WO2010007898A1 - 混合炭素材料および非水系二次電池用負極 - Google Patents

混合炭素材料および非水系二次電池用負極 Download PDF

Info

Publication number
WO2010007898A1
WO2010007898A1 PCT/JP2009/062128 JP2009062128W WO2010007898A1 WO 2010007898 A1 WO2010007898 A1 WO 2010007898A1 JP 2009062128 W JP2009062128 W JP 2009062128W WO 2010007898 A1 WO2010007898 A1 WO 2010007898A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
carbon
mixed
average particle
negative electrode
Prior art date
Application number
PCT/JP2009/062128
Other languages
English (en)
French (fr)
Inventor
山本 浩司
永田 辰夫
藤原 徹
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to CN200980135482.9A priority Critical patent/CN102150307B/zh
Priority to JP2010520825A priority patent/JP5429168B2/ja
Priority to KR1020117003590A priority patent/KR101498328B1/ko
Priority to EP09797825.8A priority patent/EP2306560A4/en
Publication of WO2010007898A1 publication Critical patent/WO2010007898A1/ja
Priority to US13/006,693 priority patent/US8501047B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a graphite powder-based mixed carbon material suitable for a negative electrode of a non-aqueous secondary battery such as a lithium ion secondary battery, and a negative electrode for a non-aqueous secondary battery using the carbon material.
  • graphite-based materials As the carbon material constituting the negative electrode of the lithium ion secondary battery, graphite-based materials, especially artificial graphite powder, are mainly used.
  • many studies have been made to increase the capacity per mass of the graphite-based material.
  • a graphite material having a capacity exceeding 360 mAh / g has been developed at present with respect to the theoretical capacity of graphite 372 mAh / g, and the capacity increase of the graphite material itself is almost limited. Has reached.
  • a material obtained by coating the surface of soft, highly crystalline graphite such as natural graphite with carbon having low crystallinity, or even partially adhering such carbon to the surface has a low crystallinity. Since carbon is very hard, interlayer slip in the internal graphite is suppressed. For this reason, closed pores are less likely to occur, and a decrease in charge acceptability is suppressed. However, since the high particle hardness increases the pressure required to compress the negative electrode material, the electrode density cannot be increased if the negative electrode material cannot be sufficiently compressed for reasons such as equipment.
  • Patent Document 1 proposes mixing scaly graphite particles with graphite particles whose surfaces are coated with amorphous carbon. Because the scaly graphite particles are easily crushed and act as a cushion, mixing them can suppress crushing of the coated graphite particles during electrode rolling and suppress an increase in specific surface area, thereby suppressing a decrease in charge and discharge efficiency. Is disclosed.
  • Patent Document 2 describes mixing a material obtained by spheroidizing and pulverizing scaly natural graphite at a high temperature and graphite particles surface-coated with amorphous carbon or the like (for example, claim) Item 4, Example 6).
  • Patent Documents 3 and 4 propose mixing graphite coated with non-graphitic carbon (hereinafter referred to as “coated graphite”) and uncoated graphite.
  • the coated graphite particles and scaly graphite particles used are not appropriate, and therefore the electrode density is not increased even with a large applied pressure.
  • artificial graphite (HAG-5) manufactured by Nippon Graphite Industries Co., Ltd. is used as the core material of the coated graphite particles.
  • HOG-5P artificial graphite
  • the obtained coated graphite particles (HAG-5P) are also hard, and even if the obtained mixed material is pressurized at a high pressure of 1.8 t / cm 2 , the electrode density is It has only increased to 1.52 g / cm 3 at most (Table 1).
  • the discharge capacity of the battery using this electrode is as small as 307 mAh / g or less.
  • a hard material called mesocarbon microbeads is used as the core material of the coated graphite particles.
  • a pressure of 2 t / cm 2 or more is required to increase the negative electrode density of the obtained mixed material.
  • the discharge capacity of the battery using this electrode is as low as 335 mAh / g or less.
  • this patent document does not describe charge acceptability and high-temperature storage characteristics.
  • Patent Document 2 is insufficient in the study on the surface-coated carbon, particularly the relationship with the strength of the uncoated carbon. Moreover, according to the study of the example (Example 6) of the mixed carbon material in the document, it is assumed that the charge acceptability is not necessarily high as described later.
  • Patent Documents 3 and 4 both the electrode density in the embodiment is an upper limit of about 1.5 g / cm 3, not only example where low as electrode density is disclosed.
  • uncoated graphite having a large particle size is mixed in the examples. For this reason, when the addition amount is small, it is assumed that the interparticle contact is insufficient and the high-temperature storage characteristics are deteriorated. When the addition amount is large, it is assumed that when the electrode density is increased, closed pores are easily generated in the electrode and the charge acceptability is deteriorated.
  • This invention is made in view of the said present condition, and makes it a subject to provide the negative electrode material by which decline in the charge acceptance property and high temperature storage characteristic in a high capacity
  • a carbon material A and graphite powder in which carbon is attached to the surface of a core material made of graphite powder or the surface is covered with carbon
  • the carbon material B including the carbon material B, and the carbon attached to or coated on the surface of the core material of the carbon material A is at least one of amorphous carbon and turbostratic carbon , compressibility represented by the compressed density defined below is the the carbon material A 1.60 ⁇ 1.78g / cm 3, wherein the carbon material B in 1.75 ⁇ 1.85g / cm 3, and the carbon Compressibility of material A ⁇ compressibility of carbon material B, average particle diameter of carbon material B ⁇ average particle diameter of carbon material A, and mixing ratio of carbon material A to carbon material B (carbon material A / carbon material B) The mass ratio is 1 to 9.
  • the compression density representing the compressibility is the density (g) when a cylindrical mold having an inner diameter of 15 mm is filled with 1.00 g of material, pressed with a pressing pressure of 8.7 kN, and then depressurized to 0.15 kN. / Cm 3 ).
  • the carbon material B is preferably made of natural scaly graphite powder.
  • the average particle diameters of the carbon material A and the carbon material B are preferably 15 to 30 ⁇ m and 8 to 15 ⁇ m, respectively.
  • the specific surface area of the carbon material B is preferably 8 m 2 / g or less. This invention provides the negative electrode for non-aqueous secondary batteries produced using said mixed carbon material as another aspect.
  • a negative electrode for a non-aqueous secondary battery having a negative electrode material using such a carbon material, particularly a negative electrode for a lithium ion secondary battery, is excellent in high-temperature storage characteristics while having a high electrode density.
  • Carbon material A The carbon material A according to the present invention is obtained by adhering carbon to the surface of a core material made of graphite powder, or the surface is covered with carbon, and the surface of the core material of the carbon material A is
  • the deposited or coated carbon (hereinafter referred to as “surface carbon”) is at least one of amorphous carbon and turbostratic carbon, and has a compressibility expressed by a compression density defined below of 1. 60 (details will be described later.) ⁇ 1.78g / cm 3, and compressible carbon material B of the carbon material a smaller than the compressibility of the, moreover, the average particle diameter, the average particle diameter or more of the carbon material B is there.
  • the compressibility is determined by the compression density defined as the density when a cylindrical mold having an inner diameter of 15 mm is filled alone, pressurized with a pressing pressure of 8.7 kN, and then decompressed to 0.15 kN. expressed.
  • compressibility refers to the compression density under the above conditions.
  • the compressibility of the carbon material A according to the present invention is smaller than the compressibility of the carbon material B, which indicates that the carbon material A has higher hardness than the carbon material B. For this reason, when the mixed carbon material of the present invention is compressed, the carbon material B is preferentially deformed to fill the space generated between the particles of the carbon material. Therefore, it is realized that the compressibility of the two types of carbon materials constituting the mixed carbon material has such a relationship, thereby increasing the electrode density when the negative electrode material is used.
  • the compressibility of the carbon material A depends on the particle size of the carbon material A and the type and amount of the material adhered or coated on the surface of the graphite powder that forms the core material. As a basic tendency, the smaller the particle size, the lower the compressibility, and the lower the amount of surface carbon, the lower the compressibility.
  • the compressibility of the carbon material A exceeds 1.78 g / cm 3 , since the powder is excessively soft, the carbon material A is also easily deformed when pressed to form an electrode. End up. For this reason, it becomes easy to generate closed pores in the electrode, and charge acceptability decreases. This is because when the closed pores are formed, the surface of the negative electrode material powder that is not in contact with the electrolytic solution is present, and Li is difficult to enter.
  • the compressibility of the carbon material A is less than 1.60 g / cm 3 , since the powder is excessively hard, it is necessary to increase the pressure applied when forming the electrode in order to increase the capacity.
  • the compressibility of the carbon material A according to the present invention is 1.60 to 1.78 g / cm 3 , and this compressibility is 1.60 from the viewpoint of achieving both high charge acceptability and high temperature storage characteristics. It is preferably ⁇ 1.75 g / cm 3 .
  • graphite powder Although the kind of graphite powder which makes the core material of the carbon material A which concerns on this invention is not specifically limited, It is preferable to use natural graphite, artificial graphite, and quiche graphite. A powder composed of scaly natural graphite is particularly preferable in terms of cost and capacity. A spheroidized natural graphite may be used.
  • the distance between carbon layer surfaces (d002) of graphite is preferably 0.336 nm or less from the viewpoint of high capacity and easy deformation.
  • the average particle diameter means a particle diameter D50 when the volume fraction is 50% in the cumulative particle diameter distribution, and is measured by a laser diffraction particle size distribution measuring apparatus.
  • the material average particle diameter of the carbon material A according to the present invention is not less than the average particle diameter of the carbon material B according to the present invention described later.
  • the average particle size of the carbon material A is smaller than the average particle size of the carbon material B, there is a tendency that a region where the interparticle contact is insufficient is increased and not only the contact resistance between the particles is increased, but also the surface carbon is increased. There is a possibility that inter-particle contact such as destruction is likely to occur and the high-temperature storage characteristics are deteriorated.
  • the carbon material B is softer than the carbon material A when the carbon material comes into contact.
  • the space formed in is filled, and the electrode density is increased.
  • the mass ratio of the carbon material A to the carbon material B is 1 or more as described later, when the particle size of the carbon material B is larger than the particle size of the carbon material A, the particles of the carbon material A The number is larger than the number of particles of the carbon material B. For this reason, the ratio of the area
  • the average particle diameter of the carbon material A is 15 ⁇ m or more and 30 ⁇ m or less while maintaining the relationship with the average particle diameter of the carbon material B.
  • the average particle size is more than 30 ⁇ m, the effect of increasing the hardness of the entire carbon material due to surface carbon is relatively less likely to appear than when the particle size of the graphite particles serving as the base material of the carbon material A is small. Breakdown (interlaminar slip) easily occurs inside the graphite particles. For this reason, closed pores are likely to be generated in the electrode, which may reduce charge acceptability. In addition, since the particles are likely to be excessively deformed, there is a concern that the high-temperature storage characteristics may be deteriorated due to destruction of the coating portion.
  • the average particle size is excessively large, irregularities are likely to occur on the electrode surface, which may cause a battery short circuit.
  • the average particle diameter is less than 15 ⁇ m, the density during compression becomes excessively small, and the electrode density is hardly increased. If the pressure is excessively applied at this time, the coated portion is destroyed and the high-temperature storage characteristics are deteriorated.
  • the specific surface area of the carbon material A which concerns on this invention shall be 5 m ⁇ 2 > / g or less.
  • the specific surface area is a value determined by the BET method by nitrogen gas adsorption according to a conventional method.
  • the carbon material A according to the present invention is obtained by adhering or covering carbon to graphite powder as a core material.
  • the “carbon” is at least one of amorphous carbon and turbostratic carbon.
  • turbostratic carbon refers to a carbon material composed of carbon atoms having a laminated structure parallel to the hexagonal plane direction but whose crystallographic regularity cannot be measured in the three-dimensional direction. There is no hkl diffraction line in the X-ray diffraction pattern (101, 103, etc.). However, in the composite material of the present invention, since the diffraction line of the substrate is strong, it is difficult to confirm by X-ray diffraction.
  • amorphous carbon is a carbon material that has short-range order (on the order of several to tens of atoms) but does not have long-range order (on the order of hundreds to thousands of atoms).
  • the ratio of sp2 bonds to sp3 bonds in amorphous carbon varies depending on the production method and the like, but in general, the ratio of sp3 bonds is higher than that of turbostratic carbon. For this reason, the hardness of amorphous carbon is often higher than the hardness of carbon having a turbulent structure. In any case, since the hardness of these carbons is higher than the hardness of graphite as a core material, in the mixed carbon material composed of the carbon material A in which the carbon is present on the surface and the carbon material B in which the carbon is not present, B is preferentially deformed.
  • Example 6 of Patent Document 2 described above the carbon material (b) obtained by coating a graphite material obtained by heat-treating a carbonaceous binder and the negative electrode material of Example 2 made of an uncoated graphite material are used. Mixed materials are disclosed.
  • the Raman R value of the carbon material (b) is examined, the Raman R value of the negative electrode material of Example 2 is 0.03 and the Raman R value of the negative electrode material of Example 6 is 0.09.
  • the mixing ratio of the negative electrode material and the carbon material (b) in Example 2 is 40:60, the single Raman R value of the carbon material (b) is estimated to be about 0.13.
  • the Raman R value is such a low value means that the D band peak is small, the degree of disorder of the graphite structure in the heat-treated product of the pitch on the surface of the carbon material (b) is small. It is assumed that the hardness difference with respect to the graphite material is small.
  • the Raman R value of amorphous carbon and / or turbostratic carbon, which is surface carbon according to the present invention is approximately 0.2 or more.
  • this carbon material (b) is coated with a pitch heat-treated product, it is heat-treated at a relatively high temperature, so that it is hardened or strengthened like the carbon material (A) according to the present invention. Presumed not.
  • Adhesion / Coating Method The method for adhering or coating the carbon to the graphite powder is not particularly limited. Typically, the following surface treatment method and a deposition method using a vacuum film forming technique are exemplified. Regardless of which method is used, carbon is adhered or coated on the surface, so that the particle size of the carbon material A is slightly larger than that of the raw material graphite. For example, according to the surface treatment method, the particle diameter typically increases by about several nm to 5 ⁇ m.
  • Specific examples of the method for coating the organic compound include the following methods.
  • the graphite powder is immersed in a liquid organic compound such as pitch, and then washed with a solvent to remove excess organic compound.
  • An organic compound such as pitch in a liquid state and graphite powder are mixed and heated with stirring.
  • Specific examples of the method for attaching the organic compound include a method in which pitch powder having an average particle diameter of 500 ⁇ m or less and graphite powder are mixed in a solid phase.
  • the means for mixing is not particularly limited, and for example, a V blender may be used. In this case, the organic compound adheres onto the graphite powder by melting the organic compound during the heat treatment described below.
  • An example of the heat treatment conditions for carbonizing the organic compound adhered or coated in this way is to set the heat treatment temperature to 850 ° C. to 2000 ° C.
  • the heat treatment temperature is excessively increased, the surface carbon does not become amorphous carbon and / or disordered structure carbon, and graphite with less structural disorder is formed, and it becomes impossible to achieve high hardness due to the surface carbon.
  • the treatment time is appropriately determined according to the temperature and the characteristics of the organic compound, and is typically about 1 hour.
  • the atmosphere of the heat treatment is performed in an inert atmosphere or vacuum so as not to oxidize. A nitrogen atmosphere is preferable from the viewpoint of economy.
  • the vacuum film forming technique applicable to the present invention is not particularly limited. Chemical vapor deposition (CVD) or sputtering may be used. A vacuum deposition method, a plasma method, an ion plating method, an ion beam sputtering method, or the like can be used.
  • Carbon material B Carbon material B according to the present invention, which amorphous carbon and / or turbostratic carbon on the surface is made of a graphite powder which is not deposited or coated, compressibility 1.75g / cm 3 ⁇ 1. 85 g / cm 3 , and the compressibility of the carbon material B is greater than the compressibility of the carbon material A, and the average particle size is equal to or less than the average particle size of the carbon material A.
  • graphite powder Although the kind of graphite powder which comprises the carbon material B which concerns on this invention is not specifically limited, It is preferable to use natural graphite, artificial graphite, and quiche graphite. From the viewpoint of economy and discharge capacity, a powder composed of scaly natural graphite is particularly preferred. A spheroidized natural graphite may be used. The distance between carbon layer surfaces (d002) of graphite is preferably 0.336 nm or less from the viewpoint of high capacity and easy deformation. Moreover, you may use what heat-processed graphite at high temperature.
  • the average particle diameter of the carbon material B shall be below the average particle diameter of the carbon material A as mentioned above.
  • a more preferable range of the average particle diameter of the carbon material B is 8 ⁇ m or more and 15 ⁇ m or less. If the average particle size is larger than this range, closed pores are likely to be formed in the electrode when the carbon material B is mixed in a large amount. In such a case, there is a concern that the interparticle contact of A becomes insufficient and the high-temperature storage characteristics deteriorate.
  • the average particle size is smaller than this range, the electrode density tends to be less likely to increase. In particular, when fine powder (specifically, 5 ⁇ m or less) is present, not only the electrode density is increased but also the specific surface area is increased. Therefore, it is desirable to remove the fine powder by air classification as appropriate.
  • the specific surface area of the carbon material B according to the specific surface area present invention is preferably less 8m 2 / g.
  • the specific surface area is large, the high-temperature storage characteristics are reduced as in the case of the carbon material A. Further, since a large amount of solvent is required at the time of electrode preparation and it is difficult to handle, it is preferable not to increase the specific surface area from the viewpoint of workability.
  • the mixing ratio of the carbon material A to the carbon material B according to the present invention is preferably in the range of 1 to 9 in mass ratio.
  • the mixing ratio exceeds the above range, the applied pressure required to obtain a predetermined density increases, and the surface is easily destroyed. In this case, the contact area between the particles may be insufficient.
  • the ratio of the carbon material A remarkably exceeds and the mixing ratio becomes excessively large, the high temperature storage characteristics may be deteriorated.
  • the mixing ratio is less than the above range, closed pores are likely to be generated in the electrode, and the charge acceptability tends to decrease.
  • a more preferable range of the mixing ratio is 1.5 to 4.
  • the mixed carbon material according to the present invention can be obtained by mixing the carbon material A and the carbon material B according to the present invention by a known method (for example, a known V blender).
  • the mixing conditions are not particularly limited, but are preferably in the air and at room temperature from the viewpoint of cost.
  • the production of the negative electrode of a non-aqueous secondary battery using the mixed carbon material of the present invention as the negative electrode material and the creation of the secondary battery may be performed as conventionally known. Although this point will be briefly described below, this description is only an example, and other methods and configurations are possible.
  • An appropriate binder and its solvent are mixed with the carbon material of the negative electrode material, and an appropriate conductive agent is mixed as necessary to improve conductivity, thereby forming a slurry for coating. If necessary, mixing can be performed using a homogenizer or glass beads. When this slurry is applied to a suitable current collector (rolled copper foil, copper electrodeposited copper foil, etc.) using a doctor blade method, etc., dried, and then consolidated by roll rolling or the like, the electrode for the negative electrode becomes Manufactured.
  • a suitable current collector rolled copper foil, copper electrodeposited copper foil, etc.
  • binder known materials such as polyvinylidene fluoride and styrene-butadiene rubber (SBR) can be used, and as the thickener, known materials such as sodium carboxymethyl cellulose (CMC) and polyvinyl alcohol can be used. These blending amounts may be within a range generally applied to each material. For example, SBR is 1 to 3% by mass and CMC is 0.5 to 2% by mass.
  • SBR polyvinylidene fluoride and styrene-butadiene rubber
  • CMC sodium carboxymethyl cellulose
  • polyvinyl alcohol polyvinyl alcohol
  • the solvent for the binder may be N-methylpyrrolidone or water.
  • the conductive agent is a carbon material, metal (Ni, etc.), and the carbon material at this time includes artificial graphite, natural graphite, carbon black, acetylene black, etc., and not only powder but also fibrous material may be used. .
  • the non-aqueous secondary battery includes a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte as its basic structure.
  • the configuration of the positive electrode and the separator is not particularly limited.
  • the electrolytic solution preferably contains no substantial amount of propylene carbonate (PC).
  • PC propylene carbonate
  • one or two selected from alkyl carbonates such as ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are used. More than seeds can be used.
  • the shape of the battery is not particularly limited, and may be any of a cylindrical shape, a square shape, a coin shape, a sheet shape, and the like.
  • the average particle diameter is the particle diameter at a volume fraction of 50% obtained using a laser diffraction / scattering particle size distribution meter (model LA-910) manufactured by Horiba, Ltd. .
  • the dispersion medium was water to which 0.1 wt% of a surfactant containing alkylglycoxide was added, the dispersion method was ultrasonic dispersion for 5 minutes, and the laser light transmittance during measurement was 85 to 95%.
  • the specific surface area is a value measured by a BET method by nitrogen gas adsorption using a cantasorb manufactured by Yuasa Ionics Co., Ltd.
  • the compression density which is an index of the compressibility of the powder, was measured by the following method using a uniaxial press.
  • a powder sample of 1.00 g is filled in a mold having an inner diameter of 15 mm, pressed with a pressing force of 8.7 kN for 5 seconds with a uniaxial press, then released to 0.15 kN, and the position of the upper punch is measured.
  • the speed of pressurization shall be 10 mm / sec or less. Except that the sample is not filled, the position of the upper punch is measured and used as a reference in the same manner as described above. The difference between the upper punch position and the reference position at the time of filling is obtained as the sample thickness, and the compression density is calculated from the thickness by the following formula.
  • Carbon material A 100 parts of graphite powder having an average particle diameter of 19.5 ⁇ m and a specific surface area (S1) of 5.3 m 2 / g obtained by spheroidizing flaky natural graphite powder, and a coal-based pitch having an average particle diameter of 35 ⁇ m and a softening point of 85 ° C. Solids were mixed with 5 parts of the powder using a V blender.
  • the obtained mixed powder is allowed to stand in a heating furnace, heat-treated at 1000 ° C. for 1 hour under a nitrogen stream, and then allowed to cool, and the carbon material in which the turbulent structure carbon generated by pitch carbonization is attached to the surface Got.
  • Carbon material B The graphite powder having an average particle diameter of 11.6 ⁇ m and a specific surface area (S1) of 6.5 m 2 / g obtained by spheroidizing the flaky natural graphite powder was used as it was.
  • Example 6 Carbon materials A and B obtained by the following production method were mixed at a blending ratio (parts by mass) shown in Table 1 to obtain a negative electrode material.
  • the result of having measured the compression density by the above method for the carbon materials A and B and the mixed carbon material was as shown in Table 1.
  • Carbon material A 100 parts of graphite powder having an average particle size of 29.5 ⁇ m and a specific surface area (S1) of 3.6 m 2 / g obtained by spheroidizing flaky natural graphite powder, and a coal-based pitch having an average particle size of 35 ⁇ m and a softening point of 85 ° C. Solids were mixed with 5 parts of the powder using a V blender.
  • Carbon material B The same natural graphite powder as in Example 1 subjected to spheronization treatment having an average particle diameter of 11.6 ⁇ m and a specific surface area (S1) of 6.5 m 2 / g was used as it was.
  • Example 7 Carbon materials A and B obtained by the following production method were mixed at a blending ratio (parts by mass) shown in Table 1 to obtain a negative electrode material.
  • the result of having measured the compression density by the above method for the carbon materials A and B and the mixed carbon material was as shown in Table 1.
  • Carbon material B The same natural graphite powder as in Example 1 having an average particle diameter of 11.6 ⁇ m and a specific surface area (S1) of 6.5 m 2 / g that had been spheroidized was used as it was.
  • the obtained mixed powder is allowed to stand in a heating furnace, heat-treated at 1000 ° C. for 1 hour under a nitrogen stream, and then allowed to cool, and the carbon material in which the turbulent structure carbon generated by pitch carbonization is attached to the surface Got.
  • Carbon material B The average particle diameter of 11.6, a specific surface area (S1) 6.5m 2 / g sphering treatment by the same natural graphite powder as in Example 1 was a was used as is.
  • Carbon material B The same natural graphite powder as in Example 1 subjected to spheronization treatment with an average particle size of 11.6 ⁇ m and a specific surface area (S1) of 6.5 m 2 / g was used as it was.
  • the obtained mixed powder is allowed to stand in a heating furnace, heat-treated at 1000 ° C. for 1 hour under a nitrogen stream, and then allowed to cool, and the carbon material in which the turbulent structure carbon generated by pitch carbonization is attached to the surface Got.
  • the obtained mixed powder is allowed to stand in a heating furnace, heat-treated at 1000 ° C. for 1 hour under a nitrogen stream, and then allowed to cool, and the carbon material in which the turbulent structure carbon generated by pitch carbonization is attached to the surface Got.
  • Carbon material B The same natural graphite powder as in Comparative Example 7 having a mean particle diameter of 19.5 ⁇ m and a specific surface area (S1) of 5.3 m 2 / g, which had been heat-treated in argon at 3000 ° C. for 1 hour, was used.
  • This slurry was applied onto a copper foil having a thickness of 17 ⁇ m by a doctor blade method (application amount: 4 to 5 mg / cm 2 ), dried, punched into a disk shape having a diameter of 13 mm, and an electrode density of 1.
  • An electrode was produced by pressurizing with a press pressure shown in Table 1 so as to be about 70 g / cm 3 .
  • the electrode density of the obtained electrode was determined by thickness measurement and mass measurement using a micrometer. Specifically, the density excluding the copper foil portion was determined by subtracting the thickness and mass values of the copper foil measured in advance from the measured values.
  • the doping of Li to the graphite negative electrode is originally treated as a discharge, but here, since it is an evaluation as a negative electrode material, the “charge capacity” that is not specifically described below is the capacity on the dope side.
  • the “discharge capacity” means the capacity on the dedope side.
  • dedoping was performed at a constant current of 25 mA / g until the potential difference became 1.5 V (corresponding to discharge), and the dedoping capacity was measured as the discharge capacity.
  • the temperature of the non-aqueous test cell during this dedoping was also maintained at 23 ° C.
  • This dope-de-dope operation was repeated three cycles for the next evaluation of charge acceptability and high-temperature storage characteristics.
  • the time from the end of the dope operation to the start of the next dedoping operation is 1 minute
  • the time from the end of the dedope operation to the start of the next dope operation is 1 minute
  • the temperature of the non-aqueous test cell at this time is also 23. It was maintained at ° C.
  • the non-aqueous test cell after the above three cycles was doped with a constant current until the potential difference became 0 (zero) V with respect to the counter electrode at a current value of 180 mA / g (corresponding to charging) ).
  • the charge capacity at a constant current at this time was used as an index of charge acceptance.
  • the temperature of the non-aqueous test cell during the dope operation was maintained at 23 ° C.
  • the coin cell was disassembled in an argon atmosphere, the sample electrode was taken out, and sealed in an aluminum laminate film. After storing this at 60 ° C. for 10 days, a new Li was counter electrode again in an argon atmosphere, and an electrolytic solution was dropped to assemble a coin cell. De-doping was performed at a constant current of 25 mA / g until the potential difference became 1.5 V (corresponding to discharge), and the de-doping capacity was measured as the discharge capacity after holding at high temperature. The ratio of the discharge capacity before storage to the discharge capacity after holding at this high temperature was determined as the high temperature storage characteristics. During this dope operation, the temperature of the non-aqueous test cell was maintained at 23 ° C., the same as that during the dope operation when the discharge capacity before storage was measured.
  • Table 1 shows the results of investigating the negative electrode performance when the mixed carbon materials of the examples and comparative examples were used as the negative electrode material by the above method. It can be seen that by using the mixed carbon material of the present invention, a negative electrode excellent in charge acceptability and high-temperature storage characteristics can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 本発明により提供される高容量かつ高密度電極での充電受け入れ性と高温保存特性の低下が抑制された負極材料は、黒鉛粉末からなる核材の表面に非晶質炭素及び/又は乱層構造炭素が付着または被覆された炭素材料Aと黒鉛粉末からなる炭素材料Bとを含む混合炭素材料であって,内径15mmの円筒状金型に材料を1.00g充填し,8.7kNのプレス圧力で加圧した後0.15kNまで除圧したときの充填された材料の密度(g/cm3)である圧縮性が,炭素材料Aでは1.60~1.78g/cm3,炭素材料Bでは1.75~1.85g/cm3,かつ炭素材料Aの圧縮性<炭素材料Bの圧縮性であり,混合比(炭素材料A/炭素材料B)が質量比で1~9である。

Description

混合炭素材料および非水系二次電池用負極
 本発明は、リチウムイオン二次電池などの非水系二次電池の負極用に好適な黒鉛粉末系の混合炭素材料、およびその炭素材料を用いてなる非水系二次電池用負極に関する。
 リチウムイオン二次電池の負極を構成する炭素材料としては、主に黒鉛系材料、中でも人造黒鉛粉末が使用されている。
 リチウムイオン二次電池を高容量化するために、黒鉛系材料の質量当たりの容量を増大させる研究が数多くなされてきた。そのような努力の結果、現在では、黒鉛の理論容量372mAh/gに対して、360mAh/gを超える容量を示す黒鉛系材料も開発されており、黒鉛系材料それ自体の容量増大はほぼ限界に達している。
 このような状況において、最近では電池の高容量化の手法として、負極材料をより圧縮して詰め込み電極密度を上げることにより高容量化する試みが行われている。黒鉛系材料を圧縮して詰め込むためには、黒鉛粒子が変形して空間を埋める必要があり、それには黒鉛粒子が軟らかい方が適している。
 ところが、天然黒鉛など高結晶性の黒鉛系材料は、層間で容易にすべるため非常に軟らかく容易に変形するため電極密度を上げやすいが、わずかな圧力で電極内に閉気孔が生じてしまい、充電受け入れ性が低下してしまう。
 一方、天然黒鉛など軟らかい高結晶性の黒鉛の表面に結晶性の低い炭素によって被覆させたり、あるいは部分的にでもそのような炭素を表面に付着させたりしてなる材料は、この低結晶性の炭素が非常に硬いため、内部の黒鉛における層間すべりが抑制される。このため、閉気孔が発生しにくくなり充電受け入れ性の低下が抑制される。しかしながら、粒子硬度が高いことは負極材料の圧縮に必要とされる加圧力を高めるため、装置上の理由などにより負極材料を十分に圧縮できない場合には、電極密度を高めることができない。これに対し高い電極密度を得ようと過度に圧縮すると、負極材料の表面被覆の破壊が著しくなってしまい、高温保存特性の低下(負極材料を用いた電極を備えた電池を高温で保存した際の容量低下)が大きくなる。また硬い粒子は粒子間接触が十分でないため高温保存後の粒子間の接触抵抗が大きくなることによっても保存特性が低下する。
 この点に関し、特許文献1には、非晶質炭素で表面が被覆された黒鉛粒子に鱗片状黒鉛粒子を混合することが提案されている。鱗片状黒鉛粒子はつぶれ易くクッションのはたらきをするため、これを混合することにより電極圧延時の被覆黒鉛粒子の破砕を抑制でき、比表面積の増加を抑制するので、充放電効率の低下が抑制されることが開示されている。
 また、特許文献2には、鱗片状天然黒鉛を球形化粉砕したものを高温で熱処理した材料と、非晶質炭素等で表面被覆された黒鉛粒子とを混合することについて記載がある(例えば請求項4、実施例6)。
 さらに、特許文献3および4には、非黒鉛質炭素で被覆された黒鉛(以下、「被覆黒鉛」という。)と被覆されていない黒鉛とを混合することが提案されている。
特開2000-138061号公報 特開2006-49288号公報 特開2001-185147号公報 特開2005-44775号公報
 しかしながら、特許文献1では、用いられている被覆黒鉛粒子や鱗片状黒鉛粒子が適切でないため、大きな加圧力でも電極密度が高まっていない。
 具体的には、特許文献1の実施例1~6には被覆黒鉛粒子の核材として日本黒鉛工業(株)製人造黒鉛(HAG-5)が用いられている。ところが、これは非常に硬い材料であるため、得られた被覆黒鉛粒子(HAG-5P)も硬く、得られた混合材料では1.8t/cmという高い圧力で加圧しても、電極密度はせいぜい1.52g/cmまでしか高まっていない(表1)。また、この電極を用いてなる電池の放電容量も307mAh/g以下と小さい。
 さらに、その実施例7~9では、被覆黒鉛粒子の核材としてメソカーボンマイクロビーズという硬い材料が使われている。この場合には、得られた混合材料の負極密度を上げるために2t/cm以上の圧力が必要とされている。また、この電極を用いてなる電池の放電容量も335mAh/g以下と低い。しかも、この特許文献には、充電受け入れ性や高温保存特性については述べられていない。
 特許文献2は表面被覆された炭素についての検討、特に被覆されていない炭素との強度の関係についての検討が不十分である。しかも、当該文献における混合炭素材料についての実施例(実施例6)について本発明者らが検討したところによると、後述するように充電受け入れ性が必ずしも高くないと想定される。
 さらに、特許文献3,4では、いずれも、実施例では電極密度は1.5g/cm程度が上限であり、電極密度として低い場合の例しか開示されていない。しかも、実施例では粒子径の大きい被覆されていない黒鉛を混合している。このため、その添加量が少ない場合は粒子間接触が不十分で高温保存特性が低下すると想定される。添加量が多い場合には電極密度を大きくすると電極内に閉気孔が容易に発生して、充電受け入れ性が悪くなってしまうと想定される。
 本発明は、上記現状に鑑みてなされたものであり、高容量かつ高密度電極での充電受け入れ性及び高温保存特性の低下が抑制された負極材料を提供することを課題とする。
 上記課題を解決するために提供される本発明は、その一態様として、黒鉛粉末からなる核材の表面に炭素を付着させてなるまたは当該表面が炭素によって被覆されてなる炭素材料Aと黒鉛粉末からなる炭素材料Bとを含む混合炭素材料であって、前記炭素材料Aの核材の表面に付着されまたは被覆された炭素は、非晶質炭素および乱層構造炭素のうち少なくとも1種であり、下記で規定する圧縮密度によって表される圧縮性が、前記炭素材料Aでは1.60~1.78g/cm、前記炭素材料Bでは1.75~1.85g/cm、かつ前記炭素材料Aの圧縮性<前記炭素材料Bの圧縮性であり、前記炭素材料Bの平均粒径≦前記炭素材料Aの平均粒径であり、前記炭素材料Aの炭素材料Bに対する混合比(炭素材料A/炭素材料B)が、質量比で1~9である。
 ここで、圧縮性を表す圧縮密度は、内径15mmの円筒状金型に材料を1.00g充填し、8.7kNのプレス圧力で加圧した後0.15kNまで除圧したときの密度(g/cm)である。
 炭素材料Bは天然の鱗片状黒鉛粉末からなることが好ましい。
 炭素材料Aおよび炭素材料Bの平均粒径が、それぞれ15~30μm、8~15μmであることが好ましい。
 炭素材料Bの比表面積が、8m/g以下であることが好ましい。
 本発明は、他の態様として、上記の混合炭素材料を用いて作製された非水系二次電池用負極を提供する。
 本発明に係る混合炭素材料は、圧縮されたときに、炭素材料Bが適度に変形することによって、炭素材料の粒子間の空間が充填され、また炭素材料Aの圧縮性が適切であるため炭素材料Aの破壊が抑制される。したがって、係る炭素材料を用いてなる負極材料を有する非水系二次電池用負極、特にリチウムイオン二次電池用負極は、高い電極密度を有しつつ、高温保存特性にも優れる。
 以下に、本発明に係る、非水系二次電池用途、特にリチウムイオン二次電池用途に適した混合炭素材料の最良の形態や製造条件の範囲およびこれらの設定理由について説明する。
 1.炭素材料A
 本発明に係る炭素材料Aは、黒鉛粉末からなる核材の表面に炭素を付着させてなる、または当該表面が炭素によって被覆されてなるものであって、この炭素材料Aの核材の表面に付着されまたは被覆された炭素(以下「表面炭素」という。)は、非晶質炭素および乱層構造炭素のうち少なくとも1種であり、下記で規定する圧縮密度によって表される圧縮性が1.60~1.78g/cm、かつ炭素材料Aの圧縮性が炭素材料B(詳細は後述。)の圧縮性よりも小さく、しかも、その平均粒径は、炭素材料Bの平均粒径以上である。前記圧縮性は、内径15mmの円筒状金型に単独で1.00g充填し、8.7kNのプレス圧力で加圧した後、0.15kNまで除圧したときの密度として定義される圧縮密度により表される。本明細書中では、特に断りのない限り、圧縮性とは上記の条件での圧縮密度のことをいうものとする。
 (1)圧縮性
 本発明に係る炭素材料Aの圧縮性は炭素材料Bの圧縮性よりも小さく、このことは炭素材料Aの方が炭素材料Bよりも硬度が高いことを示す。このため、本発明の混合炭素材料が圧縮されると、炭素材料Bが優先的に変形して、炭素材料の粒子間に生じる空間が充填される。したがって、混合炭素材料を構成する二種類の炭素材料の圧縮性がこのような関係を有することによって負極材料としたときの電極密度が高まることが実現される。
 この炭素材料Aの圧縮性は、炭素材料Aの粒子径、ならびにその核材をなす黒鉛粉末の表面に付着あるいは被覆された材料の種類および量に依存する。基本的な傾向として、粒子径が小さいほど圧縮性は低下し、表面炭素の量が増えるとやはり圧縮性は低下する。
 ここで、炭素材料Aの圧縮性が1.78g/cmを超える場合には、粉末が過剰に軟質であるため、電極を形成すべく加圧されたときに炭素材料Aも容易に変形してしまう。このため、電極内に閉気孔が発生しやすくなり、充電受け入れ性が低下する。これは、閉気孔ができると、電解液と接していない負極材料粉末表面が存在することになり、Liが入りにくくなるためである。一方、炭素材料Aの圧縮性が1.60g/cm未満の場合には、粉末が過剰に硬質であるため、高容量化のために電極形成時の加圧力を高める必要がある。加圧力を高めると、表面炭素が破壊され、この破断面に生成した新生面にSEI(固体電解質界面、Solid Electrolyte Interface)被膜が形成されてしまい、高温保存特性が低下する傾向が見られるようになる。したがって、本発明に係る炭素材料Aの圧縮性は1.60~1.78g/cmであり、充電受け入れ性と高温保存特性とを高次に両立する観点から、この圧縮性は1.60~1.75g/cmであることが好ましい。
 (2)黒鉛粉末
 本発明に係る炭素材料Aの核材をなす黒鉛粉末の種類は特に限定されないが、天然黒鉛、人造黒鉛、キッシュ黒鉛を用いることが好ましい。コスト面および容量面から鱗片状天然黒鉛から構成された粉末が特に好ましい。鱗片状天然黒鉛を球形化処理したものを用いてもよい。黒鉛の炭素層面間隔(d002)は高容量、易変形性の観点から0.336nm以下のものが好ましい。
 (3)平均粒径
 本発明において、平均粒径とは、累積粒径分布において体積分率50%時の粒子径D50を意味し、レーザー回折式の粒度分布測定装置により測定される。
 本発明に係る炭素材料Aの材料平均粒径は、後述する本発明に係る炭素材料Bの平均粒径以上とする。炭素材料Aの平均粒径が炭素材料Bの平均粒径より小さい場合には、粒子間接触が不十分な領域が生じる傾向が高まって粒子間の接触抵抗が大きくなるだけでなく、表面炭素が破壊されるような粒子間接触が起こりやすくなって高温保存特性が低下する可能性がある。
 これは次の理由による。本発明に係る混合炭素材料を圧縮すると、炭素材料が接触するにあたり、炭素材料Aよりも炭素材料Bの方が軟質であるから、炭素材料Bが優先的に変形して、炭素材料の粒子間に生じる空間が充填され、電極密度が高まる。ところが、後述するように炭素材料Aの炭素材料Bに対する質量比率は1以上であるから、炭素材料Aの粒径よりも炭素材料Bの粒径の方が大きい場合には、炭素材料Aの粒子個数が炭素材料Bの粒子個数よりも多くなる。このため、硬質な炭素材料A同士が接触する領域の割合が相対的に高まり、このような領域では加圧状態によっては接触が不十分となる可能性がある。そのような接触不十分な領域が過剰に発生すると、粒子間の接触抵抗が大きくなって充放電に寄与しない粒子が増加する。
 また、硬質な材料同士が接触するとその接触面圧は軟質な材料との接触に比べて高くなるため、接触点において表面炭素が破壊されやすくなる。このため、高温保存特性が低下する可能性がある。
 さらに、硬質な材料同士が接触すると、粒子間の空間が残留しやすいので電極密度が高まりにくい。このとき、所定の電極密度を得るために加圧力を高めると、硬質な材料の表面炭素はさらに破壊され、このため高温保存特性がさらに低下する可能性がある。
 炭素材料Aの平均粒径として、上記の炭素材料Bの平均粒径との関係を維持しつつ15μm以上30μm以下とすることが好ましい。平均粒径が30μm超の場合には、炭素材料Aの基材となる黒鉛粒子の粒子径が小さい場合に比べて、相対的に表面炭素による炭素材料全体の硬度上昇の効果が表れにくくなり、黒鉛粒子内部での破壊(層間すべり)が発生しやすくなる。このため電極内に閉気孔が発生しやすくなって充電受け入れ性を低下させる可能性がある。また、粒子が過剰に変形しやすくなることから、被覆部分が破壊されることに基づく高温保存特性の低下も懸念される。平均粒径が過剰に大きい場合には電極表面に凹凸が生じやすくなり、電池短絡の原因になる可能性がある。一方、平均粒径が15μm未満の場合には、圧縮時の密度が過剰に小さくなり、電極密度が高まりにくくなる。このとき過剰に加圧すると被覆部分が破壊され、高温保存特性が低下する。
 (4)比表面積
 本発明に係る炭素材料Aの比表面積は5m/g以下とすることが好ましい。比表面積が過剰に高い場合には、電解液との反応性が高くなって高温保存特性が低下することが懸念される。なお、本発明において、比表面積とは、常法に従って窒素ガス吸着によりBET法で求めた値である。
 (5)炭素
 I)構造
 本発明に係る炭素材料Aは、上記のように、核材となる黒鉛粉末に炭素が付着または被覆されたものである。この「炭素」とは、非晶質炭素および乱層構造炭素のうち少なくとも1種である。ここで、「乱層構造炭素」とは、六角網平面方向に平行な積層構造は有するが、三次元方向には結晶学的規則性が測定できない炭素原子からなる炭素材をいう。X線回折図形でhkl回折線は現れない(101や103など)。ただし、複合化した本発明の材料では基材の回折線が強いため、X線回折によって確認するのが難しい。このため、TEMなどで確認することが好ましい。一方、「非晶質炭素」とは、短距離秩序(数原子~十数個原子オーダー)を有しても、長距離秩序(数百~数千個の原子オーダー)を有さない炭素材をいう。
 非晶質炭素におけるsp2結合とsp3結合との比率は製造方法などによって変化するが、一般には、乱層構造炭素よりもsp3結合の割合が高い。このため、非晶質炭素の硬度は乱層構造炭素の硬度よりも高くなる場合が多い。いずれにしてもこれらの炭素の硬度は核材となる黒鉛の硬度よりも高いため、この炭素が表面に存在する炭素材料Aと存在しない炭素材料Bとからなる混合炭素材料では、圧縮時に炭素材料Bが優先的に変形する。
 なお、前掲の特許文献2の実施例6では、黒鉛材料に炭素質バインダが熱処理されたものが被覆された炭素材料(b)と被覆されていない黒鉛材料からなる実施例2の負極材料との混合材料が開示されている。この炭素材料(b)のラマンR値について検討を行うと、実施例2の負極材料のラマンR値が0.03であることおよび実施例6の負極材料のラマンR値が0.09であることならびに実施例2の負極材料と炭素材料(b)との配合比率が40:60であることから、炭素材料(b)の単独のラマンR値は0.13程度であると見積られる。ラマンR値がこのように低い値であるということはDバンドピークが小さいことを意味するから、炭素材料(b)の表面にあるピッチの熱処理物におけるグラファイト構造の乱れの程度は小さく、基材である黒鉛材料に対する硬度差は小さいものと想定される。これに対し、本発明に係る表面炭素である非晶質炭素および/または乱層構造炭素のラマンR値は、概ね0.2以上である。
 したがって、この炭素材料(b)は、ピッチ熱処理物によって被覆はされているものの、比較的高温で熱処理されているため、本発明に係る炭素材料(A)のようには硬質化あるいは高強度化されていないと推測される。
 II)付着・被覆方法
 この炭素を黒鉛粉末に付着または被覆させる方法は特に限定されない。典型的には、次の表面処理法、および真空製膜技術を用いた堆積法が例示される。いずれの方法を用いても、炭素が表面に付着または被覆されるため、炭素材料Aの粒径は原料の黒鉛に比べると若干大きくなる。例えば、表面処理法によれば、典型的には数nm~5μm程度粒径が増加する。
 i)表面処理法
 ピッチなど有機化合物をあらかじめ黒鉛粉末の表面に一部付着あるいは被覆させた後に、加熱処理して有機化合物を炭素化させる方法である。この方法によって付着または被覆される炭素は乱層構造炭素である。
 有機化合物を被覆させる方法としては、次のような方法が具体的に例示される。
 (a)ピッチなどの有機化合物を加熱して溶融状態にして、黒鉛粉末と混練する。
 (b)液体状態にしたピッチなどの有機化合物に黒鉛粉末を浸漬し、その後溶剤で洗浄し、余分な有機化合物を除去する。
 (c)液体状態にしたピッチなどの有機化合物と黒鉛粉末とを混合し、攪拌しながら加熱する。
 有機化合物を付着させる方法としては、平均粒径が500μm以下のピッチ粉末と黒鉛粉末とを固相で混合する方法が具体的に例示される。この混合するための手段は特に限定されず、例えばVブレンダーを用いてもよい。この場合、以下に記載する熱処理途中で有機化合物が溶融することによって、黒鉛粉末上に有機化合物が付着する。
 このようにして付着または被覆させた有機化合物を炭素化するための熱処理条件の一例として、熱処理温度を850℃~2000℃とすることが挙げられる。熱処理温度を過剰に高めると、表面炭素が非晶質炭素および/または乱層構造炭素とならず、構造の乱れが少ないグラファイトが形成され、表面炭素による高硬度化を実現することができなくなる。処理時間は温度や有機化合物の特性にあわせて適宜決定され、典型的には1時間程度である。なお、熱処理の雰囲気は酸化しないように不活性雰囲気下または真空下で行う。経済性の観点からは窒素雰囲気が好ましい。
 ii)堆積法
 黒鉛粉末の表面に非晶質炭素および/または乱層構造炭素を堆積させることができるのであれば、本発明に適用できる真空製膜技術は特に限定されない。化学気相析出(CVD)法でもスパッタリング法でもよい。真空蒸着法、プラズマ法、イオンプレーティング法、イオンビームスパッタ法など用いることができる。
 2.炭素材料B
 本発明に係る炭素材料Bは、表面に非晶質炭素および/または乱層構造炭素が付着または被覆されていない黒鉛粉末からなるものであって、圧縮性が1.75g/cm~1.85g/cm、かつ炭素材料Bの圧縮性が炭素材料Aの圧縮性よりも大きく、しかも、その平均粒径は、炭素材料Aの平均粒径以下である。
 (1)圧縮性
 炭素材料Bの圧縮性が1.85g/cmを超える場合には電極内に閉気孔が発生し、充電受け入れ性が低下する。一方、炭素材料Bの圧縮性が1.75g/cm未満の場合は、炭素材料Bの硬度が高過ぎ、炭素材料Aの被覆部分が破壊され、高温保存特性が低下する。炭素材料Bの圧縮性は、粒子径に依存し、その粒子径が小さいほど圧縮性は低下する。炭素材料Bの圧縮性が炭素材料Aの圧縮性よりも大きくなるように設定されることは前述のとおりである。
 (2)黒鉛粉末
 本発明に係る炭素材料Bをなす黒鉛粉末の種類は特に限定されないが、天然黒鉛、人造黒鉛、キッシュ黒鉛を用いることが好ましい。経済性および放電容量の観点から鱗片状天然黒鉛から構成された粉末が特に好ましい。鱗片状天然黒鉛を球形化処理したものを用いてもよい。黒鉛の炭素層面間隔(d002)は高容量、易変形性の観点から0.336nm以下のものが好ましい。また黒鉛を高温で熱処理したものも用いてもよい。
 (3)平均粒径
 炭素材料Bの平均粒径は、前述のように炭素材料Aの平均粒径以下とする。
 炭素材料Bの平均粒径としてより好ましい範囲は8μm以上15μm以下である。平均粒径がこの範囲よりも大きいと、炭素材料Bの混合量が多い場合には電極内に閉気孔が形成されやすくなるので、充電受け入れ性が低下することが懸念され、また混合量が少ない場合にはAの粒子間接触が不十分になり高温保存特性が低下することが懸念される。一方、平均粒径がこの範囲よりも小さい場合には、電極密度が高まりにくくなる傾向が見られるようになる。特に微細な粉末(具体的には5μm以下)が存在すると、電極密度が高まらないばかりか比表面積が増加してしまう。したがって、微細粉末を適宜風力分級などで除去しておくことが望ましい。
 (4)比表面積
 本発明に係る炭素材料Bの比表面積は8m/g以下とすることが好ましい。比表面積が大きい場合には、炭素材料Aの場合と同様に高温保存特性が低下する。また電極作製時に溶剤が多量に必要となり取り扱いにくくなるため、作業性の観点からも比表面積を過剰に大きくしないことが好ましい。
 3.混合比
 本発明に係る炭素材料Aの炭素材料Bに対する混合比、すなわち炭素材料A/炭素材料Bは、質量比で1~9の範囲とすることが好ましい。混合比が上記範囲よりも超えると、所定密度にするために必要な加圧力が大きくなり、表面が破壊されやすくなる。また、この場合、粒子間の接触面積が不十分となる可能性がある。このため、炭素材料Aの割合が著しく超えて混合比が過度に大きくなった場合には高温保存特性が低下してしまう可能性がある。一方、混合比が上記範囲未満となると、電極内に閉気孔が発生しやすくなり、充電受け入れ性が低下する傾向が見られるようになる。混合比のより好ましい範囲は、1.5~4である。
 4.製造方法
 本発明に係る炭素材料Aおよび炭素材料Bを公知の方法(例えば公知のVブレンダー)で混合させることにより本発明に係る混合炭素材料を得ることができる。混合条件(雰囲気、温度等)は特に限定されないが、大気中、常温とすることがコストの観点から好ましい。
 本発明の混合炭素材料を負極材料として用いた非水系二次電池の負極の製造や二次電池の作成は、従来公知のように実施すればよい。以下に、この点についても簡単に説明するが、この説明は例示にすぎず、他の方法や構成も可能である。
 負極材料の炭素材料に適当な結着剤とその溶媒を混合し、必要に応じて導電性向上のために適当な導電剤を混合して、塗工用のスラリーを形成する。混合は、必要であれば、ホモジナイザーあるいはガラスビーズを用いて行うことができる。このスラリーを適当な集電体(圧延銅箔、銅電析銅箔など)にドクターブレード法等を用いて塗工し、乾燥した後、ロール圧延等で圧密化させると、負極用の電極が製造される。
 結着剤としてはポリフッ化ビニリデン、スチレン-ブダジエンゴム(SBR)など、増粘剤としてはカルボキシメチルセルロースナトリウム(CMC)、ポリビニルアルコールなど公知の材料を使用することができる。これらの配合量も、それぞれの材料について一般的に適用される範囲とすればよく、一例を挙げれば、SBRについては1~3質量%、CMCについては0.5~2質量%である。
 結着剤の溶媒はN-メチルピロリドン、水などでよい。導電剤は炭素材料、金属(Ni等)であり、このときの炭素材料には人造黒鉛、天然黒鉛、カーボンブラック、アセチレンブラック等が包含され、粉末だけでなく繊維状のものを用いても良い。
 非水系二次電池は、その基本構造として、負極、正極、セパレーター、非水系電解液を含んでいる。正極やセパレーターの構成については特に制限されない。電解液は前述したようにプロピレンカーボネート(PC)を実質的な量で含有しないものが好ましく、例えば、エチレンカーボネート(EC)やエチルメチルカーボネート(EMC)などのアルキルカーボネートから選ばれた1種または2種以上を使用できる。電池の形状も特に制限されず、円筒型、角形、コイン型、シート型等何れでも良い。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例により制限されるものではない。
 1.負極材料の調製
 以下の実施例及び比較例における「部」とは特に指定しない限り質量部である。
 また、実施例及び比較例において、平均粒径は(株)堀場製作所製レーザー回折/散乱式粒度分布計(型式LA-910)を使用して求めた体積分率50%時の粒子径である。なお、分散媒はアルキルグリコキシドを含んだ界面活性剤を0.1wt%添加した水であり、分散方法は超音波分散5分とし、測定時のレーザー光透過率は85~95%とした。また、比表面積は、ユアサアイオニクス(株)製カンタソーブを用いて窒素ガス吸着によるBET法により測定した値である。
 粉末の圧縮性の指標である圧縮密度は、一軸プレス機を用いて次の方法で測定した。
 粉末試料1.00gを内径15mmの金型に充填し、一軸プレス機で加圧力8.7kNで5秒間加圧した後、0.15kNまで開放し、上パンチの位置を測定する。なお、加圧の速度は10mm/sec以下とする。試料を充填しないこと以外は、上記と同様にして、上パンチの位置を測定し、リファレンスとする。充填時の上パンチ位置とリファレンス位置との差を試料厚みとして求め、この厚みから圧縮密度を次の式により計算する。
 圧縮密度(g/cm)=1.00(g)/(試料厚み(cm)×(1.5(cm)/2)×π)
 (実施例1~5、比較例1~3)
 以下の製造方法により得られた炭素材料AおよびBを、表1に示される配合比(質量部)で混合して、負極材料を得た。なお、各実施例および比較例において、炭素材料A、Bおよび混合炭素材料について上記の方法により圧縮密度を測定した結果は表1に示したとおりであった。
 (1)炭素材料A
 鱗片状天然黒鉛粉末を球形化処理してなる平均粒径19.5μm、比表面積(S1)5.3m/gの黒鉛粉末100部と、平均粒径35μm、軟化点85℃の石炭系ピッチ粉末5部とをVブレンダーを用いて固体混合した。
 得られた混合粉末を加熱炉内に静置し、窒素気流下、1000℃で1時間熱処理した後、放冷して、ピッチが炭化して生じた乱層構造炭素が表面に付着した炭素材料を得た。
 (2)炭素材料B
 鱗片状天然黒鉛粉末を球形化処理してなる平均粒径11.6μm、比表面積(S1)6.5m/gの黒鉛粉末をそのまま用いた。
 (実施例6)
 以下の製造方法により得られた炭素材料AおよびBを、表1に示される配合比(質量部)で混合して、負極材料を得た。なお、炭素材料A、Bおよび混合炭素材料について上記の方法により圧縮密度を測定した結果は表1に示したとおりであった。
 (1)炭素材料A
 鱗片状天然黒鉛粉末を球形化処理してなる平均粒径29.5μm、比表面積(S1)3.6m/gの黒鉛粉末100部と、平均粒径35μm、軟化点85℃の石炭系ピッチ粉末5部とをVブレンダーを用いて固体混合した。
 得られた混合粉末を加熱炉内に静置し、窒素気流下、1000℃で1時間熱処理した後、放冷して、ピッチが炭化して生じた乱層構造炭素が表面に付着した炭素材料を得た。
 (2)炭素材料B
 平均粒径11.6μm、比表面積(S1)6.5m/gの球形化処理された実施例1と同じ天然黒鉛粉末をそのまま用いた。
 (実施例7)
 以下の製造方法により得られた炭素材料AおよびBを、表1に示される配合比(質量部)で混合して、負極材料を得た。なお、炭素材料A、Bおよび混合炭素材料について上記の方法により圧縮密度を測定した結果は表1に示したとおりであった。
 (1)炭素材料A
 鱗片状天然黒鉛粉末を球形化処理してなる平均粒径19.5μm、比表面積(S1)5.3m/gの実施例1と同じ黒鉛粉末100部と、平均粒径35μm、軟化点85℃の石炭系ピッチ粉末2部とをVブレンダーを用いて固体混合した。
 得られた混合粉末を加熱炉内に静置し、窒素気流下、1000℃で1時間熱処理した後、放冷して、ピッチが炭化して生じた乱層構造炭素が表面に付着した炭素材料を得た。
 (2)炭素材料B
 平均粒径11.6μm、比表面積(S1)6.5m/gの球形化処理された実施例1と同じ天然黒鉛粉末をそのまま用いた。
 (比較例4)
 以下の製造方法により得られた炭素材料AおよびBを、表1に示される配合比(質量部)で混合して、負極材料を得た。なお、炭素材料A、Bおよび混合炭素材料について上記の方法により圧縮密度を測定した結果は表1に示したとおりであった。
 (1)炭素材料A
 鱗片状天然黒鉛粉末を球形化処理してなる平均粒径29.5μm、比表面積(S1)3.6m/gの実施例6と同じ黒鉛粉末100部と、平均粒径35μm、軟化点85℃の石炭系ピッチ粉末3部とをVブレンダーを用いて固体混合した。
 得られた混合粉末を加熱炉内に静置し、窒素気流下、1000℃で1時間熱処理した後、放冷して、ピッチが炭化して生じた乱層構造炭素が表面に付着した炭素材料を得た。
 (2)炭素材料B
 平均粒径11.6μm、比表面積(S1)6.5m/gの球形化処理された実施例1と同じ天然黒鉛粉末をそのまま用いた。
 (比較例5)
 以下の製造方法により得られた炭素材料AおよびBを、表1に示される配合比(質量部)で混合して、負極材料を得た。なお、炭素材料A、Bおよび混合炭素材料について上記の方法により圧縮密度を測定した結果は表1に示したとおりであった。
 (1)炭素材料A
 鱗片状天然黒鉛粉末を球形化処理してなる平均粒径19.5μm、比表面積(S1)5.3m/gの実施例1と同じ黒鉛粉末100部と、平均粒径35μm、軟化点85℃の石炭系ピッチ粉末10部とをVブレンダーを用いて固体混合した。
 得られた混合粉末を加熱炉内に静置し、窒素気流下、1000℃で1時間熱処理した後、放冷して、ピッチが炭化して生じた乱層構造炭素が表面に付着した炭素材料を得た。
 (2)炭素材料B
 平均粒径11.6μm、比表面積(S1)6.5m2/gの球形化処理された実施例1と同じ天然黒鉛粉末をそのまま用いた。
 (比較例6)
 以下の製造方法により得られた炭素材料AおよびBを、表1に示される配合比(質量部)で混合して、負極材料を得た。なお、炭素材料A、Bおよび混合炭素材料について上記の方法により圧縮密度を測定した結果は表1に示したとおりであった。
 (1)炭素材料A
 鱗片状天然黒鉛粉末を球形化処理してなる平均粒径19.5μm、比表面積(S1)5.3m/gの実施例1と同じ黒鉛粉末100部と、平均粒径35μm、軟化点85℃の石炭系ピッチ粉末5部とをVブレンダーを用いて固体混合した。
 得られた混合粉末を加熱炉内に静置し、窒素気流下、1000℃で1時間熱処理した後、放冷して、ピッチが炭化して生じた乱層構造炭素が表面に付着した炭素材料を得た。
 (2)炭素材料B
 平均粒径7.6μm、比表面積(S1)8.2m/gの球形化処理された天然黒鉛粉末をそのまま用いた。
 (比較例7)
 以下の製造方法により得られた炭素材料AおよびBを、表1に示される配合比(質量部)で混合して、負極材料を得た。なお、炭素材料A、Bおよび混合炭素材料について上記の方法により圧縮密度を測定した結果は表1に示したとおりであった。
 (1)炭素材料A
 鱗片状天然黒鉛粉末を球形化処理してなる平均粒径19.5μm、比表面積(S1)5.3m/gの実施例1と同じ黒鉛粉末100部と、平均粒径35μm、軟化点85℃の石炭系ピッチ粉末5部とをVブレンダーを用いて固体混合した。
 得られた混合粉末を加熱炉内に静置し、窒素気流下、1000℃で1時間熱処理した後、放冷して、ピッチが炭化して生じた乱層構造炭素が表面に付着した炭素材料を得た。
 (2)炭素材料B
 平均粒径19.5μm、比表面積(S1)5.3m/gの球形化処理された天然黒鉛粉末をそのまま用いた。
 (比較例8)
 以下の製造方法により得られた炭素材料AおよびBを、表1に示される配合比(質量部)で混合して、負極材料を得た。なお、炭素材料A、Bおよび混合炭素材料について上記の方法により圧縮密度を測定した結果は表1に示したとおりであった。
 (1)炭素材料A
 鱗片状天然黒鉛粉末を球形化処理してなる平均粒径11.6μm、比表面積(S1)6.5m/gの黒鉛粉末100部と、平均粒径35μm、軟化点85℃の石炭系ピッチ粉末10部とをVブレンダーを用いて固体混合した。
 得られた混合粉末を加熱炉内に静置し、窒素気流下、1000℃で1時間熱処理した後、放冷して、ピッチが炭化して生じた乱層構造炭素が表面に付着した炭素材料を得た。
 (2)炭素材料B
 平均粒径19.5μm、比表面積(S1)5.3m/gの球形化処理された比較例7と同じ天然黒鉛粉末をアルゴン中3000℃1時間熱処理したものを用いた。
 2.電極性能の評価
 以上の実施例及び比較例で得られた負極材料の電極性能を、次のようにして調査した。
 (1)電極の作製
 負極材料97部に結着剤としてCMC(カルボキシメチルセルロースナトリウム)粉末混合した後、SBR(スチレン-ブタジエンゴム)を水に分散させた液と粘度調整のための水を適量加え、攪拌してスラリーを得た。配合比は負極材料:CMC:SBR=97:1:2(質量比)とした。このスラリーを厚み17μmの銅箔上にドクターブレード法により塗布し(塗布量は4~5mg/cm)、乾燥後、直径13mmの円盤状に打ち抜き、プレス成形機を用いて電極密度が1.70g/cm程度となるように表1に示されるプレス圧で加圧して電極を作製した。
 得られた電極の電極密度は、マイクロメータによる厚み測定と質量測定により求めた。具体的には、その測定値から予め測定した銅箔の厚みと質量の値を差し引くことにより、銅箔部分を除いた密度を求めた。
 以下の評価は電極密度1.68~1.72g/cmの電極を用いて行った。
 (2)非水試験セルの作製
 ポリオレフィン製セパレーターを用い、その両側に上記電極と対極のLi金属箔とを配置し、電解液にはエチレンカーボネート(EC):エチルメチルカーボネート(EMC)=1:3(体積比)の混合溶媒に支持電解質LiPF6を濃度が1Mになるように溶解した非水溶液を用いて、コイン型の非水試験セルを作製した。
 なお、対極Liでの評価においては本来、黒鉛負極電極へのLiのドープは放電として扱うが、ここでは負極材料としての評価であるため、以下ことわりのない「充電容量」はドープ側の容量を、「放電容量」とは脱ドープ側の容量を意味する。
 (3)放電容量の測定
 この非水試験セルを、25mA/gの電流値で、対極に対して電位差0(ゼロ)Vになるまで定電流でドープし(充電に相当)、さらに0Vを保持したまま、5μA/cmになるまで定電圧でドープを続けた。このドープ作業中の非水試験セルの温度は23℃に維持されていた。
 次に、25mA/gの定電流で、電位差1.5Vになるまで脱ドープを行って(放電に相当)、脱ドープ容量を放電容量として測定した。この脱ドープ中の非水試験セルの温度も23℃に維持されていた。
 このドープ-脱ドープ作業を次の充電受け入れ性および高温保存特性の評価のために3サイクル繰り返した。なお、ドープ作業終了から次の脱ドープ作業開始までの時間は1分、脱ドープ作業終了から次のドープ作業開始までの時間は1分であって、この時間の非水試験セルの温度も23℃に維持されていた。
 (4)充電受け入れ性
 上記の3サイクル後の非水試験セルに対して、180mA/gの電流値で、対極に対して電位差0(ゼロ)Vになるまで定電流でドープした(充電に相当)。このときの定電流での充電容量を充電受け入れ性の指標とした。なお、このドープ作業中の非水試験セルの温度は23℃に維持されていた。
 (5)高温保存特性
 上記の3サイクル後の非水試験セルに対して、再度25mA/gの電流値で、対極に対して電位差0(ゼロ)Vになるまで定電流でドープし(充電に相当)、さらに0Vを保持したまま、5μA/cm2になるまで定電圧でドープを続けた。なお、このドープ作業中の非水試験セルの温度は23℃に維持されていた。
 続いて、アルゴン雰囲気中でコインセルを分解し、試料電極を取り出し、アルミラミネートフィルムに密封した。
 これを60℃で10日間保存したのち、再度アルゴン雰囲気中で新しいLiを対極にし、電解液を滴下してコインセルを組み立てた。25mA/gの定電流で、電位差1.5Vになるまで脱ドープを行って(放電に相当)、脱ドープ容量を高温保持後の放電容量として測定した。この高温保持後の放電容量に対する保存前の放電容量の比率を高温保存特性として求めた。なお、このドープ作業中、非水試験セルの温度は保存前の放電容量を測定したときのドープ作業時と同じ23℃に維持されていた。
 各実施例及び比較例の混合炭素材料を負極材料として用いた場合の負極性能について、上記の方法で調査した結果を、表1に示した。本発明の混合炭素材料を用いることにより、充電受け入れ性及び高温保存特性に優れた負極を得られることが分かる。
Figure JPOXMLDOC01-appb-T000001

Claims (5)

  1.  黒鉛粉末からなる核材の表面に炭素を付着させてなるまたは当該表面が炭素によって被覆されてなる炭素材料Aと黒鉛粉末からなる炭素材料Bとを含む混合炭素材料であって、
     前記炭素材料Aの核材の表面に付着されまたは被覆された炭素は、非晶質炭素および乱層構造炭素のうち少なくとも1種であり、
     下記で規定する圧縮密度によって表される圧縮性が、前記炭素材料Aでは1.60~1.78g/cm、前記炭素材料Bでは1.75~1.85g/cm、かつ前記炭素材料Aの圧縮性<前記炭素材料Bの圧縮性であり、
     ここで、前記圧縮密度は、内径15mmの円筒状金型に材料を1.00g充填し、8.7kNのプレス圧力で加圧した後0.15kNまで除圧したときの充填された材料の密度(g/cm)であり、
     前記炭素材料Bの平均粒径≦前記炭素材料Aの平均粒径であり、
     前記炭素材料Aの炭素材料Bに対する混合比(炭素材料A/炭素材料B)が、質量比で1~9である
    ことを特徴とする混合炭素材料。
  2.  前記炭素材料Bが天然の鱗片状黒鉛粉末からなる、請求項1記載の混合炭素材料。
  3.  前記炭素材料Aおよび炭素材料Bの平均粒径が、それぞれ15~30μm、8~15μmである、請求項1または2記載の混合炭素材料。
  4.  前記炭素材料Bの比表面積が、8m/g以下である、請求項1から3のいずれかに記載の混合炭素材料。
  5.  請求項1から4のいずれかに記載の混合炭素材料を用いて作製された、非水系二次電池用負極。
PCT/JP2009/062128 2008-07-17 2009-07-02 混合炭素材料および非水系二次電池用負極 WO2010007898A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980135482.9A CN102150307B (zh) 2008-07-17 2009-07-02 混合碳材料和非水系二次电池用负极
JP2010520825A JP5429168B2 (ja) 2008-07-17 2009-07-02 混合炭素材料および非水系二次電池用負極
KR1020117003590A KR101498328B1 (ko) 2008-07-17 2009-07-02 혼합 탄소 재료 및 비수계 2차 전지용 음극
EP09797825.8A EP2306560A4 (en) 2008-07-17 2009-07-02 MIXED CARBON MATERIAL AND NEGATIVE ELECTRODE FOR A NON-WATER RECHARGEABLE BATTERY
US13/006,693 US8501047B2 (en) 2008-07-17 2011-01-14 Mixed carbon material and negative electrode for a nonaqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-186197 2008-07-17
JP2008186197 2008-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/006,693 Continuation US8501047B2 (en) 2008-07-17 2011-01-14 Mixed carbon material and negative electrode for a nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
WO2010007898A1 true WO2010007898A1 (ja) 2010-01-21

Family

ID=41550305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062128 WO2010007898A1 (ja) 2008-07-17 2009-07-02 混合炭素材料および非水系二次電池用負極

Country Status (6)

Country Link
US (1) US8501047B2 (ja)
EP (1) EP2306560A4 (ja)
JP (1) JP5429168B2 (ja)
KR (1) KR101498328B1 (ja)
CN (1) CN102150307B (ja)
WO (1) WO2010007898A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113783A1 (ja) * 2009-03-30 2010-10-07 住友金属工業株式会社 混合炭素材料および非水系二次電池用負極
JP2012028211A (ja) * 2010-07-26 2012-02-09 Hitachi Chem Co Ltd リチウム二次電池用負極材、これを用いたリチウム二次電池用負極、及びリチウム二次電池。
JP2012099452A (ja) * 2010-11-04 2012-05-24 Samsung Sdi Co Ltd 2次電池用負極活物質およびこれを含むリチウム2次電池
JP2013187033A (ja) * 2012-03-08 2013-09-19 Hitachi Ltd リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池モジュール、それらの製造方法
JP2013246989A (ja) * 2012-05-25 2013-12-09 Nec Corp リチウムイオン二次電池用負極活物質、それを用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池
CN103650218A (zh) * 2011-07-13 2014-03-19 株式会社杰士汤浅国际 非水电解质二次电池
JPWO2013002162A1 (ja) * 2011-06-30 2015-02-23 三洋電機株式会社 非水電解質二次電池及びその製造方法
WO2015152114A1 (ja) * 2014-03-31 2015-10-08 Necエナジーデバイス株式会社 黒鉛系活物質材料、負極及びリチウムイオン二次電池
JP2018129204A (ja) * 2017-02-09 2018-08-16 株式会社豊田中央研究所 リチウム二次電池用電極及びリチウム二次電池
WO2019188538A1 (ja) * 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019239948A1 (ja) * 2018-06-15 2019-12-19 パナソニックIpマネジメント株式会社 非水電解質二次電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9822248B2 (en) 2010-05-28 2017-11-21 Kaneka Corporation Polysiloxane composition, hardened material and optical device
KR101328585B1 (ko) * 2012-04-06 2013-11-12 한국과학기술연구원 양극활물질의 재활용을 통한 리튬이온 이차전지용 양극의 제조 방법 및 이에 따라 제조된 리튬이온 이차전지
CN107431190B (zh) * 2015-03-19 2021-06-22 远景Aesc能源元器件有限公司 非水二次电池用负极及使用该负极的非水二次电池
JP6903260B2 (ja) * 2015-09-30 2021-07-14 株式会社エンビジョンAescジャパン リチウムイオン二次電池用負極及びリチウムイオン二次電池
KR20180130182A (ko) * 2017-05-29 2018-12-07 에스케이이노베이션 주식회사 리튬 이차 전지
KR102519441B1 (ko) * 2017-12-22 2023-04-07 삼성에스디아이 주식회사 리튬 이차전지용 음극활물질, 이를 포함한 음극, 및 리튬 이차전지
KR102277734B1 (ko) * 2018-02-26 2021-07-16 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 활물질, 이를 포함하는 리튬 이차전지용 음극 및 리튬 이차전지
KR102429237B1 (ko) * 2018-07-12 2022-08-05 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 활물질, 이를 포함하는 음극, 및 리튬 이차전지
JP7358804B2 (ja) * 2019-07-04 2023-10-11 日本ケミコン株式会社 電極体、電極体を備える電解コンデンサ、及び電極体の製造方法
WO2021152381A1 (en) * 2020-01-29 2021-08-05 King Abdullah University Of Science And Technology Nitrogen-doped carbonaceous anode for metal ion battery and method of making

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138061A (ja) 1998-08-27 2000-05-16 Nec Corp 非水電解液二次電池、その製造法および炭素材料組成物
JP2001185147A (ja) 1999-12-27 2001-07-06 Asahi Kasei Corp 非水電解液二次電池
JP2005044775A (ja) 2003-01-22 2005-02-17 Hitachi Maxell Ltd リチウム二次電池用負極とその製造方法およびそれを用いたリチウム二次電池
JP2005174630A (ja) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd 高出力型非水電解質二次電池
JP2005294011A (ja) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006049288A (ja) 2004-06-30 2006-02-16 Mitsubishi Chemicals Corp リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040151837A1 (en) * 1995-11-14 2004-08-05 Koichi Morita Material for negative electrode of lithium secondary battery, method for production thereof and lithium secondary battery using the same
JP3541913B2 (ja) * 1996-11-27 2004-07-14 株式会社デンソー 非水電解液二次電池
JP4187347B2 (ja) * 1998-04-02 2008-11-26 三星エスディアイ株式会社 リチウムイオン電池用負極活物質の製造方法
US6391495B1 (en) * 1998-11-25 2002-05-21 Samsung Display Devices Co., Ltd. Negative active material for lithium secondary battery, method of preparing the same and lithium secondary battery comprising the same
CN100338795C (zh) * 2003-01-22 2007-09-19 日立麦克赛尔株式会社 锂二次电池用负极及其制造方法以及使用其的锂二次电池
US8133612B2 (en) * 2003-05-16 2012-03-13 Byd Company Limited Negative electrodes for rechargeable batteries
CN100464448C (zh) * 2003-10-31 2009-02-25 昭和电工株式会社 电池电极用的碳材料及其制造方法和用途
CN100468834C (zh) * 2004-02-12 2009-03-11 三菱化学株式会社 锂二次电池用负极材料及其制备方法和使用该负极材料的锂二次电池用负极和锂二次电池
CN101208819B (zh) * 2005-06-27 2010-11-24 三菱化学株式会社 非水性二次电池用石墨质复合颗粒、含有该石墨质复合颗粒的负极活性物质材料、负极和非水性二次电池
KR101121808B1 (ko) * 2007-01-31 2012-03-21 쥬오 덴끼 고교 가부시키가이샤 탄소 재료 및 그 제조 방법
US8038977B2 (en) * 2008-02-06 2011-10-18 Chuo Denki Kogyo Co., Ltd. Carbon powder suitable as a negative electrode material for nonaqueous secondary batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138061A (ja) 1998-08-27 2000-05-16 Nec Corp 非水電解液二次電池、その製造法および炭素材料組成物
JP2001185147A (ja) 1999-12-27 2001-07-06 Asahi Kasei Corp 非水電解液二次電池
JP2005044775A (ja) 2003-01-22 2005-02-17 Hitachi Maxell Ltd リチウム二次電池用負極とその製造方法およびそれを用いたリチウム二次電池
JP2005174630A (ja) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd 高出力型非水電解質二次電池
JP2005294011A (ja) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006049288A (ja) 2004-06-30 2006-02-16 Mitsubishi Chemicals Corp リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2306560A4

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416413A1 (en) * 2009-03-30 2012-02-08 Sumitomo Metal Industries, Ltd. Mixed carbon material and negative electrode for nonaqueous secondary battery
US8404385B2 (en) 2009-03-30 2013-03-26 Nippon Steel & Sumitomo Metal Corporation Mixed carbon material including graphite powder cores and surface carbon material on a surface thereof and negative electrode for nonaqueous secondary battery
WO2010113783A1 (ja) * 2009-03-30 2010-10-07 住友金属工業株式会社 混合炭素材料および非水系二次電池用負極
JP5375953B2 (ja) * 2009-03-30 2013-12-25 新日鐵住金株式会社 混合炭素材料および非水系二次電池用負極
EP2416413A4 (en) * 2009-03-30 2014-10-22 Nippon Steel & Sumitomo Metal Corp MIXED CARBON MATERIAL AND NEGATIVE ELECTRODE FOR SECONDARY BATTERY USING NONAQUEOUS ELECTROLYTE
JP2012028211A (ja) * 2010-07-26 2012-02-09 Hitachi Chem Co Ltd リチウム二次電池用負極材、これを用いたリチウム二次電池用負極、及びリチウム二次電池。
JP2012099452A (ja) * 2010-11-04 2012-05-24 Samsung Sdi Co Ltd 2次電池用負極活物質およびこれを含むリチウム2次電池
US8785049B2 (en) 2010-11-04 2014-07-22 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
JPWO2013002162A1 (ja) * 2011-06-30 2015-02-23 三洋電機株式会社 非水電解質二次電池及びその製造方法
CN103650218A (zh) * 2011-07-13 2014-03-19 株式会社杰士汤浅国际 非水电解质二次电池
JPWO2013008475A1 (ja) * 2011-07-13 2015-02-23 株式会社Gsユアサ 非水電解質二次電池
JP2013187033A (ja) * 2012-03-08 2013-09-19 Hitachi Ltd リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池モジュール、それらの製造方法
JP2013246989A (ja) * 2012-05-25 2013-12-09 Nec Corp リチウムイオン二次電池用負極活物質、それを用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池
US10305108B2 (en) 2014-03-31 2019-05-28 Nec Energy Devices, Ltd. Graphite-based active material, negative electrode, and lithium ion secondary battery
JPWO2015152114A1 (ja) * 2014-03-31 2017-04-13 Necエナジーデバイス株式会社 黒鉛系活物質材料、負極及びリチウムイオン二次電池
WO2015152114A1 (ja) * 2014-03-31 2015-10-08 Necエナジーデバイス株式会社 黒鉛系活物質材料、負極及びリチウムイオン二次電池
JP7049060B2 (ja) 2017-02-09 2022-04-06 株式会社豊田中央研究所 リチウム二次電池用電極、リチウム二次電池及びリチウム二次電池用電極の製造方法
JP2018129204A (ja) * 2017-02-09 2018-08-16 株式会社豊田中央研究所 リチウム二次電池用電極及びリチウム二次電池
WO2019188538A1 (ja) * 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
CN111919314A (zh) * 2018-03-29 2020-11-10 日产化学株式会社 储能器件的底涂层形成用组合物
JPWO2019188538A1 (ja) * 2018-03-29 2021-04-08 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JP7318638B2 (ja) 2018-03-29 2023-08-01 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019239948A1 (ja) * 2018-06-15 2019-12-19 パナソニックIpマネジメント株式会社 非水電解質二次電池
JPWO2019239948A1 (ja) * 2018-06-15 2021-06-24 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP7233013B2 (ja) 2018-06-15 2023-03-06 パナソニックIpマネジメント株式会社 非水電解質二次電池
US11728484B2 (en) 2018-06-15 2023-08-15 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
EP2306560A4 (en) 2014-05-07
US8501047B2 (en) 2013-08-06
JPWO2010007898A1 (ja) 2012-01-05
JP5429168B2 (ja) 2014-02-26
KR101498328B1 (ko) 2015-03-03
CN102150307B (zh) 2014-03-12
CN102150307A (zh) 2011-08-10
EP2306560A1 (en) 2011-04-06
US20120037845A1 (en) 2012-02-16
KR20110042316A (ko) 2011-04-26

Similar Documents

Publication Publication Date Title
JP5429168B2 (ja) 混合炭素材料および非水系二次電池用負極
JP5375953B2 (ja) 混合炭素材料および非水系二次電池用負極
US11909033B2 (en) Negative electrode including first layer having low compressive strength carbon active material and silicon active material and second layer having high compressive strength carbon active material and nonaqueous electrolyte secondary battery including the same
JP5365674B2 (ja) 炭素材料の製造方法
WO2012133788A1 (ja) 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
US20230361286A1 (en) Thermally disproportionated anode active material including turbostratic carbon coating
WO2017068147A1 (en) Carbonaceous composite materials with snowball-like morphology
WO2012157590A1 (ja) 非水系二次電池用炭素材、該炭素材を用いた負極及び非水系二次電池
JP2014067638A (ja) 非水系二次電池用炭素材、及び負極並びに、非水系二次電池
JP2008181870A (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP2013515349A (ja) アノード材料
JP7248019B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP6543428B1 (ja) 二次電池用負極活物質および二次電池
JP2014067680A (ja) 非水系二次電池用黒鉛粒子及び、それを用いた非水系二次電池用負極並びに非水系二次電池
JP2013225501A (ja) 非水系二次電池用複合炭素材、負極及び、非水系二次電池
KR20230011984A (ko) 그래핀-함유 금속화된 실리콘 산화물 복합 물질
JP2003168432A (ja) 非水系二次電池の負極用黒鉛粒子
JP6070016B2 (ja) 非水系二次電池用複合炭素材及びその製造方法、負極並びに非水系二次電池
JP2022157506A (ja) ケイ素含有非晶質炭素材料及びその製造方法、リチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135482.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010520825

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009797825

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009797825

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117003590

Country of ref document: KR

Kind code of ref document: A