WO2009131319A2 - 반도체 발광소자 - Google Patents

반도체 발광소자 Download PDF

Info

Publication number
WO2009131319A2
WO2009131319A2 PCT/KR2009/001806 KR2009001806W WO2009131319A2 WO 2009131319 A2 WO2009131319 A2 WO 2009131319A2 KR 2009001806 W KR2009001806 W KR 2009001806W WO 2009131319 A2 WO2009131319 A2 WO 2009131319A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
semiconductor layer
conductive semiconductor
light emitting
Prior art date
Application number
PCT/KR2009/001806
Other languages
English (en)
French (fr)
Other versions
WO2009131319A3 (ko
Inventor
정환희
Original Assignee
엘지이노텍주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍주식회사 filed Critical 엘지이노텍주식회사
Priority to CN2009801139019A priority Critical patent/CN102017196B/zh
Priority to JP2011504918A priority patent/JP5476367B2/ja
Priority to EP13170652.5A priority patent/EP2637223B1/en
Priority to EP09733715.8A priority patent/EP2270880B1/en
Publication of WO2009131319A2 publication Critical patent/WO2009131319A2/ko
Publication of WO2009131319A3 publication Critical patent/WO2009131319A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the embodiment relates to a semiconductor light emitting device.
  • the III-V nitride semiconductors include optical devices including blue / green light emitting diodes (LEDs), high-speed switching devices such as metal semiconductor field effect transistors (MOSFETs) and hetero junction field effect transistors (HEMTs), and light sources for lighting or display devices. It has been applied to a variety of applications.
  • the light emitting device using the group III nitride semiconductor has a direct transition band gap corresponding to the region from visible light to ultraviolet light, and high efficiency light emission can be realized.
  • the nitride semiconductor is mainly used as a light emitting diode (LED) or a laser diode (LD), and research for improving a manufacturing process or light efficiency has been continued.
  • LED light emitting diode
  • LD laser diode
  • the embodiment provides a semiconductor light emitting device including a transmissive conductive layer on an outer side between a compound semiconductor layer and a second electrode layer.
  • the embodiment provides a semiconductor light emitting device including an ohmic contact layer between a compound semiconductor layer and a second electrode layer.
  • the embodiment provides a semiconductor light emitting device including an ohmic contact layer formed in a plurality of patterns between a compound semiconductor layer and a second electrode layer.
  • a semiconductor light emitting device includes a first conductive semiconductor layer; An active layer under the first conductive semiconductor layer; A second conductive semiconductor layer under the active layer; A second electrode layer under the second conductive semiconductor layer; And a translucent conductive layer in at least a portion between the second conductive semiconductor layer and the second electrode layer.
  • a semiconductor light emitting device may include a light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; A second electrode layer under the second conductive semiconductor layer; A translucent conductive layer is included in an outer region on the second electrode layer.
  • the embodiment can improve the luminous efficiency by forming a transmissive conductive layer on the outer interface of the compound semiconductor layer and the second electrode layer.
  • the embodiment has the effect of improving the adhesion between the compound semiconductor layer and the second electrode layer.
  • the embodiment can improve the electrical reliability of the LED chip by disposing a transmissive conductive layer in the channel region of the compound semiconductor layer.
  • the embodiment can disperse the current supplied to the second electrode layer by forming the second electrode layer in contact with the ohmic contact layer and the Schottky contact in the compound semiconductor layer.
  • the embodiment can improve the reliability of the semiconductor light emitting device.
  • FIG. 1 is a side cross-sectional view illustrating a semiconductor light emitting device according to an embodiment.
  • FIGS. 2 to 9 are views illustrating a manufacturing process of the semiconductor light emitting device according to the embodiment.
  • each layer, region, pattern, or structure is described as being formed “on” or “under” a substrate, each layer (film), region, pad, or pattern. Where “on” and “under” include both “directly” and “indirectly”.
  • FIG. 1 is a side cross-sectional view illustrating a semiconductor light emitting device according to an embodiment.
  • the semiconductor light emitting device 100 may include a first conductive semiconductor layer 110, an active layer 120, a second conductive semiconductor layer 130, a transparent conductive layer 151, and an ohmic contact layer 153. ), A second electrode layer 155, a conductive support member 160, and a first electrode 170.
  • the semiconductor light emitting device 100 may include an LED chip using a group 3-5 compound semiconductor, and the LED chip may be a colored LED or a UV LED emitting light such as blue, green, or red.
  • the emission light of the LED chip may be implemented in various ways within the technical scope of the embodiment.
  • the first conductive semiconductor layer 110 is a compound semiconductor of a group III-V group element doped with a first conductive dopant, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP and the like.
  • a first conductive dopant for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP and the like.
  • the first conductive dopant includes an N-type dopant such as Si, Ge, Sn, Se, Te, or the like.
  • the first conductive semiconductor layer 110 may function as an electrode contact layer, and may be formed as a single layer or a multilayer, but is not limited thereto.
  • a first electrode 170 is formed on the first conductive semiconductor layer 110, and a first polarity power is supplied to the first electrode 170.
  • roughness of a predetermined shape may be formed on a surface of the first conductive semiconductor layer 110, and the roughness may be added or changed within the technical scope of the embodiment.
  • An active layer 120 is formed under the first conductive semiconductor layer 110, and the active layer 120 may be formed as a single quantum well structure or a multi quantum well structure.
  • the active layer 120 may be formed using a compound semiconductor material of group III-V element elements, such as a period of a well layer and a barrier layer, for example, a period of an InGaN well layer / GaN barrier layer or an AlGaN well layer / GaN barrier layer. Can be formed.
  • the active layer 120 may be selected as a material having a band gap energy according to the wavelength of light to emit light.
  • the active layer 120 may include a material that emits colored light such as light of blue wavelength, light of red wavelength, and light of green wavelength, but is not limited thereto.
  • a conductive clad layer may be formed on or under the active layer 120, and the conductive clad layer may be formed of an AlGaN layer.
  • At least one second conductive semiconductor layer 130 is formed under the active layer 120.
  • the second conductive semiconductor layer 130 is a compound semiconductor of Group III-V elements doped with a second conductive dopant, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP and the like.
  • the second conductive dopant includes a P-type dopant such as Mg and Ze.
  • the second conductive semiconductor layer 130 may function as an electrode contact layer, but is not limited thereto.
  • the first conductive semiconductor layer 110, the active layer 120, and the second conductive semiconductor layer 130 may be defined as a light emitting structure 140.
  • the first conductive semiconductor layer 110 may be a P-type semiconductor layer
  • the second conductive semiconductor layer 130 may be formed of an N-type semiconductor layer.
  • a third conductive semiconductor layer, for example, an N-type semiconductor layer or a P-type semiconductor layer may be formed below the second conductive semiconductor layer 130.
  • the light emitting structure 140 may include at least one of an N-P junction, a P-N junction, an N-P-N junction, and a P-N-P junction structure.
  • the light transmissive conductive layer 151, the ohmic contact layer 153, and the second electrode layer 155 are formed under the second conductive semiconductor layer 130.
  • the inner portion 151B of the light transmissive conductive layer 151 is formed at the outer interface of the second conductive semiconductor layer 130 and the second electrode layer 155 to increase the effective area of the light emitting area A1 to emit light. It can improve efficiency.
  • the outer portion 151A of the light transmissive conductive layer 151 is formed in the outer channel region 145 of the light emitting structure 140.
  • the channel region 145 may be defined as a groove in which an outer wall of the light emitting structure 140 is etched.
  • the outer portion 151A of the light transmissive conductive layer 151 may be disposed in the non-light emitting area A2 or the channel area 145 to improve electrical reliability at the outer wall of the light emitting structure 140.
  • the transmissive conductive layer 151 may be formed in a ring shape, a frame shape, or a band shape along an outer circumference of the second conductive semiconductor layer 130.
  • the light transmitting conductive layer 151 may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IZAZO), and indium gallium zinc (IGZO). oxide), indium gallium tin oxide (IGTO), and antimony tin oxide (ATO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • AZO aluminum zinc oxide
  • IZTO indium zinc tin oxide
  • IZAZO indium aluminum zinc oxide
  • IGZO indium gallium zinc
  • oxide indium gallium tin oxide
  • ATO antimony tin oxide
  • the transmissive conductive layer 151 is formed of a non-metallic material or a metal oxide having transmissive and conductive properties, thereby preventing the second electrode layer 155 from affecting the light emitting structure 140.
  • the light transmitting conductive layer 151 transmits the light emitted from the laser irradiated during the chip manufacturing process (eg, the mesa etching process), so that the second electrode layer 155 is formed in the channel region 145 of the light emitting structure 140. Exposure can be prevented.
  • an insulating layer eg, Si0 2
  • Si0 2 an insulating layer
  • the inner portion 151B of the transmissive conductive layer 151 is in ohmic contact with the second conductive semiconductor layer 130, the electrical characteristics and the luminous efficiency may be improved compared to the insulating layer.
  • An ohmic contact layer 153 is formed inside the bottom surface of the second conductive semiconductor layer 130.
  • the ohmic contact layer 153 is formed in a plurality of patterns.
  • the ohmic contact layer 153 may have a pattern of a cross, polygon, circle, or the like in a matrix shape, and the pattern shape or arrangement may be variously changed within the technical scope of the embodiment.
  • the ohmic contact layer 153 may be selectively formed among ohmic materials such as ITO, IZO, AZO, IZTO, IAZO, IGZO, IGTO, and ATO.
  • the transparent conductive layer 151 may have a thickness thinner than the thickness of the second electrode layer 155, and the thickness of the ohmic contact layer 153 may be the same as or thinner than the transparent conductive layer 151. Can be.
  • the light-transmissive conductive layer 151 may have a thickness of, for example, about 1000 to 8000 ⁇ m.
  • the thickness of the ohmic contact layer 153 may be, for example, about 10 to about 2000 kPa.
  • the ohmic contact layer 153 may be formed of the same ohmic material or different ohmic materials as the transparent conductive layer 151.
  • the ohmic contact layer 153 is formed under a pattern of the second conductive semiconductor layer 130 to improve adhesion between the second conductive semiconductor layer 130 and the second electrode layer 155. I can let you.
  • the second electrode layer 155 is formed under the second conductive semiconductor layer 130, the light transmissive conductive layer 151, and the ohmic contact layer 153.
  • the second electrode layer 155 may be formed of a material consisting of Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, and a combination thereof.
  • the second electrode layer 155 may be in Schottky contact with the second conductive semiconductor layer 130.
  • the second electrode layer 155 functions as an electrode to stably supply a second polarity power to the light emitting structure 140, and the second conductive semiconductor layer 130, the ohmic contact layer 153, and the The light incident through the transparent conductive layer 151 is reflected.
  • the second electrode layer 155 is in Schottky contact with the second conductive semiconductor layer 130
  • the ohmic contact layer 153 is in ohmic contact with the second conductive semiconductor layer 130. Accordingly, since the electrical characteristics of the second electrode layer 155 and the ohmic contact layer 153 are different, the current supplied to the second conductive semiconductor layer 130 may be dispersed.
  • the ohmic contact layer 153 may not be a light transmissive material and may be formed of a metal oxide. When the second electrode layer 155 has ohmic and reflective characteristics, the ohmic contact layer 153 may be removed.
  • the conductive support member 160 is formed under the second electrode layer 155.
  • the conductive support member 160 may be formed of copper (Cu), gold (Au), nickel (Ni), molybdenum (Mo), copper-tungsten, and a carrier wafer (eg, Si, Ge, GaAs, ZnO, Sic, etc.). Can be implemented.
  • the second electrode layer 155 and the conductive support member 160 may be used as a second electrode member for supplying second polarity power to the light emitting structure 140.
  • FIGS. 2 to 9 are views illustrating a manufacturing process of the semiconductor light emitting device according to the embodiment.
  • a light emitting structure 140 in which a plurality of compound semiconductor layers are stacked is formed on the substrate 101.
  • the light emitting structure 140 may be stacked in the order of the first conductive semiconductor layer 110, the active layer 120, and the second conductive semiconductor layer 130.
  • the substrate 101 may be selected from the group consisting of sapphire substrate (Al 2 O 3 ), GaN, SiC, ZnO, Si, GaP, InP, and GaAs.
  • Group III-V compound semiconductors may be grown on the substrate 101, and the growth equipment may be an electron beam evaporator, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma laser deposition (PLD), or dual heat. It can be formed by a dual-type thermal evaporator sputtering, metal organic chemical vapor deposition (MOCVD), etc., but is not limited to such equipment.
  • the growth equipment may be an electron beam evaporator, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma laser deposition (PLD), or dual heat. It can be formed by a dual-type thermal evaporator sputtering, metal organic chemical vapor deposition (MOCVD), etc., but is not limited to such equipment.
  • a buffer layer (not shown) and / or an undoped semiconductor layer (not shown) may be formed on the substrate 101.
  • the buffer layer (not shown) may be formed of a single crystal buffer layer or a group III-V compound semiconductor, thereby reducing a difference in lattice constant from the substrate 101.
  • the undoped semiconductor layer may be formed of GaN.
  • the first conductive semiconductor layer 110 is a compound semiconductor of Group III-V elements doped with a first conductive dopant, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP and the like.
  • a first conductive dopant for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP and the like.
  • the first conductive dopant includes an N-type dopant such as Si, Ge, Sn, Se, Te, or the like.
  • the active layer 120 is formed on the first conductive semiconductor layer 110 and may be formed of a single quantum well structure or a multi quantum well structure.
  • the active layer 120 may use a material that emits colored light such as light of blue wavelength, light of red wavelength, and light of green wavelength.
  • a conductive clad layer may be formed on or under the active layer 120, and the conductive clad layer may be formed of an AlGaN layer.
  • the second conductive semiconductor layer 130 is formed on the active layer 120, and is a compound semiconductor of a Group III-V group element doped with a second conductive dopant, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN. , AlInN, AlGaAs, GaP, GaAs, GaAsP and the like.
  • a second conductive dopant for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN. , AlInN, AlGaAs, GaP, GaAs, GaAsP and the like.
  • the second conductive dopant includes a P-type dopant such as Mg and Ze.
  • a third conductive semiconductor layer for example, an N-type semiconductor layer or a P-type semiconductor layer may be formed on the second conductive semiconductor layer 130. Accordingly, the light emitting structure 140 may include at least one of an N-P junction, a P-N junction, an N-P-N junction, and a P-N-P junction structure.
  • a transmissive conductive layer 151 is formed on an outer upper surface of the second conductive semiconductor layer 130.
  • the transparent conductive layer 151 may be formed in a ring shape, a frame shape, or a band shape along an outer circumference of the second conductive semiconductor layer 130.
  • the transparent conductive layer 151 in the process of forming the transparent conductive layer 151, a mask layer is formed on the second conductive semiconductor layer 130, the region where the transparent conductive layer 151 is to be formed is etched, and then a sputtering method. As a result, the transparent conductive layer 151 may be formed.
  • the formation process of the transparent conductive layer 151 is an example and may be changed within the technical scope of the embodiment.
  • the light transmitting conductive layer 151 may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IZAZO), and indium gallium zinc (IGZO). oxide), indium gallium tin oxide (IGTO), and antimony tin oxide (ATO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • AZO aluminum zinc oxide
  • IZTO indium zinc tin oxide
  • IZAZO indium aluminum zinc oxide
  • IGZO indium gallium zinc
  • oxide indium gallium tin oxide
  • ATO antimony tin oxide
  • the thickness T1 of the transparent conductive layer 151 may be formed to about 1000 ⁇ 8000 ⁇ , the thickness (T1) may be formed the same or thinner than the thickness of the second electrode layer.
  • An inner portion of the transmissive conductive layer 151 may be in ohmic contact with the second conductive semiconductor layer 130 to improve the luminous efficiency of the light emitting structure 140.
  • an ohmic contact layer 153 is formed inside an upper surface of the second conductive semiconductor layer 130.
  • the ohmic contact layer 153 is in ohmic contact with the second conductive semiconductor layer 130 in a plurality of patterns.
  • the ohmic contact layer 153 a mask layer is formed on the second conductive semiconductor layer 130 and the light transmissive conductive layer 151, and the region where the ohmic contact layer is to be formed is etched.
  • the ohmic contact layer 153 may be formed by a sputtering method. The formation of the ohmic contact layer 153 is an example and may be changed within the technical scope of the embodiment.
  • the ohmic contact layer 153 may have a cross pattern, a polygon, a circle, or the like, arranged in a matrix shape, and the pattern or arrangement may be variously changed within the technical scope of the embodiment.
  • the ohmic contact layer 153 may be selectively formed from an ohmic material or a metal oxide such as ITO, IZO, AZO, IZTO, IAZO, IGZO, IGTO, or ATO.
  • the ohmic contact layer 153 may not be a light transmissive material, and may be formed of a metal having an ohmic characteristic.
  • the thickness T2 of the ohmic contact layer 153 may be about 10 to 2000 ⁇ , and the thickness T2 may be the same as or thinner than the thickness (T1 of FIG. 3) of the transparent conductive layer 151. have.
  • the ohmic contact layer 153 may be formed on the top surface of the second conductive semiconductor layer 130 in a pattern form, thereby improving adhesion between the second conductive semiconductor layer 130 and the second electrode layer. . In addition, since the ohmic contact layer 153 is formed in a pattern form, current can be dispersed.
  • the ohmic contact layer 153 may be formed of the same ohmic material or different ohmic materials as the transparent conductive layer 151.
  • the order in which the light transmissive conductive layer 151 and the ohmic contact layer 153 are formed may be reversed.
  • FIG. 5 is a plan view illustrating a plurality of chip areas on a substrate according to an exemplary embodiment.
  • the transparent conductive layer 151 is formed around the outside of the second conductive semiconductor layer 130 based on each chip.
  • the transparent conductive layer 151 extends from the boundary region L1 between the chip and the chip to a part of the light emitting region of the chip.
  • the ohmic contact layer 153 is formed in a plurality of patterns on the inner top surface of the second conductive semiconductor layer 130 in each chip, and the ohmic contact layer 153 is formed.
  • the second conductive semiconductor layer 130 is exposed to a region that is not.
  • A-A side sectional drawing of FIG. 5 is the same as FIG.
  • a second electrode layer 155 is formed on the second conductive semiconductor layer 130, the transparent conductive layer 151, and the ohmic contact layer 153, and the conductive layer is formed on the second electrode layer 155.
  • the support member 160 is formed.
  • the second electrode layer 155 may be formed of a material consisting of Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, and a combination thereof.
  • the second electrode layer 155 may be in Schottky contact with the second conductive semiconductor layer 130.
  • the second electrode layer 155 reflects light incident through the second conductive semiconductor layer 130, the ohmic contact layer 153, and the transparent conductive layer 151.
  • the second electrode layer 155 functions as an electrode that stably supplies a second polarity power to the light emitting structure 140.
  • the second electrode layer 155 is in Schottky contact with the second conductive semiconductor layer 130
  • the ohmic contact layer 153 is in ohmic contact with the second conductive semiconductor layer 130. Accordingly, since the second electrode layer 155 and the ohmic contact layer 153 have different electrical resistances, the current supplied to the second conductive semiconductor layer 130 may be dispersed.
  • the ohmic contact layer 153 may be formed of a metal oxide or a metal material having ohmic characteristics. When the second electrode layer 155 has ohmic and reflective characteristics, the ohmic contact layer 153 may be removed.
  • the conductive support member 160 is formed under the second electrode layer 155.
  • the conductive support member 160 may be formed of copper (Cu), gold (Au), nickel (Ni), molybdenum (Mo), copper-tungsten, and a carrier wafer (eg, Si, Ge, GaAs, ZnO, Sic, etc.).
  • a carrier wafer eg, Si, Ge, GaAs, ZnO, Sic, etc.
  • the second electrode layer 155 may be formed, for example, by a sputtering method, and the conductive support member 160 may be formed by, for example, a plating method, and the formation method may be changed within the technical scope of the embodiment. Can be.
  • the substrate 101 may be removed by, for example, a laser lift off (LLO) process.
  • LLO laser lift off
  • the laser lift-off process when a laser having a predetermined wavelength is irradiated onto the substrate 101, thermal energy is concentrated at an interface between the substrate 101 and the first conductive semiconductor layer 110.
  • the substrate 101 is separated from the first conductive semiconductor layer 110.
  • the ohmic ohmic layer 153 reduces the impact transmitted between the second conductive semiconductor layer 130 and the second electrode layer 155 by the removal process of the substrate 101.
  • a process of polishing the surface of the first conductive semiconductor layer 110 by ICP / RIE Inductively coupled Plasma / Reactive Ion Etching
  • ICP / RIE Inductively coupled Plasma / Reactive Ion Etching
  • the channel region 145 may be a half region of the L1 region of FIG. 5. That is, by etching the boundary region L1 between the chip and the chip, the channel region 145 or the non-light emitting region A2 of each chip may be formed.
  • the mesa etching may be formed at a depth at which the transmissive conductive layer 151 is exposed or at a depth at which the second conductive semiconductor layer 130 is exposed in the first conductive semiconductor layer 110.
  • the mesa etching method may use a dry or / and a wet etching method.
  • the mesa etching may proceed to a dry etching process, the light irradiated for the dry etching is irradiated to the boundary region (L1 of FIG. 5) of the chip.
  • the first conductive semiconductor layer 110, the active layer 120, and the second conductive semiconductor layer 130 are etched by the irradiated light, and the transparent conductive layer 151 is exposed.
  • the light irradiated by the dry etching may be transmitted to the second electrode layer 155 by passing through the transparent conductive layer 151, in which case, separate metal debris is deposited on the second electrode layer 155. It will not occur. That is, since the light transmissive conductive layer 151 is not etched, even if light is irradiated to the second electrode layer 155, it does not have any influence. Accordingly, the problem of shortening the interlayer of the light emitting structure 140 can be solved.
  • the light transmissive conductive layer 151 is a SiO 2 layer
  • the second electrode layer is melted to interlayer the light emitting structure 140. May cause a problem of shorting.
  • the light transmissive conductive layer 151 is formed of a non-metallic material or a metal oxide, the light of the laser does not penetrate and flow down, thereby solving the problem of shorting the interlayer of the light emitting structure 140. Accordingly, the short problem that may occur in the chip manufacturing process may be solved to improve the manufacturing yield and improve the electrical reliability of the device.
  • the ohmic contact layer 153 reduces the impact transmitted between the second conductive semiconductor layer 130 and the second electrode layer 155.
  • a first electrode 170 is formed on the first conductive semiconductor layer 110.
  • the first electrode 170 may be formed in a predetermined pattern, but is not limited thereto.
  • roughness may be formed on an upper surface of the first conductive semiconductor layer 110. The roughness may change the critical angle of incident light, thereby improving external quantum efficiency.
  • the order of forming the first electrode 170 and the mesa etching process may be changed, but is not limited thereto.
  • the embodiment can provide a semiconductor light emitting device such as an LED.
  • the embodiment can improve the electrical reliability of the semiconductor light emitting device.
  • the embodiment may be applied to a light source packaging a semiconductor light emitting device in an illumination field, an indication field, a display field, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시 예는 반도체 발광소자에 관한 것이다. 실시 예에 따른 반도체 발광소자는 제1도전형 반도체층; 상기 제1도전형 반도체층 아래에 활성층; 상기 활성층 아래에 제2도전형 반도체층; 상기 제2도전형 반도체층 아래에 제2전극층; 상기 제2도전형 반도체층과 상기 제2전극층 사이의 적어도 일부에 투광성 전도층을 포함한다.

Description

반도체 발광소자
실시 예는 반도체 발광소자에 관한 것이다.
Ⅲ-Ⅴ족 질화물 반도체는 청색/녹색 발광 다이오드(LED)를 비롯한 광 소자, MOSFET(Metal Semiconductor Field Effect Transistor), HEMT(Hetero junction Field Effect Transistors) 등의 고속 스위칭 소자, 조명 또는 표시 장치의 광원 등으로 다양하게 응용되고 있다. 특히 Ⅲ족 질화물 반도체를 이용한 발광소자는 가시광선에서 자외선까지의 영역에 대응하는 직접 천이형 밴드 갭을 갖고, 고효율 광 방출을 실현할 수 있다.
상기 질화물 반도체는 주로 LED(Light Emitting Diode) 또는 레이저 다이오드(LD)로 활용되고 있으며, 제조 공정이나 광 효율을 개선하기 위한 연구가 지속되고 있다.
실시 예는 화합물 반도체층과 제2전극층 사이의 외측에 투광성 전도층을 포함하는 반도체 발광소자를 제공한다.
실시 예는 화합물 반도체층과 제2전극층 사이의 내측에 오믹 접촉층을 포함하는 반도체 발광소자를 제공한다.
실시 예는 화합물 반도체층과 제2전극층 사이에 복수개의 패턴으로 형성된 오믹 접촉층을 포함하는 반도체 발광소자를 제공한다.
실시 예에 따른 반도체 발광소자는 제1도전형 반도체층; 상기 제1도전형 반도체층 아래에 활성층; 상기 활성층 아래에 제2도전형 반도체층; 상기 제2도전형 반도체층 아래에 제2전극층; 및 상기 제2도전형 반도체층과 상기 제2전극층 사이의 적어도 일부에 투광성 전도층을 포함한다.
실시 예에 따른 반도체 발광소자는 제1도전형 반도체층, 활성층 및 제2도전형 반도체층을 포함하는 발광 구조물; 상기 제2도전형 반도체층 아래에 제2전극층; 상기 제2전극층 상의 외측 영역에 투광성 전도층을 포함한다.
실시 예는 화합물 반도체층과 제2전극층의 외측 계면에 투광성 전도층을 형성시켜 줌으로써, 발광 효율을 개선시켜 줄 수 있다.
실시 예는 화합물 반도체층과 제2전극층 사이의 접착력을 개선시켜 줄 수 있는 효과가 있다.
실시 예는 화합물 반도체층의 채널 영역에 투광성 전도층을 배치함으로써, LED 칩의 전기적인 신뢰성을 개선시켜 줄 수 있다.
실시 예는 화합물 반도체층에 오믹 접촉층과 쇼트키 접촉된 제2전극층을 형성시켜 줌으로써, 제2전극층으로 공급되는 전류를 분산시켜 줄 수 있다.
실시 예는 반도체 발광소자의 신뢰성을 개선시켜 줄 수 있다.
도 1은 실시 예에 따른 반도체 발광소자를 나타낸 측 단면도이다.
도 2 내지 도 9는 실시 예에 따른 반도체 발광소자의 제조과정을 나타낸 도면이다.
이하, 실시 예에 따른 반도체 발광소자에 대하여 첨부된 도면을 참조하여 설명하면 다음과 같다. 이하, 실시 예를 설명함에 있어서, 각 층의 위 또는 아래에 대한 기준은 도면을 참조하여 설명될 수 있으며, 또한 각 층의 두께는 일 예로 설명된 것이며, 도면의 두께로 한정되지는 않는다. 실시 예에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "위(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "위(on)"와 "아래(under)"는 "directly"와 "indirectly"의 의미를 모두 포함한다.
도 1은 실시 예에 따른 반도체 발광소자를 나타낸 측 단면도이다.
도 1을 참조하면, 반도체 발광소자(100)는 제1도전형 반도체층(110), 활성층(120), 제 2도전형 반도체층(130), 투광성 전도층(151), 오믹 접촉층(153), 제2전극층(155), 전도성 지지부재(160), 제1전극(170)을 포함한다.
상기 반도체 발광소자(100)는 3-5족 화합물 반도체를 이용한 LED 칩을 포함하며, 상기 LED 칩은 청색, 녹색, 또는 적색 등과 같은 광을 방출하는 유색 LED이거나 UV LED일 수 있다. 상기 LED 칩의 방출 광은 실시 예의 기술적 범위 내에서 다양하게 구현될 수 있다.
상기 제 1도전형 반도체층(110)은 제1도전형 도펀트가 도핑된 3족-5족 원소의 화합물 반도체 예컨대, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP 등에서 선택될 수 있다.
상기 제1도전형 반도체층(110)이 N형 반도체층인 경우, 상기 제1도전형 도펀트는 Si, Ge, Sn, Se, Te 등과 같은 N형 도펀트를 포함한다. 상기 제1도전형 반도체층(110)는 전극 접촉층으로 기능할 수 있으며, 단층 또는 다층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1도전형 반도체층(110) 위에는 제1전극(170)이 형성되며, 상기 제1전극(170)에는 제1극성의 전원이 공급된다. 여기서, 상기 제1도전형 반도체층(110)의 표면에는 소정 형상의 러프니스가 형성될 수 있으며, 이러한 러프니스는 실시 예의 기술적 범위 내에서 추가하거나 변경될 수 있다.
상기 제 1도전형 반도체층(110) 아래에는 활성층(120)이 형성되며, 상기 활성층(120)은 단일 양자 우물 구조 또는 다중 양자 우물 구조로 형성될 수 있다. 상기 활성층(120)은 3족-5족 원소의 화합물 반도체 재료를 이용하여 우물층과 장벽층의 주기, 예를 들면 InGaN 우물층/GaN 장벽층의 주기 또는 AlGaN 우물층/GaN 장벽층의 주기를 형성될 수 있다.
상기 활성층(120)은 발광시키는 빛의 파장에 따른 밴드 갭 에너지를 갖는 재료로 선택될 수 있다. 상기 활성층(120)은 청색 파장의 광, 레드 파장의 광, 녹색 파장의 광 등의 유색 광을 발광하는 재료를 포함할 수 있으며, 이에 대해 한정하지는 않는다. 상기 활성층(120)의 위 또는/및 아래에는 도전형 클래드층이 형성될 수 있으며, 상기 도전형 클래드층은 AlGaN층으로 형성될 수 있다.
상기 활성층(120) 아래에는 적어도 한 층의 제 2도전형 반도체층(130)이 형성된다. 상기 제 2도전형 반도체층(130)은 제2도전형 도펀트가 도핑된 3족-5족 원소의 화합물 반도체 예컨대, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP 등에서 선택될 수 있다. 상기 제2도전형 반도체층(130)이 P형 반도체층인 경우, 상기 제2도전형 도펀트는 Mg, Ze 등과 같은 P형 도펀트를 포함한다. 상기 제2도전형 반도체층(130)는 전극 접촉층으로 기능할 수 있으며, 이에 대해 한정하지는 않는다.
여기서, 상기 제1도전형 반도체층(110), 상기 활성층(120), 상기 제2도전형 반도체층(130)은 발광 구조물(140)로 정의될 수 있다. 또한 상기 제1도전형 반도체층(110)은 P형 반도체층이고, 상기 제2도전형 반도체층(130)은 N형 반도체층으로 형성될 수 있다. 상기 제2도전형 반도체층(130) 아래에는 제3도전형 반도체층 예컨대, N형 반도체층 또는 P형 반도체층이 형성될 수 있다. 이에 따라 상기 발광 구조물(140)은 N-P 접합, P-N 접합, N-P-N 접합, P-N-P 접합 구조 중 적어도 하나를 포함할 수 있다.
상기 제2도전형 반도체층(130)의 아래에는 상기 투광성 전도층(151), 상기 오믹 접촉층(153), 상기 제2전극층(155)이 형성된다.
상기 투광성 전도층(151)의 내측부(151B)는 상기 제2도전형 반도체층(130)과 상기 제2전극층(155)의 외측 계면에 형성되며, 발광 영역(A1)의 유효 면적을 넓혀주어 발광 효율을 개선시켜 줄 수 있다. 상기 투광성 전도층(151)의 외측부(151A)는 상기 발광 구조물(140)의 외측 채널 영역(145)에 형성된다. 여기서, 상기 채널 영역(145)는 상기 발광 구조물(140)의 외벽이 에칭된 홈으로 정의될 수 있다.
상기 투광성 전도층(151)의 외측부(151A)는 비 발광 영역(A2) 또는 채널 영역(145)에 배치되어, 상기 발광 구조물(140)의 외벽에서의 전기적인 신뢰성을 개선시켜 줄 수 있다.
상기 투광성 전도층(151)은 상기 제 2도전형 반도체층(130)의 외측 둘레를 따라 고리 형상, 틀 형상, 또는 띠 형상으로 형성될 수 있다.
상기 투광성 전도층(151)은 ITO(Indium Tin Oxide), IZO(Indium zinc oxide), AZO(Aluminum Zinc Oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), ATO(antimony tin oxide) 등의 재료 중에서 적어도 하나를 포함한다.
상기 투광성 전도층(151)은 투광성과 전도성의 특성을 갖는 비 금속 재료 또는 금속 산화물로 형성됨으로써, 상기 제2전극층(155)이 상기 발광 구조물(140)에 영향을 미치는 것을 차단할 수 있다.
또한 투광성 전도층(151)은 칩의 제조 과정(예: 메사 에칭 과정)에서 조사되는 레이저의 광이 투과됨으로써, 상기 발광 구조물(140)의 채널 영역(145)에 상기 제2전극층(155)이 노출되는 것을 방지할 수 있다.
만약, 상기 발광 구조물(140)의 채널 영역(145)에 투광성 전도층(151)이 아닌 절연층(예 : Si02)이 형성된 경우, 레이저에 의해 에칭되는 문제가 발생될 수 있고, 상기 제2전극층(155)이 노출되어 상기 발광 구조물(140)의 층들(110,120,130)이 쇼트되는 문제가 발생될 수 있다. 이러한 문제는 상기 투광성 전도층(151)에 의해 차단될 수 있다.
또한 상기 투광성 전도층(151)의 내측부(151B)는 상기 제2도전형 반도체층(130)과 오믹 접촉되므로, 절연층에 비해 전기적인 특성 및 발광 효율을 개선시켜 줄 수 있다.
상기 제2도전형 반도체층(130)의 하면 내측에는 오믹 접촉층(153)이 형성된다. 상기 오믹 접촉층(153)은 복수개의 패턴으로 형성된다. 상기 오믹 접촉층(153)은 십자형, 다각형, 원형 등의 형상의 패턴이 매트릭스 형상으로 배치될 수 있으며, 이러한 패턴 형상이나 배치 형태는 실시 예의 기술적 범위 내에서 다양하게 변경될 수 있다.
상기 오믹 접촉층(153)은 ITO, IZO, AZO, IZTO, IAZO, IGZO, IGTO, ATO 등의 오믹 재료 중에서 선택적으로 형성될 수 있다.
상기 투광성 전도층(151)의 두께는 상기 제2전극층(155)의 두께보다는 얇게 형성될 수 있으며, 상기 오믹 접촉층(153)의 두께는 상기 투광성 전도층(151)의 두께와 동일하거나 얇게 형성될 수 있다. 상기 투광성 전도층(151)의 두께는 예컨대, 1000~8000Å 정도로 형성될 수 있다. 상기 오믹 접촉층(153)의 두께는 예컨대, 10~2000Å 정도로 형성될 수 있다.
여기서, 상기 오믹 접촉층(153)은 상기 투광성 전도층(151)과 동일한 오믹 재료 또는 서로 다른 오믹 재료로 형성될 수 있다.
상기 오믹 접촉층(153)은 상기 제2도전형 반도체층(130)의 아래에 패턴 형태로 형성됨으로써, 상기 제2도전형 반도체층(130)과 상기 제2전극층(155) 사이의 접착력을 개선시켜 줄 수 있다.
상기 제2전극층(155)은 상기 제2도전형 반도체층(130), 상기 투광성 전도층(151), 및 상기 오믹 접촉층(153)의 아래에 형성된다.
상기 제2전극층(155)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 및 이들의 선택적인 조합으로 구성된 물질 중에서 형성될 수 있다. 상기 제2전극층(155)은 상기 제2도전형 반도체층(130)에 쇼트키 접촉될 수 있다.
상기 제2전극층(155)은 제2극성의 전원을 상기 발광구조물(140)에 안정적으로 공급하는 전극으로 기능하며, 상기 제2도전형 반도체층(130), 상기 오믹 접촉층(153), 상기 투광성 전도층(151)을 통해 입사된 광을 반사시켜 준다.
여기서, 상기 제2전극층(155)는 상기 제2도전형 반도체층(130)에 쇼트키 접촉되고, 상기 오믹 접촉층(153)은 상기 제2도전형 반도체층(130)에 오믹 접촉된다. 이에 따라 상기 제2전극층(155) 및 상기 오믹 접촉층(153)은 전기적인 특성이 다르기 때문에, 상기 제2도전형 반도체층(130)으로 공급되는 전류를 분산시켜 줄 수 있다.
여기서, 상기 오믹 접촉층(153)은 투광성 재료가 아닐 수 있고, 금속 산화물로 형성될 수 있다. 상기 제2전극층(155)이 오믹 및 반사 특성을 갖는 경우, 상기 오믹 접촉층(153)은 제거할 수 있다.
상기 제2전극층(155)의 아래에는 상기 전도성 지지부재(160)가 형성된다. 상기 전도성 지지부재(160)는 구리(Cu), 금(Au), 니켈(Ni), 몰리브덴(Mo), 구리-텅스텐 및 캐리어 웨이퍼(예: Si, Ge, GaAs, ZnO, Sic 등) 등으로 구현될 수 있다.
상기 제2전극층(155) 및 상기 전도성 지지부재(160)는 상기 발광 구조물(140)에 제2극성의 전원을 공급하는 제2전극 부재로 사용될 수 있다.
도 2내지 도 9는 실시 예에 따른 반도체 발광 소자의 제조 과정을 나타낸 도면이다.
도 2를 참조하면, 기판(101) 위에는 복수의 화합물 반도체층이 적층된 발광 구조물(140)이 형성된다. 상기 발광 구조물(140)은 제 1도전형 반도체층(110), 활성층(120), 및 제 2도전형 반도체층(130)의 순으로 적층될 수 있다.
상기 기판(101)은 사파이어 기판(Al203), GaN, SiC, ZnO, Si, GaP, InP, 그리고 GaAs 등으로 이루어진 군에서 선택될 수 있다.
상기 기판(101) 위에는 3족-5족 화합물 반도체가 성장될 수 있으며, 그 성장 장비는 전자빔 증착기, PVD(physical vapor deposition), CVD(chemical vapor deposition), PLD(plasma laser deposition), 이중형의 열증착기(dual-type thermal evaporator) 스퍼터링(sputtering), MOCVD(metal organic chemical vapor deposition) 등에 의해 형성할 수 있으며, 이러한 장비로 한정하지는 않는다.
상기 기판(101) 위에는 버퍼층(미도시) 또는/및 언도프드 반도체층(미도시)이 형성될 수 있다. 상기 버퍼층(미도시)은 단결정 버퍼층 또는 3족-5족 화합물 반도체로 형성될 수 있으며, 상기 기판(101)과의 격자 상수 차이를 줄여주게 된다. 상기 언도프드 반도체층은 GaN계로 형성될 수 있다.
상기 기판(101) 위에는 적어도 한 층의 제1도전형 반도체층(110)이 형성된다. 상기 제1도전형 반도체층(110)은 제1도전형 도펀트가 도핑된 3족-5족 원소의 화합물 반도체 예컨대, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP 등에서 선택될 수 있다. 상기 제1도전형 반도체층(110)이 N형 반도체층인 경우, 상기 제1도전형 도펀트는 Si, Ge, Sn, Se, Te 등과 같은 N형 도펀트를 포함한다.
상기 활성층(120)은 상기 제1도전형 반도체층(110) 위에 형성되며, 단일 양자 우물 구조 또는 다중 양자 우물 구조로 형성될 수 있다. 상기 활성층(120)은 청색 파장의 광, 레드 파장의 광, 녹색 파장의 광 등의 유색 광을 발광하는 재료를 사용할 수 있다. 상기 활성층(120)의 위 또는/및 아래에는 도전형 클래드층이 형성될 수 있으며, 상기 도전형 클래드층은 AlGaN층으로 형성될 수 있다.
상기 제 2도전형 반도체층(130)은 상기 활성층(120) 위에 형성되며, 제2도전형 도펀트가 도핑된 3족-5족 원소의 화합물 반도체 예컨대, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP 등에서 선택될 수 있다. 상기 제2도전형 반도체층(130)이 P형 반도체층인 경우, 상기 제2도전형 도펀트는 Mg, Ze 등과 같은 P형 도펀트를 포함한다.
상기 제2도전형 반도체층(130) 위에는 제3도전형 반도체층 예컨대, N형 반도체층 또는 P형 반도체층이 형성될 수 있다. 이에 따라 상기 발광 구조물(140)은 N-P 접합, P-N 접합, N-P-N 접합, P-N-P 접합 구조 중 적어도 하나를 포함할 수 있다.
도 3을 참조하면, 상기 제2도전형 반도체층(130)의 외측 상면에는 투광성 전도층(151)이 형성된다. 상기 투광성 전도층(151)은 상기 제2도전형 반도체층(130)의 외측 둘레를 따라 고리 형상, 틀 형상, 또는 띠 형상으로 형성될 수 있다.
여기서, 상기 투광성 전도층(151)의 형성 과정을 보면, 상기 제2도전형 반도체층(130) 위에 마스크층을 형성하고, 상기 투광성 전도층(151)이 형성될 영역을 에칭한 다음, 스퍼터링 방법으로 상기 투광성 전도층(151)을 형성할 수 있다. 이러한 투광성 전도층(151)의 형성 과정은 일 예이며 실시 예의 기술적 범위 내에서 변경될 수 있다.
상기 투광성 전도층(151)은 ITO(Indium Tin Oxide), IZO(Indium zinc oxide), AZO(Aluminum Zinc Oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), ATO(antimony tin oxide) 등의 재료 중에서 적어도 하나를 포함한다.
상기 투광성 전도층(151)의 두께(T1)는 1000~8000Å 정도로 형성될 수 있으며, 이러한 두께(T1)은 제2전극층의 두께와 동일하거나 얇게 형성될 수 있다.
상기 투광성 전도층(151)의 내측부는 상기 제2도전형 반도체층(130)과 오믹 접촉되어, 발광 구조물(140)의 발광 효율을 개선시켜 줄 수 있다.
도 4를 참조하면, 상기 제2도전형 반도체층(130)의 상면 내측에는 오믹 접촉층(153)이 형성된다. 상기 오믹 접촉층(153)은 복수개의 패턴으로 상기 제2도전형 반도체층(130)에 오믹 접촉된다.
여기서, 상기 오믹 접촉층(153)의 형성 과정을 보면, 상기 제2도전형 반도체층(130) 및 상기 투광성 전도층(151) 위에 마스크층을 형성하고, 상기 오믹 접촉층이 형성될 영역을 에칭한 다음, 스퍼터링 방법으로 상기 오믹 접촉층(153)을 형성할 수 있다. 이러한 오믹 접촉층(153)의 형성 과정은 일 예이며 실시 예의 기술적 범위 내에서 변경될 수 있다.
상기 오믹 접촉층(153)은 십자형, 다각형, 원형 등의 패턴이 매트릭스 형상으로 배치될 수 있으며, 이러한 패턴이나 배치 형태는 실시 예의 기술적 범위 내에서 다양하게 변경될 수 있다.
상기 오믹 접촉층(153)은 ITO, IZO, AZO, IZTO, IAZO, IGZO, IGTO, ATO 등의 오믹 재료 또는 금속 산화물 중에서 선택적으로 형성될 수 있다. 여기서, 상기 오믹 접촉층(153)은 투광성 재료가 아닐 수 있으며, 오믹 특성의 금속으로 형성될 수 있다.
상기 오믹 접촉층(153)의 두께(T2)는 10~2000Å 정도로 형성될 수 있으며, 이러한 두께(T2)는 상기 투광성 전도층(151)의 두께(도 3의 T1)와 동일하거나 얇게 형성될 수 있다.
상기 오믹 접촉층(153)은 상기 제2도전형 반도체층(130)의 상면에 패턴 형태로 형성됨으로써, 상기 제2도전형 반도체층(130)과 제2전극층 사이의 접착력을 개선시켜 줄 수 있다. 또한 상기 오믹 접촉층(153)이 패턴 형태로 형성됨으로써, 전류를 분산시켜 줄 수 있다.
여기서, 상기 오믹 접촉층(153)은 상기 투광성 전도층(151)과 동일한 오믹 재료 또는 서로 다른 오믹 재료로 형성될 수 있다. 또한 상기 투광성 전도층(151)과 상기 오믹 접촉층(153)의 형성 순서는 서로 바뀔 수 있다.
도 5는 실시 예에 따른 기판 위에 복수개의 칩 영역을 나타낸 평면도이다.
도 3 및 도 5를 참조하면, 상기 투광성 전도층(151)은 각 칩(CHIP)을 기준으로 제2도전형 반도체층(130)의 외측 둘레에 형성된다. 상기 투광성 전도층(151)은 칩과 칩 사이의 경계 영역(L1)에서 칩의 발광 영역의 일부까지 연장된다.
도 4 및 도 5를 참조하면, 상기 오믹 접촉층(153)은 각 칩에서 상기 제2도전형 반도체층(130)의 내측 상면에 복수개의 패턴으로 형성되며, 상기 오믹 접촉층(153)이 형성되지 않는 영역에는 상기 제2도전형 반도체층(130)이 노출된다. 여기서, 도 5의 A-A 측 단면도는 도 4와 같다.
도 6을 참조하면, 상기 제 2도전형 반도체층(130), 투광성 전도층(151) 및 오믹 접촉층(153) 위에는 제2전극층(155)이 형성되며, 상기 제2전극층(155) 위에는 전도성 지지부재(160)가 형성된다.
상기 제2전극층(155)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 및 이들의 선택적인 조합으로 구성된 물질 중에서 형성될 수 있다. 상기 제2전극층(155)은 상기 제2도전형 반도체층(130)에 쇼트키 접촉될 수 있다. 상기 제2전극층(155)은 상기 제2도전형 반도체층(130), 상기 오믹 접촉층(153), 상기 투광성 전도층(151)을 통해 입사된 광을 반사시켜 준다.
상기 제2전극층(155)은 제2극성의 전원을 상기 발광구조물(140)에 안정적으로 공급하는 전극으로 기능하게 된다. 여기서, 상기 제2전극층(155)은 상기 제2도전형 반도체층(130)에 쇼트키 접촉되고, 상기 오믹 접촉층(153)은 상기 제2도전형 반도체층(130)에 오믹 접촉된다. 이에 따라 상기 제2전극층(155) 및 상기 오믹 접촉층(153)은 전기적인 저항이 다르기 때문에, 상기 제2도전형 반도체층(130)으로 공급되는 전류를 분산시켜 줄 수 있다.
여기서, 상기 오믹 접촉층(153)은 금속 산화물 또는 오믹 특성을 갖는 금속 재료로 형성될 수 있다. 상기 제2전극층(155)이 오믹 및 반사 특성을 갖는 경우, 상기 오믹 접촉층(153)은 제거할 수 있다.
상기 제2전극층(155)의 아래에는 상기 전도성 지지부재(160)가 형성된다. 상기 전도성 지지부재(160)는 구리(Cu), 금(Au), 니켈(Ni), 몰리브덴(Mo), 구리-텅스텐 및 캐리어 웨이퍼(예: Si, Ge, GaAs, ZnO, Sic 등) 등으로 구현될 수 있다. 여기서, 상기 제2전극층(155)은 예컨대, 스퍼터링 방식으로 형성될 수 있으며, 상기 전도성 지지부재(160)는 예컨대, 도금 방식으로 형성될 수 있으며, 이러한 형성 방법은 실시 예의 기술적 범위 내에서 변경될 수 있다.
도 6 및 도 7를 참조하면, 상기 기판(101)이 위로 향하도록 회전시키면, 상기 전도성 지지부재(160)는 베이스에 배치된다. 그리고, 상기 기판(101)을 제거하게 된다.
상기 기판(101)의 제거 방법은 예컨대, 레이저 리프트 오프(LLO : Laser Lift Off) 과정으로 제거할 수 있다. 상기 레이저 리프트 오프 과정은 상기 기판(101)에 일정 영역의 파장을 가지는 레이저를 조사하면, 상기 기판(101)과 상기 제 1도전형 반도체층(110) 사이의 계면에 열 에너지가 집중되며, 상기 기판(101)이 상기 제1도전형 반도체층(110)으로부터 분리된다.
여기서, 상기 오믹 오믹층(153)은 상기 기판(101)의 제거 공정에 의해 상기 제 2도전형 반도체층(130)과 제2전극층(155) 사이에 전달되는 충격을 감소시켜 준다.
상기 기판(101)이 제거되면, 상기 제 1도전형 반도체층(110)의 표면에 대해 ICP/RIE(Inductively coupled Plasma/Reactive Ion Etching) 방식으로 연마하는 공정을 수행할 수 있으며, 이에 대해 한정하지는 않는다.
도 7 및 도 8을 참조하면, 상기 제1도전형 반도체층(110) 위의 채널 영역(145)에 대해 메사 에칭을 수행하게 된다. 여기서, 상기 채널 영역(145)은 도 5의 L1 영역의 1/2 영역이 될 수 있다. 즉, 칩과 칩 사이의 경계 영역(L1)을 에칭함으로써, 각 칩의 채널 영역(145) 또는 비 발광 영역(A2)이 형성될 수 있다.
상기 메사 에칭은 상기 제1도전형 반도체층(110)에서 상기 투광성 전도층(151)이 노출되는 깊이 또는 상기 제2도전형 반도체층(130)이 노출되는 깊이로 형성될 수 있다. 상기 메사 에칭 방식은 건식 또는/및 습식 에칭 방식을 이용할 수 있다.
여기서, 상기 메사 에칭은 건식 에칭 공정으로 진행될 수 있으며, 상기 건식 에칭을 위해 조사된 광은 상기 칩의 경계 영역(도 5의 L1)에 조사된다. 상기 조사된 광에 의해 상기 제1도전형 반도체층(110), 상기 활성층(120), 상기 제2도전형 반도체층(130)이 에칭되고 상기 투광성 전도층(151)이 노출된다.
여기서, 상기 건식 에칭에 의해 조사된 광은 상기 투광성 전도층(151)을 투과하여 상기 제2전극층(155)에 전달될 수 있으며, 이 경우, 상기 제2전극층(155)에 별도의 금속 파편이 발생되지 않게 된다. 즉, 상기 투광성 전도층(151)이 에칭되지 않기 때문에 상기 제2전극층(155)에 광이 조사되더라도 별다른 영향을 주지 않게 된다. 이에 따라 상기 발광 구조물(140)의 층간을 쇼트시키는 문제를 해결할 수 있다.
만약, 상기 투광성 전도층(151)이 SiO2층인 경우, 레이저의 광이 조사되어 상기 SiO2층이 에칭되어 제2전극층이 노출된 경우, 상기 제2전극층이 녹아 상기 발광 구조물(140)의 층간을 쇼트시키는 문제가 발생될 수 있다.
상기 투광성 전도층(151)은 비 금속 재료 또는 금속 산화물로 형성됨으로써, 상기 레이저의 광이 투과되고 흘러내리지 않게 되므로, 상기 발광 구조물(140)의 층간을 쇼트시키는 문제를 해결할 수 있다. 이에 따라 칩 제조 과정에서 발생될 수 있는 쇼트 문제를 해결하여 제조 수율을 개선시키고, 소자의 전기적인 신뢰성을 향상시켜 줄 수 있다.
또한 상기 오믹 접촉층(153)은 상기 제2도전형 반도체층(130)과 상기 제2전극층(155) 사이에 전달되는 충격을 줄여주게 된다.
도 8 및 도 9를 참조하면, 상기 제1도전형 반도체층(110) 위에 제1전극(170)을 형성하게 된다. 상기 제1전극(170)은 소정의 패턴으로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 또한 상기 제1도전형 반도체층(110)의 상면에 러프니스를 형성시켜 줄 수 있으며, 상기 러프니스는 입사되는 광의 임계각을 변화시켜 주어, 외부 양자 효율을 개선시켜 줄 수 있다.
여기서, 상기 제1전극(170)의 형성 과정과 상기 메사 에칭 과정의 순서는 변경될 수 있으며, 이에 대해 한정하지는 않는다.
이상은 그 바람직한 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시 예는 LED와 같은 반도체 발광소자를 제공할 수 있다.
실시 예는 반도체 발광소자의 전기적인 신뢰성을 개선시켜 줄 수 있다.
실시 예는 반도체 발광소자를 패키징한 광원을 조명 분야, 지시 분야, 표시 분야 등에 적용될 수 있다.

Claims (15)

  1. 제1도전형 반도체층;
    상기 제1도전형 반도체층 아래에 활성층;
    상기 활성층 아래에 제2도전형 반도체층;
    상기 제2도전형 반도체층 아래에 제2전극층;
    상기 제2도전형 반도체층과 상기 제2전극층 사이의 적어도 일부에 투광성 전도층을 포함하는 반도체 발광소자.
  2. 제1항에 있어서,
    상기 제2전극층의 아래에 전도성 지지부재 및, 상기 제1도전형 반도체층 위에 제1전극을 포함하는 반도체 발광소자.
  3. 제1항에 있어서,
    상기 제2도전형 반도체층과 상기 제2전극층 사이에 복수개의 패턴을 포함하는 오믹 접촉층을 포함하는 반도체 발광소자.
  4. 제1항에 있어서,
    상기 투광성 전도층은 상기 제2전극층의 외측 상면을 따라 고리 형상, 틀 형상, 또는 띠 형상으로 형성되는 반도체 발광소자.
  5. 제3항에 있어서,
    상기 투광성 전도층 또는/및 상기 오믹 접촉층은 ITO(Indium Tin Oxide), IZO(Indium zinc oxide), AZO(Aluminum Zinc Oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), ATO(antimony tin oxide) 중 적어도 하나를 포함하는 반도체 발광소자.
  6. 제1항에 있어서,
    상기 투광성 전도층은 상기 제2도전형 반도체층과 상기 제2전극층 사이에 내측부, 및 상기 제2전극층의 외측 상면에 외측부를 포함하는 반도체 발광소자.
  7. 제3항에 있어서,
    상기 투광성 전도층 및 상기 오믹 접촉층은 상기 제2도전형 반도층에 오믹 접촉되며,
    상기 제2전극층은 상기 제2도전형 반도체층에 쇼트키 접촉되는 반도체 발광소자.
  8. 제1항에 있어서,
    상기 투광성 전도층의 두께는 제2전극층의 두께보다 얇게 형성되는 반도체 발광소자.
  9. 제1항에 있어서,
    상기 제1도전형 반도체층은 N형 반도체층이며,
    상기 제2도전형 반도체층은 P형 반도체층인 반도체 발광소자.
  10. 제1도전형 반도체층, 활성층 및 제2도전형 반도체층을 포함하는 발광 구조물;
    상기 제2도전형 반도체층 아래에 제2전극층;
    상기 제2전극층 상의 외측 영역에 투광성 전도층을 포함하는 반도체 발광소자.
  11. 제10항에 있어서,
    상기 투광성 전도층의 외측부는 상기 발광 구조물이 형성되지 않는 외측 채널 영역에 노출되는 반도체 발광소자.
  12. 제10항에 있어서,
    상기 투광성 전도층의 내측부는 상기 제2도전형 반도체층과 상기 제2전극층 사이에 위치하는 반도체 발광소자.
  13. 제10항에 있어서,
    상기 제2도전형 반도체층과 상기 제2전극층 사이의 내측에 복수개의 패턴을 포함하는 오믹 접촉층을 포함하며,
    상기 제2전극층은 반사 금속을 포함하는 반도체 발광소자.
  14. 제13항에 있어서,
    상기 투광성 전도층 또는/및 상기 오믹 접촉층은 ITO(Indium Tin Oxide), IZO(Indium zinc oxide), AZO(Aluminum Zinc Oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), ATO(antimony tin oxide) 중에서 선택적으로 형성되는 반도체 발광소자.
  15. 제13항에 있어서,
    상기 투광성 전도층의 두께는 1000~8000Å 로 형성되며,
    상기 오믹 접촉층의 두께는 10~2000Å 로 형성되는 반도체 발광소자.
PCT/KR2009/001806 2008-04-21 2009-04-08 반도체 발광소자 WO2009131319A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801139019A CN102017196B (zh) 2008-04-21 2009-04-08 半导体发光器件
JP2011504918A JP5476367B2 (ja) 2008-04-21 2009-04-08 半導体発光素子
EP13170652.5A EP2637223B1 (en) 2008-04-21 2009-04-08 Semiconductor light emitting device
EP09733715.8A EP2270880B1 (en) 2008-04-21 2009-04-08 Semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0036876 2008-04-21
KR1020080036876A KR101007099B1 (ko) 2008-04-21 2008-04-21 반도체 발광소자 및 그 제조방법

Publications (2)

Publication Number Publication Date
WO2009131319A2 true WO2009131319A2 (ko) 2009-10-29
WO2009131319A3 WO2009131319A3 (ko) 2010-01-14

Family

ID=41200377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001806 WO2009131319A2 (ko) 2008-04-21 2009-04-08 반도체 발광소자

Country Status (6)

Country Link
US (5) US7947997B2 (ko)
EP (2) EP2270880B1 (ko)
JP (1) JP5476367B2 (ko)
KR (1) KR101007099B1 (ko)
CN (2) CN103400917B (ko)
WO (1) WO2009131319A2 (ko)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928022B2 (en) * 2006-10-17 2015-01-06 Epistar Corporation Light-emitting device
KR101007099B1 (ko) * 2008-04-21 2011-01-10 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR101064091B1 (ko) * 2009-02-23 2011-09-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR101081278B1 (ko) 2009-10-28 2011-11-08 엘지이노텍 주식회사 발광 소자 및 그 제조방법
KR101020945B1 (ko) 2009-12-21 2011-03-09 엘지이노텍 주식회사 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
KR101039946B1 (ko) * 2009-12-21 2011-06-09 엘지이노텍 주식회사 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
KR101039904B1 (ko) * 2010-01-15 2011-06-09 엘지이노텍 주식회사 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
JP5573206B2 (ja) * 2010-02-01 2014-08-20 宇部興産株式会社 ポリウレタン樹脂、及びポリウレタン樹脂組成物
KR100974787B1 (ko) 2010-02-04 2010-08-06 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR100986523B1 (ko) * 2010-02-08 2010-10-07 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR100986318B1 (ko) * 2010-02-09 2010-10-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR101667815B1 (ko) * 2010-02-18 2016-10-19 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR20110096680A (ko) * 2010-02-23 2011-08-31 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR101020963B1 (ko) * 2010-04-23 2011-03-09 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR101182920B1 (ko) * 2010-07-05 2012-09-13 엘지이노텍 주식회사 발광 소자 및 그 제조방법
EP2445019B1 (en) * 2010-10-25 2018-01-24 LG Innotek Co., Ltd. Electrode configuration for a light emitting diode
KR101189081B1 (ko) * 2010-12-16 2012-10-10 엘지이노텍 주식회사 웨이퍼 기판 접합 구조, 이를 포함하는 발광 소자 및 그 제조 방법
US20130187122A1 (en) * 2012-01-19 2013-07-25 Taiwan Semicondutor Manufacturing Company, Ltd. Photonic device having embedded nano-scale structures
KR102008276B1 (ko) * 2012-06-14 2019-08-07 엘지이노텍 주식회사 발광 소자 및 그 제조방법
KR20140027836A (ko) * 2012-08-27 2014-03-07 엘지이노텍 주식회사 발광 소자
JP2014060294A (ja) * 2012-09-18 2014-04-03 Ushio Inc Led素子及びその製造方法
JP6063220B2 (ja) * 2012-11-21 2017-01-18 スタンレー電気株式会社 発光素子
TWI610462B (zh) * 2013-07-02 2018-01-01 晶元光電股份有限公司 發光元件
KR20160023158A (ko) 2014-08-21 2016-03-03 삼성전자주식회사 광 이용 효율이 향상된 이미지 센서 및 그 제조방법
JP6824501B2 (ja) * 2017-02-08 2021-02-03 ウシオ電機株式会社 半導体発光素子
CN107507920B (zh) * 2017-09-22 2024-05-24 京东方科技集团股份有限公司 有机电致发光二极管、显示基板及其制作方法、显示装置
CN110034206B (zh) * 2019-04-26 2020-07-10 潮州市亿加光电科技有限公司 一种具有碱金属复合层的cigs太阳能电池及其制备方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650781B2 (ja) * 1984-06-29 1994-06-29 三洋電機株式会社 半導体装置の製造方法
JPS61170077A (ja) * 1985-01-23 1986-07-31 Fuji Electric Co Ltd 薄膜太陽電池の製造方法
KR20020026619A (ko) * 2000-10-02 2002-04-12 추후제출 발광 화합물 반도체 장치 및 그 제조 방법
JP4207781B2 (ja) * 2002-01-28 2009-01-14 日亜化学工業株式会社 支持基板を有する窒化物半導体素子及びその製造方法
JP4121551B2 (ja) * 2002-10-23 2008-07-23 信越半導体株式会社 発光素子の製造方法及び発光素子
JP4325232B2 (ja) * 2003-03-18 2009-09-02 日亜化学工業株式会社 窒化物半導体素子
KR100571818B1 (ko) * 2003-10-08 2006-04-17 삼성전자주식회사 질화물계 발광소자 및 그 제조방법
WO2005050748A1 (ja) * 2003-11-19 2005-06-02 Nichia Corporation 半導体素子及びその製造方法
KR100634503B1 (ko) * 2004-03-12 2006-10-16 삼성전자주식회사 질화물계 발광소자 및 그 제조방법
JP2006013034A (ja) * 2004-06-24 2006-01-12 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子及び半導体発光素子の製造方法
JP2006073619A (ja) * 2004-08-31 2006-03-16 Sharp Corp 窒化物系化合物半導体発光素子
JP4999696B2 (ja) * 2004-10-22 2012-08-15 ソウル オプト デバイス カンパニー リミテッド GaN系化合物半導体発光素子及びその製造方法
JP4367348B2 (ja) 2005-01-21 2009-11-18 住友電気工業株式会社 ウエハおよび発光装置の製造方法
JP2006253298A (ja) 2005-03-09 2006-09-21 Toshiba Corp 半導体発光素子及び半導体発光装置
KR100753152B1 (ko) * 2005-08-12 2007-08-30 삼성전자주식회사 질화물계 발광소자 및 그 제조방법
JP4920249B2 (ja) * 2005-12-06 2012-04-18 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子
KR100794305B1 (ko) * 2005-12-27 2008-01-11 삼성전자주식회사 광학 소자 및 그 제조 방법
WO2007074969A1 (en) * 2005-12-27 2007-07-05 Samsung Electronics Co., Ltd. Group-iii nitride-based light emitting device
JP2007214384A (ja) * 2006-02-09 2007-08-23 Rohm Co Ltd 窒化物半導体素子
KR20070081482A (ko) * 2006-02-13 2007-08-17 오인모 가장자리 엔형 오믹접촉 전극 구조를 갖는 차세대 피사이드다운 구조의 수직형 발광소자
JP4302720B2 (ja) * 2006-06-28 2009-07-29 株式会社沖データ 半導体装置、ledヘッド及び画像形成装置
KR100812736B1 (ko) * 2006-06-29 2008-03-12 삼성전기주식회사 고휘도 질화물계 반도체 발광소자
JP2008053685A (ja) * 2006-08-23 2008-03-06 Samsung Electro Mech Co Ltd 垂直構造窒化ガリウム系発光ダイオード素子及びその製造方法
KR100975659B1 (ko) * 2007-12-18 2010-08-17 포항공과대학교 산학협력단 발광 소자 및 그 제조 방법
KR101007099B1 (ko) * 2008-04-21 2011-01-10 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2270880A4

Also Published As

Publication number Publication date
US8022428B2 (en) 2011-09-20
CN103400917A (zh) 2013-11-20
EP2637223B1 (en) 2019-03-20
US20120112233A1 (en) 2012-05-10
CN102017196B (zh) 2013-11-20
US7947997B2 (en) 2011-05-24
JP2011518438A (ja) 2011-06-23
EP2637223A2 (en) 2013-09-11
EP2637223A3 (en) 2013-11-20
EP2270880A2 (en) 2011-01-05
US8120053B2 (en) 2012-02-21
EP2270880A4 (en) 2011-11-30
US20110121343A1 (en) 2011-05-26
CN102017196A (zh) 2011-04-13
US8466485B2 (en) 2013-06-18
JP5476367B2 (ja) 2014-04-23
KR20090111225A (ko) 2009-10-26
US20130056771A1 (en) 2013-03-07
US20090261370A1 (en) 2009-10-22
US8319244B2 (en) 2012-11-27
KR101007099B1 (ko) 2011-01-10
US20110140158A1 (en) 2011-06-16
WO2009131319A3 (ko) 2010-01-14
CN103400917B (zh) 2016-02-17
EP2270880B1 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2009131319A2 (ko) 반도체 발광소자
WO2009131335A2 (ko) 반도체 발광소자
WO2010011057A2 (ko) 반도체 발광소자 및 그 제조방법
KR101028277B1 (ko) 발광 소자, 발광 소자 제조방법, 발광 소자 패키지 및 라이트 유닛
KR100986318B1 (ko) 반도체 발광소자 및 그 제조방법
WO2009134029A2 (ko) 반도체 발광소자
WO2014092448A1 (ko) 광추출 효율이 향상된 발광다이오드
WO2009139603A2 (ko) 반도체 발광소자
WO2015190722A1 (ko) 발광 소자 및 조명 장치
WO2017014512A1 (ko) 발광 소자
WO2010044642A2 (en) Semiconductor light emitting device and method for manufacturing the same
US8829538B2 (en) Light emitting device package
WO2010011048A2 (ko) 반도체 발광소자 및 그 제조방법
WO2010018946A2 (ko) 반도체 발광소자 및 그 제조방법
WO2017034212A1 (ko) 발광소자 및 이를 구비한 발광 소자 패키지
WO2015199388A1 (ko) 발광소자
WO2015190735A1 (ko) 발광소자 및 이를 구비한 발광소자 패키지
WO2014193109A1 (en) Light emitting diode having plurality of light emitting elements and method of fabricating the same
WO2016159694A1 (ko) 발광 소자
WO2016186330A1 (ko) 발광 소자
WO2016133337A1 (ko) 발광 소자 패키지, 발광 소자 패키지 제조 방법 및 광원 유닛
WO2015190736A1 (ko) 발광소자 및 이를 구비한 발광소자 패키지
KR20120005661A (ko) 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113901.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733715

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009733715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011504918

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE