WO2009116548A1 - 圧電/電歪素子及びその製造方法 - Google Patents

圧電/電歪素子及びその製造方法 Download PDF

Info

Publication number
WO2009116548A1
WO2009116548A1 PCT/JP2009/055218 JP2009055218W WO2009116548A1 WO 2009116548 A1 WO2009116548 A1 WO 2009116548A1 JP 2009055218 W JP2009055218 W JP 2009055218W WO 2009116548 A1 WO2009116548 A1 WO 2009116548A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
electrostrictive
electrode
metal component
electrode layer
Prior art date
Application number
PCT/JP2009/055218
Other languages
English (en)
French (fr)
Inventor
植谷政之
伊藤陽彦
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP09722632.8A priority Critical patent/EP2267808B1/en
Priority to JP2010503890A priority patent/JP5646989B2/ja
Priority to CN2009801094338A priority patent/CN101978518A/zh
Publication of WO2009116548A1 publication Critical patent/WO2009116548A1/ja
Priority to US12/879,282 priority patent/US7982367B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/063Forming interconnections, e.g. connection electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a piezoelectric electrostrictive element suitable as an ultrasonic motor or the like, and a method of manufacturing the same.
  • piezoelectric electrostrictive elements manufactured using piezoelectric Z electrostrictive materials also known as piezoelectric electrostrictive porcelain compositions and piezoelectric Z electrostrictive ceramics
  • piezoelectric electrostrictive porcelain compositions and piezoelectric Z electrostrictive ceramics have a very high response speed to electrical signals. Because of its high speed, it is used in electronic products such as piezoelectric actuators, filters, piezoelectric resonators (including oscillators), ultrasonic vibrators, ultrasonic motors, and piezoelectric sensors.
  • Patent Document 1 discloses that a sintered body obtained by alternately laminating a green sheet mainly composed of a piezoelectric ceramic material and an internal electrode, and sintering it, an insulator, an external electrode, And a laminated piezoelectric actuator obtained by arranging lead wires.
  • the internal electrode of the piezoelectric actuator disclosed in Patent Document 1 contains a predetermined amount of a silver palladium alloy material and a piezoelectric ceramic material that prevent peeling from the green sheet.
  • Patent Documents 2 and 3 an internal electrode layer containing ceramic powder substantially the same quality as the dielectric layer was used from the viewpoint of preventing peeling from the dielectric layer (piezoelectric ceramic layer).
  • a multilayer piezoelectric component is disclosed in which an electrode layer made of a silver-palladium alloy containing silver in a predetermined ratio is provided on a multilayer chip component and a multilayer body in which a plurality of piezoelectric ceramic layers are laminated.
  • the external terminal electrode of a multilayer piezoelectric electrostrictive element is conventionally formed by applying an electrode material containing a glass component or the like onto a fired piezoelectric Z electrostrictive body and then firing it. It was placed on the surface (outside) of the electrostrictive body. That is, in order to manufacture a multilayered piezoelectric electrostrictive element having an external terminal electrode, there are at least two methods of firing a piezoelectric electrostrictive body and firing an external terminal electrode. Both were fired twice.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-121820
  • Patent Document 2 Japanese Patent Laid-Open No. 10-172855
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2006-73672
  • the manufacturing process should be simplified by reducing the number of firings. For example, after applying a cermet paste on an unfired piezoelectric Z electrostrictive body (piezoelectric / electrostrictive precursor), the piezoelectric / electrostrictive body and the external When the terminal electrodes are fired all at once, the piezoelectric / electrostrictive material contained in the cermet paste may be deposited on the surface of the formed external terminal electrode. Since the deposited piezoelectric / electrostrictive material is usually an insulator, there is a possibility that the conduction performance of the external terminal electrode will be insufficient. Furthermore, when the electrical characteristics of a product having such an external terminal electrode were evaluated, there was a force S when it was determined that the measurement was defective because it was difficult to ensure continuity.
  • the present invention has been made in view of the above-described problems of the prior art, and the problem is that the piezoelectric / electrostrictive force is not easily peeled off, but in a good state and conductive. It is an object of the present invention to provide a piezoelectric electrostrictive element having an external terminal electrode excellent in performance and capable of being manufactured at low cost, and a manufacturing method thereof.
  • the structure of the external terminal electrode includes a first electrode layer made of a first electrode material containing a piezoelectric / electrostrictive material, and a piezoelectric electrostriction.
  • the following piezoelectric Z electrostrictive element and method for manufacturing the piezoelectric Z electrostrictive element are provided.
  • a piezoelectric / electrostrictive driving unit having a piezoelectric Z electrostrictive body made of a piezoelectric / electrostrictive material, and a glass component disposed on at least one surface of the piezoelectric / electrostrictive body.
  • a film-like external terminal electrode that does not substantially contain, the external terminal electrode including a first metal component and the piezoelectric electrostrictive material that are disposed in contact with the piezoelectric electrostrictive body
  • a first electrode layer made of a first electrode material, and a second electrode disposed on the first electrode layer, the second electrode containing a second metal component and substantially free of the piezoelectric electrostrictive material
  • a piezoelectric Z electrostrictive element wherein the first metal component and the second metal component are metal elements of the same element system.
  • the piezoelectric / electrostrictive driving unit further includes an internal electrode that is an electrode material force for an internal electrode, and is a stacked body in which the piezoelectric electrostrictive body and the internal electrode are alternately stacked,
  • the electrode material for an internal electrode contains the third metal component of the same element system as the first metal component and the second metal component, according to the above [1] or [2]. Strain element.
  • the piezoelectric / electrostrictive driving unit is a columnar laminate, and further includes a side electrode disposed on a side surface thereof for electrically connecting the external terminal electrode and the internal electrode.
  • the piezoelectric electrostrictive element according to [3].
  • the piezoelectric / electrostrictive material is a lead zirconate titanate-based piezoelectric electrostrictive porcelain composition. : The piezoelectric electrostrictive element according to any one of 4].
  • a second electrode material containing a second metal component of the same element system as the component and substantially free of the piezoelectric / electrostrictive material is disposed in a film shape to form a second electrode layer precursor.
  • a step of integrally baking the piezoelectric / electrostrictive precursor, the first electrode layer precursor, and the second electrode layer precursor on the surface of the piezoelectric electrostrictive body Having a laminated structure including a first electrode layer disposed in contact with the second electrode layer and a second electrode layer disposed on the first electrode layer, the film-like layer containing substantially no glass component Outside Method for manufacturing a piezoelectric electrostrictive element having a step of disposing the child electrodes, the
  • the piezoelectric electrostrictive element of the present invention has an external terminal electrode that adheres in a good state without being easily peeled off from the piezoelectric electrostrictive body and has excellent conduction performance, and can be manufactured at low cost. This is the one that has the effect.
  • An electro / electrostrictive element can be easily and inexpensively manufactured.
  • FIG. 1 is a partial cross-sectional view schematically showing one embodiment of a piezoelectric electrostrictive element of the present invention.
  • FIG. 2 is a top view schematically showing an example of an external terminal electrode used in the piezoelectric Z electrostrictive element of the present invention.
  • FIG. 3 is a flowchart for explaining an embodiment of a method for producing a piezoelectric / electrostrictive element of the present invention.
  • FIG. 4A is a flowchart for explaining another embodiment of the method for producing a piezoelectric Z electrostrictive element of the present invention.
  • FIG. 4B is a flow diagram illustrating still another embodiment of a method for manufacturing a piezoelectric electrostrictive element of the present invention.
  • FIG. 5 is a flowchart for explaining still another embodiment of the method for manufacturing a piezoelectric electrostrictive element of the present invention.
  • FIG. 6 is a flowchart for explaining still another embodiment of the method for manufacturing a piezoelectric Z electrostrictive element of the present invention.
  • FIG. 7 is a flowchart for explaining an embodiment of a conventional method for producing piezoelectric electrostriction.
  • FIG. 8 is an electron micrograph of the surface of the external terminal electrode of the piezoelectric electrostrictive element obtained in Example 3.
  • FIG. 9 is an electron micrograph of the surface of the external terminal electrode of the piezoelectric electrostrictive element obtained in Comparative Example 4.
  • FIG. 10A is a perspective view schematically showing another embodiment of the piezoelectric Z electrostrictive element of the present invention.
  • FIG. 10B is a cross-sectional view schematically showing another embodiment of the piezoelectric Z electrostrictive element of the present invention.
  • FIG. 11A is a perspective view schematically showing still another embodiment of the piezoelectric electrostrictive element of the present invention.
  • FIG. 11B is a cross-sectional view schematically showing still another embodiment of the piezoelectric / electrostrictive element of the present invention.
  • FIG. 12 is a perspective view schematically showing an example of a laminated substrate.
  • FIG. 13A is a perspective view schematically showing still another embodiment of the piezoelectric Z electrostrictive element of the present invention.
  • FIG. 13B is a partial cross-sectional view showing a state where the piezoelectric electrostrictive element of FIG. 13A is cut along line A.
  • FIG. 13C is a partial cross-sectional view showing a state where the piezoelectric / electrostrictive element of FIG. 13A is cut along line B.
  • FIG. 14 is a schematic diagram showing an example of an arrangement mode of internal electrodes.
  • FIG. 15 is a schematic view showing an example of an arrangement mode of common internal electrodes.
  • FIG. 16 is a schematic view showing an example of an arrangement mode of external terminal electrodes.
  • FIG. 17 is an exploded front view schematically showing another embodiment of the piezoelectric Z electrostrictive element of the present invention.
  • FIG. 18 is a front view schematically showing an example of an arrangement mode of side electrodes.
  • L length of piezoelectric Z electrostrictive element
  • T thickness of first electrode layer
  • T thickness of second electrode layer
  • W width of piezoelectric Z electrostrictive element
  • FIG. 1 is a partial cross-sectional view schematically showing an embodiment of the piezoelectric electrostrictive element of the present invention.
  • the piezoelectric electrostrictive element 10 of this embodiment includes a piezoelectric electrostrictive driving unit 1.
  • a film-like external terminal electrode 3 is disposed on the surface of the piezoelectric / electrostrictive body 2 (the uppermost piezoelectric Z electrostrictive body 2a disposed on the uppermost layer of the piezoelectric electrostrictive driving unit 1). is there.
  • the external terminal electrode 3 is disposed on the first electrode layer 3a and the first electrode layer 3a disposed in contact with the piezoelectric electrostrictive body 2 (the uppermost piezoelectric / electrostrictive body 2a).
  • This is an electrode having a so-called laminated structure including the second electrode layer 3b.
  • the first electrode layer 3a includes: (1) a first metal component for an electrode; and (2) a piezoelectric / electrostrictive material having the same or substantially the same composition as the piezoelectric / electrostrictive material constituting the piezoelectric electrostrictive body 2.
  • This is an electrode layer made of a first electrode material containing a strained material (Le, so-called “cermet paste”). That is, since the first electrode layer 3a disposed in direct contact with the piezoelectric electrostrictive body 2 (the uppermost layer piezoelectric Z electrostrictive body 2a) contains a piezoelectric electrostrictive material, The uppermost piezoelectric Z electrostrictive body 2a and the first electrode layer 3a are in close contact with each other with sufficiently high strength.
  • the external terminal electrode 3 of the piezoelectric / electrostrictive element 10 of the present embodiment has the laminated structure described above.
  • the external terminal electrode 3 ensures adhesion with the piezoelectric layer 2 in the first electrode layer 3a, and secures electrical conductivity as an electrode in the second electrode layer 3b. Therefore, the piezoelectric electrostrictive element 10 of the present embodiment has the external terminal electrode 3 that is in good contact without being easily peeled off from the piezoelectric Z electrostrictive body and has excellent conduction performance.
  • the piezoelectric Z electrostrictive element 10 of the present embodiment can be manufactured by simultaneously firing the piezoelectric electrostrictive body 2 and the external terminal electrode 3 at the same time. It can be simplified, manufactured easily and inexpensively.
  • the external terminal electrode 3 of the piezoelectric / electrostrictive element 10 of the present embodiment is an electrode that does not substantially contain a so-called “glass component”.
  • the external terminal electrode substantially contains a glass component and the piezoelectric electrostrictive body and the external terminal electrode are formed by simultaneous firing, the piezoelectric / electrostrictive porcelain composition and the glass component are formed. Will not react. For this reason, the composition of the formed piezoelectric / electrostrictive body is difficult to shift, which is preferable because the piezoelectric characteristics of the obtained piezoelectric electrostrictive body do not deteriorate.
  • the glass component is not substantially contained in the external terminal electrode, it is difficult to increase the conductor resistance of the external terminal electrode.
  • glass component in this specification include SiO, PbO, B 2 O, ZnO, and Bi.
  • the thickness T of the first electrode layer is preferably 2.0 to 8.0 ⁇ m. 3.0 to 7. ⁇ ⁇ m
  • the thickness T of the first electrode layer is less than 2.0 / im,
  • Shrinkage reduces the effective electrode area of the first electrode layer, and the second electrode layer is in contact with the outermost piezoelectric layer, so that the electrode may be easily peeled off. On the other hand, if it exceeds 8. O / z m, the piezoelectric Z electrostrictive material may be easily deposited on the surface of the second electrode layer 3b.
  • the thickness T of the second electrode layer is preferably 2.0 to 8. ⁇ ⁇ ⁇ 3. 0 to 7. O / z nTC
  • the thickness T of the second electrode layer is less than 2. ⁇ ⁇ ⁇ , it is too thin.
  • the piezoelectric electrostrictive material may be deposited on the surface of the second electrode layer 3b.
  • the sintering stress of the electrode becomes strong, so that there may be a crack in the piezoelectric body along the contour of the external terminal electrode.
  • Mashi 7.0 0-13. 0 ⁇ is more preferable. If the thickness of the entire external terminal electrode 3 is less than 5. ⁇ , an insulator (for example, copper oxide (CuO)) in the piezoelectric electrostrictive body may be deposited on the surface of the second electrode layer 3b. . On the other hand, if it exceeds 16. ⁇ ⁇ , the sintering stress of the electrode becomes strong, and the piezoelectric electrostrictive body may crack along the contour of the external terminal electrode.
  • CuO copper oxide
  • FIG. 2 is a top view schematically showing an example of the external terminal electrode used in the piezoelectric electrostrictive element of the present invention.
  • the arrangement area of the second electrode layer 3b constituting the external terminal electrode 3 is smaller than the arrangement area of the first electrode layer 3a.
  • the external terminal electrode 3b is not directly in contact with the piezoelectric Z electrostrictive layer.
  • the terminal electrode 3 does not peel off due to piezoelectric / electrostrictive force.
  • the dimensional difference D between the area where the first electrode layer is disposed and the area where the second electrode layer is disposed is such that the area of the external terminal electrode 3b is maximized within the accuracy of the method of forming the external terminal electrode 3. Should be set.
  • FIG. 10A is a perspective view schematically showing another embodiment of the piezoelectric electrostrictive element of the present invention.
  • FIG. 10B is a sectional view schematically showing another embodiment of the piezoelectric electrostrictive element of the present invention.
  • the piezoelectric / electrostrictive element 30 of this embodiment includes a disk-shaped (columnar) piezoelectric electrostrictive body 12 (piezoelectric / electrostrictive driving unit 21), and the piezoelectric electrostrictive element. Film-like external terminal electrodes 33 and 43 disposed on a pair of opposing surfaces of the body 12.
  • the external terminal electrodes 33 and 43 are first electrode layers 33a and 43a made of a first electrode material, respectively, and a second electrode material made on the first electrode layers 33a and 43a. Two electrode layers 33b and 43b.
  • the piezoelectric electrostrictive element 30 having the configuration shown in FIGS. 10A and 10B is suitable as an ultrasonic flaw detector, a buzzer, or the like, for example.
  • the diameter D of the piezoelectric / electrostrictive element is about 15 to 25 mm.
  • the height H of the Z electrostrictive element is about 1.5 to 2.5 mm.
  • FIG. 11A is a perspective view schematically showing still another embodiment of the piezoelectric / electrostrictive element of the present invention.
  • FIG. 11B schematically shows still another embodiment of the piezoelectric Z electrostrictive element of the present invention. It is sectional drawing shown.
  • the piezoelectric / electrostrictive element 40 of the present embodiment includes a plate-like (cuboid) piezoelectric electrostrictive body 22 (piezoelectric Z electrostrictive driving unit 31) and the piezoelectric And a film-like external terminal electrode 53, 63, 73 disposed on a pair of opposing surfaces of the electrostrictive body 22 and one side surface.
  • the external terminal electrodes 53, 63, 73 are all disposed on the first electrode layers 53a, 63a, 73a made of the first electrode material force and the first electrode layers 53a, 63a, 73a. And second electrode layers 53b, 63b, 73b made of a second electrode material.
  • the piezoelectric electrostrictive element 40 having the configuration shown in FIGS. 11A and 11B is suitable as a piezoelectric transformer, for example.
  • the length L of the piezoelectric electrostrictive element is about 25 to 35 mm.
  • the height H of the strain element is about 4 to 6 mm, and the width W of the piezoelectric electrostrictive element is about 8 to 12 mm.
  • FIG. 13A is a perspective view schematically showing still another embodiment of the piezoelectric electrostrictive element of the present invention.
  • the piezoelectric Z electrostrictive element 20 of this embodiment includes a piezoelectric electrostrictive drive unit 11.
  • the piezoelectric electrostrictive drive unit 11 is a columnar laminated body configured by alternately laminating a plurality of film-like piezoelectric electrostrictive bodies and a plurality of film-like internal electrodes.
  • side electrodes 6 and 16 are disposed on the side surface of the piezoelectric Z electrostrictive element 20. The side electrodes 6 and 16 electrically connect the external terminal electrodes 13 and 23 to the internal electrodes.
  • FIG. 13B is a partial cross-sectional view showing a state where the piezoelectric Z electrostrictive element 20 of FIG. 13A is cut along the A line.
  • FIG. 13C is a partial cross-sectional view showing a state where the piezoelectric / electrostrictive element 20 of FIG. 13A is cut along a B line.
  • the side electrodes 6 and 16 disposed on the side surface of the piezoelectric electrostrictive element 20 are in contact with the piezoelectric electrostrictive body 2 in the same manner as the external terminal electrodes 13 and 23.
  • the electrode has a so-called laminated structure that includes the first electrode layers 6a and 16a disposed and the second electrode layer 3b disposed on the first electrode layers 6a and 16a.
  • the side electrode 6 is electrically connected to the common internal electrode 17 in a cross section of the piezoelectric / electrostrictive element 20 cut along line A (see FIG. 13B).
  • the side electrode 16 is electrically connected to the internal electrode 7a in a cross section obtained by cutting the piezoelectric / electrostrictive element 20 along line B (see FIG. 13C).
  • the external dimensions of the piezoelectric element 20 including the piezoelectric element 20 that is a columnar laminated body are not particularly limited, and can be appropriately set according to the usage mode.
  • the height H of the piezoelectric / electrostrictive element is about 0.4 to 3 mm, and the length L of the piezoelectric Z electrostrictive element is L.
  • the width W of the piezoelectric / electrostrictive element is about 0.5 to 3 mm.
  • the piezoelectric / electrostrictive body forming the piezoelectric electrostrictive drive unit 11 is made of a piezoelectric electrostrictive material.
  • the type of piezoelectric Z electrostrictive material is not particularly limited, but from the viewpoint of piezoelectric / electrostrictive characteristics, a lead zirconate titanate (PZT) -based piezoelectric electrostrictive porcelain composition is preferred.
  • PZT-based piezoelectric electrostrictive porcelain compositions include 65 to 70% by mass of Pb in terms of PbO, 7.0 to 16.0% by mass of Ti in terms of TiO, and 10.5- 24. 5% by mass
  • Cu is 0.3 to 0.7% by mass in terms of CuO
  • W is 0.6 to 1.5% by mass in terms of WO
  • a piezoelectric / electrostrictive porcelain composition having the above composition is sufficiently densified even when the firing temperature is 1050 ° C. or lower, and exhibits excellent piezoelectric electrostrictive properties. Further, the piezoelectric Z electrostrictive element manufactured using the piezoelectric / electrostrictive porcelain composition having the above composition has a characteristic that the temperature change rate of the resonance frequency is small.
  • the first electrode material includes, in addition to the piezoelectric electrostrictive material, a first metal component that is a metal component for an electrode used for constituting an electrode of a general piezoelectric Z electrostrictive element.
  • a first metal component that is a metal component for an electrode used for constituting an electrode of a general piezoelectric Z electrostrictive element.
  • the first metal component include those containing Ag, Pd, Pt, Au, or an alloy thereof as a main component.
  • a metal component such as a metal obtained by a coprecipitation method containing Ag and Pd, or an alloy containing Ag and Pd is preferable.
  • the first metal component is preferably an alloy of Ag and Pd from the viewpoint of effectively preventing peeling from the piezoelectric body.
  • the ratio of the piezoelectric Z electrostrictive material contained in the first electrode material is 10 to 50% by volume, where the total of the first metal component and the piezoelectric / electrostrictive material is 100% by volume. It is preferred to have 15-30 volumes. It is even more preferred that it is / 0. Especially preferred is 18-22 volume%.
  • the second electrode material also includes a second metal component that is a metal component for an electrode used to constitute an electrode of a general piezoelectric / electrostrictive element.
  • This second metal component is of the same element type as the first metal component contained in the first electrode material. It is preferable that the first metal component and the second metal component are of the same element system because adhesion between the formed first electrode layer and the second electrode layer is improved.
  • the “same element system” means that the same metal element is contained in excess or deficiency. However, when multiple types of metal elements are contained, the ratio (content ratio) of these metal elements may be the same or different.
  • the second metal component include those containing Ag, Pd, Pt, Au, or an alloy thereof as a main component.
  • a metal component such as a metal obtained by a coprecipitation method containing Ag and Pd, or an alloy containing Ag and Pd is preferable.
  • the second metal component is preferably an alloy of Ag and Pd.
  • the internal electrodes constituting the piezoelectric / electrostrictive element are for example, it is comprised with the electrode material for internal electrodes.
  • the electrode material for internal electrodes usually contains a third metal component that is a metal component for electrodes.
  • the third metal component is preferably of the same elemental system as the first metal component and the second metal component described above.
  • the third metal component is of the same element system as the first metal component and the second metal component, the adhesion strength of the connection portion between the internal electrode and the external terminal electrode is improved, and from the viewpoint of migration characteristics. preferable.
  • the third metal component the same ones listed as specific examples of the first metal component can be cited.
  • a method for manufacturing the piezoelectric / electrostrictive element of the present invention will be described.
  • a first electrode material containing a first metal component and a piezoelectric / electrostrictive material is disposed in a film shape on the surface of a piezoelectric / electrostrictive precursor.
  • Forming a first electrode layer precursor hereinafter also referred to as “step (1)”), and a second element of the same element system as the first metal component on the first electrode layer precursor.
  • a step of forming a second electrode layer precursor by disposing a second electrode material in a film shape, which contains a metal component and does not substantially contain a piezoelectric Z electrostrictive material (hereinafter referred to as “step ( 2) ”), the piezoelectric electrostrictive precursor, the first electrode layer precursor, and the second electrode layer precursor are integrally fired, and the piezoelectric Z electrostrictive body is placed on the surface of the piezoelectric Z electrostrictive body.
  • a film-like structure that has a laminated structure including a first electrode layer disposed in contact with the strain body and a second electrode layer disposed on the first electrode layer, and substantially does not contain a glass component.
  • External terminal electrode A disposing step (hereinafter also referred to as “step (3)”).
  • the first electrode material precursor is formed by disposing the first electrode material in a film shape on the surface of the piezoelectric / electrostrictive precursor.
  • a piezoelectric / electrostrictive precursor is an unfired molded body obtained by using a piezoelectric Z electrostrictive material, which becomes a piezoelectric Z electrostrictive body by firing.
  • This piezoelectric Z electrostrictive precursor can be produced, for example, by molding a piezoelectric electrostrictive material.
  • the electrode material for the internal electrode which becomes the internal electrode by firing, is disposed in the form of a film by a screen printing method or the like, and an adhesive layer is formed if necessary.
  • a laminated structure may be used.
  • piezoelectric Z electrostrictive material piezoelectric electrostrictive porcelain composition
  • each element of Pb, Sb, Nb, Zr, Ti, Mn, Cu, W is oxidized, and oxidation of each of these elements is performed.
  • a mixing method a general method may be used, for example, a ball mill. More specifically, a predetermined amount of various raw materials, cobblestones, and water are placed in a ball mill apparatus and rotated for a predetermined time to prepare a mixed slurry.
  • the mixed raw material can be obtained by evaporating and removing the water contained in the prepared mixed slurry by drying or filtering. The resulting mixed raw material
  • a particulate piezoelectric Z electrostrictive ceramic composition can be prepared.
  • the piezoelectric / electrostrictive porcelain composition is prepared by preparing a plurality of types of secondary materials obtained by calcining and pulverizing a mixed material obtained by mixing some of the materials, and mixing the prepared types of secondary materials. It can also be prepared by calcining and pulverizing the obtained mixed raw material.
  • the average particle size of the prepared particulate piezoelectric Z electrostrictive porcelain composition is preferably 0.03 to: I. 0 ⁇ m is preferably 0.05 to 0.5 / m. Is more preferable.
  • the particle diameter may be adjusted by heat-treating the particulate piezoelectric / electrostrictive porcelain composition obtained by pulverization at 400 to 750 ° C. Finer particles are preferable because they are integrated with other particles to reduce variation in particle size, and a piezoelectric electrostrictive body having a uniform particle size can be formed.
  • the piezoelectric Z electrostrictive porcelain composition may be prepared by, for example, an alkoxide method or a coprecipitation method.
  • a plasticizer, a dispersant, a solvent, and the like are added to the prepared piezoelectric electrostrictive porcelain composition (piezoelectric / electrostrictive material), and the mixture is slurried using a general mixing device such as a ball mill, and then the doctor. If tape molding or the like is performed with a general sheet molding machine such as a blade, a green molded body which is a film-like piezoelectric electrostrictive precursor can be obtained.
  • a first electrode material is disposed in a film shape with a desired size and pattern on one surface of the obtained green molded body (piezoelectric electrostrictive precursor), and the first electrode The layer precursor is formed.
  • This first electrode layer precursor is a portion that becomes a first electrode layer constituting a part of the external terminal electrode by firing.
  • the method for forming the first electrode layer precursor is not particularly limited, but is a screen using a general film forming apparatus because it can be formed accurately and at high speed. The screen printing method is preferred.
  • the second electrode material precursor is formed in a film shape on the first electrode layer precursor formed in the step (1) to form the second electrode layer precursor.
  • the second electrode layer precursor is a portion that becomes a second electrode layer constituting a part of the external terminal electrode by firing.
  • the method for forming the precursor portion of the second electrode layer is not particularly limited. However, a screen printing method using a general film forming apparatus is preferable because it can be formed accurately and at high speed.
  • the piezoelectric / electrostrictive precursor, the first electrode layer precursor, and the second electrode layer precursor are integrally fired.
  • the piezoelectric electrostrictive precursor becomes a piezoelectric / electrostrictive body
  • the first electrode layer precursor and the second electrode layer precursor become the first electrode layer and the second electrode layer, respectively, and the external terminal electrode is formed. It is composed integrally.
  • Firing may be performed according to a conventional method using a heating apparatus such as an electric furnace.
  • the firing temperature depends on the composition of the piezoelectric Z electrostrictive material and the electrode material, for example, the first metal component and the second metal component are Ag, Pd, or a coprecipitated powder thereof.
  • the first metal component and the second metal component are Ag, Pd, or a coprecipitated powder thereof.
  • alloy powder it is usually 860 to 960 ° C, preferably 880 to 940 ° C.
  • the maximum temperature holding time is 1.0 to 5.0 hours, preferably 1.5 to 3.5 hours.
  • the second electrode material used to form the second electrode layer precursor is an electrode material that does not substantially contain a piezoelectric Z electrostrictive material. Therefore, even when the piezoelectric / electrostrictive precursor, the first electrode layer precursor, and the second electrode layer precursor are integrally fired, the surface of the external terminal electrode to be formed (second electrode) Piezoelectrostrictive material does not deposit on the surface of the layer. Therefore, the piezoelectric Z electrostrictive body and the external terminal electrode, which have been performed in separate steps so far, can be performed at once, and the manufacturing process can be shortened.
  • FIG. 3 is a flowchart for explaining an embodiment of the method for manufacturing a piezoelectric electrostrictive element of the present invention.
  • a plurality of green molded bodies obtained by tape-molding a piezoelectric Z electrostrictive material are subjected to screen printing or the like.
  • Each internal electrode material is printed.
  • the first and second electrode materials are sequentially printed on one green molded body arranged in the uppermost layer.
  • a plurality of green molded bodies are laminated so that the green molded body on which the first and second electrode materials are printed is the uppermost layer, and pressed as needed to be integrated together, and then fired for the first time.
  • (baking (1)) is performed, a laminated substrate 4 as shown in FIG. 12 can be obtained.
  • a laminated substrate 4 shown in FIG. 12 has a plurality of product parts 5.
  • the multilayer substrate 4 is divided along the outer shape of the product part 5 to obtain a plurality of divided bodies, and a side electrode material is printed on the side surface of each of the obtained divided bodies, and then the second firing (firing (2 )),
  • a piezoelectric electrostrictive element 20 as shown in FIG. 13A can be obtained.
  • FIG. 7 is a flowchart for explaining an embodiment of a conventional method for producing piezoelectric Z electrostriction.
  • the laminated substrate is divided after firing (1).
  • firing (1) is performed after the division.
  • the side electrode material may be printed without firing after the division, and then firing (1) may be performed.
  • the manufacturing process is further simplified, which is further preferable from the viewpoint of energy cost.
  • the first and second electrode materials may be printed.
  • the piezoelectric Z electrostrictive element 20 shown in FIG. 13A has three external terminal electrodes 13 and 23 arranged on the surface of the piezoelectric electrostrictive body disposed on the uppermost layer of the piezoelectric / electrostrictive driving unit 11. Has been. Also, on the side surface of the piezoelectric / electrostrictive drive unit 11, two side electrodes 6 and 16 are provided to electrically connect the external terminal electrode 13 and the internal electrode, and the external terminal electrode 23 and the internal electrode, respectively. ing. On the side of the piezoelectric electrostrictive drive 11 that does not appear in the drawing, the external terminal electrode 2 Side electrodes for electrically connecting 3 and the internal electrodes are disposed.
  • Piezoelectric / electrostrictive drive unit 11 shown in FIG. 13A has a plurality of types having electrodes (internal electrode 7a, common electrode 17, external terminal electrodes 13, 23) arranged as shown in FIGS.
  • the substrate elements 1 la, 11c, and l id are stacked.
  • FIG. 17 is an exploded front view schematically showing another embodiment of the piezoelectric electrostrictive element of the present invention.
  • the number and order of lamination of multiple types of substrate elements lla, 11c, and lid are appropriately designed according to the intended use of the piezoelectric electrostrictive element. If the side electrodes 6 and 16 are provided on the side surface of the piezoelectric / electrostrictive driving unit 11, a piezoelectric electrostrictive element 20 as shown in FIG. 18 can be manufactured.
  • Each raw material was weighed and mixed with a predetermined amount of water in a ball mill for 24 hours to obtain a prepared slurry.
  • the obtained prepared slurry was put in a hot air dryer to evaporate water and dried to obtain a mixed raw material.
  • the obtained mixed raw material was put in a magnesia sheath, covered with magnesia, heated to 1000 ° C in an electric furnace and calcined to obtain a calcined product.
  • the obtained calcined product was pulverized with a predetermined amount of water in a ball mill for a predetermined time, then placed in a hot air dryer to evaporate the water and dried to obtain a first secondary raw material.
  • Each raw material was weighed and mixed with a predetermined amount of water in a ball mill for 24 hours to obtain a prepared slurry.
  • the obtained prepared slurry was placed in a hot air dryer, the water was evaporated and dried to obtain a mixed raw material.
  • the obtained mixed raw material was put into a magnesia sheath, covered with magnesia, heated to 800 ° C. in an electric furnace and calcined to obtain a calcined product.
  • the obtained calcined product is powdered with a predetermined amount of water in a ball mill for a predetermined time. After crushing, it was placed in a hot air dryer to evaporate the water and dried to obtain a second secondary raw material.
  • a slurry was prepared by mixing a piezoelectric Z electrostrictive porcelain composition, a dispersion material, a plasticizer, and a solvent, and tape-molded by a doctor-blade method to produce a green sheet.
  • the thickness of the produced green sheet was designed to be 36 / zm after firing.
  • a paste-like electrode material containing the metal components shown in Table 1 (Ag-Pd coprecipitated powder, Ag_Pd alloy powder, or Pt prepared by the coprecipitation method) is printed on the green sheet in a predetermined shape by the screen printing method. did.
  • the thickness of the electrode material was printed so as to be 1.5 ⁇ after firing.
  • an adhesive layer was printed on the electrode material so as to have a thickness of 2. O / zm after firing.
  • the length L of the multilayer substrate was 100 mm, and the width W of the multilayer substrate was 100 mm.
  • the substrate was baked in an electric furnace at 900 ° C. (maximum temperature holding time: 3 hours), and then divided into 100 product parts.
  • 100 piezoelectric electrostrictive elements were manufactured.
  • the height H of the manufactured piezoelectric / electrostrictive element is 1.2 mm, the length of the piezoelectric electrostrictive element is 5. Omm, the width of the piezoelectric electrostrictive element
  • W was 2. Omm.
  • a piezoelectric electrostrictive porcelain composition, a dispersion material, a plasticizer, and a solvent were mixed to prepare a slurry, which was then tape-formed by a doctor blade method to produce a green sheet.
  • the height H of the fabricated multilayer substrate is 1. 28
  • the length L of the laminated substrate was 100 mm, and the width W of the laminated substrate was 100 mm.
  • the produced multilayer substrate was fired at 900 ° C. in an electric furnace, and then divided into 100 product parts 5.
  • 100 piezoelectric / electrostrictive elements 20 as shown in 13A were manufactured.
  • the height H of the manufactured piezoelectric electrostrictive element is 1.2 mm and the length L of the piezoelectric electrostrictive element is 5. Omm.
  • the width W was 2. Omm.
  • a probe pin was pressed against the surface of the external terminal electrode of the manufactured piezoelectric Z electrostrictive element, and the capacitance was measured with an LCR meter.
  • the capacitance is several tens of nF.
  • the piezoelectric / electrostrictive porcelain composition contained in the electrode material has the ratio shown in Table 1, and the formed external terminal electrode has the structure shown in Table 1.
  • An electrostrictive element was manufactured.
  • Table 2 shows the calculation results of the measurement failure rate of the manufactured piezoelectric electrostrictive element.
  • FIGS. 8 and 9 show electron micrographs of the external terminal electrode surfaces of the piezoelectric / electrostrictive elements obtained in Example 3 and Comparative Example 4, respectively. From the electron micrographs shown in FIGS. 8 and 9, the piezoelectric Z electrostrictive ceramic composition is precipitated in the form of white particles on the surface of the external terminal electrode of the piezoelectric electrostrictive element obtained in Comparative Example 4. It is apparent that no white particles are deposited on the surface of the external terminal electrode of the piezoelectric electrostrictive element obtained in Example 3.
  • Examples 1 to 8 and Comparative Example 10 indicate the ratio (mass%) of the piezoelectric electrostrictive material contained in the first electrode material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 圧電/電歪体を有する圧電/電歪駆動部と、圧電/電歪体の少なくとも一の面上に配設される、ガラス成分を実質的に含有しない膜状の外部端子電極と、を備え、外部端子電極は、圧電/電歪体に当接して配設される、第一の金属成分及び圧電/電歪材料を含有する第一の電極材料からなる第一電極層と、第二の金属成分を含有するとともに圧電/電歪材料を実質的に含有しない第二の電極材料からなる第二電極層と、を備えた積層構造を有する電極であり、第一の金属成分と第二の金属成分は、同一元素系の金属成分である圧電/電歪素子。

Description

明 細 書
圧電 z電歪素子及びその製造方法
技術分野
[0001] 本発明は、超音波モータ等として好適な圧電 電歪素子、及びその製造方法に関 する。
背景技術
[0002] 従来、圧電 Z電歪材料 (圧電 電歪磁器組成物、圧電 Z電歪セラミックス等ともレヽ う)を用いて製造される積層型の圧電 電歪素子は、電気信号に対する応答速度が 非常に高速であるため、圧電ァクチユエ一タ、フィルタ、圧電共振子 (発振子を含む) 、超音波振動子、超音波モータ、圧電センサ等の電子製品 利用されている。
[0003] 関連する従来技術として、特許文献 1には、圧電用セラミック材を主成分とするダリ ーンシートと、内部電極とを交互に積層して焼結した焼成体に、絶縁体、外部電極、 及びリード線を配設して得られる積層型の圧電ァクチユエータが開示されている。な お、特許文献 1で開示された圧電ァクチユエータの内部電極には、グリーンシートか らの剥離を防止すベぐ銀パラジウム合金材及び圧電用セラミック材が所定の割合で 含有されている。
[0004] また、特許文献 2及び 3にも同様に、誘電体層(圧電セラミック層)からの剥離を防止 する観点から、誘電体層と略同質のセラミック粉末を含有する内部電極層を用いた 積層チップ部品、及び圧電セラミック層を複数積層した積層体に、銀を所定の割合 で含有する銀パラジウム合金からなる電極層を設けた積層圧電体力それぞれ開示さ れている。
[0005] このように、従来、電極材料に圧電 電歪材料を配合することで、圧電 電歪体と 電極との密着性を向上させる手法が知られている。
[0006] また、積層型の圧電 電歪素子の外部端子電極は、従来、焼成済みの圧電 Z電 歪体上にガラス成分等を含む電極材料を塗布等した後、焼成することで、圧電 Z電 歪体の表面 (外部)に配設していた。即ち、外部端子電極を有する積層型の圧電 電歪素子を製造するには、圧電 電歪体の焼成と、外部端子電極の焼成の、少なく とも 2回の焼成を行っていた。
[0007] 特許文献 1 :特開平 11一 121820号公報
特許文献 2:特開平 10— 172855号公報
特許文献 3 :特開 2006— 73672号公報
発明の開示
[0008] 焼成回数を減らして製造工程を簡略化すべぐ例えば、未焼成の圧電 Z電歪体( 圧電/電歪前駆体)上にサーメットペーストを塗布等した後、圧電/電歪体と外部端 子電極の焼成を一括して同時に行うと、形成された外部端子電極の表面に、サーメ ットぺ一ストに含まれていた圧電/電歪材料が析出してしまう場合があった。析出す る圧電/電歪材料は、通常、絶縁物であるために、外部端子電極の導通性能が不 十分となる可能性力 つた。更に、このような外部端子電極を有する製品の電気特性 評価を行うと、導通が確保され難いために測定不良と判断される場合力 Sあった。
[0009] 一方、外部端子電極の表面に圧電/電歪材料が析出することを回避すベぐ圧電 電歪前駆体上に圧電 Z電歪材料を含有しない電極材料を使用すると、形成され る外部端子電極と圧電 電歪体との密着性が不十分となり、焼成時又は焼成後に、 外部端子電極が圧電 電歪体力 剥離し易くなるといった問題があった。また、外部 端子電極が圧電/電歪体から剥離することを回避すベぐ外部端子電極材料にガラ ス成分が添加された材料を使用すると、同時焼成によつて圧電 電歪体と外部端子 電極を形成する場合に、圧電 電歪磁器組成物とガラス成分が反応し、圧電 電歪 磁器組成物の組成がずれるため、得られる圧電/電歪体の特性が低下するとレ、つた 問題があった。
[0010] 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その 課題とするところは、圧電/電歪体力 容易に剥がれることなく良好な状態で密着し 、導通性能に優れた外部端子電極を有する、安価に製造可能な圧電 電歪素子、 及びその製造方法を提供することにある。
[0011] 本発明者らは上記課題を達成すべく鋭意検討した結果、外部端子電極の構造を、 圧電/電歪材料を含有する第一の電極材料からなる第一電極層と、圧電 電歪材 料を実質的に含有しない第二の電極材料力 なる第二電極層とを備えた積層構造と することによって、上記課題を達成することが可能であることを見出し、本発明を完成 するに至った。
[0012] 即ち、本発明によれば、以下に示す圧電 Z電歪素子、及び圧電 Z電歪素子の製 造方法が提供される。
[0013] [1]圧電/電歪材料からなる圧電 Z電歪体を有する圧電/電歪駆動部と、前記圧 電/電歪体の少なくとも一の面上に配設される、ガラス成分を実質的に含有しない 膜状の外部端子電極と、を備え、前記外部端子電極は、前記圧電 電歪体に当接 して配設される、第一の金属成分及び前記圧電 電歪材料を含有する第一の電極 材料からなる第一電極層と、前記第一電極層上に配設される、第二の金属成分を含 有するとともに前記圧電 電歪材料を実質的に含有しない第二の電極材料からなる 第二電極層と、を備えた積層構造を有する電極であり、前記第一の金属成分と前記 第二の金属成分は、同一元素系の金属成分である圧電 Z電歪素子。
[0014] [2]前記第二電極層の配設領域が、前記第一電極層の配設領域に比して小さい 前記 [ 1 ]に記載の圧電/電歪素子。
[0015] [3]前記圧電/電歪駆動部が、内部電極用電極材料力 なる内部電極を更に有 する、前記圧電 電歪体と前記内部電極が交互に積層された積層体であり、前記内 部電極用電極材料は、前記第一の金属成分及び前記第二の金属成分と同一元素 系の第三の金属成分を含有するものである前記 [1]又は [2]に記載の圧電 電歪 素子。
[0016] [4]前記圧電/電歪駆動部が、柱状積層体であり、その側面に配設される、前記 外部端子電極と前記内部電極を電気的に接続する側面電極を更に備えた前記 [3] に記載の圧電 電歪素子。
[0017] [5]前記圧電/電歪材料が、チタン酸ジルコン酸鉛系の圧電 電歪磁器組成物で ある前記 [1]〜!: 4]のいずれか記載の圧電 電歪素子。
[0018] [6]前記圧電/電歪磁器組成物が、 Pbを PbO換算で 65〜70質量。 /0、 Tiを TiO
2 換算で 7. 0-16. 0質量。/。、 Zrを ZrO換算で 10. 5-24. 5質量%、 Sbを Sb O換
2 2 3 算で 0. 65-1. 05質量0 /0、 Nbを Nb O換算で 0. 5-0. 8質量0 /0、 Cuを CuO換算
2 5
で 0. 3〜0. 7質量%、 Wを WO換算で 0. 6〜: L . 5質量。/。、及び Mnを MnO換算 で 0. 3〜0· 7質量。 /。含有するとともに、 Cuと Wの含有比が、モル比で、 1. 5 : 1〜2. 5: 1のものである前記 [5]に記載の圧電 Z電歪素子。
[0019] [7]前記第一の金属成分及び前記第二の金属成分は、 Ag、 Pd、 Pt、若しくは Au 、又はこれらの合金を主成分とするものである前記 [1]〜[6]のいずれかに記載の圧 電 /電歪素子。
[0020] [8]前記第一の金属成分は、 60〜90質量%の Ag及び 10〜40質量%の Pd (但し 、 Ag + Pd= 100質量。/。)を含むものであり、前記窠一の金属成分と前記圧電/電 歪材料の合計に対する、前記圧電/電歪材料の含有割合が、 10〜50体積%であ る前記 [7]に記載の圧電/電歪素子。
[0021] [9]前記第二の金属成分は、 60~90質量%の Ag及び 10〜40質量%の Pd (但し 、 Ag + Pd= 100質量。 /0)を含むものである前記 [7]又は [8]に記載の圧電 電歪素 子。
[0022] [10]前記 [1]〜 [9]のレ、ずれかに記載の圧電/電歪素子を製造する方法であつ て、圧電 電歪前駆体の面上に、第一の金属成分及び圧電 Z電歪材料を含有する . 第一の電極材料を膜状に配設して第一電極層前駆部を形成する工程と、前記第一 電極層前駆部上に、前記第一の金属成分と同一元素系の第二の金属成分を含有 するとともに、前記圧電/電歪材料を実質的に含有しない第二の電極材料を膜状に 配設して第二電極層前駆部を形成する工程と、前記圧電/電歪前駆体、前記第一 電極層前駆部、及び前記第二電極層前駆部を一体的に焼成して、圧電 電歪体の 面上に、前記圧電/電歪体に当接して配設される第一電極層、及び第一電極層上 に配設される第二電極層を備えた積層構造を有する、ガラス成分を実質的に含有し なレ、膜状の外部端子電極を配設する工程と、を有する圧電 電歪素子の製造方法
[0023] 本発明の圧電 電歪素子は、圧電 電歪体から容易に剥がれることなく良好な状 態で密着し、導通性能に優れた外部端子電極を有するものであり、安価に製造可能 であるとレ、つた効果を奏するものである。
[0024] また、本発明の圧電/電歪素子の製造方法によれば、圧電/電歪体から容易に 剥がれることなく良好な状態で密着し、導通性能に優れた外部端子電極を有する圧 電/電歪素子を簡便且つ安価に製造することができる。
図面の簡単な説明
[図 1]本発明の圧電 電歪素子の一実施形態を模式的に示す部分断面図である。
[図 2]本発明の圧電 Z電歪素子に用いられる外部端子電極の一例を模式的に示す 上面図である。
[図 3]本発明の圧電/電歪素子の製造方法の一実施形態を説明するフロー図である
[図 4A]本発明の圧電 Z電歪素子の製造方法の他の実施形態を説明するフロー図で ある。
[図 4B]本発明の圧電ノ電歪素子の製造方法の更に他の実施形態を説明するフロー 図である。
[図 5]本発明の圧電 電歪素子の製造方法の更に他の実施形態を説明するフロー 図である。
[図 6]本発明の圧電 Z電歪素子の製造方法の更に他の実施形態を説明するフロー 図である。
[図 7]従来の圧電ノ電歪の製造方法の一実施形態を説明するフロー図である。
[図 8]実施例 3で得た圧電 電歪素子の外部端子電極表面の電子顕微鏡写真であ る。
[図 9]比較例 4で得た圧電 電歪素子の外部端子電極表面の電子顕微鏡写真であ る。
[図 10A]本発明の圧電 Z電歪素子の他の実施形態を模式的に示す斜視図である。
[図 10B]本発明の圧電 Z電歪素子の他の実施形態を模式的に示す断面図である。
[図 11A]本発明の圧電 電歪素子の更に他の実施形態を模式的に示す斜視図であ る。
[図 11B]本発明の圧電 /電歪素子の更に他の実施形態を模式的に示す断面図であ る。
[囪 12]積層基板の一例を模式的に示す斜視図である。
[図 13A]本発明の圧電 Z電歪素子の更に他の実施形態を模式的に示す斜視図であ る。
[図 13B]図 13Aの圧電 電歪素子を A線で切断した状態を示す部分断面図である。
[図 13C]図 13Aの圧電/電歪素子を B線で切断した状態を示す部分断面図である。
[図 14]内部電極の配設態様の一例を示す模式図である。
[図 15]共通内部電極の配設態様の一例を示す模式図である。
[図 16]外部端子電極の配設態様の一例を示す模式図である。
[図 17]本発明の圧電 Z電歪素子の他の実施形態を分解して模式的に示す正面図で ある。
[図 18]側面電極の配設態様の一例を模式的に示す正面図である。
符号の説明
[0026] 1, 11, 21, 31 :圧電/電歪駆動部、 2, 12, 22 :圧電 Z電歪体、 2a :最上層圧電 電歪体、 3, 13, 23, 33, 43, 53, 63, 73 :外部端子電極、 3a, 6a, 13a, 33a, 43 a, 53a, 63a, 73a :第一電極層、 3b, 6b, 13b, 33b, 43b, 53b, 63b, 73b :第二 電極層、 4 :積層基板、 5 :製品部、 6, 16 :側面電極、 7a :内部電極、 10, 20, 30, 4 0 :圧電 電歪素子、 11a, 11c, l id :基板要素、 17 :共通内部電極、 D :第一電極 層の配設領域と第二電極層の配設領域の寸法差、 D :圧電 /電歪素子の直径、 H :積層基板の高さ、 H , H , H :圧電 /電歪素子の高さ、 L :積層基板の長さ、 L ,
2 3 4 1 2
L:圧電 Z電歪素子の長さ、 T:第一電極層の厚み、 T:第二電極層の厚み、 W:
3 1 2 1 積層基板の幅、 w, w:圧電 /電歪素子の幅
2 3
発明を実施するための最良の形態
[0027] 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に 限定されるものではなぐ本発明の趣旨を逸脱しない範囲で、当業者の通常の知識 に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明 の範囲に入ることが理解されるべきである。
[0028] 1.圧電/電歪素子:
(圧電 /電歪素子の構成)
図 1は、本発明の圧電 電歪素子の一実施形態を模式的に示す部分断面図であ る。図 1に示すように、本実施形態の圧電 電歪素子 10は、圧電 電歪駆動部 1を 構成する圧電 /電歪体 2 (圧電 電歪駆動部 1の最上層に配置される最上層圧電 Z電歪体 2a)の面上に、膜状の外部端子電極 3が配設されたものである。この外部 端子電極 3は、圧電 電歪体 2 (最上層圧電 /電歪体 2a)に当接して配設される第 一電極層 3aと、この第一電極層 3aの上に配設される第二電極層 3bとを有する、いわ ゆる積層構造を有する電極である。
[0029] 第一電極層 3aは、(1)電極用の第一の金属成分、及び (2)圧電 電歪体 2を構成 する圧電/電歪材料と同一組成又は略同一組成の圧電 /電歪材料、を含有する第 一の電極材料(レ、わゆる「サーメットペースト」)からなる電極層である。即ち、圧電ノ 電歪体 2 (最上層圧電 Z電歪体 2a)と直接的に接触した状態で配設される第一電極 層 3aには、圧電 電歪材料が含有されているために、最上層圧電 Z電歪体 2aと第 一電極層 3aは十分に高い強度で密着している。
[0030] 一方、第二電極層 3bは、電極用の第二の金属成分を含有するが、前述の圧電 電歪材料を実質的に含有しない第二の電極材料からなる電極層である。即ち、第一 電極層 3a上に配設される第二電極層 3bは、圧電 Z電歪材料が実質的に含有され てレ、なレ、材料を用いて形成された電極層であるために、絶縁物である圧電 Z電歪材 料がその外表面上に析出することが(ほとんど)なぐ良好な導通性能が確保されて いる。なお、本明細書にいう「圧電 電歪材料を実質的に含有しない」とは、外部端 子電極の導通性能に影響を及ぼさない程度の極微量であれば含有される可能性が あることを意味する。但し、第二の電極材料には、圧電 電歪材料が含有されていな レ、(即ち、含有割合 =0%である)ことが好ましい。
[0031] 本実施形態の圧電/電歪素子 10の外部端子電極 3は、上述の積層構造を有する ものである。外部端子電極 3は、第一電極層 3aにおいて圧電 電歪体 2との密着性 を確保するとともに、第二電極層 3bにおいて電極としての導通性能を確保している。 従って、本実施形態の圧電 電歪素子 10は、圧電 Z電歪体から容易に剥がれるこ となく良好な状態で密着した、導通性能に優れた外部端子電極 3を有するものである
[0032] また、圧電 /電歪体 2の焼成と外部端子電極 3の焼成を一括して同時に行った場 合であっても、圧電 電歪材料が外部端子電極 3の表面上(第二電極層 3bの表面 上)に析出することがない。従って、本実施形態の圧電 Z電歪素子 10は、圧電 電 歪体 2と外部端子電極 3を一括して同時に焼成して製造することが可能であるために 、焼成回数を減じて製造工程を簡略化し、簡便且つ安価に製造され得るものである。
[0033] 本実施形態の圧電/電歪素子 10の外部端子電極 3は、レ、わゆる「ガラス成分」が 実質的に含有されていない電極である。外部端子電極にガラス成分が実質的に含 有されてレ、なレ、と、同時焼成時によって圧電 電歪体と外部端子電極を形成する場 合に、圧電/電歪磁器組成物とガラス成分が反応することがない。このため、形成さ れる圧電/電歪体の組成がずれ難く、得られる圧電 電歪体の圧電特性が低下し ないために好ましい。更には、外部端子電極にガラス成分が実質的に含有されない ことで、外部端子電極の導体抵抗が高くなり難レ、とレ、う効果もある。
[0034] 本明細書にレ、う「ガラス成分」の具体例としては、 SiO、 PbO、 B O、 ZnO、及び Bi
2 2 3
o等が含有される鉛ガラス、ホウ珪酸ガラス、鉛一ホウ珪酸ガラス等を挙げることが
2 3
できる。
[0035] また、本明細書にいう「ガラス成分を実質的に含有しない」とは、同時焼成によって 外部端子電極と同時に形成される圧電 電歪体の組成に影響を及ぼさない程度の 極微量 (具体的には 1質量%未満)であれば含有される可能性があることを意味する 。但し、外部端子電極には、ガラス成分が含有されていない(即ち、含有割合 = 0% である)ことが好ましい。
[0036] 第一電極層の厚み Tは、 2. 0〜8. 0 μ mであることが好ましぐ 3. 0~ 7. Ο μ mで
1
あることが更に好ましい。第一電極層の厚み Tが 2. 0 /i m未満であると、焼成時の収
1
縮により第一電極層の有効電極面積が狭くなり、第二電極層が最外層の圧電 電 歪層に接する状態になるため、電極が剥離し易くなる場合がある。一方、 8. O /z m超 であると、第二電極層 3bの表面に圧電 Z電歪材料が析出し易くなる場合がある。
[0037] 第二電極層の厚み Tは、 2. 0〜8. Ο μ ηιであることが好ましぐ 3. 0〜7. O /z nTC
2
あることが更に好ましい。第二電極層の厚み Tが 2. Ο μ ιη未満であると、薄過ぎるた
2
めに、第二電極層 3bの表面に圧電 電歪材料が析出する場合がある。一方、 8. 0 μ πι超であると、電極の焼結応力が強くなるため、外部端子電極の輪郭に沿って圧 電 電歪体に亀裂が生じる場合がある。 [0038] また、外部端子電極 3全体の厚み(=T +Τ )は、 5. 0〜16. 0 μ mであることが好
1 2
ましぐ 7. 0-13. 0 μ πιであることが更に好ましい。外部端子電極 3全体の厚みが 5 . Ο μ ηι未満であると、圧電 電歪体中の絶縁体 (例えば、酸化銅(CuO)等)が第二 電極層 3bの表面に析出する場合がある。一方、 16. Ο μ πι超であると、電極の焼結 応力が強くなるため、外部端子電極の輪郭に沿って圧電 Ζ電歪体に亀裂が生じる場 合がある。
[0039] 図 2は、本発明の圧電 電歪素子に用いられる外部端子電極の一例を模式的に 示す上面図である。図 2に示すように、外部端子電極 3を構成する第二電極層 3bの 配設領域は、第一電極層 3aの配設領域に比して小さいことが好ましい。第一電極層 3aと第二電極層 3bのそれぞれの配設領域を、両者の関係でこのように設定すること により、外部端子電極 3bが直接圧電 Z電歪層に接することがなくなるため、外部端 子電極 3が圧電/電歪体力 剥離することがなレ、。なお、第一電極層の配設領域と 第二電極層の配設領域の寸法差 Dは、外部端子電極 3の形成手法の精度の範囲内 で、外部端子電極 3bの面積が最大になるように設定すればよい。
[0040] 図 10Aは、本発明の圧電 電歪素子の他の実施形態を模式的に示す斜視図であ る。また、図 10Bは、本発明の圧電 電歪素子の他の実施形態を模式的に示す断 面図である。図 10A及び図 10Bに示すように、本実施形態の圧電/電歪素子 30は 、円板状(円柱状)の圧電 電歪体 12 (圧電/電歪駆動部 21)と、この圧電 電歪 体 12の対向する一対の面上に配設された膜状の外部端子電極 33, 43と,を備えて いる。外部端子電極 33, 43は、それぞれ、第一の電極材料からなる第一電極層 33a , 43aと、これらの第一電極層 33a, 43a上に配設された、第二の電極材料からなる 第二電極層 33b, 43bと、を備えている。図 10A及び図 10Bに示すような構成を有す る圧電 電歪素子 30は、例えば、超音波探傷子、ブザー等として好適である。
[0041] 図 10A及び図 10Bに示す圧電 Z電歪素子 30を、例えば、超音波探傷子やブザー として用いる場合を想定すると、圧電/電歪素子の直径 Dは 15〜25mm程度であり 、圧電 Z電歪素子の高さ Hは 1. 5〜2. 5mm程度である。
3
[0042] 図 11Aは、本発明の圧電/電歪素子の更に他の実施形態を模式的に示す斜視図 である。また、図 11Bは、本発明の圧電 Z電歪素子の更に他の実施形態を模式的に 示す断面図である。図 11A及び図 1 IBに示すように、本実施形態の圧電 /電歪素 子 40は、板状 (直方体状)の圧電ノ電歪体 22 (圧電 Z電歪駆動部 31)と、この圧電 電歪体 22の対向する一対の面上、及び一の側面上に配設された膜状の外部端 子電極 53, 63, 73と、を備えてレヽる。外部端子電極 53, 63, 73は、いずれも、第一 の電極材料力らなる第一電極層 53a, 63a, 73aと、これらの第一電極層 53a, 63a, 73a上に配設された、第二の電極材料からなる第二電極層 53b, 63b, 73bと、を備 えている。図 11A及び図 11Bに示すような構成を有する圧電 電歪素子 40は、例え ば、圧電トランス等として好適である。
[0043] 図 11A及び図 11Bに示す圧電 Z電歪素子 40を、例えば、圧電トランスとして用い る場合を想定すると、圧電ノ電歪素子の長さ Lは 25〜35mm程度であり、圧電 電
3
歪素子の高さ Hは 4〜6mm程度であり、圧電 電歪素子の幅 Wは 8〜12mm程度
4 3
である。
[0044] 図 13Aは、本発明の圧電ノ電歪素子の更に他の実施形態を模式的に示す斜視図 である。図 13Aに示すように、本実施形態の圧電 Z電歪素子 20は、圧電 電歪駆 動部 11を備えている。この圧電 電歪駆動部 11は、複数の膜状の圧電ノ電歪体と 複数の膜状の内部電極を交互に積層して構成された柱状積層体である。また、圧電 Z電歪素子 20の側面には側面電極 6, 16が配設されている。この側面電極 6, 16は 、外部端子電極 13, 23と内部電極を電気的に接続している。
[0045] 図 13Bは、図 13Aの圧電 Z電歪素子 20を A線で切断した状態を示す部分断面図 である。また、図 13Cは、図 13Aの圧電/電歪素子 20を B線で切断した状態を示す 部分断面図である。図 13B及び図 13Cに示すように、圧電 電歪素子 20の側面に 配設されている側面電極 6, 16は、外部端子電極 13, 23と同様に、圧電ノ電歪体 2 に当接して配設される第一電極層 6a, 16aと、第一電極層 6a, 16aの上に配設され る第二電極層 3bとをそれぞれ有する、いわゆる積層構造を有する電極であることが 好ましい。なお、側面電極 6は、圧電/電歪素子 20を A線で切断した断面において 共通内部電極 17と電気的に接続している(図 13B参照)。また、側面電極 16は、圧 電/電歪素子 20を B線で切断した断面において内部電極 7aと電気的に接続してい る(図 13C参照)。 [0046] 図 13Aに示すような、柱状積層体である圧電 電歪駆動部 11を備えた圧電 電 歪素子 20の外形寸法については特に限定されず、使用態様に応じて適宜設定する こと力できる。例えば、圧電 電歪素子 20を超音波モータとして使用する場合を想 定すると、圧電 /電歪素子の高さ Hは 0. 4〜3mm程度、圧電 Z電歪素子の長さ L
2 2 は 2〜; 10mm程度、及び圧電/電歪素子の幅 Wは 0. 5〜3mm程度である。
2
[0047] (圧電/電歪材料)
圧電 電歪駆動部 11を形成する圧電/電歪体は、圧電 電歪材料によって構成 されている。圧電 Z電歪材料の種類は特に限定されないが、圧電/電歪特性の観 点から、チタン酸ジルコン酸鉛 (PZT)系の圧電 電歪磁器組成物であることが好ま しい。また、 PZT系の圧電 電歪磁器組成物としては、 Pbを PbO換算で 65〜70質 量%、 Tiを TiO換算で 7. 0-16. 0質量%、 Zrを ZrO換算で 10. 5-24. 5質量%
2 2
、 Sbを Sb O換算で 0. 65-1. 05質量0 /0、 Nbを Nb O換算で 0. 5〜0. 8質量0 /0
2 3 2 5
Cuを CuO換算で 0. 3〜0. 7質量%、Wを WO換算で 0. 6〜1. 5質量%、及び Mn
3
を MnO換算で 0. 3〜0. 7質量%含有するとともに、 Cuと Wの含有比力 モル比で
2
、 1. 5 ::!〜 2. 5 : 1のものを好適例として挙げることができる。上記の組成を有する圧 電 電歪磁器組成物は、焼成温度が 1050°C以下であっても十分に緻密化し、優れ た圧電 電歪特性を発揮する。更に、上記の組成を有する圧電/電歪磁器組成物 を用いて製造した圧電 Z電歪素子は、共振周波数の温度変化率が小さいという特性 を有している。
[0048] (第一の電極材料)
第一の電極材料には、圧電 電歪材料の他、一般的な圧電 Z電歪素子の電極を 構成するために用いられる電極用の金属成分である第一の金属成分が含まれる。こ の第一の金属成分の具体例としては、 Ag、 Pd、 Pt、若しくは Au、又はこれらの合金 を主成分とするものを挙げることができる。なかでも、 Ag及び Pdを含む共沈法によつ て得られる金属、又は Ag及び Pdを含む合金等の金属成分が好ましい。なお、この第 一の金属成分は、圧電 電歪体からの剥がれを効果的に抑止するといつた観点から は、 Agと Pdの合金であることが好ましい。
[0049] 第一の金属成分は、 60〜90質量。/。の Ag及び 10〜40質量%の Pd (但し、 Ag + P d= 100質量%)を含むものであることが好ましい。 Agと Pdの含有割合が上記の数値 範囲である金属成分を用いることにより、焼成時に Agが圧電 電歪体へ拡散する量 を抑制することができる。また、第一の電極材料に含有される圧電 Z電歪材料の割 合は、第一の金属成分と圧電/電歪材料の合計を 100体積%とした場合に、 10〜5 0体積%であることが好ましぐ 15〜30体積。 /0であることが更に好ましぐ 18〜22体 積%であることが特に好ましレ、。第一の電極材料に含有される圧電 Z電歪材料の割 合を上記の数値範囲とすることにより、形成される外部端子電極の圧電 /電歪体か らの剥がれをより効果的に抑止することが可能となる。
[0050] (第二の電極材料)
第二の電極材料にも、第一の電極材料と同様、一般的な圧電 /電歪素子の電極 を構成するために用いられる電極用の金属成分である第二の金属成分が含まれる。 この第二の金属成分は、第一の電極材料に含有される第一の金属成分と、同一元 素系のものである。第一の金属成分と第二の金属成分が同一元素系であると、形成 される第一電極層と第二電極層の間の密着性が向上するために好ましい。なお、本 明細書にいう「同一元素系」とは、同一の金属元素が過不足無く含有されていること をいう。但し、複数種類の金属元素が含有されている場合、これらの金属元素の比率 (含有比率)は、同一であっても、異なっていてもよい。
[0051] . 第二の金属成分の具体例としては、 Ag、 Pd、 Pt、若しくは Au、又はこれらの合金 を主成分とするものを挙げることができる。なかでも、 Ag及び Pdを含む共沈法によつ て得られる金属、又は Ag及び Pdを含む合金等の金属成分が好ましい。なお、この第 二の金属成分は、 Agと Pdの合金であることが好ましい。また、第二の金属成分は、 6 0〜90質量%の Ag及び 10〜40質量。/。の Pd (但し、 Ag + Pd= 100質量%)を含む ものであることが好ましぐ第一の金属成分と同一のものであることが更に好ましい。
[0052] (内部電極用電極材料)
本発明の圧電 電歪素子が、例えば図 13Aに示すような、積層構造を有する圧電 電歪駆動部 11を備えたものである場合に、この圧電/電歪駆動部を構成する内 部電極は、例えば内部電極用電極材料により構成されている。また、この内部電極 用電極材料には、通常、電極用の金属成分である第三の金属成分が含有されてい る。この第三の金属成分は、前述の第一の金属成分及び第二の金属成分と同一元 素系のものであることが好ましい。第三の金属成分が、第一の金属成分及び第二の 金属成分と同一元素系のものであると、内部電極と外部端子電極の接続部分の密着 強度が向上するとともに、マイグレーション特性の観点から好ましい。第三の金属成 分の具体例としては、第一の金属成分の具体例として列挙したものと同様のものを挙 げること力できる。
[0053] 2.圧電 電歪素子の製造方法:
次に、本発明の圧電 /電歪素子の製造方法について説明する。本発明の圧電/ 電歪体の製造方法は、圧電/電歪前駆体の面上に、第一の金属成分及び圧電 / 電歪材料を含有する第一の電極材料を膜状に配設して第一電極層前駆部を形成す る工程 (以下、「工程(1)」ともいう)と、第一電極層前駆部上に、前記第一の金属成 分と同一元素系の第二の金属成分を含有するとともに、圧電 Z電歪材料を実質的に 含有しなレ、第二の電極材料を膜状に配設して第二電極層前駆部を形成する工程( 以下、「工程 (2)」ともいう)と、圧電 電歪前駆体、第一電極層前駆部、及び第二電 極層前駆部を一体的に焼成して、圧電 Z電歪体の面上に、圧電 Z電歪体に当接し て配設される第一電極層、及び第一電極層上に配設される第二電極層を備えた積 層構造を有する、ガラス成分を実質的に含有しない膜状の外部端子電極を配設する 工程 (以下、「工程(3)」ともいう)と、を有するものである。
[0054] (工程(1) )
工程(1)では、圧電 /電歪前駆体の面上に第一の電極材料を膜状に配設して、第 一電極層前駆部を形成する。圧電/電歪前駆体は、焼成することにより圧電 Z電歪 体となる、圧電 Z電歪材料を用いて得られる未焼成の成形体である。この圧電 Z電 歪前駆体は、例えば、圧電 電歪材料を成形することによって製造することができる 。なお、圧電 電歪材料を成形した後、焼成することで内部電極となる内部電極用 電極材料をスクリーン印刷法等によって膜状に配設し、必要に応じて更に接着層を 形成すること等によって積層構造としてもよい。
[0055] 圧電 Z電歪材料 (圧電ノ電歪磁器組成物)を調製するには、先ず、 Pb、 Sb、 Nb、 Zr、 Ti、 Mn、 Cu、 Wの各元素単体、これら各元素の酸化物(PbO、 Pb O、 Sb O 、 Nb O、 TiO、 ZrO、 MnO、 MnO、 CuO、 Cu 0、 WO等)、炭酸塩(MnCO
2 5 2 2 2 2 3 3 等)、又はこれら各元素を複数種含有する化合物(SbNbO等)等を、各元素の含有
2
率が所望の組成割合になるように混合する。混合方法としては、一般的な方法を用 いればよぐ例えばボールミルを挙げることができる。より具体的には、ボールミル装 置内に所定量の各種原料、玉石、水を入れ、所定時間だけ回転させて混合スラリー を調製する。調製した混合スラリーに含まれる水分を蒸発させて乾燥するか、又はろ 過する等して除去することにより、混合原料を得ることができる。得られた混合原料を
500〜: 1000°Cで仮焼した後、ボールミル、アトライタ、ビーズミル等の一般的な粉砕 装置を用いて粉砕すれば、粒子状の圧電 Z電歪磁器組成物を調製することができる 。なお、圧電/電歪磁器組成物は、一部の原料を混合して得られる混合原料を仮焼 -粉砕した複数種類の二次原料を調製し、調製した複数種類の二次原料を混合して 得られる混合原料を仮焼及び粉砕することでも調製することができる。
[0056] 調製した粒子状の圧電 Z電歪磁器組成物の平均粒子径は、 0. 03〜: I. 0 μ mで あることが好ましぐ 0. 05-0. 5 / mであることが更に好ましい。粒子径の調整は、 粉砕して得られた粒子状の圧電/電歪磁器組成物を、 400〜750°Cで熱処理する ことにより行ってもよい。微細な粒子ほど他の粒子と一体化して粒子径のバラツキが 少なくなり、粒子径の揃った圧電ノ電歪体を形成可能となるために好ましい。なお、 圧電 Z電歪磁器組成物は、例えば、アルコキシド法ゃ共沈法等によって調製しても よい。
[0057] 調製した圧電 電歪磁器組成物 (圧電/電歪材料)に、可塑剤、分散剤、及び溶 媒等を加え、ボールミル等の一般的な混合装置を用いてスラリー化した後、ドクター ブレード等の一般的なシート成形機によりテープ成形等を行えば、膜状の圧電ノ電 歪前駆体であるグリーン成形体を得ることができる。
[0058] 次いで、得られたグリーン成形体 (圧電 電歪前駆体)の一方の面上に、第一の電 極材料を、所望とする寸法及びパターンで膜状に配設して第一電極層前駆部を形 成する。この第一電極層前駆部は、焼成することにより外部端子電極の一部を構成 する第一電極層となる部分である。第一電極層前駆部を形成する方法は特に限定さ れないが、精密且つ高速に形成可能な点から、一般的な膜形成装置を用いるスクリ ーン印刷法が好ましい。
[0059] (工程(2) )
工程 (2)では、工程(1)で形成した第一電極層前駆部の上に第二の電極材料を膜 状に配設して第二電極層前駆部を形成する。この第二電極層前駆部は、焼成するこ とにより外部端子電極の一部を構成する第二電極層となる部分である。第二電極層 前駆部を形成する方法は特に限定されなレ、が、精密且つ高速に形成可能な点から 、一般的な膜形成装置を用いるスクリーン印刷法が好ましい。
[0060] (工程(3) )
工程 (3)では、圧電/電歪前駆体、第一電極層前駆部、及び第二電極層前駆部 を一体的に焼成する。焼成することにより、圧電 電歪前駆体は圧電/電歪体となり 、第一電極層前駆部と第二電極層前駆部は、それぞれ第一電極層と第二電極層と なって外部端子電極を一体的に構成する。
[0061] 焼成は、電気炉等の加熱装置を用いて定法に従って行えばよい。焼成温度は、圧 電 Z電歪材料や電極材料の組成等にも左右されるが、例えば、第一の金属成分及 び第二の金属成分が、 Ag、 Pd、又はこれらの共沈粉若しくは合金粉である場合には 、通常、 860〜960°C、好ましくは 880〜940°Cである。また、通常、最高温度の保持 時間は、 1. 0〜5. 0時間、好ましくは 1. 5〜3. 5時間である。
[0062] 既に述べたように、第二電極層前駆部を形成するのに使用した第二の電極材料は 、圧電 Z電歪材料を実質的に含有しない電極材料である。このため、圧電/電歪前 駆体、第一電極層前駆部、及び第二電極層前駆部を一体的に焼成した場合であつ ても、形成される外部端子電極の表面上 (第二電極層の表面上)に圧電 電歪材料 が析出することがなレ、。従って、これまで別々の工程で実施していた圧電 Z電歪体 の焼成と外部端子電極の焼成を一括して実施することが可能となり、製造工程を短 縮すること力 sできる。
[0063] (圧電 電歪素子の製造)
図 3は、本発明の圧電 電歪素子の製造方法の一実施形態を説明するフロー図 である。図 3に示すように、本実施形態の圧電 Z電歪素子の製造方法では、圧電 Z 電歪材料をテープ成形して得た複数のグリーン成形体に、スクリーン印刷法等により 内部電極材料をそれぞれ印刷する。必要に応じて接着剤層を形成した後、最上層に 配置される一のグリーン成形体に第一及び第二の電極材料を順次印刷する。第一 及び第二の電極材料が印刷されたグリーン成形体が最上層となるように複数のダリ ーン成形体を積層し、必要に応じて加圧して一体ィヒさせた後に一回目の焼成 (焼成 ( 1 ) )を実施すれば、図 12に示すような積層基板 4を得ることができる。
[0064] 図 12に示す積層基板 4は、複数の製品部 5を有するものである。この積層基板 4を 製品部 5の外形に沿って分割して複数の分割体を得、得られたそれぞれの分割体の 側面に側面電極材料を印刷等した後、二回目の焼成 (焼成(2) )を実施すれば、図 1 3Aに示すような圧電 電歪素子 20を得ることができる。
[0065] 図 7は、従来の圧電 Z電歪の製造方法の一実施形態を説明するフロー図である。
図 7に示すように、従来は圧電 Z電歪材料の焼成と電極の焼成を別々に実施する必 要があつたため、焼成(1)及び焼成(2)の少なくとも二回 (側面電極の焼成 (焼成 (3) )を含めると、少なくとも三回)の焼成を実施する必要があった。これに対して、本実施 形態の圧電 /電歪の製造方法では、圧電 電歪材料の焼成と電極の焼成を同時に 実施することができるので、製造工程が簡略化されており、エネルギーコストの面から も好ましい。
[0066] なお、図 3に示す実施形態においては、焼成(1)に次いで積層基板の分割を実施 しているが、図 4Aに示す実施形態のように、分割後に焼成(1)を実施してもよぐ更 には、図 4Bに示す実施形態のように、分割後に焼成をすることなく側面電極材料を 印刷し、その後、焼成(1)を実施してもよい。図 4Aに示す実施形態の場合は、焼成 回数が一回のみであるので、製造工程が更に簡略化されており、エネルギーコストの 面からも更に好ましい。また、図 5及び 6に示す実施形態のように、グリーン成形体を 積層した後に、第一及び第二の電極材料の印刷を実施してもよい。
[0067] 図 13Aに示す圧電 Z電歪素子 20は、圧電/電歪駆動部 11の最上層に配置され る圧電ノ電歪体の面上に三箇所の外部端子電極 13, 23が配設されている。また、 圧電 /電歪駆動部 11の側面には、外部端子電極 13と内部電極、及び外部端子電 極 23と内部電極をそれぞれ電気的に接続する二箇所の側面電極 6, 16が配設され ている。なお、圧電 電歪駆動部 11の、図面に現れない側面には、外部端子電極 2 3と内部電極を電気的に接続する側面電極が配設されている。
[0068] 図 13Aに示す圧電/電歪駆動部 11は、図 14〜: 16に示すような配設態様の電極( 内部電極 7a、共通電極 17、外部端子電極 13, 23)を有する複数種類の基板要素 1 la, 11c, l idが積層されることにより構成されている。なお、図 17に、本発明の圧電 電歪素子の他の実施形態を分解して模式的に示す正面図を示す。複数種類の基 板要素 l la, 11c, l idの積層枚数や積層順序等については、圧電 電歪素子の 使用目的等に応じて適宜設計される。この圧電/電歪駆動部 11の側面に側面電極 6, 16を配設すれば、図 18に示すような圧電 電歪素子 20を製造することができる 実施例
[0069] 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例 に限定されるものではない。
[0070] (圧電 Z電歪磁器組成物の製造)
PbOを 68. 5質量0 /0、 TiOを 11. 7質量0 /0、 ZrOを 17. 5質量0 /0、 Sb Oを 0. 90
2 2 2 3 質量0 /0、 Nb Oを 0. 82質量0 /0、 MnCOを MnO換算で 0. 60質量。 /0となるように
2 5 3 2
それぞれの原料を計量し、所定量の水とともにボールミルにて 24時間の混合を行つ て調製スラリーを得た。得られた調製スラリーを熱風乾燥機内に入れて水分を蒸発さ せ、乾燥させることで混合原料を得た。得られた混合原料をマグネシア製のサャ内に 入れるとともにマグネシア製の蓋をし、電気炉中で 1000°Cに加熱して仮焼することで 仮焼物を得た。得られた仮焼物を、所定量の水とともにボールミルにて所定時間粉 砕した後、熱風乾燥機内に入れて水分を蒸発させ、乾燥させることで第一の二次原 料を得た。
[0071] PbOを 53. 3質量0 /0、 CuOを 19. 0質量0 /0、 WOを 27. 7質量0 /0となるようにそれ
3
ぞれの原料を計量し、所定量の水とともにボールミルにて 24時間の混合を行って調 製スラリーを得た。得られた調製スラリーを熱風乾燥機内に入れ、水分を蒸発させ、 乾燥させることで混合原料を得た。得られた混合原料をマグネシア製のサャ内に入 れるとともにマグネシア製の蓋をし、電気炉中で 800°Cに加熱しして仮焼することで 仮焼物を得た。得られた仮焼物を、所定量の水とともにボールミルにて所定時間粉 砕した後、熱風乾燥機内に入れて水分を蒸発させ、乾燥させることで第二の二次原 料を得た。
[0072] 第一の二次原料を 97. 4質量部、第二の二次原料を 2. 6質量部、及び所定量の 水をボールミルに入れ、 24時間混合して調製スラリーを得た。得られた調製スラリー を熱風乾燥機内に入れ、水分を蒸発させ、乾燥させることで混合原料を得た。得られ た混合原料をマグネシア製のサャ内に入れるとともにマグネシア製の蓋をし、電気炉 中で 800°Cに加熱して仮焼することで仮焼物を得た。得られた仮焼物を、所定量の 水とともにボ一ルミルにて所定時間粉砕した後、熱風乾燥機内に入れて水分を蒸発 させ、乾燥させることで圧電 電歪磁器組成物を得た。
[0073] (参考例 1〜: 18)
圧電 Z電歪磁器組成物、分散材、可塑剤、及び溶媒を混合してスラリーを調製し、 ドクタ一ブレード法によりテープ成形してグリーンシートを作製した。なお、作製したグ リーンシートの厚みは、焼成後に 36 /z mとなるように設計した。グリーンシート上に、 表 1に示す金属成分 (共沈法により調製した Ag— Pd共沈粉、 Ag_Pd合金粉、又は Pt)を含有するペースト状の電極材料を、スクリーン印刷法により所定形状で印刷し た。なお、電極材料の厚みは、焼成後に 1. 5 μ ιηとなるように印刷した。更に、電極 材料の上に、焼成後に厚みが 2. O /z mとなるように接着層を印刷した。
[0074] 30層分の印刷済のグリーンシートを積層するとともに熱圧着して、 100個( = 20 X 5)の製品部を有する積層基板を作製した。作製した積層基板の高さ Hは 1. 6mm,
1
積層基板の長さ Lは 100mm、積層基板の幅 Wは 100mmであった。作製した積層
1 1
基板を、電気炉中、 900°Cで焼成 (最高温度保持時間: 3時間)した後、分割して 10 0個の製品部を切り出した。切り出した製品部のそれぞれの側面部に、 Ag— Pd合金 粉 (Ag: Pd= 70: 30 (質量比) )を含有するペースト状の側面電極材料を使用して側 面電極を配設して 100個の圧電 電歪素子を製造した。製造した圧電/電歪素子 の高さ Hは 1. 2mm、圧電ノ電歪素子の長さ Lは 5. Omm,圧電 電歪素子の幅
2 2
Wは 2. Ommであった。
2
[0075] 製造した圧電 電歪素子の表面を実体顕微鏡(15倍)で観察し、外部端子電極の 圧電/電歪体から剥離の有無を検査し、電極ハガレ発生率を算出した。結果を表 1 に示す。
[0076] [表 1]
Figure imgf000020_0001
* 1:カツコ内の比は「質量比」を示す。
[0077] (実施例 1)
圧電ノ電歪磁器組成物、分散材、可塑剤、及び溶媒を混合してスラリーを調製し、 ドクターブレード法によりテープ成形してグリーンシートを作製した。グリーンシート上 に、 Ag— Pd合金粉 (Ag: Pd = 7: 3 (質量比))を 97質量%、及び圧電 Z電歪磁器組 成物を 3質量% (但し、 Ag— Pd合金粉と圧電 電歪磁器組成物の合計 = 100質量 %)含有するペースト状の第一の電極材料を、スクリーン印刷法により所定形状で印 刷した。なお、第一の電極材料の厚みは、焼成後に形成される第一電極層の厚み T (図 1参照)が 5. O /z mとなるように印刷した。次いで、印刷した第一の電極材料の上 に、 Ag— Pd合金粉 (Ag: Pd= 7: 3 (質量比) )を含有するペースト状の第二の電極 材料を、スクリーン印刷法により所定形状で印刷した。なお、第二の電極材料の厚み "は、焼成後に形成される第二電極層の厚み T (図 1参照)が 5. 0 μ πιとなるように印
2
刷した。また、第一電極層の配設領域と第二電極層の配設領域の寸法差 D (図 2参 照)が 20 μ mとなるように印刷した。
[0078] 30層分の印刷済のグリーンシートを積層して、図 12に示すような、 100個( = 20 X 5)の製品部 5を有する積層基板 4を作製した。作製した積層基板の高さ Hは 1. 28
1 mm,積層基板の長さ Lは 100mm、積層基板の幅 Wは 100mmであった。作製し た積層基板を、電気炉中、 900°Cで焼成した後、分割して 100個の製品部 5を切り出 した。切り出した製品部 5のそれぞれの側面部に、 Ag_Pd合金粉 (Ag :Pd = 7 : 3 ( 質量比) )を含有するペースト状の側面電極材料を使用して側面電極を配設して、図 13Aに示すような 100個の圧電 /電歪素子 20を製造した。製造した圧電 電歪素 子の高さ Hは 1. 2mm,圧電 電歪素子の長さ Lは 5. Omm,圧電 電歪素子の
2 2
幅 Wは 2. Ommであった。
2
[0079] 製造した圧電 Z電歪素子の外部端子電極の表面にプローブピンを押し当てて、 L CRメーターで静電容量を測定した。通常、静電容量が数十 nFになるところ、静電容
' 量が約 OnFになった素子を「オープン不良」と評価し、測定不良発生率を算出した( 但し、実際には lnFで以下のものを「オープン不良」と評価した)。測定不良発生率 は 0%であった。
[0080] (実施例 2〜8、比較例:!〜 10)
電極材料に含有される圧電/電歪磁器組成物を表 1に示す割合とし、形成される 外部端子電極を表 1に示す構造としたこと以外は、前述の実施例 1と同様にして圧電 Z電歪素子を製造した。製造した圧電ノ電歪素子の測定不良発生率の算出結果を 表 2に示す。また、実施例 3及び比較例 4で得た圧電/電歪素子の外部端子電極表 面の電子顕微鏡写真を図 8及び 9にそれぞれ示す。図 8及び 9に示す電子顕微鏡写 真から、比較例 4で得た圧電 電歪素子の外部端子電極表面には、圧電 Z電歪磁 器組成物が白い粒子状に析出しているのに対し、実施例 3で得た圧電 電歪素子 の外部端子電極表面には、白い粒子が析出していないことが明らかである。
[0081] [表 2] 。αί¾^^¾3ヰ.厂ヾ,
Figure imgf000022_0002
* 1:カツコ内の比は「質量比」を示す。
* 2 :実施例 1 ~8及び比較例 1 0については、第一の電極材料に含有される圧電ノ電歪材料の割合(質量%)を示す。
Figure imgf000022_0001

Claims

請求の範囲
[1] 圧電 電歪材料からなる圧電/電歪体を有する圧電 Z電歪駆動部と、前記圧電 /電歪体の少なくとも一の面上に配設される、ガラス成分を実質的に含有しない膜 状の外部端子電極と、を備え、
前記外部端子電極は、前記圧電 電歪体に当接して配設される、第一の金属成 分及び前記圧電 Z電歪材料を含有する第一の電極材料からなる第一電極層と、前 記第一電極層上に配設される、第二の金属成分を含有するとともに前記圧電 Z電歪 材料を実質的に含有しない第二の電極材料力らなる第二電極層と、を備えた積層構 造を有する電極であり、
前記第一の金属成分と前記第二の金属成分は、同一元素系の金属成分である圧 電/電歪素子。
[2] 前記第二電極層の配設領域が、前記第一電極層の配設領域に比して小さい請求 項 1に記載の圧電/電歪素子。
[3] 前記圧電 Z電歪駆動部が、内部電極用電極材料からなる内部電極を更に有する、 前記圧電 電歪体と前記内部電極が交互に積層された積層体であり、
前記内部電極用電極材料は、前記第一の金属成分及び前記第二の金属成分と同 一元素系の第三の金属成分を含有するものである請求項 1又は 2に記載の圧電/ 電歪素子。
[4] 前記圧電 電歪駆動部が、柱状積層体であり、
その側面に配設される、前記外部端子電極と前記内部電極を電気的に接続する 側面電極を更に備えた請求項 3に記載の圧電/電歪素子。
[5] 前記圧電 /電歪材料が、チタン酸ジルコン酸鉛系の圧電 電歪磁器組成物であ る請求項:!〜 4のいずれか一項に記載の圧電 Z電歪素子。
[6] 前記圧電 /電歪磁器組成物が、 Pbを PbO換算で 65〜70質量%、 Tiを TiO換算
2 で 7. 0〜16. 0質量%、 Zrを ZrO換算で 10. 5 24. 5質量%、 Sbを Sb〇換算で
2 2 3
0. 65-1. 05質量0 /0、 Nbを Nb O換算で 0. 5—0. 8質量0 /0、 Cuを Cu〇換算で 0
2 5
. 3〜0. 7質量。/。、 Wを WO換算で 0. 6〜1. 5質量。/。、及び Mnを MnO換算で 0.
3 2
3〜0. 7質量%含有するとともに、 Cuと Wの含有比力 モル比で、 1. 5 ::!〜 2. 5 : 1のものである請求項 5に記載の圧 電 電歪素子。
[7] 前記第一の金属成分及び前記第二の金属成分は、 Ag、 Pd、 Pt、若しくは Au、又 はこれらの合金を主成分とするものである請求項 1〜6のいずれか一項に記載の圧 電/電歪素子。
[8] 前記第一の金属成分は、 60〜90質量%の Ag及び 10〜40質量%の Pd (但し、 A § + ?(1= 100質量%)を含むものであり、
前記第一の金属成分と前記圧電 電歪材料の合計に対する、前記圧電ノ電歪材 料の含有割合が、 10〜50体積。/。である請求項 7に記載の圧電 電歪素子。
[9] 前記第二の金属成分は、 60〜90質量%の Ag及び 10〜40質量%の Pd (但し、 A g + Pd= 100質量%)を含むものである請求項 7又は 8に記載の圧電 電歪素子。
[10] 請求項 1〜9のいずれか一項に記載の圧電 電歪素子を製造する方法であって、 圧電 電歪前駆体の面上に、第一の金属成分及び圧電/電歪材料を含有する第 一の電極材料を膜状に配設して第一電極層前駆部を形成する工程と、
前記第一電極層前駆部上に、前記第一の金属成分と同一元素系の第二の金属成 分を含有するとともに、前記圧電 電歪材料を実質的に含有しない第二の電極材料 を膜状に配設して第二電極層前駆部を形成する工程と、
前記圧電 Z電歪前駆体、前記第一電極層前駆部、及び前記第二電極層前駆部を 一体的に焼成して、圧電 Z電歪体の面上に、前記圧電 Z電歪体に当接して配設さ れる第一電極層、及び第一電極層上に配設される第二電極層を備えた積層構造を 有する、ガラス成分を実質的に含有しない膜状の外部端子電極を配設する工程と、 を有する圧電/電歪素子の製造方法。
PCT/JP2009/055218 2008-03-21 2009-03-11 圧電/電歪素子及びその製造方法 WO2009116548A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09722632.8A EP2267808B1 (en) 2008-03-21 2009-03-11 Piezoelectric/electrostrictive element and manufacturing method thereof
JP2010503890A JP5646989B2 (ja) 2008-03-21 2009-03-11 圧電/電歪素子及びその製造方法
CN2009801094338A CN101978518A (zh) 2008-03-21 2009-03-11 压电/电致伸缩元件及其制造方法
US12/879,282 US7982367B2 (en) 2008-03-21 2010-09-10 Piezoelectric/electrostrictive element having a multilayer external electrode structure and method for manufacturing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-074004 2008-03-21
JP2008074004 2008-03-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/879,282 Continuation US7982367B2 (en) 2008-03-21 2010-09-10 Piezoelectric/electrostrictive element having a multilayer external electrode structure and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2009116548A1 true WO2009116548A1 (ja) 2009-09-24

Family

ID=41090948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055218 WO2009116548A1 (ja) 2008-03-21 2009-03-11 圧電/電歪素子及びその製造方法

Country Status (6)

Country Link
US (1) US7982367B2 (ja)
EP (1) EP2267808B1 (ja)
JP (1) JP5646989B2 (ja)
KR (1) KR20100138931A (ja)
CN (1) CN101978518A (ja)
WO (1) WO2009116548A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230580A (ja) * 2012-04-27 2013-11-14 Brother Industries Ltd 液滴噴射装置、及び、圧電アクチュエータ
JP2014170795A (ja) * 2013-03-01 2014-09-18 Ngk Insulators Ltd 積層体及び圧電/電歪素子
JP2015531548A (ja) * 2012-09-28 2015-11-02 エプコス アクチエンゲゼルシャフトEpcos Ag 電子デバイスおよび電子デバイスの接続部の生成方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044196B2 (ja) * 2006-11-13 2012-10-10 アイシン精機株式会社 圧電センサ及びその製造方法
KR101771717B1 (ko) * 2011-03-31 2017-08-25 삼성전기주식회사 수정 진동자 및 수정 진동자의 전극 구조
KR20140146200A (ko) * 2012-04-16 2014-12-24 캐논 가부시끼가이샤 니오브산나트륨 분말, 그 제조 방법, 세라믹의 제조 방법, 및 압전 소자
KR101523535B1 (ko) * 2012-10-31 2015-05-28 쿄세라 코포레이션 압전소자, 그리고 이것을 구비한 압전 진동장치, 휴대단말, 음향 발생기, 음향 발생장치 및 전자기기
DE102015219427B4 (de) * 2015-10-07 2024-04-11 Robert Bosch Gmbh Piezoelement und Ultraschallwandler mit einem Piezoelement
US10109974B2 (en) 2016-01-29 2018-10-23 The Boeing Company Vibrating pallet system for automated wire insertion
DE102016107405A1 (de) * 2016-04-21 2017-10-26 Epcos Ag Piezokeramik, Verfahren zu dessen Herstellung und elektrokeramisches Bauelement umfassend die Piezokeramik
CN205847241U (zh) * 2016-05-19 2016-12-28 瑞声科技(新加坡)有限公司 电子设备
KR20170136875A (ko) * 2016-06-02 2017-12-12 주식회사 모다이노칩 압전 소자 및 이의 제조 방법
DE102017116925B4 (de) 2017-07-26 2021-04-22 Tdk Electronics Ag Harte PZT-Keramik, piezoelektrisches Vielschichtbauelement und Verfahren zur Herstellung eines piezoelektrischen Vielschichtbauelements
WO2019039512A1 (ja) * 2017-08-24 2019-02-28 東洋紡株式会社 伸縮性電極、伸縮性電極の製造方法、生体情報計測用衣服および生体情報計測方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164085A (ja) * 1988-12-19 1990-06-25 Nec Corp 電歪効果素子
JPH10172855A (ja) 1996-12-05 1998-06-26 Taiyo Yuden Co Ltd 積層チップ部品とそれに用いる導電ペースト
JPH11121820A (ja) 1997-10-09 1999-04-30 Hitachi Ltd 積層型圧電アクチュエータ
JP2002246258A (ja) * 2001-02-20 2002-08-30 Daiken Kagaku Kogyo Kk セラミック電子部品及びその製造方法
JP2002289932A (ja) * 2001-03-22 2002-10-04 Kyocera Corp 積層型圧電素子及びその製法並びに噴射装置
JP2005183607A (ja) * 2003-12-18 2005-07-07 Kyocera Corp 積層型圧電素子及び噴射装置
JP2006073672A (ja) 2004-08-31 2006-03-16 Kyocera Corp 積層圧電体、その製造方法、圧電アクチュエータおよび印刷ヘッド
JP2008053467A (ja) * 2006-08-24 2008-03-06 Denso Corp 積層型圧電素子及びその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3151644B2 (ja) * 1993-03-08 2001-04-03 日本碍子株式会社 圧電/電歪膜型素子
JP3006355B2 (ja) * 1993-07-06 2000-02-07 株式会社村田製作所 積層型圧電体素子の製造方法
US5772575A (en) * 1995-09-22 1998-06-30 S. George Lesinski Implantable hearing aid
JP2003197992A (ja) * 2001-12-26 2003-07-11 Murata Mfg Co Ltd 積層型圧電体及びその製造方法
JP2003258328A (ja) * 2002-02-27 2003-09-12 Kyocera Corp 積層型圧電アクチュエータ
JP4373643B2 (ja) * 2002-04-24 2009-11-25 京セラ株式会社 積層型圧電素子及びその製法並びに噴射装置
JP4635439B2 (ja) * 2003-02-12 2011-02-23 株式会社デンソー 積層型圧電体素子及びその製造方法
EP2012374B1 (en) 2003-09-24 2012-04-25 Kyocera Corporation Multi-layer piezoelectric element
EP1677370B1 (en) 2003-09-24 2013-12-25 Kyocera Corporation Multilayer piezoelectric device
JP4808915B2 (ja) * 2003-09-24 2011-11-02 京セラ株式会社 積層型圧電素子及び噴射装置
US7786652B2 (en) * 2004-03-29 2010-08-31 Kyocera Corporation Multi-layer piezoelectric element
JP2006005800A (ja) * 2004-06-18 2006-01-05 Taiyo Yuden Co Ltd 圧電スピーカ
JP2006156587A (ja) * 2004-11-26 2006-06-15 Tdk Corp 積層型圧電素子
JP2007067346A (ja) * 2005-09-02 2007-03-15 Denso Corp 積層型圧電素子及びその製造方法
JP2006303045A (ja) * 2005-04-18 2006-11-02 Denso Corp 積層型圧電体素子
JP5256574B2 (ja) * 2005-09-29 2013-08-07 Tdk株式会社 電子部品の製造方法
JP2007243066A (ja) * 2006-03-10 2007-09-20 Denso Corp 積層型圧電素子及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164085A (ja) * 1988-12-19 1990-06-25 Nec Corp 電歪効果素子
JPH10172855A (ja) 1996-12-05 1998-06-26 Taiyo Yuden Co Ltd 積層チップ部品とそれに用いる導電ペースト
JPH11121820A (ja) 1997-10-09 1999-04-30 Hitachi Ltd 積層型圧電アクチュエータ
JP2002246258A (ja) * 2001-02-20 2002-08-30 Daiken Kagaku Kogyo Kk セラミック電子部品及びその製造方法
JP2002289932A (ja) * 2001-03-22 2002-10-04 Kyocera Corp 積層型圧電素子及びその製法並びに噴射装置
JP2005183607A (ja) * 2003-12-18 2005-07-07 Kyocera Corp 積層型圧電素子及び噴射装置
JP2006073672A (ja) 2004-08-31 2006-03-16 Kyocera Corp 積層圧電体、その製造方法、圧電アクチュエータおよび印刷ヘッド
JP2008053467A (ja) * 2006-08-24 2008-03-06 Denso Corp 積層型圧電素子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2267808A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230580A (ja) * 2012-04-27 2013-11-14 Brother Industries Ltd 液滴噴射装置、及び、圧電アクチュエータ
JP2015531548A (ja) * 2012-09-28 2015-11-02 エプコス アクチエンゲゼルシャフトEpcos Ag 電子デバイスおよび電子デバイスの接続部の生成方法
US9613773B2 (en) 2012-09-28 2017-04-04 Epcos Ag Electrical component and method for establishing contact with an electrical component
JP2017201714A (ja) * 2012-09-28 2017-11-09 エプコス アクチエンゲゼルシャフトEpcos Ag 電子デバイスおよび電子デバイスの接続部の生成方法
JP2014170795A (ja) * 2013-03-01 2014-09-18 Ngk Insulators Ltd 積層体及び圧電/電歪素子

Also Published As

Publication number Publication date
JPWO2009116548A1 (ja) 2011-07-21
EP2267808A4 (en) 2014-04-23
EP2267808B1 (en) 2015-08-12
JP5646989B2 (ja) 2014-12-24
KR20100138931A (ko) 2010-12-31
US7982367B2 (en) 2011-07-19
CN101978518A (zh) 2011-02-16
US20100327703A1 (en) 2010-12-30
EP2267808A1 (en) 2010-12-29

Similar Documents

Publication Publication Date Title
JP5646989B2 (ja) 圧電/電歪素子及びその製造方法
JP4945801B2 (ja) 圧電素子、及び圧電素子の製造方法
KR100653146B1 (ko) 압전자기 및 압전소자
JP7221718B2 (ja) 積層セラミックコンデンサ及びその製造方法
TW200425184A (en) Monolithic ceramic capacitor
JP2004137106A (ja) 圧電磁器組成物、圧電素子および圧電素子の製造方法
JP4682426B2 (ja) 電子部品およびその製造方法
JP3812936B2 (ja) セラミック材料及びそれを用いた圧電素子
TWI283419B (en) Laminated ceramic capacitor
JP5745852B2 (ja) 圧電セラミック多層エレメント
JPWO2003104163A1 (ja) 圧電磁器組成物とこれを用いた積層圧電デバイスおよびその製造方法
CN111662082A (zh) 压电陶瓷及其制造方法以及压电元件
WO2006035794A1 (ja) 圧電磁器の製造方法、圧電素子の製造方法、圧電素子
JP2006269983A (ja) 積層型圧電素子及びその製造方法
JP2004241590A (ja) 積層型圧電体素子
JPH11322422A (ja) 圧電セラミック材料
JP2006108546A (ja) 積層型圧電セラミックス素子およびその製造方法
JP2006196717A (ja) 積層型圧電セラミックス素子およびその製造方法
JP6156434B2 (ja) 圧電磁器および圧電素子
JPH11233364A (ja) 積層セラミックコンデンサおよびその製造方法
JP5115342B2 (ja) 圧電磁器、圧電素子及び積層型圧電素子
JP5028834B2 (ja) 積層型圧電素子の製造方法
JP6256406B2 (ja) 圧電磁器および圧電素子
JP4737948B2 (ja) 積層型圧電素子の製法
JP2005035843A (ja) 圧電セラミックスおよび焼結助剤ならびに積層型圧電素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109433.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107020737

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010503890

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009722632

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE