2 (ja) * 2011-11-29 2015-09-09 東ソー株式会社 塩基性イミノホスファゼニウム塩含有溶液の製造方法
JP5776517B2 (ja) * 2011-11-29 2015-09-09 東ソー株式会社 ハロゲン化イミノホスファゼニウムの製造方法
JP6079164B2 (ja) * 2012-11-19 2017-02-15 東ソー株式会社 ポリアルキレングリコールの製造方法
JP6083226B2 (ja) * 2012-12-13 2017-02-22 東ソー株式会社 ポリアルキレングリコールの製造方法
JP6040747B2 (ja) * 2012-12-13 2016-12-07 東ソー株式会社 イミノホスファゼニウム炭酸水素塩及びその製造方法
CN104927035B (zh) * 2014-03-17 2018-07-13 中国石油化工股份有限公司 环状单体开环聚合制备聚合物的方法
JP6350095B2 (ja) * 2014-08-08 2018-07-04 東ソー株式会社 ポリアルキレングリコールの製造方法
CN106661220B (zh) * 2014-08-12 2019-03-08 东曹株式会社 环氧烷聚合催化剂和使用其制造聚环氧烷的方法
JP6365114B2 (ja) * 2014-08-25 2018-08-01 東ソー株式会社 アルキレンオキシド重合触媒およびそれを用いたポリアルキレンオキシドの製造方法
JP6327073B2 (ja) * 2014-09-04 2018-05-23 東ソー株式会社 水酸化イミノホスファゼニウム含有溶液の精製方法
CN105482095A (zh) * 2015-12-22 2016-04-13 南京红宝丽聚氨酯有限公司 一种不饱和聚醚醇及利用其制得的聚羧酸盐减水剂
CN106478380A (zh) * 2016-08-31 2017-03-08 浙江皇马科技股份有限公司 一种异构十三醇聚氧乙烯聚氧丙烯醚及其制备方法
KR101804762B1 (ko) * 2017-02-16 2017-12-05 한국과학기술연구원 알킬렌 카보네이트 제조용 촉매, 그 제조 방법 및 상기 촉매를 이용한 알킬렌 카보네이트 제조 방법 및 장치
EP3763721B1 (en) * 2018-03-07 2023-01-11 Tosoh Corporation Divalent phosphazenium salt and polyalkylene oxide composition containing same, and polyurethane-forming composition containing said polyalkylene oxide composition
CN109081914B (zh) * 2018-08-23 2021-01-05 浙江三江化工新材料有限公司 一种聚羧酸减水剂大单体4-羟丁基乙烯基醚聚氧乙烯聚氧丙烯醚的制备方法
CN111087598B (zh) * 2018-10-23 2023-03-17 中国石油化工股份有限公司 无机负载磷腈催化剂的制备和使用方法
CN109485844A (zh) * 2018-11-27 2019-03-19 山东蓝星东大有限公司 高活性高分子量低不饱和度聚醚多元醇的制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829505A (en) 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same
JPS50159595A (ja) 1974-06-17 1975-12-24
JPS5638323A (en) 1979-09-07 1981-04-13 Asahi Glass Co Ltd Preparation of polyoxyalkylene polyol
JPS5712026A (en) 1980-05-29 1982-01-21 Texaco Development Corp Manufacture of polyether polyol
JPS62232433A (ja) 1986-03-31 1987-10-12 ユニオン、カ−バイド、コ−ポレ−シヨン アルキレンオキシド重合用触媒の製造方法
JPH02276821A (ja) 1989-01-06 1990-11-13 Asahi Glass Co Ltd ポリエーテル類の製造方法
JPH1077289A (ja) 1996-02-20 1998-03-24 Mitsui Petrochem Ind Ltd ホスファゼニウム塩およびその製造方法ならびにポリアルキレンオキシドの製造方法
JPH10158388A (ja) * 1996-11-29 1998-06-16 Mitsui Chem Inc 変性ポリエーテルポリオールおよびポリウレタン樹脂の製造方法
JPH1160722A (ja) * 1997-08-19 1999-03-05 Mitsui Chem Inc ポリオキシアルキレンポリオールの製造方法
JP2000239288A (ja) * 1998-07-15 2000-09-05 Mitsui Chemicals Inc ホスフィンスルフィド、その製造方法、およびその用途
WO2006043569A1 (ja) * 2004-10-21 2006-04-27 Asahi Glass Company, Limited ポリウレタン樹脂およびポリウレタン樹脂溶液の製造方法
DE102006010034A1 (de) 2006-03-04 2007-09-06 Degussa Ag Stickstoff-haltige Phosphoniumsalze
JP2008257286A (ja) 2007-03-30 2008-10-23 Sharp Corp プロジェクト進捗管理システムおよび方法
JP2008296909A (ja) 2008-07-28 2008-12-11 Toyota Motor Corp 倒立車輪型の走行体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990352A (en) * 1996-02-20 1999-11-23 Mitsui Chemicals, Inc. Phosphazenium salt and preparation process thereof, and process for producing poly(alkylene oxide)
SG80048A1 (en) * 1998-07-15 2001-04-17 Mitsui Chemicals Inc A phosphine sulfide, a manufacturing process therefor and a use thereof
JP5067752B2 (ja) * 2007-02-22 2012-11-07 国立大学法人名古屋大学 リン酸エステルの製造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829505A (en) 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same
JPS50159595A (ja) 1974-06-17 1975-12-24
JPS5638323A (en) 1979-09-07 1981-04-13 Asahi Glass Co Ltd Preparation of polyoxyalkylene polyol
JPS5712026A (en) 1980-05-29 1982-01-21 Texaco Development Corp Manufacture of polyether polyol
JPS62232433A (ja) 1986-03-31 1987-10-12 ユニオン、カ−バイド、コ−ポレ−シヨン アルキレンオキシド重合用触媒の製造方法
JPH02276821A (ja) 1989-01-06 1990-11-13 Asahi Glass Co Ltd ポリエーテル類の製造方法
JPH1077289A (ja) 1996-02-20 1998-03-24 Mitsui Petrochem Ind Ltd ホスファゼニウム塩およびその製造方法ならびにポリアルキレンオキシドの製造方法
JP3497054B2 (ja) 1996-02-20 2004-02-16 三井化学株式会社 ホスファゼニウム塩およびその製造方法ならびにポリアルキレンオキシドの製造方法
JPH10158388A (ja) * 1996-11-29 1998-06-16 Mitsui Chem Inc 変性ポリエーテルポリオールおよびポリウレタン樹脂の製造方法
JPH1160722A (ja) * 1997-08-19 1999-03-05 Mitsui Chem Inc ポリオキシアルキレンポリオールの製造方法
JP2000239288A (ja) * 1998-07-15 2000-09-05 Mitsui Chemicals Inc ホスフィンスルフィド、その製造方法、およびその用途
WO2006043569A1 (ja) * 2004-10-21 2006-04-27 Asahi Glass Company, Limited ポリウレタン樹脂およびポリウレタン樹脂溶液の製造方法
DE102006010034A1 (de) 2006-03-04 2007-09-06 Degussa Ag Stickstoff-haltige Phosphoniumsalze
JP2008257286A (ja) 2007-03-30 2008-10-23 Sharp Corp プロジェクト進捗管理システムおよび方法
JP2008296909A (ja) 2008-07-28 2008-12-11 Toyota Motor Corp 倒立車輪型の走行体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2338927A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116379A (ja) * 2008-11-14 2010-05-27 Tosoh Corp ホスファゼニウム塩の製造法
JP2010116378A (ja) * 2008-11-14 2010-05-27 Tosoh Corp ホスファゼニウム塩の製造方法
JP2012021108A (ja) * 2010-07-16 2012-02-02 Tosoh Corp ポリアルキレングリコール製造用触媒溶液及びそれを用いたポリアルキレングリコールの製造方法
JP2012020981A (ja) * 2010-07-16 2012-02-02 Tosoh Corp 保存安定性に優れる塩基性イミノホスファゼニウム塩溶液
JP2016204468A (ja) * 2015-04-17 2016-12-08 東ソー株式会社 ウレタンプレポリマー、及びそれを用いた2液型ウレタン粘着剤
JP2016204466A (ja) * 2015-04-17 2016-12-08 東ソー株式会社 ウレタンプレポリマーおよびそれを用いた2液型ウレタン粘着剤
JP2017141358A (ja) * 2016-02-10 2017-08-17 東ソー株式会社 ポリアルキレンオキシド

Also Published As

Publication number Publication date
CN102171272B (zh) 2013-11-06
KR20110079629A (ko) 2011-07-07
US8871973B2 (en) 2014-10-28
CN102171272A (zh) 2011-08-31
JP5663856B2 (ja) 2015-02-04
US20110178338A1 (en) 2011-07-21
EP2338927B1 (en) 2017-05-03
EP2338927A1 (en) 2011-06-29
EP2338927A4 (en) 2012-07-11
KR101611590B1 (ko) 2016-04-11
JP2010150514A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5663856B2 (ja) ポリアルキレングリコール製造触媒、及びその製造方法、並びにそれを用いたポリアルキレングリコールの製造方法
JP3504103B2 (ja) ポリアルキレンオキシドの製造方法
US6664365B2 (en) Process for producing poly(alkylene oxide) in the presence of a phosphazenium salt or compound
KR100323125B1 (ko) 폴리(알킬렌옥사이드)의 제조방법
JP3703263B2 (ja) ポリオキシアルキレンポリオールの製造方法
JP3497054B2 (ja) ホスファゼニウム塩およびその製造方法ならびにポリアルキレンオキシドの製造方法
JP5716382B2 (ja) ポリアルキレングリコールの製造方法
EP0763555A2 (en) Alkylene oxide polymerisation catalysts
JP4980369B2 (ja) ホスホニウム塩、アルキレンオキシド化合物重合触媒およびポリアルキレンオキシドの製造方法
CN111087598B (zh) 无机负载磷腈催化剂的制备和使用方法
JP4036566B2 (ja) ポリアルキレンオキシドの製造方法
JPH10330475A (ja) ポリオキシアルキレンポリオールの製造方法
CN115141368B (zh) 有机磷醇盐催化剂及其制备方法
JP2010053165A (ja) ポリオキシアルキレンエーテルとその製造方法
KR100245974B1 (ko) 폴리알킬렌옥시드의 제조방법
JP2000281771A (ja) ポリアルキレンオキシドの製造方法
CN116874762A (zh) 制备低不饱和度、高分子量聚醚多元醇的方法
JP3933806B2 (ja) ポリオキシアルキレンポリアミン及びその製造方法
JPH11322918A (ja) ポリオキシアルキレンポリオールの製造方法
CN117903186A (zh) 一种五配位体有机硅化合物制备四丙氧基硅烷和四丁氧基硅烷的方法
JPH04185635A (ja) ポリオキシアルキレンポリオールの精製法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139109.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817900

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009817900

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009817900

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13120852

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117007296

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2421/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE