WO2006035794A1 - 圧電磁器の製造方法、圧電素子の製造方法、圧電素子 - Google Patents

圧電磁器の製造方法、圧電素子の製造方法、圧電素子 Download PDF

Info

Publication number
WO2006035794A1
WO2006035794A1 PCT/JP2005/017796 JP2005017796W WO2006035794A1 WO 2006035794 A1 WO2006035794 A1 WO 2006035794A1 JP 2005017796 W JP2005017796 W JP 2005017796W WO 2006035794 A1 WO2006035794 A1 WO 2006035794A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
piezoelectric element
powder
piezoelectric ceramic
manufacturing
Prior art date
Application number
PCT/JP2005/017796
Other languages
English (en)
French (fr)
Inventor
Masaru Nanao
Takeo Tsukada
Hideya Sakamoto
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US11/573,203 priority Critical patent/US20080067897A1/en
Priority to DE200511002093 priority patent/DE112005002093T5/de
Publication of WO2006035794A1 publication Critical patent/WO2006035794A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • Piezoelectric ceramic manufacturing method piezoelectric element manufacturing method, piezoelectric element
  • the present invention relates to a piezoelectric ceramic that can be fired at a low temperature and a piezoelectric element using the same, and more particularly to a multilayer piezoelectric element using Cu or the like as an internal electrode.
  • Piezoelectric ceramics have a function of freely converting and extracting electrical energy and mechanical energy, and are used as piezoelectric vibrators such as actuators and sounding bodies, or sensors.
  • Patent Document 2 by replacing a part of Pb with Ca or the like and further adding a secondary component, in addition to improving the piezoelectric characteristics, the mechanical strength is improved.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-129888
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-181036
  • the conventional piezoelectric ceramic composition has a high firing temperature of about 1100 to 1250 ° C, when a multilayer piezoelectric element is manufactured using the conventional piezoelectric ceramic composition, An expensive noble metal such as platinum (Pt) or palladium (Pd) that can withstand this firing temperature has to be used as the internal electrode, and there is a problem that the manufacturing cost is high.
  • Pt platinum
  • Pd palladium
  • the key is to reduce the cost of the internal electrodes.
  • Piezoelectric ceramic If the firing temperature of the composition can be lowered, a cheaper silver-palladium alloy (hereinafter referred to as Ag Pd alloy) can be used as the internal electrode.
  • Ag Pd alloy silver-palladium alloy
  • FIG. 1 shows the relationship between the Pd content in the Ag Pd alloy and the firing temperature of the piezoelectric ceramic composition. The relationship between the Pd content and the firing temperature shown in Fig. 1 is based on the Ag Pd phase diagram.
  • the firing temperature needs to be 1050 ° C or lower.
  • Copper (Cu) is an electrode material that is less expensive than Ag—Pd alloys. However, since the melting point of Cu is about 1085 ° C, a piezoelectric ceramic composition that can be fired at 1050 ° C or lower is also necessary to use Cu as the internal electrode of a multilayer piezoelectric element.
  • the present invention has been made based on such a technical problem, and an object thereof is to provide a technique for obtaining a piezoelectric ceramic composition that can be fired at a low temperature.
  • the present invention relates to a main component al a2 1/3 2/3 x yz 3 represented by the composition formula (Pb A) [(Zn Nb) Ti Zr] 0.
  • a method for producing a piezoelectric ceramic containing a ceramic comprising a step of forming a powder for a piezoelectric ceramic having a specific surface area of 1.8 to 11. Om 2 Zg, and firing the obtained molded body at 1050 ° C. or lower.
  • a method for manufacturing a piezoelectric ceramic comprising: a step of obtaining a sintered body.
  • At least one element of the group consisting of Ta, Sb, Nb, W and Mo as an auxiliary component is converted into an oxide (TaO, SbO, NbO, WO, MoO). Convert
  • the total content of 2 5 2 3 2 5 3 3 is preferably 0.05 to 3.0% by mass for improving the sinterability and piezoelectric characteristics.
  • the main component is expressed as a main component represented by the composition formula (Pb A) [(Zn Nb) Ti Zr] 0 al a2 b / 3 2/3 x yz 3
  • A is at least one metal element selected from Sr, Ba and Ca, and the atomic ratio is 0.996 ⁇ al + a2 ⁇ l.
  • 03, 0 ⁇ a2 ⁇ 0.10, Kb ⁇ 3, x + y + z l, 0. 05 ⁇ x ⁇ 0.40, 0.l ⁇ y ⁇ 0.5, 0.2.2 ⁇ z ⁇ 0.6.
  • a paste for a piezoelectric layer containing a powder for a piezoelectric ceramic having a specific surface area of 1.8 to: L I. Om 2 / g, and an internal electrode These pastes may be alternately laminated to obtain a laminate, and the laminate may be fired at 1050 ° C. or lower.
  • Cu or Ag-Pd alloy (however, the Pd content in Ag-Pd alloy is 20 mass% or less) is used for the internal electrode. Manufacturing costs can be further reduced by using Cu, which is cheaper than Ag—Pd alloys, for the internal electrodes.
  • the firing temperature can be lowered to 1000 ° C or lower, and further to 950 ° C or lower.
  • a piezoelectric ceramic composition that can be fired at 1050 ° C. or lower while obtaining desired piezoelectric characteristics.
  • a laminated piezoelectric element using Cu or the like as an internal electrode can be obtained.
  • the piezoelectric ceramic according to the present invention includes a perovskite compound mainly composed of Pb, Zr, Ti, Zn and Nb, and has a basic composition represented by the following formula (1) or formula (2).
  • a piezoelectric ceramic having a high dielectric constant and a large electromechanical coupling coefficient can be obtained.
  • the chemical composition here is the composition after sintering.
  • A is at least one metal element selected from Sr, Ba, and Ca.
  • al + a2 exceeds 1.03, the piezoelectric characteristics deteriorate rapidly.
  • al + a2 force .96 is less than the dielectric constant and electromechanical coupling coefficient
  • al + a2 is in the range of 0.996 ⁇ al + a2 ⁇ l.
  • Desired al + a2! / the range is 0.998 ⁇ al + a2 ⁇ l.01, and the more desirable range is 0.999 ⁇ al + a2 ⁇ l.005.
  • A2 indicating the substitution ratio of element A to Pb is in the range of 0 ⁇ a2 ⁇ 0.10.
  • the dielectric constant increases force a2 force. If the substitution amount increases more than 10, the sinterability decreases. Further, if the amount of substitution of the element A is too large, the Curie temperature is lowered and the practical temperature as a piezoelectric ceramic is lowered, which is not preferable.
  • the desirable range of a2 is 0 ⁇ a2 ⁇ 0.06, the more desirable range is 0.01 ⁇ a2 ⁇ 0.06, and the more desirable range is 0.02 ⁇ a2 ⁇ 0.05. Further, Sr is particularly preferable as the A element.
  • (Zn Nb) is for improving the piezoelectric characteristics
  • (Zn Nb) is for improving the piezoelectric characteristics
  • composition ratio x is 0.05.x ⁇ x ⁇ 0.40. If X is less than 0.05, the dielectric constant, electromechanical
  • composition ratio y of Ti and the composition ratio ⁇ of Zr greatly affect the dielectric constant and the electromechanical coupling coefficient, and in particular, the vicinity of the morphotropic pick phase boundary is preferable. From these points, in the present invention, the compositionity is assumed to be 0.1 ⁇ y ⁇ 0.5, and the yarn and composition itz is assumed to be 0.2 ⁇ z ⁇ 0.6.
  • the desired! / ⁇ range for y is 0.3 5 ⁇ y ⁇ 0.50, the more desirable! / ⁇ range is ⁇ or 0.37 ⁇ y ⁇ 0.48. Desirable z! / ⁇ range ⁇ or 0.36 ⁇ 0.60, more desirable range is 0.38 ⁇ 0.50.
  • Pb and a soot element are located at the so-called A site, and [(Zn Nb) Ti Zr] is located at the so-called B site.
  • AZB is 0.96 or more and 1.03 or less.
  • the composition of zinc can be made excessive as compared with the stoichiometric composition.
  • A is at least one metal element selected from Sr, Ba, and Ca.
  • Zinc and niobium (Zn Nb) in the formula (2) improve the piezoelectric characteristics.
  • composition bZ3 of zinc is made to exceed the stoichiometric composition of 1Z3 is that it can lower the firing temperature and also improve the piezoelectric properties.
  • the value of b is in the range of not less than 1.05 and not more than 2.0 because the piezoelectric characteristics can be further improved.
  • the piezoelectric ceramic according to the present invention contains at least one element selected from the group consisting of Ta, Sb, Nb, W and Mo as an auxiliary component.
  • the sinterability is improved, the piezoelectric characteristics are improved, and the bending strength is further improved.
  • Ta is preferable because it has a large effect of improving sinterability and piezoelectric characteristics.
  • the total amount is 0.05 to 3.
  • Desirable content of Ta is 0.5 at Ta O terms 05-0. 80 mass 0/0, more preferably 0. 10 to
  • Nb is 0.
  • Desired content of W is 0.5 in WO terms from 05 to 0.80 mass 0/0, more preferably 0.10 to 0
  • Desirable amount of Mo is 0.5 at MoO terms from 05 to 0.80 mass 0/0, more preferably 0.05
  • the minor components Ta, Sb, Nb, W and Mo are, for example, dissolved in the main component composition, and Ti and Zr can exist! /, Located at the so-called B site! / RU
  • Such a piezoelectric ceramic is suitably used as a material for a piezoelectric element such as an actuator, a piezoelectric buzzer, a sounding body and a sensor, particularly as a material for an actuator.
  • FIG. 2 shows a configuration example of a piezoelectric element using the piezoelectric ceramic according to the present embodiment.
  • This piezoelectric element includes a laminated body 10 in which a plurality of internal electrodes 12 are inserted between a plurality of piezoelectric layers 11 composed of the piezoelectric ceramic according to the present embodiment. Thickness per layer of piezoelectric layer 11 Is, for example, about 1 to: LOO m, and the piezoelectric layers 11 at both ends may be formed thicker than the piezoelectric layer 11 sandwiched between the internal electrodes 12.
  • the chemical composition of the piezoelectric ceramic constituting the piezoelectric layer 11 is as described above.
  • the internal electrode 12 can be made of a conductive material such as Ag, Au, Cu, Pt, Pd, or an alloy thereof.
  • a conductive material such as Ag, Au, Cu, Pt, Pd, or an alloy thereof.
  • an Ag—Pd alloy (Ag— Pd content in Pd alloy is 20 mass% or less) or Cu.
  • the relationship between the Pd content and the firing temperature is as shown in FIG. 1, but the piezoelectric layer 11 in the present embodiment can be fired at 1050 ° C. or lower, and further at 1000 ° C. or lower. For this reason, an Ag-Pd alloy having a Pd content of 20% by mass or less, and further 15% by mass or less can be used.
  • the internal electrodes 12 are alternately extended in the opposite direction, for example, and a pair of terminal electrodes 21 and 22 electrically connected to the internal electrode 12 are provided in the extending direction.
  • the terminal electrodes 21 and 22 can be formed, for example, by sputtering a metal such as gold or baking terminal electrode paste.
  • the terminal electrode paste contains, for example, a conductive material, glass frit, and a vehicle.
  • the conductive material includes at least one of the group consisting of silver, gold, copper, nickel, palladium, and platinum.
  • the vehicle include an organic vehicle and an aqueous vehicle.
  • the organic vehicle is obtained by dissolving a binder in an organic solvent, and the aqueous vehicle includes water containing a water-soluble noda and a dispersant.
  • the thickness of the terminal electrodes 21 and 22 is a force that is appropriately determined according to the application and the like, and is usually about 10 to 50 m.
  • an oxide or a powder of a compound that becomes an oxide by heating is used as a raw material for the main component.
  • a predetermined amount of at least one element selected from the group consisting of Ta, Sb, Nb, W and Mo is added as a subsidiary component to the total weight of each weighed powder.
  • Ta O powder, Sb O powder, Nb O powder, WO powder, and MoO powder are prepared as the raw material powders for the auxiliary components.
  • the average particle diameter of the raw material powder may be appropriately selected within the range of 0.1 to 3.0 m.
  • the raw material powder is not limited to the raw material powder described above, and a composite oxide powder containing two or more metals may be used as the raw material powder.
  • calcination is performed within a range of 700 to 900 ° C for a predetermined time.
  • the atmosphere at this time may be N or air.
  • Temporary holding time is 1 to 4 hours
  • the timing of adding the raw material powder of the auxiliary component is limited to that described above is not. For example, only the main component powder is weighed, mixed, calcined and pulverized. Then, a predetermined amount of the subcomponent raw material powder may be added to and mixed with the main component powder obtained after calcining and grinding.
  • the calcined powder is pulverized using, for example, a ball mill or an airflow pulverizer until the specific surface area becomes 1.8 to 11.
  • Specific surface area force S If a powder in this range is subjected to firing, a dense piezoelectric ceramic having excellent piezoelectric characteristics can be obtained even if the firing temperature is 1050 ° C. or lower.
  • a desirable specific surface area is 2.5 to 8. Om 2 / g, and a more desirable specific surface area is 3.5 to 8. Om 2 / g.
  • the specific surface area in this application is based on the nitrogen adsorption method (BET method).
  • a powder having a predetermined specific surface area can be obtained by controlling the pulverization time.
  • a pulverizer equipped with a classifier which is preferably an airflow pulverizer
  • coarse powder is removed or re-pulverized to obtain a powder having a desired specific surface area. It is also effective to change the grinding rate.
  • the step of obtaining a powder having a specific surface area of 1.8 to: L I. Om 2 / g and having a small particle size is not limited to the pulverization step.
  • the pulverized powder obtained in the pulverization step may be subjected to an operation such as removing or re-pulverizing the coarse powder to obtain a powder having the above specific surface area.
  • a vehicle is added to the calcined powder and kneaded to prepare a paste for a piezoelectric ceramic.
  • the above-mentioned conductive material for forming the internal electrode 12 or various oxides, organometallic compounds, or resinates that become the above-mentioned conductive material after firing are kneaded with a vehicle to produce an internal electrode paste.
  • the internal electrode paste may be added with additives such as a dispersant, a plasticizer, a dielectric material, and an insulator material as necessary.
  • a green chip that is a precursor of the laminate 10 is produced by, for example, a printing method or a sheet method.
  • the firing temperature at that time is determined according to the type of metal used for the internal electrode 12. As described above, when using Ag—Pd alloy (Pd content in Ag—Pd alloy is 20 mass% or less) or Cu as internal electrode 12, the firing temperature is 1050 ° C. or less, preferably 900 ⁇ 1000 ° C. The heating and holding time is 1 to 10 hours, preferably 2 to 8 hours.
  • Ag-Pd alloy can be fired in the atmosphere, but Cu is a base metal and, if fired in the air, it will oxidize and cannot be used as an electrode. Therefore, when the Ru Cu is used as the internal electrode 12, a reducing atmosphere, specifically, 1 X 10- 12 Pa or more lower oxygen partial pressure than air Firing is performed in the above low oxygen reducing atmosphere. Also when fired in a low oxygen reducing atmosphere
  • the piezoelectric layer 11 exhibits high piezoelectric characteristics.
  • the sintered body average crystal of the piezoelectric layer 11 depends on the heating and holding time.
  • the particle size is about 1 to 3 ⁇ m.
  • the average grain size of the sintered body becomes about 0.5 to 2.5 ⁇ m.
  • terminal polishing is performed by, for example, end polishing by barrel polishing or sand blasting, and sputtering of a metal such as gold, or the terminal electrode paste prepared in the same manner as the internal electrode paste is printed or
  • the terminal electrodes 21 and 22 are formed by transferring and baking. As a result, the piezoelectric element shown in FIG. 2 is obtained.
  • the composition is represented by the formula (1), and the specific surface area of the powder before firing is in the range of 1.8 to LI.Om 2 Zg. Since the temperature is controlled, the piezoelectric layer 11 can be made dense and have high piezoelectric properties even when the firing temperature is set to 1050 ° C. or lower, and further 1000 ° C. or lower.
  • an Ag—Pd alloy (Pd content in the Ag—Pd alloy is 20 mass% or less) or Cu can be used for the internal electrode 12, and the manufacturing cost of the piezoelectric element can be reduced.
  • the firing temperature can be lowered and the piezoelectric characteristics can be lowered. 'Gender can be improved.
  • the force for explaining the method for manufacturing a piezoelectric element is described by taking as an example the case of obtaining a laminated piezoelectric element.
  • a piezoelectric element other than the laminated type can be obtained.
  • calcination and pulverization are performed according to the procedure described above to obtain a powder having a specific surface area of 1.8 to 11. Om 2 / g.
  • This pulverized powder is granulated and pressure-molded to obtain a molded body having a desired shape, and then fired for a predetermined time within a range of 1050 ° C. or less, preferably 900 to 1000 ° C., to obtain a sintered body. You should get it.
  • the sintered body is subjected to polarization treatment, polishing treatment and formation of the vibrating electrode, and then cut into a desired shape to function as a piezoelectric element.
  • polarization treatment an electric field of 1.0 to 3.
  • OEc Ec is a coercive electric field
  • a ratio of 1800 or more can be achieved even when fired at 1050 ° C or lower.
  • a piezoelectric element having both a dielectric constant ⁇ r (measurement frequency is 1 kHz) and an electromechanical coupling coefficient kr (electromechanical coupling coefficient of radial vibration) of 60% or more can be obtained.
  • the relative dielectric constant ⁇ r and the electromechanical coupling coefficient kr are values measured using an impedance analyzer (HP 4194A manufactured by Hured Packard).
  • the electromechanical coupling coefficient kr was obtained based on the following formula.
  • fr Resonance frequency
  • fa Anti-resonance frequency
  • the obtained slurry was sufficiently dried and then calcined in the atmosphere at 700 to 900 ° C. for 2 hours. After pulverizing with a ball mill for 2 to L00 hours until the calcined body had a specific surface area shown in FIG. 3, the pulverized powder was dried. An appropriate amount of PVA (polybulal alcohol) was added to the dried pulverized powder and granulated. The granulated powder was molded at a pressure of 245 MPa using a uniaxial press molding machine to obtain a disk-shaped molded body having a diameter of 17 mm and a thickness of 1. Omm. After the binder removal treatment was performed on the obtained molded body, it was kept in the air at 950 to: L 100 ° C. for 1 to 10 hours to obtain a porcelain sample.
  • PVA polybulal alcohol
  • Piezoelectric ceramics of Sample Nos. 6 to 13 were obtained in the same manner as Sample Nos. 1 to 5 and Comparative Examples 1 and 2, except that the types of subcomponents and the amount of applied force were as shown in FIG.
  • the pre-firing powder has a specific surface area of 1.5 m 2 Zg, and is produced under the same conditions except for the calcining temperature. From Comparative Examples 1 and 2, if the specific surface area of the powder before firing is 1.5 m 2 Zg, it cannot be sufficiently densified at 1050 ° C, and it is desirable if it is not fired at a higher temperature (1100 ° C) Can't get the piezoelectric characteristics!
  • Om 2 / g are all sufficiently densified by firing at 1050 ° C. or less, and 1800 or more
  • the relative dielectric constant ⁇ r (measured frequency is lkHz) and electromechanical coupling coefficient kr (electromechanical coupling coefficient of radial vibration) of 60% or more were obtained.
  • a multilayer piezoelectric element as shown in FIG. 2 was produced.
  • the thickness of the piezoelectric layer 11 sandwiched between the internal electrodes 12 was 25 / ⁇ ⁇ , and the number of stacked layers was ten.
  • the dimension of the laminated body 10 is 4 mm long by 4 mm wide.
  • an Ag—Pd alloy (Pd content in the Ag—Pd alloy is 20 mass%) was used and fired in the air under the firing conditions shown in FIG.
  • the obtained piezoelectric element was measured for displacement when a voltage of 40 V was applied. The results are shown in Fig. 5.
  • Example 3 Using the pre-fired powder corresponding to Sample Nos. 14 to 18 of Example 2 and Comparative Examples 3 and 4, a multilayer piezoelectric element as shown in FIG. 2 was produced.
  • the Cu is used in the internal electrode 12, except that the firing at a low oxygen reducing atmosphere (oxygen partial pressure of more than 1 X 10- 12 Pa lower than the air low oxygen reducing atmosphere) in a firing conditions shown in FIG. 6
  • a piezoelectric element was fabricated under the same conditions as in Example 3-1.
  • the amount of displacement of the obtained piezoelectric element when a voltage of 40 V was applied was measured. The results are shown in Fig. 6.
  • the piezoelectric element whose specific surface area of the powder before firing is within the range recommended by the present invention is 170 nm despite being fired at a low temperature of 900 to 1050 ° C.
  • the displacement amount was more than 180nm.
  • FIG. 1 is a chart showing the relationship between the Pd content in an Ag—Pd alloy and the firing temperature of the piezoelectric ceramic composition.
  • FIG. 2 is a cross-sectional view showing a configuration example of a piezoelectric element using a piezoelectric ceramic according to an embodiment of the present invention.
  • FIG. 3 is a chart showing the relative dielectric constant ⁇ r and electromechanical coupling coefficient kr of the piezoelectric ceramic fabricated in Example 1.
  • FIG. 4 is a chart showing the relative dielectric constant ⁇ r and electromechanical coupling coefficient kr of the piezoelectric ceramic produced in Example 2.
  • FIG. 5 is a chart showing the amount of displacement of the piezoelectric element produced in Example 3-1.
  • FIG. 6 is a chart showing the amount of displacement of the piezoelectric element fabricated in Example 3-2. Explanation of symbols

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 焼成に供される粉末として、比表面積が1.8~11.0m2/gであるものを用いるようにした。これにより、焼結性が改善され、1050°C以下、さらには1000°C以下で焼成しても焼結密度が高く所望の圧電特性を備えた圧電磁器を得ることができる。圧電磁器は組成式(Pba1Aa2)[(Zn1/3Nb2/3)xTiyZrz]O3で表される主成分とすることができる。但し、組成式において、AはSr,BaおよびCaから選ばれる少なくとも1種の金属元素であり、原子比で0.96≦a1+a2≦1.03、0≦a2≦0.10、x+y+z=1、0.05≦x≦0.40、0.1≦y≦0.5、0.2≦z≦0.6である。                                                                     

Description

圧電磁器の製造方法、圧電素子の製造方法、圧電素子
技術分野
[0001] 本発明は、低温焼成可能な圧電磁器およびこれを用いた圧電素子、特に、 Cu等を 内部電極として用いる積層型圧電素子に関する。
背景技術
[0002] 圧電磁器は電気エネルギーと機械エネルギーを自由に変換し取り出せる機能を有 しており、ァクチユエータおよび発音体等の圧電振動子、あるいはセンサなどとして 使用されている。
例えば、圧電磁器をァクチユエータとして使用する場合、圧電特性、特に圧電定数 dが大きいことが要求されている。一般に、圧電定数 dと、電気機械結合係数 kおよび 比誘電率 ε rとの間には d^k ( ε r) Q'5の関係があり、圧電定数 dを大きくするためには 電気機械結合係数 kおよび Zまたは比誘電率 ε rを大きくしなければならない。 そのため、例えば特許文献 1では、 Pb (Zn -Nb ) 0— PbTiO— PbZrO よりな
1/3 2/3 3 3 3 る三元系圧電磁器の Pbの一部を Ca、 Srまたは Baで置換したことを特徴とする圧電 磁器を提案している。
さらに特許文献 2では、 Pbの一部を Ca等で置換するとともに、さらに副成分を添カロ することにより、圧電特性の向上に加えおよび機械的強度の向上を図っている。
[0003] 特許文献 1:特開昭 61— 129888号公報
特許文献 2:特開 2001— 181036号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、従来の圧電磁器組成物は焼成温度が 1100〜1250°C程度と高温で あるため、従来の圧電磁器組成物を用いて積層型圧電素子を作製する場合には、 内部電極としてこの焼成温度に耐えうる白金 (Pt)やパラジウム (Pd)のような高価な 貴金属を使用しなければならず、製造コストが高いという問題がある。
[0005] 製造コストを低減するには、内部電極のコストを低減することが鍵となる。圧電磁器 組成物の焼成温度を低下させることができれば、より安価な銀 パラジウム合金 (以 下、 Ag Pd合金)を内部電極として使用することが可能となる。
Pdのコストが高!、ことおよび Pdの含有量が多!、場合には、 Pdが焼成中に酸化還 元反応をおこし、積層型圧電素子中に亀裂や剥離を生じさせるため、 Ag Pd合金 における Pd含有量は 30質量%以下であることが要求される。 Pd含有量を 30質量% 以下にするには、 Ag— Pd系相図より、焼成温度を 1150°C以下、望ましくは 1120°C 以下とする必要がある。さらに製造コストを低減するには Pd含有量を低くする必要が あり、それにはできるだけ圧電磁器組成物の焼成温度を低くする必要がある。ここで 、Ag Pd合金における Pd含有量と圧電磁器組成物の焼成温度の関係を図 1に示 す。なお、図 1に示す Pd含有量と焼成温度の関係は、 Ag Pd系相図に基づく。
[0006] 図 1に示すように、 Pd含有量を 20質量%以下とするには、焼成温度を 1050°C以 下にする必要がある。
また、 Ag— Pd合金よりも安価な電極材料として銅 (Cu)がある。ところが、 Cuの融 点は約 1085°Cであるから、積層型圧電素子の内部電極として Cuを使用するには、 やはり 1050°C以下で焼成可能な圧電磁器組成物が必要となる。
本発明は、このような技術的課題に基づいてなされたもので、低温焼成可能な圧電 磁器組成物を得るための技術を提供することを目的とする。
課題を解決するための手段
[0007] これまで、圧電磁器の特性を改善するために、主として組成に着目した検討がなさ れてきた。本発明者らは、組成を制御するとともに、焼成前の粉末のサイズを制御す るというプロセス面からのアプローチにより、上記課題を解決した。
すなわち、本発明は、組成式 (Pb A ) [ (Zn Nb ) Ti Zr ]0で表される主成分 al a2 1/3 2/3 x y z 3
を含有する圧電磁器の製造方法であって、比表面積が 1. 8〜11. Om2Zgである圧 電磁器用の粉末を成形する工程と、得られた成形体を 1050°C以下で焼成して焼結 体を得る工程とを備えたことを特徴とする圧電磁器の製造方法を提供する。但し、組 成式において、 Aは Sr, Baおよび Caから選ばれる少なくとも 1種の金属元素であり、 原子比で、 0. 96≤al + a2≤l. 03、 0≤a2≤0. 10、 x+y+z= l、 0. 05≤x≤0 . 40、 0. l≤y≤0. 5、 0. 2≤z≤0. 6である。 焼成に供される粉末として、比表面積が 1. 8〜11. Om2/gであるものを用いること により、焼結性が改善され、 1050°C以下、さらには 1000°C以下で焼成しても焼結密 度が高く所望の圧電特性を備えた圧電磁器を得ることができる。
上述した主成分に対して、副成分として Ta, Sb, Nb, Wおよび Moからなる群のう ち少なくとも 1種の元素を、酸化物(Ta O , Sb O , Nb O , WO , MoO )に換算し
2 5 2 3 2 5 3 3 て合計で 0. 05〜3. 0質量%含有することが焼結性および圧電特性を向上させる上 で望ましい。
また、主成分を組成式 (Pb A ) [ (Zn Nb ) Ti Zr ]0で表される主成分として al a2 b/3 2/3 x y z 3
もよい。この場合は、 Aは Sr, Baおよび Caから選ばれる少なくとも 1種の金属元素で あり、原子比で 0. 96≤al + a2≤l . 03、 0≤a2≤0. 10、 Kb≤3, x+y+z= l、 0. 05≤x≤0. 40、 0. l≤y≤0. 5、 0. 2≤z≤0. 6を満たせばよい。
[0008] 本発明を適用して圧電素子を得るには、比表面積が 1. 8〜: L I. Om2/gである圧 電磁器用の粉末を含む圧電層用のペーストと、内部電極用のペーストを交互に積層 して積層体を得て、この積層体を 1050°C以下で焼成すればよい。製造コスト低減の ために、内部電極には Cuまたは Ag— Pd合金(但し、 Ag— Pd合金における Pdの含 有量は 20質量%以下)を用いる。 Ag— Pd合金より安価な Cuを内部電極に用いるこ とにより、製造コストをより一層低減することができる。
圧電層用のペーストに、比表面積が 2. 5〜8. 0m2/gである粉末を含むものを用 いることが望ましい。これにより、焼成温度を 1000°C以下、さらには 950°C以下まで 低下させることができる。
発明の効果
[0009] 本発明によれば、所望の圧電特性を得つつ、 1050°C以下での焼成が可能な圧電 磁器組成物を得ることができる。この圧電磁器組成物を用いることにより、内部電極と して Cu等を用いた積層型圧電素子を得ることができる。
発明を実施するための最良の形態
[0010] 以下、実施の形態に基づいて本発明の圧電磁器および圧電素子について詳細に 説明する。
[0011] <化学組成 > 本発明による圧電磁器は、 Pb, Zr, Ti, Znおよび Nbを主成分とするぺロブスカイト 化合物を含み、以下の式(1)または式(2)で示される基本組成を有する。主成分とし て式(1)または式(2)の組成を採用することで、高誘電率かつ電気機械結合係数が 大きな圧電磁器を得ることができる。なお、ここでの化学組成は焼結後の組成である
[0012] (Pb A ) [ (Zn Nb ) Ti Zr ] 0 · · ·式(1)
al a2 1/3 2/3 x y z 3
但し、式(1)中、 Aは Sr, Baおよび Caから選ばれる少なくとも 1種の金属元素であり 、原子比で、
0. 96≤al + a2≤l . 03、
0≤a2≤0. 10、
x+y+z= 1、
0. 05≤x≤0. 40、
0. l≤y≤0. 5、
0. 2≤z≤0. 6である。
[0013] 次に、式(1)中における al、 a2、 x、 yおよび zの限定理由を説明する。
al + a2が 1. 03を超えると圧電特性が急激に低下する。一方、 al + a2力 . 96未 満では誘電率および電気機械結合係数が小さくなるため、 al + a2は、 0. 96≤al + a2≤l . 03の範囲とする。 al +a2の望まし! /、範囲は 0. 98≤al + a2≤l . 01、より 望ましい範囲は 0. 99≤al + a2≤l . 005である。
Pbに対する A元素の置換割合を示す a2は、 0≤a2≤0. 10の範囲とする。 A元素 の置換量増加にともない誘電率は向上する力 a2力 . 10を超えるほど置換量が多 くなると、焼結性が低下してしまう。また、 A元素の置換量が多すぎると、キュリー温度 が低下し、圧電磁器としての実用温度が低下するので好ましくない。 a2の望ましい範 囲は 0≤a2≤0. 06、より望ましい範囲は 0. 01≤a2≤0. 06であり、より一層望まし い範囲は 0. 02≤a2≤0. 05である。また、 A元素としては Srが特に好ましい。
[0014] 式(1)における(Zn Nb )は圧電特性を向上させるためのものであり、(Zn Nb
1/3 2/3 1/3 2
)の組成比 xは 0. 05≤x≤0. 40とする。 Xが 0. 05未満では、誘電率、電気機械結
/3
合係数がともに低ぐ必要な圧電特性が得られない。 Xが増加するにしたがって誘電 率は高くなる力 Nb原料が高価であるので、 Xの上限は 0. 40とする。 Xの望ましい範 囲 ίま 0. 05≤χ≤0. 30、より望まし!/ヽ範囲 ίま 0. 05≤χ≤0. 20である。
Tiの組成比 yおよび Zrの組成比 ζは、誘電率、電気機械結合係数に大きく影響し、 特にモルフオト口ピック相境界付近が好ましい。これらの点から、本発明において、組 成 ityは 0. l≤y≤0. 5、糸且成 itzは 0. 2≤z≤0. 6とする。 yの望まし!/ヽ範囲は 0. 3 5≤y≤0. 50、より望まし!/ヽ範囲 ίま 0. 37≤y≤0. 48である。 zの望まし!/ヽ範囲 ίま 0. 36≤ζ≤0. 60、より望ましい範囲は 0. 38≤ζ≤0. 50である。
[0015] Pbと Α元素(Sr, Baおよび Caから選ばれる少なくとも 1種の金属元素)は、いわゆる Aサイトに位置し、 [ (Zn Nb ) Ti Zr ]はいわゆる Bサイトに位置する。高い圧電特
1/3 2/3
性を得るために、 AZBは 0. 96以上 1. 03以下とすることが望ましい。
[0016] 本発明による圧電磁器にぉ 、て、以下の式(2)に示すように、亜鉛の組成を化学 量論組成よりも過剰とすることもできる。
(Pb A ) [ (Zn Nb ) Ti Zr ]0 …式(2)
al a2 b/3 2/3 x y z 3
但し、式(2)中、 Aは Sr, Baおよび Caから選ばれる少なくとも 1種の金属元素であり 、原子比で、
0. 96≤al + a2≤l. 03、
0≤a2≤0. 10、
l <b≤3、
x+y+z= 1、
0. 05≤x≤0. 40、
0. l≤y≤0. 5、
0. 2≤z≤0. 6である。
[0017] 式(2)における亜鉛およびニオブ(Zn Nb )は圧電特性を向上させるものである b/3 2/3
。亜鉛の組成 bZ3を化学量論組成の 1Z3よりも過剰とするのは、それにより焼成温 度を低下させることができるとともに、圧電特性も向上させることができるからである。 特に、 bの値を 1. 05以上 2. 0以下の範囲内とすれば、圧電特性をより向上させるこ とができるので好ましい。
al, a2, x, y, zの限定理由は、式(1)の場合と同様である。 [0018] 本発明による圧電磁器は、副成分として Ta, Sb, Nb, Wおよび Moからなる群のう ち少なくとも 1種の元素を含有する。これらの元素を所定量含有させることで、焼結性 が向上するとともに、圧電特性が向上し、さらに抗折強度を向上させるという効果もあ る。なかでも、 Taは焼結性および圧電特性を向上させる効果が大きいので好ましい。 これらの元素は、式(1)で表される(Pb A ) [ (Zn Nb ) Ti Zr ]0の主成分に al a2 1/3 2/3 x y z 3
対して酸化物(Ta O, Sb O, Nb O, WO, MoO )に換算して合計で 0. 05〜3.
2 5 2 3 2 5 3 3
0質量%含有されることが望ましぐさらには 0. 05〜: L 0質量%含有されることがより 望ましい。これらの酸化物の含有量が 0. 05質量%未満では上記の効果を十分に享 受することができない。一方、酸化物の含有量が 3. 0質量%を超えると、誘電率、電 気機械結合係数および焼結性が低下してしまう。
Taの望ましい含有量は Ta O換算で 0. 05-0. 80質量0 /0、より望ましくは 0. 10〜
2 5
0. 60質量%である。
Sbの望まし! /、含有量 ίま Sb O換算で 0. 05-0. 80質量0 /0、より望ましく ίま 0. 10〜
2 3
0. 60質量%である。
Nbの望ましい含有量は Nb O換算で 0. 05-0. 80質量0 /0、より望ましくは 0. 10
2 5
〜0. 60質量%である。
Wの望ましい含有量は WO換算で 0. 05〜0. 80質量0 /0、より望ましくは 0. 10〜0
3
. 70質量%である。
Moの望ましい含有量は MoO換算で 0. 05〜0. 80質量0 /0、より望ましくは 0. 05
3
〜0. 50質量%である。
なお、副成分である Ta, Sb, Nb, Wおよび Moは、例えば主成分の組成物に固溶 しており、 Tiおよび Zrが存在しうる!/、わゆる Bサイトに位置して!/、る。
[0019] このような圧電磁器は、例えばァクチユエータ,圧電ブザー,発音体およびセンサ などの圧電素子の材料として、特にはァクチユエータの材料として好適に用いられる
[0020] 図 2に、本実施の形態に係る圧電磁器を用いた圧電素子の一構成例を示す。この 圧電素子は、本実施の形態の圧電磁器から構成される複数の圧電層 11の間に複数 の内部電極 12が挿入された積層体 10を備えて ヽる。圧電層 11の一層当たりの厚さ は例えば 1〜: LOO m程度であり、内部電極 12に挟まれた圧電層 11よりも両端の圧 電層 11の厚みの方が厚く形成される場合もある。圧電層 11を構成する圧電磁器の 化学組成は上述の通りである。
[0021] 内部電極 12は、導電材料、例えば Ag, Au, Cu, Pt, Pdあるいはこれらの合金か ら構成することができるが、圧電素子のコスト低減のために、 Ag— Pd合金 (Ag— Pd 合金における Pdの含有量が 20質量%以下)、あるいは Cuを用いる。
Pdの含有量と焼成温度の関係は、図 1に示した通りであるが、本実施の形態にお ける圧電層 11は 1050°C以下、さらには 1000°C以下で焼成可能である。このため、 Pdの含有量が 20質量%以下、さらには 15質量%以下の Ag— Pd合金を用いること ができる。
[0022] Cuは Agや Pdよりも安価であるため、さらに製造コストを低減するためには、 Cuを用 いて内部電極 12を構成することが望ましい。この場合は、 Cuの融点が約 1085°Cで あるため、 1050°C以下で焼成すればよい。
[0023] さて、図 2に示したように、内部電極 12は例えば交互に逆方向に延長されており、 その延長方向に内部電極 12と電気的に接続された一対の端子電極 21, 22がそれ ぞれ設けられている。端子電極 21, 22は、例えば金などの金属をスパッタリングする ことにより、もしくは端子電極用ペーストを焼き付けることにより形成することができる。 端子電極用ペーストは、例えば、導電材料と、ガラスフリットとビヒクルとを含有する。 導電材料は、銀,金,銅,ニッケル,パラジウムおよび白金力もなる群のうち少なくとも 1種を含むものが望まし 、。ビヒクルには有機ビヒクルあるいは水系ビヒクルなどがあり 、有機ビヒクルはバインダを有機溶媒に溶解させたもの、水系ビヒクルは水に水溶性 ノインダおよび分散剤などを含有させたものである。端子電極 21, 22の厚さは用途 等に応じて適宜決定される力 通常 10〜50 m程度である。
[0024] <製造方法 >
次に、本発明による圧電素子の望ましい製造方法について、その工程順に説明す る。
[原料粉末、秤量]
主成分の原料として、酸化物または加熱により酸化物となる化合物の粉末を用いる 。具体的には PbO粉末, TiO粉末, ZrO粉末, ZnO粉末, Nb O粉末, SrCO粉
2 2 2 5 3 末, BaCO粉末,および CaCO粉末等を用いることができる。原料粉末は、焼成後
3 3
に式(1)の組成となるように、それぞれ秤量する。
次に、秤量された各粉末の総重量に対して、副成分として Ta, Sb, Nb, Wおよび Moからなる群のうち少なくとも 1種の元素を、所定量添加する。副成分の原料粉末と しては Ta O粉末, Sb O粉末, Nb O粉末, WO粉末, MoO粉末を準備する。各
2 5 2 3 2 5 3 3 原料粉末の平均粒径は 0. 1〜3. 0 mの範囲で適宜選択すればよい。
なお、上述した原料粉末に限らず、 2種以上の金属を含む複合酸化物の粉末を原 料粉末としてもよい。
[0025] [仮焼]
原料粉末を湿式混合した後、 700〜900°Cの範囲内で所定時間保持する仮焼を 行う。このときの雰囲気は Nまたは大気とすればよい。仮焼の保持時間は 1〜4時間
2
の範囲で適宜選択すればよい。なお、主成分の原料粉末と副成分の原料粉末を混 合した後に、両者をともに仮焼に供する場合について示したが、副成分の原料粉末 を添加するタイミングは上述したものに限定されるものではない。例えば、まず主成分 の粉末のみを秤量、混合、仮焼および粉砕する。そして、仮焼粉砕後に得られた主 成分の粉末に、副成分の原料粉末を所定量添加し混合するようにしてもょ ヽ。
[0026] [粉砕]
仮焼粉末は例えばボールミルや気流粉砕機を用いて比表面積が 1. 8〜11. Om2 Zgになるまで粉砕される。比表面積力 Sこの範囲内にある粉末を焼成に供するように すれば、焼成温度を 1050°C以下と低温にしても緻密かつ圧電特性に優れた圧電磁 器を得ることができる。望ましい比表面積は 2. 5〜8. Om2/g、より望ましい比表面積 は 3. 5〜8. Om2/gである。 it表面積を 2. 5〜8. Om2/gとすることにより、 1000。C 以下での焼成も可能となる。なお、本願における比表面積は窒素吸着法 (BET法) による。
[0027] 仮焼粉末の比表面積を上記範囲内とするには、例えば、メディア条件の制御、粉砕 時間の調整、単位時間あたりの処理量の調整、湿式粉砕の場合はスラリー濃度の調 整等を行なえばよい。 具体的には、ボールミルを用いて粉砕を行う場合には、メディア条件の制御 (メディ ァの量を多くする等)、粉砕時間を長くすることが有効である。また粉砕時間は所定の 比表面積が得られる程度に設定すればょ 、。
気流粉砕機を用いて粉砕を行う場合にも、粉砕時間を制御することにより、所定の 比表面積を有する粉末を得ることができる。気流粉砕機としては、分級機付きのもの が望ましぐ分級機付きの粉砕機を用いることにより、粗粉を除去あるいは再粉砕し目 的の比表面積を有する粉末を得ることができる。また、粉砕レートを変更することも有 効である。
[0028] なお、比表面積が 1. 8〜: L I. Om2/gという粒径が小さい粉末を得る工程は、粉砕 工程に限定されない。例えば、粉砕工程後に、粉砕工程で得られた粉砕粉末に対し 、粗大粉を除去または再粉砕する等の操作を行うことによって、上記した比表面積を 有する粉末を得るようにしてもょ ヽ。
[0029] [積層体作製]
この仮焼粉末にビヒクルを加えて混練して圧電磁器用ペーストを作製する。次、で 、内部電極 12を形成するための上述した導電材料または焼成後に上述した導電材 料となる各種酸化物,有機金属化合物あるいはレジネートなどをビヒクルと混練し、内 部電極用ペーストを作製する。なお、内部電極用ペースト〖こは、必要に応じて分散剤 ,可塑剤,誘電体材料,絶縁体材料などの添加物を添加してもよい。
続いて、これら圧電用ペーストと内部電極用ペーストとを用い、例えば、印刷法ある いはシート法により、積層体 10の前駆体であるグリーンチップを作製する。
[0030] その後、脱バインダ処理を行 ヽ、焼成して積層体 10を形成する。その際の焼成温 度は、内部電極 12に用いる金属の種類に応じて決定する。上述したように、内部電 極 12として Ag— Pd合金 (Ag— Pd合金における Pdの含有量が 20質量%以下)また は Cuを用いる場合には、焼成温度を 1050°C以下、望ましくは 900〜1000°Cとする 。加熱保持時間は 1〜10時間、望ましくは 2〜8時間とする。
Ag— Pd合金は大気中で焼成すればょ 、が、 Cuは卑金属であり大気中で焼成す ると酸ィ匕してしまい電極として使用できなくなる。よって、 Cuを内部電極 12として用い る場合には、還元性雰囲気、具体的には、酸素分圧が空気よりも低く 1 X 10— 12Pa以 上の低酸素還元性雰囲気で焼成を行う。低酸素還元性雰囲気で焼成した場合にも
、圧電層 11は高い圧電特性を示す。
[0031] 比表面積が 1. 8- 11. Om2/gという粒径が小さい粉末を 1000〜1050°Cで焼成 すると、加熱保持時間にも左右されるが圧電層 11の焼結体平均結晶粒径は 1〜3 μ m程度となる。 900〜1000°Cで焼成すると、焼結体平均結晶粒径は 0. 5〜2. 5 μ m程度となる。
[0032] 積層体 10を形成したのち、例えばバレル研磨やサンドブラストなどにより端面研磨 を施し、金などの金属をスパッタリングすることにより、あるいは内部電極用ペーストと 同様に作製した端子電極用ペーストを印刷または転写して焼き付けることにより端子 電極 21 , 22を形成する。これにより、図 2に示した圧電素子が得られる。
[0033] このように、本実施の形態によれば、組成を式(1)に示したものとし、かつ焼成前粉 末の比表面積を 1. 8〜: L I . Om2Zgの範囲内に制御するようにしたので、焼成温度 を 1050°C以下、さらには 1000°C以下としても圧電層 11を緻密かつ圧電特性の高 いちのとすることがでさる。
よって、内部電極 12に Ag - Pd合金 (Ag - Pd合金における Pdの含有量が 20質量 %以下)や Cuを用いることができ、圧電素子の製造コストを低減することができる。
[0034] 特に、 Ta, Sb, Nb, Wおよび Moからなる群のうち少なくとも 1種を圧電層 11中に 所定量含有するようにすれば、焼成温度をより低くすることができるとともに、圧電特 '性をより向上させることができる。
[0035] 以上、積層型の圧電素子を得る場合を例にして、圧電素子の製造方法を説明した 力 本発明を適用して積層型以外の圧電素子を得ることもできる。この場合は、上述 した手順で仮焼、粉砕を行い、比表面積が 1. 8〜11. Om2/gである粉末を得る。こ の粉砕粉末を造粒、加圧成形して所望の形状の成形体を得た後、 1050°C以下、望 ましくは 900〜1000°Cの範囲内で所定時間焼成して焼結体を得るようにすればよい 。焼結体は分極処理、研磨処理ならびに振動電極の形成がなされた後、所望の形 状に切断され圧電素子として機能することとなる。分極処理は、室温〜 150°Cの温度 で、 1. 0〜3. OEc (Ecは抗電界)の電界を焼結体に対して 0. 5〜30分間印加すれ ばよい。 [0036] 本発明が推奨する組成を選択し、かつ焼成前の粉末 (仮焼後に粉砕された粉末) の比表面積を制御することで、 1050°C以下で焼成した場合にも 1800以上の比誘電 率 ε r (測定周波数は lkHz)、 60%以上の電気機械結合係数 kr (径方向振動の電 気機械結合係数)を兼備する圧電素子を得ることができる。なお、比誘電率 ε rおよ び電気機械結合係数 krはインピーダンスアナライザ (ヒユーレッドパッカード社製 HP 4194A)を用いて測定した値である。なお、電気機械結合係数 krは以下の式に基づ き、求めた。
日本電子材料工業会標準規格 EMAS-6100 p49記載
kr=l/(0.395*fr/(fa-fr)+0.574)1 2*100
fr:共振周波数、 fa:反共振周波数
実施例 1
[0037] (試料 No. 1〜5、比較例 1、 2)
出発原料として、 PbO粉末, SrCO粉末, TiO粉末, ZrO粉末, ZnO粉末, Nb
3 2 2 2
O粉末, Ta O粉末を準備した。この原料粉末を、焼結後に原子比で (Pb Sr ) [
5 2 5 0.965 0.03
(Zn Nb ) Ti Zr ]0となるように秤量した後、各粉末の総重量に対して副成
1/3 2/3 0.1 0.43 0.47 3
分としての Ta O粉末を 0. 4質量%添カ卩し、ボールミルを用いて湿式混合を 16時間
2 5
行った。
得られたスラリーを十分に乾燥させた後、大気中、 700〜900°Cで 2時間保持する 仮焼を行った。仮焼体が図 3に示す比表面積になるまでボールミルにより 2〜: L00時 間粉砕した後、粉砕粉末を乾燥させた。乾燥させた粉砕粉末に、ノ^ンダとして PVA (ポリビュルアルコール)を適量カ卩え、造粒した。 1軸プレス成形機を用いて造粒粉末 を 245MPaの圧力で成形し、直径 17mm、厚み 1. Ommの円板状の成形体を得た。 得られた成形体に対して脱バインダ処理を行った後、大気中、 950〜: L 100°Cで 1〜 10時間保持して、磁器試料を得た。
[0038] 磁器試料をスライスし、かつ磁器試料の両面をラップ盤で厚み 0. 6mmに平面加工 した後に、磁器試料の両面に Agペーストを印刷し、 650°Cで焼き付け、温度 120°C のシリコンオイル槽中で 3kVZmmの電界を 15分間印加する分極処理を行った。 これ〖こより、試料 No. 1〜5、比較例 1、 2の圧電磁器を得た。 [0039] (試料 No. 6〜13)
副成分の種類および添力卩量を図 3に示すものとした以外は、試料 No. 1〜5、比較 例 1、 2と同様にして試料 No. 6〜13の圧電磁器を得た。
[0040] 試料 No. 1〜13、比較例 1、 2の圧電磁器について、 24時間放置した後、径方向 振動の電気機械結合係数 krおよび比誘電率 ε rを測定した。それらの測定には、ィ ンピーダンスアナライザ(ヒユーレッドパッカード社製 HP4194A)を用い、比誘電率 ε rの測定周波数は 1kHzとした。得られた結果を図 3に示す。
[0041] 比較例 1、 2はいずれも焼成前粉末の比表面積が 1. 5m2Zgであり、焼成温度を除 けば同一条件で作製されたものである。比較例 1、 2から、焼成前粉末の比表面積が 1. 5m2Zgの場合には、 1050°Cでは十分に緻密化できず、それ以上の温度(1100 °C)で焼成しなければ所望の圧電特性を得ることができな!/、。
これに対し、焼成前粉末の比表面積が 2. 0-10. Om2/gである試料 No. 1〜13 は、いずれも 1050°C以下の焼成で十分に緻密化されており、 1800以上の比誘電 率 ε r (測定周波数は lkHz)、 60%以上の電気機械結合係数 kr (径方向振動の電 気機械結合係数)を得ることができた。
以上の結果から、焼成前粉末の比表面積を制御するという手法は、圧電磁器の低 温焼成化を図る上で有効であるとともに、圧電特性に何ら悪影響を与えるものではな いことが確認できた。
実施例 2
[0042] 酸素分圧が空気よりも低く 1 X 10— 12Pa以上の低酸素還元性雰囲気中で焼成を行 つた以外、実施例 1と同様にして圧電磁器を作製した。得られた試料 No. 14〜26、 比較例 3、 4の圧電磁器について、 24時間放置した後、実施例 1と同様の条件で径 方向振動の電気機械結合係数 krおよび比誘電率 ε rを測定した。得られた結果を図 4に示す。
[0043] 図 4に示すように、焼成雰囲気を低酸素還元性雰囲気とした場合にも、大気中で焼 成した実施例 1と同様の傾向が確認できた。つまり、焼成前粉末の比表面積を本発 明が推奨する範囲内とすることにより、 900〜1050°Cという低温焼成でも、 1800以 上の比誘電率 ε r (測定周波数は lkHz)、 60%以上の電気機械結合係数 kr (径方 向振動の電気機械結合係数)を得ることができた。
実施例 3
[0044] (実施例 3 - 1)
実施例 1の試料 No. 1〜5、比較例 1、 2に対応する焼成前粉末を用い、図 2に示し たような積層型の圧電素子を作製した。内部電極 12に挟まれた圧電層 11の厚さは 2 5 /ζ πι、その積層数は 10層とした。積層体 10の寸法は縦 4mm X横 4mmである。内 部電極 12には Ag - Pd合金 ( Ag - Pd合金における Pdの含有量は 20質量%)を用 い、図 5に示す焼成条件にて大気中で焼成した。得られた圧電素子について 40Vの 電圧を印カロしたときの変位量を測定した。その結果を図 5に示す。
[0045] (実施例 3— 2)
実施例 2の試料 No. 14〜18、比較例 3、 4に対応する焼成前粉末を用い、図 2〖こ 示したような積層型の圧電素子を作製した。内部電極 12には Cuを用い、図 6に示す 焼成条件にて低酸素還元性雰囲気 (酸素分圧が空気よりも低く 1 X 10— 12Pa以上の 低酸素還元性雰囲気)で焼成した以外は、実施例 3— 1と同一の条件で圧電素子を 作製した。実施例 3—1と同様に、得られた圧電素子について 40Vの電圧を印加した ときの変位量を測定した。その結果を図 6に示す。
[0046] 図 5および図 6に示すように、焼成前粉末の比表面積を本発明が推奨する範囲内と した圧電素子は、 900〜1050°Cという低温で焼成されたにもかかわらず、 170nm以 上、さらには 180nm以上という変位量を示した。
図面の簡単な説明
[0047] [図 l]Ag— Pd合金における Pd含有量と圧電磁器組成物の焼成温度との関係を示す 図表である。
[図 2]本発明の一実施形態に係る圧電磁器を用いた圧電素子の一構成例を示す断 面図である。
[図 3]実施例 1で作製した圧電磁器の比誘電率 ε rならびに電気機械結合係数 krを 示す図表である。
[図 4]実施例 2で作製した圧電磁器の比誘電率 ε rならびに電気機械結合係数 krを 示す図表である。 [図 5]実施例 3—1で作製した圧電素子の変位量を示す図表である。
[図 6]実施例 3— 2で作製した圧電素子の変位量を示す図表である。 符号の説明
10…積層体、 11···圧電層、 12···内部電極、 21, 22···端子電極

Claims

請求の範囲
[1] 組成式 (Pb A ) [ (Zn Nb ) Ti Zr ]0で表される主成分を含有する圧電磁器 al a2 1/3 2/3 x y z 3
の製造方法であって、
比表面積が 1. 8〜11. Om2Zgである前記圧電磁器用の粉末を成形する工程と、 得られた成形体を 1050°C以下で焼成して焼結体を得る工程と、
を備えたことを特徴とする圧電磁器の製造方法。
但し、前記組成式において、 Aは Sr, Baおよび Caから選ばれる少なくとも 1種の金 属元素であり、原子比で、
0. 96≤al + a2≤l. 03、
0≤a2≤0. 10、
x+y+z=丄、
0. 05≤x≤0. 40、
0. l≤y≤0. 5、
0. 2≤z≤0. 6である。
[2] 前記成形体を 1000°C以下で焼成することを特徴とする請求項 1に記載の圧電磁 器の製造方法。
[3] 前記主成分に対して、副成分として Ta, Sb, Nb, Wおよび Moからなる群のうち少 なくとも 1種の元素を、それぞれ Ta O , Sb O , Nb O , WO , MoOに換算して合
2 5 2 3 2 5 3 3
計で 0. 05〜3. 0質量%含有することを特徴とする請求項 1または 2に記載の圧電磁 器の製造方法。
[4] 比表面積が 2. 5〜8. Om2Zgである前記圧電磁器用の粉末を成形することを特徴 とする請求項 1に記載の圧電磁器の製造方法。
[5] 組成式 (Pb A ) [ (Zn Nb ) Ti Zr ]0で表される主成分を含有する圧電磁器 al a2 1/3 2/3 x y z 3
から構成される圧電層と、
Pdの含有量が 20質量%以下である Ag— Pd合金、または Cuから構成される内部 電極と、を含む圧電素子の製造方法であって、
比表面積が 1. 8〜11. Om2Zgである前記圧電磁器用の粉末を含む前記圧電層 用のペーストと、前記内部電極用のペーストを交互に積層して積層体を得る工程と、 前記積層体の焼成を 1050°C以下で行う工程と、
を含むことを特徴とする圧電素子の製造方法。
但し、前記組成式において、 Aは Sr, Baおよび Caから選ばれる少なくとも 1種の金 属元素であり、原子比で、
0. 96≤al + a2≤l. 03、
0≤a2≤0. 10、
x+y+z=丄、
0. 05≤x≤0. 40、
0. l≤y≤0. 5、
0. 2≤z≤0. 6である。
[6] 前記圧電層用のペーストは比表面積が 2. 5〜8. Om2Zgである粉末を含むことを 特徴とする請求項 5に記載の圧電素子の製造方法。
[7] 複数の圧電層と、前記圧電層の間に挿入された複数の内部電極を備えた圧電素 子であって、
前記圧電層は組成式 (Pb A ) [ (Zn Nb ) Ti Zr ]0で表される主成分を含有 al a2 1/3 2/3 x y z 3
する圧電磁器から構成され、
前記内部電極は、 Pdの含有量が 20質量%以下である Ag— Pd合金、または Cuか ら構成されることを特徴とする圧電素子。
但し、前記組成式において、 Aは Sr, Baおよび Caから選ばれる少なくとも 1種の金 属元素であり、原子比で、
0. 96≤al + a2≤l. 03、
0≤a2≤0. 10、
x+y+z=丄、
0. 05≤x≤0. 40、
0. l≤y≤0. 5、
0. 2≤z≤0. 6である。
[8] 前記内部電極は、 Cuから構成されることを特徴とする請求項 7に記載の圧電素子。
[9] 前記内部電極は、 Pdの含有量が 20質量%以下である Ag— Pd合金力も構成され ることを特徴とする請求項 7に記載の圧電素子。
[10] 0. 01≤a2≤0. 06であることを特徴とする請求項 7に記載の圧電素子。
[11] 0. 02≤a2≤0. 05であることを特徴とする請求項 7に記載の圧電素子。
[12] 0. 35≤y≤0. 50であることを特徴とする請求項 7に記載の圧電素子。
[13] 0. 36≤z≤0. 60であることを特徴とする請求項 7に記載の圧電素子。
[14] 前記 Aとして Srを含むことを特徴とする請求項 7に記載の圧電素子。
[15] 前記主成分に対して、副成分として Ta, Sb, Nb, Wおよび Moからなる群のうち少 なくとも 1種の元素を、それぞれ Ta O , Sb O , Nb O , WO , MoOに換算して合
2 5 2 3 2 5 3 3
計で 0. 05〜3. 0質量%含有することを特徴とする請求項 7に記載の圧電素子。
[16] 前記主成分に対して、副成分として Taを、 Ta Oに換算して 0. 05-0. 80質量%
2 5
含有することを特徴とする請求項 15に記載の圧電素子。
[17] 1kHzにおける比誘電率 ε rが 1800以上であることを特徴とする請求項 7に記載の 圧電素子。
[18] 電気機械結合係数 krが 60%以上であることを特徴とする請求項 7に記載の圧電素 子。
[19] 組成式 (Pb A ) [ (Zn Nb ) Ti Zr ]0で表される主成分を含有する圧電磁器 al a2 b/3 2/3 x y z 3
の製造方法であって、
比表面積が 1. 8〜11. Om2Zgである前記圧電磁器用の粉末を成形する工程と、 得られた成形体を 1050°C以下で焼成して焼結体を得る工程と、
を備えたことを特徴とする圧電磁器の製造方法。
但し、前記組成式において、 Aは Sr, Baおよび Caから選ばれる少なくとも 1種の金 属元素であり、原子比で、
0. 96≤al + a2≤l. 03、
0≤a2≤0. 10、
l <b≤3、
x+y+z=丄、
0. 05≤x≤0. 40、
0. l≤y≤0. 5、
1. 05≤b≤2. 00であることを特徴とする請求項 19に記載の圧電磁器の製造方法
PCT/JP2005/017796 2004-09-30 2005-09-28 圧電磁器の製造方法、圧電素子の製造方法、圧電素子 WO2006035794A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/573,203 US20080067897A1 (en) 2004-09-30 2005-09-28 Production Method of Piezoelectric Ceramic, Production Method of Piezoelectric Element, and Piezoelectric Element
DE200511002093 DE112005002093T5 (de) 2004-09-30 2005-09-28 Herstellverfahren für eine piezoelektrische Keramik, Herstellverfahren für ein piezoelektrisches Element und piezoelektrisches Element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-285933 2004-09-30
JP2004285933A JP2006096626A (ja) 2004-09-30 2004-09-30 圧電磁器の製造方法、圧電素子の製造方法、圧電素子

Publications (1)

Publication Number Publication Date
WO2006035794A1 true WO2006035794A1 (ja) 2006-04-06

Family

ID=36118940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017796 WO2006035794A1 (ja) 2004-09-30 2005-09-28 圧電磁器の製造方法、圧電素子の製造方法、圧電素子

Country Status (5)

Country Link
US (1) US20080067897A1 (ja)
JP (1) JP2006096626A (ja)
CN (1) CN1993301A (ja)
DE (1) DE112005002093T5 (ja)
WO (1) WO2006035794A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129889B2 (en) * 2006-12-26 2012-03-06 Murata Manufacturing Co., Ltd. Piezoelectric ceramic compositions and piezoelectric elements

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877232B2 (ja) 2005-12-08 2012-02-15 株式会社村田製作所 積層型圧電素子およびその製造方法
CN105801129B (zh) * 2016-03-04 2019-01-15 森霸传感科技股份有限公司 热释电陶瓷材料的烧结改性助剂
CN116589277A (zh) * 2018-07-17 2023-08-15 株式会社村田制作所 压电陶瓷、陶瓷电子部件及压电陶瓷的制造方法
CN114105636A (zh) * 2021-12-30 2022-03-01 景德镇市鑫惠康电子有限责任公司 利用硒化铟改性铌锌锆钛酸铅体系并制得4m聚能换能片的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208858A (ja) * 1990-01-10 1991-09-12 Matsushita Electric Ind Co Ltd 圧電磁器の製造方法
WO2002081404A1 (fr) * 2001-03-30 2002-10-17 Tdk Corporation Ceramique piezo-electrique et son procede de preparation, et element piezo-electrique
JP2005306720A (ja) * 2004-03-26 2005-11-04 Tdk Corp 圧電磁器および圧電素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788252B2 (ja) 1984-11-29 1995-09-27 株式会社東芝 酸化物圧電材料
GB8809608D0 (en) * 1988-04-22 1988-05-25 Alcan Int Ltd Sol-gel method of making ceramics
JP3046436B2 (ja) * 1990-12-17 2000-05-29 株式会社東芝 セラミックコンデンサ
JP2737532B2 (ja) * 1991-07-23 1998-04-08 株式会社村田製作所 圧電磁器組成物
US6594875B2 (en) * 1998-10-14 2003-07-22 Samsung Electro-Mechanics Co. Method for producing a piezoelectric/electrostrictive actuator
JP3468461B2 (ja) 1999-12-28 2003-11-17 Tdk株式会社 圧電セラミック組成物
US6413443B1 (en) * 2000-01-07 2002-07-02 Tdk Corporation Piezoelectric ceramic and piezoelectric device
US7045075B2 (en) * 2000-12-28 2006-05-16 Bosch Automotive Systems Corporation Ceramic material and piezoelectric element using the same
JP2004002069A (ja) * 2002-05-30 2004-01-08 Tdk Corp 圧電磁器の製造方法および圧電素子の製造方法
US7545084B2 (en) * 2006-07-20 2009-06-09 Ngk Insulators, Ltd. Piezoelectric/electrostrictive ceramic composition, piezoelectric/electrostrictive device, and method of producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208858A (ja) * 1990-01-10 1991-09-12 Matsushita Electric Ind Co Ltd 圧電磁器の製造方法
WO2002081404A1 (fr) * 2001-03-30 2002-10-17 Tdk Corporation Ceramique piezo-electrique et son procede de preparation, et element piezo-electrique
JP2005306720A (ja) * 2004-03-26 2005-11-04 Tdk Corp 圧電磁器および圧電素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129889B2 (en) * 2006-12-26 2012-03-06 Murata Manufacturing Co., Ltd. Piezoelectric ceramic compositions and piezoelectric elements

Also Published As

Publication number Publication date
JP2006096626A (ja) 2006-04-13
US20080067897A1 (en) 2008-03-20
CN1993301A (zh) 2007-07-04
DE112005002093T5 (de) 2010-05-20

Similar Documents

Publication Publication Date Title
KR100594859B1 (ko) 압전 자기의 제조 방법 및 압전 소자의 제조 방법
JP4945801B2 (ja) 圧電素子、及び圧電素子の製造方法
JP4129931B2 (ja) 圧電磁器組成物および積層型圧電素子
EP1382587B1 (en) Piezoelectric porcelain and method for preparation thereof, and piezoelectric element
JP4238271B2 (ja) 圧電磁器組成物および積層型圧電素子
JP5651452B2 (ja) 圧電/電歪セラミックス焼結体
JP7239350B2 (ja) 圧電セラミックス及びその製造方法、並びに圧電素子
JPWO2003104163A1 (ja) 圧電磁器組成物とこれを用いた積層圧電デバイスおよびその製造方法
WO2006035794A1 (ja) 圧電磁器の製造方法、圧電素子の製造方法、圧電素子
JP5462090B2 (ja) 圧電/電歪セラミックス焼結体
JP5392603B2 (ja) 圧電セラミック電子部品の製造方法
JP5662197B2 (ja) 圧電/電歪焼結体、及び圧電/電歪素子
JP4355665B2 (ja) 圧電磁器および圧電素子
JP4390082B2 (ja) 圧電磁器組成物及び積層型圧電素子
JP2011037697A (ja) 圧電/電歪磁器組成物
JP3993395B2 (ja) 圧電磁器およびその製造方法並びに圧電素子
JP4998668B2 (ja) 圧電磁器の製造方法および圧電素子の製造方法
JP2006193414A (ja) 圧電磁器の製造方法および圧電素子の製造方法
JP5196124B2 (ja) 圧電磁器組成物および積層型圧電素子
JP5651453B2 (ja) 圧電/電歪セラミックス焼結体
JP2006193415A (ja) 圧電磁器および圧電素子
JP2005306720A (ja) 圧電磁器および圧電素子
JP4793579B2 (ja) 圧電磁器組成物および積層型圧電素子
JP2009114049A (ja) 圧電/電歪磁器組成物及び圧電/電歪素子
JP3966882B2 (ja) 圧電磁器組成物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580025996.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11573203

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120050020932

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05787978

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11573203

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112005002093

Country of ref document: DE

Date of ref document: 20100520

Kind code of ref document: P