JP5196124B2 - 圧電磁器組成物および積層型圧電素子 - Google Patents

圧電磁器組成物および積層型圧電素子 Download PDF

Info

Publication number
JP5196124B2
JP5196124B2 JP2007311506A JP2007311506A JP5196124B2 JP 5196124 B2 JP5196124 B2 JP 5196124B2 JP 2007311506 A JP2007311506 A JP 2007311506A JP 2007311506 A JP2007311506 A JP 2007311506A JP 5196124 B2 JP5196124 B2 JP 5196124B2
Authority
JP
Japan
Prior art keywords
piezoelectric
subcomponent
mass
ceramic composition
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007311506A
Other languages
English (en)
Other versions
JP2008156219A (ja
Inventor
久美子 家住
純一 山崎
典正 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007311506A priority Critical patent/JP5196124B2/ja
Publication of JP2008156219A publication Critical patent/JP2008156219A/ja
Application granted granted Critical
Publication of JP5196124B2 publication Critical patent/JP5196124B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アクチュエータや圧電ブザー、発音体、センサ等の各種圧電素子の圧電体層に好適な圧電磁器組成物および当該組成物を用いた積層型圧電素子に関し、特に950℃以下の温度かつ低酸素還元性雰囲気中で焼成することのできる圧電磁器組成物に関する。
圧電素子に用いられる圧電磁器組成物には、圧電特性、特に圧電歪定数が大きいことが要求される。従来、大きな圧電歪定数が得られる圧電磁器としては、例えば、チタン酸鉛(PbTiO;PT)とジルコン酸鉛(PbZrO;PZ)と亜鉛・ニオブ酸鉛(Pb(Zn1/3 Nb2/3 )O)との三元系(PZT)、あるいは、その鉛(Pb)の一部をストロンチウム(Sr)、バリウム(Ba)あるいはカルシウム(Ca)などで置換したものが知られている。
しかしながら、これら従来の圧電磁器は、焼成温度が1200℃程度と高温であるので、積層型圧電素子を作製する場合には、内部電極に白金(Pt)やパラジウム(Pd)のような高価な貴金属を使用しなければならず、製造コストが高いという問題があった。そこで、より安価な銀−パラジウム(Ag−Pd)合金を内部電極に使用するために、焼成温度を低くすることが望まれていた。
このような状況に対して本出願人は、前記三元系の圧電磁器組成物に、Fe、Co、NiおよびCuから選ばれる少なくとも1種を含む第1副成分、および、Sb、NbおよびTaから選ばれる少なくとも1種を含む第2副成分を加えることにより1050℃以下の低温焼成を可能とし、内部電極にAg−Pd合金等の安価な材料を使用可能とすることを特許文献1において提案した。
さらに最近では、Ag−Pd合金よりも安価な銅(Cu)を内部電極に使用することも検討されている。しかるに、Cuの融点は1085℃であるので、Cuを用いるには焼成温度を 1050℃以下にする必要がある。しかし、Cuはさらに低温から焼結し始めるため、できるだけ焼成温度を低く、例えば950℃以下にする必要がある。加えてCuは卑金属であるので、大気中で焼成すると酸化してしまい電極として使用できなくなる。したがって、Cuを内部電極に用いた積層型圧電素子を作製する場合には、低酸素還元性雰囲気中での焼成が必要となる。
この要請に対して本出願人は、(Pba-b Me)[(Zn1/3Nb2/3TiZr]O(ただし、a、b、x、y、zは、0.96≦a≦1.03、0≦b≦0.1、x+y+z=1、0.05≦x≦0.40、0.1≦y≦0.5、0.2≦z≦0.6をそれぞれ満たす範囲内の値である。Meは、ストロンチウム(Sr)、カルシウム(Ca)およびバリウム(Ba)からなる群のうちの少なくとも1種を表す)の組成を有する仮焼き粉に対して、Pbを酸化物(PbO)に換算した割合で0.01〜1.5質量%、およびCuを酸化物(CuO)に換算した割合で1質量%以下を添加して焼成する圧電磁器の製造方法を、特許文献2で提案した。
特開2004−137106号公報 特開2006−193414号公報
特許文献2において、低い焼成温度であって、かつ低酸素還元性雰囲気中で焼成しても、高い圧電特性が得られることが確認されている。
ところが、本発明者等のその後の検討によると、特許文献2の圧電磁器組成物は、例えば1V/mm以下の低い印加電圧下においては優れた圧電特性を示すものの、高電圧下での駆動が要求されるアクチュエータ等の製品においては十分な変位が得られなかった。これらの製品は1〜3kV/mmの高電圧下で駆動されるため、圧電磁器としてもこの高電圧下で良好な圧電特性を発現することが必要である。この圧電特性を評価する物性値は複数存在するが、積層型圧電素子として用いる場合、電気機械結合係数kr(%)や変位量が重要である。ところが、1kV/mm以上の高電圧下で材料を評価することが煩雑なため、1V/mm以下の低電圧下において簡便なインピーダンス測定やd33メータによる測定が行われているのが実情である。そして、低電圧下における圧電特性と高電圧下における圧電特性とがリンクするものと仮定して、これまで圧電磁器組成物の評価を行っていた。しかし、特許文献2に開示される圧電磁器組成物は、低電圧下における圧電特性と高電圧下における圧電特性がリンクしていなかったのである。
そこで本発明では、低温かつ低酸素還元性雰囲気中において焼成が可能で、かつ1kV/mm以上の高電圧下においても十分な変位が得られる圧電磁器組成物および積層型圧電素子を提供することを目的とする。
本発明者等はPZTの組成について検討したところ、(Pba−bMe)[(Zn1/3Nb2/3TiZr]Oで示される組成において、高電圧下の圧電特性が、リラクサ(relaxer)と称される(Zn1/3Nb2/3)の置換量を示すxの値によって変動することを見出した。つまり、xが小さくなるにつれて1kV/mm以上の高電圧下における圧電特性が向上することが判明した。しかしながら、xの値が小さくなる、つまりリラクサ成分が少なくなると、十分な密度が得られる焼成温度が1100℃以上と高くなってしまい、積層型圧電素子を低い焼成温度で得ることができなくなった。
この焼成温度の問題に対しては、Cuを添加することにより低い焼成温度で緻密な磁器が得られることを確認した。ところが、Cuの添加は高電圧下における圧電特性の低下を招くという問題も明らかとなった。本発明者等のさらなる検討によると、Cuの添加による焼成温度低減の効果を享受しつつ、高電圧下において高い圧電特性を得るためには、Liを添加すること、さらにはTa、Nb、WおよびSbから選ばれる少なくとも1種を添加することが有効であることを知見した。
以上の知見に基づく本発明の圧電磁器組成物は、
下記の組成式(1)または(2)で示される複合酸化物を主成分とし、
主成分に対し、
第1副成分として、CuをCuO換算量αで0<α≦0.5質量%、
第2副成分として、Liを炭酸物換算量βで0<β≦0.1質量%、
第3副成分として、Ta、Nb、WおよびSbから選ばれる少なくとも1種を酸化物換算量γで0<γ≦0.6質量%を含むことを特徴としている。
組成式(1):Pb[(Zn1/3Nb2/3TiZr]O
組成式(1)のa、x、yおよびzが、
0.96≦a≦1.03、
0.005≦x≦0.047、
0.42≦y≦0.53、
0.45≦z≦0.56、
x+y+z=1を満足する。
組成式(2):(Pba−bMe)[(Zn1/3Nb2/3TiZr]O
組成式(2)のa、b、x、yおよびzが、
0.96≦a≦1.03、
0<b≦0.1、
0.005≦x≦0.047、
0.42≦y≦0.52、
0.45≦z≦0.56、
x+y+z=1を満足するとともに、
組成式(2)中のMeは、Sr、CaおよびBaから選ばれる少なくとも1種を表す。
以上の本発明の圧電磁器組成物は、特許文献1、特許文献2に開示される圧電磁器組成物のリラクサ成分の量が、上記組成式のxとして0.05以上であるのに対して、0.047以下である点で相違している。これは、前述したように、リラクサ成分の量が0.047以下と低減することにより、高電圧下で高い圧電特性を得ることができるからである。
ここで、Cuと圧電磁器組成物の主構成元素であるPbは963℃付近において共晶を生成するため、Cuを内部電極材料とした積層型圧電素子を作製する場合、圧電磁器組成物は950℃以下で焼結が可能な材料でなくてはならない。また、Cuは大気中での焼成では酸化してしまうため、低酸素還元性雰囲気下において焼成しなくてはならない。しかしながら、本発明による圧電磁器組成物は、低酸素還元性雰囲気下での焼成でも緻密な焼結体を得ることができる。
本発明は積層型圧電素子に適用できるものである。つまり本発明は、複数の圧電体層と、圧電体層間に挿入される複数の内部電極とを備える積層型圧電素子において、圧電体層を上記圧電磁器組成物から構成した積層型圧電素子を提供する。この積層型圧電素子において、内部電極をCuから構成することができる。本発明の圧電磁器組成物は、低温かつ低酸素還元性雰囲気中において焼成が可能だからである。ただし、本発明の積層型圧電素子は、内部電極をCuとすることに限定されるものではなく、従来のPt、PdおよびAg−Pd合金を内部電極に用いることができることは勿論、安価なニッケル(Ni)、その他の金属(合金を含む)を内部電極とすることも許容する。
以上説明したように、本発明によれば、950℃以下の低温かつ低酸素還元性雰囲気中において焼成が可能で、かつ1kV/mm以上の高電圧下においても十分な変位が得られる。
本発明による圧電磁器組成物は、下記組成式(1)または(2)で示される複合酸化物を主成分とする。
組成式(1):Pb[(Zn1/3Nb2/3TiZr]O
組成式(1)のa、x、yおよびzが、
0.96≦a≦1.03、
0.005≦x≦0.047、
0.42≦y≦0.53、
0.45≦z≦0.56、
x+y+z=1を満足する。
組成式(2):(Pba−bMe)[(Zn1/3Nb2/3TiZr]O
組成式(2)のa、b、x、yおよびzが、
0.96≦a≦1.03、
0<b≦0.1、
0.005≦x≦0.047、
0.42≦y≦0.53、
0.45≦z≦0.56、
x+y+z=1を満足するとともに、
組成式(2)中のMeは、Sr、CaおよびBaから選ばれる少なくとも1種を表す。
前記複合酸化物は、いわゆるペロブスカイト構造を有しており、PbおよびPbの置換元素Meについては、ペロブスカイト構造のいわゆるAサイトに位置する。ZnやNb、Ti、Zrは、ペロブスカイト構造のいわゆるBサイトに位置する。
前記組成式において、Aサイト元素であるPb、またはPbとMeの合計の割合aは、0.96≦a≦1.03である。Aサイト元素の割合aが0.96未満だと、低温での焼成が困難になる。逆に、Aサイト元素の割合aが1.03を超えると、高電圧下における圧電特性が低下する。さらに好ましいAサイト元素の割合aは0.97≦a≦1.02であり、より好ましいAサイト元素の割合aは0.98≦a≦1.01である。
上記組成式において、Pbの一部を元素Me(Sr、Ca、Ba)で置換することを許容しているが、これにより圧電歪定数を大きくすることができる。ただし、置換元素Meの置換量bが多くなりすぎると、高電圧下における圧電特性が低下する。また、キュリー温度も置換量bの増加に伴って低下する傾向にある。したがって、置換元素Meの置換量bは、0.1以下とすることが好ましい。さらに好ましい置換元素Meの置換量bは0.005≦b≦0.08であり、より好ましい置換元素Meの置換量bは0.007≦b≦0.05である。なお、Pbの一部をMeで置換する場合のPbの割合はa−bとなる。
一方、Bサイト元素のうち、リラクサ成分であるZnとNbの総量の割合xは、0.005≦x≦0.047である。本発明者等の検討によると、xの値が低いほど高電圧下による圧電特性が向上する傾向にある。そこで本発明では、xを0.047以下とする。ただし、リラクサ成分の量が0.005未満になると、高電圧下による圧電特性の低下が顕著となる。好ましいZnとNbの割合xは0.01≦x≦0.04であり、より好ましいZnとNbの割合xは0.015≦x≦0.025である。
なお、特許文献1、特許文献2のいずれにも、リラクサ成分の量を低くすることにより高電圧下による圧電特性が向上することを示唆する記載がない。
Bサイト元素のうちTiの割合yおよびZrの割合zは、圧電特性の観点から好ましい範囲が設定される。具体的には、Tiの割合yは0.42≦y≦0.53とし、Zrの割合zは0.45≦z≦0.56とする。この範囲内に設定することで、モルフォトロピック相境界(MPB)付近において、大きな圧電歪定数を得ることができる。
好ましいTiの割合yは0.45≦y≦0.49であり、より好ましいTiの割合yは0.45≦y≦0.48である。
また、好ましいZrの割合zは0.46≦z≦0.55であり、より好ましいZrの割合zは0.48≦z≦0.54である。
なお、上記組成式における各元素、例えば酸素(O)の組成は化学量論的に求められるものであり、実際に焼成して得られた磁器においては、化学量論組成からのずれが生ずることがあるが、そのようなものも本発明に包含されるものとする。
本発明の圧電磁器組成物は、第1副成分として、CuをCuO換算量αで0<α≦0.5質量%含有する。
本発明の圧電磁器組成物は、高電圧下における圧電特性を確保するために、Bサイトにおけるリラクサ成分(ZnおよびNb)の割合xを低めに設定している。ところが、そうすることにより、十分な焼結密度を得るための焼成温度が高くなり、950℃以下の低温焼成を実現することができない。本発明は、Cuを上記のように含有させることにより、950℃以下の焼成で緻密な焼結を可能にした。ただし、Cuの量がCuO換算で0.5質量%を超えると、高電圧下における圧電特性の低下が顕著となり、後述する第2副成分の効果を享受できなくなる。そのため、上限を0.5質量%とする。Cuの好ましい含有量は0.01≦α≦0.2質量%、さらに好ましい含有量は0.02≦α≦0.12質量%である。
Cuの量は上記のようにCuOに換算して特定されるが、これは圧電磁器組成物中におけるCuの存在形態を特定する趣旨ではない。例えば、Cuについては、CuO、CuO等、任意の酸化状態のCu酸化物として圧電磁器組成物中に含まれていてよいし、あるいは金属Cuとして存在していてもよい。
また、圧電磁器組成物に含まれるCuは、前駆体中に例えばCuOとして添加されたものに基づくものであってもよいし、後述する内部電極に含まれるCuが焼成中に圧電体層に拡散することにより含まれるに到ったものであってもよい。また、両者が複合されたものであってもよい。本発明においては、圧電磁器組成物にCuが含まれることが重要なのであって、その添加方法や存在形態を基本的には問わない。ただし、添加されたCuと拡散によるCuとは、以下説明するように圧電体層中における存在形態が相違する。
後述する実施例1の主成分の原料粉末を用い、実施例1と同様にして円板状の成形体を得た。この成形体に、粒径1.0μmのCu粉末を含むCuペーストを表裏両面に印刷した。その後、この成形体に熱処理を施してバインダを揮発させ、低酸素還元性雰囲気中(酸素分圧1×10−10〜1×10−6気圧)において950℃で8時間焼成した。
また、後述する実施例1の主成分の原料粉末にCuO粉末を0.05質量%添加し、その他は実施例1と同様にして円板状の成形体を得た。その後、上記と同様に焼成した。
以上で得られた2種類の焼結体について、EPMA(Electron Probe Micro Analyzer)による元素(Cu)マッピングを行った。その結果を、図1(Cuペースト印刷)および図2(CuO粉末添加)に示す。図1および図2に示すように、Cuペースト印刷をして得られた焼結体に比べて、CuO粉末を添加した焼結体は、Cuの偏析が顕著に観察された。なお、図1、図2において、色が薄い部分はCuの濃度が濃いことを示している。このCuの偏析の正体を確認するため、CuO粉末を添加した焼結体について、TEM(Transmission Electron Microscope)観察を行った。具体的には、図3に示す点A〜Fの位置の組成分析を行った。その結果、点Fの位置におけるCuO量が93.6質量%であることが確認された。したがって、点Fを含む位置に存在する粒子は、添加されたCuO粉末に基づくものと解される。一方、Cuペースト印刷を行って得られた焼結体についてもTEMによる観察を行ったところ、CuOを多量に含む粒子を見出すことはできず、焼結体の結晶粒同士の粒界にCuが存在していることが確認された。そして、このように、Cuが粒子として存在することなく、専ら粒界相に存在することにより、後述する実施例8に示されるように、圧電特性の耐久性が向上する。
本発明の圧電磁器組成物は、第2副成分として、Liを含む。第2副成分は、第1副成分含有による、高電圧下での圧電特性低下を阻止する効果を発揮する。ただし、これら第2副成分の含有量は、主成分に対して、Liを炭酸物換算量βで0<β≦0.1質量%とする。第2副成分の含有量が炭酸物換算で0.1質量%を超えると、高電圧下における圧電特性が低下するからである。炭酸物換算は、LiCO換算とする。
第2副成分の好ましい含有量は0.01≦β≦0.08質量%、より好ましい含有量は0.01≦β≦0.05質量%である。
本発明の圧電磁器組成物は、第3副成分として、Ta、Nb、WおよびSbから選ばれる少なくとも1種を含む。この副成分を添加することで、圧電特性を向上させることができる。ただし、これら第3副成分の含有量は、主成分に対して、酸化物換算量γで0<γ≦0.6質量%とする。第3副成分の含有量が、酸化物換算で0.6質量%を超えると、焼結性が低下し、圧電特性が低下するおそれがあるからである。酸化物換算は、Taの場合にはTa換算とし、Nbの場合にはNb換算とし、Wの場合にはWO換算とし、Sbの場合にはSb換算とする。
第3副成分の好ましい含有量は0.05≦γ≦0.4質量%、より好ましい含有量は0.1≦γ≦0.35質量%である。
Liのように価数の小さい元素は他の元素から受ける拘束力が小さいため、焼成時の動き(拡散)が速く、焼結助剤として働くと解される。このようにLiは焼結性を改善することにより、本発明の圧電磁器組成物の圧電特性を向上させる。もっとも、このような他の元素から受ける拘束力が小さい元素は、圧電効果をハード化するものと解され、圧電磁器組成物本来の特性を低下させるおそれがある。
一方、第3副成分、例えばWは6価であり、4価のサイトに対して価数が大きい、一般にドナーと呼ばれる元素である。
Wのように価数が大きい元素は他の元素から受ける拘束力が大きいため、焼成時の動き(拡散)が遅く、焼結性を低下させるおそれがある。しかしながら、このような他の元素から受ける拘束力が大きい元素は圧電効果をソフト化して、圧電磁器組成物本来の特性を改善するものと解される。他の第3副成分も、5価あるいは6価をとるため、同様の効果を奏する。
本発明は、基本的には、ソフト化剤である第3副成分を加えることによる圧電特性の向上を狙い、一方で、その焼結性を改善するために、第2副成分を加えるという色彩を有するといえる。
本発明の圧電磁器組成物は、以上の第1副成分〜第3副成分の他に、さらに他の副成分を含有することができる。例えば、Ag、希土類金属元素、Co、Ni、MgおよびGaから選ばれる少なくとも1種である。Agを含有させる場合には、酸化物(AgO)換算で1質量%以下とする。希土類金属元素を含有させる場合には、具体的には、Dy、Nd、Eu、Gd、Tb、HoおよびErから選ばれる少なくとも1種を酸化物換算で0.3質量%以下とする。また、Co、Ni、MgおよびGaから選ばれる少なくとも1種を含有させる場合には、酸化物換算で0.2質量%以下とする。これらの副成分も、本願発明の第2副成分と同様に、第1副成分含有による、高電圧下での圧電特性低下を阻止する効果を発揮する。
以上、本発明による圧電磁器組成物について説明したが、次いで、本発明の圧電磁器組成物が適用される積層型圧電素子について説明する。
図4は、本発明により得られる積層型圧電素子1の構成例を示す断面図である。なお、図4はあくまで一例を示すものであって、本発明が図4の積層型圧電素子1に限定されないことはいうまでもない。この積層型圧電素子1は、複数の圧電体層11と複数の内部電極12とを交互に積層した積層体10を備えている。圧電体層11の一層当たりの厚さは例えば1〜200μm、好ましくは20〜150μm、さらに好ましくは50〜100μmとする。なお、圧電体層11の積層数は目標とする変位量に応じて決定される。
圧電体層11を構成する圧電磁器組成物として、上述した本発明による圧電磁器組成物を用いる。この圧電体層11は、上述した組成式(1)または組成式(2)を主成分とし、第1副成分〜第3副成分を含むことにより、950℃以下の低温かつ低酸素還元性雰囲気での焼成によっても高電圧下で高い圧電特性を実現することができる。
内部電極12は、導電材料を含有している。本発明による圧電磁器組成物は、1050℃以下、さらには950℃以下の低温で焼成可能であるため、導電材料としてAg−Pd合金は勿論、Cu、Niを用いることができる。上述したように、Cuを内部電極12の導電材料とする場合、950℃以下であって、かつ低酸素還元性雰囲気で焼成できる必要があるが、本発明による圧電磁器組成物は2つの条件を満足する。
複数の内部電極12は例えば交互に逆方向に延長されており、その延長方向には内部電極12と電気的に接続された一対の端子電極21、22がそれぞれ設けられている。端子電極21、22は、例えば、図示しないリード線を介して図示しない外部電源に対して電気的に接続される。
端子電極21、22は、例えばCuをスパッタリングすることにより形成されていてもよく、また端子電極用ペーストを焼き付けることにより形成されていてもよい。端子電極21、22の厚さは用途等に応じて適宜決定されるが、通常、10〜50μmである。
次に、積層型圧電素子1の好適な製造方法について図5をも参照しつつ説明する。図5は積層型圧電素子1の製造工程を示すフローチャートである。
まず、圧電体層11を得るための主成分の出発原料として、例えば、PbO、TiO、ZrO、ZnOおよびNbまたは焼成によりこれら酸化物に変わり得る化合物;SrO、BaOおよびCaOから選ばれる少なくとも一つの酸化物または焼成によりこれら酸化物に変わり得る化合物等の粉末を用意し、秤量する(ステップS101)。出発原料としては、酸化物でなく、炭酸塩あるいはシュウ酸塩のように焼成により酸化物となるものを用いてもよい。これらの原料粉末は、通常、平均粒子径0.5〜10μm程度のものが用いられる。
圧電体層11の出発原料に副成分を含ませる場合には、上記に加えて各副成分の原料を用意する。第1副成分として、Cu粉末、CuO粉末およびCuO粉末の少なくとも1種を用いることができる。第2副成分として、LiCO粉末を用いることができる。また、第3副成分として、Ta粉末、Nb粉末、WO粉末およびSb粉末の少なくとも1種を用いることができる。酸化物でなく、炭酸塩あるいはシュウ酸塩のように焼成により酸化物となるものを用いてもよいことは上述の通りである。
続いて、主成分および副成分の出発原料を例えばボールミルを用いて湿式粉砕・混合して、原料混合物とする(ステップ S102)。
なお、副成分の出発原料は、後述する仮焼成(ステップS103)の前に添加してもよいが、仮焼成後に添加するようにしてもよい。但し、仮焼成前に添加した方がより均質な圧電体層11を作製することができるので好ましい。仮焼成後に添加する場合には、副成分の出発原料には酸化物を用いることが好ましい。
次いで、原料混合物を乾燥し、例えば、750〜950℃の温度で1〜6時間にわたり仮焼成する(ステップS103)。この仮焼成は、大気中で行ってもよく、また大気中よりも酸素分圧の高い雰囲気または純酸素雰囲気で行ってもよい。
仮焼成したのち、例えば、この仮焼物をボールミルにて湿式粉砕・混合し、主成分および必要に応じた副成分を含む仮焼成粉とする(ステップS104)。
次に、この仮焼成粉にバインダを加えて圧電体層用ペーストを作製する(ステップS105)。具体的には以下の通りである。はじめに、例えばボールミル等を用いて、湿式粉砕によりスラリを得る。このとき、スラリの溶媒として、水もしくはエタノールなどのアルコール、または水とエタノールとの混合溶媒を用いることができる。湿式粉砕は、仮焼成粉の平均粒径が0.5〜2.0μm程度となるまで行うことが好ましい。
次いで、得られたスラリを有機ビヒクル中に分散させる。有機ビヒクルとは、バインダを有機溶剤中に溶解したものであり、有機ビヒクルに用いられるバインダは、特に限定されず、エチルセルロース、ポリビニルブチラール、アクリル等の通常の各種バインダから適宜選択すればよい。また、このとき用いられる有機溶剤も特に限定されず、印刷法やシート成形法など、利用する方法に応じてテルピネオール、ブチルカルビトール、アセトン、トルエン、MEK(メチルエチルケトン)等の有機溶剤から適宜選択すればよい。
圧電体層用ペーストを水系の塗料とする場合には、水溶性のバインダや分散剤などを水に溶解させた水系ビヒクルと、仮焼成粉とを混練すればよい。水系ビヒクルに用いる水溶性バインダは特に限定されず、例えば、ポリビニルアルコール、セルロース、水溶性アクリル樹脂などを用いればよい。
また、内部電極用ペーストを作製する(ステップS106)。
内部電極用ペーストは、上述した各種導電材料あるいは焼成後に上述した導電材料となる各種酸化物、有機金属化合物、レジネート等と、上述した有機ビヒクルとを混練して調製される。
後述する焼成工程において、内部電極用ペーストに導電材料としてCuが含まれると、圧電体層用ペーストの焼成によって形成される圧電体層11中にCuが拡散する。
端子電極用ペーストも内部電極用ペーストと同様にして作製する(ステップS107)。
以上では圧電体層用ペースト、内部電極用ペーストおよび端子電極用ペーストを順番に作製しているが、並行して作製してもよいし、逆の順番でもよいことは言うまでもない。
各ペーストの有機ビヒクルの含有量は、特に限定されず、通常の含有量、例えば、バインダは5〜10質量%程度、溶剤は10〜50質量%程度とすればよい。また、各ペースト中には必要に応じて各種分散剤、可塑剤、誘電体、絶縁体等から選択される添加物が含有されてもよい。
次に、以上のペーストを用いて焼成の対象であるグリーンチップ(積層体)を作製する(ステップS108)。
印刷法を用いグリーンチップを作製する場合は、圧電体層用ペーストを、例えば、ポリエチレンテレフタレート等の基板上に所定厚さで複数回印刷して、図4に示すように、グリーン状態の外側圧電体層11aを形成する。次に、このグリーン状態の外側圧電体層11aの上に、内部電極用ペーストを所定パターンで印刷して、グリーン状態の内部電極(内部電極前駆体)12aを形成する。次に、このグリーン状態の内部電極12aの上に、前記同様に圧電体層用ペーストを所定厚さで複数回印刷して、グリーン状態の圧電体層(圧電体層前駆体)11bを形成する。次に、このグリーン状態の圧電体層11bの上に、内部電極用ペーストを所定パターンで印刷して、グリーン状態の内部電極12bを形成する。グリーン状態の内部電極12a、12b…は、対向して相異なる端部表面に露出するように形成する。以上の作業を所定回数繰り返し、最後に、グリーン状態の内部電極12の上に、前記同様に圧電体層用ペーストを所定厚さで所定回数印刷して、グリーン状態の外側圧電体層11cを形成する。その後、加熱しながら加圧、圧着し、所定形状に切断してグリーンチップ(積層体)とする。
以上では、印刷法によりグリーンチップを作製する例を説明したが、シート成形法を用いてグリーンチップを作製することもできる。
次に、グリーンチップについて脱バインダ処理を行う(ステップS109)。
脱バインダ処理において、内部電極前駆体中の導電材料によってその雰囲気を決定する必要がある。貴金属を導電材料として用いる場合には、大気中、または大気中よりも酸素分圧が高い雰囲気または純酸素雰囲気で行ってもよい。しかし、CuまたはNiを導電材料として用いる場合には、酸化を考慮する必要があり、低酸素還元性雰囲気下での加熱を採用すべきである。一方で、脱バインダ処理において、圧電体層前駆体に含まれる酸化物、例えばPbOが還元されることを考慮する必要がある。例えば導電材料としてCuを用いた場合、CuとCuOの平衡酸素分圧およびPbとPbOの平衡酸素分圧に基づいて、いかなる還元性雰囲気を脱バインダ処理に適用するか設定することが好ましい。
脱バインダ処理の温度は300℃〜650℃とし、脱バインダ処理の時間は、温度および雰囲気によって定める必要があるが、0.5〜50時間の範囲で選定することができる。さらに、脱バインダ処理は、焼成と別個に独立して行うことができるし、焼成と連続的に行うことができる。焼成と連続的に行う場合には、焼成の昇温過程で脱バインダ処理を実行すればよい。
脱バインダ処理の後に、焼成(ステップS110)を行う。
Cuを導電材料として用いる場合には低酸素還元性雰囲気で焼成する。貴金属、例えばAg−Pd合金を導電材料として用いる場合には大気中で焼成すればよい。
本発明の場合、焼成温度を800〜1050℃とすることができる。焼成温度が800℃未満では本発明の圧電磁器組成物であっても焼成が十分に進行せず、また1050℃を超えると導電材料の溶融が懸念される。好ましい焼成温度は850〜1000℃、さらに好ましい焼成温度は900〜950℃である。本発明の圧電磁器組成物は、900〜950℃の温度でも十分に緻密な焼成体を得ることができる。
低酸素還元性雰囲気としては、酸素分圧を1×10−10〜1×10−6気圧とするのが好ましい。酸素分圧が1×10−10気圧未満では圧電体層前駆体に含まれる酸化物、例えばPbOが還元されて金属Pbとして析出し、最終的に得られる焼成体の圧電特性を低下させる恐れがあり、また1×10−6気圧を超えると電極材料としてCuを用いた場合、その酸化が懸念される。さらに好ましい酸素分圧は1×10−8〜1×10−7気圧である。
以上の工程を経て作製された積層体10は、例えばバレル研磨やサンドブラストなどにより端面研磨を施し、前述した端子電極用ペーストを印刷または焼き付けることにより端子電極21、22を形成する(ステップS111)。なお、印刷または焼き付けの他に、スパッタリングすることにより端子電極21、22を形成することもできる。
以上により、図4に示した積層型圧電素子1を得ることができる。
本実施例では、下記の主成分に対して、第1副成分としてのCuをCuOとして、また第2副成分としてのLiをLiCOとして表1に示す量となるように添加し、その効果を調べた。なお、第3副成分を下記の通り添加した。
主成分:(Pb0.965Sr0.03)[(Zn1/3Nb2/30.02Ti0.46Zr0.52]O
第3副成分:Ta 0.2質量%
圧電磁器組成物は、次のようにして作製した。先ず、主成分の原料として、PbO粉末、SrCO粉末、ZnO粉末、Nb粉末、TiO粉末、ZrO粉末を用意し、上記主成分の組成となるように秤量した。第1副成分〜第3副成分の添加種として、CuO粉末、LiCO粉末およびWO粉末を用意し、表1(第1副成分、第2副成分)および上記に示す量となるように主成分の母組成に添加した。
次に、ボールミルを用いてこれら原料を16時間湿式混合し、大気中において700〜900℃で2時間仮焼した。
得られた仮焼物を微粉砕した後、ボールミルを用いて16時間湿式粉砕した。これを乾燥した後、バインダとしてアクリル系樹脂を加えて造粒し、1軸プレス成形機を用いて約445MPaの圧力で直径17mm、厚さ1mmの円板状に成形した。
得られた成形体を低酸素還元性雰囲気中(酸素分圧1×10−10〜1×10−6気圧)において950℃で8時間焼成した。
また、得られた焼結体をスライス加工およびラップ加工により厚さ0.6mmの円板状とし、圧電定数d33の評価が可能な形状に加工した。得られたサンプルの両面に銀ペーストを印刷して350℃で焼き付け、120℃のシリコーンオイル中で3kVの電界を15分間印加し、分極処理を行った。
作製した試料について、1.7kV/mmの電圧を印加したときの変位をレーザードップラー変位計により測定し、圧電定数d33を求めた。なお、圧電定数d33は電極面に垂直(厚さ)方向の歪みに基づくものである。その結果を表1に示す。
Figure 0005196124
表1に示すように、上記主成分のみでは、分極時に割れが生じて、圧電定数d33を評価することができなかった。第1副成分〜第3副成分を含有することにより、950℃の焼成においても、高電圧下で優れた圧電定数d33を得ることができる。ただし、第1副成分(CuO)の含有量が0.5質量%を超えると圧電定数d33が700pC/N以下に低下する。また、第2副成分(LiCO)を含まないと圧電定数d33が640pC/N程度と低いのに対して、第2副成分を含有することにより、800pC/Nを超える圧電定数d33が得られる。
なお、焼成後に、第1副成分〜第3副成分の含有量を測定したところ、添加量と一致していた。以下の実施例も同様である。
下記の主成分に対して、aを表2に示すように、また、第1副成分〜第3副成分を下記に示すように原料を調整した以外は、実施例1と同様にして試料を作製した。得られた試料について、実施例1と同様にして圧電定数d33を求めた。その結果を表2に示す。
表2に示すように、aが0.96〜1.03の範囲内において、高電圧下における圧電特性向上の効果を享受することができる。
主成分:(Pba−0.03Sr0.03)[(Zn1/3Nb2/30.02Ti0.46Zr0.52]O
第1副成分:CuO 0.05質量%
第2副成分:LiCO 0.025質量%
第3副成分:Ta 0.2質量%
Figure 0005196124
下記の主成分に対して、bを表3に示すように、また、第1副成分〜第3副成分を下記に示すように原料を調整した以外は、実施例1と同様にして試料を作製した。得られた試料について、実施例1と同様にして圧電定数d33を求めた。その結果を表3に示す。
表3に示すように、bが0〜0.1の範囲内において、高電圧下における圧電特性向上の効果を享受することができる。
主成分:(Pb0.995−bSr)[(Zn1/3Nb2/30.02Ti0.46Zr0.52]O
第1副成分:CuO 0.05質量%
第2副成分:LiCO 0.025質量%
第3副成分:Ta 0.2質量%
Figure 0005196124
下記の主成分に対して、Meを表4に示す元素とし、かつ第1副成分〜第3副成分を下記に示すように原料を調整した以外は、実施例1と同様にして試料を作製した。得られた試料について、実施例1と同様に圧電定数d33を求めた。その結果を表4に示す。
表4に示すように、Pbの置換元素としてCaまたはBaを用いた場合にも、Srと同様に高電圧下における圧電特性向上の効果を享受することができる。
主成分:(Pb0.965Me0.03)[(Zn1/3Nb2/30.02Ti0.46Zr0.52]O
第1副成分:CuO 0.05質量%
第2副成分:LiCO 0.025質量%
第3副成分:Ta 0.2質量%
Figure 0005196124
下記の主成分に対して、x、yおよびzを表5に示す値とし、かつ第1副成分〜第3副成分を下記に示すように原料を調整した以外は、実施例1と同様にして試料を作製した。得られた試料について、実施例1と同様に圧電定数d33を求めた。その結果を表5に示す。
表5から明らかなように、Bサイト元素のx、y、zが各々0.005≦x≦0.047、0.42≦y≦0.53、0.45≦z≦0.56の範囲において、高電圧下における圧電特性向上の効果を享受することができる。
主成分:(Pb0.965Sr0.03)[(Zn1/3Nb2/3TiZr]O
第1副成分:CuO 0.05質量%
第2副成分:LiCO 0.025質量%
第3副成分:Ta 0.2質量%
Figure 0005196124
下記の主成分に対して、第3副成分を表6に示す種類、量とし、また第1副成分および第2副成分を下記に示す種類、量となるように原料を調整した以外は、実施例1と同様にして試料を作製した。得られた試料について、実施例1と同様に圧電定数d33を求めた。その結果を表6に示す。
表6に示すように、第3副成分を添加することにより、高電圧下における圧電特性向上の効果を享受することができる。
主成分:(Pb0.965Sr0.03)[(Zn1/3Nb2/30.02Ti0.46Zr0.52]O
第1副成分:CuO 0.05質量%
第2副成分:LiCO 0.025質量%
Figure 0005196124
下記の主成分に対して、第3副成分を表7に示す種類および量とし、また第1副成分および第2副成分を下記に示す種類、量となるように原料を調整した以外は、実施例1と同様にして試料を作製した。得られた試料について、実施例1と同様に圧電定数d33を求めた。その結果を表7に示す。
表7に示すように、第3副成分として、Taの他に、Sb、Nb、Wも有効であることがわかる。
主成分:(Pb0.965Sr0.03)[(Zn1/3Nb2/30.02Ti0.46Zr0.52]O
第1副成分:CuO 0.05質量%
第2副成分:LiCO 0.025質量%
Figure 0005196124
実施例8は、積層型圧電素子を作製した例を示す。
積層型圧電素子の製造に際しては、先ず、CuOを含まない以外は実施例1の実施例1−3と同様にして得られた圧電磁器組成物粉末にビヒクルを加え、混練して圧電体層用ペーストを作製した。それとともに、導電材料であるCu粉末をビヒクルと混練し、内部電極用ペーストを作製した。続いて、圧電体層用ペーストおよび内部電極用ペーストを用いて、印刷法により積層体の前駆体であるグリーンチップを作製した。圧電体層用ペーストの積層数は300とした。
次に、脱バインダ処理を行い、還元焼成条件で焼成し、積層型圧電素子を得た。還元焼成条件としては、低酸素還元性雰囲気(酸素分圧1×10−10〜1×10−6気圧)下、焼成温度950℃で8時間焼成を行った。得られた積層型圧電素子について、圧電体層のCu含有量を測定した。
Cu含有量の測定はICP分析により行った。ICP用サンプルは、先ず、分析を行う試料0.1gにLiを1g加え、1050℃で15分間溶融させた。得られた融解物に(COOH)を0.2g、HClを10ml加え、加熱溶解させ、100mlに定容した。測定は、ICP−AES(島津製作所(株)製、商品名ICPS−8000)を用いて行った。
その結果、圧電体層にはCuがCuO換算で0.05質量%程度含まれていた。このCuは、圧電磁器組成物の原料にCuが含まれていないことから、内部電極用ペーストから焼成過程で拡散したものと認められる。また、得られた積層型圧電素子について、実施例1と同様に圧電定数d33を測定した。また、得られた積層型圧電素子について、高温加速寿命を測定した。その結果を表8(積層体)に示す。なお、高温加速寿命は、温度250℃において電界強度が8kV/mmになるように試料に電圧を印加し、その絶縁抵抗の経時変化を求めた。ここでは、各試料の絶縁抵抗が試験開始直後の値を基準として1桁低下するまでの時間を寿命時間として計測し、高温加速寿命とした。なお、比較のため、実施例1−3による試料についても同様の測定を行った。結果を表8(バルク)に示す。表8に示すように、圧電定数d33は同等であるが、高温加速寿命は圧電体層にCuが拡散した積層体の方が優れる結果となった。
Figure 0005196124
Cuペースト印刷をして得られた焼結体のEPMAによる元素マッピング像である。 CuO粉末を添加して得られた焼結体のEPMAによる元素マッピング像である。 CuO粉末を添加して得られた焼結体のTEM像である。 本実施の形態における積層型圧電素子の一構成例を示す図である。 本実施の形態における積層型圧電素子の製造手順を示すフローチャートである。
符号の説明
1…積層型圧電素子、10…積層体、11…圧電体層、12…内部電極、21、22…端子電極

Claims (3)

  1. 下記の組成式(1)または(2)で示される複合酸化物を主成分とし、
    前記主成分に対し、
    第1副成分として、CuをCuO換算量αで0<α≦0.5質量%、
    第2副成分として、Liを炭酸物換算量βで0<β≦0.1質量%、
    第3副成分として、Ta、Nb、WおよびSbから選ばれる少なくとも1種を酸化物換算量γで0<γ≦0.6質量%、を含むことを特徴とする圧電磁器組成物。
    組成式(1):Pb[(Zn1/3Nb2/3TiZr]O
    組成式(1)のa、x、yおよびzが、
    0.96≦a≦1.03、
    0.005≦x≦0.047、
    0.42≦y≦0.53、
    0.45≦z≦0.56、
    x+y+z=1を満足する。
    組成式(2):(Pba−bMe)[(Zn1/3Nb2/3TiZr]O
    組成式(2)のa、b、x、yおよびzが、
    0.96≦a≦1.03、
    0<b≦0.1、
    0.005≦x≦0.047、
    0.42≦y≦0.53、
    0.45≦z≦0.56、
    x+y+z=1を満足するとともに、
    組成式(2)中のMeは、Sr、CaおよびBaから選ばれる少なくとも1種を表す。
  2. 請求項1に記載の前記圧電磁器組成物から構成される複数の圧電体層と、
    前記圧電体層間に挿入される複数の内部電極と、
    を備えることを特徴とする積層型圧電素子。
  3. 前記内部電極はCuを含有し、前記第1副成分のCuは、前記内部電極に含有されるCuの一部が前記圧電体層に拡散したものであることを特徴とする請求項2に記載の積層型圧電素子。
JP2007311506A 2006-11-30 2007-11-30 圧電磁器組成物および積層型圧電素子 Active JP5196124B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007311506A JP5196124B2 (ja) 2006-11-30 2007-11-30 圧電磁器組成物および積層型圧電素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006324770 2006-11-30
JP2006324770 2006-11-30
JP2007311506A JP5196124B2 (ja) 2006-11-30 2007-11-30 圧電磁器組成物および積層型圧電素子

Publications (2)

Publication Number Publication Date
JP2008156219A JP2008156219A (ja) 2008-07-10
JP5196124B2 true JP5196124B2 (ja) 2013-05-15

Family

ID=39657566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007311506A Active JP5196124B2 (ja) 2006-11-30 2007-11-30 圧電磁器組成物および積層型圧電素子

Country Status (1)

Country Link
JP (1) JP5196124B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5173752B2 (ja) * 2008-11-10 2013-04-03 日本特殊陶業株式会社 圧電磁器及びその製造方法並びに圧電素子
JP5911858B2 (ja) 2011-06-01 2016-04-27 ロデイア・オペラシヨン 複合酸化物、その製造法及び排ガス浄化用触媒

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103079A (ja) * 1983-11-05 1985-06-07 住友特殊金属株式会社 圧電磁器組成物
JPH0629140B2 (ja) * 1988-08-31 1994-04-20 秩父セメント株式会社 圧電素子材料及びその製造方法
JP2884635B2 (ja) * 1989-11-22 1999-04-19 松下電器産業株式会社 圧電セラミックスおよびその製造方法
JP2004307320A (ja) * 2003-03-24 2004-11-04 Kyocera Corp 圧電磁器組成物およびその製造方法
JP2006193414A (ja) * 2004-12-17 2006-07-27 Tdk Corp 圧電磁器の製造方法および圧電素子の製造方法
JP3923064B2 (ja) * 2005-03-25 2007-05-30 Tdk株式会社 積層型圧電素子及びその製造方法

Also Published As

Publication number Publication date
JP2008156219A (ja) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4129931B2 (ja) 圧電磁器組成物および積層型圧電素子
JP4238271B2 (ja) 圧電磁器組成物および積層型圧電素子
KR100594859B1 (ko) 압전 자기의 제조 방법 및 압전 소자의 제조 방법
EP2181976B1 (en) Piezoelectric ceramic composition and laminated piezoelectric element
US7528531B2 (en) Piezoelectric ceramic composition and laminated piezoelectric element
JP4640092B2 (ja) 積層型圧電素子及びその製造方法
JP2007258301A (ja) 積層型圧電素子及びその製造方法
JP5196124B2 (ja) 圧電磁器組成物および積層型圧電素子
JP3923064B2 (ja) 積層型圧電素子及びその製造方法
JP2007230839A (ja) 圧電磁器組成物、積層型圧電素子及びその製造方法
JP4462438B2 (ja) 圧電磁器組成物、積層型圧電素子及び積層型圧電素子の製造方法
JP3971779B1 (ja) 圧電磁器組成物
JP4390082B2 (ja) 圧電磁器組成物及び積層型圧電素子
JP4793579B2 (ja) 圧電磁器組成物および積層型圧電素子
JP4735837B2 (ja) 積層型圧電素子の製造方法及び積層型圧電素子
JP4930676B2 (ja) 圧電磁器組成物、積層型圧電素子及び積層型圧電素子の製造方法
JP2006096626A (ja) 圧電磁器の製造方法、圧電素子の製造方法、圧電素子
JP5115342B2 (ja) 圧電磁器、圧電素子及び積層型圧電素子
JP4711083B2 (ja) 積層型圧電素子
JP5115356B2 (ja) 圧電磁器、及び圧電素子
JP2007238355A (ja) 圧電磁器組成物の製造方法及び積層型圧電素子の製造方法
JP3966882B2 (ja) 圧電磁器組成物の製造方法
JP2007189164A (ja) 積層型圧電素子、積層型圧電素子の製造方法及び導体ペースト
JP2010018469A (ja) 圧電磁器、及び圧電素子
JP2009242199A (ja) 圧電磁器及びこれを用いた積層型圧電素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150