WO2010023970A1 - 放射線画像変換パネル及びその製造方法 - Google Patents

放射線画像変換パネル及びその製造方法 Download PDF

Info

Publication number
WO2010023970A1
WO2010023970A1 PCT/JP2009/053010 JP2009053010W WO2010023970A1 WO 2010023970 A1 WO2010023970 A1 WO 2010023970A1 JP 2009053010 W JP2009053010 W JP 2009053010W WO 2010023970 A1 WO2010023970 A1 WO 2010023970A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
support
radiation image
image conversion
conversion panel
Prior art date
Application number
PCT/JP2009/053010
Other languages
English (en)
French (fr)
Inventor
惠民 笠井
康史 永田
寛 伊佐
誠 飯島
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to US12/934,064 priority Critical patent/US8368025B2/en
Priority to JP2010526582A priority patent/JP5402933B2/ja
Publication of WO2010023970A1 publication Critical patent/WO2010023970A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/626Halogenides
    • C09K11/628Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source

Definitions

  • the present invention relates to a radiation image conversion panel capable of obtaining a radiation image with high sharpness and improved moisture resistance and impact resistance, and a manufacturing method thereof.
  • radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field.
  • radiographic images using intensifying screens and film systems have been developed as an imaging system that combines high reliability and excellent cost performance as a result of high sensitivity and high image quality in the long history. Used in the medical field.
  • these pieces of image information are so-called analog image information, and free image processing and instantaneous electric transmission cannot be performed like digital image information that has been developing in recent years.
  • a scintillator made of an X-ray phosphor having a characteristic of emitting light by radiation is used.
  • the luminous efficiency is improved. It becomes necessary to use a high scintillator.
  • the light emission efficiency of a scintillator is determined by the thickness of the phosphor layer and the X-ray absorption coefficient of the phosphor. The thicker the phosphor layer, the more scattered the emitted light in the phosphor layer. However, sharpness decreases. Therefore, when the sharpness necessary for the image quality is determined, the layer thickness is determined.
  • CsI cesium iodide
  • phosphors can be easily formed into a columnar crystal structure by vapor deposition. And the thickness of the phosphor layer can be increased (see Patent Document 1).
  • CsI cesium iodide
  • CaI cesium iodide
  • NaI sodium iodide
  • TlI thallium iodide
  • Visible conversion efficiency is improved by performing heat treatment at a temperature of 200 to 500 ° C. on the substrate deposited as thallium activated cesium iodide (CsI: Tl) on the (substrate), and used as an X-ray phosphor ( For example, see Patent Document 2).
  • a phosphor layer (also referred to as “scintillator layer”) based on cesium iodide (CsI) has a deliquescent property and has a drawback that the characteristics deteriorate with time.
  • CsI cesium iodide
  • a method is known in which a polyparaxylylene resin covers the upper and side surfaces of a phosphor layer and the outer periphery of a scintillator layer of a support (substrate) (see, for example, Patent Document 3).
  • the present invention has been made in view of the above-mentioned problems and situations, and a solution to the problem is a radiation image conversion panel capable of obtaining a radiation image with high sharpness and improved moisture resistance and impact resistance, and a method for manufacturing the same. Is to provide.
  • the present inventor has found that both the coefficient of variation in the crystal diameter of the columnar crystals in the cesium iodide (CsI) phosphor layer and the coefficient of variation in the filling rate of the phosphor in the phosphor layer. It was unexpectedly found that the moisture resistance and impact resistance were improved by making the specific range within the specified range, and the present invention was achieved.
  • CsI cesium iodide
  • a radiation image conversion panel having a phosphor layer containing a phosphor columnar crystal mainly composed of cesium iodide (CsI) formed by vapor deposition on a support, the crystal of the phosphor columnar crystal A radiation image conversion panel, wherein a variation coefficient of a diameter is 50% or less, and a variation coefficient of a phosphor filling ratio of the phosphor layer is 20% or less.
  • CsI cesium iodide
  • any of the above 1 to 3, comprising a scintillator panel having the phosphor layer on the support and a light receiving element (“planar light receiving element”) in which a plurality of light receiving pixels are arranged two-dimensionally.
  • a method for manufacturing a radiation image conversion panel comprising: forming a phosphor layer by a vapor deposition method including a step of vapor-depositing a phosphor material while rotating the support.
  • a phosphor layer containing phosphor columnar crystals formed by a vapor deposition method is provided on a support from which a radiographic image having high sharpness and improved moisture resistance and impact resistance is obtained.
  • a radiation image conversion panel and a manufacturing method thereof can be provided.
  • the radiation image conversion panel of the present invention is a radiation image conversion panel having a phosphor layer containing phosphor columnar crystals mainly composed of cesium iodide (CsI) formed on a support by a vapor deposition method.
  • the variation coefficient of the crystal diameter of the phosphor columnar crystal is 50% or less, and the variation coefficient of the phosphor filling rate of the phosphor layer is 20% or less.
  • the phosphor columnar crystal is formed using cesium iodide and an additive containing thallium as raw materials from the viewpoint of manifesting the effects of the present invention.
  • the phosphor columnar crystal has a layer that does not contain thallium at the root portion.
  • a scintillator panel having the phosphor layer on the support and a light receiving element (also referred to as a “planar light receiving element”) in which a plurality of light receiving pixels are arranged two-dimensionally are provided.
  • the radiation image conversion panel is a preferred embodiment.
  • a vapor deposition apparatus having an evaporation source and a support rotating mechanism in a vacuum vessel is used, and a support is installed on the support rotating mechanism, and the support is rotated.
  • the phosphor layer is formed by a vapor deposition method including a step of vapor-depositing the phosphor material.
  • the radiation image conversion panel of the present invention is characterized by having a phosphor layer containing phosphor columnar crystals mainly composed of cesium iodide (CsI) formed by vapor deposition on a support.
  • CsI cesium iodide
  • various functional layers as described later are preferably provided according to the purpose.
  • the radiation image conversion panel of the present invention is a scintillator panel in which a phosphor layer is provided on a first substrate by a vapor deposition method via a functional layer such as a reflective layer, and a photosensor on a second substrate. Radiation by adhering or closely adhering a photoelectric conversion panel comprising a photoelectric conversion element section ("planar light receiving element") in which two-dimensionally arranged pixels comprising TFT (Thin Film Transistor) or CCD (Charge Coupled Devices) are arranged.
  • TFT Thin Film Transistor
  • CCD Charge Coupled Devices
  • a radiation image conversion panel is provided by providing a phosphor layer directly or via a functional layer such as a reflective layer or a protective layer by a vapor deposition method. Also good.
  • the phosphor layer according to the present invention is a phosphor layer containing phosphor columnar crystals mainly composed of cesium iodide (CsI).
  • CsI cesium iodide
  • Various phosphor materials are known as materials for forming the phosphor layer, but cesium iodide (CsI) has a relatively high rate of change from X-rays to visible light, and easily converts phosphors by vapor deposition. Since it can be formed into a columnar crystal structure, scattering of emitted light within the crystal can be suppressed by the light guide effect, and the thickness of the phosphor layer can be increased. Therefore, in the present invention, the cesium iodide is concerned. It is characterized by having (CsI) as a main component.
  • CsI alone has low luminous efficiency
  • various activators are added.
  • a mixture of CsI and sodium iodide (NaI) in an arbitrary molar ratio can be mentioned.
  • CsI as disclosed in Japanese Patent Application Laid-Open No. 2001-59899 is deposited, and thallium (Tl), europium (Eu), indium (In), lithium (Li), potassium (K), rubidium (Rb) ), CsI containing an activating substance such as sodium (Na) is preferred.
  • thallium (Tl) and europium (Eu) are particularly preferable.
  • thallium (Tl) is preferred.
  • thallium activated cesium iodide (CsI: Tl) is preferable because it has a wide emission wavelength from 400 nm to 750 nm.
  • thallium compound as an additive containing one or more types of thallium compounds according to the present invention, various thallium compounds (compounds having oxidation numbers of + I and + III) can be used.
  • a preferred thallium compound is thallium bromide (TlBr), thallium chloride (TlCl), thallium fluoride (TlF, TlF 3 ), or the like.
  • the melting point of the thallium compound according to the present invention is preferably in the range of 400 to 700 ° C. If the temperature exceeds 700 ° C., the additives in the columnar crystals exist non-uniformly, resulting in a decrease in luminous efficiency.
  • the melting point is a melting point at normal temperature and pressure.
  • the content of the additive is desirably an optimum amount according to the target performance and the like, but 0.001 mol% to 50 mol% with respect to the content of cesium iodide, Further, it is preferably 0.1 to 10.0 mol%.
  • the additive when the additive is 0.001 mol% or more with respect to cesium iodide, the emission luminance obtained by using cesium iodide alone is improved, which is preferable in terms of obtaining the target emission luminance. Moreover, it is preferable that it is 50 mol% or less because the properties and functions of cesium iodide can be maintained.
  • the thickness of the phosphor layer is preferably 100 to 800 ⁇ m, and more preferably 120 to 700 ⁇ m from the viewpoint of obtaining a good balance between luminance and sharpness characteristics.
  • the phosphor columnar crystal according to the present invention needs to be formed by a vapor deposition method.
  • a vapor deposition method a vapor deposition method, a sputtering method, a CVD method, an ion plating method, or the like can be used.
  • the vapor deposition method is particularly preferable.
  • the phosphor layer according to the present invention is a phosphor layer containing a phosphor columnar crystal formed by a vapor deposition method, the coefficient of variation of the crystal diameter of the phosphor columnar crystal is 50% or less, and The variation coefficient of the phosphor filling rate of the phosphor layer is 20% or less.
  • the variation coefficient of the crystal diameter of the phosphor columnar crystal according to the present invention is required to be 50% or less from the viewpoint of the effect of the present invention, preferably 40% or less, more preferably 30% or less, Particularly preferred is 20%, and most preferred is 10% or less. Further, the coefficient of variation of the phosphor filling rate needs to be 20% or less, preferably 15% or less, more preferably 10% or less, and particularly preferably 5% or less.
  • the method for obtaining the coefficient of variation of the crystal diameter of the phosphor columnar crystal is performed as follows; among the obtained phosphor layers, an electron microscope including at least 100 columnar crystals in the field of view Each crystal diameter is obtained from the photograph, and the standard deviation of the crystal diameter is calculated. Then, the calculated relative standard deviation is divided by the average of 100 crystal diameters to obtain a coefficient of variation represented by the following formula.
  • Coefficient of variation standard deviation of crystal diameter / average of crystal diameter
  • the method of obtaining the coefficient of variation of the phosphor filling rate is performed as follows; for example, the phosphor layer of the obtained chintillator panel is divided into 100 parts. For each piece, the filling ratio is calculated by obtaining a value obtained by dividing the actual mass of the phosphor layer by the theoretical density and the apparent volume. Then, the standard deviation of the calculated filling rate is divided by the average of 100 filling rates to obtain a variation coefficient represented by the following equation.
  • the method for controlling the variation coefficient of the crystal diameter and the variation rate of the phosphor filling rate includes vapor deposition conditions (vacuum degree, temperature, support and evaporation). Control of the distance to the source, rotation of the support, etc.). In particular, a method of controlling the distance between the support and the evaporation source and the number of rotations of the support to appropriate conditions according to the physicochemical properties of the phosphor material is preferable.
  • the phosphor columnar crystal contains cesium iodide (CsI) as a main component, and the phosphor columnar crystal is formed using cesium iodide and an additive containing thallium as raw materials. It is preferable.
  • CsI cesium iodide
  • the phosphor columnar crystal according to the present invention has a layer containing no thallium at the root portion.
  • a crystal can be basically produced as follows. That is, for example, after depositing only CsI on a support to a desired thickness to form a phosphor (CsI) crystal, an additive containing cesium iodide and thallium on the formed crystal (for example, CsI: 0.003 Tl) is vapor-deposited (vapor phase deposition) until a desired thickness is formed to form phosphor columnar crystals (phosphor layer).
  • the “root portion” in the present application refers to a portion formed in the initial stage in the process of forming the phosphor columnar crystal by the vapor deposition method.
  • the “layer not containing thallium” refers to a crystal portion that does not substantially contain thallium in the phosphor columnar crystal formed by the above method.
  • a reflective layer (also referred to as a “metal reflective layer”) on the support (substrate). Light emitted from the phosphor (scintillator) is reflected to improve the light extraction efficiency. It is for raising.
  • the reflective layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au.
  • a metal thin film made of the above elements for example, an Ag film, an Al film, or the like. Two or more such metal thin films may be formed.
  • the lower layer is a layer containing Cr from the viewpoint of improving the adhesion to the substrate.
  • a layer made of a metal oxide such as SiO 2 or TiO 2 may be provided in this order on the metal thin film to further improve the reflectance.
  • the thickness of the reflective layer is preferably 0.005 to 0.3 ⁇ m, more preferably 0.01 to 0.2 ⁇ m, from the viewpoint of emission light extraction efficiency.
  • the formation method of the reflective layer according to the present invention may be any known method, and examples thereof include a sputtering process using the above raw materials.
  • a metal protective layer may be provided on the reflective layer.
  • the metal protective layer is preferably formed by applying and drying a resin dissolved in a solvent.
  • a polymer having a glass transition point of 30 to 100 ° C. is preferable from the viewpoint of forming a film with a deposited crystal and a support (substrate).
  • polyurethane resin vinyl chloride copolymer, vinyl chloride-vinyl acetate Copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer, polyamide resin, polyvinyl butyral, polyester resin, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer
  • Examples include coalescers, various synthetic rubber resins, phenol resins, epoxy resins, urea resins, melamine resins, phenoxy resins, silicon resins, acrylic resins, urea formamide resins, and the like, and polyester resins are particularly preferable.
  • the thickness of the metal protective layer is preferably 0.1 ⁇ m or more in terms of adhesion, and preferably 3.0 ⁇ m or less in terms of ensuring the smoothness of the surface of the metal protective layer. More preferably, the thickness of the metal protective layer is in the range of 0.2 to 2.5 ⁇ m.
  • Solvents used for metal protective layer preparation include lower alcohols such as methanol, ethanol, n-propanol and n-butanol, chlorine atom-containing hydrocarbons such as methylene chloride and ethylene chloride, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, Aromatic compounds such as toluene, benzene, cyclohexane, cyclohexanone, xylene, esters of lower fatty acids and lower alcohols such as methyl acetate, ethyl acetate, butyl acetate, ethers such as dioxane, ethylene glycol monoethyl ester, ethylene glycol monomethyl ester, And mixtures thereof.
  • lower alcohols such as methanol, ethanol, n-propanol and n-butanol
  • chlorine atom-containing hydrocarbons such as methylene chloride and ethylene chloride
  • ketones such
  • the undercoat layer preferably contains a polymer binder (binder), a dispersant and the like.
  • the thickness of the undercoat layer is preferably 0.5 to 4 ⁇ m, and if it is 4 ⁇ m or more, light scattering in the undercoat layer increases and sharpness deteriorates. If the thickness of the undercoat layer is larger than 5 ⁇ m, columnar crystallinity is disturbed by the heat treatment.
  • components of the undercoat layer will be described.
  • the undercoat layer according to the present invention is preferably formed by applying and drying a polymer binder (hereinafter also referred to as “binder”) dissolved or dispersed in a solvent.
  • a polymer binder hereinafter also referred to as “binder”
  • the polymer binder include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer.
  • Polymer polyamide resin, polyvinyl butyral, polyester, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, melamine resin, phenoxy resin, silicone resin , Acrylic resins, urea formamide resins, and the like.
  • polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, and nitrocellulose are preferably used.
  • polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, nitrocellulose and the like are particularly preferable in terms of adhesion to the phosphor layer.
  • a polymer having a glass transition temperature (Tg) of 30 to 100 ° C. is preferable from the viewpoint of attaching a film between the deposited crystal and the support (substrate). From this viewpoint, a polyester resin is particularly preferable.
  • Solvents that can be used to prepare the undercoat layer include lower alcohols such as methanol, ethanol, n-propanol, and n-butanol, hydrocarbons containing chlorine atoms such as methylene chloride and ethylene chloride, acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • ketones such as ketones, toluene, benzene, cyclohexane, cyclohexanone, xylene and other aromatic compounds, methyl acetate, ethyl acetate, butyl acetate and other lower fatty acid and lower alcohol esters, dioxane, ethylene glycol monoethyl ester, ethylene glycol monomethyl ester And ethers thereof and mixtures thereof.
  • the undercoat layer according to the present invention may contain a pigment or a dye in order to prevent scattering of light emitted from the phosphor (scintillator) and improve sharpness.
  • the protective layer according to the present invention focuses on protecting the phosphor layer. That is, cesium iodide (CsI) absorbs water vapor in the air and deliquesces when exposed to a high hygroscopic property, and therefore the main purpose is to prevent this.
  • CsI cesium iodide
  • the protective layer can be formed using various materials.
  • a polyparaxylylene film is formed by a CVD method. That is, a polyparaxylylene film can be formed on the entire surface of the phosphor (scintillator) and the support (substrate) to form a protective layer.
  • a polymer film can be provided on the phosphor layer.
  • a film similar to the polymer film as a support (substrate) material described later can be used as a material of the polymer film.
  • the thickness of the polymer film is preferably 12 ⁇ m or more and 120 ⁇ m or less, more preferably 20 ⁇ m or more and 80 ⁇ m or less, taking into consideration the formation of voids, the protective properties of the phosphor layer, sharpness, moisture resistance, workability, etc. Is preferred.
  • the haze ratio is preferably 3% or more and 40% or less, more preferably 3% or more and 10% or less in consideration of sharpness, radiation image unevenness, production stability, workability, and the like.
  • the haze ratio can be measured, for example, by Nippon Denshoku Industries Co., Ltd. NDH5000W.
  • the required haze ratio is appropriately selected from commercially available polymer films and can be easily obtained.
  • the light transmittance of the protective film is preferably 70% or more at 550 nm in consideration of photoelectric conversion efficiency, phosphor (scintillator) emission wavelength, etc., but a film having a light transmittance of 99% or more is commercially available. Since it is difficult, 99% to 70% is preferable substantially.
  • the moisture permeability of the protective film is preferably 50 g / m 2 ⁇ day (40 ° C., 90% RH) (measured according to JIS Z0208) or less, more preferably 10 g / m 2 taking into account the protective properties and deliquescence of the phosphor layer.
  • m 2 ⁇ day (40 ° C./90% RH) (measured in accordance with JIS Z0208) or less is preferable, but a film having a moisture permeability of 0.01 g / m 2 ⁇ day (40 ° C./90% RH) or less is industrial.
  • the support (also referred to as “substrate”) is preferably a quartz glass sheet, a metal sheet made of aluminum, iron, tin, chromium, or the like, a carbon fiber reinforced sheet, a polymer film, or the like.
  • Polymer films such as cellulose acetate film, polyester film, polyethylene terephthalate (PEN) film, polyamide film, polyimide (PI) film, triacetate film, polycarbonate film, carbon fiber reinforced resin sheet, etc. Can be used.
  • a polymer film containing polyimide or polyethylene naphthalate is suitable when a phosphor columnar crystal is formed by a vapor phase method using cesium iodide as a raw material.
  • the polymer film as the support (substrate) according to the present invention is preferably a polymer film having a thickness of 50 to 500 ⁇ m and further having flexibility.
  • the “support (substrate) having flexibility” means a support (substrate) having an elastic modulus (E120) at 120 ° C. of 1000 to 6000 N / mm 2 , and such support (substrate).
  • a polymer film containing polyimide or polyethylene naphthalate is preferred.
  • the “elastic modulus” refers to the slope of the stress relative to the strain amount in a region where the strain indicated by the standard line of the sample conforming to JIS C 2318 and the corresponding stress have a linear relationship using a tensile tester. Is what we asked for. This is a value called Young's modulus, and in the present invention, this Young's modulus is defined as an elastic modulus.
  • the support (substrate) used in the present invention preferably has an elastic modulus (E120) at 120 ° C. of 1000 to 6000 N / mm 2 as described above. More preferably, it is 1200 to 5000 N / mm 2 .
  • E120 elastic modulus
  • a polymer film containing polyimide or polyethylene naphthalate is preferable as described above.
  • the support (substrate) is a polymer film having a thickness of 50 to 500 ⁇ m, so that the scintillator panel is deformed into a shape suitable for the shape of the planar light receiving element surface, and is uniform over the entire light receiving surface of the flat panel detector. Sharpness is obtained.
  • the support may have a resin layer in order to make the surface smooth.
  • the resin layer preferably contains a compound such as polyimide, polyethylene phthalate, paraffin, graphite, and the film thickness is preferably about 5 ⁇ m to 50 ⁇ m. This resin layer may be provided on the surface of the support or on the back surface.
  • means for providing an adhesive layer on the surface of the support include means such as a bonding method and a coating method.
  • the laminating method is performed using heating and a pressure roller, the heating condition is about 80 to 150 ° C., the pressing condition is 4.90 ⁇ 10 to 2.94 ⁇ 10 2 N / cm, and the conveyance speed is 0.1. ⁇ 2.0 m / s is preferred.
  • the scintillator panel manufacturing method uses a vapor deposition apparatus having an evaporation source and a support rotation mechanism in a vacuum vessel, and installs the support on the support rotation mechanism, while rotating the support. It is preferable that the manufacturing method is an embodiment in which the phosphor layer is formed by a vapor deposition method including a step of vapor-depositing the phosphor material.
  • FIG. 1 is a schematic configuration diagram of a scintillator panel manufacturing apparatus 1 according to the present invention.
  • the scintillator panel manufacturing apparatus 1 includes a vacuum container 2, and the vacuum container 2 includes a vacuum pump 3 that exhausts the inside of the vacuum container 2 and introduces the atmosphere.
  • a support holder 5 that holds the support 4 is provided near the upper surface inside the vacuum vessel 2.
  • a phosphor layer is formed on the surface of the support 4 by a vapor deposition method.
  • a vapor deposition method a vapor deposition method, a sputtering method, a CVD method, an ion plating method, or the like can be used. In the present invention, the vapor deposition method is particularly preferable.
  • the support holder 5 is configured to hold the support 4 so that the surface of the support 4 on which the phosphor layer is formed faces the bottom surface of the vacuum vessel 2 and is parallel to the bottom surface of the vacuum vessel 2. It has become.
  • the support holder 5 is preferably provided with a heater (not shown) for heating the support 4.
  • a heater not shown for heating the support 4.
  • the adhesion of the support 4 to the support holder 5 is enhanced and the film quality of the phosphor layer is adjusted. Further, the adsorbate on the surface of the support 4 is removed and removed, and an impurity layer is prevented from being generated between the surface of the support 4 and the phosphor.
  • a heating medium or a mechanism (not shown) for circulating the heating medium may be provided as heating means. This means is suitable for the case where vapor deposition is performed while maintaining the temperature of the support 4 at a relatively low temperature of 50 to 150 ° C. during the vapor deposition of the phosphor.
  • a halogen lamp (not shown) may be provided as a heating means. This means is suitable for the case where vapor deposition is performed while maintaining the temperature of the support 4 at a relatively high temperature such as 150 ° C. or higher during the vapor deposition of the phosphor.
  • the support holder 5 is provided with a support rotating mechanism 6 that rotates the support 4 in the horizontal direction.
  • the support rotating mechanism 6 supports the support holder 5 and rotates the support 4 and a motor (not shown) that is disposed outside the vacuum vessel 2 and serves as a drive source for the support rotating shaft 7. Z).
  • evaporation sources 8 a and 8 b are arranged at positions facing each other on the circumference of a circle centering on the center line perpendicular to the support 4.
  • the distance between the support 4 and the evaporation sources 8a and 8b is preferably 100 to 1500 mm, and more preferably 200 to 1000 mm.
  • the distance between the center line perpendicular to the support 4 and the evaporation sources 8a and 8b is preferably 100 to 1500 mm, more preferably 200 to 1000 mm.
  • the scintillator panel manufacturing apparatus it is possible to provide a large number of three or more evaporation sources, and the respective evaporation sources may be arranged at equal intervals or at different intervals. Good. Further, the radius of a circle centered on the center line perpendicular to the support 4 can be arbitrarily determined.
  • the evaporation sources 8a and 8b contain the phosphor and heat it by a resistance heating method. Therefore, the evaporation sources 8a and 8b may be composed of an alumina crucible wound with a heater, a boat or a heater made of a refractory metal. May be. Further, the method of heating the phosphor may be a method such as heating by an electron beam or heating by high frequency induction other than the resistance heating method, but in the present invention, it is relatively easy to handle, inexpensive, and In view of the fact that it can be applied to a large number of substances, a method in which a direct current is passed and resistance heating is performed, and a method in which a crucible is indirectly resistance heated with a surrounding heater is preferable. The evaporation sources 8a and 8b may be molecular beam sources by a molecular source epitaxial method.
  • a shutter 9 that blocks the space from the evaporation sources 8a and 8b to the support 4 is provided between the evaporation sources 8a and 8b and the support 4 so as to be openable and closable in the horizontal direction.
  • substances other than the target substance attached to the surface of the phosphor can be prevented from evaporating at the initial stage of vapor deposition and adhering to the support 4.
  • the support 4 is attached to the support holder 5. Further, in the vicinity of the bottom surface of the vacuum vessel 2, the evaporation sources 8 a and 8 b are arranged on the circumference of a circle centering on the center line perpendicular to the support 4.
  • the distance between the support 4 and the evaporation sources 8a and 8b is preferably 100 mm to 1500 mm, and more preferably 200 mm to 1000 mm.
  • the distance between the center line perpendicular to the support 4 and the evaporation sources 8a and 8b is preferably 100 mm to 1500 mm, more preferably 200 mm to 1000 mm.
  • the inside of the vacuum vessel 2 is evacuated and adjusted to a desired degree of vacuum. Thereafter, the support holder 5 is rotated with respect to the evaporation sources 8a and 8b by the support rotation mechanism 6, and when the vacuum container 2 reaches a vacuum degree capable of vapor deposition, the phosphor is evaporated from the heated evaporation sources 8a and 8b. The phosphor is grown on the surface of the support 4 to a desired thickness.
  • the phosphor layer can be formed by performing the process of growing the phosphor on the surface of the support 4 in a plurality of times.
  • the vapor deposition target (support 4, protective layer, or intermediate layer) may be cooled or heated as necessary during vapor deposition.
  • the phosphor layer may be heat-treated.
  • reactive vapor deposition may be performed in which vapor deposition is performed by introducing a gas such as O 2 or H 2 as necessary.
  • the thickness of the phosphor layer to be formed is 50 ⁇ m to 2000 ⁇ m, preferably 50 ⁇ m to 1000 ⁇ m from the viewpoint of obtaining the effects of the present invention, although it varies depending on the intended use of the radiation image conversion panel and the kind of the phosphor. More preferably, it is 100 ⁇ m to 800 ⁇ m.
  • the temperature of the support 4 on which the phosphor layer is formed is preferably set to room temperature (rt) to 300 ° C., more preferably 50 to 250 ° C.
  • the phosphor layer is physically or chemically protected on the surface of the phosphor layer opposite to the support 4 as necessary.
  • a protective layer may be provided.
  • the protective layer may be formed by directly applying a coating solution for the protective layer to the surface of the phosphor layer, or a protective layer separately formed in advance may be adhered to the phosphor layer.
  • the thickness of these protective layers is preferably 0.1 ⁇ m to 2000 ⁇ m.
  • the protective layer may be formed by laminating inorganic substances such as SiC, SiO 2 , SiN, and Al 2 O 3 by vapor deposition, sputtering, or the like.
  • the scintillator panel manufacturing apparatus 1 by providing the plurality of evaporation sources 8 a and 8 b, the overlapping portions of the vapor sources 8 a and 8 b are rectified and deposited on the surface of the support 4.
  • the crystallinity of the phosphor can be made uniform.
  • the vapor flow is rectified at more locations, so that the crystallinity of the phosphor can be made uniform in a wider range.
  • the evaporation sources 8a and 8b are disposed on the circumference of a circle having a center line perpendicular to the support 4 as a center, the effect that the crystallinity becomes uniform due to the rectification of the vapor flow is provided. Can be obtained isotropically on the surface.
  • the phosphor can be uniformly deposited on the surface of the support 4 by depositing the phosphor while rotating the support 4 by the support rotating mechanism 6.
  • the scintillator panel manufacturing apparatus 1 or the manufacturing method according to the present invention by growing the phosphor layer on the surface of the support 4 so that the crystallinity of the phosphor is uniform, Sensitivity unevenness of the phosphor layer can be reduced, and the sharpness of the radiographic image obtained from the radiographic image conversion panel using the scintillator panel according to the present invention can be improved.
  • the crystallinity of the phosphor is made more uniform, and the radiation image The sharpness of the radiation image obtained from the conversion panel can be improved.
  • the support body holder 5 was equipped with the support body rotation mechanism 6, this invention is not necessarily restricted to this, It vapor-deposits in the state which the support body holder 5 hold
  • the present invention is also applicable to the case where the phosphor from the evaporation sources 8a and 8b is deposited by moving the support 4 in the horizontal direction with respect to the evaporation sources 8a and 8b.
  • the radiation image conversion panel (also referred to as “radiation image detector” or “radiation flat panel detector”) of the present invention is a phosphor layer formed on a first substrate by a vapor deposition method through a functional layer such as a reflective layer.
  • a photoelectric conversion element section (“planar light-receiving element”) in which pixels including a photosensor and a TFT (Thin Film Transistor) or a CCD (Charge Coupled Devices) are two-dimensionally arranged on a second substrate on a scintillator panel.
  • a radiation image conversion panel by adhere
  • substrate was formed in two dimensions
  • a phosphor layer may be provided by a vapor deposition method directly or through a functional layer such as a reflective layer or a protective layer.
  • a radiation image conversion panel may be used.
  • the radiation image conversion panel of the present invention has, as a basic configuration, radiation in an aspect including a phosphor layer and a light receiving element in which a plurality of light receiving pixels are two-dimensionally arranged (hereinafter referred to as “planar light receiving element”). Requires an image conversion panel.
  • the flat light-receiving element surface converts light emitted from the phosphor layer into electric charges, whereby the image can be converted into digital data.
  • the average surface roughness (Ra) of the planar light receiving element according to the present invention is preferably 0.001 to 0.5 ⁇ m. For this reason, after forming the light receiving element on the glass surface, it is preferable to form an organic resin film such as polyester or acrylic on the surface, and adjust the surface roughness by a photoetching method so as to satisfy the requirements. .
  • the surface average roughness (Ra) of the planar light receiving element is preferably 0.001 to 0.1 ⁇ m, and more preferably 0.001 to 0.05 ⁇ m.
  • the radiation image conversion panel of the present invention is preferably in such a mode that the scintillator panel is pressed and adhered to the planar light receiving element by an elastic member (for example, sponge, spring, etc.).
  • an elastic member for example, sponge, spring, etc.
  • the scintillator panel is in a state in which the scintillator panel is in close contact with the planar light receiving element and the periphery thereof is sealed with a close seal member by reducing the gas in the gap between the scintillator panel and the planar light receiving element.
  • the close seal member is preferably an ultraviolet curable resin.
  • the scintillator panel has a phosphor layer and the phosphor layer is in direct contact with the planar light receiving element.
  • the ultraviolet curable resin is not particularly limited and can be appropriately selected from those conventionally used.
  • This ultraviolet curable resin contains a photopolymerizable prepolymer, a photopolymerizable monomer, a photopolymerization initiator or a photosensitizer.
  • Examples of the photopolymerizable prepolymer include polyester acrylate, epoxy acrylate, urethane acrylate, and polyol acrylate. These photopolymerizable prepolymers may be used alone or in combination of two or more.
  • Examples of the photopolymerizable monomer include polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, Examples include dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and neopentyl glycol di (meth) acrylate.
  • urethane acrylate as the prepolymer and dipentaerythritol hexa (meth) acrylate as the monomer.
  • photopolymerization initiator examples include acetophenones, benzophenones, ⁇ -amyloxime esters, tetramethylchuram monosulfide, thioxanthones, and the like. Further, n-butylamine, triethylamine, poly-n-butylphosphine and the like can be mixed and used as a photosensitizer.
  • a scintillator panel was obtained by the following method using the manufacturing apparatus shown in FIG.
  • Example 1 (Production of scintillator panel) Phosphor 1 (CsI only) and phosphor 2 (CsI: 0.003 Tl) were vapor-deposited on one side of a support made of a polyimide resin sheet to form a phosphor layer. That is, first, a support was placed on a support holder provided with a support rotation mechanism. Next, the phosphor raw material is filled in the evaporation source crucible as an evaporation material, and the two evaporation source crucibles are in the vicinity of the bottom of the inside of the vacuum vessel and are circles centered on the center line perpendicular to the support Arranged on the circumference.
  • the distance between the support and the evaporation source was adjusted to 300 mm, and the distance between the center line perpendicular to the support and the evaporation source was adjusted to 300 mm.
  • the inside of the vacuum vessel was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.1 Pa, and then the temperature of the support was maintained at 30 ° C. while rotating the support at a speed of 10 rpm.
  • the inside of the crucible is raised to a predetermined temperature by resistance heating, and after the phosphor 1 is deposited without rotating the support, the support (substrate) temperature is raised to 200 ° C., and the film thickness of the phosphor layer is increased.
  • the vapor deposition was terminated when the thickness reached 30 ⁇ m.
  • the phosphor 2 was deposited, and the deposition was terminated when the thickness of the phosphor layer reached 450 ⁇ m.
  • the phosphor layer was placed in a protective layer bag in dry air to obtain a scintillator panel having a structure in which the phosphor layer was sealed.
  • Example 2 Among Example 1, the space
  • Example 3 Among Example 1, the space
  • Example 4 Among Example 1, the space
  • Example 5 Among Example 1, the space
  • Example 1 In Example 1, vapor deposition was performed without rotating the support to obtain a radiation image conversion panel.
  • Comparative Example 2 In Comparative Example 1, a scintillator panel was obtained by adjusting the distance between the support and the evaporation source to 1000 mm.
  • each crystal diameter was determined from an electron micrograph containing at least 100 columnar crystals in the field of view, and the standard deviation of the crystal diameter was calculated. Then, the calculated relative standard deviation was divided by the average of 100 crystal diameters to obtain a coefficient of variation represented by the following formula.
  • Coefficient of variation standard deviation of crystal diameter / average of crystal diameter ⁇ Coefficient of variation of phosphor filling factor>
  • the phosphor layer of the obtained scintillator panel was divided into 100, and the filling rate was calculated by obtaining the value obtained by dividing the actual mass of the phosphor layer by the theoretical density and the apparent volume for each piece. Then, the calculated standard deviation of the filling rate was divided by the average of 100 filling rates to obtain a coefficient of variation represented by the following formula.
  • MTF modulation transfer function
  • MTF distribution ((MAX ⁇ MIN) / ((MAX + MIN) ⁇ 2)) ⁇ 100 [%] (Evaluation of moisture resistance)
  • the obtained phosphor panel was allowed to stand in an environment of 70 ° C./90% for 3 days, and the deterioration width after being left was displayed as a relative value with the value before being left as 100.
  • Table 1 summarizes the results obtained from the above evaluations.
  • the obtained scintillator panel was set in PaxScan2520 (Varian FPD) to produce a radiation image conversion panel (detector radiation image detector). After dropping a 500 g iron ball from a height position 20 cm away from the radiation image conversion panel, the radiation image conversion panel was visually evaluated. Thereafter, an image on the radiation image conversion panel obtained by irradiating the tube voltage 80 kVp with X-rays from the back side of the support (substrate) is printed out from the output device, and the obtained print image is visually shown below.
  • the impact resistance was evaluated according to the standard. Table 1 shows the results. Evaluation was performed in 0.5 rank steps. 5: There is no crack and the image is uniform.
  • the radiation image conversion panel of the present invention in which the variation coefficient of the crystal diameter of the columnar crystals is 50% or less and the variation coefficient of the phosphor filling factor is 20% or less (Example 1)
  • the MTF distribution is improved and the relative MTF value is improved.
  • the coefficient of variation decreases, the tendency becomes more prominent.
  • the variation coefficient of the crystal diameter of the columnar crystal is preferably 50% or less, more preferably 40% or less, further preferably 30% or less, particularly preferably 20%, and most preferably 10% or less.
  • the variation coefficient of the phosphor filling factor is preferably 20% or less, more preferably 15% or less, still more preferably 10% or less, and particularly preferably 5% or less.

Abstract

 本発明の目的は、鮮鋭性が高く耐湿性、耐衝撃性が改善された放射線画像が得られる放射線画像変換パネル及びその製造方法を提供するものである。  本発明の放射線画像変換パネルは、支持体上に気相堆積法により形成されたヨウ化セシウム(CsI)を主成分とする蛍光体柱状結晶を含有する蛍光体層を有する放射線画像変換パネルであって、当該蛍光体柱状結晶の結晶径の変動係数が50%以下であり、かつ当該蛍光体層の蛍光体充填率の変動係数が20%以下であることを特徴とする。

Description

放射線画像変換パネル及びその製造方法
 本発明は、鮮鋭性が高く耐湿性、耐衝撃性が改善された放射線画像が得られる放射線画像変換パネル及びその製造方法に関する。
 従来、X線画像のような放射線画像は医療現場において病状の診断に広く用いられている。特に、増感紙-フィルム系による放射線画像は、長い歴史のなかで高感度化と高画質化が図られた結果、高い信頼性と優れたコストパフォーマンスを併せ持った撮像システムとして、今なお、世界中の医療現場で用いられている。しかしながら、これら画像情報はいわゆるアナログ画像情報であって、近年発展を続けているデジタル画像情報のような、自由な画像処理や瞬時の電送が出来ない。
 そして、近年ではコンピューテッドラジオグラフィ(computed radiography:CR)やフラットパネル型の放射線ディテクタ(flat panel detector:FPD)等に代表されるデジタル方式の放射線画像検出装置が登場している。これらは、デジタルの放射線画像が直接得られ、陰極管や液晶パネル等の画像表示装置に画像を直接表示することが可能なので、必ずしも写真フィルム上への画像形成が必要なものではない。その結果、これらのデジタル方式のX線画像検出装置は、銀塩写真方式による画像形成の必要性を低減させ、病院や診療所での診断作業の利便性を大幅に向上させている。
 X線画像のデジタル技術の一つとしてコンピューテッド・ラジオグラフィ(CR)が現在医療現場で受け入れられている。しかしながら、鮮鋭性が十分でなく空間分解能も不十分であり、スクリーン・フィルムシステムの画質レベルには到達していない。そして、更に新たなデジタルX線画像技術として、例えば雑誌Physics Today,1997年11月号24頁のジョン・ローランズ論文“Amorphous Semiconductor Usher in Digital X-ray Imaging”や、雑誌SPIEの1997年32巻2頁のエル・イー・アントヌクの論文“Development of a High Resolution,Active Matrix,Flat-Panel Imager with Enhanced Fill Factor”等に記載された、薄膜トランジスタ(TFT)を用いた平板X線検出装置(FPD)が開発されている。
 放射線を可視光に変換するために、放射線により発光する特性を有するX線蛍光体で作られたシンチレータが使用されるが、低線量の撮影においてのSN比を向上するためには、発光効率の高いシンチレータを使用することが必要になってくる。一般にシンチレータの発光効率は、蛍光体層の厚さ、蛍光体のX線吸収係数によって決まるが、蛍光体層の厚さは厚くすればするほど、蛍光体層内での発光光の散乱が発生し、鮮鋭性は低下する。そのため、画質に必要な鮮鋭性を決めると、層厚が決定する。
 なかでもヨウ化セシウム(CsI)は、X線から可視光に対する変更率が比較的高く、蒸着によって容易に蛍光体を柱状結晶構造に形成できるため、光ガイド効果により結晶内での発光光の散乱が抑えられ、蛍光体層の厚さを厚くすることが可能である(特許文献1参照)。
 しかし、ヨウ化セシウム(CsI)のみでは発光効率が低いために、ヨウ化セシウム(CsI)とヨウ化ナトリウム(NaI)を任意のモル比で混合したものを、蒸着を用いて支持体(基板)上にナトリウム賦活ヨウ化セシウム(CsI:Na)として堆積、又近年では、ヨウ化セシウム(CsI)とヨウ化タリウム(TlI)を任意のモル比で混合したしたものを、蒸着を用いて支持体(基板)上にタリウム賦活ヨウ化セシウム(CsI:Tl)として堆積したものに、200~500℃の温度で熱処理を行うことで可視変換効率を向上させ、X線蛍光体として使用している(例えば特許文献2参照)。
 また、ヨウ化セシウム(CsI)をベースとした蛍光体層(「シンチレータ層」ともいう。)は潮解性があり、経時で特性が劣化するという欠点がある。この様な経時劣化を防止するために当該蛍光体層の表面に防湿性保護層を形成することが提案されている。例えば、ポリパラキシリレン樹脂により蛍光体層の上部、側面及び支持体(基板)のシンチレータ層外周部を覆う方法が知られている(例えば特許文献3を参照。)。
 一方、ヨウ化セシウム(CsI)を用いるフラットパネル型の放射線ディテクタ(FPD;「放射線画像変換パネル」ともいう。)においては、近年パネルの大面積化や、可搬型のカセッテタイプ化が要求されてきており、輝尽性蛍光体を用いるコンピューテッドラジオグラフィ(CR)に比較して、耐湿性や耐衝撃性の要求レベルが格段に厳しくなってきており、上記した従来技術ではその要求レベルを満足させることができなかった。
 ヨウ化セシウム(CsI)を用いるフラットパネル型の放射線ディテクタ(FPD)の耐湿性や耐衝撃性を向上させるためには、従来保護層を設けたり、保護フィルムによる封止を行ったり、パネルと筐体間に緩衝剤を用いることが行われてきたが、要求レベルを満たすことができなかった。
特開昭63-215987号公報 特公昭54-35060号公報 特開2000-284053号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、鮮鋭性が高く耐湿性、耐衝撃性が改善された放射線画像が得られる放射線画像変換パネル及びその製造方法を提供することである。
 本発明者は、上記問題の解決に注力した結果、ヨウ化セシウム(CsI)蛍光体層中の柱状結晶の結晶径の変動係数、当該蛍光体層中の蛍光体の充填率の変動係数の両方を特定の範囲とすることで思いがけず耐湿性、耐衝撃性が改良されることを見いだし、本発明に到達した。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.支持体上に気相堆積法により形成されたヨウ化セシウム(CsI)を主成分とする蛍光体柱状結晶を含有する蛍光体層を有する放射線画像変換パネルであって、当該蛍光体柱状結晶の結晶径の変動係数が50%以下であり、かつ当該蛍光体層の蛍光体充填率の変動係数が20%以下であることを特徴とする放射線画像変換パネル。
 2.前記蛍光体柱状結晶が、ヨウ化セシウム(CsI)とタリウム(Tl)を含む添加剤とを原材料として形成されたことを特徴とする前記1に記載の放射線画像変換パネル。
 3.前記蛍光体柱状結晶が、その根元部分にタリウムを含まない層を有することを特徴とする前記1又は2に記載の放射線画像変換パネル。
 4.前記支持体上に前記蛍光体層を有するシンチレータパネルと2次元状に複数の受光画素が配置された受光素子(「平面受光素子」)とを具備したことを特徴とする前記1~3のいずれか一項に記載の放射線画像変換パネル。
 5.前記1~4のいずれか一項に記載の放射線画像変換パネルの製造方法であって、真空容器内に蒸発源及び支持体回転機構を有する蒸着装置を用いて、支持体を前記支持体回転機構に設置して、当該支持体を回転しながら蛍光体材料を蒸着する工程を含む気相堆積法により、蛍光体層を形成することを特徴とする放射線画像変換パネルの製造方法。
 本発明の上記手段により、鮮鋭性が高く耐湿性、耐衝撃性が改善された放射線画像が得られる支持体上に気相堆積法により形成された蛍光体柱状結晶を含有する蛍光体層を有する放射線画像変換パネル及びその製造方法を提供することができる。
 耐湿性、耐衝撃性が改良される理由は明確ではないが、柱状結晶の結晶径の変動係数が50%を超える場合、及び蛍光体の充填率の変動係数が20%を超える場合は、局所的に蛍光体粒子が融着をおこして柱状結晶構造が乱れていたり、蛍光体層中に空隙が発生していると推定され、これらの場所の近傍では局所的に湿度や衝撃によるダメージを受けやすく、耐湿性、耐衝撃性の劣化を引き起こしていると推定している。
シンチレータパネル製造装置の模式図
符号の説明
 1 シンチレータパネルの製造装置
 2 真空容器
 3 真空ポンプ
 4 支持体
 5 支持体ホルダ
 6 支持体回転機構
 7 支持体回転軸
 8 蒸発源
 9 シャッタ
 本発明の放射線画像変換パネルは、支持体上に気相堆積法により形成されたヨウ化セシウム(CsI)を主成分とする蛍光体柱状結晶を含有する蛍光体層を有する放射線画像変換パネルであって、当該蛍光体柱状結晶の結晶径の変動係数が50%以下であり、かつ当該蛍光体層の蛍光体充填率の変動係数が20%以下であることを特徴とする。この特徴は、請求の範囲1~5に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記蛍光体柱状結晶が、ヨウ化セシウムとタリウムを含む添加剤とを原材料として形成されたものであることが好ましい。この場合、当該蛍光体柱状結晶が、その根元部分にタリウムを含まない層を有する態様であることが好ましい。
 また、本発明においては、前記支持体上に前記蛍光体層を有するシンチレータパネルと2次元状に複数の受光画素が配置された受光素子(「平面受光素子」ともいう。)とを具備した態様の放射線画像変換パネルは、好ましい一形態である。
 本発明の放射線画像変換パネルの製造方法としては、真空容器内に蒸発源及び支持体回転機構を有する蒸着装置を用いて、支持体を前記支持体回転機構に設置して、当該支持体を回転しながら蛍光体材料を蒸着する工程を含む気相堆積法により、蛍光体層を形成する態様の製造方法であることが好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための最良の形態・態様について詳細な説明をする。
 (放射線画像変換パネルの構成)
 本発明の放射線画像変換パネルは、支持体上に気相堆積法により形成されたヨウ化セシウム(CsI)を主成分とする蛍光体柱状結晶を含有する蛍光体層を有することを特徴とするが、当該蛍光体層の外に、目的に応じて、後述するような各種機能層を設けた構成とすることが好ましい。
 また、本発明の放射線画像変換パネルは、第1の基板上に反射層等の機能層を介して気相堆積法により蛍光体層を設けてなるシンチレータパネルに、第2の基板上にフォトセンサとTFT(Thin Film Transistor)又はCCD(Charge Coupled Devices)からなる画素を2次元状に配置した光電変換素子部(「平面受光素子」)を設けてなる光電変換パネルを接着あるいは密着させることで放射線画像変換パネルとしてもよいし、基板上に平面受光素子を形成した後、直接あるいは反射層、保護層等の機能層を介して気相堆積法により蛍光体層を設けることで放射線画像変換パネルとしても良い。
 以下、典型的例として、主にシンチレータパネルを形成する場合の各種構成層及び構成要素等について説明するが、基板上に平面受光素子を形成した後、直接的に蛍光体層を設けることで放射線画像変換パネルとする場合も、基本的には同様である。
 (蛍光体層:シンチレータ層)
 本発明に係る蛍光体層(「シンチレータ層」ともいう。)は、ヨウ化セシウム(CsI)を主成分とする蛍光体柱状結晶を含有する蛍光体層であることを特徴とする。蛍光体層を形成する材料としては、種々の蛍光体材料が知られているが、ヨウ化セシウム(CsI)は、X線から可視光に対する変更率が比較的高く、蒸着によって容易に蛍光体を柱状結晶構造に形成出来るため、光ガイド効果により結晶内での発光光の散乱が抑えられ、蛍光体層の厚さを厚くすることが可能であることから、本発明においては、当該ヨウ化セシウム(CsI)を主成分とすることを特徴とする。
 但し、CsIのみでは発光効率が低いために、各種の賦活剤が添加される。例えば、特公昭54-35060号公報の如く、CsIとヨウ化ナトリウム(NaI)を任意のモル比で混合したものが挙げられる。また、例えば特開2001-59899号公報に開示されているようなCsIを蒸着で、タリウム(Tl)、ユウロピウム(Eu)、インジウム(In)、リチウム(Li)、カリウム(K)、ルビジウム(Rb)、ナトリウム(Na)などの賦活物質を含有するCsIが好ましい。本発明においては、特に、タリウム(Tl)、ユウロピウム(Eu)が好ましい。更に、タリウム(Tl)が好ましい。
 なお、本発明においては、特に、1種類以上のタリウム化合物を含む添加剤とヨウ化セシウムとを原材料とすることが好ましい。すなわち、タリウム賦活ヨウ化セシウム(CsI:Tl)は400nmから750nmまでの広い発光波長をもつことから好ましい。
 本発明に係る1種類以上のタリウム化合物を含有する添加剤のタリウム化合物としては、種々のタリウム化合物(+Iと+IIIの酸化数の化合物)を使用することができる。
 本発明において、好ましいタリウム化合物は、臭化タリウム(TlBr)、塩化タリウム(TlCl)、又はフッ化タリウム(TlF,TlF)等である。
 また、本発明に係るタリウム化合物の融点は、400~700℃の範囲内にあることが好ましい。700℃以内を超えると、柱状結晶内での添加剤が不均一に存在してしまい、発光効率が低下する。なお、本発明での融点とは、常温常圧下における融点である。
 本発明に係る蛍光体層において、当該添加剤の含有量は目的性能等に応じて、最適量にすることが望ましいが、ヨウ化セシウムの含有量に対して、0.001mol%~50mol%、更に0.1~10.0mol%であることが好ましい。
 ここで、ヨウ化セシウムに対し、添加剤が0.001mol%以上であると、ヨウ化セシウム単独使用で得られる発光輝度の向上がみられ、目的とする発光輝度を得る点で好ましい。また、50mol%以下であるとヨウ化セシウムの性質・機能を保持することができて好ましい。
 なお、蛍光体層(シンチレータ層)の厚さは、100~800μmであることが好ましく、120~700μmであることが、輝度と鮮鋭性の特性をバランスよく得られる点からより好ましい。
 本発明に係る蛍光体柱状結晶は、気相堆積法により形成することを要する。気相堆積法としては、蒸着法、スパッタリング法、CVD法、イオンプレーティング法その他を用いることができるが、本発明では特に蒸着法が好ましい。
 本発明に係る蛍光体層は、気相堆積法により形成された蛍光体柱状結晶を含有する蛍光体層であって、当該蛍光体柱状結晶の結晶径の変動係数が50%以下であり、かつ当該蛍光体層の蛍光体充填率の変動係数が20%以下であることを特徴とする。
 すなわち、本発明に係る蛍光体柱状結晶の結晶径の変動係数は、本発明の効果発現の観点から、50%以下であることを要するが、好ましくは40%以下、さらに好ましくは30%以下、特に好ましくは20%であり、最も好ましくは10%以下である。また、蛍光体充填率の変動係数は、20%以下であることを要するが、好ましくは15%以下、さらに好ましくは10%以下、特に好ましくは5%以下である。
 なお、本願において、当該蛍光体柱状結晶の結晶径の変動係数の求め方は、次のようにして行う;得られた蛍光体層のうち、少なくとも100個の柱状結晶を視野中に含む電子顕微鏡写真からそれぞれの結晶径を求め、結晶径の標準偏差を算出する。そして、算出した相対標準偏差を100個の結晶径の平均で除して、下記式で示される変動係数を求める。
 変動係数=結晶径の標準偏差/結晶径の平均
 一方、蛍光体充填率の変動係数の求め方は、次のようにして行う;例えば、得られたチンチレータパネルの蛍光体層を100分割し、それぞれのピースについて蛍光体層の実際の質量を、理論密度と見かけの体積で割った値を求めて充填率を算出する。そして、算出した充填率の標準偏差を100個の充填率の平均で除して、下記式で示される変動係数を求める。
 変動係数=充填率の標準偏差/充填率の平均
 本発明において、上記結晶径の変動係数及び蛍光体充填率の変動係数を制御する方法としては、蒸着条件(真空度、温度、支持体と蒸発源との間隔、支持体の回転等)の制御により行う。特に、支持体と蒸発源との間隔及び支持体の回転数を、蛍光体材料の物理化学的性質に応じて適切な条件に制御する方法が好ましい。
 本発明においては、蛍光体柱状結晶が、ヨウ化セシウム(CsI)を主成分として含有すること、また、前記蛍光体柱状結晶が、ヨウ化セシウムとタリウムを含む添加剤とを原材料として形成されることが好ましい。
 さらには、本発明に係る蛍光体柱状結晶が、その根元部分にタリウムを含まない層を有するものであることが好ましい。このような結晶は、基本的には、次のようにして作製することができる。すなわち、例えば、支持体上にCsIのみを所望の厚さになるまで蒸着させ蛍光体(CsI)結晶を形成した後、当該形成された結晶の上にヨウ化セシウムとタリウムを含む添加剤(例えばCsI:0.003Tl)を所望の厚さになるまで蒸着(気相堆積)させて蛍光体柱状結晶(蛍光体層)を形成する。
 なお、本願でいう「根元部分」とは、気相堆積法により蛍光体柱状結晶を形成する過程において、初期に形成された部分をいう。また、「タリウムを含まない層」とは、上記のような方法によって形成された蛍光体柱状結晶のうちにタリウムを実質的に含まない結晶部分をいう。
 (反射層)
 本発明においては、支持体(基板)上には反射層(「金属反射層」ともいう。)を設けることが好ましい、蛍光体(シンチレータ)から発した光を反射して、光の取り出し効率を高めるためのものである。当該反射層は、Al,Ag,Cr,Cu,Ni,Ti,Mg,Rh,Pt及びAuからなる元素群の中から選ばれるいずれかの元素を含む材料により形成されることが好ましい。
 特に、上記の元素からなる金属薄膜、例えば、Ag膜、Al膜などを用いることが好ましい。また、このような金属薄膜を2層以上形成するようにしても良い。金属薄膜を2層以上とする場合は、下層をCrを含む層とすることが基板との接着性を向上させる点から好ましい。また、金属薄膜上にSiO、TiO等の金属酸化物からなる層をこの順に設けてさらに反射率を向上させても良い。
なお、反射層の厚さは、0.005~0.3μm、より好ましくは0.01~0.2μmであることが、発光光取り出し効率の観点から好ましい。
 本発明に係る反射層の形成方法は既知のいかなる方法でも構わないが、例えば、上記原材料を使用したスパッタ処理が挙げられる。
 (金属保護層)
 本発明に係るシンチレータパネルにおいては、上記反射層の上に金属保護層をもうけてもよい。
 金属保護層は、溶剤に溶解した樹脂を塗布、乾燥して形成することが好ましい。ガラス転位点が30~100℃のポリマーであることが蒸着結晶と支持体(基板)との膜付の点で好ましく、具体的には、ポリウレタン樹脂、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル樹脂、セルロース誘導体(ニトロセルロース等)、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられるが、特にポリエステル樹脂であることが好ましい。
 金属保護層の膜厚としては接着性の点で0.1μm以上が好ましく、金属保護層表面の平滑性確保の点で3.0μm以下が好ましい。より好ましくは金属保護層の厚さが0.2~2.5μmの範囲である。
 金属保護層作製に用いる溶剤としては、メタノール、エタノール、n-プロパノール、n-ブタノールなどの低級アルコール、メチレンクロライド、エチレンクロライドなどの塩素原子含有炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン、トルエン、ベンゼン、シクロヘキサン、シクロヘキサノン、キシレンなどの芳香族化合物、酢酸メチル、酢酸エチル、酢酸ブチルなどの低級脂肪酸と低級アルコールとのエステル、ジオキサン、エチレングリコールモノエチルエステル、エチレングリコールモノメチルエステルなどのエーテル、及びそれらの混合物を挙げることができる。
 (下引層)
 本発明においては、支持体(基板)と蛍光体層の間、又は反射層と蛍光体層の間に膜付の観点から、下引き層を設けることが好ましい。当該下引層は、高分子結合材(バインダー)、分散剤等を含有することが好ましい。なお、下引層の厚さは、0.5~4μmが好ましい、4μm以上になると下引層内での光散乱が大きくなり鮮鋭性が悪化する。また下引層の厚さが5μmより大きくなると熱処理より柱状結晶性の乱れが発生する。以下、下引層の構成要素について説明する。
 〈高分子結合材〉
 本発明に係る下引層は、溶剤に溶解又は分散した高分子結合材(以下「バインダー」ともいう。)を塗布、乾燥して形成することが好ましい。高分子結合材としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル、セルロース誘導体(ニトロセルロース等)、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。なかでもポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロースを使用することが好ましい。
 本発明に係る高分子結合材としては、特に蛍光体層との密着の点でポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロースなどが好ましい。また、ガラス転位温度(Tg)が30~100℃のポリマーであることが、蒸着結晶と支持体(基板)との膜付の点で好ましい。この観点からは、特にポリエステル樹脂であることが好ましい。
 下引層の調製に用いることができる溶剤としては、メタノール、エタノール、n-プロパノール、n-ブタノールなどの低級アルコール、メチレンクロライド、エチレンクロライドなどの塩素原子含有炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン、トルエン、ベンゼン、シクロヘキサン、シクロヘキサノン、キシレンなどの芳香族化合物、酢酸メチル、酢酸エチル、酢酸ブチルなどの低級脂肪酸と低級アルコールとのエステル、ジオキサン、エチレングリコールモノエチルエステル、エチレングリコールモノメチルエステルなどのエーテル及びそれらの混合物を挙げることができる。
 なお、本発明に係る下引層には、蛍光体(シンチレータ)が発光する光の散乱の防止し、鮮鋭性等を向上させるために顔料や染料を含有させても良い。
 (保護層)
 本発明に係る保護層は、蛍光体層の保護を主眼とするものである。すなわち、ヨウ化セシウム(CsI)は、吸湿性が高く露出したままにしておくと空気中の水蒸気を吸湿して潮解してしまうため、これを防止することを主眼とする。
 当該保護層は、種々の材料を用いて形成することができる。例えば、CVD法によりポリパラキシリレン膜を形成する。即ち、蛍光体(シンチレータ)及び支持体(基板)の表面全体にポリパラキシリレン膜を形成し、保護層とすることができる。
 また、別の態様の保護層として、蛍光体層上に高分子フィルムを設けることもできる。なお、高分子フィルムの材料としては、後述する支持体(基板)材料としての高分子フィルムと同様のフィルムを用いることができる。
 上記高分子フィルムの厚さは、空隙部の形成性、蛍光体層の保護性、鮮鋭性、防湿性、作業性等を考慮し、12μm以上、120μm以下が好ましく、更には20μm以上、80μm以下が好ましい。また、ヘイズ率は、鮮鋭性、放射線画像ムラ、製造安定性及び作業性等を考慮し、3%以上、40%以下が好ましく、更には3%以上、10%以下が好ましい。ヘイズ率は、例えば、日本電色工業株式会社NDH5000Wにより測定できる。必要とするヘイズ率は、市販されている高分子フィルムから適宜選択し、容易に入手することが可能である。
 保護フィルムの光透過率は、光電変換効率、蛍光体(シンチレータ)発光波長等を考慮し、550nmで70%以上あることが好ましいが、99%以上の光透過率のフィルムは工業的に入手が困難であるため実質的に99%~70%が好ましい。
 保護フィルムの透湿度は、蛍光体層の保護性、潮解性等を考慮し50g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には10g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましいが、0.01g/m・day(40℃・90%RH)以下の透湿度のフィルムは工業的に入手が困難であるため実質的に、0.01g/m・day(40℃・90%RH)以上、50g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には0.1g/m・day(40℃・90%RH)以上、10g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましい。
 (支持体:基板)
 本発明においては、支持体(「基板」ともいう。)としては、石英ガラスシート、アルミニウム、鉄、スズ、クロムなどからなる金属シート、炭素繊維強化シート、高分子フィルムなどが好ましい。
 高分子フィルムとしては、セルロースアセテートフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PEN)フィルム、ポリアミドフィルム、ポリイミド(PI)フィルム、トリアセテートフィルム、ポリカーボネートフィルム、炭素繊維強化樹脂シート等の高分子フィルム(プラスチックフィルム)を用いることができる。特に、ポリイミド又はポリエチレンナフタレートを含有する高分子フィルムが、ヨウ化セシウムを原材料として気相法にて蛍光体柱状結晶を形成する場合に、好適である。
 なお、本発明に係る支持体(基板)としての高分子フィルムは、厚さ50~500μmであること、更に可とう性を有する高分子フィルムであることが好ましい。
 ここで、「可とう性を有する支持体(基板)」とは、120℃での弾性率(E120)が1000~6000N/mmである支持体(基板)をいい、かかる支持体(基板)としてポリイミド又はポリエチレンナフタレートを含有する高分子フィルムが好ましい。
 なお、「弾性率」とは、引張試験機を用い、JIS C 2318に準拠したサンプルの標線が示すひずみと、それに対応する応力が直線的な関係を示す領域において、ひずみ量に対する応力の傾きを求めたものである。これがヤング率と呼ばれる値であり、本発明では、かかるヤング率を弾性率と定義する。
 本発明に用いられる支持体(基板)は、上記のように120℃での弾性率(E120)が1000~6000N/mmであることが好ましい。より好ましくは1200~5000N/mmである。
 具体的には、ポリエチレンナフタレート(E120=4100N/mm)、ポリエチレンテレフタレート(E120=1500N/mm)、ポリブチレンナフタレート(E120=1600N/mm)、ポリカーボネート(E120=1700N/mm)、シンジオタクチックポリスチレン(E120=2200N/mm)、ポリエーテルイミド(E120=1900N/mm)、ポリアリレート(E120=1700N/mm)、ポリスルホン(E120=1800N/mm)、ポリエーテルスルホン(E120=1700N/mm)等からなる高分子フィルムが挙げられる。
 これらは単独で用いてもよく積層あるいは混合して用いてもよい。中でも、特に好ましい高分子フィルムとしては、上述のように、ポリイミド又はポリエチレンナフタレートを含有する高分子フィルムが好ましい。
 なお、シンチレータパネルと平面受光素子面を貼り合せる際に、支持体(基板)の変形や蒸着時の反りなどの影響を受け、フラットパネルディテクタの受光面内で均一な画質特性が得られないという点に関して、当該支持体(基板)を、厚さ50~500μmの高分子フィルムとすることでシンチレータパネルが平面受光素子面形状に合った形状に変形し、フラットパネルディテクタの受光面全体で均一な鮮鋭性が得られる。
 また、支持体は、その表面を平滑な面とするために樹脂層を有していてもよい。樹脂層は、ポリイミド、ポリエチレンフタレート、パラフィン、グラファイトなどの化合物を含有することが好ましく、その膜厚は、約5μm~50μmであることが好ましい。この樹脂層は、支持体の表面に設けてもよく、裏面に設けてもよい。
 また、支持体の表面に接着層を設ける手段としては、貼合法、塗設法などの手段がある。このうち貼合法は加熱、加圧ローラを用いて行い、加熱条件は約80~150℃、加圧条件は4.90×10~2.94×10N/cm、搬送速度は0.1~2.0m/sが好ましい。
 (シンチレータパネルの製造方法)
 本発明に係るシンチレータパネルの製造方法は、真空容器内に蒸発源及び支持体回転機構を有する蒸着装置を用いて、支持体を前記支持体回転機構に設置して、当該支持体を回転しながら蛍光体材料を蒸着する工程を含む気相堆積法により、蛍光体層を形成する態様の製造方法であることが好ましい。
 以下、本発明の実施形態について、図1を参照しながら説明する。
 〈シンチレータパネルの製造装置〉
 図1は、本発明に係るシンチレータパネルの製造装置1の概略構成図である。図1に示すように、シンチレータパネルの製造装置1は真空容器2を備えており、真空容器2には真空容器2の内部の排気及び大気の導入を行う真空ポンプ3が備えられている。
 真空容器2の内部の上面付近には、支持体4を保持する支持体ホルダ5が設けられている。
 支持体4の表面には、蛍光体層が気相堆積法によって形成される。気相堆積法としては、蒸着法、スパッタリング法、CVD法、イオンプレーティング法その他を用いることができるが、本発明では特に蒸着法が好ましい。
 支持体ホルダ5は、支持体4のうち前記蛍光体層を形成する面が真空容器2の底面に対向し、かつ、真空容器2の底面と平行となるように支持体4を保持する構成となっている。
 また、支持体ホルダ5には、支持体4を加熱する加熱ヒータ(図示せず)を備えることが好ましい。この加熱ヒータで支持体4を加熱することによって、支持体4の支持体ホルダ5に対する密着性の強化や、前記蛍光体層の膜質調整を行う。また、支持体4の表面の吸着物を離脱・除去し、支持体4の表面と前記蛍光体との間に不純物層が発生することを防止する。
 また、加熱手段として温媒又は熱媒を循環させるための機構(図示せず)を有していてもよい。この手段は蛍光体の蒸着時における支持体4の温度を50~150℃といった比較的低温に保持して蒸着する場合に適している。
 また、加熱手段としてハロゲンランプ(図示せず)を有していてもよい。この手段は蛍光体の蒸着時における支持体4の温度を150℃以上といった比較的高温に保持して蒸着する場合に適している。
 さらに、支持体ホルダ5には、支持体4を水平方向に回転させる支持体回転機構6が設けられている。支持体回転機構6は、支持体ホルダ5を支持すると共に支持体4を回転させる支持体回転軸7及び真空容器2の外部に配置されて支持体回転軸7の駆動源となるモータ(図示せず)から構成されている。
 また、真空容器2の内部の底面付近には、支持体4に垂直な中心線を中心とした円の円周上の互いに向かい合う位置に蒸発源8a,8bが配置されている。この場合において、支持体4と蒸発源8a,8bとの間隔は100~1500mmとされるのが好ましく、より好ましくは200~1000mmである。また、支持体4に垂直な中心線と蒸発源8a,8bとの間隔は100~1500mmとされるのが好ましく、より好ましくは200~1000mmである。
 なお、本発明に係るシンチレータパネル製造装置においては3個以上の多数の蒸発源を設けることも可能であり、各々の蒸発源は等間隔に配置してもよく、間隔を変えて配置してもよい。また、支持体4に垂直な中心線を中心とした円の半径は任意に定めることができる。
 蒸発源8a,8bは、前記蛍光体を収容して抵抗加熱法で加熱するため、ヒータを巻いたアルミナ製のるつぼから構成しても良いし、ボートや、高融点金属からなるヒータから構成しても良い。また、前記蛍光体を加熱する方法は、抵抗加熱法以外に電子ビームによる加熱や、高周波誘導による加熱等の方法でも良いが、本発明では比較的簡単な構成で取り扱いが容易、安価、かつ、非常に多くの物質に適用可能である点から直接電流を流し抵抗加熱する方法や、周りのヒーターでるつぼを間接的に抵抗加熱する方法が好ましい。また、蒸発源8a,8bは分子源エピタキシャル法による分子線源でも良い。
 また、蒸発源8a,8bと支持体4との間には、蒸発源8a,8bから支持体4に至る空間を遮断するシャッタ9が水平方向に開閉自在に設けられており、このシャッタ9によって、蒸発源8a,8bにおいて前記蛍光体の表面に付着した目的物以外の物質が蒸着の初期段階で蒸発し、支持体4に付着するのを防ぐことができるようになっている。
 〈シンチレータパネルの製造方法〉
 次に、上述のシンチレータパネル製造装置1を用いた本発明に係るシンチレータパネルの製造方法について説明する。
 まず、支持体ホルダ5に支持体4を取付ける。また、真空容器2の底面付近において、支持体4に垂直な中心線を中心とした円の円周上に蒸発源8a,8bを配置する。この場合において、支持体4と蒸発源8a,8bとの間隔は100mm~1500mmとされるのが好ましく、より好ましくは200mm~1000mmである。また、支持体4に垂直な中心線と蒸発源8a,8bとの間隔は100mm~1500mmとされるのが好ましく、より好ましくは200mm~1000mmである。
 次いで、真空容器2の内部を真空排気し、所望の真空度に調整する。その後、支持体回転機構6により支持体ホルダ5を蒸発源8a,8bに対して回転させ、蒸着可能な真空度に真空容器2が達したら、加熱した蒸発源8a,8bから前記蛍光体を蒸発させて、支持体4の表面に前記蛍光体を所望の厚さに成長させる。
 なお、支持体4の表面に前記蛍光体を成長させる工程を複数回に分けて行って前記蛍光体層を形成することも可能である。
 また、蒸着法においては、蒸着時、必要に応じて、被蒸着体(支持体4、保護層又は中間層)を冷却あるいは加熱しても良い。
 さらに、蒸着終了後、前記蛍光体層を加熱処理しても良い。また、蒸着法においては必要に応じてO、Hなどのガスを導入して蒸着する反応性蒸着を行っても良い。
 形成する前記蛍光体層の膜厚は、放射線画像変換パネルの使用目的により、また前記蛍光体の種類により異なるが、本発明の効果を得る観点から50μm~2000μmであり、好ましくは50μm~1000μmであり、さらに好ましくは100μm~800μmである。
 また、前記蛍光体層が形成される支持体4の温度は、室温(rt)~300℃に設定することが好ましく、さらに好ましくは50~250℃である。
 以上のようにして前記蛍光体層を形成した後、必要に応じて、前記蛍光体層の支持体4とは反対の側の面に、物理的にあるいは化学的に前記蛍光体層を保護するための保護層を設けてもよい。保護層は、保護層用の塗布液を前記蛍光体層の表面に直接塗布して形成してもよく、また、予め別途形成した保護層を前記蛍光体層に接着してもよい。これらの保護層の層厚は0.1μm~2000μmが好ましい。
 また、保護層は蒸着法、スパッタリング法などにより、SiC、SiO、SiN、Alなどの無機物質を積層して形成してもよい。
 本発明においては、保護層の外に、上記の各種機能層を設けることが好ましい。
 以上のシンチレータパネルの製造装置1又は製造方法によれば、複数の蒸発源8a,8bを設けることによって蒸発源8a,8bの蒸気流が重なり合う部分が整流化され、支持体4の表面に蒸着する前記蛍光体の結晶性を均一にすることができる。このとき、多数の蒸発源を設けるほど多くの箇所で蒸気流が整流化されるため、より広範囲において前記蛍光体の結晶性を均一にすることができる。また、蒸発源8a,8bを支持体4に垂直な中心線を中心とした円の円周上に配置することによって、蒸気流の整流化によって結晶性が均一になるという作用を、支持体4の表面において等方的に得ることができる。
 また、支持体回転機構6によって支持体4を回転しながら前記蛍光体の蒸着を行うことによって、支持体4の表面に均一に前記蛍光体を蒸着させることができる。
 以上述べたように本発明に係るシンチレータパネル製造装置1又は製造方法によれば、支持体4の表面において、前記蛍光体の結晶性が均一となるように前記蛍光体層を成長させることによって、前記蛍光体層の感度ムラを低下させ、本発明に係るシンチレータパネルを用いた放射線画像変換パネルから得られる放射線画像の鮮鋭性を向上させることができる。
 また、支持体4に蒸着する前記蛍光体の入射角を所定の範囲に制限して輝尽性蛍光体の入射角のばらつきを防ぐことによって、蛍光体の結晶性をより均一にして、放射線画像変換パネルから得られる放射線画像の鮮鋭性を向上させることができる。
 なお、以上は支持体ホルダ5が支持体回転機構6を備える場合について説明したが、本発明は必ずしもこれに限らず、支持体ホルダ5が支持体4を保持して静止した状態で蒸着を行う場合や、支持体4を蒸発源8a,8bに対して水平方向に移動させることによって蒸発源8a,8bからの前記蛍光体を蒸着させる場合などにおいても適用可能である。
 (放射線画像変換パネル)
 本発明の放射線画像変換パネル(「放射線画像検出器」、「放射線フラットパネルディテクタ」ともいう。)は、第1の基板上に反射層等の機能層を介して気相堆積法により蛍光体層を設けてなるシンチレータパネルに、第2の基板上にフォトセンサとTFT(Thin Film Transistor)又はCCD(Charge Coupled Devices)からなる画素を2次元状に配置した光電変換素子部(「平面受光素子」)を設けてなる光電変換パネルを接着あるいは密着させることで放射線画像変換パネルとしてもよいし、基板上にフォトセンサとTFT又はCCDからなる画素を2次元状に配置した光電変換素子部を形成した後、直接あるいは反射層、保護層等の機能層を介して気相堆積法により蛍光体層を設けることで放射線画像変換パネルとしても良い。
 すなわち、本発明の放射線画像変換パネルは、基本的構成として、蛍光体層と2次元状に複数の受光画素が配置された受光素子(以下「平面受光素子」という。)を備えた態様の放射線画像変換パネルであることを要する。
 これにより、平面受光素子面が蛍光体層からの発光を電荷に変換することで画像をデジタルデータ化することが可能となる。
 なお、本発明に係る平面受光素子の表面平均粗さ(Ra)は、0.001~0.5μmであることが好ましい。このため、ガラス表面に受光素子を形成後、表面にポリエステルやアクリルと言った有機樹脂膜を形成し、フォトエッチング法により表面粗さを制御することにより当該要件を満たすように調整することが好ましい。平面受光素子の表面平均粗さ(Ra)は0.001~0.1μmであることが好ましく、0.001~0.05μmであることがより好ましい。
 本発明の放射線画像変換パネルは、シンチレータパネルが、平面受光素子に弾力部材(例えば、スポンジ、バネ等)により押しつけられ密着している態様であることが好ましい。また、シンチレータパネルが、当該シンチレータパネルと前記平面受光素子との間隙の気体の減圧により、当該平面受光素子に密着し、かつ周辺を密着シール部材でシールされている態様であることも好ましい。当該密着シール部材が、紫外線硬化型樹脂であることが好ましい。
 更に、当該シンチレータパネルが蛍光体層を有し、かつ当該蛍光体層が平面受光素子に直接的に密着している態様であることも好ましい。
 紫外線硬化型樹脂としては特に制限はなく、従来から使用されているものの中から、適宜選択して用いることができる。この紫外線硬化型樹脂は、光重合性プレポリマー、または光重合性モノマー、光重合開始剤や光増感剤を含有するものである。
 前記光重合性プレポリマーとしては、例えばポリエステルアクリレート系、エポキシアクリレート系、ウレタンアクリレート系、ポリオールアクリレート系等が挙げられる。これらの光重合性プレポリマーは1種用いても良いし、2種以上を組み合わせて用いても良い。また、光重合性モノマーとしては、例えばポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。
 本発明においては、プレポリマーとしてウレタンアクリレート系、モノマーとしてジペンタエリスリトールヘキサ(メタ)アクリレート等を用いることが好ましい。
 光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、α-アミロキシムエステル、テトラメチルチュウラムモノサルファイド、チオキサントン類等が挙げられる。また、光増感剤としてn-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等を混合して用いることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれに限定されるものではない。
 図1に示す製造装置を使用して以下の方法によりシンチレータパネルを得た。
 [実施例1]
 (シンチレータパネルパネルの作製)
 ポリイミド樹脂シートからなる支持体の片面に蛍光体1(CsIのみ)、及び蛍光体2(CsI:0.003Tl)を蒸着させて蛍光体層を形成した。すなわち、まず、支持体回転機構を備えた支持体ホルダに支持体を設置した。次に、上記蛍光体原料を蒸着材料として蒸発源るつぼに充填し、2個の蒸発源るつぼを真空容器の内部の底面付近であって、支持体に垂直な中心線を中心とした円の円周上に配置した。このとき、支持体と蒸発源との間隔を300mmに調節すると共に、支持体に垂直な中心線と蒸発源との間隔を300mmに調節した。続いて真空容器の内部を一旦排気し、Arガスを導入して0.1Paに真空度を調整した後、10rpmの速度で支持体を回転させながら支持体の温度を30℃に保持した。次いで、抵抗加熱によりるつぼ内を所定の温度に上昇させて支持体を回転させない状態で蛍光体1を蒸着開始したのち支持体(基板)温度を200℃まで上昇させ、蛍光体層の膜厚が30μmとなったところで蒸着を終了させた。次いで蛍光体2を蒸着し、蛍光体層の膜厚が450μmとなったところで蒸着を終了させた。
 次いで、乾燥空気内で蛍光体層を保護層袋に入れ、蛍光体層が密封された構造のシンチレータパネルを得た。
 [実施例2]
 実施例1のうち、支持体と蒸発源との間隔を500mmに調節して、シンチレータパネルを得た。
 [実施例3]
 実施例1のうち、支持体と蒸発源との間隔を700mmに調節して、シンチレータパネルを得た。
 [実施例4]
 実施例1のうち、支持体と蒸発源との間隔を900mmに調節して、シンチレータパネルを得た。
 [実施例5]
 実施例1のうち、支持体と蒸発源との間隔を1000mmに調節して、シンチレータパネルを得た。
 [比較例1]
 実施例1のうち、支持体を回転させずに蒸着を行い、放射線画像変換パネルを得た。
 [比較例2]
 比較例1のうち、支持体と蒸発源との間隔を1000mmに調節して、シンチレータパネルを得た。
 次に、以上のようにして得られたシンチレータパネルについて下記のような評価を行った。
 <柱状結晶の結晶径の変動係数>
 得られたシンチレータパネルの蛍光体層のうち、少なくとも100個以上の柱状結晶を視野中に含む電子顕微鏡写真からそれぞれの結晶径を求め、結晶径の標準偏差を算出した。そして、算出した相対標準偏差を100個の結晶径の平均で除して、下記式で示される変動係数を求めた。
 変動係数=結晶径の標準偏差/結晶径の平均
 <蛍光体の充填率の変動係数>
 得られたシンチレータパネルの蛍光体層を100分割し、それぞれのピースについて蛍光体層の実際の質量を、理論密度と見かけの体積で割った値を求めて充填率を算出した。そして、算出した充填率の標準偏差を100個の充填率の平均で除して、下記式で示される変動係数を求めた。
 変動係数=充填率の標準偏差/充填率の平均
 <鮮鋭性>
 (鮮鋭性の評価)
 得られたシンチレータパネルをPaxScan(Varian社製FPD:2520)にセットし、シンチレータパネル全面の鮮鋭性の平均値を以下に示す方法で評価した。結果を表1に示す。
 鉛製のMTFチャートを通して管電圧80kVpのX線をFPDの放射線入射面側に照射し、画像データを検出しハードディスクに記録した。その後、ハードディスク上の記録をコンピュータで分析して、当該ハードディスクに記録されたX線像の変調伝達関数MTF(空間周波数1サイクル/mmにおけるMTF値)を鮮鋭性の指標とした。そして、比較例1の放射線変換パネルのMTFを100とした、相対値で表示した。この値が高いほど鮮鋭性に優れていることを示す。MTFはModulation Transfer Functionの略号を示す。
 次に、得られたシンチレータパネルの蛍光体層面内の任意の10箇所についてMTFを測定し、MAX値およびMIN値を用いて下記の式よりMTF分布を算出した。
MTF分布=((MAX-MIN)/((MAX+MIN)×2))×100[%]
 (耐湿性の評価)
 得られた蛍光体パネルを70℃/90%の環境に3日間放置し、放置後の劣化幅を放置前の値を100とした相対値で表示した。
 以上の評価から得られた結果をまとめて表1に示す。
 (耐衝撃性の評価)
 得られたシンチレータパネルを、PaxScan2520(Varian社製FPD)にセットして放射線画像変換パネル(検出器放射線画像検出器)を作製した。放射線画像変換パネルに対して20cm離れた高さ位置から500gの鉄球を落下させた後、放射線画像変換パネルについて目視評価した。その後、管電圧80kVpのX線を支持体(基板)の裏面側から照射し得られた放射線画像変換パネル上の画像を出力装置よりプリントアウトし、得られたプリント画像を目視にて以下に示す基準にしたがって耐衝撃性の評価を行った。表1にその結果を示す。評価は0.5ランク刻みで行った。
5:ひび割れがなく、また、均一な画像である。
4:ひび割れがなく、画質的にほとんど気にならないレベルである。
3:ひび割れが見られ、画欠が確認されるが、実用上許容できるレベルである。
2:ひび割れが見られ、明らかな画欠が認められ、実用上問題が発生するレベルである。1:ひび割れが多数見られ、画欠が多く、実用上問題が発生するレベルである。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、柱状結晶の結晶径の変動係数が50%以下、蛍光体の充填率の変動係数が20%以下となる本発明の放射線画像変換パネル(実施例1~5)はいずれも、MTF分布が良化し、相対MTF値が向上している。とりわけ、変動係数が低減するにしたがって、その傾向が顕著に現れている。
 一方、柱状結晶の結晶径の変動係数が50%より大、蛍光体の充填率の変動係数が20%より大となる従来のシンチレータパネル(比較例1~2)はいずれも、MTF分布が悪く、相対MTF値が低かった。このことから、柱状結晶の結晶径の変動係数は、50%以下が好ましく、より好ましくは40%以下、さらに好ましくは30%以下、特に好ましくは20%であり、最も好ましくは10%以下であることが分かる。蛍光体の充填率の変動係数は20%以下が好ましく、より好ましくは15%以下、さらに好ましくは10%以下、特に好ましくは5%以下であることが分かる。
 また、耐湿性、耐衝撃性に関しても、変動係数が低減するにしたがって劣化幅が小さくなっており、明らかに改善されていることが分かる。

Claims (5)

  1. 支持体上に気相堆積法により形成されたヨウ化セシウム(CsI)を主成分とする蛍光体柱状結晶を含有する蛍光体層を有する放射線画像変換パネルであって、当該蛍光体柱状結晶の結晶径の変動係数が50%以下であり、かつ当該蛍光体層の蛍光体充填率の変動係数が20%以下であることを特徴とする放射線画像変換パネル。
  2. 前記蛍光体柱状結晶が、ヨウ化セシウム(CsI)とタリウム(Tl)を含む添加剤とを原材料として形成されたことを特徴とする請求の範囲第1項に記載の放射線画像変換パネル。
  3. 前記蛍光体柱状結晶が、その根元部分にタリウムを含まない層を有することを特徴とする請求の範囲第1項又は第2項に記載の放射線画像変換パネル。
  4. 前記支持体上に前記蛍光体層を有するシンチレータパネルと2次元状に複数の受光画素が配置された受光素子(「平面受光素子」)とを具備したことを特徴とする請求の範囲第1項~第3項のいずれか一項に記載の放射線画像変換パネル。
  5. 請求の範囲第1項~第4項のいずれか一項に記載の放射線画像変換パネルの製造方法であって、真空容器内に蒸発源及び支持体回転機構を有する蒸着装置を用いて、支持体を前記支持体回転機構に設置して、当該支持体を回転しながら蛍光体材料を蒸着する工程を含む気相堆積法により、蛍光体層を形成することを特徴とする放射線画像変換パネルの製造方法。
PCT/JP2009/053010 2008-08-28 2009-02-20 放射線画像変換パネル及びその製造方法 WO2010023970A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/934,064 US8368025B2 (en) 2008-08-28 2009-02-20 Radiation image conversion panel and production method thereof
JP2010526582A JP5402933B2 (ja) 2008-08-28 2009-02-20 放射線画像変換パネル及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008219503 2008-08-28
JP2008-219503 2008-08-28

Publications (1)

Publication Number Publication Date
WO2010023970A1 true WO2010023970A1 (ja) 2010-03-04

Family

ID=41721151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053010 WO2010023970A1 (ja) 2008-08-28 2009-02-20 放射線画像変換パネル及びその製造方法

Country Status (3)

Country Link
US (1) US8368025B2 (ja)
JP (1) JP5402933B2 (ja)
WO (1) WO2010023970A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565839A (zh) * 2010-11-02 2012-07-11 索尼公司 辐射检测元件、辐射检测模块及辐射图像诊断设备
JP2012141297A (ja) * 2010-12-17 2012-07-26 Fujifilm Corp 放射線撮像装置
JP2013528792A (ja) * 2010-04-26 2013-07-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 改善された空間利得均一性及び分解能を有するx線検出器及びその製造方法
JP2014232083A (ja) * 2013-05-30 2014-12-11 コニカミノルタ株式会社 放射線画像変換パネル、および放射線画像検出器
JP2015230175A (ja) * 2014-06-03 2015-12-21 コニカミノルタ株式会社 放射線画像検出装置及びその製造方法
JP2016133485A (ja) * 2015-01-22 2016-07-25 キヤノン株式会社 シンチレータパネル、放射線検出器及びそれらの製造方法。

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353886B2 (ja) * 2008-07-18 2013-11-27 コニカミノルタ株式会社 放射線シンチレータおよび放射線画像検出器
US8723127B2 (en) * 2009-03-13 2014-05-13 Konica Minolta Business Technologies, Inc. Radiation detector
US8493633B2 (en) * 2010-07-20 2013-07-23 Xerox Corporation Media handling and uniformity calibration for an image scanner
JP6430097B2 (ja) * 2011-10-03 2018-11-28 株式会社東芝 コンプトン散乱x線検出器用増感紙、x線検出器、およびx線検査装置
WO2014171343A1 (ja) * 2013-04-15 2014-10-23 株式会社 東芝 シンチレータパネルおよびその製造方法並びに放射線検出器およびその製造方法
KR102432252B1 (ko) * 2017-06-13 2022-08-16 삼성전자주식회사 엑스선 검출기, 이를 포함한 엑스선 촬영 장치 및 그 제조 방법
JP6790008B2 (ja) * 2018-03-14 2020-11-25 株式会社東芝 検出素子および検出器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100856A (ja) * 1992-09-22 1994-04-12 Hitachi Metals Ltd X線ct用シンチレータ材料
JP2002116258A (ja) * 1998-06-18 2002-04-19 Hamamatsu Photonics Kk 放射線イメージセンサ
JP2003050298A (ja) * 2001-08-06 2003-02-21 Fuji Photo Film Co Ltd 放射線像変換パネルおよびその製造方法
JP2004071434A (ja) * 2002-08-08 2004-03-04 Konica Minolta Holdings Inc プラズマディスプレイパネル
WO2004029657A1 (ja) * 2002-09-26 2004-04-08 Kabushiki Kaisha Toshiba 放射線検出器用蛍光体シートおよびそれを用いた放射線検出器と放射線検査装置
JP2005098717A (ja) * 2003-09-22 2005-04-14 Konica Minolta Medical & Graphic Inc 放射線像変換パネル及び放射線像変換パネルの製造方法
JP2007041008A (ja) * 2006-11-06 2007-02-15 Toshiba Corp 放射線増感紙の製造方法
JP2007101541A (ja) * 2005-09-30 2007-04-19 Agfa Gevaert Nv マンモグラフィ用途に使用するために好適な放射線画像貯蔵パネル
JP2008051793A (ja) * 2006-03-02 2008-03-06 Canon Inc 放射線検出装置及びシンチレータパネル

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179593A (en) * 1975-01-06 1976-07-10 Dainippon Toryo Kk Zokanshi
NL8600696A (nl) * 1986-03-19 1987-10-16 Philips Nv Stralings conversie scherm.
JPS63215987A (ja) 1987-03-04 1988-09-08 Hamamatsu Photonics Kk 高解像シンチレ−シヨンフアイバ−プレ−ト
JPH11500857A (ja) * 1995-06-27 1999-01-19 フィリップス エレクトロニクス エヌ ベー X線検出器
JP3405706B2 (ja) 1997-02-14 2003-05-12 浜松ホトニクス株式会社 放射線検出素子
AU4168199A (en) * 1998-06-18 2000-01-05 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor, and method for producing the same
JP3987287B2 (ja) 2001-01-24 2007-10-03 富士フイルム株式会社 放射線像変換パネル
JP4474877B2 (ja) 2003-09-17 2010-06-09 コニカミノルタエムジー株式会社 放射線画像変換パネル及び放射線画像変換パネルの製造方法
JP2005091140A (ja) 2003-09-17 2005-04-07 Konica Minolta Medical & Graphic Inc 放射線画像変換パネル及び放射線画像変換パネルの製造方法
EP2405448B1 (en) 2003-09-17 2013-12-04 Konica Minolta Medical & Graphic, Inc. Radiographic image conversion panel and production method thereof
EP1516905A3 (en) * 2003-09-22 2005-06-08 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel and preparation method thereof
US7315027B2 (en) * 2003-10-22 2008-01-01 Canon Kabushiki Kaisha Radiation detection device, scintillator panel, method of making the same, making apparatus, and radiation image pick-up system
JP4653442B2 (ja) 2004-08-19 2011-03-16 株式会社東芝 放射線シンチレータおよび放射線画像検出器
JP2008014892A (ja) * 2006-07-10 2008-01-24 Fujifilm Corp 放射線画像変換パネルおよび放射線画像変換パネルの製造方法
JP4670955B2 (ja) * 2006-08-08 2011-04-13 コニカミノルタエムジー株式会社 フラットパネルディテクター
JP2008107133A (ja) * 2006-10-24 2008-05-08 Konica Minolta Medical & Graphic Inc 放射線画像検出器及び放射線画像検出器の作製方法
JP4894453B2 (ja) * 2006-10-25 2012-03-14 コニカミノルタエムジー株式会社 放射線画像検出器
JP2008107222A (ja) * 2006-10-26 2008-05-08 Konica Minolta Medical & Graphic Inc シンチレータパネル
JP5239866B2 (ja) * 2006-10-30 2013-07-17 コニカミノルタエムジー株式会社 放射線フラットパネルディテクター
JP5050572B2 (ja) * 2007-03-05 2012-10-17 コニカミノルタエムジー株式会社 放射線画像検出器
JPWO2008111379A1 (ja) * 2007-03-13 2010-06-24 コニカミノルタエムジー株式会社 シンチレータパネル及び放射線フラットパネルディテクター
JP5240187B2 (ja) * 2007-03-23 2013-07-17 コニカミノルタエムジー株式会社 シンチレータパネルとその製造方法
JP2009258056A (ja) * 2008-04-21 2009-11-05 Hamamatsu Photonics Kk 放射線像変換パネル
JP5353886B2 (ja) 2008-07-18 2013-11-27 コニカミノルタ株式会社 放射線シンチレータおよび放射線画像検出器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100856A (ja) * 1992-09-22 1994-04-12 Hitachi Metals Ltd X線ct用シンチレータ材料
JP2002116258A (ja) * 1998-06-18 2002-04-19 Hamamatsu Photonics Kk 放射線イメージセンサ
JP2003050298A (ja) * 2001-08-06 2003-02-21 Fuji Photo Film Co Ltd 放射線像変換パネルおよびその製造方法
JP2004071434A (ja) * 2002-08-08 2004-03-04 Konica Minolta Holdings Inc プラズマディスプレイパネル
WO2004029657A1 (ja) * 2002-09-26 2004-04-08 Kabushiki Kaisha Toshiba 放射線検出器用蛍光体シートおよびそれを用いた放射線検出器と放射線検査装置
JP2005098717A (ja) * 2003-09-22 2005-04-14 Konica Minolta Medical & Graphic Inc 放射線像変換パネル及び放射線像変換パネルの製造方法
JP2007101541A (ja) * 2005-09-30 2007-04-19 Agfa Gevaert Nv マンモグラフィ用途に使用するために好適な放射線画像貯蔵パネル
JP2008051793A (ja) * 2006-03-02 2008-03-06 Canon Inc 放射線検出装置及びシンチレータパネル
JP2007041008A (ja) * 2006-11-06 2007-02-15 Toshiba Corp 放射線増感紙の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528792A (ja) * 2010-04-26 2013-07-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 改善された空間利得均一性及び分解能を有するx線検出器及びその製造方法
US9995831B2 (en) 2010-04-26 2018-06-12 Koninklijke Philips N.V. X-ray detector with improved spatial gain uniformity and resolution and method of fabricating such X-ray detector
CN102565839A (zh) * 2010-11-02 2012-07-11 索尼公司 辐射检测元件、辐射检测模块及辐射图像诊断设备
JP2012141297A (ja) * 2010-12-17 2012-07-26 Fujifilm Corp 放射線撮像装置
US8841621B2 (en) 2010-12-17 2014-09-23 Fujifilm Corporation Radiographic imaging apparatus
JP2014232083A (ja) * 2013-05-30 2014-12-11 コニカミノルタ株式会社 放射線画像変換パネル、および放射線画像検出器
JP2015230175A (ja) * 2014-06-03 2015-12-21 コニカミノルタ株式会社 放射線画像検出装置及びその製造方法
JP2016133485A (ja) * 2015-01-22 2016-07-25 キヤノン株式会社 シンチレータパネル、放射線検出器及びそれらの製造方法。

Also Published As

Publication number Publication date
JPWO2010023970A1 (ja) 2012-01-26
US8368025B2 (en) 2013-02-05
US20110017913A1 (en) 2011-01-27
JP5402933B2 (ja) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5402933B2 (ja) 放射線画像変換パネル及びその製造方法
JP5720566B2 (ja) シンチレータパネル、シンチレータパネルの製造方法、放射線画像検出器および放射線画像検出器の製造方法
JP5889531B2 (ja) シンチレータパネルの製造方法
JP5862302B2 (ja) 放射線画像変換パネルとそれを用いた放射線画像検出器
WO2010050358A1 (ja) シンチレータパネル、放射線検出装置及びそれらの製造方法
JP4725533B2 (ja) シンチレータパネル
WO2010106884A1 (ja) シンチレータパネル
US20120256335A1 (en) Scintillator panel and method for manufacturing the same
WO2011148700A1 (ja) フラットパネルディテクタ
JP5668691B2 (ja) シンチレータパネル、その製造方法、及び放射線画像検出器
JP2009068888A (ja) フラットパネルディテクタ
JP5597930B2 (ja) 放射線画像検出装置とその製造方法
JP5267458B2 (ja) シンチレータパネル及び放射線イメージセンサ
WO2009122809A1 (ja) 放射線画像変換パネルの製造装置及び放射線画像変換パネルの製造方法
JP5369906B2 (ja) 放射線像変換パネル、及び放射線像検出装置
WO2011086987A1 (ja) 放射線画像検出器とその製造方法
WO2010032504A1 (ja) 放射線画像変換パネルとその製造方法
JP2008232781A (ja) シンチレータパネル及び放射線イメージセンサ
JPWO2008102645A1 (ja) シンチレータパネル及び放射線イメージセンサ
JPWO2008149659A1 (ja) シンチレータパネル及びイメージセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526582

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12934064

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809625

Country of ref document: EP

Kind code of ref document: A1