WO2010021082A1 - 電力用半導体素子の駆動回路 - Google Patents

電力用半導体素子の駆動回路 Download PDF

Info

Publication number
WO2010021082A1
WO2010021082A1 PCT/JP2009/003419 JP2009003419W WO2010021082A1 WO 2010021082 A1 WO2010021082 A1 WO 2010021082A1 JP 2009003419 W JP2009003419 W JP 2009003419W WO 2010021082 A1 WO2010021082 A1 WO 2010021082A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
semiconductor element
power semiconductor
voltage
power
Prior art date
Application number
PCT/JP2009/003419
Other languages
English (en)
French (fr)
Inventor
中山靖
中川良介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020127021588A priority Critical patent/KR101217357B1/ko
Priority to KR1020117003761A priority patent/KR101313498B1/ko
Priority to CN200980140608.1A priority patent/CN102187557B/zh
Priority to EP09808018.7A priority patent/EP2320544B1/en
Priority to JP2010525568A priority patent/JP5293740B2/ja
Priority to US13/059,429 priority patent/US9806593B2/en
Priority to CA2734701A priority patent/CA2734701C/en
Publication of WO2010021082A1 publication Critical patent/WO2010021082A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08128Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K2017/066Maximizing the OFF-resistance instead of minimizing the ON-resistance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Definitions

  • the present invention relates to a power semiconductor element drive circuit, and more particularly to a power semiconductor element drive circuit having a function of preventing a power semiconductor element from malfunctioning due to voltage fluctuation dV / dt.
  • a self-extinguishing power semiconductor element such as an insulated gate bipolar transistor (IGBT)
  • IGBT insulated gate bipolar transistor
  • the gate voltage rises due to the parasitic capacitance associated with the gate of the power semiconductor element.
  • the gate voltage exceeds a predetermined threshold voltage
  • the power semiconductor element is erroneously turned on, an arm short circuit occurs, and the power semiconductor element is destroyed.
  • a negative voltage is applied between the gate and the emitter when the power semiconductor element is in an off state.
  • the voltage fluctuation dV / dt is applied in a state where the power supply voltage of the gate drive circuit is not established, the switching operation of the power semiconductor element may malfunction.
  • a self-powered drive circuit that supplies the drive power of a semiconductor element from the main circuit of the power converter
  • the switching operation of the semiconductor element malfunctions until the power supply voltage of the gate drive circuit is established after the main power is turned on.
  • a resistor and a P-channel FET (Field Effect Transistor) or an N-channel FET are connected between the gate and emitter of the semiconductor element.
  • the P-channel FET or N-channel FET is turned on to limit the rise of the gate voltage, thereby causing a malfunction of the switching operation of the semiconductor element.
  • Patent Document 1 has a description that a normally-on semiconductor element is used, a specific circuit diagram is not shown.
  • the present invention has been made to solve the above-described problems, and responds to a voltage fluctuation dV / dt at high speed while suppressing power consumption with a simple circuit configuration, and malfunction of a power semiconductor element.
  • a power semiconductor element drive circuit having a prevention function is obtained.
  • a drive circuit for a power semiconductor element includes a control circuit for controlling on / off of the power semiconductor element, a DC power supply for supplying a voltage between control terminals of the power semiconductor element, and a control terminal for the power semiconductor element
  • the switching element is turned on when the power supply voltage of the DC power supply is lowered, or the voltage between the control terminals of the power semiconductor element is reduced when the power supply voltage of the DC power supply is reduced. It is turned on when it rises, and the control terminals of the power semiconductor element are short-circuited.
  • the switching element connected between the control terminals of the power semiconductor element is turned on when the power supply voltage of the DC power supply decreases, or the power supply voltage of the DC power supply is Since it is turned on when the voltage between the control terminals of the power semiconductor element rises in a lowered state and the control terminals of the power semiconductor element are short-circuited, the voltage fluctuation dV / It is possible to respond to dt at high speed and to prevent malfunction of the power semiconductor element.
  • Embodiment 1 of this invention It is a circuit diagram which shows the structure of the drive circuit of the semiconductor element for electric power in Embodiment 1 of this invention. It is a circuit diagram which shows the structure of the drive circuit of the semiconductor element for electric power in Embodiment 2 of this invention. It is a circuit diagram which shows the structure of the drive circuit of the semiconductor element for electric power in Embodiment 3 of this invention. It is a circuit diagram which shows the structure of the drive circuit of the semiconductor element for electric power in Embodiment 4 of this invention. It is a circuit diagram which shows the structure of the drive circuit of another power semiconductor element in Embodiment 4 of this invention. It is a circuit diagram which shows the structure of the drive circuit of the semiconductor element for electric power in Embodiment 5 of this invention. It is a circuit diagram which shows the structure of the drive circuit of the semiconductor element for electric power in Embodiment 6 of this invention.
  • FIG. 1 is a circuit diagram showing a configuration of a drive circuit for a power semiconductor element in the first embodiment for carrying out the present invention.
  • a drive circuit 100 for a power semiconductor element includes a control circuit 3, a MOSFET for turning on (Metal Oxide Field Effect Transistor) 4, a MOSFET for turning off 5, gate resistors 6 and 7, a first DC power supply 8, and a second DC power supply 8.
  • the drive circuit 100 is connected to an IGBT 1 that is a power semiconductor element.
  • the IGBT 1 includes diodes connected in parallel.
  • the control circuit 3 controls on / off of the IGBT 1 that is a power semiconductor element, and controls the on-MOSFET 4 and the off-MOSFET 5 according to the control signal 2 from the outside.
  • the on MOSFET 4 is connected to the gate of the IGBT 1 through the gate resistor 6, and the off MOSFET 5 is connected to the gate of the IGBT 1 through the gate resistor 7.
  • a charge / discharge current flows through the gate resistor 6 to the gate of the IGBT 1 to turn on the IGBT 1.
  • the control circuit 3 turns off the on MOSFET 4 and turns on the off MOSFET 5
  • a charge / discharge current flows through the gate resistor 7 to the gate of the IGBT 1 to turn off the IGBT 1.
  • the first DC power supply 8 and the second DC power supply 9 constitute a DC power supply that supplies a voltage between the control terminals of the IGBT 1.
  • the first DC power supply 8 supplies a positive voltage between the gate and the emitter between the control terminals of the IGBT 1 when the IGBT 1 is in the ON state
  • the second DC power supply 9 is connected between the control terminals of the IGBT 1 with the IGBT 1 in the OFF state.
  • a negative voltage is supplied between a gate and an emitter.
  • the second DC power supply 9 is connected to the emitter of the IGBT 1.
  • the ON MOSFET 4 is turned OFF and the OFF MOSFET 5 is turned ON by the control circuit 3.
  • a negative voltage ⁇ Ve is applied between the ⁇ emitters by the power supply voltage Ve of the second DC power supply 9.
  • a dV / dt malfunction prevention circuit 10 is connected between the gate and emitter of the IGBT 1.
  • the dV / dt malfunction prevention circuit 10 includes a normally-on element n-channel JFET (Junction Field Effect Transistor) 11 and a diode provided to prevent reverse current from flowing from the emitter side to the gate side of the IGBT 1. 12.
  • the JFET 11 is a switching element connected between the gate and emitter of the IGBT 1 (between the control terminals of the power semiconductor element).
  • the gate (control terminal) of the JFET 11 is connected to the GND of the drive circuit 100 on the negative side of the second DC power supply 9, the source of the JFET 11 is connected to the emitter of the IGBT 1, and the drain of the JFET 11 is connected to the IGBT 1 through the diode 12. Connected to the gate.
  • the diode 12 is connected in series to the JFET 11 and is connected between the gate and emitter of the IGBT 1.
  • the anode of the diode 12 is connected to the gate of the IGBT 1, and the cathode of the diode 12 is connected to the JFET 11.
  • the operation of the drive circuit 100 will be described.
  • a normal state that is, in a state where the power supply voltage of the second DC power supply 9 is established
  • the voltage fluctuation dV / dt is applied to the IGBT 1 during, for example, a recovery operation of a diode connected in parallel to the IGBT 1 during the OFF period of the IGBT 1.
  • the negative voltage ⁇ Ve is applied between the gate and the emitter of the IGBT 1.
  • the gate-emitter voltage of the IGBT 1 is increased, the gate-emitter voltage is suppressed to be equal to or lower than the threshold voltage of the IGBT 1, so that the IGBT 1 is not turned on by mistake.
  • a negative voltage ⁇ Ve is applied between the gate and source of JFET 11, and the absolute value
  • the JFET 11 is turned off, and no current flows through the dV / dt malfunction prevention circuit 10. For this reason, the switching operation of the IGBT 1 in a normal state is not affected.
  • of the negative voltage ⁇ Ve applied between the gate and the emitter of the IGBT 1 decreases.
  • of the threshold voltage Vgs (off) of the JFET 11 the JFET 11 is turned on. That is, the JFET 11 is turned on when the power supply voltage of the second DC power supply 9 which is a DC power supply is lowered. As a result, the JFET 11 short-circuits between the gate and the emitter of the IGBT 1.
  • the power semiconductor element drive circuit of the present invention it is not necessary to provide a separate drive circuit or power source for driving the JFET 11, and a simple circuit configuration suppresses the malfunction of the IGBT 1 due to the voltage fluctuation dV / dt. can do. Moreover, since no current flows in the dV / dt malfunction prevention circuit 10 including the JFET 11 at the normal time, the power consumption of the drive circuit 100 can be suppressed. Further, when the power supply voltage of the second DC power supply 9 decreases and the absolute value
  • the circuit configuration of the dV / dt malfunction prevention circuit 10 shown in the present embodiment is merely an example, as long as the malfunction prevention function due to the voltage fluctuation dV / dt is satisfied, the JFET 11 can be used in multiple parallels, or for current limitation.
  • a resistor having a low impedance that does not cause the IGBT 1 to malfunction even by application of the voltage fluctuation dV / dt may be connected to the gate or drain of the JFET 11.
  • the JFET 11 is used as a normally-on element. However, it may be replaced with, for example, a depletion type MOSFET as long as the function is satisfied.
  • FIG. FIG. 2 is a circuit diagram showing a configuration of a power semiconductor element drive circuit according to the second embodiment for carrying out the present invention.
  • the drive circuit for the power semiconductor element of this embodiment is different from that of Embodiment 1 in that the dV / dt malfunction prevention circuit includes a current amplification stage.
  • the current amplifying stage amplifies the source current of the JFET in response to a case where the gate capacity of the power semiconductor element is large and the current capacity of the normally-on JFET is insufficient, and a dV / dt malfunction prevention circuit
  • This is an amplifier circuit that increases the current flowing through the. 2
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and this is common throughout the entire specification.
  • the aspect of the component which appears in the whole specification is an illustration to the last, and is not limited to these description.
  • the gate of the JFET 11 that is a normally-on element is connected to the GND of the drive circuit 110, and the drain of the JFET 11 is connected to the gate of the IGBT 1 through the diode 12. Is the same as in the first embodiment.
  • the dV / dt malfunction prevention circuit 30 is additionally provided with a current amplification npn transistor 13, a diode 14, and a resistor 15 that constitute an amplifier circuit.
  • the npn transistor 13 is a normally-off switching element that is connected between the gate and emitter of the IGBT 1 and amplifies the current flowing through the JFET 11.
  • the source of JFET 11 is connected to the emitter of IGBT 1 through resistor 15.
  • the source of the JFET 11 is also connected to the base that is the control terminal of the current amplification npn transistor 13.
  • the emitter of npn transistor 13 is connected to the emitter of IGBT 1, and the collector of npn transistor 13 is connected to the gate of IGBT 1 via diode 14.
  • the JFET 11 When the absolute value
  • voltage fluctuation dV / dt is applied to IGBT 1 in this state, the gate voltage of IGBT 1 rises, a current flows through the base of npn transistor 13, and npn transistor 13 is turned on. That is, the npn transistor 13 is turned on when the gate voltage, which is the voltage between the control terminals of the IGBT 1, rises while the power supply voltage of the second DC power supply 9, which is a DC power supply, is lowered.
  • the gate-emitter of the IGBT 1 is short-circuited, an increase in the gate voltage of the IGBT 1 is suppressed, and a malfunction in which the IGBT 1 is erroneously turned on can be prevented.
  • the npn transistor 13 Since the npn transistor 13 is provided, the current flowing through the dV / dt malfunction prevention circuit 30 is amplified as compared with the dV / dt malfunction prevention circuit 10 shown in the first embodiment. Therefore, even when the gate capacitance of the IGBT 1 is large. , The malfunction of the IGBT 1 can be prevented. Note that the absolute value
  • of the base-emitter voltage Vbe of the npn transistor 13 is set to the threshold value Vgs (off of the JFET 11). ) Is set lower than the absolute value
  • the npn transistor 13 is used as a current amplification transistor, but an n-channel MOSFET may be used.
  • of the threshold voltage Vth between the gate and the source of the MOSFET is set to be lower than the absolute value
  • the configuration of the dV / dt malfunction prevention circuit 30 described in the present embodiment is an example for amplifying the source current of the JFET 11, and it is sufficient that the dV / dt malfunction prevention circuit satisfies the function.
  • the JFET 11 and the npn transistor 13 may be used in parallel, the npn transistor 13 may be connected in Darlington, and the gate and drain of the JFET 11 and the collector and base of the npn transistor 13 are used for current limiting.
  • a resistor may be connected.
  • the current is amplified by the npn transistor 13 and the like, so that the control terminal (gate terminal) of the IGBT 1 Even when the JFET 11 alone is insufficient and the current capacity is insufficient, it is possible to prevent a malfunction in which the IGBT 1 is erroneously turned on.
  • FIG. 3 is a circuit diagram showing the configuration of the drive circuit for the power semiconductor element according to the third embodiment for carrying out the present invention.
  • the drive circuit for the power semiconductor element of this embodiment is different from that of Embodiment 2 in that a pnp transistor is provided as a current amplification transistor of the dV / dt malfunction prevention circuit.
  • the dV / dt malfunction prevention circuit 40 is provided with a current amplification pnp transistor 16, a diode 14, and a resistor 15 that constitute an amplifier circuit.
  • the gate of the JFET 11 that is a normally-on element is connected to the GND of the drive circuit 120, the source of the JFET 11 is connected to the emitter of the IGBT 1, and the drain of the JFET 11 is a resistor 15 And connected to the gate of the IGBT 1 via the diode 12.
  • the drain of the JFET 11 is also connected to the base that is the control terminal of the pnp transistor 16.
  • the pnp transistor 16 is a normally-off switching element that is connected between the gate and emitter of the IGBT 1 and amplifies the current flowing through the JFET 11.
  • the emitter of the pnp transistor 16 is connected to the gate of the IGBT 1 via the diode 14, and the collector of the pnp transistor 16 is connected to the emitter of the IGBT 1.
  • the anode of the diode 12 is connected to the gate of the IGBT 1, but the anode of the diode 12 is connected to the positive side of the first DC power supply 8 or the diode 12 is not installed.
  • the resistor 15 may be connected to the positive electrode side of the first DC power supply 8.
  • the collector of the pnp transistor 16 is connected to the emitter of the IGBT 1, the collector of the pnp transistor 16 may be connected to the GND of the drive circuit 120.
  • the pnp transistor 16 Since the pnp transistor 16 is provided, the current flowing through the dV / dt malfunction prevention circuit 40 is amplified as compared with the dV / dt malfunction prevention circuit 10 shown in the first embodiment. Therefore, even when the gate capacitance of the IGBT 1 is large. , The malfunction of the IGBT 1 can be prevented.
  • the feature of using the pnp transistor 16 instead of the npn transistor as a current amplification transistor will be described.
  • the base-emitter voltage of the npn transistor is also applied between the source and gate of the JFET 11, so that the threshold voltage Vgs ( off)) must be set higher than the absolute value
  • the voltage applied between the gate and source of the JFET 11 is only the negative voltage ⁇ Ve due to the power supply voltage of the second DC power supply 9.
  • of the threshold voltage Vgs (off) is changed to the absolute value
  • of the threshold voltage Vgs (off) of the JFET 11 is obtained from the absolute value
  • the configuration of the dV / dt malfunction prevention circuit 40 described in the present embodiment is an example for amplifying the source current of the JFET 11, and it is sufficient that the dV / dt malfunction prevention circuit satisfies the function.
  • the JFET 11 and the pnp transistor 16 may be used in parallel, the pnp transistor 16 may be Darlington connected, and the gate and drain of the JFET 11 and the collector and base of the pnp transistor 16 are used for current limiting.
  • a resistor may be connected.
  • the current is amplified by the pnp transistor 16 and the like, so that the control terminal (gate terminal) of the IGBT 1 Even when the JFET 11 alone is insufficient and the current capacity is insufficient, it is possible to prevent a malfunction in which the IGBT 1 is erroneously turned on.
  • FIG. 4 is a circuit diagram showing a configuration of a drive circuit for a power semiconductor element in the fourth embodiment for carrying out the present invention.
  • the drive circuit for the power semiconductor element of this embodiment is different from that of Embodiment 1 in that it includes a power supply voltage detection circuit.
  • the IGBT1 when the power supply voltage of the DC power supply in the drive circuit is reduced due to a power failure or the like, the IGBT1 is connected by short-circuiting the gate-emitter of the IGBT1 using a JFET, a transistor, or a MOSFET. It prevents the malfunction that turns on accidentally. However, a power failure or the like may occur when the IGBT 1 is turned on, and the power supply voltage of the DC power supply may be lowered. In this case, if the dV / dt malfunction prevention circuit operates faster than turning off the IGBT 1 via the gate resistor, there is a possibility that the gate-emitter of the IGBT 1 is short-circuited and the IGBT 1 is rapidly turned off.
  • the power semiconductor element drive circuit has a function of normally turning off the IGBT 1 before the dV / dt malfunction prevention circuit operates.
  • a power supply voltage detection circuit 17 is added to the power semiconductor element drive circuit 130 in addition to the power semiconductor element drive circuit 100 described in the first embodiment. Even if the dV / dt malfunction prevention circuit other than those shown in the first to third embodiments has a function of suppressing an increase in the gate voltage of the IGBT in a state where the power supply voltage of the DC power supply is lowered, for example, no Even in a circuit using a normally-off element without using a marly-on element, the function of avoiding rapid IGBT turn-off is satisfied.
  • the power supply voltage detection circuit 17 is composed of, for example, a comparator and is connected to the positive side of the second DC power supply 9 in order to detect the power supply voltage of the second DC power supply 9.
  • the voltage detection level of the power supply voltage detection circuit 17 is set so that a voltage drop can be detected when the power supply voltage of the second DC power supply 9 drops by ⁇ V.
  • ⁇ V is a predetermined power supply voltage drop detected by the power supply voltage detection circuit 17.
  • the voltage detection level of the power supply voltage detection circuit 17 is set higher than the voltage at which the dV / dt malfunction prevention circuit 10 starts to operate.
  • the power supply voltage detection circuit 17 goes to the control circuit 3.
  • the off signal is output, and the control circuit 3 controls the on MOSFET 4 and the off MOSFET 5 to turn off the IGBT 1 or maintain the IGBT 1 in the off state. Since such an operation is performed, the IGBT 1 can be normally turned off before the dV / dt malfunction prevention circuit 10 operates even when the power supply voltage of the second DC power supply 9 decreases due to a power failure or the like.
  • of the threshold voltage Vgs (off) of the JFET 11 is
  • the voltage detection level is set so as to satisfy the relationship of Vgs
  • the difference between the power supply voltage Ve and the threshold voltage Vgs (off) at which the JFET 11 serving as the switching element is turned on is the amount of decrease in the power supply voltage of the second DC power supply 9 at which the JFET 11 is turned on.
  • means that the power supply voltage decrease amount of the second DC power supply 9 in which the JFET 11 is turned on is equal to the predetermined power supply voltage decrease amount detected by the power supply voltage detection circuit 17. To make it smaller.
  • the power supply voltage detection circuit 17 detects a decrease in the power supply voltage of the second DC power supply 9. Then, the power supply voltage detection circuit 17 outputs an off command to the control circuit 3, and the control circuit 3 turns off the IGBT 1.
  • the power supply voltage of the second DC power supply 9 decreases to the threshold voltage Vgs (off) of the JFET 11
  • the JFET 11 is turned on, and the gate voltage of the IGBT 1 increases even when the voltage fluctuation dV / dt is applied. Suppress.
  • the power supply voltage detection circuit 17 detects a drop in the power supply voltage of the second DC power supply 9.
  • the power supply voltage detection circuit 17 is connected to the positive side of the first DC power supply 8, and the first DC power supply 8 and the second DC power supply 9 are connected.
  • a drop in the power supply voltage may be detected.
  • the power supply voltage detection circuit 17 detects the voltage drop of the power supply voltage and before the IGBT 1 is turned off, the voltage detection level of the power supply voltage detection circuit 17 and the dV / dt are set so that the dV / dt malfunction prevention circuit 10 does not operate.
  • a voltage at which the dt malfunction prevention circuit 10 starts to operate (for example, the threshold voltage Vge (off) of the JFET 11) is set.
  • the dV / dt malfunction prevention circuit 10 may be set not to operate first. it can.
  • the power supply voltage detection circuit 17 detects when the power supply voltage of the first DC power supply 8 and the second DC power supply 9 decreases by ⁇ V.
  • the voltage detection level “Ve ⁇ V” is set so as to satisfy the relationship of
  • the rate of reduction between the first DC power source 8 and the second DC power source 9 may be determined.
  • the setting range of the voltage detection level of the voltage detection circuit 17 and the threshold voltage Vgs (off) of the JFET 11 may be widened.
  • the power supply voltage detection circuit 17 shown in the present embodiment is also added to the second and third embodiments. An effect can also be obtained.
  • the power supply voltage detection circuit 17 that detects a decrease in the voltage supplied from at least one of the first DC power supply 8 and the second DC power supply 9 is provided. Even when the power supply voltage of the DC power supply of the drive circuit 130 is reduced due to a power failure or the like, the power semiconductor element can be normally turned off by the power supply voltage detection circuit 17 before the switching element is turned on. It can prevent turning off at high speed.
  • FIG. FIG. 6 is a circuit diagram showing a configuration of a drive circuit for a power semiconductor element in the fifth embodiment for carrying out the present invention.
  • the drive circuit for the power semiconductor element of this embodiment is different from that of the fourth embodiment in that a normally-off element is used instead of a normally-on element in the dV / dt malfunction prevention circuit.
  • the dV / dt malfunction prevention circuit 50 using the normally-off element includes a power supply of the second DC power supply 9 between the base and emitter of the first npn transistor 18, the second npn transistor 19, and the first npn transistor 18.
  • the resistors 20 and 21 for dividing and inputting the voltage are connected in series between the gate and the emitter of the IGBT 1, and the collector of the first npn transistor 18 and the base of the second npn transistor 19 are connected to the connection point.
  • the resistors 22 and 23 are provided.
  • the drive circuit 150 In a normal state, that is, in a state where the power supply voltage of the second DC power supply 9 is established, the power supply voltage of the second DC power supply 9 is divided by resistors 20 and 21 between the base and emitter of the first npn transistor 18. The pressed voltage is applied, and the first npn transistor 18 is turned on. When the first npn transistor 18 is turned on, the base voltage of the second npn transistor 19 becomes a voltage equivalent to the GND of the drive circuit 150, the second npn transistor 19 is turned off, and normal switching operation of the IGBT 1 is performed. Does not affect.
  • the voltage detection level of the power supply voltage detection circuit 17 is set higher than the threshold value of the dV / dt malfunction prevention circuit 50.
  • the detection circuit 17 operates to turn off or maintain the IGBT 1.
  • the power supply voltage of the second DC power supply 9 further decreases, the base-emitter voltage of the first npn transistor 18 decreases and the first npn transistor 18 is turned off.
  • the voltage fluctuation dV / dt is applied and the gate voltage of the IGBT 1 rises, a current flows through the resistor 22 to the base of the second npn transistor 19 and the second npn transistor 19 is turned on.
  • the second npn transistor 19 When the second npn transistor 19 is turned on, the gate-emitter of the IGBT 1 is short-circuited, and an increase in the gate voltage of the IGBT 1 can be suppressed. That is, the second npn transistor 19 is turned on when the gate voltage, which is the voltage between the control terminals of the IGBT 1, increases a predetermined power supply voltage decrease amount detected by the power supply voltage detection circuit 17 as in the fourth embodiment. The amount of decrease in the power supply voltage of the second DC power supply 9 is made smaller.
  • a reverse current may flow through the second npn transistor 19.
  • the second npn transistor 19 and the IGBT 1 A reverse current preventing diode may be inserted between the gate and the gate. The reverse current preventing diode is inserted so that the cathode is on the second npn transistor 19 side.
  • the configuration of the dV / dt malfunction prevention circuit 50 described in the present embodiment is merely an example, and the dV / dt malfunction prevention circuit only needs to satisfy the function, and the second npn depends on the required current capacity.
  • the transistors 19 may be used in multiple parallels, the second npn transistor 19 may be Darlington-connected, and a current limiting resistor is provided to the gate and drain of the JFET 11 and the collector and base of the second npn transistor 19. You may connect.
  • the first npn transistor 18 when the first npn transistor 18 is in an on state and the IGBT 1 is also in an on state during normal operation, current continues to flow through the resistor 22. For this reason, in order to suppress the power consumption of the resistor 22, it is necessary to increase the resistance value of the resistor 22. Accordingly, since the base current of the second npn transistor 19 is reduced, it is effective to connect the second npn transistor 19 to the Darlington connection. Further, although an npn transistor is used in this embodiment, an n-channel MOSFET may be used instead of the npn transistor.
  • FIG. 6 shows an example in which the power supply voltage detection circuit 17 detects a decrease in the power supply voltage of the second DC power supply 9.
  • the power supply voltage detection circuit 17 is replaced with the first power supply voltage detection circuit 17. It may be connected between the positive electrode side of one DC power supply 8 and the GND of the drive circuit 150 to detect a voltage drop of the power supply voltage of the first DC power supply 8 and the second DC power supply 9 combined. Even in this case, the power supply voltage detection circuit 17 detects the voltage drop of the power supply voltage, and before the IGBT 1 is turned off, the voltage detection level of the power supply voltage detection circuit 17 and the dV / dt are set so that the dV / dt malfunction prevention circuit 50 does not operate. The voltage at which the dt malfunction prevention circuit 50 starts to operate is set.
  • the first and second npn transistors 18 and 19 which are normally-off elements are used in the dV / dt malfunction prevention circuit 50, malfunction of the IGBT 1 can be suppressed with a simple circuit configuration.
  • the power supply voltage detection circuit 17 is provided, the normally-off element of the dV / dt malfunction prevention circuit 50 can be used even when the power supply voltage of the DC power supply of the drive circuit 150 is reduced due to a power failure or the like during the ON period of the IGBT 1. Since the power semiconductor element can be normally turned off before turning on, it is possible to prevent the power semiconductor element from being turned off at high speed.
  • FIG. FIG. 7 is a circuit diagram showing a configuration of a drive circuit for a power semiconductor element according to the sixth embodiment for carrying out the present invention.
  • the drive circuit for the power semiconductor element of the present embodiment is that the DC power supply is composed of only the first DC power supply that supplies a positive voltage between the gate and emitter between the control terminals of the IGBT 1. And different.
  • the present embodiment is applied when the power semiconductor element does not malfunction even if a negative voltage is not applied between the gate and the emitter in the off state, such as when the voltage fluctuation dV / dt between the collector and the emitter is small. is there.
  • the power supply voltage detection circuit 17 is connected to the positive side of the first DC power supply 8 to detect a voltage drop of the first DC power supply 8.
  • the resistor 20 is connected not to the negative side of the first DC power supply 8 but to the positive side of the first DC power supply 8.
  • the dV / dt malfunction prevention circuit 60 using a normally-off element includes a power supply of the first DC power supply 8 between the base and emitter of the first npn transistor 18, the second npn transistor 19, and the first npn transistor 18.
  • the resistors 20 and 21 for dividing and inputting the voltage are connected in series between the gate and the emitter of the IGBT 1, and the collector of the first npn transistor 18 and the base of the second npn transistor 19 are connected to the connection point.
  • the resistors 22 and 23 are provided.
  • the drive circuit 160 In a normal state, that is, in a state where the power supply voltage of the first DC power supply 8 is established, the power supply voltage of the first DC power supply 8 is resisted via the resistor 20 connected to the positive side of the first DC power supply 8.
  • the voltage divided by 20 and 21 is applied between the base and emitter of the first npn transistor 18, and the first npn transistor 18 is turned on.
  • the collector-emitter voltage of the first npn transistor 18 to be lower than the base-emitter voltage at which the second npn transistor 19 is turned on, the second npn transistor 19 is turned off.
  • the normal switching operation of the IGBT 1 is not affected.
  • the voltage detection level of the power supply voltage detection circuit 17 is set higher than the threshold value of the dV / dt malfunction prevention circuit 60.
  • the detection circuit 17 operates to turn off or maintain the IGBT 1.
  • the power supply voltage of the first DC power supply 8 further decreases, the base-emitter voltage of the first npn transistor 18 decreases and the first npn transistor 18 is turned off.
  • a current flows through the resistor 22 to the base of the second npn transistor 19 and the second npn transistor 19 is turned on.
  • the second npn transistor 19 is turned on, the gate-emitter of the IGBT 1 is short-circuited, and an increase in the gate voltage of the IGBT 1 can be suppressed.
  • a reverse current may flow through the second npn transistor 19.
  • the second npn transistor 19 and the IGBT 1 A reverse current preventing diode may be inserted between the gate and the gate. The reverse current preventing diode is inserted so that the cathode is on the second npn transistor 19 side.
  • the configuration of the dV / dt malfunction prevention circuit 60 described in the present embodiment is an example, and the dV / dt malfunction prevention circuit only needs to satisfy the function, and the second npn depends on the required current capacity.
  • the transistors 19 may be used in multiple parallels, the second npn transistor 19 may be Darlington-connected, and a current limiting resistor is provided to the gate and drain of the JFET 11 and the collector and base of the second npn transistor 19. You may connect.
  • the first and second npn transistors 18 and 19, which are normally-off elements, are used in the dV / dt malfunction prevention circuit 60 even if the DC power source is configured by only the first DC power source 1.
  • the malfunction of the IGBT 1 can be suppressed with a simple circuit configuration.
  • the normally-off element of the dV / dt malfunction prevention circuit 60 can be used even when the power supply voltage of the DC power supply of the drive circuit 160 is reduced due to a power failure or the like during the ON period of the IGBT 1. Since the power semiconductor element can be normally turned off before turning on, it is possible to prevent the power semiconductor element from being turned off at high speed.
  • the IGBT is used as the power semiconductor element.
  • the power semiconductor element shown in all the embodiments is applied to a voltage-driven power semiconductor element such as a MOSFET.
  • a drive circuit can be applied.
  • the drive circuits described in all the embodiments can be applied not only to Si but also to a wide gap semiconductor such as SiC. Note that a wide gap semiconductor such as SiC may have a low threshold voltage Vth and is likely to malfunction. Therefore, for power semiconductor elements manufactured using SiC or the like, the drive circuits described in all the embodiments are used. The effect that it can be used to prevent malfunction is further increased.
  • 1 IGBT power semiconductor element
  • 2 control signal 3 control circuit
  • 4 on MOSFET 5 off MOSFET
  • 6 gate resistance 8 first DC power supply
  • 9 second DC power supply 10, 30 , 40, 50, 60 dV / dt malfunction prevention circuit, 11 JFET, 12, 14 diode, 13 npn transistor, 15, 20-23 resistor, 16 pnp transistor, 17 power supply voltage detection circuit, 18 first npn transistor, 19 Second npn transistor, 100, 110, 120, 130, 140, 150, 160 drive circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

簡単な回路構成で、消費電力を抑えながら、電圧変動dV/dtに対する高速応答が可能であり、電力用半導体素子の誤動作を防止することができる電力用半導体素子の駆動回路を得るために、電力用半導体素子のオンオフを制御する制御回路と、電力用半導体素子の制御端子間に電圧を供給する直流電源と、電力用半導体素子の制御端子間に接続されたスイッチング素子とを備え、スイッチング素子は、直流電源の電源電圧が低下した場合にオンし、または、直流電源の電源電圧が低下した状態で電力用半導体素子の制御端子間電圧が上昇した場合にオンし、電力用半導体素子の制御端子間を短絡させる。

Description

電力用半導体素子の駆動回路
 この発明は、電力用半導体素子の駆動回路に関するものであり、特に電圧変動dV/dtによって、電力用半導体素子が誤動作することを防止する機能を有する電力用半導体素子の駆動回路に関する。
 従来の電力用半導体素子の駆動回路において、IGBT(Insulated Gate Bipolar Transistor)等の自己消弧形の電力用半導体素子を用いる場合には、電力用半導体素子のコレクタ-エミッタ間に電圧変動dV/dtが印加されると、電力用半導体素子のゲートに付随する寄生容量によって、ゲート電圧が上昇する。ゲート電圧が所定のしきい値電圧を超えると、電力用半導体素子が誤ってオンし、アーム短絡が発生し、電力用半導体素子が破壊するという問題が発生する。この問題を回避するために、電力用半導体素子がオフ状態でゲート-エミッタ間に負電圧を印加する方法がある。しかしながら、この方法ではゲート駆動回路の電源電圧が確立していない状態で電圧変動dV/dtの電圧が印加されると、電力用半導体素子のスイッチング動作が誤動作する可能性がある。
 半導体素子の駆動電力を電力変換器の主回路から供給する電源自給式の駆動回路において、主電源投入後、ゲート駆動回路の電源電圧が確立するまでに、半導体素子のスイッチング動作が誤動作することを防止する方法がある。具体的には、ゲート駆動回路では半導体素子のゲートとエミッタとの間に抵抗とPチャンネルFET(Field Effect Transistor)またはNチャンネルFETとを接続する。そして、ゲート駆動回路の電源電圧が立ち上がる前にゲート電圧が上昇した場合には、PチャンネルFETまたはNチャンネルFETをオンすることで、ゲート電圧の上昇を制限し、半導体素子のスイッチング動作の誤動作を防止する(例えば、特許文献1参照)。
特開平10-285909号公報
 従来の電力用半導体素子の駆動回路では、ゲート駆動回路の電源電圧が立ち上がった後はPチャンネルFETまたはNチャンネルFETをオフ状態に保つために、常時、抵抗に電流を流し続ける必要があり、駆動回路の消費電力が増加するという問題があった。また、ゲート電圧が所定レベルに達したことを検出するためのレベル検出回路が必要であった。さらに、特許文献1では想定されていないが、駆動回路が運転中に停電が発生した場合には、フリーホイールダイオードのリカバリによって大きな電圧変動dV/dtが電力用半導体素子に印加される場合があり、駆動回路には電圧変動dV/dtに対する高速応答性が必要とされる。この問題を解決するために、例えば、NチャンネルFETに接続される抵抗の抵抗値を小さくすることが考えられるが、さらに消費電力が増加するという問題もあった。なお、特許文献1には、ノーマリーオンの半導体素子を用いるという記載があるものの、具体的な回路図については示されていない。
 この発明は、上述のような課題を解決するためになされたもので、簡単な回路構成で、消費電力を抑えながら、電圧変動dV/dtに対して高速に応答し、電力用半導体素子の誤動作防止機能を有する電力用半導体素子の駆動回路を得るものである。
 この発明に係る電力用半導体素子の駆動回路は、電力用半導体素子のオンオフを制御する制御回路と、電力用半導体素子の制御端子間に電圧を供給する直流電源と、電力用半導体素子の制御端子間に接続されたスイッチング素子とを備え、スイッチング素子は、直流電源の電源電圧が低下した場合にオンし、または、直流電源の電源電圧が低下した状態で電力用半導体素子の制御端子間電圧が上昇した場合にオンし、電力用半導体素子の制御端子間を短絡させることを特徴とするものである。
 この発明に係る電力用半導体素子の駆動回路は、電力用半導体素子の制御端子間に接続されたスイッチング素子が、直流電源の電源電圧が低下した場合にオンし、または、直流電源の電源電圧が低下した状態で電力用半導体素子の制御端子間電圧が上昇した場合にオンし、電力用半導体素子の制御端子間を短絡させるので、簡単な回路構成で、消費電力を抑えながら、電圧変動dV/dtに対して高速に応答し、電力用半導体素子の誤動作を防止することができる。
この発明の実施の形態1における電力用半導体素子の駆動回路の構成を示す回路図である。 この発明の実施の形態2における電力用半導体素子の駆動回路の構成を示す回路図である。 この発明の実施の形態3における電力用半導体素子の駆動回路の構成を示す回路図である。 この発明の実施の形態4における電力用半導体素子の駆動回路の構成を示す回路図である。 この発明の実施の形態4における別の電力用半導体素子の駆動回路の構成を示す回路図である。 この発明の実施の形態5における電力用半導体素子の駆動回路の構成を示す回路図である。 この発明の実施の形態6における電力用半導体素子の駆動回路の構成を示す回路図である。
実施の形態1.
 図1は、この発明を実施するための実施の形態1における電力用半導体素子の駆動回路の構成を示す回路図である。図1において、電力用半導体素子の駆動回路100は、制御回路3、オン用MOSFET(Metal Oxide Semiconductor Field Effect Transistor)4、オフ用MOSFET5、ゲート抵抗6,7、第一の直流電源8、第二の直流電源9、dV/dt誤動作防止回路10によって構成されている。駆動回路100には、電力用半導体素子であるIGBT1が接続されている。IGBT1は、並列接続されたダイオードを備えている。
 制御回路3は、電力用半導体素子であるIGBT1のオンオフを制御するもので、外部からの制御信号2に従って、オン用MOSFET4およびオフ用MOSFET5を制御する。オン用MOSFET4はゲート抵抗6を介してIGBT1のゲートに接続され、オフ用MOSFET5はゲート抵抗7を介してIGBT1のゲートに接続されている。制御回路3がオン用MOSFET4をオン、オフ用MOSFET5をオフすることによって、ゲート抵抗6を介してIGBT1のゲートに充放電電流が流れ、IGBT1をオンする。一方、制御回路3がオン用MOSFET4をオフ、オフ用MOSFET5をオンすることによって、ゲート抵抗7を介してIGBT1のゲートに充放電電流が流れ、IGBT1をオフする。
 第一の直流電源8および第二の直流電源9は、IGBT1の制御端子間に電圧を供給する直流電源を構成している。第一の直流電源8は、IGBT1がオン状態でIGBT1の制御端子間であるゲート-エミッタ間に正電圧を供給し、第二の直流電源9は、IGBT1がオフ状態でIGBT1の制御端子間であるゲート-エミッタ間に負電圧を供給するものである。IGBT1がオン状態の場合には、制御回路3によってオン用MOSFET4がオン、オフ用MOSFET5がオフとなっているので、IGBT1のゲート-エミッタ間には、第一の直流電源8の電源電圧によって正電圧が印加される。IGBT1のエミッタには第二の直流電源9が接続されており、IGBT1がオフ状態の場合には、制御回路3によってオン用MOSFET4がオフ、オフ用MOSFET5がオンとなっているので、IGBT1のゲート-エミッタ間には、第二の直流電源9の電源電圧Veによって負電圧-Veが印加される。
 IGBT1のゲート-エミッタ間にはdV/dt誤動作防止回路10が接続されている。dV/dt誤動作防止回路10は、ノーマリーオン素子であるnチャンネルJFET(Junction Field Effect Transistor)11、および、IGBT1のエミッタ側からゲート側へ逆電流が流れることを防止するために設けられたダイオード12によって構成されている。JFET11は、IGBT1のゲート-エミッタ間(電力用半導体素子の制御端子間)に接続されたスイッチング素子である。JFET11のゲート(制御端子)は第二の直流電源9の負極側である駆動回路100のGNDに接続され、JFET11のソースはIGBT1のエミッタに接続され、JFET11のドレインはダイオード12を介してIGBT1のゲートに接続されている。ダイオード12は、JFET11に対して直列接続され、IGBT1のゲート-エミッタ間に接続されている。ダイオード12のアノードは、IGBT1のゲートに接続され、ダイオード12のカソードは、JFET11に接続されている。
 次に、駆動回路100の動作について説明する。正常状態、すなわち、第二の直流電源9の電源電圧が確立している状態では、IGBT1のオフ期間中に、例えばIGBT1に並列接続されたダイオードのリカバリ動作等によってIGBT1に電圧変動dV/dtが印加された場合でも、IGBT1のゲート-エミッタ間には負電圧-Veが印加されている。このため、IGBT1のゲート-エミッタ間電圧が上昇したとしても、ゲート-エミッタ間電圧はIGBT1のしきい値電圧以下に抑えられるので、IGBT1が誤ってオンすることはない。また、JFET11のゲート-ソース間には負電圧-Veが印加されており、JFET11のしきい値電圧Vgs(off)の絶対値|Vgs|を負電圧-Veの絶対値|Ve|より低く設定することによって、JFET11はオフとなり、dV/dt誤動作防止回路10には電流は流れない。このため、正常状態でのIGBT1のスイッチング動作に影響を与えることはない。
 一方、異常状態、すなわち、停電等によって第二の直流電源9の電源電圧が低下すると、IGBT1のゲート-エミッタ間に印加される負電圧-Veの絶対値|Ve|が低下する。そして、負電圧-Veの絶対値|Ve|がJFET11のしきい値電圧Vgs(off)の絶対値|Vgs|より低下するとJFET11がオンする。つまり、直流電源である第二の直流電源9の電源電圧が低下した場合に、JFET11がオンする。この結果、JFET11は、IGBT1のゲート-エミッタ間を短絡する。このため、この状態でIGBT1に電圧変動dV/dtが印加されてもIGBT1のゲート電圧の上昇が抑制され、IGBT1が誤ってオンする誤動作を防止することができる。
 本発明の電力用半導体素子の駆動回路では、JFET11を駆動するために別の駆動回路や電源等を設ける必要がなく、簡単な回路構成によって、電圧変動dV/dtに起因するIGBT1の誤動作を抑制することができる。また、正常時には、JFET11を含むdV/dt誤動作防止回路10内に電流が流れることがないので、駆動回路100の消費電力を抑えることができる。さらに、第二の直流電源9の電源電圧が低下し、負電圧-Veの絶対値|Ve|がJFET11のしきい値電圧Vgs(off)の絶対値|Vgs|より低下した時点でJFET11がオンするため、高速応答性が良く、IGBT1のゲート駆動用の電源の立上げ時のみならず、運転状態で停電が発生し、ダイオードのリカバリによる大きな電圧変動dV/dtが印加された場合に対してもIGBT1の誤動作を防止できる。
 本実施の形態に示したdV/dt誤動作防止回路10の回路構成は一例であり、電圧変動dV/dtによる誤動作防止の機能を満たしていれば良く、JFET11を多並列で用いたり、電流制限用に電圧変動dV/dtの印加によってもIGBT1が誤動作しない程度の低インピーダンスの抵抗をJFET11のゲートまたはドレインに接続したりしても良い。また、本実施の形態ではノーマリーオン素子としてJFET11を用いたが、その機能を満たしていれば良く、例えばディプレッション型MOSFET等に置換えても良い。
 以上のように、ノーマリーオン素子をIGBT1のゲート-エミッタ間に接続することという簡単な回路構成で、消費電力を抑えながら、電圧変動dV/dtに対する高速応答が可能であり、電力用半導体素子の誤動作防止機能を有する電力用半導体素子の駆動回路を得ることができる。
実施の形態2.
 図2は、この発明を実施するための実施の形態2における電力用半導体素子の駆動回路の構成を示す回路図である。本実施の形態の電力用半導体素子の駆動回路は、dV/dt誤動作防止回路に電流増幅段を備えた点が実施の形態1と異なる。電流増幅段は、電力用半導体素子のゲート容量が大きく、ノーマリーオン素子であるJFETの電流容量が不足するような場合に対応して、JFETのソース電流を増幅し、dV/dt誤動作防止回路に流れる電流を大きくする増幅回路である。図2において、図1と同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することである。また、明細書全文に表れている構成要素の態様は、あくまで例示であってこれらの記載に限定されるものではない。
 本実施の形態のdV/dt誤動作防止回路30において、ノーマリーオン素子であるJFET11のゲートが駆動回路110のGNDに接続され、JFET11のドレインがダイオード12を介してIGBT1のゲートに接続される点は実施の形態1と同様である。そして、dV/dt誤動作防止回路30には、増幅回路を構成する電流増幅用のnpnトランジスタ13、ダイオード14、および抵抗15が追加されている。npnトランジスタ13は、IGBT1のゲート-エミッタ間に接続され、JFET11に流れる電流を増幅するノーマリーオフのスイッチング素子である。JFET11のソースは抵抗15を介して、IGBT1のエミッタに接続される。また、JFET11のソースは電流増幅用のnpnトランジスタ13の制御端子であるベースにも接続されている。npnトランジスタ13のエミッタはIGBT1のエミッタに、npnトランジスタ13のコレクタはダイオード14を介してIGBT1のゲートに接続されている。
 次に、駆動回路110の動作について説明する。正常状態、すなわち、第二の直流電源9の電源電圧が確立した状態では、JFET11はオフしており、npnトランジスタ13もオフとなり、dV/dt誤動作防止回路30内に電流は流れない。異常状態、すなわち、停電等によって第二の直流電源9の電源電圧が低下すると、IGBT1のゲート-エミッタ間に印加される負電圧-Veの絶対値|Ve|が低下する。そして、負電圧-Veの絶対値|Ve|がJFET11のしきい値電圧Vgs(off)の絶対値|Vgs|より低下するとJFET11がオンする。この状態でIGBT1に電圧変動dV/dtが印加されると、IGBT1のゲート電圧が上昇し、npnトランジスタ13のベースに電流が流れ、npnトランジスタ13がオンする。つまり、直流電源である第二の直流電源9の電源電圧が低下した状態でIGBT1の制御端子間電圧であるゲート電圧が上昇した場合に、npnトランジスタ13がオンする。これにより、IGBT1のゲート-エミッタ間が短絡され、IGBT1のゲート電圧の上昇が抑制され、IGBT1が誤ってオンする誤動作を防止できる。
 npnトランジスタ13を備えたことによって、実施の形態1に示したdV/dt誤動作防止回路10に比べてdV/dt誤動作防止回路30に流れる電流が増幅されるので、IGBT1のゲート容量が大きい場合でも、IGBT1の誤動作を防止することが出来る。なお、JFET11のしきい値Vgs(off)の絶対値|Vgs|は、実施の形態1と同様に正常時の負電圧-Veの絶対値|Ve|より低く設定する必要があるが、本実施の形態ではnpnトランジスタ13がオンするベース-エミッタ間電圧VbeもJFET11のソースに印加されるため、npnトランジスタ13のベース-エミッタ間電圧Vbeの絶対値|Vbe|をJFET11のしきい値Vgs(off)の絶対値|Vgs|より低く設定する。
 本実施の形態において、電流増幅用のトランジスタとしてnpnトランジスタ13を用いたが、nチャンネルMOSFETを用いても良い。この場合には、MOSFETのゲート-ソース間のしきい値電圧Vthの絶対値|Vth|をJFET11のしきい値Vgs(off)の絶対値|Vgs|より低く設定する。なお、本実施の形態において説明したdV/dt誤動作防止回路30の構成はJFET11のソース電流を増幅するための一例であり、dV/dt誤動作防止回路がその機能を満たしていれば良く、必要な電流容量に応じてJFET11やnpnトランジスタ13を多並列で用いても良いし、npnトランジスタ13をダーリントン接続しても良いし、JFET11のゲートやドレイン、npnトランジスタ13のコレクタやベースに電流制限用の抵抗を接続しても良い。
 以上のような構成によって、IGBT1のゲート-エミッタ間にノーマリーオン素子であるJFET11のみを接続した場合に比べて、npnトランジスタ13等によって電流が増幅されるため、IGBT1の制御端子(ゲート端子)の容量が大きく、JFET11だけでは電流容量が不足する場合でも、IGBT1が誤ってオンする誤動作を防止することができる。
実施の形態3.
 図3は、この発明を実施するための実施の形態3における電力用半導体素子の駆動回路の構成を示す回路図である。本実施の形態の電力用半導体素子の駆動回路は、dV/dt誤動作防止回路の電流増幅用のトランジスタとしてpnpトランジスタを備えた点が実施の形態2と異なる。dV/dt誤動作防止回路40には、増幅回路を構成する電流増幅用のpnpトランジスタ16、ダイオード14、および抵抗15が設けられている。
 本実施の形態のdV/dt誤動作防止回路40において、ノーマリーオン素子であるJFET11のゲートが駆動回路120のGNDに接続され、JFET11のソースがIGBT1のエミッタに接続され、JFET11のドレインは抵抗15およびダイオード12を介してIGBT1のゲートに接続されている。また、JFET11のドレインはpnpトランジスタ16の制御端子であるベースにも接続されている。pnpトランジスタ16は、IGBT1のゲート-エミッタ間に接続され、JFET11に流れる電流を増幅するノーマリーオフのスイッチング素子である。pnpトランジスタ16のエミッタはダイオード14を介してIGBT1のゲートに接続され、pnpトランジスタ16のコレクタはIGBT1のエミッタに接続されている。
 なお、本実施の形態では、ダイオード12のアノードをIGBT1のゲートに接続しているが、ダイオード12のアノードを第一の直流電源8の正極側に接続したり、ダイオード12を設置せずに、抵抗15を第一の直流電源8の正極側に接続したりしても良い。また、pnpトランジスタ16のコレクタをIGBT1のエミッタに接続しているが、pnpトランジスタ16のコレクタを駆動回路120のGNDに接続しても良い。
 次に、駆動回路120の動作について説明する。正常状態、すなわち、第二の直流電源9の電源電圧が確立した状態では、JFET11はオフしており、pnpトランジスタ16もオフとなり、dV/dt誤動作防止回路40内に電流は流れない。異常状態、すなわち、停電等により第二の直流電源9の電源電圧が低下すると、IGBT1のゲート-エミッタ間に印加される負電圧-Veの絶対値|Ve|が低下する。そして、負電圧-Veの絶対値|Ve|がJFET11のしきい値電圧Vgs(off)の絶対値|Vgs|より低下するとJFET11がオンする。この状態でIGBT1に電圧変動dV/dtが印加されると、IGBT1のゲート電圧が上昇し、pnpトランジスタ16のベースに電流が流れ、pnpトランジスタ16がオンする。つまり、直流電源である第二の直流電源9の電源電圧が低下した状態でIGBT1の制御端子間電圧であるゲート電圧が上昇した場合に、pnpトランジスタ16がオンする。これにより、IGBT1のゲート-エミッタ間が短絡され、IGBT1のゲート電圧の上昇が抑制され、IGBT1が誤ってオンする誤動作を防止できる。
 pnpトランジスタ16を備えたことによって、実施の形態1に示したdV/dt誤動作防止回路10に比べてdV/dt誤動作防止回路40に流れる電流が増幅されるので、IGBT1のゲート容量が大きい場合でも、IGBT1の誤動作を防止することが出来る。
 ここで、電流増幅用のトランジスタとしてnpnトランジスタに代えてpnpトランジスタ16を用いることの特長について説明する。実施の形態2のようにnpnトランジスタ(またはpチャンネルMOSFET)を用いる場合には、npnトランジスタのベース-エミッタ間電圧がJFET11のソース-ゲート間にも印加されるので、JFET11のしきい値Vgs(off)の絶対値|Vgs|を、npnトランジスタ13のベース-エミッタ間電圧Vbeの絶対値|Vbe|またはMOSFETのゲート-ソース間のしきい値電圧Vthの絶対値|Vth|より高く設定する必要があった。しかしながら、本実施の形態のようにpnpトランジスタ16を用いる場合には、JFET11のゲート-ソース間に印加される電圧は第二の直流電源9の電源電圧による負電圧-Veのみとなり、JFET11のしきい値電圧Vgs(off)の絶対値|Vgs|を、npnトランジスタ13のベース-エミッタ間電圧Vbeの絶対値|Vbe|またはMOSFETのゲート-ソース間のしきい値電圧Vthの絶対値|Vth|より高く設定する必要がない。単に正常時の第二の直流電源9の電源電圧による負電圧-Veに対して、JFET11のしきい値電圧Vgs(off)の絶対値|Vgs|を負電圧-Veの絶対値|Ve|より低く設定すればよく、広い範囲でしきい値を設定することができる。
 なお、本実施の形態において説明したdV/dt誤動作防止回路40の構成はJFET11のソース電流を増幅するための一例であり、dV/dt誤動作防止回路がその機能を満たしていれば良く、必要な電流容量に応じてJFET11やpnpトランジスタ16を多並列で用いても良いし、pnpトランジスタ16をダーリントン接続しても良いし、JFET11のゲートやドレイン、pnpトランジスタ16のコレクタやベースに電流制限用の抵抗を接続しても良い。
 以上のような構成によって、IGBT1のゲート-エミッタ間にノーマリーオン素子であるJFET11のみを接続した場合に比べて、pnpトランジスタ16等によって電流が増幅されるため、IGBT1の制御端子(ゲート端子)の容量が大きく、JFET11だけでは電流容量が不足する場合でも、IGBT1が誤ってオンする誤動作を防止することができる。
実施の形態4.
 図4は、この発明を実施するための実施の形態4における電力用半導体素子の駆動回路の構成を示す回路図である。本実施の形態の電力用半導体素子の駆動回路は、電源電圧検知回路を備えた点が実施の形態1と異なる。
 実施の形態1~3においては、停電等によって駆動回路内の直流電源の電源電圧が低下した場合には、JFET、トランジスタ、またはMOSFETを用いてIGBT1のゲート-エミッタ間を短絡することによってIGBT1が誤ってオンする誤動作を防止している。しかしながら、IGBT1がオン状態で停電等が発生して直流電源の電源電圧が低下することも起こりうる。この場合、ゲート抵抗を介してIGBT1をオフするよりも早く、dV/dt誤動作防止回路が動作すると、IGBT1のゲート-エミッタ間が短絡され、急速にIGBT1がターンオフしてしまうという問題が発生する可能性がある。dV/dt誤動作防止回路に制限抵抗を設けることによって、急速なIGBT1のターンオフを回避することも可能であるが、大きな電圧変動dV/dtが印加された場合には、dV/dt誤動作防止回路の動作が遅れる可能性もある。そこで、本実施の形態における電力用半導体素子の駆動回路は、dV/dt誤動作防止回路が動作する前に、IGBT1を正常にターンオフする機能を追加したものである。
 図4において、電力用半導体素子の駆動回路130には、実施の形態1に示した電力用半導体素子の駆動回路100に加えて、電源電圧検知回路17が追加されている。なお、実施の形態1~3に示した以外のdV/dt誤動作防止回路であっても直流電源の電源電圧が低下した状態でIGBTのゲート電圧の上昇を抑制するという機能があれば、例えばノーマリーオン素子を用いずに、ノーマリーオフ素子を用いた回路であっても、急速なIGBTのターンオフを回避するという機能は満足する。
 電源電圧検知回路17は例えばコンパレータ等によって構成され、第二の直流電源9の電源電圧を検知するために、第二の直流電源9の正極側に接続されている。電源電圧検知回路17の電圧検知レベルは、第二の直流電源9の電源電圧がΔV低下した時点で電圧低下を検知できるように設定されている。ここで、ΔVは電源電圧検知回路17が検知する所定の電源電圧低下量である。また、電源電圧検知回路17の電圧検知レベルは、dV/dt誤動作防止回路10が動作し始める電圧より高く設定されている。第二の直流電源9の電源電圧が電圧検知レベル以下に低下する、つまり、第二の直流電源9の電源電圧が所定の電源電圧低下量に達すると、電源電圧検知回路17は制御回路3へオフ信号を出力し、制御回路3はIGBT1をターンオフするか、または、IGBT1のオフ状態を維持するようにオン用MOSFET4およびオフ用MOSFET5を制御する。このような動作を行うので、停電等によって第二の直流電源9の電源電圧が低下した場合でも、dV/dt誤動作防止回路10が動作するより前にIGBT1を正常にターンオフすることができる。
 ここで、実施の形態1に示したdV/dt誤動作防止回路を用いた場合における、電源電圧検知回路17の電圧検知レベル「Ve-ΔV」の設定について説明する。JFET11のしきい値電圧Vgs(off)の絶対値|Vgs|に対して電源電圧検知回路17の電圧検知レベル「Ve-ΔV」の絶対値|Ve-ΔV|が、|Ve-ΔV|>|Vgs|の関係を満たすように電圧検知レベルを設定する。ここで、電源電圧Veとスイッチング素子であるJFET11がオンするしきい値電圧Vgs(off)との差分が、JFET11がオンする第二の直流電源9の電源電圧の低下量となる。つまり、|Ve-ΔV|>|Vgs|の関係を満たすということは、電源電圧検知回路17が検知する所定の電源電圧低下量をJFET11がオンする第二の直流電源9の電源電圧の低下量より小さくすることである。
 このように設定することによって、IGBT1がオン状態で第二の直流電源9の電源電圧が低下した場合、第二の直流電源9の電源電圧が正常値VeからΔV低下した時点で、電源電圧検知回路17が第二の直流電源9の電源電圧の低下を検知する。そして、電源電圧検知回路17が制御回路3にオフ指令を出力し、制御回路3がIGBT1をターンオフする。次に、第二の直流電源9の電源電圧がJFET11のしきい値電圧Vgs(off)まで低下した時点でJFET11がオン状態となり、電圧変動dV/dtが印加されてもIGBT1のゲート電圧の上昇を抑制する。
 なお、図4の電力用半導体素子の駆動回路130では、電源電圧検知回路17が第二の直流電源9の電源電圧の低下を検知する例を示している。しかしながら、図5の電力用半導体素子の駆動回路140に示すように、電源電圧検知回路17を第一の直流電源8の正極側に接続し、第一の直流電源8と第二の直流電源9とを合せた電源電圧の電圧低下を検知しても良い。この場合でも、電源電圧検知回路17が電源電圧の電圧低下を検知し、IGBT1をターンオフする前に、dV/dt誤動作防止回路10が動作しないように電源電圧検知回路17の電圧検知レベルとdV/dt誤動作防止回路10が動作し始める電圧(例えば、JFET11のしきい値電圧Vge(off))を設定する。
 図5のように、第一の直流電源8の正極側で電圧検知を行うと、第一の直流電源8と第二の直流電源9のどちらの電源電圧がどのような割合で低下しているが不明であるが、第二の直流電源9の電源電圧のみが低下するという前提で電圧検知レベルを設定しておけば、dV/dt誤動作防止回路10が先に動作しないように設定することができる。例えば、第二の直流電源9の電源電圧のみが低下する場合、電源電圧検知回路17は第一の直流電源8と第二の直流電源9とを合せた電源電圧がΔV低下した時点で検知するように、|Ve-ΔV|>|Vgs|の関係を満たすように電圧検知レベル「Ve-ΔV」を設定する。そして、直流電源の種類によっては停電が発生した場合に、第一の直流電源8と第二の直流電源9との低下の割合が決まる場合もあるので、その場合にはその低下の割合に応じて電圧検知回路17の電圧検知レベルとJFET11のしきい値電圧Vgs(off)との設定範囲を広げればよい。
 なお、実施の形態2、3に対しても、本実施の形態において示した電源電圧検知回路17を加えることによって、実施の形態2、3で説明した効果に加え、本実施の形態で得られる効果も併せて得ることができる。
 以上のように第一の直流電源8および第二の直流電源9の少なくとも何れか一方から供給される電圧の低下を検知する電源電圧検知回路17を備えたので、電力用半導体素子のオン期間中に停電等で駆動回路130の直流電源の電源電圧が低下した場合でも、スイッチング素子がオンするより前に、電源電圧検知回路17によって電力用半導体素子を正常にオフできるため、電力用半導体素子を高速にターンオフすることを防ぐことができる。
実施の形態5.
 図6は、この発明を実施するための実施の形態5における電力用半導体素子の駆動回路の構成を示す回路図である。本実施の形態の電力用半導体素子の駆動回路は、dV/dt誤動作防止回路にノーマリーオン素子の代わりにノーマリーオフ素子を用いた点が実施の形態4と異なる。
 ノーマリーオフ素子を用いたdV/dt誤動作防止回路50は、第一のnpnトランジスタ18、第二のnpnトランジスタ19、第一のnpnトランジスタ18のベース-エミッタ間に第二の直流電源9の電源電圧を分圧して入力するための抵抗20,21、IGBT1のゲート-エミッタ間に直列接続され、その接続点に第一のnpnトランジスタ18のコレクタおよび第二のnpnトランジスタ19のベースが接続されている抵抗22,23によって構成されている。
 駆動回路150の動作について説明する。正常状態、すなわち、第二の直流電源9の電源電圧が確立された状態では、第一のnpnトランジスタ18のベース-エミッタ間には第二の直流電源9の電源電圧を抵抗20,21で分圧した電圧が印加され、第一のnpnトランジスタ18がオン状態となる。第一のnpnトランジスタ18がオン状態になると、第二のnpnトランジスタ19のベース電圧は駆動回路150のGND相当の電圧となり、第二のnpnトランジスタ19はオフ状態となり、IGBT1の通常のスイッチング動作に影響を与えない。
 停電等によって第二の直流電源9の電源電圧が低下した場合、電源電圧検知回路17の電圧検知レベルをdV/dt誤動作防止回路50のしきい値より高く設定しているので、まず、電源電圧検知回路17が動作し、IGBT1をターンオフまたはオフ状態を維持する。そして、さらに第二の直流電源9の電源電圧が低下すると第一のnpnトランジスタ18のベース-エミッタ間電圧が低下し、第一のnpnトランジスタ18がオフする。この状態で電圧変動dV/dtが印加されてIGBT1のゲート電圧が上昇すると、抵抗22を通して第二のnpnトランジスタ19のベースに電流が流れ、第二のnpnトランジスタ19がオンする。第二のnpnトランジスタ19がオンすることによって、IGBT1のゲート-エミッタ間が短絡され、IGBT1のゲート電圧の上昇を抑制することができる。つまり、実施の形態4と同様に電源電圧検知回路17が検知する所定の電源電圧低下量を、IGBT1の制御端子間電圧であるゲート電圧が上昇した場合に、第二のnpnトランジスタ19がオンする第二の直流電源9の電源電圧の低下量より小さくしている。
 なお、第一および第二のnpnトランジスタ18,19の特性や回路定数によっては第二のnpnトランジスタ19に逆電流が流れる場合があるため、そのような場合には第二のnpnトランジスタ19とIGBT1のゲートとの間に逆電流防止用のダイオードを挿入すればよい。この逆電流防止用のダイオードは、カソードが第二のnpnトランジスタ19側になるように挿入する。
 なお、本実施の形態において説明したdV/dt誤動作防止回路50の構成は一例であり、dV/dt誤動作防止回路がその機能を満たしていれば良く、必要な電流容量に応じて第二のnpnトランジスタ19を多並列で用いても良いし、第二のnpnトランジスタ19をダーリントン接続しても良いし、JFET11のゲートやドレイン、第二のnpnトランジスタ19のコレクタやベースに電流制限用の抵抗を接続しても良い。
 また、本実施の形態において、正常時には第一のnpnトランジスタ18がオン状態であり、IGBT1もオン状態であると、抵抗22に電流が流れ続ける。このため、抵抗22での消費電力を抑えるためには抵抗22の抵抗値を大きくする必要がある。これによって、第二のnpnトランジスタ19のベース電流が小さくなるため、第二のnpnトランジスタ19をダーリントン接続することは有効である。また、本実施の形態においてはnpnトランジスタを用いたが、npnトランジスタの代わりにnチャンネルMOSFETを用いてもよい。
 また、図6において、電源電圧検知回路17が第二の直流電源9の電源電圧の低下を検知する例を示しているが、実施の形態4にて説明したように電源電圧検知回路17を第一の直流電源8の正極側と駆動回路150のGNDとの間に接続し、第一の直流電源8と第二の直流電源9とを合せた電源電圧の電圧低下を検知しても良い。この場合でも、電源電圧検知回路17が電源電圧の電圧低下を検知し、IGBT1をターンオフする前に、dV/dt誤動作防止回路50が動作しないように電源電圧検知回路17の電圧検知レベルとdV/dt誤動作防止回路50が動作し始める電圧を設定する。
 以上のように、dV/dt誤動作防止回路50にノーマリーオフ素子である第一および第二のnpnトランジスタ18,19を用いたので、簡単な回路構成でIGBT1の誤動作を抑制することができる。また、電源電圧検知回路17を設けたことによって、IGBT1のオン期間中に停電等で駆動回路150の直流電源の電源電圧が低下した場合でも、dV/dt誤動作防止回路50のノーマリーオフ素子がオンするより前に、電力用半導体素子を正常にオフできるため、電力用半導体素子を高速にターンオフすることを防ぐことができる。
実施の形態6.
 図7は、この発明を実施するための実施の形態6における電力用半導体素子の駆動回路の構成を示す回路図である。本実施の形態の電力用半導体素子の駆動回路は、直流電源がIGBT1の制御端子間であるゲート-エミッタ間に正電圧を供給する第一の直流電源のみで構成される点が実施の形態5と異なる。本実施の形態はコレクタ-エミッタ間の電圧変動dV/dtが小さい場合等、オフ状態でゲート-エミッタ間に負電圧を印加しなくても電力用半導体素子が誤動作しない場合に適用されるものである。
 図7において、電源電圧検知回路17を第一の直流電源8の正極側に接続し、第一の直流電源8の電圧低下を検知している。また、抵抗20は第一の直流電源8の負極側ではなく、第一の直流電源8の正極側に接続されている。ノーマリーオフ素子を用いたdV/dt誤動作防止回路60は、第一のnpnトランジスタ18、第二のnpnトランジスタ19、第一のnpnトランジスタ18のベース-エミッタ間に第一の直流電源8の電源電圧を分圧して入力するための抵抗20,21、IGBT1のゲート-エミッタ間に直列接続され、その接続点に第一のnpnトランジスタ18のコレクタおよび第二のnpnトランジスタ19のベースが接続されている抵抗22,23によって構成されている。
 駆動回路160の動作について説明する。正常状態、すなわち、第一の直流電源8の電源電圧が確立された状態では、第一の直流電源8の正極側に接続された抵抗20を介して第一の直流電源8の電源電圧を抵抗20,21で分圧した電圧が、第一のnpnトランジスタ18のベース-エミッタ間に印加され、第一のnpnトランジスタ18がオン状態となる。ここで第一のnpnトランジスタ18のコレクタ-エミッタ間電圧を第二のnpnトランジスタ19がオン状態となるベース-エミッタ間電圧より低くなるように設定することにより、第二のnpnトランジスタ19はオフ状態となり、IGBT1の通常のスイッチング動作に影響を与えない。
 停電等によって第一の直流電源8の電源電圧が低下した場合、電源電圧検知回路17の電圧検知レベルをdV/dt誤動作防止回路60のしきい値より高く設定しているので、まず、電源電圧検知回路17が動作し、IGBT1をターンオフまたはオフ状態を維持する。そして、さらに第一の直流電源8の電源電圧が低下すると第一のnpnトランジスタ18のベース-エミッタ間電圧が低下し、第一のnpnトランジスタ18がオフする。この状態で電圧変動dV/dtが印加されてIGBT1のゲート電圧が上昇すると、抵抗22を通して第二のnpnトランジスタ19のベースに電流が流れ、第二のnpnトランジスタ19がオンする。第二のnpnトランジスタ19がオンすることによって、IGBT1のゲート-エミッタ間が短絡され、IGBT1のゲート電圧の上昇を抑制することができる。
 なお、第一および第二のnpnトランジスタ18,19の特性や回路定数によっては第二のnpnトランジスタ19に逆電流が流れる場合があるため、そのような場合には第二のnpnトランジスタ19とIGBT1のゲートとの間に逆電流防止用のダイオードを挿入すればよい。この逆電流防止用のダイオードは、カソードが第二のnpnトランジスタ19側になるように挿入する。
 なお、本実施の形態において説明したdV/dt誤動作防止回路60の構成は一例であり、dV/dt誤動作防止回路がその機能を満たしていれば良く、必要な電流容量に応じて第二のnpnトランジスタ19を多並列で用いても良いし、第二のnpnトランジスタ19をダーリントン接続しても良いし、JFET11のゲートやドレイン、第二のnpnトランジスタ19のコレクタやベースに電流制限用の抵抗を接続しても良い。
 以上のように、直流電源を第一の直流電源1のみで構成しても、dV/dt誤動作防止回路60にノーマリーオフ素子である第一および第二のnpnトランジスタ18,19を用いたので、簡単な回路構成でIGBT1の誤動作を抑制することができる。また、電源電圧検知回路17を設けたことによって、IGBT1のオン期間中に停電等で駆動回路160の直流電源の電源電圧が低下した場合でも、dV/dt誤動作防止回路60のノーマリーオフ素子がオンするより前に、電力用半導体素子を正常にオフできるため、電力用半導体素子を高速にターンオフすることを防ぐことができる。
 なお、全ての実施の形態において、電力用半導体素子としてIGBTを用いているが、例えばMOSFET等の電圧駆動型電力用半導体素子に対しても、全ての実施の形態で示した電力用半導体素子の駆動回路を適用することができる。また、半導体としてSiだけでなく、SiC等のワイドギャップ半導体に対しても、全ての実施の形態で示した駆動回路を適用することができる。なお、SiC等のワイドギャップ半導体はしきい値電圧Vthが低い場合があり、誤動作しやすいので、SiC等で作製した電力用半導体素子に対しては、全ての実施の形態で示した駆動回路を用いて誤動作を防止できるという効果が更に大きくなる。
 1 IGBT(電力用半導体素子)、2 制御信号、3 制御回路、4 オン用MOSFET、5 オフ用MOSFET、6,7 ゲート抵抗、8 第一の直流電源、9 第二の直流電源、10,30,40,50,60 dV/dt誤動作防止回路、11 JFET、12,14 ダイオード、13 npnトランジスタ、15,20~23 抵抗、16 pnpトランジスタ、17 電源電圧検知回路、18 第一のnpnトランジスタ、19 第二のnpnトランジスタ、100,110,120,130,140,150,160 駆動回路。

Claims (10)

  1. 電力用半導体素子のオンオフを制御する制御回路と、
    前記電力用半導体素子の制御端子間に電圧を供給する直流電源と、
    前記電力用半導体素子の制御端子間に接続されたスイッチング素子とを備え、
    前記スイッチング素子は、前記直流電源の電源電圧が低下した場合にオンし、または、前記直流電源の電源電圧が低下した状態で前記電力用半導体素子の制御端子間電圧が上昇した場合にオンし、前記電力用半導体素子の制御端子間を短絡させることを特徴とする電力用半導体素子の駆動回路。
  2. 前記直流電源は、前記電力用半導体素子がオン状態で前記電力用半導体素子の制御端子間に正電圧を供給する第一の直流電源と、前記電力用半導体素子がオフ状態で前記電力用半導体素子の制御端子間に負電圧を供給する第二の直流電源とによって構成され、
    前記スイッチング素子は、前記第二の直流電源の電源電圧が低下した場合にオンし、または、前記第二の直流電源の電源電圧が低下した状態で前記電力用半導体素子の制御端子間電圧が上昇した場合にオンし、前記電力用半導体素子の制御端子間を短絡させることを特徴とする請求項1に記載の電力用半導体素子の駆動回路。
  3. 前記直流電源の電源電圧の低下を検知し、前記直流電源の電源電圧が所定の電源電圧低下量に達した場合に前記電力用半導体素子をオフする信号を前記制御回路へ出力する電源電圧検知回路を備え、
    前記所定の電源電圧低下量を前記スイッチング素子がオンする前記直流電源の電源電圧の低下量より小さく、または、前記所定の電源電圧低下量を前記電力用半導体素子の制御端子間電圧が上昇した場合に前記スイッチング素子がオンする前記直流電源の電源電圧の低下量より小さくしたことを特徴とする請求項1に記載の電力用半導体素子の駆動回路。
  4. 前記スイッチング素子は、ノーマリーオン素子であることを特徴とする請求項1に記載の電力用半導体素子の駆動回路。
  5. 前記スイッチング素子は、ノーマリーオン素子であり、
    前記スイッチング素子の制御端子は、前記第二の直流電源の負極側に接続されたことを特徴とする請求項2に記載の電力用半導体素子の駆動回路。
  6. 前記スイッチング素子は、ノーマリーオフ素子であることを特徴とする請求項1に記載の電力用半導体素子の駆動回路。
  7. 前記電力用半導体素子の制御端子間に接続され、前記スイッチング素子に流れる電流を増幅する増幅回路を備えたことを特徴とする請求項1に記載の電力用半導体素子の駆動回路。
  8. 前記電力用半導体素子の制御端子間に前記スイッチング素子と直列にダイオードが挿入され、
    前記ダイオードは、アノード側が前記電力用半導体素子のゲート端子側となるように接続されたことを特徴とする請求項1に記載の電力用半導体素子の駆動回路。
  9. 前記スイッチング素子のしきい値電圧の絶対値を、前記第二の直流電源の正常時の前記負電圧の絶対値より低く設定したことを特徴とする請求項2に記載の電力用半導体素子の駆動回路。
  10. 前記電力用半導体素子は、SiC半導体であることを特徴とする請求項1に記載の電力用半導体素子の駆動回路。
PCT/JP2009/003419 2008-08-21 2009-07-22 電力用半導体素子の駆動回路 WO2010021082A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020127021588A KR101217357B1 (ko) 2008-08-21 2009-07-22 전력용 반도체 소자의 구동 회로
KR1020117003761A KR101313498B1 (ko) 2008-08-21 2009-07-22 전력용 반도체 소자의 구동 회로
CN200980140608.1A CN102187557B (zh) 2008-08-21 2009-07-22 功率用半导体元件的驱动电路
EP09808018.7A EP2320544B1 (en) 2008-08-21 2009-07-22 Driving circuit for power semiconductor element
JP2010525568A JP5293740B2 (ja) 2008-08-21 2009-07-22 電力用半導体素子の駆動回路
US13/059,429 US9806593B2 (en) 2008-08-21 2009-07-22 Drive circuit of power semiconductor device
CA2734701A CA2734701C (en) 2008-08-21 2009-07-22 Drive circuit of power semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008212614 2008-08-21
JP2008-212614 2008-08-21

Publications (1)

Publication Number Publication Date
WO2010021082A1 true WO2010021082A1 (ja) 2010-02-25

Family

ID=41706975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003419 WO2010021082A1 (ja) 2008-08-21 2009-07-22 電力用半導体素子の駆動回路

Country Status (7)

Country Link
US (1) US9806593B2 (ja)
EP (1) EP2320544B1 (ja)
JP (2) JP5293740B2 (ja)
KR (2) KR101313498B1 (ja)
CN (1) CN102187557B (ja)
CA (1) CA2734701C (ja)
WO (1) WO2010021082A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034079A (ja) * 2010-07-29 2012-02-16 Fuji Electric Co Ltd 絶縁ゲート型デバイスの駆動回路
WO2014041666A1 (ja) * 2012-09-13 2014-03-20 三菱電機株式会社 半導体装置とその半導体装置を用いた自動車
JP2014112925A (ja) * 2014-02-07 2014-06-19 Fuji Electric Co Ltd 絶縁ゲート型デバイスの駆動回路
WO2015182658A1 (ja) * 2014-05-30 2015-12-03 三菱電機株式会社 電力用半導体素子の駆動回路
EP3174201A1 (en) * 2010-10-21 2017-05-31 Atmel Corporation Switch used in programmable gain amplifier and programmable gain amplifier
JPWO2017086113A1 (ja) * 2015-11-17 2017-11-16 株式会社オートネットワーク技術研究所 スイッチ回路及び電源システム
JPWO2018186353A1 (ja) * 2017-04-05 2020-02-20 ローム株式会社 パワーモジュール
JP7559716B2 (ja) 2021-09-07 2024-10-02 三菱電機株式会社 半導体装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840975B2 (ja) * 2012-02-22 2016-01-06 三菱電機株式会社 ゲート駆動回路
CN103532353B (zh) * 2013-10-25 2015-10-28 山东大学 具有高负电压的自举供电mosfet/igbt驱动线路
US11070046B2 (en) * 2014-09-11 2021-07-20 Mitsubishi Electric Corporation Short-circuit protection circuit for self-arc-extinguishing type semiconductor element
CN105576945B (zh) * 2014-10-11 2018-11-16 台达电子工业股份有限公司 隔离电源控制装置、电源变换装置及其隔离电源控制方法
JP6583284B2 (ja) * 2014-11-06 2019-10-02 富士電機株式会社 半導体素子の駆動装置
CN104506028B (zh) * 2015-01-13 2017-05-10 山东大学 一种SiC MOSFET半桥电路驱动器以及半桥电路驱动方法
JP6638504B2 (ja) * 2016-03-22 2020-01-29 アイシン・エィ・ダブリュ株式会社 インバータ駆動装置
WO2018047561A1 (ja) * 2016-09-09 2018-03-15 富士電機株式会社 電力素子の駆動回路
CN108631761A (zh) * 2017-03-16 2018-10-09 佛山市顺德区美的电热电器制造有限公司 电磁加热系统以及功率开关管的控制装置和方法
CN107835002B (zh) * 2017-09-20 2024-03-12 同方威视技术股份有限公司 固态脉冲调制器中的保护电路、振荡补偿电路和供电电路
JP7024463B2 (ja) * 2018-02-01 2022-02-24 株式会社Gsユアサ 管理装置、蓄電装置、蓄電素子の管理方法
EP3544183A1 (de) * 2018-03-19 2019-09-25 Siemens Aktiengesellschaft Schaltungsanordnung zum betreiben eines halbleiterschalters
CN112166550A (zh) * 2018-05-28 2021-01-01 三菱电机株式会社 电力变换装置
JP7259430B2 (ja) * 2018-05-30 2023-04-18 富士電機株式会社 電圧駆動型半導体スイッチング素子のゲート駆動装置、該ゲート駆動装置を備える電力変換装置
CN110798186B (zh) * 2018-08-01 2023-09-08 中车株洲电力机车研究所有限公司 一种用于功率半导体器件的驱动装置
JP7120139B2 (ja) * 2019-04-16 2022-08-17 株式会社デンソー スイッチの駆動回路
CN110609583A (zh) * 2019-08-26 2019-12-24 无锡十顶电子科技有限公司 一种用于蜂鸣器稳定驱动管栅极电压的电路
JP7300370B2 (ja) * 2019-11-05 2023-06-29 株式会社日立製作所 半導体装置の駆動装置および駆動方法、並びに電力変換装置
US11258443B2 (en) * 2020-06-30 2022-02-22 Apple Inc. Fast active clamp for power converters
JP7528660B2 (ja) * 2020-09-10 2024-08-06 オムロン株式会社 過電流保護回路および電力変換器
CN112769320B (zh) * 2021-01-04 2022-11-29 南京博兰得电子科技有限公司 钳位开关驱动电路
EP4407871A1 (en) * 2023-01-24 2024-07-31 Infineon Technologies Austria AG Electronic circuit with a transistor device and a protection circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399616A (ja) * 1986-03-24 1988-04-30 Matsushita Electric Works Ltd 固体リレ−及びその製造方法
JPH01300617A (ja) * 1988-05-30 1989-12-05 Fuji Electric Co Ltd ゲート駆動回路
JPH10257755A (ja) * 1997-03-13 1998-09-25 Toyota Autom Loom Works Ltd フォトカップラー駆動のスイッチング回路
JPH10285909A (ja) 1997-04-11 1998-10-23 Toshiba Fa Syst Eng Kk 電源自給式のゲート回路
JP2006157367A (ja) * 2004-11-29 2006-06-15 Sanken Electric Co Ltd 信号伝達回路
JP2009081962A (ja) * 2007-09-26 2009-04-16 Sharp Corp スイッチング回路、回路、並びにスイッチング回路及び駆動パルス生成回路を含む回路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819952A (en) * 1973-01-29 1974-06-25 Mitsubishi Electric Corp Semiconductor device
US4492883A (en) * 1982-06-21 1985-01-08 Eaton Corporation Unpowered fast gate turn-off FET
US4691129A (en) * 1986-03-19 1987-09-01 Siemens Aktiengesellschaft Drive circuit for a power MOSFET with source-side load
US4804866A (en) 1986-03-24 1989-02-14 Matsushita Electric Works, Ltd. Solid state relay
US4748351A (en) * 1986-08-26 1988-05-31 American Telephone And Telegraph Company, At&T Bell Laboratories Power MOSFET gate driver circuit
US4970420A (en) * 1989-07-13 1990-11-13 Westinghouse Electric Corp. Power field effect transistor drive circuit
JPH0677797A (ja) 1992-08-26 1994-03-18 Sansha Electric Mfg Co Ltd 電力用スイッチング半導体モジュール
JPH0715949A (ja) 1993-06-28 1995-01-17 Fuji Electric Co Ltd 電力変換装置のゲート駆動回路
JP3421507B2 (ja) * 1996-07-05 2003-06-30 三菱電機株式会社 半導体素子の駆動回路
US6331794B1 (en) * 1999-03-10 2001-12-18 Richard A. Blanchard Phase leg with depletion-mode device
FR2911736B1 (fr) 2007-01-23 2009-03-20 Schneider Toshiba Inverter Dispositif de commande d'un interrupteur de puissance et variateur comprenant un tel dipositif.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399616A (ja) * 1986-03-24 1988-04-30 Matsushita Electric Works Ltd 固体リレ−及びその製造方法
JPH01300617A (ja) * 1988-05-30 1989-12-05 Fuji Electric Co Ltd ゲート駆動回路
JPH10257755A (ja) * 1997-03-13 1998-09-25 Toyota Autom Loom Works Ltd フォトカップラー駆動のスイッチング回路
JPH10285909A (ja) 1997-04-11 1998-10-23 Toshiba Fa Syst Eng Kk 電源自給式のゲート回路
JP2006157367A (ja) * 2004-11-29 2006-06-15 Sanken Electric Co Ltd 信号伝達回路
JP2009081962A (ja) * 2007-09-26 2009-04-16 Sharp Corp スイッチング回路、回路、並びにスイッチング回路及び駆動パルス生成回路を含む回路

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890581B2 (en) 2010-07-29 2014-11-18 Fuji Electric Co., Ltd. Driving circuit of insulated gate device
JP2012034079A (ja) * 2010-07-29 2012-02-16 Fuji Electric Co Ltd 絶縁ゲート型デバイスの駆動回路
EP3174201A1 (en) * 2010-10-21 2017-05-31 Atmel Corporation Switch used in programmable gain amplifier and programmable gain amplifier
WO2014041666A1 (ja) * 2012-09-13 2014-03-20 三菱電機株式会社 半導体装置とその半導体装置を用いた自動車
US9742285B2 (en) 2012-09-13 2017-08-22 Mitsubishi Electric Corporation Semiconductor device and automobile
JP2014112925A (ja) * 2014-02-07 2014-06-19 Fuji Electric Co Ltd 絶縁ゲート型デバイスの駆動回路
WO2015182658A1 (ja) * 2014-05-30 2015-12-03 三菱電機株式会社 電力用半導体素子の駆動回路
JP5989265B2 (ja) * 2014-05-30 2016-09-07 三菱電機株式会社 電力用半導体素子の駆動回路
US10038438B2 (en) 2014-05-30 2018-07-31 Mitsubishi Electric Corporation Power semiconductor element driving circuit
JPWO2017086113A1 (ja) * 2015-11-17 2017-11-16 株式会社オートネットワーク技術研究所 スイッチ回路及び電源システム
JPWO2018186353A1 (ja) * 2017-04-05 2020-02-20 ローム株式会社 パワーモジュール
JP7157046B2 (ja) 2017-04-05 2022-10-19 ローム株式会社 パワーモジュール
JP7559716B2 (ja) 2021-09-07 2024-10-02 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
CA2734701C (en) 2015-02-17
US20110204929A1 (en) 2011-08-25
EP2320544B1 (en) 2019-02-20
CN102187557B (zh) 2014-12-24
JPWO2010021082A1 (ja) 2012-01-26
KR20120101595A (ko) 2012-09-13
US9806593B2 (en) 2017-10-31
CA2734701A1 (en) 2010-02-25
KR20110031246A (ko) 2011-03-24
KR101217357B1 (ko) 2012-12-31
JP6132640B2 (ja) 2017-05-24
JP5293740B2 (ja) 2013-09-18
KR101313498B1 (ko) 2013-10-01
CN102187557A (zh) 2011-09-14
EP2320544A1 (en) 2011-05-11
JP2013179828A (ja) 2013-09-09
EP2320544A4 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP6132640B2 (ja) 電力用半導体素子の駆動回路
JP6197685B2 (ja) ゲート駆動回路
JP5776658B2 (ja) 半導体駆動装置
US9467138B2 (en) Semiconductor apparatus
JP6350214B2 (ja) 駆動装置
JP5767734B2 (ja) 電力用半導体装置
WO2015146040A1 (ja) 駆動装置
JP2012090435A (ja) 駆動回路及びこれを備える半導体装置
JP4779549B2 (ja) 電圧駆動型半導体素子のゲート駆動回路。
JP2017212583A (ja) 半導体素子の保護回路
JP2017079534A (ja) ゲート制御回路
US9831665B2 (en) Overcurrent protection circuit
US9568505B2 (en) Semiconductor device
US9684323B2 (en) Regulator circuit that suppresses an overshoot of output voltage
US20090066400A1 (en) Circuit for Switching a Voltage-Controlled Transistor
JP6299416B2 (ja) 駆動回路システム
JP2016131465A (ja) ゲート駆動回路
JP2012080488A (ja) ゲート駆動回路
JP2015220932A (ja) 半導体装置
JP7566161B2 (ja) スイッチング素子駆動回路
JP2022086469A (ja) 半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140608.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808018

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010525568

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2734701

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20117003761

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009808018

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13059429

Country of ref document: US