WO2009150915A1 - 電解金めっき液及びそれを用いて得られた金皮膜 - Google Patents

電解金めっき液及びそれを用いて得られた金皮膜 Download PDF

Info

Publication number
WO2009150915A1
WO2009150915A1 PCT/JP2009/058846 JP2009058846W WO2009150915A1 WO 2009150915 A1 WO2009150915 A1 WO 2009150915A1 JP 2009058846 W JP2009058846 W JP 2009058846W WO 2009150915 A1 WO2009150915 A1 WO 2009150915A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
nickel
plating solution
gold plating
electrolytic
Prior art date
Application number
PCT/JP2009/058846
Other languages
English (en)
French (fr)
Inventor
茂樹 清水
隆治 高崎
歓三 清原
幸弘 山本
賢一 下田
Original Assignee
日本高純度化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本高純度化学株式会社 filed Critical 日本高純度化学株式会社
Priority to JP2010516799A priority Critical patent/JP4719822B2/ja
Priority to CN2009801286107A priority patent/CN102105623B/zh
Publication of WO2009150915A1 publication Critical patent/WO2009150915A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/62Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance

Definitions

  • the present invention relates to an electrolytic gold plating solution having a specific composition and a gold coating on a nickel coating obtained using the electrolytic gold plating solution.
  • Gold plating on the nickel coating is widely used in the field of electronic and electrical parts because gold has excellent corrosion resistance, mechanical properties, electrical properties, etc., and nickel has excellent heat resistance as a base metal. ing. Among them, hard gold plating alloyed with metals such as cobalt and nickel makes use of its high hardness and excellent wear resistance to make contact joints such as connectors such as connectors and contact members such as switches. Widely used as gold plating.
  • This method is an electrolytic gold plating technique generally referred to as nickel barrier plating.
  • nickel barrier part a part that does not require gold plating
  • the parts such as silicon rubber are mechanically pressed down so that the gold plating solution and the part to be plated cannot be in contact with each other. This is a method of providing a portion (nickel barrier portion).
  • Patent Document 1 discloses a gold plating bath that keeps a gold cobalt plating solution weakly acidic and adds hexamethylenetetramine to suppress deposition of a gold plating film on unnecessary portions. It is disclosed.
  • this technique cannot be said to have sufficient performance in the selectivity of gold deposition, and since reducing hexamethylenetetramine is added to the gold plating bath, the gold is a gold plating bath. It is very uneconomical that gold deposits on the shaft part of the pump for circulating the plating solution and stops the pump, or gold is consumed in addition to the plating reaction. It was not practical.
  • the present invention has been made in view of the above-mentioned background art, and the problem is that the physical properties of the gold plating film are equivalent to those obtained using a conventional electrolytic gold plating solution, wear resistance,
  • An object of the present invention is to provide an electrolytic gold plating solution suitable for nickel barrier plating while maintaining electrical characteristics and the like. In other words, it suppresses gold deposition at “parts that do not require gold plating (nickel barrier part)” that mechanically pressed the member, and good gold deposition occurs at parts that require gold plating, and abnormal gold
  • An object of the present invention is to provide an electrolytic gold plating solution capable of producing a stable product without precipitation.
  • the inventor proceeds the plating reaction at a high current density (set current density) at the portion where the gold plating solution touches the portion to be plated, and the gold plating solution is plated. Focusing on the fact that the plating reaction proceeds at a low current density in the part that does not touch the part, it was found that an electrolytic gold plating solution should be developed using the difference.
  • FIG. 1 shows measurement using a general-purpose electrolytic gold plating solution and an electrolytic gold plating solution having the composition described in Example 1 of the present invention.
  • the horizontal axis represents current density (A / dm 2 ), and the vertical axis represents 10 seconds. It is the graph which took the film thickness (micrometer) of the gold film after performing a gold plating process. That is, the gold concentration of a general-purpose electrolytic gold plating solution is adjusted to the gold equivalent concentration (9 g / L) of the electrolytic gold plating solution of Example 1, and the bath temperature is raised to 50 ° C. In this step, gold plating was performed on a primary bright nickel plating film of 2.0 ⁇ m on a 10 mm ⁇ 10 mm copper plate.
  • the current density is 1 A / dm 2 , 5 A / dm 2 , 10 A / dm 2 , 20 A / h while stirring the gold plating solution with a pump at a flow rate of 18 L / min from a circular jet port having a diameter of 8 mm.
  • dm 2 , 30 A / dm 2 , 40 A / dm 2 , 50 A / dm 2 , 60 A / dm 2 gold plating treatment was performed for 10 seconds each time, and fluorescent X-ray analysis was performed around the center that was gold-plated in a circular shape It is the graph which measured the film thickness of the gold film using the apparatus (the Seiko Instruments Inc. make, SFT9255) according to the conventional method, and plotted the measurement result.
  • 0 A / dm 2 to 5 A / dm 2 corresponds to a portion not subjected to gold plating in the nickel barrier plating technology, and a gold film in the low current density region. It was judged that the thinner the film thickness, the better the nickel barrier properties.
  • 20 A / dm 2 to 60 A / dm 2 (hereinafter, abbreviated as “high current density region”) in FIG. 1 corresponds to a portion to be subjected to gold plating in the nickel barrier plating technology, and gold in the high current density region It was judged that the thicker the film, the better the nickel barrier properties. See the plot graph of the electrolytic gold plating solution having the composition described in Example 1.
  • the characteristics of the electrolytic gold plating solution required for the nickel barrier plating technology are that the gold deposition film thickness in the low current density region is very thin, and in the low current density region. It was found that the difference between the amount of deposited gold and the amount of deposited gold in the high current density region was large, and that the amount of deposited gold in the high current density region where the gold plating film was formed on the product could be secured to the maximum. Then, it was considered that an electrolytic gold plating solution having such characteristics has selectivity for gold deposition and is an electrolytic gold plating solution suitable for nickel barrier plating technology.
  • the present inventor has obtained a gold cyanide salt and “a heterocyclic ring having one or more nitrogen atoms in the ring. If the gold film is formed using an electrolytic gold plating solution containing a compound, a heterocyclic compound in which one or more nitro groups are substituted on the carbon atom in the ring as an essential component, the above-mentioned problems are solved. Then, the present inventors have solved the above problems, found that gold deposition in the low current density region of the gold plating film is suppressed, and that stable products can be produced without abnormal gold deposition, and the present invention has been completed.
  • the present invention relates to a gold cyanide salt as a gold source, a heterocyclic compound having one or more nitrogen atoms in the ring, and one or more nitro groups substituted on the carbon atoms in the ring; It is intended to provide an electrolytic gold plating solution characterized by containing.
  • the present invention further provides the above electrolytic gold plating solution containing a cobalt salt, a nickel salt and / or an iron salt.
  • the present invention provides a gold film at a current density of 5 A / dm 2 when the current density is set to 5 A / dm 2 and 40 A / dm 2 using a jet jet plating apparatus and plating is performed for 10 seconds.
  • the above electrolytic gold plating solution in which the thickness of the gold film is 0.1 ⁇ m or less and the thickness of the gold film at 40 A / dm 2 is at least 5 times the thickness of the gold film at 5 A / dm 2 To do.
  • the present invention also provides a gold film obtained by performing electrolytic gold plating on a nickel film using the above electrolytic gold plating solution.
  • a gold film obtained by using a conventional electrolytic gold plating solution has low current density while maintaining excellent mechanical properties such as wear resistance, corrosion resistance, and electrical properties.
  • the gold deposition rate in the region is very slow, and the gold deposition rate in the high current density region can be very fast (this performance is hereinafter referred to as “gold selective deposition performance”).
  • the difference between the thickness and the gold deposition film thickness in the high current density region can be increased.
  • Nickel barrier parts that are mechanically pressed by a member such as silicon rubber, and parts that are not pressed down (parts that require gold plating).
  • Nickel barriers required for contact members such as connectors of electronic devices in recent years It can be suitably applied to plating technology.
  • the present invention contains at least a gold cyanide salt as a gold source, and further “a heterocyclic compound having one or more nitrogen atoms in the ring, wherein one or more nitro groups are substituted on the carbon atoms in the ring. It is an electrolytic gold plating solution characterized by containing “a heterocyclic compound” as an essential component.
  • the “electrolytic gold plating solution” of the present invention also includes “electrolytic gold alloy plating solution”.
  • the “gold film” of the present invention includes “gold alloy film”. That is, a metal other than gold may be contained.
  • the electrolytic gold plating solution of the present invention when used for hard gold plating, it further contains a cobalt salt, a nickel salt and / or an iron salt. That is, in addition to the gold cyanide salt as a gold source, it contains any one or more of a cobalt salt, a nickel salt, and an iron salt.
  • the electrolytic gold plating solution of the present invention must contain a gold cyanide salt.
  • the gold cyanide salt is used as a gold source for the electrolytic gold plating solution of the present invention.
  • the gold cyanide salt is not limited to one type, and two or more types can be used in combination.
  • the gold cyanide salt alkali metal gold cyanide or ammonium gold cyanide is preferable.
  • the gold valence (oxidation number) of the gold cyanide salt may be monovalent or trivalent, but monovalent is preferable from the viewpoint of gold deposition efficiency. That is, the first cyanide gold salt is preferable.
  • the gold cyanide salt include, for example, first gold sodium cyanide, first gold potassium cyanide, first gold ammonium cyanide, second gold sodium cyanide, second gold potassium cyanide, cyanide. Secondary gold ammonium and the like can be mentioned. Among these, from the viewpoints of plating performance such as gold deposition efficiency, cost, availability, etc., primary gold sodium cyanide, primary gold potassium cyanide, and primary gold ammonium cyanide are preferable, and further similar viewpoints. To 1st potassium gold cyanide is particularly preferred.
  • the content of the gold cyanide salt in the electrolytic gold plating solution of the present invention is not particularly limited, and is usually 0.05 g / L to 50 g / L, preferably 0, as metal gold with respect to the entire electrolytic gold plating solution. 0.5 g / L to 30 g / L, particularly preferably 1 g / L to 20 g / L. If the content of the gold cyanide salt in the electrolytic gold plating solution is too small, golden gold plating may be difficult. On the other hand, when the content of metal gold in the electrolytic gold plating solution is too large, there is no particular problem with the performance of the electrolytic gold plating solution, but gold cyanide salt is a very expensive metal. It may be uneconomical to store in the state of being contained.
  • the gold cyanide salt specifies the form present in the electrolytic gold plating solution of the present invention, but as a raw material to be dissolved in the preparation of the electrolytic gold plating solution of the present invention, It is preferable to use a gold cyanide salt.
  • the electrolytic gold plating solution of the present invention includes a “heterocyclic compound having at least one nitrogen atom in the ring and having at least one nitro group substituted on the carbon atom in the ring” (hereinafter, in parentheses).
  • a specific heterocyclic compound Is abbreviated as “specific heterocyclic compound” as an essential component.
  • a specific heterocyclic compound By containing a specific heterocyclic compound, it is possible to reduce the thickness of the gold deposit in the low current density region while maintaining the excellent high corrosion resistance, mechanical properties, electrical properties, etc. of the conventional electrolytic gold plating film. The difference between the gold deposited film thickness in the current density region and the gold deposited film thickness in the high current density region can be greatly increased. That is, by containing a specific heterocyclic compound, an electrolytic gold plating solution excellent in gold selective deposition performance can be obtained, and an electrolytic gold plating solution optimal for nickel barrier plating is realized.
  • the heterocyclic ring in the specific heterocyclic compound is not particularly limited, and may be aromatic or non-aromatic. However, the aromatic ring has better plating. It is preferable in terms of performance, availability, etc., and in particular that the above-described effects are exhibited.
  • the heteroatoms other than the carbon atoms constituting the heterocycle and examples include nitrogen, oxygen, sulfur, etc., but at least one of the heteroatoms must be a nitrogen atom.
  • Arbitrary substituents may be substituted on the carbon atom in the heterocyclic ring as long as the effects of the present invention are not impaired. It is essential that at least one of the substituents for the carbon atom in the heterocycle is a nitro group.
  • the substituent other than the nitro group include an alkyl group, a hydroxy group, and a phenyl group.
  • the number of nitro groups substituted on carbon atoms in the heterocyclic ring is not particularly limited as long as it is 1 or more, but 1 to 3 is preferable, and 1 to 2 is particularly preferable.
  • the specific heterocyclic compound include, for example, pyrrole, imidazole, pyrazole, triazole, tetrazole, oxazole, isoxazole, indole, pyridine, pyridazine, pyrimidine, pyrazine, uracil, cytosine, thymine, adenine, guanine, Preferred examples include those in which one or more nitro groups are substituted on the carbon atoms constituting the ring of quinoline, isoquinoline, oxaline, isoxaline, acridine, cinnosoline or morpholine.
  • the content of the specific heterocyclic compound is not particularly limited, but is preferably 10 ppm to 50000 ppm, more preferably 50 ppm to 30000 ppm, and particularly preferably 100 ppm to 10000 ppm with respect to the entire electrolytic gold plating solution. .
  • the said numerical value shows those total content. If the content of the specific heterocyclic compound in the electrolytic gold plating solution is too small, gold deposition may not be suppressed when the plating is performed in a low current density region, or the appearance of the gold film may be deteriorated. On the other hand, when there is too much content, the further increase of the said effect of this invention cannot be expected, and it may become uneconomical.
  • the specific heterocyclic compound specifies the form present in the electrolytic gold plating solution of the present invention, but is a raw material to be dissolved in the preparation of the electrolytic gold alloy plating solution of the present invention. As above, it is preferable to use the above-mentioned specific heterocyclic compound.
  • ⁇ Cobalt salt, nickel salt, iron salt> in the electrolytic gold alloy plating solution of the present invention, in addition to the gold cyanide salt and the above-mentioned specific heterocyclic compound, a cobalt salt, a nickel salt and / or an iron salt are further used in combination for the nickel barrier plating. It is preferable because an electrolytic gold plating solution capable of forming a hard gold film is obtained.
  • the above cobalt salt, nickel salt or iron salt precipitates (eutectoid) with gold in the gold plating film on the nickel plating film, forms a hard gold film, and is necessary for contact members such as connectors of electronic components. High hardness and high wear resistance can be realized.
  • cobalt salt, nickel salt and iron salt are preferably water-soluble.
  • Said cobalt salt, nickel salt, and / or iron salt are not limited to use of 1 type in each metal salt, but 2 or more types can be used together.
  • the metal salt of a different metal is not limited to 1 type, but 2 or more types can be used together.
  • cobalt salt for example, cobalt sulfate, cobalt chloride, cobalt nitrate, cobalt carbonate, cobalt phthalocyanine cobalt, stearic acid cobalt, ethylenediamine tetraacetic acid disodium cobalt, naphthenic acid cobalt, boric acid borate, thiocyanic acid cobalt , Cobalt sulfamate, cobalt acetate, cobalt citrate, cobalt hydroxide, cobalt oxalate, cobalt phosphate, etc. have good plating performance, ease of dissolution in water, ease of eutectoid deposition on gold film, From the viewpoint of easy availability and low cost, it is preferable.
  • the nickel salt is not particularly limited.
  • nickel sulfate, nickel acetate, nickel chloride, nickel borate, nickel benzoate, nickel oxalate, nickel naphthenate, nickel oxide, nickel phosphate, nickel stearate, tartaric acid Nickel, nickel thiocyanate, nickel amidosulfate, nickel carbonate, nickel citrate, nickel formate, nickel cyanide, nickel hydroxide, nickel nitrate, nickel octoate, etc. have good plating performance, easy dissolution in water, From the viewpoints of eutectoid deposition on the gold film, availability, low cost, etc., it is preferable.
  • the iron salt is not particularly limited.
  • Ferrous iron, ferrous gluconate, ferric ethylenediaminetetraacetate, ferrous nitrate, ferric nitrate, etc. have good plating performance, ease of dissolution in water, and ease of eutectoid deposition on gold film From the viewpoint of availability, low cost, etc., it is preferable.
  • the content of the cobalt salt, nickel salt, and iron salt in the electrolytic gold plating solution of the present invention is not particularly limited, but as a metal (in terms of metal), preferably 1 ppm to It is 50000 ppm, more preferably 10 ppm to 30000 ppm, and particularly preferably 50 ppm to 10000 ppm.
  • the said numerical value shows those total content. If the content is too small, the amount of eutectoid on the gold film is too small, and sufficient hardness may not be obtained. On the other hand, if the content is too high, the amount of eutectoid on the gold film will increase too much, which may cause poor color tone of the gold film, increase in contact resistance, and further increase in hardness may not be expected. is there.
  • the electrolytic gold plating solution of the present invention if necessary, a buffering agent for keeping the pH of the electrolytic gold plating solution constant, a conductive salt for ensuring the conductivity of the electrolytic gold plating solution, Metal ion sequestering agent to remove the influence when impurity metals are mixed in the electrolytic gold plating solution, surfactant to improve the pinhole removal of the gold coating or electrolytic gold plating solution, gold coating A brightening agent or the like for smoothing the surface can be appropriately used.
  • the buffer contained in the electrolytic gold plating solution of the present invention as needed is not particularly limited as long as it is a known buffer, but is not limited to inorganic acids such as boric acid and phosphoric acid; citric acid, tartaric acid, malic acid And oxycarboxylic acids such as These may be used alone or in combination of two or more.
  • inorganic acids such as boric acid and phosphoric acid
  • citric acid, tartaric acid, malic acid And oxycarboxylic acids such as These may be used alone or in combination of two or more.
  • the content of the buffer in the electrolytic gold plating solution of the present invention is not particularly limited, but is usually 1 g / L to 500 g / L, preferably 10 g / L to 100 g / L, based on the entire electrolytic gold plating solution. . If the content of the buffering agent in the electrolytic gold plating solution is too small, the buffering effect may be difficult to be exhibited. On the other hand, if the content is too large, the buffering effect may not be increased and it may be uneconomical.
  • the conductive salt contained in the electrolytic gold plating solution of the present invention as needed is not particularly limited as long as it is a known conductive salt, but is not limited to inorganic acids such as sulfates, nitrates, and phosphates; oxalic acid, succinic acid Examples thereof include carboxylic acids such as acid, glutaric acid, malonic acid, citric acid, tartaric acid and malic acid. These may be used alone or in combination of two or more.
  • the content of the conductive salt in the electrolytic gold plating solution of the present invention is not particularly limited, but is usually 1 g / L to 500 g / L, preferably 10 g / L to 100 g / L with respect to the entire electrolytic gold plating solution. . If the content of the conductive salt in the electrolytic gold plating solution is too small, the conductive effect may be difficult to be exhibited. On the other hand, if the content is too large, the buffering effect may not be increased and it may be uneconomical. It is also possible to share the same component as the buffer.
  • the sequestering agent contained as necessary in the electrolytic gold plating solution of the present invention is not particularly limited as long as it is a known sequestering agent, but aminocarboxylic acids such as iminodiacetic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid, etc. Acid-based chelating agents; phosphonic acid-based chelating agents such as hydroxyethylidene diphosphonic acid, nitrilomethylene phosphonic acid, and ethylenediaminetetramethylene phosphonic acid. These may be used alone or in combination of two or more.
  • the content of the sequestering agent in the electrolytic gold plating solution of the present invention is not particularly limited, but is usually 0.1 g / L to 100 g / L, preferably 0.5 g / L, based on the entire electrolytic gold plating solution. ⁇ 50 g / L. If the content of the sequestering agent in the electrolytic gold plating solution is too small, the effect of removing the influence of the impurity metal may be difficult to exert. On the other hand, if the content is too large, the effect of removing the influence of the impurity metal is increased. May not be seen and may be uneconomical.
  • the surfactant contained as necessary in the electrolytic gold plating solution of the present invention is not particularly limited as long as it is a known surfactant, and is a nonionic surfactant, an anionic surfactant, an amphoteric surfactant. Alternatively, a cationic surfactant is used. These may be used alone or in combination of two or more.
  • Nonionic surfactants include ether type nonionic surfactants such as noniphenol polyalkoxylate, ⁇ -naphthol polyalkoxylate, dibutyl- ⁇ -naphthol polyalkoxylate, styrenated phenol polyalkoxylate; octylamine polyalkoxy Examples thereof include amine-type nonionic surfactants such as rate, hexynylamine polyalkoxylate, and linoleylamine polyalkoxylate.
  • anionic surfactant examples include alkyl sulfates such as sodium lauryl sulfate; polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene nonyl ether sulfate; polyoxyethylene alkyl phenyl ether sulfates; It is done.
  • amphoteric surfactants examples include 2-undecyl-1-carboxymethyl-1-hydroxyethylimidazolium betaine, N-stearyl-N, N-dimethyl-N-carboxymethylbetaine, and lauryldimethylamine oxide.
  • Examples of the cationic surfactant include lauryl trimethyl ammonium salt, lauryl dimethyl ammonium betaine, lauryl pyridinium salt, oleyl imidazolium salt, stearyl amine acetate and the like.
  • the content of the surfactant in the electrolytic gold plating solution of the present invention is preferably 0.01 g / L to 20 g / L with respect to the entire electrolytic gold plating solution, as long as the desired performance is exhibited.
  • the content is not particularly limited.
  • the brightener contained as necessary in the electrolytic gold plating solution of the present invention is not particularly limited as long as it is a well-known brightener, and examples thereof include amine compounds having a pyridine skeleton. These may be used alone or in combination of two or more.
  • Examples of the amine compound having a pyridine skeleton include 2-aminopyridine, 3-aminopyridine, 4-aminopyridine and the like.
  • the content of the brightener in the electrolytic gold plating solution of the present invention is preferably 0.01 g / L to 20 g / L with respect to the entire electrolytic gold plating solution.
  • the content is not limited.
  • the electrolytic gold plating solution of the present invention when used, when a current density is set to 5 A / dm 2 and 40 A / dm 2 using a jet-jet plating apparatus and plating is performed for 10 seconds, the current density is 5 A / dm.
  • the film thickness of the gold film at 2 can be 0.1 ⁇ m or less, and the film thickness of the gold film at 40 A / dm 2 can be 5 times or more the film thickness of the gold film at 5 A / dm 2 .
  • the film thickness of the gold film at a current density of 5 A / dm 2 can be 0.08 ⁇ m or less, and the film thickness of the gold film at 40 A / dm 2 can be reduced to the film thickness of the gold film at 5 A / dm 2 . Can be more than 7 times.
  • the electrolytic gold plating solution of the present invention has the above composition, and the current density is set to 5 A / dm 2 and 40 A / dm 2 using the jet jet plating apparatus, and the plating treatment is performed for 10 seconds respectively.
  • the film thickness of the gold film at a current density of 5 A / dm 2 is 0.1 ⁇ m or less, and the film thickness of the gold film at 40 A / dm 2 is equal to the film thickness of the gold film at 5 A / dm 2 .
  • the electrolytic gold plating solution is preferably 5 times or more.
  • the gold film thickness at a current density of 5 A / dm 2 is 0.08 ⁇ m or less, and the gold film thickness at 40 A / dm 2 is 5 A / dm 2.
  • an electrolytic gold plating solution having a thickness of 7 times or more.
  • the electrolytic gold plating solution of the present invention can be particularly suitably used for the above-described nickel barrier plating technique.
  • the “electrolytic gold plating solution” of the present invention includes “electrolytic gold alloy plating solution”.
  • the “gold film” of the present invention includes “gold alloy film”. That is, you may contain metals other than gold
  • the concentration of gold (gold purity) in the “gold film” is not particularly limited, but the gold content is preferably 95% by mass or more based on the entire “gold film”. In order to obtain the above, 97 mass% to 99.99 mass% is more preferable, and 99 mass% to 99.9 mass% is particularly preferable.
  • the plating conditions of the electrolytic gold plating solution of the present invention described above are not particularly limited, but the temperature conditions are preferably 20 ° C. to 90 ° C., particularly preferably 30 ° C. to 70 ° C.
  • the pH of the plating solution is preferably pH 2.0 to pH 9.0, particularly preferably pH 3.0 to pH 8.0.
  • the film thickness of the gold film obtained by performing electrolytic plating using the electrolytic gold plating solution of the present invention is not particularly limited, but is preferably 0.01 ⁇ m to 20 ⁇ m, particularly preferably 0.05 ⁇ m to 5 ⁇ m.
  • a thin gold plating process called flash gold plating with a thickness of about 0.01 ⁇ m to 0.05 ⁇ m is performed for the purpose of improving the adhesion between the gold film and the underlying metal. Then, it is common to perform a thick gold plating process to a desired film thickness.
  • the electrolytic gold plating solution of the present invention can be suitably used for the thick gold plating treatment at this time, but it is possible to perform flash gold plating even when the thick gold plating treatment is performed with the electrolytic gold plating solution of the present invention.
  • a commercially available flash gold plating solution or the electrolytic gold plating solution of the present invention can be appropriately used for flash gold plating.
  • the electrolytic gold plating solution of the present invention is preferably used for the nickel barrier plating technique described above. Therefore, when performing electrolytic gold plating using the electrolytic gold plating solution of the present invention, it is preferable to form a nickel plating film as a base plating treatment.
  • the nickel plating solution at this time is not particularly limited, but a watt bath, a sulfamine bath, a nickel bromide bath and the like that are generally used are suitable. Moreover, a pit inhibitor, a primary brightener, and a secondary brightener can be added to the nickel plating solution used as needed.
  • the method of using the nickel plating solution is not particularly limited and is used according to a conventional method.
  • the thickness of the nickel plating film is not particularly limited, but is preferably 0.1 ⁇ m to 20 ⁇ m, and particularly preferably 0.5 ⁇ m to 5 ⁇ m.
  • the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.
  • concentration in the composition of electrolytic gold plating solution is a numerical value of the density
  • the “comparative compound” hexamethylenetetramine, a benzene ring compound in which one or more nitro groups are substituted on the carbon atom in the ring, and a heterocyclic compound in which the nitro group is not substituted are used.
  • pH was adjusted with 20 mass% potassium hydroxide aqueous solution and a citric acid, the bath temperature of the electrolytic gold plating solution was set to 50 degreeC, and the following evaluation was performed.
  • Example 11 An electrolytic gold plating solution was prepared in the same manner as in Example 1 except that no metal salt other than a gold salt such as a cobalt salt, a nickel salt, or an iron salt was contained, and electrolytic gold plating was performed in the same manner as in Example 1. The following evaluation was performed.
  • a gold salt such as a cobalt salt, a nickel salt, or an iron salt
  • Electrolytic gold plating was performed on a primary bright nickel plating film of 2.0 ⁇ m on a 10 mm ⁇ 10 mm copper plate in the steps shown in Table 2. did. Electrolytic gold plating is carried out by stirring the electrolytic gold plating solution from a circular jet port having a diameter of 8 mm at a flow rate of 18 L / min with a pump (hereinafter referred to as “jet jet gold plating method”), and a current density of 5 A. Electrolytic gold plating was performed for 10 seconds each at two levels of / dm 2 and 40 A / dm 2 .
  • the primary bright nickel plating film was plated to a thickness of 2.0 ⁇ m using the following electrolytic nickel plating solution A. That is, commercially available nickel sulfamate plating solution (manufactured by Murata Co., Ltd., SN Conque (trade name)) 500 mL / L, commercially available nickel chloride 10 g / L, commercially available boric acid 30 g / L, and pit inhibitor (Ebara Eugelite Co., Ltd.) The product was made at a concentration of 2 mL / L, made by company, pit inhibitor # 82 (trade name) to obtain “electrolytic nickel plating solution A”.
  • the thickness of the gold film was measured according to a conventional method using a fluorescent X-ray analyzer (SFT 9255, manufactured by Seiko Instruments Inc.) in the vicinity of the center subjected to electrolytic gold plating in a circular shape. The results are shown in Table 3.
  • a gold film having a gold film thickness of 0.1 ⁇ m or less when subjected to electrolytic gold plating at a current density of 5 A / dm 2 was determined to be an electrolytic gold plating solution optimal for nickel barrier plating technology having excellent gold selective deposition performance.
  • the result is shown in Table 3 as “good” when 0.1 ⁇ m or less and “bad” when thicker than 0.1 ⁇ m.
  • a gold film having a gold film thickness of 5 times or more than the gold film thickness when electrolytic gold plating treatment is performed at a current density of 5 A / dm 2 when gold plating is performed at a current density of 40 A / dm 2 is used.
  • the electrolytic gold plating solution was judged to be optimal for nickel barrier plating technology with excellent selective deposition performance. 5 times or more is “good”, less than 5 times is “bad”, and the results are shown in Table 3.
  • ⁇ Method for measuring gold purity of gold film> Using the electrolytic gold plating solution prepared in each example and each comparative example, a cathode current density of 40 A / min was applied on a primary bright nickel plating film of 2.0 ⁇ m on a 10 mm ⁇ 10 mm copper plate in the steps shown in Table 2. An electrolytic gold plating film of 50 ⁇ m was prepared at dm 2 by a jet-jet gold plating method, and a copper material and a nickel plating film were dissolved in nitric acid to prepare a gold foil.
  • the gold foil was dissolved in 20 mL of aqua regia and quantitative analysis of Cu, Ni, Co, and Fe as impurity elements was performed with an ICP emission spectroscopic analyzer (Seiko Instruments Inc., SPS3000). The gold purity was calculated from the deposited gold mass and the impurity mass. The results are shown in Table 3. In Table 3, “%” indicates “mass%”.
  • each electrolytic gold plating solution has a gold equivalent concentration of 9 g / L. Then, the bath temperature was raised to 50 ° C., and gold plating was performed on 2.0 ⁇ m of the primary bright nickel plating film on the 10 mm ⁇ 10 mm copper plate in the process described in Table 2 above.
  • the current density is 1 A / dm 2 , 5 A / dm 2 , 10 A / dm 2 , 15 A / dm 2 (only the electrolytic gold plating solution of Example 1), 20 A / dm by the jet jet gold plating method. 2 , 30 A / dm 2 , 40 A / dm 2 , 50 A / dm 2 , 60 A / dm 2 , followed by electrolytic gold plating for 10 seconds each, and the gold was plated in the vicinity of the center by the above method. The film thickness of the film was measured. A graph plotting the measurement results is shown in FIG.
  • the film thickness of the gold film was very thin. Has formed.
  • the electrolytic gold plating solution of Example 1 may form a gold film having a film thickness equal to or greater than that of a general-purpose electrolytic gold plating solution. did it.
  • the low current density region corresponds to a portion not subjected to gold plating
  • the high current density region is considered to correspond to a portion subjected to gold plating.
  • the thinner the gold film in the density region the better the nickel barrier properties the thicker the gold film in the high current density region. Therefore, the electrolytic gold plating solution of Example 1 containing the specific heterocyclic compound has “excellent performance adapted to the nickel barrier plating technique” because of the properties shown in FIG. 1 and the above reasons.
  • the portion where the electrolytic gold plating is not desired (nickel barrier portion) (the portion where the silicon rubber member was pressed) was always 0.05 ⁇ m even at the edge portion. Only the following gold film was formed, but the gold film with an average of 0.67 ⁇ m was formed over the entire area where the electrolytic gold plating was desired (the part where the silicon rubber member was not pressed). Also, only a gold film of 0.03 ⁇ m or less was always formed on the side surface of the portion where the silicon rubber member was pressed. Even though the nickel barrier portion was an edge, almost no gold film was formed, so no solder bleeding was observed.
  • the gold film thickness at a current density of 5 A / dm 2 is 0.1 ⁇ m or less, and the gold film at a current density of 5 A / dm 2 is used.
  • the ratio of the film thickness to the gold film thickness at a current density of 40 A / dm 2 is 1: 5 or more, and the gold selective deposition performance is all “good”, which is optimal for nickel barrier plating. It turned out to be a liquid.
  • the gold films obtained using the electrolytic gold plating solutions of the present invention of Examples 1 to 11 had excellent mechanical properties such as wear resistance, corrosion resistance, and electrical properties.
  • the gold alloy films obtained using the electrolytic gold alloy plating solutions of Examples 1 to 10 had excellent mechanical properties such as wear resistance.
  • the film thickness of the gold film at a current density of 5 A / dm 2 is much higher than 0.1 ⁇ m, and the film of the gold film at a current density of 5 A / dm 2 is used.
  • the ratio between the thickness and the gold film thickness at a current density of 40 A / dm 2 is less than 1: 5, and the difference between the gold film thickness in the low current density area and the gold film thickness in the high current density area is small. , All showed poor gold selective deposition performance and were not suitable for nickel barrier plating.
  • the electrolytic gold plating solution is suitable for nickel barrier plating.
  • the electrolytic gold plating solutions of Examples 1 to 11 were found to be suitable for nickel barrier plating.
  • the gold film obtained using the electrolytic gold plating solution of the present invention has excellent mechanical properties, corrosion resistance, and electrical properties, and further has excellent gold selective deposition performance. It is ideal for nickel barrier plating that has been put to practical use in the past, and it is possible to apply nickel barrier plating to connectors with complicated shapes and miniaturized connectors that have been considered extremely difficult until now. It is widely used in this field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

 金めっき皮膜の物性については優れた機械特性、耐摩耗性、電気特性等を維持したまま、ニッケルバリアめっきに適した電解金めっき液を提供すること、すなわち、部材を機械的に押さえつけた「金めっきが不必要な部分(ニッケルバリア部分)」での金析出を抑制し、金めっきが必要な部分では良好な金析出が起こり、また、金の異常析出がなく安定した製品製造が可能な電解金めっき液を提供することを課題とし、金源としてのシアン化金塩と、環中に窒素原子を1個以上有し、該環中の炭素原子にニトロ基が1個以上置換している複素環式化合物とを含有することを特徴とする電解金めっき液、及び、上記の電解金めっき液を用いてニッケル皮膜上に電解金めっきを行うことによって得られたことを特徴とする金皮膜によって、上記課題を解決した。

Description

電解金めっき液及びそれを用いて得られた金皮膜
 本発明は、特定の組成を有する電解金めっき液及びその電解金めっき液を用いて得られたニッケル皮膜上の金皮膜に関するものである。
 ニッケル皮膜上に施す金めっきは、金が優れた耐食性、機械的特性、電機特性等を有し、ニッケルが下地金属として優れた耐熱性等を有するため、電子電気部品等の分野で広く用いられている。そのなかでも、コバルト、ニッケル等の金属と合金化された硬質金めっきは、その高い硬度と優れた耐摩耗性を生かして、コネクター等の差込部材、スイッチ等の接点部材等のコンタクト接合部の金めっきとして広く使用されている。
 近年、電子機器の小型化により、コネクター等の差込部材やスイッチ等の接点部材も小型化され、形状も複雑化され、半田接合が必要な箇所と接点として機能しなければならない箇所の間隔が著しく狭くなり、半田接合が必要でない部分にまで半田がヌレ広がってしまう現象が問題となっている。そこで、接点部分と半田接合部分の間に金めっきを施さない部分を設けて、半田が必要な部分にしかヌレ広がらないようにすることにより、この問題を解決しようとしている。
 この方法は、一般にニッケルバリアめっきと呼ばれる電解金めっき技術であり、1つの部品の中で金めっきが必要な部分と不必要な部分を作るために、金めっきが不必要な部分(ニッケルバリア部分)にシリコンゴム等の部材を機械的に押さえつけて金めっき液と被めっき部品が接触できないようにして、1つの部品の中に金めっきが施されている部分と、金めっきが施されていない部分(ニッケルバリア部分)を設ける方法である。
 しかしながら、1つの部品の中で金めっきを施す部分と施さない部分を作らなければならないため、たとえ機械的に金めっきが不必要な部分をシリコンゴム等の部材で押さえつけたとしても、その部分に金めっき液が漏れ出ることを完全に防止することは、めっき装置的に非常に難しいという問題があった。
 この問題を解決するために、金コバルトめっき液を弱酸性に保持し、かつヘキサメチレンテトラミンを添加して、不要な部分への金めっき皮膜の析出が抑制される金めっき浴が特許文献1に開示されている。しかしながら、この技術は、金析出の選択性において充分な性能を有しているとは言えず、また、還元性のヘキサメチレンテトラミンを金めっき浴に添加していることから、金が金めっき浴中で異常析出し、めっき液を循環するためのポンプの軸部分に金が付着して、ポンプが停止してしまったり、金がめっき反応以外にも消費されたりして、非常に不経済であり実用的ではなかった。
 近年、電子機器の小型化により、金めっきが施されている部分と施されていない部分を明確に区別して作らなければならなくなったが、従来の技術ではそれは達成されておらず、更なる改良が必要であった。
特開2008-045194号公報
 本発明は、上記背景技術に鑑みてなされたものであり、その課題は、金めっき皮膜の物性については従来の電解金めっき液を用いて得られたものと同等の機械特性、耐摩耗性、電気特性等を維持し、ニッケルバリアめっきに適した電解金めっき液を提供することにある。すなわち、部材を機械的に押さえつけた「金めっきが不必要な部分(ニッケルバリア部分)」での金析出を抑制し、金めっきが必要な部分では良好な金析出が起こり、また、金の異常析出がなく安定した製品製造が可能な電解金めっき液を提供することにある。
 本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、金めっき液が被めっき部分に触れる部分は高電流密度(設定電流密度)でめっき反応が進行し、金めっき液が被めっき部分に触れない部分は低電流密度でめっき反応が進行することに着目し、その差を利用して電解金めっき液を開発すればよいことを見出した。
 図1は、汎用の電解金めっき液と本発明の実施例1記載の組成の電解金めっき液を用いて測定したもので、横軸に電流密度(A/dm)、縦軸に10秒間金めっき処理をした後の金皮膜の膜厚(μm)をとったグラフである。すなわち、汎用の電解金めっき液の金濃度を実施例1の電解金めっき液の金換算の濃度(9g/L)に調整し、浴温を50℃に昇温して、後述する表2記載の工程で、10mm×10mmの銅板上の1次光沢ニッケルめっき皮膜2.0μm上に金めっきを施した。金めっきは、口径8mmの円状の噴流口から毎分18Lの流量で金めっき液をポンプにより噴流攪拌しながら、電流密度を1A/dm、5A/dm、10A/dm、20A/dm、30A/dm、40A/dm、50A/dm、60A/dmと変化させて10秒間ずつ金めっき処理をし、円状に金めっき処理された中心付近を蛍光X線分析装置(セイコーインスツルメンツ株式会社製、SFT9255)を使用して、常法に従って金皮膜の膜厚を測定し、測定結果をプロットしたグラフである。
 図1における0A/dmから5A/dm(以下、「低電流密度域」と略記する)は、ニッケルバリアめっき技術における金めっきを施さない部分に相当し、低電流密度域での金皮膜の膜厚は薄ければ薄いほどニッケルバリア特性が良好になると判断した。また、図1における20A/dmから60A/dm(以下、「高電流密度域」と略記する)は、ニッケルバリアめっき技術における金めっきを施す部分に相当し、高電流密度域での金皮膜の膜厚は厚ければ厚いほどニッケルバリア特性が良好になると判断した。実施例1記載の組成の電解金めっき液のプロットグラフ参照。
 ニッケルバリアめっき技術において、前記したように、金めっきが不必要な部分をシリコンゴム等の部材で機械的に押さえつけたとしても、その部分に金めっき液が漏れ出ることを完全に防止することは装置的に非常に難しいという現状にあっては、ニッケルバリアめっき技術に要求される電解金めっき液の特性は、低電流密度域での金析出膜厚が非常に薄く、かつ低電流密度域での金析出量と高電流密度域での金析出量の差が大きく、製品に金めっき皮膜を形成させる高電流密度域での金析出量は最大限確保できる特性であることを見出した。そして、そのような特性を有する電解金めっき液が、金析出に関して選択性があり、ニッケルバリアめっき技術に適した電解金めっき液であると考えた。
 そこで、本発明者は、上記課題を電解金めっき液の組成の点から解決すべく鋭意検討を重ねた結果、シアン化金塩、及び、「環中に窒素原子を1個以上有する複素環式化合物で、該環中の炭素原子にニトロ基が1個以上置換している複素環式化合物」を必須成分として含有する電解金めっき液を用いて金皮膜を形成すれば、前記問題点を解消し、上記課題を解決し、金めっき皮膜の低電流密度域での金析出が抑制され、金の異常析出もなく安定した製品の製造ができることを見出し、本発明の完成に至った。
 すなわち、本発明は、金源としてのシアン化金塩と、環中に窒素原子を1個以上有し、該環中の炭素原子にニトロ基が1個以上置換している複素環式化合物とを含有することを特徴とする電解金めっき液を提供するものである。
 また、本発明は、更に、コバルト塩、ニッケル塩及び/又は鉄塩を含有する上記の電解金めっき液を提供するものである。
 また、本発明は、ジェット噴流式めっき装置を用いて、電流密度を5A/dmと40A/dmに設定してそれぞれ10秒間めっき処理をした場合、電流密度5A/dmでの金皮膜の膜厚が0.1μm以下であり、かつ40A/dmでの金皮膜の膜厚が、5A/dmでの金皮膜の膜厚の5倍以上である上記の電解金めっき液を提供するものである。
 また、本発明は、上記の電解金めっき液を用いてニッケル皮膜上に電解金めっきを行うことによって得られたことを特徴とする金皮膜を提供するものである。
 本発明の電解金めっき液によれば、従来からの電解金めっき液を用いて得られる金皮膜の、優れた耐摩耗性等の機械特性、耐食性、電気特性等を維持したまま、低電流密度域での金析出速度を非常に遅く、高電流密度域での金析出速度を非常に速くでき(以下、この性能を「金選択析出性能」という)、それによって低電流密度域の金析出膜厚と高電流密度域の金析出膜厚の差を大きくできる。
 その結果として、シリコンゴム等の部材によって機械的に押さえつけられた「金めっきが不必要な部分(ニッケルバリア部分)」での金析出を抑制し、押さえつけられていない部分(金めっきが必要な部分)では良好な金析出を実現でき、また、金の異常析出がなく安定した製品製造が可能な電解金めっき液を提供でき、近年の電子機器のコネクター等の接点部材等に要求されるニッケルバリアめっき技術に好適に適応できる。
「電解金めっきの電流密度」と「10秒間の電解金めっきによって得られる金皮膜の膜厚」の関係を示す図である。 ニッケルバリアめっき技術を説明する図であり、ニッケルバリアめっき技術において電解金めっきが施されるコネクターの形態の一例である。 図2のコネクターに本発明の電解金めっきを施した時の金皮膜の厚さの分布を示す図である。
 以下、本発明について説明するが、本発明は以下の実施の具体的形態に限定されるものではなく、技術的思想の範囲内で任意に変形して実施することができる。
 本発明は、少なくとも、シアン化金塩を金源として含有し、更に「環中に窒素原子を1個以上有する複素環式化合物で、該環中の炭素原子にニトロ基が1個以上置換している複素環式化合物」を必須成分として含有することを特徴とする電解金めっき液である。本発明の「電解金めっき液」には、「電解金合金めっき液」も含まれる。また、本発明の「金皮膜」には、「金合金皮膜」も含まれる。すなわち、金以外の金属を含有していてもよい。
 硬質金めっきをするために本発明の電解金めっき液を使用する場合には、更に、コバルト塩、ニッケル塩及び/又は鉄塩を含有する。すなわち、金源としてのシアン化金塩に加えて、コバルト塩、ニッケル塩、鉄塩の何れか1種又は2種以上を含有する。
<シアン化金塩>
 本発明の電解金めっき液は、シアン化金塩を含有することが必須である。該シアン化金塩は、本発明の電解金めっき液の金源として用いられる。シアン化金塩は、1種の使用に限定されず2種以上を併用することができる。
 該シアン化金塩としては、シアン化金アルカリ金属又はシアン化金アンモニウムが好ましい。また、該シアン化金塩の金の価数(酸化数)としては、1価又は3価のどちらでも使用可能であるが、金の析出効率の観点から1価が好ましい。すなわちシアン化第1金塩が好ましい。
 該シアン化金塩の具体例としては、例えば、シアン化第1金ナトリウム、シアン化第1金カリウム、シアン化第1金アンモニウム、シアン化第2金ナトリウム、シアン化第2金カリウム、シアン化第2金アンモニウム等が挙げられる。このうち、金の析出効率等のめっき性能、コスト、入手の容易さ等の観点から、シアン化第1金ナトリウム、シアン化第1金カリウム、シアン化第1金アンモニウムが好ましく、更に同様の観点からシアン化第1金カリウムが特に好ましい。
 本発明の電解金めっき液中の該シアン化金塩の含有量は特に限定はなく、電解金めっき液全体に対して、金属金として、通常0.05g/L~50g/L、好ましくは0.5g/L~30g/L、特に好ましくは1g/L~20g/Lである。電解金めっき液中のシアン化金塩の含有量が少なすぎると、黄金色の金めっきが困難になる場合がある。一方、電解金めっき液中の金属金の含有量が多すぎる場合は、電解金めっき液の性能としては特に問題はないが、シアン化金塩は非常に高価な金属であり、電解金めっき液中に含有した状態で保存するのは不経済となる場合がある。
 上記のシアン化金塩についての記載は、本発明の電解金めっき液中に存在する形態を特定するものであるが、本発明の電解金めっき液の調液の際に溶解させる原料として、上記のシアン化金塩を用いることが好ましい。
<複素環式化合物>
 本発明の電解金めっき液には、「環中に窒素原子を1個以上有し、該環中の炭素原子にニトロ基が1個以上置換している複素環式化合物」(以下、括弧内を「特定複素環式化合物」と略記することがある)を必須成分として含有する。特定複素環式化合物を含有することにより、従来の電解金めっき皮膜の優れた高耐食性、機械特性、電気特性等を維持したままで、低電流密度域での金析出膜厚を小さくでき、低電流密度域での金析出膜厚と高電流密度域での金析出膜厚の差を非常に大きくできる。すなわち、特定複素環式化合物を含有することにより、金選択析出性能に優れた電解金めっき液を得ることができ、ニッケルバリアめっきに最適な電解金めっき液が実現される。
 上記特定複素環式化合物中の複素環は特に限定はなく、芳香族性を有しているものでも有していないものでもよいが、芳香族性を有しているものの方が、良好なめっき性能、入手の容易さ等の点、上記効果を特に奏する点で好ましい。複素環を構成する炭素原子以外の異原子は特に限定はなく、窒素、酸素、イオウ等が挙げられるが、異原子の少なくとも1つは窒素原子であることが必須である。また、複素環を構成する異原子が窒素原子のみであることが、良好なめっき性能、入手の容易さ等の点で好ましい。
 複素環中の炭素原子には、本発明の効果を損なわない範囲において任意の置換基が置換していてもよい。複素環中の炭素原子に対する置換基の少なくとも1つはニトロ基であることが必須である。ニトロ基以外の置換基としては、アルキル基、ヒドロキシ基、フェニル基等が挙げられる。複素環中の炭素原子に置換しているニトロ基の数は1個以上であれば特に限定はないが、1~3個が好ましく、1~2個が特に好ましい。
 上記の特定複素環式化合物の具体例としては、例えば、ピロール、イミダゾール、ピラゾール、トリアゾール、テトラゾール、オキサゾール、イソオキサゾール、インドール、ピリジン、ピリダジン、ピリミジン、ピラジン、ウラシル、シトシン、チミン、アデニン、グアニン、キノリン、イソキノリン、キサリン、イソキサリン、アクリジン、シンノソリン又はモルホリンの環を構成する炭素原子にニトロ基が1個以上置換しているものが好ましいものとして挙げられる。
 更に具体的には、ニトロピロール、ジニトロピロール、ニトロイミダゾール、ジニトロイミダゾール、ニトロピラゾール、ジニトロピラゾール、ニトロトリアゾール、ジニトロトリアゾール、ニトロテトラゾール、ニトロオキサゾール、ジニトロオキサゾール、ニトロイソオキサゾール、ジニトロイソオキサゾール、ニトロインドール、ニトロピリジン、ジニトロピリジン、ニトロピリダジン、ジニトロピリダジン、ニトロピリミジン、ジニトロピリミジン、ニトロピラジン、ジニトロピラジン、ニトロウラシル、ニトロシトシン、ニトロチミン、ニトロアデニン、ニトログアニン、ニトロキノリン、ジニトロキノリン、ニトロイソキノリン、ジニトロイソキノリン、ニトロキサリン、ジニトロイソキサリン、ニトロアクリジン、ニトロシンノソリン、ジニトロシンノソリン、ニトロモルホリン、ジニトロモルホリン等が、良好なめっき性能、水への溶解の容易さ、低電流密度域でめっきした場合の金析出の抑制性能、入手のし易さ、低コスト等の観点から、特に好ましいものとして挙げられる。
 本発明において、特定複素環式化合物の含有量については特に限定はないが、電解金めっき液全体に対して、好ましくは10ppm~50000ppm、より好ましくは50ppm~30000ppm、特に好ましくは100ppm~10000ppmである。なお、上記の特定複素環式化合物を2種以上含有するときは、上記数値はそれらの合計含有量を示す。電解金めっき液中の特定複素環式化合物の含有量が少なすぎると、低電流密度域でめっきした場合の金析出が抑制されなかったり、金皮膜の外観不良を起こしたりする場合がある。一方、含有量が多すぎると、本発明の上記効果の更なる増加は期待できず不経済となる場合がある。
 上記の特定複素環式化合物についての記載は、本発明の電解金めっき液中に存在する形態を特定するものであるが、本発明の電解金合金めっき液の調液の際に、溶解させる原料として、上記の特定複素環式化合物を用いることが好ましい。
<コバルト塩、ニッケル塩、鉄塩>
 本発明の電解金合金めっき液は、シアン化金塩、上記の特定複素環式化合物に加えて、更に、コバルト塩、ニッケル塩及び/又は鉄塩を併用することが、ニッケルバリアめっきに最適な硬質金皮膜を形成できる電解金めっき液が得られるために好ましい。
 上記のコバルト塩、ニッケル塩又は鉄塩は、ニッケルめっき皮膜上の金めっき皮膜中に金と共に析出し(共析し)、硬質金皮膜を形成し、電子部品のコネクター等の接点部材に必要とされる高硬度や高耐摩耗性等を実現させることができる。
 上記のコバルト塩、ニッケル塩及び鉄塩は水溶性であることが好ましい。上記のコバルト塩、ニッケル塩及び/又は鉄塩は、それぞれの金属塩の中で1種の使用に限定されず2種以上を併用することができる。また、コバルト塩、ニッケル塩、鉄塩の中で、異なる金属の金属塩を1種に限定されず2種以上を併用することができる。
 上記コバルト塩としては特に限定はないが、例えば、硫酸コバルト、塩化コバルト、硝酸コバルト、炭酸コバルト、フタロシアニンコバルト、ステアリン酸コバルト、エチレンジアミン4酢酸二ナトリウムコバルト、ナフテン酸コバルト、ホウ酸コバルト、チオシアン酸コバルト、スルファミン酸コバルト、酢酸コバルト、クエン酸コバルト、水酸化コバルト、シュウ酸コバルト、リン酸コバルト等が、良好なめっき性能、水への溶解の容易さ、金皮膜への共析のし易さ、入手の容易さ、低コスト等の観点から、好ましいものとして挙げられる。
 上記ニッケル塩としては特に限定はないが、例えば、硫酸ニッケル、酢酸ニッケル、塩化ニッケル、ホウ酸ニッケル、安息香酸ニッケル、シュウ酸ニッケル、ナフテン酸ニッケル、酸化ニッケル、リン酸ニッケル、ステアリン酸ニッケル、酒石酸ニッケル、チオシアン酸ニッケル、アミド硫酸ニッケル、炭酸ニッケル、クエン酸ニッケル、ギ酸ニッケル、シアン化ニッケル、水酸化ニッケル、硝酸ニッケル、オクタン酸ニッケル等が、良好なめっき性能、水への溶解の容易さ、金皮膜への共析のし易さ、入手の容易さ、低コスト等の観点から、好ましいものとして挙げられる。
 上記鉄塩としては特に限定はないが、例えば、硫酸第1鉄、硫酸第2鉄、塩化第1鉄、塩化第2鉄、クエン酸第1鉄、クエン酸第2鉄、ギ酸第2鉄、次亜リン酸第2鉄、ナフテン酸第2鉄、ステアリン酸第2鉄、ピロリン酸第2鉄、酒石酸第1鉄、酒石酸第2鉄、チオシアン酸第1鉄、チオシアン酸第2鉄、フマル酸第1鉄、グルコン酸第1鉄、エチレンジアミン四酢酸鉄、硝酸第1鉄、硝酸第2鉄等が、良好なめっき性能、水への溶解の容易さ、金皮膜への共析のし易さ、入手の容易さ、低コスト等の観点から、好ましいものとして挙げられる。
 本発明の電解金めっき液中の上記コバルト塩、ニッケル塩、鉄塩の含有量については特に限定はないが、電解金めっき液全体に対して、金属として(金属換算で)、好ましくは1ppm~50000ppm、より好ましくは10ppm~30000ppm、特に好ましくは50ppm~10000ppmである。なお、上記コバルト塩、ニッケル塩、鉄塩を2種以上使用するときは、上記数値はそれらの合計含有量を示す。含有量が少なすぎると、金皮膜への共析量が少なすぎて充分な硬度が得られない場合がある。一方、含有量が多すぎると、金皮膜への共析量が多くなりすぎて、金皮膜の色調不良や接触抵抗の増大が発生したり、硬度の更なる増加は期待できなかったりする場合がある。
<その他の添加剤>
 本発明の電解金めっき液には、上記の成分以外に必要に応じて、電解金めっき液のpHを一定に保つための緩衝剤、電解金めっき液の導電性を確保するための電導塩、電解金めっき液中に不純物金属が混入した場合に影響を除去するための金属イオン封鎖剤、金皮膜のピンホール除去若しくは電解金めっき液の泡切れを良好にするための界面活性剤、金皮膜を平滑にするための光沢剤等を、適宣含有させて用いることができる。
 本発明の電解金めっき液に必要に応じて含有される緩衝剤としては、周知の緩衝剤であれば特に限定はないが、ホウ酸、リン酸等の無機酸;クエン酸、酒石酸、リンゴ酸等のオキシカルボン酸等が挙げられる。これらは1種又は2種以上を混合して用いることができる。
 本発明の電解金めっき液中の緩衝剤の含有量は特に限定はないが、電解金めっき液全体に対して、通常1g/L~500g/L、好ましくは10g/L~100g/Lである。電解金めっき液中の緩衝剤の含有量が少なすぎると、緩衝効果が発揮され難い場合があり、一方、多すぎる場合は緩衝効果の上昇が見られず不経済の場合がある。
 本発明の電解金めっき液に必要に応じて含有される電導塩としては、周知の電導塩であれば特に限定はないが、硫酸塩、硝酸塩、リン酸塩等の無機酸;シュウ酸、コハク酸、グルタル酸、マロン酸、クエン酸、酒石酸、リンゴ酸等のカルボン酸等が挙げられる。これらは1種又は2種以上を混合して用いることができる。
 本発明の電解金めっき液中の電導塩の含有量は特に限定はないが、電解金めっき液全体に対して、通常1g/L~500g/L、好ましくは10g/L~100g/Lである。電解金めっき液中の電導塩の含有量が少なすぎると、電導効果が発揮され難い場合があり、一方、多すぎる場合は緩衝効果の上昇が見られず不経済の場合がある。また緩衝剤と同一の成分で共用することも可能である。
 本発明の電解金めっき液に必要に応じて含有される金属イオン封鎖剤としては、周知の金属イオン封鎖剤であれば特に限定はないが、イミノジ酢酸、ニトリロトリ酢酸、エチレンジアミンテトラ酢酸等のアミノカルボン酸系キレート剤;ヒドロキシエチリデンジホスホン酸、ニトリロメチレンホスホン酸、エチレンジアミンテトラメチレンホスホン酸等のホスホン酸系キレート剤等が挙げられる。これらは1種又は2種以上を混合して用いることができる。
 本発明の電解金めっき液中の金属イオン封鎖剤の含有量は特に限定はないが、電解金めっき液全体に対して、通常0.1g/L~100g/L、好ましくは0.5g/L~50g/Lである。電解金めっき液中の金属イオン封鎖剤の含有量が少なすぎると、不純物金属の影響を除去する効果が発揮され難い場合があり、一方、多すぎる場合は不純物金属の影響を除去する効果の上昇が見られず不経済の場合がある。
 本発明の電解金めっき液に必要に応じて含有される界面活性剤としては、周知の界面活性剤であれば特に限定はなく、ノニオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤又はカチオン系界面活性剤が用いられる。これらは1種又は2種以上を混合して用いることができる。
 ノニオン系界面活性剤としては、ノニフェノールポリアルコキシレート、α-ナフトールポリアルコキシレート、ジブチル-β-ナフトールポリアルコキシレート、スチレン化フェノールポリアルコキシレート等のエーテル型ノニオン系界面活性剤;オクチルアミンポリアルコキシレート、ヘキシニルアミンポリアルコキシレート、リノレイルアミンポリアルコキシレート等のアミン型ノニオン系界面活性剤等が挙げられる。
 アニオン系界面活性剤としては、ラウリル硫酸ナトリウム等のアルキル硫酸塩;ポリオキシエチレンノニルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩;ポリオキシエチレンアルキルフェニルエーテル硫酸塩;アルキルベンゼンスルホン酸塩等が挙げられる。
 両性界面活性剤としては、2-ウンデシル-1-カルボキシメチル-1-ヒドロキシエチルイミダゾリウムベタイン、N-ステアリル-N、N-ジメチル-N-カルボキシメチルベタイン、ラウリルジメチルアミンオキシド等が挙げられる。
 カチオン界面活性剤としては、ラウリルトリメチルアンモニウム塩、ラウリルジメチルアンモニウムベタイン、ラウリルピリジニウム塩、オレイルイミダゾリウム塩又はステアリルアミンアセテート等が挙げられる。
 これらは1種又は2種以上を混合して用いることができるが、好ましくはノニオン系界面活性剤又は両性界面活性剤である。
 本発明の電解金めっき液中の界面活性剤の含有量は、電解金めっき液全体に対して、好ましくは0.01g/L~20g/Lであるが、所望の性能を発揮すればよく、特に含有量を限定するものではない。
 本発明の電解金めっき液に必要に応じて含有される光沢剤としては、周知の光沢剤であれば特に限定はないが、ピリジン骨格を有するアミン化合物等が挙げられる。これらは1種又は2種以上を混合して用いることができる。
 ピリジン骨格を有するアミン化合物としては、2-アミノピリジン、3-アミノピリジン、4-アミノピリジン等が挙げられる。
 本発明の電解金めっき液中の光沢剤の含有量は、電解金めっき液全体に対して、好ましくは0.01g/L~20g/Lであるが、所望の性能を発揮すればよく、特に含有量を限定するものではない。
<電解金めっき液の物性>
 本発明の電解金めっき液を用いれば、ジェット噴流式めっき装置を用いて、電流密度を5A/dmと40A/dmに設定してそれぞれ10秒間めっき処理をした場合、電流密度5A/dmでの金皮膜の膜厚を0.1μm以下にでき、かつ40A/dmでの金皮膜の膜厚を、5A/dmでの金皮膜の膜厚の5倍以上にできる。更には、電流密度5A/dmでの金皮膜の膜厚を0.08μm以下にもでき、40A/dmでの金皮膜の膜厚を、5A/dmでの金皮膜の膜厚の7倍以上にもできる。
 従って、本発明の電解金めっき液は、前記組成を有し、かつ、ジェット噴流式めっき装置を用いて、電流密度を5A/dmと40A/dmに設定してそれぞれ10秒間めっき処理をした場合、電流密度5A/dmでの金皮膜の膜厚が0.1μm以下であり、かつ40A/dmでの金皮膜の膜厚が、5A/dmでの金皮膜の膜厚の5倍以上である電解金めっき液であることが好ましい。更には、上記条件で、電流密度5A/dmでの金皮膜の膜厚が0.08μm以下であり、かつ40A/dmでの金皮膜の膜厚が、5A/dmでの金皮膜の膜厚の7倍以上である電解金めっき液であることが特に好ましい。
 これにより、本発明の電解金めっき液を、前記したニッケルバリアめっき技術に、特に好適に用いることができる。
<金皮膜>
 前述した通り、本発明の「電解金めっき液」には、「電解金合金めっき液」も含まれる。また、本発明の「金皮膜」には、「金合金皮膜」も含まれる。すなわち、コバルト、ニッケル、鉄等の金以外の金属を含有していてもよい。金以外の金属は、ニッケルめっき皮膜上の金めっき皮膜中に金と共析し、ニッケルバリアめっきに最適な硬質金皮膜を形成し、電子部品のコネクター等の接点部材に必要とされる高硬度や高耐摩耗性等を実現させることができる。
 該「金皮膜」中の金の濃度(金純度)は特に限定はないが、「金皮膜」全体に対して、金が95質量%以上であることが好ましく、上記用途のための硬質金皮膜を得るためには、97質量%~99.99質量%がより好ましく、99質量%~99.9質量%が特に好ましい。
<電解金めっきの条件>
 上記した本発明の電解金めっき液のめっき条件は特に限定されるものではないが、温度条件としては、20℃~90℃であることが好ましく、特に好ましくは30℃~70℃である。また、めっき液のpHはpH2.0~pH9.0であることが好ましく、特に好ましくは、pH3.0~pH8.0である。
 本発明の電解金めっき液を用いて電解めっきを行うことによって得られる金皮膜の膜厚に特に限定はないが、好ましくは0.01μm~20μm、特に好ましくは0.05μm~5μmである。
 また、電解金めっき液の使用に際しては、金皮膜と下地金属との密着を良くする目的でフラッシュ金めっきと呼ばれる金皮膜の厚さが0.01μm~0.05μm程度の薄付け金めっき処理をして、その上に更に所望の膜厚まで厚金めっき処理をするのが一般的である。本発明の電解金めっき液は、このときの厚金めっき処理に好適に使用できるが、本発明の電解金めっき液で厚金めっき処理を施す場合にも、フラッシュ金めっきを施すことは可能であり、フラッシュ金めっきには、市販のフラッシュ金めっき液や、本発明の電解金めっき液を適宣使用することができる。
 本発明の電解金めっき液は、前記したニッケルバリアめっき技術に用いられることが好ましい。従って、本発明の電解金めっき液を用いて電解金めっきを行うときは、下地めっき処理としてニッケルめっき皮膜を形成させておくことが好ましい。このときのニッケルめっき液は特に限定されるものではないが、一般的に実用されているワット浴、スルファミン浴、臭化ニッケル浴等が好適である。また、使用するニッケルめっき液に、ピット防止剤、1次光沢剤、2次光沢剤を必要に応じて添加して用いることができる。ニッケルめっき液の使用方法は、特に限定はなく常法に従って使用する。
 ニッケルめっき皮膜の膜厚も特に限定されるものではないが、0.1μm~20μmであることが好ましく、特に好ましくは0.5μm~5μmである。
<作用・原理>
 本発明の電解金めっき液が、ニッケルバリアめっき技術に要求される優れた金選択析出性能を示す作用・原理は明らかではなく、本発明は以下の作用・原理の範囲に限定されるものではないが、以下のことが考えられる。すなわち、特に低電流密度域では、シアン化金塩中の金が還元されて金属金になるより、特定複素環式化合物が置換基として有するニトロ基が還元されてニトロソ基になる方が支配的となり、低電流密度域では金の析出が抑えられ、その結果、優れた金選択析出性能を示すようになったと考えられる。
 以下に実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を越えない限りこれらの実施例に限定されるものではない。また、電解金めっき液の組成中の濃度の数値は、その成分が結晶水を含むものである場合は、結晶水を入れない質量から求めた濃度の数値である。
<電解金めっき液の調製>
実施例1~10、比較例1~12
 電解金めっき液全体に対して、シアン化金カリウムを金換算で9g/L、表1に示す各実施例及び各比較例に記載のコバルト塩、ニッケル塩又は鉄塩を金属換算で200ppm、特定複素環式化合物若しくはその比較化合物を1000ppm、電導塩と緩衝剤を兼ねた成分としてクエン酸を100g/Lとなるように溶解し、pHを4.3に調整して電解金めっき液とした。
 「比較化合物」としては、ヘキサメチレンテトラミン、環中の炭素原子にニトロ基が1個以上置換しているベンゼン環化合物、及びニトロ基が置換していない複素環式化合物を用いた。なお、pHは20質量%水酸化カリウム水溶液とクエン酸にて調整し、電解金めっき液の浴温は50℃に設定し、以下に記載の評価を行った。
実施例11
 コバルト塩、ニッケル塩、鉄塩等の金塩以外の金属塩を含有しない以外は、実施例1と同様に電解金めっき液を調製し、実施例1と同様に電解金めっきを施し、同様に以下に記載の評価を行った。
<電解金めっきの方法>
 各実施例及び各比較例で調製した電解金めっき液を用いて、表2に示す工程にて、10mm×10mmの銅板上の1次光沢ニッケルめっき皮膜2.0μm上に、電解金めっきを施した。電解金めっきは、口径8mmの円状の噴流口から毎分18Lの流量で電解金めっき液をポンプにより噴流攪拌しながら(以下、「ジェット噴流式金めっき法」とする)、電流密度を5A/dm、40A/dmの2水準で各10秒間ずつ電解金めっき処理した。
 なお、1次光沢ニッケルめっき皮膜は、以下の電解ニッケルめっき液Aを用いて、膜厚2.0μmにめっきした。すなわち、市販スルファミン酸ニッケルめっき液(ムラタ株式会社製、SNコンク(商品名))500mL/L、市販の塩化ニッケル10g/L、市販のホウ酸30g/L、及びピット防止剤(荏原ユージライト株式会社製、ピット防止剤#82(商品名))2mL/Lの濃度で調液して、「電解ニッケルめっき液A」を得た。
<金皮膜の膜厚の測定方法と金選択析出性能の評価方法>
 円状に電解金めっき処理された中心付近を、蛍光X線分析装置(セイコーインスツルメンツ株式会社製、SFT9255)を使用して、常法に従って金皮膜の膜厚を測定した。結果を表3に示す。
 電流密度5A/dmで電解金めっき処理した場合の金皮膜の膜厚が0.1μm以下であるものを金選択析出性能に優れたニッケルバリアめっき技術に最適な電解金めっき液と判定した。0.1μm以下を「良」とし、0.1μmより厚いものを「不良」とし、結果を表3に示す。
 また、電流密度40A/dmで電解金めっき処理した場合の金皮膜の膜厚が電流密度5A/dmで電解金めっき処理した場合の金皮膜の膜厚の5倍以上であるものを金選択析出性能に優れたニッケルバリアめっき技術に最適な電解金めっき液と判定した。5倍以上を「良」とし、5倍未満を「不良」とし、結果を表3に示す。
<金皮膜の金純度の測定法>
 各実施例及び各比較例で調製した電解金めっき液を用いて、表2に示す工程にて、10mm×10mmの銅板上の1次光沢ニッケルめっき皮膜2.0μm上に、陰極電流密度40A/dmにて50μmの電解金めっき皮膜をジェット噴流式金めっき法で作成し、硝酸にて銅素材及びニッケルめっき皮膜を溶解して金箔を作成した。作成した金箔の重量を測った後、金箔を王水20mLに溶解させ、ICP発光分光分析装置(セイコーインスツルメンツ株式会社製、SPS3000)にて、不純物元素として、Cu、Ni、Co、Feの定量分析を行い、析出金質量と不純物質量から金純度を算出した。結果を表3に示す。表3中、「%」は「質量%」を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<電流密度と金皮膜の膜厚との関係>
 汎用の「特定複素環式化合物を含有していない電解金めっき液」と「本発明の上記実施例1の電解金めっき液」を用い、何れの電解金めっき液も金換算の濃度9g/Lとし、浴温を50℃に昇温して、上記した表2記載の工程で、10mm×10mmの銅板上の1次光沢ニッケルめっき皮膜2.0μm上に金めっきを施した。金めっきは、上記ジェット噴流式金めっき法により、電流密度を1A/dm、5A/dm、10A/dm、15A/dm(実施例1の電解金めっき液のみ)、20A/dm、30A/dm、40A/dm、50A/dm、60A/dmと変化させて10秒間ずつ電解金めっきをし、円状に金めっき処理された中心付近を上記した方法で金皮膜の膜厚を測定した。測定結果をプロットしたグラフを図1に示す。
 0A/dmから5A/dm(低電流密度域)において、実施例1の電解金めっき液では、金皮膜の膜厚は非常に薄かったが、汎用の電解金めっき液では、厚い金皮膜が形成されてしまった。また、20A/dmから60A/dm(高電流密度域)においては、実施例1の電解金めっき液は、汎用の電解金めっき液と同等以上の膜厚の金皮膜を形成することができた。
 本発明で見出されたように、ニッケルバリアめっき技術において、低電流密度域は金めっきを施さない部分に相当し、高電流密度域は金めっきを施す部分に相当すると考えられるので、低電流密度域での金皮膜の膜厚は薄ければ薄いほど、高電流密度域での金皮膜の膜厚は厚ければ厚いほどニッケルバリア特性が良好になる。従って、特定複素環式化合物を含有する実施例1の電解金めっき液は、図1に示した性質と上記理由から、「ニッケルバリアめっき技術に適応した優れた性能」を有するものになった。
<高精度コネクターへの適用>
 実施例1及び比較例1で調製した電解金めっき液を用いて、表2に示す工程にて、高精度コネクターの銅上に1次光沢ニッケルめっき皮膜2.0μmを施した。次いで、その上に、図2に示すように、電解金めっきを施したくない部分(ニッケルバリア-部分)のみに、常法に従ってシリコンゴム部材を押しつけて、50℃で平均の陰極電流密度40A/dmにて10秒間、電解金めっき皮膜をジェット噴流式金めっき法で作成した。上記で用いたニッケルバリアめっき技術におけるコネクターの形態を図2に示し、実施例1で調製した電解金めっき液を用いたときの、図2に対応した位置の膜厚分布を図3に示す。
 実施例1の電解金めっき液を用いた場合、電解金めっきを施したくない部分(ニッケルバリア-部分)(シリコンゴム部材を押しつけた部分)には、縁の部分であっても常に0.05μm以下の金皮膜しか形成されていなかったが、電解金めっきを施したい部分(シリコンゴム部材を押しつけていない部分)は、全域にわたって平均0.67μmの金皮膜が形成されていた。また、シリコンゴム部材を押しつけた部分の側面にも、常に0.03μm以下の金皮膜しか形成されていなかった。ニッケルバリア-部分にはたとえ縁であっても殆ど金皮膜が形成されていなかったため、はんだのにじみが見られなかった。
 一方、比較例1の電解金めっき液を用いた場合、シリコンゴム部材を押しつけた部分であっても、特に縁の部分は0.2μmの金皮膜が形成されてしまった部分があった。また、シリコンゴム部材を押しつけた部分の側面にも、0.2μmの金皮膜が形成されてしまった部分が存在した。従って、電解金めっきを施したくない部分であっても、薄く金皮膜が形成されてしまったため、ニッケルのバリアー効果が十分でなく、はんだのにじみが見られた。
<実施例と比較例のまとめ>
 本発明の電解金めっき液を使用した実施例1~実施例11は、電流密度5A/dmでの金膜厚が何れも0.1μm以下であり、かつ電流密度5A/dmでの金皮膜の膜厚と電流密度40A/dmでの金皮膜の膜厚の比が何れも1:5以上であり、金選択析出性能は全てが「良」で、ニッケルバリアめっきに最適な金めっき液であることが分かった。
 また、実施例1~実施例11の本発明の電解金めっき液を使用して得られた金皮膜は、優れた耐摩耗性等の機械特性、耐食性及び電気特性を有していた。特に、実施例1~実施例10の電解金合金めっき液を使用して得られた金合金皮膜は、優れた耐摩耗性等の機械特性を有していた。
 これに対して、比較例1~比較例12では、電流密度5A/dmでの金皮膜の膜厚が何れも0.1μmを大きく上回り、更に電流密度5A/dmでの金皮膜の膜厚と電流密度40A/dmでの金膜厚の比が何れも1:5未満であり、低電流密度域での金析出膜厚と高電流密度域での金析出膜厚の差が小さく、何れも金選択析出性能が悪く、ニッケルバリアめっきには適さないことが分かった。
 実際のコネクターに適用したところ、低電流密度域での金析出膜厚と高電流密度域での金析出膜厚の差が大きいと、ニッケルバリアめっきに適した電解金めっき液であることが確認でき、実施例1~11の電解金めっき液はニッケルバリアめっきに適したものであることが分かった。
 本発明の電解金めっき液を用いて得られた金皮膜は、優れた機械特性、耐食性及び電気特性を有しており、更に、金選択析出性能に優れるため、現在、電子機器の接点部材等に実用化されているニッケルバリアめっきに最適であり、今までニッケルバリアめっきが非常に難しいとされてきた複雑な形状のコネクターや微小化されたコネクター等にニッケルバリアめっきを施すことが可能となり、この分野に広く利用されるものである。
 本願は、2008年6月11日に出願した日本の特許出願である特願2008-153188に基づくものであり、その出願の全ての内容はここに引用し、本願発明の明細書の開示として取り込まれるものである。

Claims (15)

  1.  金源としてのシアン化金塩と、環中に窒素原子を1個以上有し、該環中の炭素原子にニトロ基が1個以上置換している複素環式化合物とを含有することを特徴とする電解金めっき液。
  2.  更に、コバルト塩、ニッケル塩及び/又は鉄塩を含有する請求項1に記載の電解金めっき液。
  3.  該シアン化金塩が、シアン化第1金ナトリウム、シアン化第1金カリウム、シアン化第1金アンモニウム、シアン化第2金ナトリウム、シアン化第2金カリウム又はシアン化第2金アンモニウムである請求項1に記載の電解金めっき液。
  4.  該複素環式化合物が、ピロール、イミダゾール、ピラゾール、トリアゾール、テトラゾール、オキサゾール、イソオキサゾール、インドール、ピリジン、ピリダジン、ピリミジン、ピラジン、ウラシル、シトシン、チミン、アデニン、グアニン、キノリン、イソキノリン、キサリン、イソキサリン、アクリジン、シンノソリン又はモルホリンの炭素原子にニトロ基が1個以上置換しているものである請求項1に記載の電解金めっき液。
  5.  該複素環式化合物が、ピロール、イミダゾール、ピラゾール、トリアゾール、テトラゾール、オキサゾール、イソオキサゾール、インドール、ピリジン、ピリダジン、ピリミジン、ピラジン、ウラシル、シトシン、チミン、アデニン、グアニン、キノリン、イソキノリン、キサリン、イソキサリン、アクリジン、シンノソリン又はモルホリンの炭素原子にニトロ基が1個以上置換しているものである請求項2に記載の電解金めっき液。
  6.  該複素環式化合物が、ニトロピロール、ジニトロピロール、ニトロイミダゾール、ジニトロイミダゾール、ニトロピラゾール、ジニトロピラゾール、ニトロトリアゾール、ジニトロトリアゾール、ニトロテトラゾール、ニトロオキサゾール、ジニトロオキサゾール、ニトロイソオキサゾール、ジニトロイソオキサゾール、ニトロインドール、ニトロピリジン、ジニトロピリジン、ニトロピリダジン、ジニトロピリダジン、ニトロピリミジン、ジニトロピリミジン、ニトロピラジン、ジニトロピラジン、ニトロウラシル、ニトロシトシン、ニトロチミン、ニトロアデニン、ニトログアニン、ニトロキノリン、ジニトロキノリン、ニトロイソキノリン、ジニトロイソキノリン、ニトロキサリン、ジニトロイソキサリン、ニトロアクリジン、ニトロシンノソリン、ジニトロシンノソリン、ニトロモルホリン又はジニトロモルホリンである請求項1に記載の電解金めっき液。
  7.  該複素環式化合物が、ニトロピロール、ジニトロピロール、ニトロイミダゾール、ジニトロイミダゾール、ニトロピラゾール、ジニトロピラゾール、ニトロトリアゾール、ジニトロトリアゾール、ニトロテトラゾール、ニトロオキサゾール、ジニトロオキサゾール、ニトロイソオキサゾール、ジニトロイソオキサゾール、ニトロインドール、ニトロピリジン、ジニトロピリジン、ニトロピリダジン、ジニトロピリダジン、ニトロピリミジン、ジニトロピリミジン、ニトロピラジン、ジニトロピラジン、ニトロウラシル、ニトロシトシン、ニトロチミン、ニトロアデニン、ニトログアニン、ニトロキノリン、ジニトロキノリン、ニトロイソキノリン、ジニトロイソキノリン、ニトロキサリン、ジニトロイソキサリン、ニトロアクリジン、ニトロシンノソリン、ジニトロシンノソリン、ニトロモルホリン又はジニトロモルホリンである請求項2に記載の電解金めっき液。
  8.  該コバルト塩が、硫酸コバルト、塩化コバルト、硝酸コバルト、炭酸コバルト、フタロシアニンコバルト、ステアリン酸コバルト、エチレンジアミン4酢酸二ナトリウムコバルト、ナフテン酸コバルト、ホウ酸コバルト、チオシアン酸コバルト、スルファミン酸コバルト、酢酸コバルト、クエン酸コバルト、水酸化コバルト、シュウ酸コバルト又はリン酸コバルトである請求項2に記載の電解金めっき液。
  9.  該ニッケル塩が、硫酸ニッケル、酢酸ニッケル、塩化ニッケル、ホウ酸ニッケル、安息香酸ニッケル、シュウ酸ニッケル、ナフテン酸ニッケル、酸化ニッケル、リン酸ニッケル、ステアリン酸ニッケル、酒石酸ニッケル、チオシアン酸ニッケル、アミド硫酸ニッケル、炭酸ニッケル、クエン酸ニッケル、ギ酸ニッケル、シアン化ニッケル、水酸化ニッケル、硝酸ニッケル又はオクタン酸ニッケルである請求項2に記載の電解金めっき液。
  10.  該鉄塩が、硫酸第1鉄、硫酸第2鉄、塩化第1鉄、塩化第2鉄、クエン酸第1鉄、クエン酸第2鉄、ギ酸第2鉄、次亜リン酸第2鉄、ナフテン酸第2鉄、ステアリン酸第2鉄、ピロリン酸第2鉄、酒石酸第1鉄、酒石酸第2鉄、チオシアン酸第1鉄、チオシアン酸第2鉄、フマル酸第1鉄、グルコン酸第1鉄、エチレンジアミン四酢酸鉄、硝酸第1鉄又は硝酸第2鉄である請求項2に記載の電解金めっき液。
  11.  ジェット噴流式めっき装置を用いて、電流密度を5A/dmと40A/dmに設定してそれぞれ10秒間めっき処理をした場合、電流密度5A/dmでの金皮膜の膜厚が0.1μm以下であり、かつ40A/dmでの金皮膜の膜厚が、5A/dmでの金皮膜の膜厚の5倍以上である請求項1乃至請求項10の何れかの請求項に記載の電解金めっき液。
  12.  請求項1乃至請求項10の何れかの請求項に記載の電解金めっき液を用いてニッケル皮膜上に電解金めっきを行うことによって得られたことを特徴とする金皮膜。
  13.  請求項11に記載の電解金めっき液を用いてニッケル皮膜上に電解金めっきを行うことによって得られたことを特徴とする金皮膜。
  14.  該金皮膜の金純度が95質量%以上である請求項12に記載の金皮膜。
  15.  該金皮膜の金純度が95質量%以上である請求項13に記載の金皮膜。
PCT/JP2009/058846 2008-06-11 2009-05-12 電解金めっき液及びそれを用いて得られた金皮膜 WO2009150915A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010516799A JP4719822B2 (ja) 2008-06-11 2009-05-12 電解金めっき液及びそれを用いて得られた金皮膜
CN2009801286107A CN102105623B (zh) 2008-06-11 2009-05-12 电镀金液和使用该电镀金液而得的金皮膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008153188 2008-06-11
JP2008-153188 2008-06-11

Publications (1)

Publication Number Publication Date
WO2009150915A1 true WO2009150915A1 (ja) 2009-12-17

Family

ID=41416626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058846 WO2009150915A1 (ja) 2008-06-11 2009-05-12 電解金めっき液及びそれを用いて得られた金皮膜

Country Status (5)

Country Link
JP (1) JP4719822B2 (ja)
KR (1) KR101079554B1 (ja)
CN (1) CN102105623B (ja)
TW (1) TWI409367B (ja)
WO (1) WO2009150915A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077527A (ja) * 2008-08-25 2010-04-08 Electroplating Eng Of Japan Co 硬質金系めっき液
JP2011021217A (ja) * 2009-07-14 2011-02-03 Ne Chemcat Corp 電解硬質金めっき液及びこれを用いるめっき方法
JP2011122236A (ja) * 2009-09-25 2011-06-23 Rohm & Haas Electronic Materials Llc 抗置換硬質金組成物
JP2011122192A (ja) * 2009-12-09 2011-06-23 Ne Chemcat Corp 電解硬質金めっき液及びこれを用いるめっき方法
JP2012112004A (ja) * 2010-11-25 2012-06-14 Rohm & Haas Denshi Zairyo Kk 金めっき液
JP5152943B1 (ja) * 2012-09-19 2013-02-27 小島化学薬品株式会社 低遊離シアン金塩の製造方法
JP2013177654A (ja) * 2012-02-28 2013-09-09 Matex Japan Co Ltd 電解硬質金めっき液、めっき方法、及び、金−鉄合金被膜の製造方法
JP2014139348A (ja) * 2008-08-25 2014-07-31 Electroplating Eng Of Japan Co 硬質金系めっき液
WO2016208340A1 (ja) * 2015-06-26 2016-12-29 メタローテクノロジーズジャパン株式会社 電解硬質金めっき液用置換防止剤及びそれを含む電解硬質金めっき液
JPWO2018221089A1 (ja) * 2017-05-30 2020-04-02 オリエンタル鍍金株式会社 Pcb端子の製造方法及びpcb端子
JPWO2018221087A1 (ja) * 2017-05-30 2020-05-28 オリエンタル鍍金株式会社 Pcb端子
KR102670599B1 (ko) * 2015-06-26 2024-05-29 이이쟈 가부시키가이샤 전해 경질 금 도금액용 치환 방지제 및 그것을 포함하는 전해 경질 금 도금액

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013109400A1 (de) * 2013-08-29 2015-03-05 Harting Kgaa Kontaktelement mit Goldbeschichtung
CN103741180B (zh) * 2014-01-10 2015-11-25 哈尔滨工业大学 无氰光亮电镀金添加剂及其应用
EP2990507A1 (en) * 2014-08-25 2016-03-02 ATOTECH Deutschland GmbH Composition, use thereof and method for electrodepositing gold containing layers
CN106637307B (zh) * 2017-01-04 2019-01-01 中国地质大学(武汉) 一种用于黄金无氰电铸工艺的添加剂
KR102610613B1 (ko) * 2021-11-30 2023-12-07 (주)엠케이켐앤텍 반도체 테스트 소켓에 사용되는 도전성 입자의 도금액, 이의 도금방법, 및 이를 이용하여 도금된 도전성 입자
CN116240597B (zh) * 2022-12-29 2024-03-26 华为技术有限公司 电镀金镀液及其应用
CN115821341B (zh) * 2023-01-06 2023-04-28 深圳创智芯联科技股份有限公司 一种环保无氰电镀液及其电镀工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193286A (ja) * 2001-12-27 2003-07-09 Ishihara Chem Co Ltd 金−スズ合金メッキ浴

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075065A (en) * 1975-07-07 1978-02-21 Handy & Harman Gold plating bath and process
CH615464A5 (en) * 1976-06-01 1980-01-31 Systemes Traitements Surfaces Special compositions and particular additives for gold electrolysis baths and their use
GB8501245D0 (en) * 1985-01-18 1985-02-20 Engelhard Corp Gold electroplating bath
US5130168A (en) * 1988-11-22 1992-07-14 Technic, Inc. Electroless gold plating bath and method of using same
FR2828889B1 (fr) * 2001-08-24 2004-05-07 Engelhard Clal Sas Bain electrolytique pour le depot electrochimique de l'or et de ses alliages
JP3989795B2 (ja) * 2002-08-09 2007-10-10 エヌ・イーケムキャット株式会社 電解硬質金めっき液及びそれを用いためっき方法
JP4945193B2 (ja) * 2006-08-21 2012-06-06 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 硬質金合金めっき液

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193286A (ja) * 2001-12-27 2003-07-09 Ishihara Chem Co Ltd 金−スズ合金メッキ浴

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139348A (ja) * 2008-08-25 2014-07-31 Electroplating Eng Of Japan Co 硬質金系めっき液
JP2010077527A (ja) * 2008-08-25 2010-04-08 Electroplating Eng Of Japan Co 硬質金系めっき液
JP2011021217A (ja) * 2009-07-14 2011-02-03 Ne Chemcat Corp 電解硬質金めっき液及びこれを用いるめっき方法
JP2011122236A (ja) * 2009-09-25 2011-06-23 Rohm & Haas Electronic Materials Llc 抗置換硬質金組成物
JP2011122192A (ja) * 2009-12-09 2011-06-23 Ne Chemcat Corp 電解硬質金めっき液及びこれを用いるめっき方法
KR101809565B1 (ko) * 2010-11-25 2017-12-15 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 금 도금 용액
JP2012112004A (ja) * 2010-11-25 2012-06-14 Rohm & Haas Denshi Zairyo Kk 金めっき液
JP2013177654A (ja) * 2012-02-28 2013-09-09 Matex Japan Co Ltd 電解硬質金めっき液、めっき方法、及び、金−鉄合金被膜の製造方法
JP5152943B1 (ja) * 2012-09-19 2013-02-27 小島化学薬品株式会社 低遊離シアン金塩の製造方法
WO2016208340A1 (ja) * 2015-06-26 2016-12-29 メタローテクノロジーズジャパン株式会社 電解硬質金めっき液用置換防止剤及びそれを含む電解硬質金めっき液
JPWO2016208340A1 (ja) * 2015-06-26 2018-04-12 メタローテクノロジーズジャパン株式会社 電解硬質金めっき液用置換防止剤及びそれを含む電解硬質金めっき液
US10577704B2 (en) 2015-06-26 2020-03-03 Metalor Technologies Corporation Electrolytic hard gold plating solution substitution inhibitor and electrolytic hard gold plating solution including same
KR102670599B1 (ko) * 2015-06-26 2024-05-29 이이쟈 가부시키가이샤 전해 경질 금 도금액용 치환 방지제 및 그것을 포함하는 전해 경질 금 도금액
JPWO2018221089A1 (ja) * 2017-05-30 2020-04-02 オリエンタル鍍金株式会社 Pcb端子の製造方法及びpcb端子
JPWO2018221087A1 (ja) * 2017-05-30 2020-05-28 オリエンタル鍍金株式会社 Pcb端子
JP7079016B2 (ja) 2017-05-30 2022-06-01 オリエンタル鍍金株式会社 Pcb端子の製造方法及びpcb端子
JP2022082619A (ja) * 2017-05-30 2022-06-02 オリエンタル鍍金株式会社 Pcb端子の製造方法及びpcb端子
JP7117784B2 (ja) 2017-05-30 2022-08-15 オリエンタル鍍金株式会社 Pcb端子

Also Published As

Publication number Publication date
TWI409367B (zh) 2013-09-21
CN102105623A (zh) 2011-06-22
JP4719822B2 (ja) 2011-07-06
CN102105623B (zh) 2013-10-02
KR101079554B1 (ko) 2011-11-04
KR20110022576A (ko) 2011-03-07
TW201009125A (en) 2010-03-01
JPWO2009150915A1 (ja) 2011-11-10

Similar Documents

Publication Publication Date Title
JP4719822B2 (ja) 電解金めっき液及びそれを用いて得られた金皮膜
EP1716949B1 (en) Immersion method
EP1754805B1 (en) Tin electroplating solution and tin electroplating method
JP2000144441A (ja) 無電解金めっき方法及びそれに使用する無電解金めっき液
KR20080052478A (ko) 무전해 금도금욕, 무전해 금도금 방법 및 전자 부품
JP3782869B2 (ja) 錫−銀合金めっき浴
JP2003034875A (ja) めっき方法
KR20080052479A (ko) 무전해 금도금욕, 무전해 금도금 방법 및 전자 부품
KR20170045211A (ko) 팔라듐 도금액 및 그것을 사용하여 얻어진 팔라듐 피막
TWI452179B (zh) 金鍍覆液
KR20150022969A (ko) 산성 금 합금 도금 용액
JP6214355B2 (ja) 電解金めっき液及びそれを用いて得られた金皮膜
KR101286661B1 (ko) 은 함유 합금 도금욕 및 이를 이용한 전해 도금 방법
US8801844B2 (en) Autocatalytic plating bath composition for deposition of tin and tin alloys
WO2013046731A1 (ja) スズめっき用酸性水系組成物
US20040043159A1 (en) Plating method
JP2003027277A (ja) スズメッキ浴、スズメッキ方法及び当該メッキ浴を用いてスズメッキを施した電子部品
JP2004143589A (ja) メッキ方法
TWI417429B (zh) An electroplating bath using the electroplating bath, and a substrate deposited by the electrolytic plating
JP3298537B2 (ja) Sn−Bi合金めっき浴、およびこれを使用するめっき方法
JP2018009227A (ja) 電解パラジウム銀合金めっき皮膜及びそれを形成するための電解めっき液
JP2003518552A (ja) 無電解金めっき組成物及びその使用方法
JP2011168837A (ja) 無電解金めっき液及びそれを用いて得られた金皮膜
KR101392627B1 (ko) 전해 경질 금도금액, 도금 방법 및 금-철 합금 피막의 제조 방법
JP2003129272A (ja) 電子部品のめっき方法、及び電子部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128610.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762345

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516799

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107026856

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09762345

Country of ref document: EP

Kind code of ref document: A1