WO2009142251A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2009142251A1
WO2009142251A1 PCT/JP2009/059301 JP2009059301W WO2009142251A1 WO 2009142251 A1 WO2009142251 A1 WO 2009142251A1 JP 2009059301 W JP2009059301 W JP 2009059301W WO 2009142251 A1 WO2009142251 A1 WO 2009142251A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
ionic liquid
electrolyte
battery according
negative electrode
Prior art date
Application number
PCT/JP2009/059301
Other languages
English (en)
French (fr)
Inventor
松本和明
中原謙太郎
岩佐繁之
石川仁志
金子志奈子
宇津木功二
Original Assignee
日本電気株式会社
Necトーキン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, Necトーキン株式会社 filed Critical 日本電気株式会社
Priority to JP2010513048A priority Critical patent/JP5645260B2/ja
Priority to CN2009801184086A priority patent/CN102037600A/zh
Priority to US12/993,218 priority patent/US20110070504A1/en
Priority to EP09750613.3A priority patent/EP2280444A4/en
Publication of WO2009142251A1 publication Critical patent/WO2009142251A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a highly safe secondary battery.
  • Lithium secondary batteries are the mainstream as secondary batteries that can be repeatedly charged and discharged because they have high energy density.
  • a lithium secondary battery having a high energy density is composed of a positive electrode, a negative electrode, and an electrolyte.
  • a lithium-containing transition metal oxide is used as a positive electrode active material, and a lithium metal, a lithium alloy, and a carbon material that occludes and releases lithium ions are used as a negative electrode active material.
  • an organic solvent in which a lithium salt such as lithium tetrafluoroborate (L i BF 4 ) or lithium hexabasic phosphate (L i PF 6 ) is dissolved is used.
  • the organic solvent non-protonic organic solvents such as ethylene carbonate and propylene carbonate are used.
  • the organic solvents are generally volatile and flammable. Therefore, if the lithium secondary battery is overcharged or abused, the thermal runaway reaction of the positive electrode may occur, leading to ignition. In order to prevent this, the battery incorporates a so-called separator shutdown mechanism that prevents the Joule heat generation after clogging of the separator before the thermal runaway start temperature. Furthermore, the use Konoku Noreto Sanli lithium to (L i C oO 2) than the thermal runaway reaction starting temperature is higher lithium nickelate (L i N i 0 2) and lithium manganate (L iMn 2 0 4) as a cathode As a result, efforts have been made to improve the safety of lithium secondary batteries.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-029467
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11-086905).
  • ionic liquids are highly hygroscopic and difficult to handle in air.
  • Wilkes et al. Developed 1-ethyl-3-methylimidazolyl tetrafluorate which is stable in the atmosphere by Wilkes et al.
  • ionic liquids consisting of anions such as trifluoromethanesulfonylimido will be developed centering on systems consisting of nitrogen compound-containing cations, and researches using them in batteries are actively conducted. It became so.
  • Representative ionic liquids include quaternary ammonium systems, imidazolium systems, and pyridinium systems that are composed of nitrogen-containing compound cations.
  • ionic liquids composed of bis (fluorosulfonyl) imidazole (one N (SO 2 F) 2 ) have been reported at academic conferences and the like.
  • the ionic liquid has low viscosity and high ionic conductivity, and has a high potential window when lithium salt is dissolved.
  • Non-Patent Document 1 Journal of Power Sources 1 60 (2006) 1 308-1 13 13, Non-Patent Document 2; Journal of Power Sources 1 6 2 (2 0 6) 6 5 8-6 6 2) 0
  • the ionic liquid has thermal stability It is low and flammable and does not contribute to battery safety.
  • Non-patent Document 3 Journal of Power Sources 1 0 2 1-1 0 2 6 (1 74) 200 7.
  • phosphoric acid esters As a technology to make the electrolyte solution incombustible, there is a technology to mix two kinds of ionic liquid and a carbonate type organic solvent (Non-patent Document 3; Journal of Power Sources 1 0 2 1-1 0 2 6 (1 74) 200 7).
  • there is also a technology of mixing phosphoric acid esters as a technology of making the electrolyte solution incombustible (Non-patent document 4; Journal of The Electrochemistry Society 1 4 8 (10) 2 0 0 1).
  • the phosphate ester has a higher incombustible effect than the ionic liquid, but in order to make the electrolyte noncombustible, it is necessary to mix 30% or more in the carbonate-based electrolyte. However, when the phosphate ester is mixed with a carbonate-based organic solvent by 20% or more, the discharge capacity is extremely reduced.
  • Patent Document 3 a technology in which a phosphoric acid ester and an ionic liquid, ethylmethylimidazolium bistrifluoromethanesulfoimide (hereinafter referred to as EMITFSI) are mixed is reported (Patent Document 3; Patent Document 3 Kaihei 1 1 3 2 9 4 9 5).
  • EMITFSI ethylmethylimidazolium bistrifluoromethanesulfoimide
  • ionic liquid As described above, there are prior patent documents that use an ionic liquid as a technology for making the electrolyte noncombustible.
  • the ion liquid is a non-volatile liquid, and can be used as an electrolyte to enhance the safety of lithium ion secondary batteries.
  • ionic liquids have the above-mentioned problems.
  • the discharge capacity decreases when it is mixed by 20% or more. Therefore, there is a problem that it is not possible to mix and use phosphoric acid esters in a certain proportion or more.
  • the present inventors have found that by simultaneously containing a phosphate and an ionic liquid, a high discharge capacity can be maintained even if a phosphate is used at a high concentration. Furthermore, it has been found that the discharge capacity is further increased by simultaneously containing a carbonate organic solvent.
  • An object of the present invention is to provide a more safe secondary battery by making the electrolyte noncombustible.
  • the positive electrode is formed of an oxide that absorbs and desorbs lithium ions
  • the negative electrode is formed of a carbon material that absorbs and desorbs lithium ions
  • the electrolytic solution is formed of an ionic liquid and a phosphate ester derivative. It is characterized by
  • FIG. 1 is a graph showing the results of aluminum corrosion tests of the electrolytes of Example 2 and Comparative Example 4 by the LV method.
  • the basic configuration of the secondary battery of the present invention includes at least a positive electrode, a negative electrode, and an electrolyte.
  • the positive electrode of the lithium ion secondary battery is formed of an oxide made of a material that occludes and releases lithium
  • the negative electrode is formed of a carbon material that occludes and releases lithium.
  • the electrolytic solution contains an ionic liquid and an esterene phosphate derivative at the same time.
  • a material used for a lithium ion secondary battery and a method for producing a component will be described. However, the present invention is not limited to these.
  • an ionic liquid As a material used for a lithium ion secondary battery, an ionic liquid, a phosphoric acid ester derivative, a carbonate organic solvent, a film forming additive, an electrolytic solution, a positive electrode, a negative electrode, a separator, and a battery shape will be described.
  • An ionic liquid is an ionic compound which is liquid at normal temperature, and consists of a cationic component and an anionic component.
  • the ionic liquid used in the present invention is characterized in that the cationic component is an ionic liquid containing, as a component, a cation having high reduction resistance generally, such as open mouth or piperidinum.
  • a cation component of the ionic liquid quaternary ammonium compounds comprising nitrogenous compound cations having a skeleton represented by the chemical formula 1, quaternary phosphonium compounds comprising phosphorus containing compound cations, tertiary sulfonium compounds comprising sulfur containing compound cations Etc. can also be used.
  • tetraalkyl ammonium cation As a cation having high resistance to reduction, tetraalkyl ammonium cation, pyrrolidinium cation, piperidinium cation, pyrazolium cation, pyrrolium ion, pyrrolium cation, pyridinium cation, thiazolium cation Etc., but it is not limited to these.
  • tetraalkyl ammonium cations for example, jetyl methyl methoxetine ⁇ ammonium ions, trimethynole ethyloleum ammonium cations, trimethyrene propyl ammonium cations, trimethylhexyl ammonium cations, tetrapentyl ammonium cations, etc. There is no limitation to these.
  • the pyrrolidinium cation is represented by the chemical formula 2, and is represented by a chemical formula 2, 1,1-dimethylpyrrolidinium cation, 1-ethyl-1-methylpyrrolidinium cation, 1-methyl-1-propylpropylpyrrolidinium cation, 1-butyl-1-yl Examples include 1-methyl pyrrolidinium cation and the like, but are not limited thereto.
  • Piperidinium cation As the piperidinium cation, it is represented by the formula 3, and 1, 1 _ dimethylbiperi Dinium cation, 1-ethyl-1-methylbiperidinium cation, 1-methyl-1-propylpiperidinium cation, 1-butyl-1-methylbiperidinium cation, etc. may be mentioned, but it is not limited thereto. .
  • pyrrolium cations include 1,2-dimethylpyrrolinium cation, 1-ethyl-1-methylpyrroliumium cation, 1-propyl-1-methynorepyrrolium cation, 1-butyl-1-methylpyrrolinium cation, etc. Although it is mentioned, it is not limited to these.
  • pyrrolium cations 1,2-dimethylpyrrolium cation, 1-ethyl-1-methylpyrrolium cation, 1-propyl-2-methylpyrrolium cation, 1-butyl-2-methylpyrrolium cation Etc., but it is not limited to these.
  • the pyridinium cation may, for example, be N-methyl pyridinium cation, N-ethyl pyridinium cation, N — butyl pyridinium cation, or the like.
  • thiazolium cations include cetyl dimethyl thiazolium cation, butyyl dimethyl thiazolium cation, hexadimethyl thiazolium cation, methoxethyl thiazolium cation, etc. Not limited to these.
  • R2-PR
  • R i, R 2 , R 3 and R 4 each represents an alkyl group, or a halogenated alkyl group, an alkenyl group, a cyano group, a phenyl group, an amino group, a nitro group or an alkoxy group, and may be identical to each other , May be different. In addition, it may have a cyclic structure such as a 5-membered ring or a 6-membered ring.
  • tetraethyl phosphonium cation examples thereof include tetraethyl phosphonium cation, tetramethyl phosphonium cation, tetrapropyl phosphonium cation, tetrabutyl phosphonium cation, torietino remethion phosphonium cation, trimethy / letinole phosphoneum cation, dimethyli / etichone phosphonium.
  • the cation, trimethyl propionole phosphonium cation, trimethylbutyl phosphonium cation, dimethyl ether norepropinole phosphonium cation, methinoleethyl ester propriole butyrenophosphonium cation, etc. may be mentioned. Absent.
  • Examples of tertiary sulfonium systems comprising a sulfur-containing compound cation include sulfonium ions having a skeleton represented by Chemical Formula 5.
  • R R 2 and R 3 each represent an alkyl group, a halogenated alkyl group, an alkenyl group, a cyano group, a phenyl group, an amino group, a nitro group or an alkoxy group, which may be the same or different. It is also good.
  • it may have a cyclic structure such as a 5-membered ring or a 6-membered ring.
  • the ionic liquids having these cations may be used alone or in combination of two or more.
  • trimethyl sulfonium cation, tolyl sulfonium cation, tributyl sulfonium cation, tripropyl sulfonium cation, jetino remethinores norehonium cation, dimethinorethynoresnoleonium examples thereof include, but are not limited to, muscarinic, dimethylpropylsulfonium cation, dimethylbutylsulfonium, methyl phenyl pylsulfonium cation, methyl butyl butyl sulfodinium cation and the like.
  • These ionic liquids may be used alone or in combination of two or more.
  • R 2 in the Anion etc. may be mentioned chemical formula 6, including a chemical structural formula represented by formula 6 is It is selected from the group consisting of halogen and fluorinated alkyl, and Ri and R 2 may be different, for example, -N (F S 0 2 ) 2 ,-N
  • Formula 7 a salt composed of a compound having a chemical structural formula represented by Chemical Formula 7 can also be mentioned.
  • R and R 2 and R 3 in the chemical formula 7 are selected from the group consisting of halogen and fluorinated alkyl.
  • Ri, R 2 , R. May be different. Concrete Examples include C (CF 3 S 0 2 ) 3 and C (C 2 F 5 S 0 2 ) 3 .
  • an ionic liquid having these cation anions as a component.
  • anion exhibits hydrophilicity than an anion such as BF 4 or PF 6
  • an ionic liquid using an imidazole such as chemical formula 6 showing hydrophobicity
  • Electrolyte ⁇ ⁇ ⁇ ⁇ Desirable as solution It is also possible to mix ionic liquids consisting of two different cations.
  • Examples of the phosphoric acid ester derivative in the present invention include compounds represented by the following chemical formulas 8 and 9.
  • R and R 2 and R 3 in the chemical formulas 8 and 9 each represent an alkyl group having 7 or less carbon atoms, or a halogenated alkyl group, an alkenyl group, a cyano group, a phenyl group, an amino group, a nitro group, an alkoxy group And a cycloalkyl group or a silyl group, which also includes a cyclic structure in which one or all of R 2 and R 3 are bonded.
  • Specific examples include: trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, trifenyl phosphate, dimethylethyl phosphate, dimethyl propyl phosphate, dimethyl butyl phosphate, getyyl methyl phosphate, dipropyl methyl phosphate, Examples include dibutyl methyl phosphate, methyl ethyl propyl phosphate, methyl ethyl butyl phosphate, methyl butyl propyl phosphate and the like.
  • trimethyl phosphite, triethyl phosphite, tributyl phosphate, triphenyl phosphite, dimethylethyl phosphite, Dimethyl propyl phosphate, Dimethyl butyl phosphite, Diethyl methyl phosphite, Dipropyl methyl phosphite, Dibutyl methyl phosphite, Methyl ethyl propyl phosphite, Methyl ethyl butyl phosphite, Methyl propyl butyl phosphite, Examples include dimethyltrimethylsilyl phosphite and the like. Particularly preferred is trimethyl phosphate, triethyl phosphate, or some triethyl phosphate because of high stability. . 2-OP 0
  • R 2 may be the same or different, and is an alkyl group having 7 or less carbon atoms, or a halogenated alkyl group, an alkenyl group, a cyano group, a phenyl group, an amino group, a nitro group, an alkoxy group, a cycloalkyl group And includes a cyclic structure by the bond of R 2 .
  • XX 2 is a halogen atom, which may be the same or different.
  • fluorocarbon phosphate fluorocarbon ethylene carbonate fluorocarbon phosphate bis (trifluorethyl), fluorochlorothiol fluoroacetate, chlorofluorophosphate trifluorethyphosphate phosphate, chlorofluorophosphate propylol, and fluorochlorinated phenyl phenyl are preferred, with low viscosity and flame retardancy.
  • fluoretil difluoride is more preferable, tetrafluoropropyl difluoride is more preferable, and fluorophenyl difluoride is more preferable.
  • phosphate ester derivatives it is an object of the present invention to mix these phosphate ester derivatives in an electrolytic solution to render them incombustible.
  • phosphate ester derivatives one having at least one atom other than a phosphorus atom substituted with a halogen atom is preferable in order to obtain a higher incombustible effect.
  • concentration of the phosphate ester derivative the noncombustible effect can be obtained. Therefore, it is preferable that it is 15 volume% or more.
  • These phosphoric ester derivatives may be used alone or in combination of two or more.
  • carbonate-based organic solvents include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, clear ethylene carbonate, dimethyl carbonate (DMC), diethyl methyl carbonate (EM C), jetyl carbonate (DEC), Examples thereof include toxicane, ketilla tenore, phenenolemethinolee tenole, tetrahydrofuran (THF), gamma-butyrolactone, gamma-valerolacton and the like.
  • ethylene carbonate, jetyl carbonate, propylene carbonate, dimethyl carbonate and diethyl methyl carbonate are particularly preferable, but not limited thereto.
  • concentration of these carbonate-based organic solvents is preferably 10% by volume or more in order to obtain a sufficient capacity improvement effect, but the mixing ratio If the rate is too high, the electrolyte will be flammable, so it is preferably less than 80% by volume, and more preferably less than 60% by volume.
  • the carbonate-based organic solvent may be used alone or in combination of two or more.
  • the film-forming additive in the present invention is one which coats the surface of the negative electrode electrochemically.
  • Specific examples include vinyl ethylene carbonate (VC), ethylene ethanolate (ES), propanesultone (PS), fluoroethylene carbonate (FEC), succinic anhydride (SUCAH), diallyl carbonate (DAC And diphenylsulfonyl (DPS) etc., but it is not particularly limited thereto. It is desirable that the amount is less than 10% by mass, because the addition of the additive amount adversely affects the battery characteristics.
  • the electrolytic solution carries out charge carrier transport between the negative electrode and the positive electrode, and for example, an ionic liquid in which an electrolytic salt is dissolved can be used.
  • electrolyte salt for example, L i PF 6 , L i BF 4 , L i As F 6 , L i C 10 4 , ⁇ .
  • L i BF 2 (CF 3 ) 2 L i BF 2 (CF 3 ) (C 2 F 5 ) or at least one fluorine atom of L i PF 6 is a fluorinated alkyl group Replaced L i PF 5
  • R 2 in the chemical formula 14 is selected from the group consisting of halogen and fluorinated alkyl. Also, R 2 may be different. Examples and For example, L i N (F 2 SO 2 ) 2 , L i N (CF 3 SO 2 ) 2 , L i N (C 2 F 5 S 0 2 ) 2. L i N (CF 3 SO 2 ) (C 4 F. S0 2 ).
  • a salt composed of a compound having a chemical structural formula represented by the chemical formula 15 can be mentioned.
  • R 2 and R 3 in the chemical formula 15 are selected from the group consisting of halogen and fluorinated alkyl. Also, R 2 and R 3 may be different. As a specific example, L i C (CF 3 S 0 2 ) 3 and L i C (C 2 F 5 S 0 2 ) 3 are mentioned.
  • the oxide positive electrode material in the present invention L iMn 2 O 4, L i C o0 2, L i N i 0 2, Li F e P0 4 or L i xV 2 0 5 (0 ⁇ x ⁇ 2) or their Lithium-containing transition metal oxides, such as compounds in which the transition metal of the compound is partially substituted with another metal, can be used.
  • the positive electrode in the present invention can be formed on a positive electrode current collector, and as the positive electrode current collector, a foil made of nickel, aluminum, copper, gold, silver, alloy, stainless steel, carbon or the like Metal flat plates can be used.
  • examples of the carbon negative electrode material include pyrolytic carbons, cokes (pitch coals, needle cokes, petroleum cokes, etc.), graphite, glassy carbons, organic polymer compound fired bodies (phenol resin, furan Resins etc. are fired at a suitable temperature and carbonized), carbon fiber, activated carbon, carbon materials such as graphite can be used.
  • a binder can also be used to strengthen the bond between the constituent materials of the negative electrode.
  • binding agent examples include polytetrafluoroethylene, vinylidene fluoride, vinylidene fluoride / hexafluoropropylene copolymer, vinylidene fluoride / tetrafluoroethylene copolymer, styrene / butadiene. Copolymer rubber, polypropylene, polyethylene, polyimide, partially carboxylated There are various types of polyurethane and so on.
  • the negative electrode in the present invention can be formed on the negative electrode current collector, and as the negative electrode current collector, a foil made of nickel, aluminum, copper, gold, silver, aluminum alloy, stainless steel, carbon, etc., flat metal plate It can be used.
  • the film is generally referred to as SEI (Solid Electrolyte Interphase), and is a film which is formed on the negative electrode in the process of charging and discharging a lithium ion battery, and which does not pass through the electrolytic solution but allows ions to pass through.
  • SEI Solid Electrolyte Interphase
  • a battery composed of an electrode made of a carbon material and an electrode made of a material that releases lithium ions to a counter electrode with a separator interposed therebetween is manufactured, and charge and discharge are repeated at least once to form a film on the negative electrode.
  • an electrolyte used at this time a carbonate-based electrolyte in which a lithium salt is dissolved can be used.
  • the electrode made of a carbon material can be taken out and used as the negative electrode of the present invention.
  • an electrode may be used which is finished by discharge and has lithium ions inserted in the layer of carbon material.
  • a separator such as a porous film made of polyethylene, polypropylene or the like, a cellulose film, a non-woven fabric or the like may be used so that the positive electrode and the negative electrode do not contact.
  • separators may be used alone or in combination of two or more.
  • the shape of the secondary battery is not particularly limited, and conventionally known ones can be used.
  • the battery shape includes cylindrical, square, coin and sheet types.
  • Such a battery is a laminate film comprising a positive electrode, a negative electrode, an electrolyte, a separator, etc., an electrode laminate or a wound body as a metal case, a resin case, or a metal foil such as aluminum foil and a synthetic resin film. It is produced by sealing by etc.
  • the present invention is not limited to these. Next, a method of producing an electrolytic solution, a positive electrode, a negative electrode and a coin-type secondary battery according to the present invention will be described using the above-described materials.
  • a lithium salt was dissolved in a solution in which an ionic liquid, a phosphoric acid ester derivative, and a carbonate-based organic solvent were mixed in a dry room to prepare an electrolytic solution.
  • lithium manganese complex oxide (L i Mn 2 0 4 ) based material and VGCF (manufactured by Showa Denko KK) as a conductive agent are mixed, and this is dispersed in N-methyl pyrrolidone (NMP) to obtain a slurry. Then, it was applied to an aluminum foil as a positive electrode current collector and dried. Thereafter, a positive electrode with a diameter of 12 ⁇ was produced.
  • NMP N-methyl pyrrolidone
  • a negative electrode active material As a negative electrode active material, a graphite-based material was dispersed in N-methylpyrrolidone (NMP) to form a slurry, which was then applied to a copper foil as a negative electrode current collector and dried. Thereafter, an electrode having a diameter of 12 ⁇ was produced. In Examples 1 to 12 and Comparative Examples 1 to 5, the negative electrode produced by this method was used.
  • NMP N-methylpyrrolidone
  • an electrode characterized by an electrode having a film formed on the surface of the negative electrode in advance (hereinafter, referred to as a negative electrode with an adhesive) may be used.
  • a method for producing the electrode a coin cell is prepared with lithium metal and electrolyte at the counter electrode with the separator at the electrode, and repeated 10 cycles in the order of discharge and charge at a rate of 110 C to obtain electrochemistry. The coating was formed on the negative electrode surface.
  • the electrolyte used at this time is lithium hexafluoroboronic acid (hereinafter referred to as Li PF 6 ) in an amount of 1 mol / L (1 M) in a carbonate-based organic solvent (molecular weight: 15 1. 9) Was prepared by dissolving it.
  • a carbonate-based organic solvent a mixed solution of ethylene carbonate (EC) and jetyl carbonate (DEC) in a volume ratio of 30:70 (hereinafter referred to as EC / DEC or EC / DEC (3: 7) is abbreviated. ) was used.
  • the cutoff potential was 0 V at the time of discharge and 1.5 V at the time of charge.
  • the positive electrode obtained by the above method is placed on a positive electrode current collector also serving as a coin cell receiving type made of stainless steel, and a separator made of a porous polyethylene film is sandwiched between a negative electrode made of graphite and a laminated electrode laminate. Obtained.
  • the electrolytic solution obtained by the above method was injected into the obtained electrode laminate, and vacuum impregnation was performed. After sufficiently impregnating and filling the gaps of the electrodes and separators with the electrolyte solution, the insulating packing and the anode current collector which also serves as a coin cell receiving type are stacked, and integrated by a dedicated caulking machine to obtain a coin type secondary A battery was made.
  • lithium ion secondary batteries were prepared in which the ionic liquid, the phosphoric acid ester derivative, the carbonate-based organic solvent and the composition ratio thereof, and the additives and the lithium salt described in the embodiment were changed.
  • Comparative Examples 1 to 12 were prepared, and the flammability test evaluation and the measurement of the discharge capacity were performed in the same manner.
  • the flammability test evaluation was performed as follows.
  • the electrolyte solution was immersed in 50 ⁇ l in a glass fiber filter paper with a width of 3 ram, a length of 3 O ram, and a thickness of 0.7 ⁇ m.
  • One side of the filter paper was held with tweezers, and the other side was brought close to the flame of a 2 cm high gas burner. After approaching the flame for 2 seconds, the filter paper was removed from the flame and the presence or absence of flame was visually confirmed. If no flame was observed, the flame was further brought to the flame for 3 seconds, and then the flame was removed to visually confirm the presence or absence of the flame. It was judged as “incombustible” if the flame was not confirmed in both cases, and “flammable” if the flame was confirmed in either case.
  • the discharge capacity was measured using a coin-type lithium secondary battery manufactured by the method described above.
  • the discharge capacity of the coin-type lithium secondary battery was evaluated in the following procedure. First, constant-current charging was performed with an upper limit voltage of 4.2 V at 0 0. 25 5 C, and the discharge was cut to a 3.0 V cutoff at a current of 0.02 5 C as well. The discharge capacity observed at that time was taken as the initial discharge capacity.
  • the discharge capacity in the present example is the value per weight of the positive electrode active material.
  • LV linear sweep voltammetry
  • BMPTF SI ionic liquid butyl methyl pyrrolidine tetrafluorosulfonylimide
  • TMP trimethyl phosphate
  • BMPTF SI an ionic liquid
  • TMP and EC / DEC 3: 7
  • a carbonate-based organic solvent 20/40/1 2 28.
  • L i TF S I was dissolved in an amount of 1 mol / L (1 M), and this was used as an electrolyte in the combustion test.
  • the positive electrode except for the electrolyte and the same negative electrode as in Example 1 were used. The results are shown in Table 1.
  • a mixture of L i TF SI in an amount of 1 mol / L (1 M) was dissolved in the mixture, and this solution was used as an electrolyte in the combustion test.
  • the test of the discharge capacity used the positive electrode except for the electrolyte and the same negative electrode as in Example 1. The results are shown in Table 1.
  • BMPTF SI which is an ionic liquid
  • TMP and ECZDEC (3: 7) which is a carbonate-based organic solvent
  • B MPTF SI / TMP / EC / DEC 10 0 30/1 8 4 2).
  • Dissolve L i TF SI in an amount of lraol / L (1M) in the mixture It was used as a solution.
  • the positive electrode except for the electrolyte and the same negative electrode as in Example 1 were used. The results are shown in Table 1.
  • BMPT FSI an ionic liquid
  • TMP and EC / DE C 3: 7
  • L i TF S I was dissolved in an amount such that the concentration became lraol / L (1 M), and this was used as an electrolyte in the combustion test.
  • the test of the discharge capacity used the positive electrode except for the electrolyte and the same negative electrode as in Example 1. The results are shown in Table 1.
  • BMPT FSI an ionic liquid
  • TMP and ECZDE C 3: 7
  • a carbonate-based organic solvent a carbonate-based organic solvent
  • B MP TFSI / TMP / EC / DEC 3 5/1 5/1 5/3 3 0
  • the positive electrode except for the electrolyte and the same negative electrode as in Example 1 were used. The results are shown in Table 1.
  • the test of the discharge capacity used the same thing as Example 1 about the positive electrode except electrolyte solution, and the negative electrode. The results are shown in Table 1.
  • BMP p TFSI butyl methinolebiperidinium bis trifluoromethanesulfoimide
  • TMP and a carbonate-based organic solvent EC / DEC 3: 7
  • BMP p TFSI / TMP / EC / DEC 1 0/3 0/1 8/4 2).
  • L i TF SI was dissolved in an amount to give a concentration of 1 mol / L (1 M), and this was used as an electrolyte in the combustion test.
  • the same positive and negative electrodes as in Example 1 were used except for the electrolytic solution. The results are shown in Table 1.
  • the ionic liquids BMPTF S I and BMP p TF S I were mixed at a volume ratio of 50:50.
  • L i T F S I was dissolved in an amount such that the concentration was 1 mol / L (1 M), and this was used as an electrolyte in the combustion test.
  • the test of the discharge capacity used the same thing as Example 1 about the positive electrode except electrolyte solution, and the negative electrode. The results are shown in Table 1.
  • BMPTF SI, an ionic liquid, and TMP and EC / DEC (3: 7), a carbonate-based organic solvent, were mixed at a volume ratio of 10:30:60 (B MPT FSI / TMP / EC / DEC 1 0/3 0/1 8/42) 0 the mixture, concentration of dissolved amount of L i TF SI as a 2 mol / L (2M), was used as electrolytic solution of burning test .
  • the positive electrode except for the electrolyte and the same negative electrode as in Example 1 were used. The results are shown in Table 1.
  • BMPTF SI which is an ionic liquid
  • FDE P and EC / DEC 3: 7
  • FDE P and EC / DEC 1 0 3 0, 1 8, 4 .
  • BMPTF SI / FDE P / EC / DEC 1 0 3 0, 1 8, 4 2).
  • 2% by mass. was added to dissolve L i TF S I in an amount to give a concentration of 1 mol / L (1 M), and this was used as an electrolyte for the combustion test.
  • the same positive and negative electrodes as in Example 1 were used except for the electrolytic solution. The results are shown in Table 1.
  • BMPTF SI which is an ionic liquid
  • TMP and ECZDEC (3: 7) which is a carbonate-based organic solvent
  • B MPTF SI / TMP / EC / DE C 20/4 0/1 2/28
  • BMPTF SI which is an ionic liquid
  • EC / DEC 3: 7
  • 0 L i TF SI was dissolved in an amount of 1 mol / L (1 M) in the mixed solution, and this was used as an electrolyte for the combustion test.
  • the test of the discharge capacity used the same thing as Example 1 about the positive electrode except electrolyte solution, and the negative electrode. The results are shown in Table 1.
  • the charge capacity of the coin M secondary battery fabricated as described above was applied at a current of 0.703 mA, and the initial discharge capacity is shown in Table 1.
  • the discharge capacity was not confirmed (Comparative Examples 1 and 2).
  • the ionic liquid EM IFSI was mixed with the TMP at a volume ratio of 90: 1.0.
  • lithium fluorosulfoimide hereinafter abbreviated as Li FSI: molecular weight 187. 1
  • Li FSI molecular weight 187. 1
  • L i Mn 2 O 4 used as an electrolyte solution of The test of discharge capacity
  • Li FSI in an amount of 1 mol / L (1 M) was dissolved in a solution of 85:15 volume ratio of EMI FSI, which is an ionic liquid, and TMP, and this was dissolved in the combustion test It was used as an electrolyte.
  • EMI FSI which is an ionic liquid
  • TMP ionic liquid
  • the same positive and negative electrodes as in Example 13 were used except for the electrolytic solution. The results are shown in Table 2.
  • Li FSI in an amount of 1 mol / L (1 M) is dissolved in a solution of the ionic liquid EMI FS I and TMP mixed at a volume ratio of 80:20, and this is used in the combustion test It was used as an electrolyte.
  • the same positive and negative electrodes as in Example 13 were used except for the electrolytic solution. The results are shown in Table 2.
  • Li FSI in an amount of 1 mol / L (1 M) was dissolved in a solution prepared by mixing the ionic liquid EMI FS I and TMP in a volume ratio of 60:40, and this was used in the combustion test It was used as an electrolyte.
  • the same positive and negative electrodes as in Example 13 were used except for the electrolytic solution. The results are shown in Table 2.
  • Li FSI in an amount of 1 mol / L (1 M) was dissolved in a solution of 50:50 volume ratio of EMI FS I, which is an ionic liquid, and TMP, and this was used in the combustion test. It was used as an electrolyte.
  • EMI FS I which is an ionic liquid
  • TMP ionic liquid
  • the same positive and negative electrodes as in Example 13 were used except for the electrolytic solution. The results are shown in Table 2.
  • EMI FSI an ionic liquid
  • TMP and ECZDEC 3: 7
  • a carbonate-based organic solvent 60:20:20
  • EMI FSI / TMP / EC / DEC 60Z20 / 6Zl 4
  • L i F S I was dissolved in an amount to give a concentration of 1 mol / L (1 M), and this was used as an electrolyte for the combustion test.
  • the positive electrode except for the electrolytic solution and the negative electrode were the same as in Example 13. The results are shown in Table 2.
  • Li FSI was dissolved in an amount of 1 mol / L (1 M), and this was used as an electrolyte in the combustion test.
  • the test of the discharge capacity used the positive electrode except for the electrolytic solution, and the same negative electrode as in Example 13. The results are shown in Table 2.
  • EM IFSI which is an ionic liquid
  • TMP and ECZDE C 3: 7
  • the test of the discharge capacity used the positive electrode except for the electrolytic solution, and the same negative electrode as in Example 13. The results are shown in Table 2.
  • the concentration is 1 mol / L (1 M) in a solution in which the ionic liquid EM IFSI and jetyl fluoride (hereinafter abbreviated as FDE P) are mixed at a volume ratio of 60:40.
  • Li FSI was dissolved and used as an electrolyte for the combustion test.
  • the test of the discharge capacity used the positive electrode except for the electrolytic solution, and the same negative electrode as in Example 13. The results are shown in Table 2.
  • the ionic liquid EMI FS I is mixed with the ionic liquid methyl propyl phenyl sulfonyl chloride (hereinafter abbreviated as P 13 FSI) at a volume ratio of 70:30.
  • the A solution in which the mixed ionic liquid, TMP, and EC / D EC (3: 7) are mixed at a volume ratio of 60:20:20 (EMI FSI / V 13 FSI / TMP / EC / DEC 42/18 Li / FSI was dissolved in an amount of 1 mol / L (1 M) at / 20/6/14), and this was used as an electrolyte for the combustion test.
  • the test of the discharge capacity was performed using the same positive electrode as the one in Example 13 except for the electrolytic solution and the negative electrode. The results are shown in Table 2.
  • the ionic liquid EMI FS I was mixed with the ionic liquid methylpropylpiperidino fluorosulfonylimide (hereinafter abbreviated as PP 13 FSI) at a volume ratio of 70:30. .
  • PP 13 FSI ionic liquid methylpropylpiperidino fluorosulfonylimide
  • a solution in which the mixed ionic liquid, TMP, and EC / DEC (3: 7) are mixed at a volume ratio of 60:20:20 (EMI FSI / PP 13 FSI / TMP / EC / DEC 42/18
  • An amount of L i FSI was dissolved in / 20/6/14) to give a concentration of 1 mol / L (1 M), and this was used as an electrolyte solution for the combustion test.
  • the test of the discharge capacity was performed using the same positive electrode except for the electrolytic solution and the same negative electrode as in Example 13. The results are shown in Table 2.
  • the ionic liquid EMI FS I was mixed with the TMP at a volume ratio of 60:40.
  • concentration of I mol / L (lM) and made to dissolve the amount of L i FSI, is et to 5 mass 0/0 vinyl ethylene carbonate (hereinafter, abbreviated as VC) was mixed, this was used as an electrolyte for the combustion test.
  • the test of the discharge capacity was performed using the same positive electrode as that of Example 13 except for the electrolytic solution and the negative electrode. The results are shown in Table 2.
  • Example 27 EM IFSI, which is an ionic liquid, and TMP and ECZDEC (3: 7), which is a carbonate-based organic solvent, are mixed at a volume ratio of 60:20:20 (EMIFSI / TMP / EC / DE C- 60 / 20Z6Zl4). Li FSI was dissolved in an amount of 1 mol / L (1 M) in the mixed solution, and 5% by mass of VC was further mixed, and this was used as an electrolyte of the combustion test. The test of the discharge capacity was performed using the same positive and negative electrodes as in Example 13 except for the electrolytic solution. The results are shown in Table 2.
  • BMPTF SI which is an ionic liquid
  • TMP and ECZDE C 3: 7
  • BMP TFSI / TMP / EC / D EC 20 4 40/1 2/28
  • Li TFSI was dissolved in an amount of lraol / L (1M), and this was used as an electrolyte in the combustion test.
  • the test of the discharge capacity was performed using the same positive electrode as that of Example 13 except for the electrolytic solution and the negative electrode. The results are shown in Table 2.
  • BMPTF SI which is an ionic liquid
  • TMP and ECZDE C 3: 7
  • L i TF S I was dissolved in an amount of 2 mol / L (2 M), and this was used as an electrolyte in the combustion test.
  • the test of the discharge capacity was performed using the same positive electrode as that of Example 13 except for the electrolytic solution and the negative electrode. The results are shown in Table 2.
  • the ionic liquid EMI TF S I was mixed with the TMP and the carbonate organic solvent E C / DEC (3: 7) in a volume ratio of 20:40:40.
  • TE SFSI triethyl sulfonium fluorosulfonylimide
  • TMP triethyl sulfonium fluorosulfonylimide
  • ECZDE C a carbonate-based organic solvent
  • TESF S I which is an ionic liquid
  • TMP ionic liquid
  • EC / DEC EC / DEC (3: 7) which is a carbonate-based organic solvent
  • the ion liquid T.sub.ESF.sub.S I and TMP were mixed at a volume ratio of 60:40.
  • L i F S I was dissolved in an amount to give a concentration of 1 mol / L (1 M), and 5% by mass of VC was further mixed, and this was used as an electrolyte of the combustion test.
  • the test of the discharge capacity was performed using the same positive electrode as the one in Example 13 except for the electrolytic solution and the negative electrode. The results are shown in Table 2.
  • the ion liquids EMIFS I and TESFS I were mixed at a volume ratio of 70:30.
  • An amount of Li FSI was dissolved and used as an electrolyte for the combustion test.
  • the test of the discharge capacity was performed using the same positive electrode except for the electrolytic solution and the same negative electrode as in Example 13. The results are shown in Table 2.
  • EMI FSI an ionic liquid
  • EC / DE C a carbonate-based organic solvent
  • EMI FSI / ECZ DEC 60 / l 2/28
  • Li FSI was dissolved in an amount of 1 raol / L (1 M), and this was used as an electrolyte in the combustion test.
  • the positive electrode except for the electrolytic solution and the negative electrode were the same as in Example 13. The result It is shown in Table 2.
  • Table 2 shows the evaluation results of the combustion test of the electrolyte solution for the samples of Examples 13 to 34 and Comparative Examples 6 to 12 and the discharge capacity of the coin type secondary battery.
  • the results of the electrolyte combustion test are shown in the Flammability column of Table 2 as flammable and non-combustible.
  • the evaluation results of the discharge capacity of coin-type secondary batteries show the capacity value as the initial discharge capacity.
  • the coin-type secondary battery fabricated as described above was charged and discharged with a current of 0.73 raA, and the initial discharge capacity is shown in Table 2.
  • Comparative Example 12 When an ion liquid alone of Comparative Examples 6 and 10 is used as the electrolyte, as shown in Comparative Example 12, only half or less of the discharge capacity is obtained as compared with the case of using the electrolyte composed of a carbonate-based organic solvent. It was not.
  • the initial discharge capacity increases. I was able to confirm.
  • an increase in discharge capacity was confirmed by the addition of V C, and the film formation effect on the negative electrode surface could be confirmed even in the case of the mixed electrolyte.
  • a carbonate-based organic solvent can also be contained in the electrolytic solution.
  • the electrolyte can be made incombustible, and a secondary battery having battery characteristics equivalent to those of the existing carbonate organic solvents can be obtained (Example 7- 21). .
  • the secondary battery of the present invention can make the electrolyte noncombustible, and a secondary battery having a further large discharge capacity can be obtained.
  • the secondary battery of the present invention comprises at least a positive electrode, a negative electrode, and an electrolytic solution.
  • the positive electrode is formed of an oxide that occludes and releases lithium ions
  • the negative electrode is formed of a carbon material that occludes and releases lithium ions. It is characterized in that the electrolytic solution comprises a phosphoric acid ester derivative and an ionic liquid.
  • the pyrrolidinium cation represented by the chemical formula 2 or the piperidinium cation represented by the chemical formula 3 can be used as a cation component of the ionic liquid used as an electrolytic solution.
  • an ionic liquid it may be a solution containing a sulfone cation.
  • the cationic component of the ionic liquid At least two different cations may be included.
  • the anion of the ionic liquid can be a ionic liquid composed of bis (fluorosulfoel) imidazole. It is preferable that the proportion of this ionic liquid in the whole electrolyte solution is 5% by volume or more and less than 80% by volume.
  • a phosphoric acid ester derivative in which trimethyl phosphate or at least one atom other than a phosphorus atom is substituted by a halogen atom.
  • the proportion of the phosphoric acid ester derivative is preferably 15% by volume or more in the whole electrolyte solution.
  • the electrolyte can contain a carbonate-based organic solvent. The discharge capacity is increased by mixing the power-carbonated organic solvent, but if the mixing ratio is too high, the electrolyte will be flammable. Therefore, it is preferable to set the mixing ratio of the carbonate-based organic solvent in which the proportion in the whole electrolyte solution is 10 volume% or more and less than 80 volume%.
  • the electrolyte solution can contain a lithium salt, and the concentration of the lithium salt dissolved in the electrolyte solution is preferably in the range of 0.1 mol / L to 2.5 mol / L.
  • the negative electrode of the secondary battery may have a film formed in advance electrochemically on the surface of the negative electrode. This film does not pass the electrolytic solution, but is a film that passes ions.
  • a film forming additive may be contained in the electrolytic solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、安全性の高い二次電池に関する。本発明の二次電池は、正極がリチウムイオンを吸蔵、放出する酸化物から形成され、負極がリチウムイオンを吸蔵、放出する炭素材料から形成され、電解液がイオン液体、リン酸エステル誘導体からなる二次電池であり、これにより、安全性の高い二次電池の提供を図るものである。また、リン酸エステルとイオン液体を同時に含むことで、リン酸エステルを高濃度で用いても高い放電容量を維持することができる。

Description

明 細 書 二次電池 技術分野
本発明は、 安全性の高い二次電池に関するものである。 背景技術
繰り返し充放電できる二次電池として、 高いエネルギー密度を有していること からリチウム系二次電池が主流となっている。 高いエネルギー密度を有している リチウム系二次電池は、 正極と、 負極と、 電解質とを構成要素としている。 一般 に正極活物質としてリチウム含有遷移金属酸化物を用い、 負極活物質としてリチ ゥム金属、 リチウム合金、 リチウムイオンを吸蔵、 放出する炭素材料を用いてい る。 電解質としては四フッ化ホウ酸リチウム (L i BF4) ゃ六フツイ匕リン酸リ チウム (L i PF6) 等のリチウム塩を溶解した有機溶媒を用いている。 有機溶 媒としては、 エチレンカーボネート、 プロピレンカーボネート等の非プロ トン性 有機溶媒が用いられている。
上記有機溶媒は、 一般に揮発しやすく、 可燃性である。 そのため、 リチウム系 二次電池を過充電させたり乱用的な使用を行ったりした場合には、 正極の熱暴走 反応が起こり発火に至る可能性がある。 これを防止するため、 電池には熱暴走開 始温度前にセパレータの目詰まりにより、 その後のジュール熱発生を防ぐ、 いわ ゆるセパレータのシャットダウン機構を取り入れている。 さらに、 コノくノレト酸リ チウム (L i C oO2) より熱暴走反応開始温度が高いニッケル酸リチウム (L i N i 02) やマンガン酸リチウム (L iMn 204) を正極として用いることに よって、 リチウム系二次電池の安全性を高める取り組みが行われてきた。 最近で は、 更なる安全性を求め難燃性 ·不揮発性として知られるイオン液体をリチウム 系二次電池の電解液に用いることが検討されている (特許文献 1 ;特開平 10— 092467号公報、 特許文献 2 ;特開平 1 1— 086905号公報)。
従来のイオン液体は、 吸湿性が高く、 空気中での取り扱いが困難であつたが、 1 9 9 2年に Wilkes らによって大気中でも安定な 1—ェチル— 3—メチルイミ ダゾリゥムテトラフルォロボレートが開発された。 これをきつかけとして、 含窒 素化合物カチオンからなる系を中心に、 トリフルォロメタンスルホニルイミ ド等 のァニオンからなるイオン液体が開発されるようになり、 これらを電池に用いる 研究が盛んに行われるようになった。 代表的なイオン液体としては、 含窒素化合 物カチオンからなる 4級アンモニゥム系、 イミダゾリウム系、 ピリジニゥム系が 挙げられる。 カチオンにイミダゾリゥム系やピリジニゥム系などの共役構造を有 するイオン液体の一般的性質としては、 粘度が低く、 リチウム塩を溶解させても 有機溶媒に匹敵するほどの高いイオン伝導度をもつ。 しかし、 耐還元性は L iに 対して約 1. OVも貴であるため、 リチウム系二次電池に用いた場合には、 負極 上でイオン液体が分解するという問題がある。 一方、 4級アンモニゥム系カチォ ンからなるイオン液体の一般的性質としては、 L i とほぼ同じかそれより卑で分 解する。 そのため、 リチウム系二次電池に用いても耐還元性に問題はないが、 リ チウム塩を溶かした場合のイオン伝導度はとても小さく、 レート特性に影響を与 えるとレ、う欠点、がある。
一方、 ビス (フルォロスルホニル) イミ ドア二オン (一 N(SO2F)2) を構 成要素とするイオン液体が学会等で報告されている。 当該イオン液体は低い粘性 と高いイオン伝導度を有し、 リチウム塩を溶解した場合に、 高い電位窓を有する。 また、 当該イオン液体を単体で用いても、 黒鉛等の炭素材料を用いたリチウム系 二次電池を動作させることが可能であることから注目が集まっている (非特許文 献 1 ; Journal of Power Sources 1 60 (2006) 1 308— 1 3 1 3、 非 特許文献 2 ; Journal of Power Sources 1 6 2 (20 0 6) 6 5 8 - 6 6 2 )0 しかし、 当該イオン液体は熱安定性が低く、 燃えやすいため電池の安全性には寄 与しない。
電解液を不燃にする技術として、 イオン液体とカーボネート系有機溶媒の 2種 を混合させる技術が存在する (非特許文献 3 ; Journal of Power Sources 1 0 2 1 - 1 0 2 6 (1 74) 200 7)。 当該技術を用いて電解液を不燃にするた めには、 少なくともイオン液体を 40%以上混合させる必要があり、 25%以上 混合させるとレート特性や放電容量に影響を与えることが報告されている。 また、 電解液を不燃にする技術としてリン酸エステルを混合させる技術も存在 する (非特許文献 4 ; Journal of The Electrochemistry Society 1 4 8 ( 1 0 ) 2 0 0 1 )。 当該リン酸エステルはイオン液体よりも高い不燃効果を有するが、 電解液を不燃にするには、 カーボネート系電解液に 3 0 %以上混合させる必要が ある。 しかし、 リン酸エステルを 2 0 %以上カーボネート系有機溶媒に混合させ た場合、 放電容量が極端に減少する。
このほかに、 リン酸エステルとイオン液体であるェチルメチルイミダゾリゥム ビストリフルォロメタンスルホ二ルイミ ド(以下、 E M I T F S I と略記する)を 混合させた技術が報告されている(特許文献 3 ;特開平 1 1一 3 2 9 4 9 5号公 報)。 当該特許文献に記載されている実施例と同じ組成からなる電解液を用いて コィンセル評価を行ったが、 リン酸エステルを 2 0 %以上混合させた電解液は放 電容量が極端に落ちることが確認された。 そのため、 電池特性を維持させるため には、 リン酸エステルの混合割合を 2 0 %以下にする必要があった。 この原因は、 両液体とも耐還元性が悪い液体であるため、 電極上で分解しているためと考えら れる。 また、 リン酸エステルが 2 0 %しか混合されていない電解液では、 充分な 不燃効果も発揮できない。
上述のように、 グラフアイト等の炭素材料からなる負極を用いたリチウムィォ ン電池において、 正常に動作させ、 かつ完全な不燃性電解液は現在のところ見つ かっていない。 発明の開示
発明が解決しようとする課題
上記したように、 電解液を不燃にする技術としてイオン液体を使用する先行特 許文献がある。 ィオン液体は不揮発性の液体であり、 電解液として利用するとリ チウムイオン二次電池の安全性を高めることができる。 しかしイオン液体には、 上述のような問題点がある。
また、 既存のカーボネート系有機溶媒にリン酸エステルを混合する技術では、 2 0 %以上混合させると放電容量の減少が生じる。 そのため、 リン酸エステルを ある割合以上混合させて用いることができないという問題があった。 本願発明者らは、 リン酸エステルとイオン液体を同時に含むことで、 リン酸ェ ステルを高濃度で用いても高い放電容量を維持することができることを見出した。 さらに、 同時にカーボネート系有機溶媒を含むことで、 更に放電容量が上昇する ことを見出した。
本発明の目的は、 電解液を不燃化し、 より安全性の高い二次電池 提供するこ とにある。
課題を解決するための手段
本発明の二次電池は、 正極がリチウムイオンを吸蔵、 放出する酸化物から形成 され、 負極がリチウムイオンを吸蔵、 放出する炭素材料から形成され、 電解液が イオン液体、 リン酸エステル誘導体からなることを特徴とする。
発明の効果
本発明によれば、 安全性の高い二次電池が得られる。 図面の簡単な説明
図 1は、 L V法による実施例 2と比較例 4の電解液のアルミニウム腐食試験結 果を示す図である。 発明を実施するための最良の形態
以下、 本発明の好ましい実施の形態について、 詳細に説明する。 本発明の二次 電池の基本構成は、 少なくても正極と、 負極と、 電解質とを構成要素としている。 リチウムィオン二次電池の正極はリチウムを吸蔵、 放出する材料からなる酸化物 から形成され、 負極はリチウムを吸蔵、 放出する炭素材料から形成される。 さら に、 電解液はイオン液体と、 リン酸エステノレ誘導体を同時に含むものである。 本発明の実施形態として、 リチウムイオン二次電池に使用される材料や、 構成 部材の作成方法について説明する。 しかし本発明においては、 これらに限定され るものではない。 最初にリチウムイオン二次電池に使用される材料としてイオン 液体、 リン酸エステル誘導体、 カーボネート系有機溶媒、 皮膜形成添加剤、 電解 液、 正極、 負極、 セパレータ、 および電池形状について説明する。
<イオン液体 > イオン液体とは、 常温で液体のイオン化合物のことであり、 カチオン成分とァ 二オン成分とからなつている。 本発明に用いるイオン液体は、 カチオン成分がピ 口リジニゥムゃピペリジニゥム等の一般的に耐還元性が高いカチオンを構成要素 に含むイオン液体であることを特徴としている。 さらにイオン液体のカチオン成 分としては、 化学式 1で示される骨格を有する含窒素化合物カチオンからなる 4 級アンモニゥム系、 含リン化合物カチオンからなる 4級ホスホニゥム系、 含硫黄 化合物カチオンからなる 3級スルホニゥム系なども用いることができる。
Figure imgf000007_0001
. . . 式 1
耐還元性の高いカチオンとしては、 テトラアルキルアンモニゥムカチオン、 ピ ロリジニゥムカチオン、 ピペリジニゥムカチオン、 ピラゾリウムカチオン、 ピロ リュウムカチオン、 ピロリウムカチオン、 ピリジニゥムカチオン、 チアゾリゥム カチオンなどがあげられるが、 これらに限定されるものではない。
テトラアルキルアンモニゥムカチオンとしては、 ジェチルメチルメ トキシェチ ^^アンモニゥムカチオン、 トリメチノレエチノレアンモユウムカチオン、 トリメチノレ プロピルアンモニゥムカチオン、 トリメチルへキシルアンモニゥムカチオン、 テ トラペンチルアンモニゥムカチオンなどが挙げられるが、 これらに限定されるも のではない。
ピロリジニゥムカチオンとしては化学式 2で示され、 1 , 1—ジメチルピロリ ジニゥムカチオン、 1—ェチルー 1 _メチルピロリジニゥムカチオン、 1—メチ ルー 1一プロピルピロリジニゥムカチオン、 1—ブチル一 1—メチルピロリジニ ゥムカチオン等があげられるが、 これらに限定されるものではない。
Figure imgf000007_0002
• · · 式 2 ピペリジニゥムカチオンとしては化学式 3で示され、 1 , 1 _ジメチルビペリ ジニゥムカチオン、 1—ェチル _ 1ーメチルビペリジニゥムカチオン、 1—メチ ル一 1—プロピルピペリジニゥムカチオン、 1ーブチル一 1—メチルビペリジニ ゥムカチオン等があげられるが、 これらに限定されるものではない。
Figure imgf000008_0001
• · ·式 3 ピラゾリウムカチオンとしては、 1 , 2 _ジメチルビラゾリウムカチオン、 1 —ェチル一 2 _メチルビラゾリゥムカチオン、 1—プロピル一 2 _メチルピラゾ リゥムカチオン、 1—ブチル一 2—メチルビラゾリゥムカチオン等があげられる が、 これらに限定されるものではない。
ピロリュウムカチオンとしては、 1 , 2—ジメチルピロリニゥムカチオン、 1 —ェチル一 2—メチルピロリユウムカチオン、 1—プロピル一 2—メチノレピロリ ユウムカチオン、 1—ブチル一 2—メチルピロリニゥムカチオン等があげられる が、 これらに限定されるものではない。
ピロリウムカチオンとしては、 1 , 2—ジメチルピロリウムカチオン、 1—ェ チル一 2 _メチルピロリゥムカチオン、 1—プロピル一 2—メチルピロリゥムカ チオン、 1—ブチル _ 2—メチルピロリウムカチオン等があげられるが、 これら に限定されるものではない。
ピリジニゥムカチオンとしては、 N—メチルピリジニゥムカチオン、 N—ェチ ルピリジニゥムカチオン、 N _ブチルピリジニゥムカチオンなどがあげられる力 これらに限定されるものではない。
チアゾリゥムカチオンとしては、 ェチルジメチルチアゾリゥムカチオン、 ブチ ルジメチルチアゾリゥムカチオン、 へキサジメチルチアゾリゥムカチオン、 メ ト キシェチルチアゾリゥムカチオンなどがあげられるが、 これらに限定されるもの ではない。 R2-P-R
• · · 式 4 含リン化合物カチオンからなる 4級ホスホニゥム系としては、 化学式 4で示さ れる骨格を有するホスホニゥムカチオンがあげられる。 特に、 この中でも耐還元 性の高いイオン液体であることが望ましい。 化学式 4において、 R i、 R 2、 R 3、 R 4はアルキル基、 またはハロゲン化アルキル基、 アルケニル基、 シァノ基、 フ ェニル基、 アミノ基、 ニトロ基、 アルコキシ基を表し、 それぞれ同一でもよく、 異なっていてもよい。 また、 5員環、 6員環などの環状構造を有してもよい。 具体例としては、 テトラェチルホスホニゥムカチオン、 テトラメチルホスホニ ゥムカチオン、 テトラプロピルホスホニゥムカチオン、 テトラブチルホスホニゥ ムカチオン、 トリエチノレメチ ホスホニゥムカチオン、 トリメチ /レエチノレホスホ ニゥムカチオン、 ジメチ^/ジェチ ホスホニゥムカチオン、 トリメチルプロピノレ ホスホニゥムカチオン、 トリメチルブチルホスホニゥムカチオン、 ジメチルェチ ノレプロピノレホスホニゥムカチオン、 メチノレエチノレプロピノレブチノレホスホニゥムカ チオンなどが挙げられるが、 これらに限定するものではない。
Figure imgf000009_0001
• · · 式 5
含硫黄化合物カチオンからなる 3級スルホニゥム系としては、 化学式 5で示さ れる骨格を有するスルホニゥムイオンがあげられる。 特に、 この中でも耐還元性 の高いイオン液体であることが望ましい。 化学式 5において、 Rい R 2、 R 3は アルキル基、 またはハロゲン化アルキル基、 アルケニル基、 シァノ基、 フヱニル 基、 アミノ基、 ニトロ基、 アルコキシ基を表し、 それぞれ同一でもよく、 異なづ ていてもよい。 また、 5員環、 6員環などの環状構造を有してもよい。 これらの カチオンを有するイオン液体は単独で用いてもよく、 または 2種以上混合して用 いてもよレヽ。 具体例としては、 トリメチルスルホニゥムカチオン、 トリェチルスルホニゥム カチオン、 トリブチルスルホニゥムカチオン、 トリプロピルスルホニゥムカチォ ン、 ジェチノレメチノレスノレホニゥムカチオン、 ジメチノレエチノレスノレホニゥムカチォ ン、 ジメチルプロピルスルホニゥムカチオン、 ジメチルブチルスルホニゥム、 メ チルェチルプ口ピルスルホニゥムカチオン、 メチルェチルブチルスルホ二ゥムカ チオンなどが挙げられるがこれらに限定するものではない。 これらのイオン液体 を単独もしくは 2種類以上混合して用いることもできる。
イオン液体のァニオンとしては、 C 1 04-、 P F6—、 B F4—、 A s F6—、 B
(C 204) 2—、 C F3SO3—、 C I—、 B r―、 などがあげられ、 そのうち B F 4—の少なく とも一つのフッ素原子をフッ化アルキル基で置換した B F 3 (C F 3) -、 B F3 (C2F5) -、 B F3 (C3F7) -、 B F2 (CF3) 2 . F 2 (CF 3) (C2F5) や、 P F6—の少なくとも一つのフッ素原子をフッ化アルキル基で 置換した PF5 (CF3) ―、 P F5 (C2F5) 「、 P F5 (C3F7) ―、 PF4 (CF 3) 2 P F4 (C F 3) (C2F5) ―、 P F3 (C F3) 3 等をもちいてもよい。 また、 化学式 6で示される化学構造式を含むァニオン等もあげられる。 化学式 6における R2はハロゲン、 フッ化アルキルからなる群から選ばれる。 ま た、 Ri、 R2は異なったものでもよい。 具体例としては、 —N (F S02) 2、 ― N
(CF3SO2)2、 "N (C2F5S02)2、 -N (C F 3 S O 2) (C 4 F 9 S O 2)である。
Figure imgf000010_0001
式 6
Figure imgf000010_0002
… 式 7 また、 ァニオンとして、 化学式 7で示される化学構造式を含む化合物からなる 塩もあげられる。 化学式 7における Rい R2、 R3はハロゲン、 フッ化アルキル からなる群から選ばれる。 また、 Ri、 R2、 R。は異なったものでもよい。 具体 例としては、 C (CF3S02)3、 C (C2F5S02)3、 があげられる。
本発明では、 これらのカチオンゃァニオンを構成要素とするイオン液体を用い ることができる。 しかし、 ァニオンは親水性を示す BF4 や PF 6 などのァニ オンより、 疎水性を示す化学式 6のようなイミ ドア二オンを用いたイオン液体を
ΗόοΗ電Η Ηοοιιιιι解液として望ましい。 また、 2種類の異なるカチオンから なるイオン液体を混合させることもできる。
<リン酸エステル誘導体 >
本発明におけるリン酸エステル誘導体としては、 下記化学式 8、 9で表される 化合物が挙げられる。
Figure imgf000011_0001
式 8
Figure imgf000011_0002
式 9 ここで化学式 8、 9における Rい R2、 R3は炭素数 7以下のアルキル基、 ま たはハロゲン化アルキル基、 アルケニル基、 シァノ基、 フヱニル基、 アミノ基、 ニトロ基、 アルコキシ基、 シクロアルキル基、 シリル基を表し、 Rい R2、 R3 のいずれか、 または全てが結合した環状構造も含む。 具体例としては、 リン酸ト リメチル、 リン酸トリェチル、 リン酸トリブチル、 リン酸トリオクチル、 リン酸 トリフヱニル、 リン酸ジメチルェチル、 リン酸ジメチルプロピル、 リン酸ジメチ ルブチル、 リン酸ジェチルメチル、 リン酸ジプロピルメチル、 リン酸ジブチルメ チル、 リン酸メチルェチルプロピル、 リン酸メチルェチルブチル、 リン酸メチノレ プロピルブチル等が挙げられる。 さらに亜リン酸トリメチル、 亜リン酸トリェチ ノレ、 リン酸トリブチル、 亜リン酸トリフエニル、 亜リン酸ジメチルェチル、 亜リ ン酸ジメチルプロピル、 亜リン酸ジメチルブチル、 亜リン酸ジェチルメチル、 亜 リン酸ジプロピルメチル、 亜リン酸ジブチルメチル、 亜リン酸メチルェチルプロ ピル、 亜リン酸メチルェチルブチル、 亜リン酸メチルプロピルブチル、 亜リン酸 ジメチルトリメチルシリルなどがあげられる。 安定性が高いことから、 特にリン 酸トリメチル、 リン酸トリェチル、 あるレ、はリン酸トリオクチルであることが好 ましい。 . 2-O-P=0
o
Ri · · . 式 10
. . . 式 11
• · · 式 12
Figure imgf000012_0001
. . . 式 13
また、 リン酸エステル誘導体として、 上記一般化学式 10、 1 1、 12、 13 で表される化合物があげられる。 化学式 10、 1 1、 12、 13における
R2は同一でも、 異なっていてもよく、 炭素数 7以下のアルキル基、 またはハロ ゲン化アルキル基、 アルケニル基、 シァノ基、 フエ二ル基、 アミノ基、 ニトロ基、 アルコキシ基、 シクロアルキル基を表し、 R2の結合による環状構造も含 む。 また、 X X2はハロゲン原子であり、 同一でも異なっていてもよい。
これらの具体例としては、 フルォロリン酸メチル(トリフルォロェチル)、 フル ォロリン酸ェチル(トリフルォロェチル)、 フルォロリン酸プロピル(トリフルォ ロェチノレ)、 フノレオ口リン酸ァリノレ(ト リフノレオロェチノレ)、 フノレオ口リン酸ブチ ル(トリフルォロェチノレ)、 フルォロリン酸フエニル(トリフルォロェチノレ)、 フル ォロリン酸ビス(トリフルォロェチル)、 フルォロリン酸メチル(テトラフルォロ プロピル)、 フルォロリン酸ェチル(テトラフルォロプロピル)、 フルォロリン酸 テトラフルォロプロピル(トリフルォロェチル)、 フルォロリン酸フエニル(テト ラフルォロプロピル)、 フルォロリン酸ビス(テトラフルォロプロピル)、 フルォ 口リン酸メチル(フルオロフェニノレ)、 フルォロリン酸ェチル(フルオロフェニル) フノレオ口リン酸フルオロフェニノレ(トリフノレオロェチノレ)、 フルォロリン酸ジフノレ オロフェニノレ、 フノレオ口リン酸フノレオロフェニノレ(テトラフノレォロプロピノレ)、 フ ルォロリン酸メチル(ジフルオロフェニル)、 フルォロリン酸ェチル(ジフルォロ フエ二ル)、 フルォロリン酸ジフルオロフェニル(トリフルォロェチル)、 フルォ 口リン酸ビス(ジフルオロフェニル)、 フルォロリン酸ジフルオロフ工ニル(テト ラフルォロプロピル)、 フルォロリン酸フルォロエチレン、 フルォロリン酸ジフ ルォロエチレン、 フルォロリン酸フルォロプロピレン、 フルォロリン酸ジフルォ 口プロピレン、 フルォロリン酸トリフルォロプロピレン、 ジフルォロリン酸フル ォロェチル、 ジフルォロリン酸ジフルォロェチル、 ジフルォロリン酸フルォロプ 口ピル、 ジフルォロリン酸ジフルォロプロピル、 ジフルォロリン酸トリフルォロ プロピル、 ジフルォロリン酸テトラフルォロプロピル、 ジフルォロリン酸ペンタ フノレオ口プロピル、 ジフルォロリン酸フルォロイソプロピル、 ジフルォロリン酸 ジフルォロイソプロピル、 ジフルォロリン酸トリフルォロイソプロピル、 ジフル ォロリン酸テトラフルォロイソプロピル、 ジフルォロリン酸ペンタフルォロイソ プロピル、 ジフルォロリン酸へキサフルォロイソプロピル、 ジフルォロリン酸へ プタフルォロブチル、 ジフルォロリン酸へキサフルォロブチル、 ジフノレオ口リン 酸ォクタフルォロブチル、 ジフルォロリン酸パーフルオロー t—ブチル、 ジフル ォロリン酸へキサフルォロイソブチル、 ジフルォロリン酸フルオロフヱニル、 ジ フノレオ口リン酸ジフルオロフェニル、 ジフズレオ口リン酸 2 _フルオロー 4—メチ ルフヱニル、 ジフルォロリン酸トリフルオロフヱニル、 ジフルォロリン酸テトラ フノレオロフェニノレ、 ジフノレオ口リン酸ペンタフノレオロフェニノレ、 ジフノレオ口リン 酸 2—フルォロメチルフエニル、 ジフルォロリン酸 4—フルォロメチルフエ二ノレ、 ジフノレオ口リン酸 2—ジフ /レオ口メチノレフェニル、 ジフノレオ口リン酸 3—ジフル ォロメチノレフェニノレ、 ジフノレオ口リン酸 4—ジフノレオロメチノレフェニノレ、 ジフノレ ォロリン酸 2— トリフルォロメチルフエニル、 ジフルォロリン酸 3 -トリフルォ ロメチノレフェニル、 ジフルォロリン酸 4一トリフルォロメチルフエニル、 ジフル ォロリン酸 2—フルオロー 4ーメ トキシフヱニル等が挙げられる。
これらの中でも、 フノレオ口リン酸フノレオ口エチレン、 フノレオ口リン酸ビス(ト リフルォロェチル)、 ジフルォロリン酸フルォロェチル、 ジフノレオ口リン酸トリ フルォロェチル、 ジフルォロリン酸プロピル、 ジフルォロリン酸フエニルが好ま しく、 低粘度、 難燃性の点でジフルォロリン酸フルォロェチル、 ジフルォロリン 酸テトラフルォロプロピル、 ジフルォロリン酸フルオロフェニルがより好ましレ、。 本発明では、 これらのリン酸エステル誘導体を、 電解液に混合して不燃化させ ることを目的としている。 より高い不燃効果を得るためには、 リン酸エステル誘 導体の中でも、 特にリン原子を除く少なくとも一つの原子がハロゲン原子で置換 されているものが好ましい。 リン酸エステル誘導体の濃度は高いほど不燃効果が 得られる。 そのため 1 5体積%以上であることが好ましい。 これらリン酸エステ ル誘導体は、 1種単独で用いても、 2種以上を混合して用いてもよい。
くカーボネート系有機溶媒 >
本発明における電解液には、 以下に示すカーボネート系有機溶媒を同時に混合 する必要がある。 カーボネート系有機溶媒としては、 エチレンカーボネート (E C )、 プロピレンカーボネート (P C)、 ブチレンカーボネート、 クロ口エチレン カーボネート、 ジメチルカーボネート (D M C )、 ェチルメチルカーボネート ( EM C )、 ジェチルカーボネート (D E C )、 ジメ トキシェタン、 ジェチルエー テノレ、 フエニノレメチノレエーテノレ、 テトラヒ ドロフラン (T H F )、 γ—ブチロラ ク トン、 γ—バレロラク トン等があげられる。
安定性の観点から、 特にエチレンカーボネート、 ジェチルカ一ボネート、 プロ ピレンカーボネート、 ジメチルカーボネート、 ェチルメチルカーボネートが好ま しいが、 これらに限られる訳ではない。 これらカーボネート系有機溶媒の濃度は、 十分な容量向上効果を得るため 1 0体積%以上であることが好ましいが、 混合比 率が高すぎると電解液が可燃化してしまうため、 80体積%未満であることが好 ましく、 さらに 60体積%未満であることがより好ましい。 カーボネート系有機 溶媒は、 単独で使用してもよく、 2種以上を併用してもよレ、。
<皮膜形成添加剤〉
本発明における皮膜形成添加剤とは、 電気化学的に負極表面を皮膜するものの ことである。 具体例としては、 ビニルエチレンカーボネート (VC)、 エチレン サノレファイ ト (ES)、 プロパンサルトン (PS)、 フルォロエチレンカーボネー ト (FEC)、 無水コハク酸 (SUCAH)、 ジァリルカーボネート (DAC)、 ジフヱニルジサルファイド (DPS) 等があげられるが、 特にこれらに限定され ない。 添加量を多くすると電池特性に悪影響を与えてしまうため、 10質量%未 满であることが望ましい。
<電解液 >
電解液とは、 負極と正極の両極間の荷電担体輸送を行うものであり、 例えば電 解質塩を溶解したイオン液体を利用することができる。 電解質塩として、 例えば L i PF6、 L i BF4、 L i As F6、 L i C 104、 ^^じ 。、 L i 2 B12C 112、 L i B (C 2O4) 2、 L i CF3SO3、 L i C l、 L i B r、 L i Iなどがあげられ、 そのうち、 L i B F4の少なくとも一つのフッ素原子をフッ 化アルキル基で置換した L i B F3 (CF3)、 L i B F3 (C2F5)、 L i B F 3
(C3F7)、 L i B F 2 (CF3) 2、 L i B F 2 (CF3) (C 2 F 5) や、 L i P F 6の少なく とも一つのフッ素原子をフッ化アルキル基で置換した L i P F 5
(CF3)、 L i P F5 (C2F5)、 L i P F5 (C3F7)、 L i P F4 (CF3) 2、 L i PF4 (CF3) (C2F5)、 L i PF3 (CF3) 3等をもちいてもよい。
Figure imgf000015_0001
式 14 また、 電解質塩として、 化学式 14で示される化学構造式を含む化合物からな る塩もあげられる。 化学式 14における R2はハロゲン、 フッ化アルキル からなる群から選ばれる。 また、 R2は異なったものでもよレ、。 具体例と しては、 L i N (F SO2)2、 L i N (CF3SO2)2、 L i N (C2F5S02)2. L i N (CF3SO2) (C4F。S02)である。
Figure imgf000016_0001
. . · 式 15 また、 電解質塩として、 化学式 15で示される化学構造式を含む化合物からな る塩もあげられる。 化学式 1 5における R2、 R3はハロゲン、 フッ化アル キルからなる群から選ばれる。 また、 R2、 R3は異なったものでもよい。 具体例としては、 L i C (CF3S02)3、 L i C (C2F5S02)3、 があげられ る。
<正極 >
本発明における酸化物正極材料としては、 L iMn2O4、 L i C o02、 L i N i 02、 Li F e P04あるいは L i xV205 (0 < x < 2) あるいはこれら化 合物の遷移金属を別の金属で一部置換したもの等のリチウム含有遷移金属酸化物 を用いることができる。 また、 本発明における正極は、 正極集電体の上に形成す ることができ、 正極集電体としては、 ニッケルやアルミニウム、 銅、 金、 銀、 ァ ルミニゥム合金、 ステンレス、 炭素等からなる箔、 金属平板を用いることができ る。
<負極 >
本発明における炭素負極材料としては、 熱分解炭素類、 コークス類 (ピッチコ 一クス、 ニードルコークス、 石油コークス等)、 グラフアイ ト類、 ガラス状炭素 類、 有機高分子化合物焼成体 (フエノール樹脂、 フラン樹脂等を適当な温度で焼 成し、 炭素化したもの)、 炭素繊維、 活性炭、 黒鉛などの炭素材料を用いること ができる。 負極の各構成材料間の結びつきを強めるために、 結着剤を用いること もできる。 このような結着剤としては、 ポリテトラフルォ口耳チレン、 ポリフッ 化ビニリデン、 ビニリデンフロライ ド一へキサフルォロプロピレン共重合体、 ビ 二リデンフロラィ ド一テトラフルォロエチレン共重合体、 スチレン ·ブタジエン 共重合ゴム、 ポリプロピレン、 ポリエチレン、 ポリイミ ド、 部分カルボキシ化セ ルロース、 各種ポリウレタン等が挙げられる。 本発明における負極は、 負極集電 体の上に形成することができ、 負極集電体としては、 ニッケルやアルミニウム、 銅、 金、 銀、 アルミニウム合金、 ステンレス、 炭素等からなる箔、 金属平板を用 いることができる。
本発明に用いる炭素材料を用いた負極のうち、 あらかじめ皮膜が形成されてい るものを用いることも可能である。 当該皮膜とは、 一般に S E I (Solid Electro lyte Interphase)と呼ばれるものであり、 リチウムイオン電池を充放電する過程 で負極上に生成し、 電解液を通さないが、 イオンを通す膜のことである。 皮膜を 作製する方法は、 蒸着、 化学装飾等いろいろあるが、 電気化学的に皮膜を作製さ せることが望ましい。 当該作製方法は、 炭素材料からなる電極とセパレータをは さんで対極にリチウムイオンを放出する材料からなる電極から構成される電池を 作製し、 少なくとも 1回充放電を繰り返すことによって負極上に皮膜を生成させ る。 このとき用いる電解液としては、 リチウム塩を溶解させたカーボネート系電 解液を用いることができる。 充放電後、 炭素材料からなる電極を取り出し、 本発 明の負極として用いることができる。 また、 最後に放電で終わり、 炭素材料の層 内にリチウムイオンが挿入されている状態からなる電極を用いてもよい。
<セパレータ >
本発明におけるリチウムイオン二次電池には、 正極、 および負極が接触しない ようにポリエチレン、 ポリプロピレン等からなる多孔質フィルム、 セルロース膜、 不織布などのセパレータを用いることもできる。 これらセパレータを単独で使用 してもよく、 2種以上を併用してもよレ、。
ぐ電池形状 >
本発明において、 二次電池の形状は特に限定されるものではなく、 従来公知の ものを用いることができる。 電池形状としては、 円筒型、 角型、 コイン型、 およ びシート型等が挙げられる。 このような電池は、 上述した正極、 負極、 電解質、 セパレータなどを、 電極積層体あるいは巻回体を金属ケース、 樹脂ケース、 ある いはアルミニウム箔などの金属箔と合成樹脂フィルムからなるラミネートフィル ム等によって封止することによって作製される。 しかしながら、 本発明はこれら に限定されるものではない。 次に、 上記した材料を使って本発明における電解液、 正極、 負極およびコイン 型二次電池の作成方法について説明する。
く電解液の作製方法〉
ドライルーム中でイオン液体、 リン酸エステル誘導体、 カーボネート系有機溶 媒を混合させた溶液に、 リチウム塩を溶解させ電解液を作製した。
<正極作製方法〉
正極活物質として、 リチウムマンガン複合酸化物 (L i Mn 204) 系材料に、 導電剤として VGCF (昭和電工㈱製)を混合し、 これを N—メチルピロリ ドン (NMP) に分散させてスラリーとした後、 正極集電体としてのアルミニウム箔 に塗布し、 乾燥させた。 その後直径 12隱 φの正極を作製した。
ぐ負極作製方法 >
負極活物質として、 黒鉛系材料を N—メチルピロリ ドン (NMP) に分散させ てスラリーとした後、 負極集電体としての銅箔に塗布し、 乾燥させた。 その後、 直径 1 2瞧 φの電極を作製した。 実施例 1〜 12、 比較例 1〜 5はこの方法で作 製した負極を用いた。
また、 本発明に用いる負極は、 あらかじめ負極表面上に皮膜を形成させてある ものを特徴とした電極 (以後、 SE I付負極と呼ぶ) を用いてもよい。 当該電極 の作製方法として、 当該電極にセパレータをはさんで対極にリチウム金属、 電解 液からなるコインセルを作製し、 1 10 Cのレートで放電、 充電の順に 10サ ィクル繰り返し行うことで、 電気化学的に負極表面上に皮膜を形成させた。
このとき用いた電解液は、 カーボネート系有機溶媒に、 濃度が lmol/L (1M) となる量のへキサフルォロリン酸リチウム (以下、 L i PF6と略記する :分子 量: 1 5 1. 9) を溶解して調整したものを用いた。 このカーボネート系有機溶 媒としては、 エチレンカーボネート (EC) とジェチルカーボネート (DEC) とを体積比 30 : 70とした混合液 (以下、 EC/D E C又は EC/DEC (3 : 7) と略記する) を用いた。 このときカットオフ電位は放電の際 0V、 充 電の際は 1. 5Vとした。 10回目の充電後、 コインセルを分解し、 黒鉛からな る電極 (SE I付負極) を取り出し、 本発明の負極として実施例 13〜34、 比 較例 6〜 1 2のコィンセル評価での負極として用いた。 <コィン型二次電池の作製方法〉
上記の方法で得られた正極を、 ステンレスからなるコインセル受形を兼ねた正 極集電体上に置き、 多孔質のポリエチレンフィルムからなるセパレータを挟んで 黒鉛からなる負極と重ね合わせ電極積層体を得た。 得られた電極積層体に、 上記 の方法で得られた電解液を注入し、 真空含浸させた。 十分に含浸させて電極及び セパレータの空隙を電解液で埋めた後、 絶縁パッキンとコィンセル受型を兼ねた 負極集電体とを重ね合わせ、 専用のかしめ機で一体化させて、 コイン型二次電池 を作製した。
実施例
以下、 本発明を実施例により具体的に説明する。 実施例 1〜3 4として、 実施 形態で説明したイオン液体、 リン酸エステル誘導体、 カーボネート系有機溶媒及 びその組成比や、 添加剤及びリチウム塩を変更したリチウムイオン二次電池を作 成した。 また比較のために、 比較例 1〜 1 2を作成し、 同様に燃焼性試験評価と 放電容量の測定を行つた。
燃焼性試験評価は、 次のように行った。 幅 3 ram、 長さ 3 O ram、 厚さ 0 . 7讓 のガラス繊維濾紙に、 電解液を 5 0 μ L浸した。 ピンセットで当該濾紙の片側を もち、 反対側を高さ 2 cm のガスバーナーの炎に近づけた。 炎に 2秒間近づけた 後、 炎から当該濾紙を遠ざけ炎の有無を目視により確認した。 炎が観測されない 場合、 さらに 3秒間炎に近づけ、 その後炎から遠ざけ目視により炎の有無を確認 した。 2回とも炎が確認されない場合を 「不燃」、 どちらかで炎が確認された場 合を 「可燃」 と判断した。
放電容量の測定としては、 上述記載の方法により作製したコィン型のリチウム 二次電池を用いて、 放電容量を測定した。 当該コイン型のリチウム二次電池の放 電容量の評価は以下の手順で行った。 最初に、 ◦. 0 2 5 Cで上限電圧 4 . 2 V の定電流充電を行い、 放電は同じく 0 . 0 2 5 Cの電流で 3 . 0 Vカットオフと した。 そのとき観測された放電容量を初回放電容量とした。 なお、 本実施例にお ける放電容量とは、 正極活物質重量あたりの値である。
アルミニウム腐食試験方法としては、 リニアスイープボルタンメ トリ (Linear Sweep Voltammetry 以下、 L Vと略記する) 測定を行った。 評価電解液を用い て、 作用極にアルミニウム電極、 参照極に L i、 対極に L iからなる三極セルを 用い、 1. 5〜5V (vs L i ) にて、 電位をスイープさせて評価した。
く実施例 1 >
イオン液体であるブチルメチルピロリジニゥムテトラフルォロスルホニルイミ ド (以下、 BMPTF S I と略記する) とリン酸トリメチル (以下、 TMPと略 記する) を体積比で 60 : 40の割合で混合させた。 その混合液に、 濃度が 1 mo 1/L(1M)となる量のリチウムトリフルォロメタンスルホ二ルイミ ド (以下、 L i TF S Iと略記する :分子量 28 7. 1) を溶解し、 これを燃焼試験の電解液と して用いた。 放電容量の試験は、 L i Mn 2O4系活物質からなる正極、 黒鉛系 材料からなる負極を用いて電池を作製し、 評価を行った。 その結果を表 1に示す。
<実施例 2 >
イオン液体である BMPTF S Iと、 TMP及びカーボネート系有機溶媒であ る EC/DEC (3 : 7) を体積比で 20 : 40 : 40の割合で混合させた (B MPT F S I /TMP/E C/D E C= 20/40/1 2 28)。 その混合液 に、 濃度が lmol/L(lM)となる量の L i TF S Iを溶解し、 これを燃焼試験の電 解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施 例 1と同じものを用いた。 その結果を表 1に示す。
く実施例 3 >
イオン液体である BMPTF S Iと、 TMP及びカーボネート系有機溶媒であ る ECZDEC (3 : 7) を体積比で 5 : 3 5 : 60の割合で混合させた (BM PTF S I /TMP/E C/DE C = 5/3 5/1 8/4 2)0 その混合液に、 濃度が lmol/L(lM)となる量の L i TF S Iを溶解し、 これを燃焼試験の電解液 として用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施例 1 と同じものを用いた。 その結果を表 1に示す。
<実施例 4 >
イオン液体である BMPTF S Iと、 TMP及びカーボネート系有機溶媒であ る ECZDEC (3 : 7) を体積比で 1 0 : 30 : 60の割合で混合させた (B MPTF S I /TMP/EC/DEC= 1 0ノ 30/1 8 4 2)。 その混合液 に、 濃度が lraol/L(lM)となる量の L i TF S Iを溶解し、 これを燃焼試験の電 解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施 例 1と同じものを用いた。 その結果を表 1に示す。
ぐ実施例 5 >
イオン液体である BMPT F S Iと、 TMP及びカーボネート系有機溶媒であ る EC/DE C (3 : 7) を体積比で 2 0 : 6 0 : 2 0の割合で混合させた (B MP T F S I /TMP/E C/D E C = 2 0/6 0/6/1 4)。 その混合液に、 濃度が lraol/L( lM)となる量の L i TF S Iを溶解し、 これを燃焼試験の電解液 として用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施例 1 と同じものを用いた。 その結果を表 1に示す。
<実施例 6 >
イオン液体である BMPT F S Iと、 TMP及びカーボネート系有機溶媒であ る ECZDE C (3 : 7) を体積比で 3 5 : 1 5 : 5 0の割合で混合させた (B MP T F S I /TMP/E C/D E C= 3 5/ 1 5/ 1 5/3 5 )0 その混合液 に、 濃度が lmol/L( lM)となる量の L i TF S Iを溶解し、 これを燃焼試験の電 解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施 例 1と同じものを用いた。 その結果を表 1に示す。
ぐ実施例 7 >
イオン液体である BMPTF S Iと、 フルォロジェチルホスフェート (以下、 FD E Pと略記する) 及びカーボネート系有機溶媒である E CZD E C ( 3 : 7) を体積比で 1 0 : 3 0 : 6 0の割合で混合させた (BMPTF S l ZFDE P/E C/D E C= 1 0/3 0/ 1 8/4 2)0 その混合液に、 濃度が 1 raol/L ( 1M)となる量の L i T F S Iを溶解し、 これを燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施例 1と同じものを用 いた。 その結果を表 1に示す。
<実施例 8 >
イオン液体であるブチルメチノレビペリジニゥムビストリフルォロメタンスルホ 二ルイミ ド (以下 BMP p T F S I と略記する) と、 TMP及びカーボネート系 有機溶媒である E C/DEC (3 : 7) を体積比で 1 0 : 3 0 : 6 0の割合で混 合させた (BMP p T F S I /TMP/E C/D E C= 1 0/3 0/ 1 8/4 2)。 その混合液に、 濃度が lmol/L(lM)となる量の L i TF S Iを溶解し、 こ れを燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負 極については実施例 1と同じものを用いた。 その結果を表 1に示す。
<実施例 9 >
イオン液体である BMPTF S Iと BMP p TF S Iとを体積比で 50 : 50 の割合で混合させた。 当該混合イオン液体、 TMP及びカーボネート系有機溶媒 である ECZDEC (3 : 7) を体積比で 1 0 : 30 : 60の割合で混合させた (BMPTF S I /BMP p TF S I /TM P/E C/D E C = 5 / 5 / 30/ 1 8/42)。 その混合液に、 濃度が lmol/L(lM)となる量の L i T F S Iを溶 解し、 これを燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を除く 正極、 負極については実施例 1と同じものを用いた。 その結果を表 1に示す。
<実施例 1 0〉
イオン液体である BMPTF S Iと、 TMP及びカーボネート系有機溶媒であ る EC/DEC (3 : 7) を体積比で 1 0 : 30 : 60の割合で混合させた (B MPT F S I /TMP/EC/DEC= 1 0/3 0/1 8/42 )0 その混合液 に、 濃度が 2mol/L(2M)となる量の L i TF S Iを溶解し、 これを燃焼試験の電 解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施 例 1と同じものを用いた。 その結果を表 1に示す。
<実施例 1 1 >
イオン液体である BMPTF S Iと、 FDE P及びカーボネート系有機溶媒で ある EC/DEC (3 : 7) を体積比で 1 0 : 3 0 : 6 0の割合で混合させた (BMPTF S I /FDE P/E C/DEC= 1 0 3 0,1 8,4 2)。 その 混合液に、 2質量% 。を添加し、 濃度が lmol/L(lM)となる量の L i TF S I を溶解し、 これを燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を 除く正極、 負極については実施例 1と同じものを用いた。 その結果を表 1に示す。
<実施例 1 2 >
イオン液体である BMPTF S Iと、 TMP及びカーボネート系有機溶媒であ る ECZDEC (3 : 7) を体積比で 20 : 40 : 40の割合で混合させた (B MPTF S I /TMP/E C/DE C = 20/4 0/1 2/28)0 その混合液 に、 濃度が lmol/L(lM)となる量の L i P F6を溶解し、 これを燃焼試験の電解 液として用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施例 1と同じものを用いた。 その結果を表 1に示す。
<比較例 1 >
イオン液体である BMPTF S Iに、 濃度が lmol/L( 1M)となる量の L i TF S Iを溶解し、 これを燃焼試験の電解液として用いた。 放電容量の試験は、 電解 液を除く正極、 負極については実施例 1と同じものを用いた。 その結果を表 1に 示す。
<比較例 2〉
TMPに、 濃度が lmol/L(lM)となる量の L i TF S Iを溶解し、 これを燃焼 試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極につい ては実施例 1と同じものを用いた。 その結果を表 1に示す。
<比較例 3 >
イオン液体である BMPTF S Iと、 カーボネート系有機溶媒である EC/D E C ( 3 : 7 ) を体積比で 4 0 : 6 0の割合で混合させた (BMP T F S I /E C/DEC = 40/1 8/4 2)0 その混合液に、 濃度が 1 mol/L( 1 M)となる量 の L i TF S Iを溶解し、 これを燃焼試験の電解液として用いた。 放電容量の試 験は、 電解液を除く正極、 負極については実施例 1と同じものを用いた。 その結 果を表 1に示す。
<比較例 4〉
TMP及びカーボネート系有機溶媒である E CZD E C (3 : 7) を体積比で 40 : 6 0の割合で混合させた (TMPZE CZD E C = 40/ 1 8/4 2)0 その混合液に、 濃度が lmol/L(lM)となる量の L i TF S Iを溶解し、 これを燃 焼試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極につ いては実施例 1と同じものを用いた。 その結果を表 1に示す。
<比較例 5〉
イオン液体である EM I T F S Iと、 TMP及ぴカーボネート系有機溶媒であ る E CZD E C ( 3 : 7) を体積比で 1 0 : 3 0 : 6 0の割合で混合させた (E M I T F S I /TMP/E C/D E C= 1 0/3 0/1 8/4 2)0. その混合液 に、 濃度が lmol/L(lM)となる量の L i TF S Iを溶解し、 これを燃焼試験の電 解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施 例 1と同じものを用いた。 その結果を表 1に示す。
実施例 1〜12、 比較例 1〜5のサンプルに対する電解液の燃焼試験、 及びコ ィン型二次電池の放電容量の評価結果を表 1に示す。 電解液の燃焼試験結果は、 表 1の燃焼性の欄に不燃、 可燃として示している。 コイン型二次電池の放電容量 評価結果は、 初回放電容量として容量値を示す。 表 1
Figure imgf000024_0001
ぐ燃焼試験の評価結果 >
電解液を染み込ませたガラス繊維濾紙を炎に近づけ、 その後、 当該ガラス繊維 を炎から遠ざけた場合に、 炎が確認できるか否かを基準に判断を行った結果を表
1 に示す。 イオン液体である BMP TF S I単体では、 燃焼性が確認された (比 較例 1)。 また、 カーボネート系有機溶媒との混合電解液の場合も同様に燃焼性 が確認された(比較例 3)。 しかし、 リン酸エステル誘導体を 1 5体積%以上混合 し、 イオン液体をある程度同時に混合することで不燃性になることを見出した (実施例 1— 1 2)。 このことより、 リン酸エステル誘導体の混合量は 1 5体 積%以上であることが望ましい。
ぐコィン型二次電池の評価結果 >
上述のように作製したコイン M二次電池を 0. 073 mA の電流で充放電させ、 初回の放電容量を表 1に示す。 イオン液体単体ゃリン酸エステル誘導体単体を電 解液として用いた場合、 放電容量が確認されなかった (比較例 1、 2)。 本発明 において、 単体では動作しないこれらの電解液を両者混合させることで放電容量 を確認することができることを見出した (実施例 1)。 また、 カーボネート系電 解液に 40体積%リン酸エステル誘導体を混合させた 2種混合電解液の場合では 放電容量が観測されないのに対し (比較例 4)、 カーボネート系有機溶媒の 20 体積%をイオン液体 BMP T F S Iに変えた 3種混合電解液の場合、 放電容量が 確認されることも同時に発見した (実施例 2)。 このためイオン液体には、 リン 酸エステルの分解抑制効果があると考えられる。 さらに、 高い混合割合である 6
0体積%リン酸エステル誘導体を混合させた電解液においても、 イオン液体を含 んだ 3種混合電解液の場合、 放電容量を確認することができた (実施例 5)。
上述のように、 カーボネート系電解液とリン酸エステルの 2種混合電解液では 動作しないが、 イオン液体をさらに加えることで電池として動作させることがで きる。 イオン液体の中でも、 EM I TF S Iなどの耐還元性の悪いイオン液体を 混合させた場合、 放電容量はほとんど得られない (比較例 5)。 しかし、 BMP TF S Iや BMP p T F S Iなどの耐還元性の高いイオン液体を混合させた場合 には、 放電容量が飛躍的に上昇することが分かった (実施例 2— 8)。 これは、 EMI TF S I とリン酸エステル誘導体は耐還元性が悪いため、 負極上で両者が 分解するのに対して、 耐還元性の高い BMPTF S Iを用いた場合には、 それ自 体の分解反応が.なくなり、 合わせてリン酸エステル誘導体の分解反応も抑制して いると考えられる。
また、 VCの添加によって放電容量の増加が確認され、 負極表面上での皮 S莫形 成効果が混合電解液の場合でも確認することができた (実施例 1 1)。
<アルミニウム腐食試験 >
実施例 2の電解液と比較例 4の電解液を用いて、 LV測定した結果を図 1のラ イン A、 Bに示す。 アルミニウム集電体を作用極に用いた LV測定結果では、 T MP/E C/DE C (4 0/ 1 8/4 2) に 1. 0 Mの L i T F S I塩を溶解し た比較例 4の電解液では、 3. 2 V (Li/Li 付近にアルミニウム集電体の腐食反 応による電流ピークが確認できる。 しかし E CZDE Cに 2 0%BMPT F S I を混合させた BMP T F S I /TMP/E CZD E C ( 2 0/4 0/ 1 2/2 8) 〖こ 1. 0Mの L i T F S I塩を溶解した実施例 2の電解液は、 アルミニウム 集電体の腐食反応による電流ピークが確認されなくなった。 カーボネート電解液 とリン酸エステルからなる電解液にイオン液体を混合させることで、 L i T F S
I塩を用いてもアルミニウム集電体との腐食反応が抑制できることを新たに見出 した。
次に、 負極に S E I付負極を用いた場合のコインセル評価を示す。 実施例 1 3 〜34として、 実施形態で説明したイオン液体、 リン酸エステル誘導体、 カーボ ネート系有機溶媒及びその組成比や、 添加剤を変更したリチウムィオン二次電池 を作成した。 また比較のために、 比較例 6〜1 2を作成し、 同様に燃焼性試験評 価と放電容量の測定を行った。 燃焼性試験評価は、 先ほどと同様、 2回とも炎が 確認されない場合を 「不燃」、 どちらかで炎が確認された場合を 「可燃」 と判断 した。
<実施例 1 3 >
イオン液体である EM I F S I と、 TMPを体積比で 9 0 : 1.0の割合で混合 させた。 その混合液に、 濃度が lmol/L( lM)となる量のリチウムフルォロスルホ 二ルイミ ド (以下、 L i F S Iと略記する :分子量 1 8 7. 1 ) を溶解し、 これ を燃焼試験の電解液として用いた。 放電容量の試験は、 L i Mn 2O4系活物質 からなる正極、 及び SE I付負極を用いて行った。 その結果を表 2に示す。 <実施例 14 >
イオン液体である EMI F S I と、 TMPを体積比で 85 : 1 5の割合で混合 させた溶液に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 これを燃焼 試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極につい ては実施例 13と同じものを用いた。 その結果を表 2に示す。
<実施例 15 >
イオン液体である EMI FS Iと、 TMPを体積比で 80 : 20の割合で混合 させた溶液に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 これを燃焼 試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極につい ては実施例 13と同じものを用いた。 その結果を表 2に示す。
<実施例 16 >
イオン液体である EMI FS I と、 TMPを体積比で 60 : 40の割合で混合 させた溶液に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 これを燃焼 試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極につい ては実施例 13と同じものを用いた。 その結果を表 2に示す。
ぐ実施例 1 7 >
イオン液体である EMI FS I と、 TMPを体積比で 50 : 50の割合で混合 させた溶液に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 これを燃焼 試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極につい ては実施例 13と同じものを用いた。 その結果を表 2に示す。
<実施例 18 >
イオン液体である EMI F S I と、 TMP、 及びカーボネート系有機溶媒であ る ECZDEC (3 : 7) を体積比で 60 : 20 : 20の割合で混合させた (E MI F S I/TMP/EC/DEC=60Z20/6Zl 4)。 その混合液に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 これを燃焼試験の電解液と して用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施例 13 と同じものを用いた。 その結果を表 2に示す。
<実施例 19 > イオン液体である EM I F S Iと、 TMP、 及びカーボネート系有機溶媒であ る E CZDE C (3 : 7) を体積比で 4 0 : 4 0 : 2 0の割合で混合させた (E M I F S Iノ TMP/E C/DE C = 4 0Z4 0Z6Z l 4)。 その混合液に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 これを燃焼試験の電解液と して用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施例 1 3 と同じものを用いた。 その結果を表 2に示す。
<実施例 2 0 >
イオン液体である EM I F S Iと、 TMP、 及びカーボネート系有機溶媒であ る ECZDE C (3 : 7) を体積比で 2 0 : 4 0 : 4 0の割合で混合させた (E M I F S I ZTMP/E C/DE C= 2 0/4 0/ 1 2/2 8)0 その混合液に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 これを燃焼試験の電解液と して用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施例 1 3 と同じものを用いた。 その結果を表 2に示す。
ぐ実施例 2 1〉
イオン液体である EM I F S I と、 TMP、 及びカーボネート系有機溶媒であ る E CZDE C (3 : 7) を体積比で 3 0 : 2 0 : 5 0の割合で混合させた (E M I F S I /TO/E C/DE C= 3 0/2 0 1 5/3 5)。 その混合液に、 濃度が lraol/L( lM)となる量の L i F S Iを溶解し、 これを燃焼試験の電解液と して用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施例 1 3 と同じものを用いた。 その結果を表 2に示す。
ぐ実施例 2 2〉
イオン液体である EM I F S Iと、 フルォロリン酸ジェチル (以下、 FDE P と略記する) を体積比で 6 0 : 4 0の割合で混合させた溶液に、 濃度が lmol/L ( 1 M)となる量の L i F S Iを溶解し、 これを燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施例 1 3と同じものを 用いた。 その結果を表 2に示す。
ぐ実施例 2 3 >
イオン液体である EM I F S Iと、 FDE P、 及びカーボネート系有機溶媒で ある E C ZD E C ( 3 : 7) を体積比で 6 0 : 2 0 : 2 0の割合で混合させた (EM I F S I/FDEP/EC/DEC-60/20/6/14)。 その混合 液に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 これを燃焼試験の電 解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施 例 13と同じものを用いた。 その結果を表 2に示す。
<実施例 24〉
イオン液体である EMI FS Iに、 同じくイオン液体であるメチルプロピルピ 口リジニゥムフルォロスルホニルイミ ド (以下、 P 13 F S I と略記する) を体 積比で 70 : 30の割合で混合させた。 当該混合イオン液体、 TMP、 EC/D EC (3 : 7) を体積比で 60 : 20 : 20の割合で混合させた溶液 (EMI F S I /V 1 3 F S I/TMP/EC/DEC = 42/18/20/6/14) に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 これを燃焼試験の電解液と して用いた。 放電容量の試験は、 電解液を除く正極、 負極は実施例 13と同じも のを用いて行った。 その結果を表 2に示す。
<実施例 25 >
イオン液体である EMI FS Iに、 同じくイオン液体であるメチルプロピルピ ペリジニゥムフルォロスルホニルイミ ド (以下、 P P 1 3 F S I と略記する) を 体積比で 70 : 30の割合で混合させた。 当該混合イオン液体、 TMP、 EC/ DEC (3 : 7) を体積比で 60 : 20 : 20の割合で混合させた溶液 (EMI F S I /P P 1 3 F S I /TMP/E C/D E C = 42/1 8/20/6/1 4) に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 これを燃焼試験の 電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極は実施例 1 3 と同じものを用いて行った。 その結果を表 2に示す。
<実施例 26 >
イオン液体である EMI FS Iと、 TMPを体積比で 60 : 40の割合で混合 させた。 その混合液に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 さ らに 5質量0 /0のビニルエチレンカーボネート (以下、 VCと略記する) を混合さ せ、 これを燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を除く正 極、 負極は実施例 13と同じものを用いて行った。 その結果を表 2に示す。
<実施例 27 > イオン液体である EM I F S Iと、 TMP、 及びカーボネート系有機溶媒であ る ECZDEC (3 : 7) を体積比で 6 0 : 20 : 20の割合で混合させた (E M I F S I /TMP/E C/DE C- 60/20Z6Zl4)。 その混合液に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 さらに 5質量%の VCを混 合させ、 これを燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を除 く正極、 負極は実施例 1 3と同じものを用いて行った。 その結果を表 2に示す。
<実施例 28 >
イオン液体である BMPTF S Iと、 TMP、 及びカーボネート系有機溶媒で ある ECZDE C (3 : 7) を体積比で 20 : 4 0 : 4 0の割合で混合させた (BMP T F S I /TMP/E C/D EC= 20ノ 40/1 2/28)。 その混 合液に、 濃度が lraol/L(lM)となる量の L i TF S Iを溶解し、 これを燃焼試験 の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極は実施例 1 3と同じものを用いて行った。 その結果を表 2に示す。
<実施例 29 >
イオン液体である BMPTF S Iと、 TMP、 及びカーボネート系有機溶媒で ある ECZDE C (3 : 7) を体積比で 2 0 : 4 0 : 4 0の割合で混合させた (BMP T F S I /TMP/E C/Ό EC= 20/40/l 2 2 8)。 その混 合液に、 濃度が 2mol/L(2M)となる量の L i TF S Iを溶解し、 これを燃焼試験 の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極は実施例 1 3と同じものを用いて行った。 その結果を表 2に示す。
ぐ実施例 30 >
イオン液体である EM I TF S Iと、 TMP、 及びカーボネート系有機溶媒で ある E C/DEC (3 : 7) を体積比で 2 0 : 4 0 : 4 0の割合で混合させた
(BMPTF S I /TMP/EC/DEC= 20/40/1 2ノ 28)。 その混 合液に、 濃度が 2mol/L(2M)となる量の L i TF S Iを溶解し、 これを燃焼試験 の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極は実施例 1 3と同じものを用いて行った。 その結果を表 2に示す。
<実施例 3 1 >
イオン液体であるトリェチルスルホニゥムフルォロスルホニルイミ ド (以下、 TE S F S I と略記する)、 TMP、 カーボネート系有機溶媒である ECZDE C (3 : 7) を体積比で 60 : 20 : 20の割合で混合させた (TESF S lZ TMP/EC/DEC = 60/20/6/14)0 その混合液に、 濃度が 1 mol/L (1M)となる量の L i F S Iを溶解し、 これを燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極は実施例 1 3と同じものを用いて行 つた。 その結果を表 2に示す。
ぐ実施例 32 >
イオン液体である TE S F S I、 TMP、 カーボネート系有機溶媒である EC /DEC (3 : 7) を体積比で 60 : 20 : 20の割合で混合させた (TESF
5 I/TMP/EC/DEC=60/20/6/l 4)o その混合液に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 さらに 5質量%の V Cを混合させ てこれを燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極は実施例 13と同じものを用いて行った。 その結果を表 2に示す。
ぐ実施例 33 >
ィオン液体である T E S F S I と、 TMPを体積比で 60 : 40の割合で混合 させた。 その混合液に、 濃度が lmol/L(lM)となる量の L i F S Iを溶解し、 さ らに 5質量%の VCを混合させてこれを燃焼試験の電解液として用いた。 放電容 量の試験は、 電解液を除く正極、 負極は実施例 13と同じものを用いて行った。 その結果を表 2に示す。
ぐ実施例 34 >
ィオン液体である EM I FS Iと TESFS Iを体積比で 70 : 30の割合で 混合させた。 当該混合イオン液体、 TMP、 EC/DEC (3 : 7) を体積比で
60 : 20 : 20の割合で混合させた溶液 (EM I F S I /TE S F S I /TM P/EC/DEC = 42/18/20/6/14) に、 濃度が 1 mol/L ( 1 M)とな る量の L i F S Iを溶解し、 これを燃焼試験の電解液として用いた。 放電容量の 試験は、 電解液を除く正極、 負極は実施例 1 3と同じものを用いて行った。 その 結果を表 2に示す。
ぐ比較例 6 >
イオン液体である EM I TF S Iに、 濃度が lmol/L(lM)となる量の L i TF S Iを溶解し、 これを燃焼試験の電解液として用いた。 放電容量の試験は、 電解 液を除く正極、 負極については実施例 1 3と同じものを用いた。 その結果を表 2 に示す。
ぐ比較例 7 >
イオン液体である EMI TF S Iと、 TMPを体積比で 90 : 10の割合で混 合させた溶液に、 濃度が lmol/L(lM)となる量の L i TF S Iを溶解し、 これを 燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極に ついては実施例 13と同じものを用いた。 その結果を表 2に示す。
<比較例 8 >
イオン液体である EMI TF S Iと、 TMPを体積比で 85 : 15の割合で混 合させた溶液に、 濃度が lmol/L(lM)となる量の L i TF S Iを溶解し、 これを 燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極に ついては実施例 13と同じものを用いた。 その結果を表 2に示す。
<比較例 9〉
イオン液体である EMI TF S I と、 TMPを体積比で 80 : 20の割合で混 合させた溶液に、 濃度が lmol/L(lM)となる量の L i TF S Iを溶解し、 これを 燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極に ついては実施例 13と同じものを用いた。 その結果を表 2に示す。
<比較例 10 >
イオン液体である EM I F S Iに、 濃度が lmol/L( 1M)となる量の L i F S I を溶解し、 これを燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を 除く正極、 負極については実施例 1 3と同じものを用いた。 その結果を表 2に示 す。
<比較例 1 1 >
イオン液体である EMI F S I と、 カーボネート系有機溶媒である EC/DE C (3 : 7) を体積比で 60 : 40の割合で混合させた (EMI F S I/ECZ DEC = 60/l 2/28)。 その混合液に、 濃度が 1 raol/L( 1 M)となる量の L i F S Iを溶解し、 これを燃焼試験の電解液として用いた。 放電容量の試験は、 電解液を除く正極、 負極については実施例 1 3と同じものを用いた。 その結果を 表 2に示す。
<比較例 12〉
カーボネート系有機溶媒である ECZD EC (3 : 7) に、 濃度が lraol/L(l M)となる量の L i P F6を溶解し、 これを燃焼試験の電解液として用いた。 放電 容量の試験は、 電解液を除く正極、 負極は実施例 13と同じものを用いて行った。 その結果を表 2に示す。
実施例 13〜34、 比較例 6〜12のサンプルに対する電解液の燃焼試験、 及 びコィン型二次電池の放電容量の評価結果を表 2に示す。 電解液の燃焼試験結果 は、 表 2の燃焼性の欄に可燃、 不燃として表示している。 コイン型二次電池の放 電容量評価結果は、 初回放電容量として容量値を示す。
表 2
Figure imgf000034_0001
<燃焼試験の評価結果 >
電解液を染み込ませたガラス繊維濾紙を炎に近づけ、 その後、 当該ガラス繊維 を炎から遠ざけた場合に、 炎が確認できるか否かを基準に判断を行った結果を表
2に示す。 イオン液体単体(比較例 6、 1 0 )では燃焼が確認され、 リン酸エステ ル誘導体が 1 0体積%以下の場合、 燃焼が確認された (実施例 1 3、 比較例 7 )。 一方、 リン酸エステル誘導体が 1 .5体積%以上含有されている電解液は不燃性で あるため、 リン酸エステル誘導体の混合量は 1 5体積%以上であることが望まし い (実施例 1 4 )。
<コィン型二次電池の評価結果 >
上述のように作製したコイン型二次電池を◦. 0 7 3 raA の電流で充放電させ、 初回の放電容量を表 2に示す。 比較例 6や 1 0のィオン液体単体を電解液として 用いた場合、 比較例 1 2に示すように、 カーボネート系有機溶媒からなる電解液 を用いた場合に比べ、 放電容量は半分以下しか得られなかった。 しかし、 E M I F S I、 リン酸エステル誘導体、 E Cノ D E Cの組成比を変えて、 同様の実験を 行った結果、 E M I F S Iにリン酸エステル誘導体を 1 0体積%以上含ませるこ とで、 初回放電容量の増加を確認することができた。 また、 V Cの添加によって 放電容量の増加が確認され、 負極表面上での皮膜形成効果が混合電解液の場合で も確認することができた。
また、 さらに電解液にカーボネート系有機溶媒を含ませることもできる。 これ らの液体を適量混合させることによって、 電解液を不燃にすることができ、 さら に既存のカーボネート系有機溶媒と同等の電池特性を有する二次電池が得られる (実施例 7— 2 1 )。
上述したように、 本発明の二次電池は電解液を不燃にすることができ、 さらに 大きな放電容量を有する二次電池が得られる。 本発明の二次電池は、 少なくとも 正極と、 負極と、 電解液とを備える。 正極はリチウムイオンを吸蔵、 放出する酸 化物から形成され、 負極はリチウムイオンを吸蔵、 放出する炭素材料から形成さ れる。 電解液がリン酸エステル誘導体とイオン液体からなることを特徴とする。 本発明の二次電池においては、 電解液として用いるイオン液体のカチオン成分 として、 化学式 2で示されるピロリジユウムカチオン、 あるいは化学式 3で示さ れるピペリジニゥムカチオンとすることができる。 またイオン液体として、 スル ホニゥムカチオンを含む溶液としてもよい。 またイオン液体のカチオン成分を、 少なくとも 2種類の異なるカチオンを含むようにしてもよい。 さらにイオン液体 のァニオンがビス (フルォロスルホエル) イミ ドア二オンを構成要素としたィォ ン液体とすることができる。 このイオン液体が、 全電解液中に占める割合を 5体 積%以上、 8 0体積%未満とすることが好ましい。
また、 リン酸エステル誘導体が、 リン酸トリメチルや、 リン原子を除ぐ少なく とも一つの原子がハロゲン原子で置換されたものも使用することができる。 リン 酸エステル誘導体の割合は、 全電解液中に占める割合が 1 5体積%以上であるこ とが好ましい。 さらに電解液にカーボネート系有機溶媒を含むことができる。 力 ーボネート系有機溶媒を混合することで、 放電容量が上昇するが、 その混合比率 が高すぎると電解液が可燃化する。 そのため全電解液中に占める割合が 1 0体 積%以上、 8 0体積%未満のカーボネート系有機溶媒の混合比率とすることが好 ましい。
また電解液にリチウム塩を含むことができ、 電解液に溶解しているリチウム塩 の濃度が 0 . l mol/L〜2 . 5 mol/L とすることが好ましい。 さらに二次電池の 負極が、 その負極表面にあらかじめ電気化学的に皮膜が形成しておいても良い。 この皮膜は電界液を通さないが、 イオンを通す膜である。 さらに二次電池の充放 電する過程で負極に皮膜を生成させるために、 電解液に、 皮膜形成添加剤を含ま せることもできる。
以上、 実施形態及び実施例を参照して本願発明を説明したが、 本願発明は上記 の実施形態及び実施例に限定されるものではない。 本願発明の構成や詳細には、 本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 この出願は、 2 0 0 8年 5月 1 9日に出願された日本出願特願 2 0 0 8 - 1 3 1 0 5 0号、 及び 2 0 0 8年 9月 1 1日に出願された日本出願特願 2 0 0 8— 2 3 3 5 7 4号を基礎とする優先権を主張し、 その開示の全てをここに取り込むも のである。

Claims

請 求 の 範 囲
1 . 正極がリチウムイオンを吸蔵、 放出する酸化物から形成され、 負極がリ チウムイオンを吸蔵、 放出する炭素材料から形成され、 電解液がイオン液体とリ ン酸エステル誘導体からなることを特徴とする二次電池。
2 . 前記リン酸エステル誘導体が、 リン酸トリメチルであることを特徴とす る請求項 1に記載の二次電池。
3 . 前記リン酸エステル誘導体が、 リン原子を除く少なくとも一つの原子が ハロゲン原子で置換されていることを特徴とする請求項 1に記載の二次電池。
4 . 前記リン酸エステル誘導体が、 全電解液中に占める割合が 1 5体積%以 上であることを特徴とする請求項 1に記載の二次電池。
5 . 前記イオン液体が、 全電解液中に占める割合が 5体積%以上、 8 0体 積%未満であることを特徴とする請求項 1に記載の二次電池。
6 . 前記電解液に溶解しているリチウム塩の濃度が 0 . l mol/L〜2 . 5 mol /Lであることを特徴とする請求項 1に記載の二次電池。
7 . 前記電解液が、 カーボネート系有機溶媒を含むことを特徴とする請求項 1に記載の二次電池。
8 . 前記カーボネート系有機溶媒が、 全電解液中に占める割合が 1 0体積% 以上、 8 0体積。 /0以下であることを特徴とする請求項 7に記載の二次電池。
9 . 前記イオン液体のカチオンが化学式 2で示されるピロリジニゥムカチォ ン、 あるいは化学式 3で示されるピペリジ-ゥムカチオンからなることを特徴と する請求項 1に記載の二次電池。
Figure imgf000038_0001
式 2
八 式 3
10. 前記イオン液体が、 スルホニゥムカチオンを含むことを特徴とする請 求項 1に記載の二次電池。
1 1. 前記イオン液体のァニオンがビス (フルォロスルホニル) イミ ドア二 オンを構成要素としたイオン液体であることを特徴とする請求項 1に記載の二次 電池。
12. 前記イオン液体が、 少なくとも 2種類の異なるカチオンを含むことを 特徴とする請求項 1に記載の二次電池。
13. 前記負極が、 その負極表面にあらかじめ電気化学的に皮膜が形成され ていることを特徴とする請求項 1に記載の二次電池。
14. 前記電解液が、 皮膜形成添加剤を含むことを特徴とする請求項 1に記 載の二次電池。
PCT/JP2009/059301 2008-05-19 2009-05-14 二次電池 WO2009142251A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010513048A JP5645260B2 (ja) 2008-05-19 2009-05-14 二次電池
CN2009801184086A CN102037600A (zh) 2008-05-19 2009-05-14 二次电池
US12/993,218 US20110070504A1 (en) 2008-05-19 2009-05-14 Secondary battery
EP09750613.3A EP2280444A4 (en) 2008-05-19 2009-05-14 SECONDARY BATTERY

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008131050 2008-05-19
JP2008-131050 2008-05-19
JP2008-233574 2008-09-11
JP2008233574 2008-09-11

Publications (1)

Publication Number Publication Date
WO2009142251A1 true WO2009142251A1 (ja) 2009-11-26

Family

ID=41340177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059301 WO2009142251A1 (ja) 2008-05-19 2009-05-14 二次電池

Country Status (6)

Country Link
US (1) US20110070504A1 (ja)
EP (1) EP2280444A4 (ja)
JP (1) JP5645260B2 (ja)
KR (1) KR20110005880A (ja)
CN (1) CN102037600A (ja)
WO (1) WO2009142251A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077939A1 (ja) * 2009-12-24 2011-06-30 コニカミノルタホールディングス株式会社 イオン液体を含有する二次電池
CN102148401A (zh) * 2010-02-04 2011-08-10 深圳市比克电池有限公司 一种锂离子电池制备方法及制备得到的电池
JP2011165606A (ja) * 2010-02-15 2011-08-25 Asahi Kasei E-Materials Corp リチウムイオン二次電池
JP2012501060A (ja) * 2008-08-29 2012-01-12 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ イオン性液体電解質を含むリチウムイオンの再充電可能な蓄電池
JP2012142340A (ja) * 2010-12-28 2012-07-26 Jm Energy Corp リチウムイオンキャパシタ
CN102738508A (zh) * 2011-04-11 2012-10-17 中国科学院过程工程研究所 一种低锂盐含量的锂离子电池电解液
JP2013018955A (ja) * 2010-12-14 2013-01-31 Sumitomo Chemical Co Ltd メタクリル樹脂含有液状組成物およびモノマー回収方法
JP2013030473A (ja) * 2011-06-24 2013-02-07 Semiconductor Energy Lab Co Ltd 非水溶媒及び蓄電装置
US20130266875A1 (en) * 2010-10-29 2013-10-10 Nec Corporation Secondary battery and method for manufacturing same
WO2014092121A1 (ja) * 2012-12-13 2014-06-19 エリーパワー株式会社 非水電解質二次電池の製造方法
JPWO2015163139A1 (ja) * 2014-04-23 2017-04-13 ソニー株式会社 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2017221939A (ja) * 2016-06-14 2017-12-21 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 湿ったガス混合物を除湿する方法
JP2017221938A (ja) * 2016-06-14 2017-12-21 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 湿ったガス混合物を除湿する方法及び吸収剤
CN111540953A (zh) * 2020-05-12 2020-08-14 上海纳米技术及应用国家工程研究中心有限公司 一种用于镍锰酸锂正极材料的锂离子电池高压电解液
JP2020527823A (ja) * 2017-07-17 2020-09-10 ノームズ テクノロジーズ インコーポレイテッド リン含有電解質
JP2021061198A (ja) * 2019-10-08 2021-04-15 本田技研工業株式会社 リチウムイオン二次電池用電解液、およびリチウムイオン二次電池
JP2022516205A (ja) * 2018-12-14 2022-02-24 キューバーグ、インク. 高エネルギー電池用のイオン性液体ベースの電解質のためのシステム
JP7371970B1 (ja) 2022-08-09 2023-10-31 株式会社スリーダムアライアンス リチウム二次電池
WO2023233923A1 (ja) * 2022-06-03 2023-12-07 日本特殊陶業株式会社 複合体、シート、電気化学素子および蓄電デバイス

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677591B1 (en) * 2012-03-02 2017-05-03 Nec Corporation Secondary battery
CN102683746A (zh) * 2012-05-04 2012-09-19 百顺松涛(天津)动力电池科技发展有限公司 锂电池电解液添加剂以及采用该添加剂的电解液和电池
FR2992479B1 (fr) * 2012-06-22 2014-08-08 Commissariat Energie Atomique Composition comprenant un liquide ionique specifique
CN103833621B (zh) * 2012-11-26 2016-08-03 海洋王照明科技股份有限公司 吡咯类离子液体及其制备方法和应用
CN103833675B (zh) * 2012-11-26 2016-04-27 海洋王照明科技股份有限公司 哌啶类离子液体及其制备方法和应用
CN103833677A (zh) * 2012-11-26 2014-06-04 海洋王照明科技股份有限公司 吡咯类离子液体及其制备方法和应用
CN103035945B (zh) * 2012-12-17 2015-04-22 中国科学院大连化学物理研究所 一种锂二次电池用功能化离子液体电解质
PL3043405T3 (pl) * 2013-10-29 2020-05-18 Lg Chem, Ltd. Żelowy elektrolit polimerowy i akumulator litowy go zawierający
US11949071B2 (en) * 2014-05-15 2024-04-02 NOHMs Technologies, Inc. Ionic liquids for solvating cyclic carbonates
CN104022307A (zh) * 2014-06-24 2014-09-03 东莞市凯欣电池材料有限公司 一种电解液及其制备方法以及一种锂硫电池
KR101637999B1 (ko) * 2014-11-17 2016-07-08 파낙스 이텍(주) 이차전지 전해액 및 이를 함유하는 이차전지
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
JP6558694B2 (ja) * 2015-09-02 2019-08-14 国立大学法人 東京大学 二次電池用難燃性電解液、及び当該電解液を含む二次電池
US10868332B2 (en) 2016-04-01 2020-12-15 NOHMs Technologies, Inc. Modified ionic liquids containing phosphorus
CN105742569B (zh) * 2016-04-07 2018-08-03 湖南杉杉能源科技股份有限公司 一种锂离子电池负极极片及其制备方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN108110317A (zh) * 2016-11-25 2018-06-01 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
US11205798B2 (en) 2018-07-30 2021-12-21 GM Global Technology Operations LLC Capacitor-assisted solid-state battery
US11171365B2 (en) * 2018-07-30 2021-11-09 GM Global Technology Operations LLC Capacitor-assisted solid-state battery with quasi-solid-state electrolyte
CN110911745B (zh) 2019-11-29 2021-06-25 宁德新能源科技有限公司 电解液及电化学装置
CN114142087A (zh) * 2021-10-14 2022-03-04 合肥国轩高科动力能源有限公司 一种改善锂离子电池高温性能的电解液及锂离子电池
CN114221034B (zh) * 2021-12-10 2024-03-26 东莞新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888023A (ja) * 1994-09-16 1996-04-02 Mitsui Petrochem Ind Ltd 非水電解液および非水電解液電池
JPH1092467A (ja) 1996-09-18 1998-04-10 Toshiba Corp 非水電解液二次電池
JPH1186905A (ja) 1997-09-12 1999-03-30 Toshiba Corp 非水電解質二次電池
JPH11329495A (ja) 1998-01-28 1999-11-30 Sanyo Chem Ind Ltd 難燃性非水電解液およびそれを用いた二次電池
JP2006179458A (ja) * 2004-11-26 2006-07-06 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池
JP2006286570A (ja) * 2005-04-05 2006-10-19 Bridgestone Corp リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2007053083A (ja) * 2005-07-21 2007-03-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池及びその製造方法
JP2007134282A (ja) * 2005-11-14 2007-05-31 Gs Yuasa Corporation:Kk 非水電解質電池
JP2007305551A (ja) * 2006-05-15 2007-11-22 Gs Yuasa Corporation:Kk 非水電解液及びこれを備えた電池
JP2008091326A (ja) * 2006-09-05 2008-04-17 Gs Yuasa Corporation:Kk 非水電解質電池
JP2008131050A (ja) 2006-11-20 2008-06-05 Tokyo Electron Ltd 半導体素子への金属含有膜の集積方法
JP2008233574A (ja) 2007-03-21 2008-10-02 Yamaha Corp 演奏記録装置及びプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160414A (ja) * 1999-12-01 2001-06-12 Mitsubishi Chemicals Corp リチウム二次電池用電解液及びそれを用いたリチウム二次電池
CA2492344C (en) * 2004-01-15 2010-08-10 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte for electrochemical devices
JP2005243620A (ja) * 2004-01-27 2005-09-08 Toshiba Corp 非水電解質電池
US20050164082A1 (en) * 2004-01-27 2005-07-28 Takashi Kishi Nonaqueous electrolyte battery
JP4519685B2 (ja) * 2005-03-14 2010-08-04 株式会社東芝 非水電解質電池
US20090142663A1 (en) * 2005-07-21 2009-06-04 Takashi Takeuchi Nonaqueous electrolyte secondary battery and method of producing the same
JP4625733B2 (ja) * 2005-07-26 2011-02-02 株式会社東芝 非水電解質二次電池及び電池パック
JP2007335394A (ja) * 2006-05-17 2007-12-27 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池
US9048508B2 (en) * 2007-04-20 2015-06-02 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
CN103563154A (zh) * 2010-12-22 2014-02-05 康图尔能量系统有限公司 氟离子电池复合物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888023A (ja) * 1994-09-16 1996-04-02 Mitsui Petrochem Ind Ltd 非水電解液および非水電解液電池
JPH1092467A (ja) 1996-09-18 1998-04-10 Toshiba Corp 非水電解液二次電池
JPH1186905A (ja) 1997-09-12 1999-03-30 Toshiba Corp 非水電解質二次電池
JPH11329495A (ja) 1998-01-28 1999-11-30 Sanyo Chem Ind Ltd 難燃性非水電解液およびそれを用いた二次電池
JP2006179458A (ja) * 2004-11-26 2006-07-06 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池
JP2006286570A (ja) * 2005-04-05 2006-10-19 Bridgestone Corp リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2007053083A (ja) * 2005-07-21 2007-03-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池及びその製造方法
JP2007134282A (ja) * 2005-11-14 2007-05-31 Gs Yuasa Corporation:Kk 非水電解質電池
JP2007305551A (ja) * 2006-05-15 2007-11-22 Gs Yuasa Corporation:Kk 非水電解液及びこれを備えた電池
JP2008091326A (ja) * 2006-09-05 2008-04-17 Gs Yuasa Corporation:Kk 非水電解質電池
JP2008131050A (ja) 2006-11-20 2008-06-05 Tokyo Electron Ltd 半導体素子への金属含有膜の集積方法
JP2008233574A (ja) 2007-03-21 2008-10-02 Yamaha Corp 演奏記録装置及びプログラム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POWER SOURCES, no. 174, 2007, pages 1021 - 1026
JOURNAL OF POWER SOURCES, vol. 160, 2006, pages 1308 - 1313
JOURNAL OF POWER SOURCES, vol. 162, 2006, pages 658 - 662
JOURNAL OF THE ELECTROCHEMISTRY SOCIETY, vol. 148, no. 10, 2001
See also references of EP2280444A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501060A (ja) * 2008-08-29 2012-01-12 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ イオン性液体電解質を含むリチウムイオンの再充電可能な蓄電池
JPWO2011077939A1 (ja) * 2009-12-24 2013-05-02 コニカミノルタホールディングス株式会社 イオン液体を含有する二次電池
WO2011077939A1 (ja) * 2009-12-24 2011-06-30 コニカミノルタホールディングス株式会社 イオン液体を含有する二次電池
CN102148401A (zh) * 2010-02-04 2011-08-10 深圳市比克电池有限公司 一种锂离子电池制备方法及制备得到的电池
JP2011165606A (ja) * 2010-02-15 2011-08-25 Asahi Kasei E-Materials Corp リチウムイオン二次電池
US20130266875A1 (en) * 2010-10-29 2013-10-10 Nec Corporation Secondary battery and method for manufacturing same
US10290894B2 (en) * 2010-10-29 2019-05-14 Nec Corporation Secondary battery and method for manufacturing same
JP2013018955A (ja) * 2010-12-14 2013-01-31 Sumitomo Chemical Co Ltd メタクリル樹脂含有液状組成物およびモノマー回収方法
JP2012142340A (ja) * 2010-12-28 2012-07-26 Jm Energy Corp リチウムイオンキャパシタ
CN102738508A (zh) * 2011-04-11 2012-10-17 中国科学院过程工程研究所 一种低锂盐含量的锂离子电池电解液
JP2013030473A (ja) * 2011-06-24 2013-02-07 Semiconductor Energy Lab Co Ltd 非水溶媒及び蓄電装置
US9991503B2 (en) 2012-12-13 2018-06-05 Eliiy Power Co., Ltd. Method for producing non-aqueous electrolyte secondary battery
WO2014092121A1 (ja) * 2012-12-13 2014-06-19 エリーパワー株式会社 非水電解質二次電池の製造方法
JPWO2014092121A1 (ja) * 2012-12-13 2017-01-12 エリーパワー株式会社 非水電解質二次電池の製造方法
JPWO2015163139A1 (ja) * 2014-04-23 2017-04-13 ソニー株式会社 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2017221938A (ja) * 2016-06-14 2017-12-21 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 湿ったガス混合物を除湿する方法及び吸収剤
JP2017221939A (ja) * 2016-06-14 2017-12-21 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 湿ったガス混合物を除湿する方法
JP2020527823A (ja) * 2017-07-17 2020-09-10 ノームズ テクノロジーズ インコーポレイテッド リン含有電解質
JP7296893B2 (ja) 2017-07-17 2023-06-23 ノームズ テクノロジーズ インコーポレイテッド リン含有電解質
JP2022516205A (ja) * 2018-12-14 2022-02-24 キューバーグ、インク. 高エネルギー電池用のイオン性液体ベースの電解質のためのシステム
JP2021061198A (ja) * 2019-10-08 2021-04-15 本田技研工業株式会社 リチウムイオン二次電池用電解液、およびリチウムイオン二次電池
CN111540953A (zh) * 2020-05-12 2020-08-14 上海纳米技术及应用国家工程研究中心有限公司 一种用于镍锰酸锂正极材料的锂离子电池高压电解液
WO2023233923A1 (ja) * 2022-06-03 2023-12-07 日本特殊陶業株式会社 複合体、シート、電気化学素子および蓄電デバイス
JP7371970B1 (ja) 2022-08-09 2023-10-31 株式会社スリーダムアライアンス リチウム二次電池
JP2024024167A (ja) * 2022-08-09 2024-02-22 株式会社スリーダムアライアンス リチウム二次電池

Also Published As

Publication number Publication date
JP5645260B2 (ja) 2014-12-24
EP2280444A1 (en) 2011-02-02
US20110070504A1 (en) 2011-03-24
EP2280444A4 (en) 2013-05-01
JPWO2009142251A1 (ja) 2011-09-29
KR20110005880A (ko) 2011-01-19
CN102037600A (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2009142251A1 (ja) 二次電池
Zeng et al. Enabling an intrinsically safe and high‐energy‐density 4.5 V‐class Li‐ion battery with nonflammable electrolyte
CA3139800C (en) Rechargeable battery cell
JP5557337B2 (ja) 二次電池
Haregewoin et al. Electrolyte additives for lithium ion battery electrodes: progress and perspectives
CN105591149B (zh) 可充电电池及其电解质配方
EP3723180A1 (en) Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used
Zhou et al. Lithium bromide-induced organic-rich cathode/electrolyte interphase for high-voltage and flame-retardant all-solid-state lithium batteries
KR20230137982A (ko) 충전식 배터리 셀용 so2 기반 전해질 및 충전식 배터리 셀
Zhang et al. Regulating the solvation structure of nonflammable electrolyte for dendrite-free Li-metal batteries
JP7014290B2 (ja) 二次電池用電解液および二次電池
JP2019102154A (ja) リチウム二次電池用の電解液
Pan et al. Nonflammable electrolyte based on fluoroethylene carbonate for high-voltage LiCoO2/Si–graphite lithium-ion batteries
Wang et al. Ethylene Carbonate-Free Electrolytes Based on Ethyl Methyl Carbonate for High-Voltage LiCoO2/Si-Graphite Lithium-Ion Batteries
CN112490500A (zh) 蓄电设备用电解液和蓄电设备以及蓄电设备的制造方法
JP2020004598A (ja) 電池
JP7423894B2 (ja) 非水電解液二次電池及び非水電解液二次電池の製造方法
WO2019225078A1 (ja) 絶縁層、電池セルシート、二次電池
JP2020202158A (ja) 絶縁層、電池セル用シート及び電池セル
JP2019169425A (ja) リチウム二次電池
JP4703156B2 (ja) 非水電解液2次電池
WO2019225077A1 (ja) 電池セルシート、電池
CN110506357B (zh) 半二次电池和二次电池
Liu Non-Flammable Electrolytes for High Performance Batteries
WO2020003864A1 (ja) 負極、電池セルシートおよび二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118408.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12993218

Country of ref document: US

Ref document number: 2010513048

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107025888

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009750613

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE