WO2009116439A1 - ヒートシンク付パワーモジュール用基板及びその製造方法、並びに、ヒートシンク付パワーモジュール、パワーモジュール用基板 - Google Patents

ヒートシンク付パワーモジュール用基板及びその製造方法、並びに、ヒートシンク付パワーモジュール、パワーモジュール用基板 Download PDF

Info

Publication number
WO2009116439A1
WO2009116439A1 PCT/JP2009/054654 JP2009054654W WO2009116439A1 WO 2009116439 A1 WO2009116439 A1 WO 2009116439A1 JP 2009054654 W JP2009054654 W JP 2009054654W WO 2009116439 A1 WO2009116439 A1 WO 2009116439A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
power module
metal layer
substrate
module substrate
Prior art date
Application number
PCT/JP2009/054654
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
浩正 林
丈嗣 北原
宏史 殿村
石塚 博弥
黒光 祥郎
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN2009801091880A priority Critical patent/CN101971329B/zh
Priority to US12/922,732 priority patent/US8637777B2/en
Priority to EP09721361.5A priority patent/EP2259308B1/en
Publication of WO2009116439A1 publication Critical patent/WO2009116439A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/66Forming laminates or joined articles showing high dimensional accuracy, e.g. indicated by the warpage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49227Insulator making

Definitions

  • the present invention relates to a power module substrate with a heat sink used in a semiconductor device for controlling a large current and a high voltage, a method for manufacturing the same, a power module with a heat sink, and a power module substrate.
  • a power module substrate with a heat sink used in a semiconductor device that controls a large current and a high voltage is known.
  • a circuit layer made of aluminum is formed on one surface (first surface) of an insulating substrate, and a metal layer made of aluminum is formed on the other surface (second surface) of the insulating substrate.
  • a structure in which the top plate portion of the heat sink is joined to the surface of the metal layer has been widely proposed.
  • Such power module substrates are shown in, for example, Patent Document 1 and Patent Document 2.
  • Such a power module with a heat sink is manufactured by bonding an insulating substrate, a circuit layer, and a metal layer to form a power module substrate, and then bonding the power module substrate and the heat sink.
  • the metal layer and the heat sink are bonded via an aluminum foil in which a melting point lowering layer made of an Al—Si brazing material is formed on both surfaces. For this reason, high hardness portions containing a large amount of Si are formed at the bonding interface between the aluminum foil and the metal layer and at the bonding interface between the aluminum foil and the heat sink.
  • the metal layer located on the second surface of the insulating substrate and the heat sink are formed with a portion having high hardness, the top portion of the metal layer or the heat sink is constrained at the portion having high hardness.
  • the metal layer is constrained by a portion having high hardness even if pressure is applied in the laminating direction, and the metal layer is not sufficiently deformed and warpage cannot be suppressed. was there.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a power module substrate with a heat sink capable of suppressing the occurrence of warpage, a manufacturing method thereof, and a power module with a heat sink. To do.
  • a power module substrate with a heat sink is formed on an insulating substrate having a first surface and a second surface, and the first surface. And a power module substrate having a metal layer formed on the second surface, and a heat sink that is directly bonded to the metal layer and cools the power module substrate.
  • the ratio B / A is set in the range of 1.5 ⁇ B / A ⁇ 20.
  • the ratio B / A is set in the range of 1.5 ⁇ B / A ⁇ 20 as described above, that is, the metal layer bonded to the heat sink.
  • the thickness is set larger than the thickness of the circuit layer.
  • the ratio B / A between the thickness A of the circuit layer and the thickness B of the metal layer is smaller than 1.5, the above-described effects cannot be sufficiently obtained.
  • the ratio B / A between the thickness A of the circuit layer and the thickness B of the metal layer exceeds 20, the metal layer becomes a thermal resistance, and cooling by the heat sink becomes insufficient. Therefore, the ratio B / A between the thickness A of the circuit layer and the thickness B of the metal layer is preferably set in the range of 1.5 ⁇ B / A ⁇ 20.
  • the metal layer is made of aluminum having a purity of 99.99% or more before being bonded to the heat sink.
  • the deformation resistance of the metal layer is small, and it is possible to sufficiently deform the metal layer by applying pressure during joining to the heat sink, and the occurrence of warpage can be reliably suppressed.
  • a method for manufacturing a power module substrate with a heat sink comprising preparing an insulating substrate having a first surface and a second surface and a heat sink, and bonding a circuit layer to the first surface of the insulating substrate. Then, by joining a metal layer to the second surface of the insulating substrate, a primary bonding step of forming a power module substrate, and laminating the power module substrate and the heat sink, and adding 0.
  • the metal layer is formed by applying pressure in the stacking direction at 0.15 to 3 MPa in the secondary bonding step of bonding the power module substrate and the heat sink. Can be sufficiently deformed, thereby suppressing the occurrence of warping.
  • a power module with a heat sink includes the above-described power module substrate with a heat sink and an electronic component mounted on the circuit layer of the power module substrate with a heat sink.
  • the power module with a heat sink having this configuration when the warpage deformation is suppressed and the usage environment is severe, for example, even in the usage environment in which stress repeatedly occurs, the reliability can be dramatically improved. .
  • the power module substrate of the fourth aspect of the present invention includes an insulating substrate having a first surface and a second surface, a circuit layer formed on the first surface, a metal layer formed on the second surface, Have A ratio B / A between the thickness A of the circuit layer and the thickness B of the metal layer is set in a range of 1.5 ⁇ B / A ⁇ 20.
  • the power module substrate having this configuration when the heat sink is bonded to the surface of the metal layer, the metal layer and the heat sink positioned on the second surface of the insulating substrate even if a heat sink having a small top plate portion is used.
  • the total thickness of the top plate portion can be made relatively large, and the occurrence of warpage can be suppressed.
  • a power module substrate with a heat sink capable of suppressing the occurrence of warpage, a manufacturing method thereof, a power module with a heat sink, and a power module substrate.
  • FIG. 1 to FIG. 3B show a power module substrate with a heat sink and a power module with a heat sink according to an embodiment of the present invention.
  • the power module 1 with a heat sink includes a power module substrate 11 on which a circuit layer 13 is disposed, a semiconductor chip 2 bonded to the surface of the circuit layer 13 via a solder layer 3, and a heat sink 17.
  • the solder layer 3 is made of, for example, a Sn—Ag, Sn—In, or Sn—Ag—Cu solder material.
  • a Ni plating layer (not shown) is provided between the circuit layer 13 and the solder layer 3.
  • the power module substrate 11 includes an insulating substrate 12, a circuit layer 13 disposed on the first surface 12a (upper surface in FIG. 1) of the insulating substrate 12, and a second surface 12b (lower surface in FIG. 1) of the insulating substrate 12. And a metal layer 14 disposed on the surface.
  • the insulating substrate 12 is a substrate that prevents electrical connection between the circuit layer 13 and the metal layer 14, and is, for example, AlN (aluminum nitride), Si 3 N 4 (silicon nitride), Al 2 O 3 (alumina). It is composed of highly insulating ceramics such as.
  • the insulating substrate 12 is made of AlN (aluminum nitride).
  • the circuit layer 13 is formed by brazing a conductive metal plate 23 to the first surface 12 a of the insulating substrate 12.
  • the circuit layer 13 is formed by brazing a metal plate 23 made of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the insulating substrate 12.
  • brazing is performed using an Al—Si brazing material foil 26, and Si concentration distribution is generated in the circuit layer 13 by diffusion of the brazing material Si into the metal plate 23. ing.
  • the metal layer 14 is formed by brazing a metal plate 24 to the second surface 12 b of the insulating substrate 12.
  • the metal layer 24 is formed by brazing a metal plate 24 made of aluminum (so-called 4N aluminum) having a purity of 99.99% or more, like the circuit layer 13, to the insulating substrate 12. ing.
  • brazing is performed using an Al—Si brazing material foil 27, and Si concentration distribution is generated in the metal layer 14 by diffusion of Si of the brazing material into the metal plate 24.
  • the ratio B / A between the thickness A of the circuit layer 13 and the thickness B of the metal layer 14 is set in a range of 1.5 ⁇ B / A ⁇ 20.
  • the metal layer 14 of the power module substrate 11 and the top plate 18 of the heat sink 17 are directly joined by brazing.
  • brazing is performed using an Al—Si brazing material foil 28, and Si concentration distribution is generated in the metal layer 14 by diffusion of Si of the brazing material into the metal plate 24.
  • the metal layer 14 is brazed using the insulating substrate 12 and the brazing material foil 27, and brazed using the top plate portion 18 of the heat sink 17 and the brazing material foil 28. Therefore, in the metal layer 14, as shown in FIG. 2, the Vickers hardness changes in the thickness direction due to the Si concentration distribution.
  • Such a power module substrate 10 with a heat sink is manufactured as follows. As shown in FIG. 3A, first, an insulating substrate 12 made of AlN is prepared. Next, a metal plate 23 (4N aluminum) to be the circuit layer 13 is laminated on the first surface 12a of the insulating substrate 12 with a brazing filler metal foil 26 interposed therebetween. The thickness of the brazing foil 26 is 0.02 mm. Further, a metal plate 24 (4N aluminum) to be the metal layer 14 is laminated on the second surface 12b of the insulating substrate 12 with a brazing filler metal foil 27 interposed therebetween. The thickness of the brazing material foil 27 is the same as that of the brazing material foil 26.
  • the laminated body thus formed is charged into a vacuum furnace in a state where the laminated body is pressurized in the laminating direction, and brazing is performed.
  • the power module substrate 11 constituted by the insulating substrate 12, the circuit layer 13, and the metal layer 14 is formed (primary bonding step S1).
  • the top plate portion 18 of the heat sink 17 is laminated on the surface of the metal layer 14 of the power module substrate 11 via the brazing material foil 28.
  • the thickness of the brazing foil 28 is 0.05 mm.
  • the substrate 10 for a power module with a heat sink according to the present embodiment is manufactured by pressurizing in the stacking direction and inserting into a vacuum furnace to perform brazing (secondary bonding step S2). ).
  • the power module substrate 11 and the heat sink 17 are pressed in the stacking direction at a pressure of 0.15 to 3 MPa.
  • the thickness of the metal layer 14 bonded to the top plate portion 18 of the heat sink 17 is larger than the thickness of the circuit layer 13. Is also set larger. Thereby, even if the heat sink 17 having a small thickness of the top plate portion 18 is used, the total thickness of the metal layer 14 located on the second surface 12b of the insulating substrate 12 and the top plate portion 18 of the heat sink 17 is ensured. And the occurrence of warpage can be suppressed. In addition, the cooling efficiency can be improved by using the heat sink 17 with the thin top plate portion 18, and it can be applied to a power module mounted with an electronic component having a high calorific value.
  • the relatively thick metal layer 14 is directly joined to the top plate portion 18 of the heat sink 17 by brazing using a brazing material foil 28.
  • the ratio B / A between the thickness A of the circuit layer 13 and the thickness B of the metal layer 14 is set in a range of 1.5 ⁇ B / A ⁇ 20.
  • the ratio B / A between the thickness A of the circuit layer 13 and the thickness B of the metal layer 14 is more preferably set in the range of 2.167 ⁇ B / A ⁇ 5.625.
  • the metal layer 14 is made of aluminum having a purity of 99.99% or more, that is, so-called 4N aluminum before being bonded. Thereby, the deformation resistance of the metal layer 14 is small, and the metal layer 14 is sufficiently deformed when pressed in the stacking direction in the secondary joining step S2 in which the metal layer 14 and the top plate portion 18 of the heat sink 17 are joined. Therefore, the occurrence of warpage can be reliably suppressed.
  • the power module substrate 11 and the heat sink 17 are pressed in the stacking direction with a pressure of 0.15 to 3 MPa. Therefore, the metal layer 14 can be reliably deformed and warpage can be suppressed.
  • the semiconductor chip 2 is bonded to the circuit layer 13 of the power module substrate with heat sink 10 using solder.
  • the insulating substrate 12 may be a material having an insulating property, Si 3 N 4, Al 2 O 3 of a material such as There may be.
  • a recess 120 may be formed in the top plate portion 118, and the power module substrate 111 may be accommodated in the recess 120.
  • the thickness D of the top plate portion 118 is the thickness of the bottom surface of the recess 120.
  • the width of the metal layer 214 may be larger than the width of the circuit layer 213 or the insulating substrate 212. In this case, it is not necessary to position the metal layer 214 and the insulating substrate 212 with high precision, and the power module substrate 210 with a heat sink can be manufactured relatively easily.
  • the circuit layer and the metal layer have been described as being made of aluminum (4N aluminum) having a purity of 99.99% or more, the present invention is not limited to this.
  • the circuit layer and the metal layer may be made of aluminum (2N aluminum) having a purity of 99% or more or an aluminum alloy. However, it is preferable to use aluminum having a purity of 99.99% or more because the deformation resistance of the metal layer is reduced and the effect of suppressing warpage can be obtained with certainty.
  • the heat sink may be made of pure aluminum.
  • the heat sink having the cooling medium flow path has been described, the structure of the heat sink is not particularly limited, and for example, an air-cooled heat sink may be used.
  • Comparative Examples 1 and 2 since the metal layer was relatively thin, the thermal resistance was small, but warping deformation was observed. On the other hand, as shown in Comparative Example 3, when the metal layer was significantly thicker than the circuit layer, it was confirmed that the thermal resistance was large and cooling by the heat sink was insufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
PCT/JP2009/054654 2008-03-17 2009-03-11 ヒートシンク付パワーモジュール用基板及びその製造方法、並びに、ヒートシンク付パワーモジュール、パワーモジュール用基板 WO2009116439A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801091880A CN101971329B (zh) 2008-03-17 2009-03-11 带散热片的功率模块用基板及其制造方法、以及带散热片的功率模块、功率模块用基板
US12/922,732 US8637777B2 (en) 2008-03-17 2009-03-11 Power module substrate having heatsink, method for manufacturing the same, power module having heatsink, and power module substrate
EP09721361.5A EP2259308B1 (en) 2008-03-17 2009-03-11 Substrate for power module with heat sink and method for producing the same, power module with heat sink, and substrate for power module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-067344 2008-03-17
JP2008067344 2008-03-17
JP2008234997 2008-09-12
JP2008-234997 2008-09-12

Publications (1)

Publication Number Publication Date
WO2009116439A1 true WO2009116439A1 (ja) 2009-09-24

Family

ID=41090843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054654 WO2009116439A1 (ja) 2008-03-17 2009-03-11 ヒートシンク付パワーモジュール用基板及びその製造方法、並びに、ヒートシンク付パワーモジュール、パワーモジュール用基板

Country Status (6)

Country Link
US (1) US8637777B2 (enrdf_load_stackoverflow)
EP (1) EP2259308B1 (enrdf_load_stackoverflow)
JP (4) JP4524716B2 (enrdf_load_stackoverflow)
KR (1) KR101610973B1 (enrdf_load_stackoverflow)
CN (1) CN101971329B (enrdf_load_stackoverflow)
WO (1) WO2009116439A1 (enrdf_load_stackoverflow)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087027A1 (ja) * 2010-01-12 2011-07-21 日本軽金属株式会社 液冷一体型基板および液冷一体型基板の製造方法
JP2011210947A (ja) * 2010-03-30 2011-10-20 Toyota Central R&D Labs Inc 絶縁基板とその絶縁基板を有するモジュール
JP2012160722A (ja) * 2011-01-14 2012-08-23 Nippon Light Metal Co Ltd 液冷一体型基板の製造方法および液冷一体型基板
US20140318831A1 (en) * 2011-12-12 2014-10-30 Mitsubishi Materials Corporation Power module substrate, power module substrate with heat sink, power module, paste for forming flux component intrusion-preventing layer and method for bonding bonded body

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640569B2 (ja) * 2009-09-09 2014-12-17 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP2011119653A (ja) * 2009-09-09 2011-06-16 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP5640570B2 (ja) * 2009-09-09 2014-12-17 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP5614127B2 (ja) * 2010-06-28 2014-10-29 三菱マテリアル株式会社 パワーモジュール用基板及びその製造方法
JP2012049437A (ja) * 2010-08-30 2012-03-08 Mitsubishi Materials Corp パワーモジュール用基板およびその製造方法
JP5577980B2 (ja) * 2010-09-16 2014-08-27 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板、パワーモジュール及びヒートシンク付パワーモジュール用基板の製造方法
JP5392272B2 (ja) * 2011-01-13 2014-01-22 株式会社豊田自動織機 両面基板、半導体装置、半導体装置の製造方法
JP5678684B2 (ja) * 2011-01-24 2015-03-04 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP5786569B2 (ja) * 2011-09-05 2015-09-30 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
US9810416B2 (en) * 2011-10-26 2017-11-07 Hangzhou Hpwinner Opto Corporation Method for manufacturing a lamp-housing-type heat-sink, lamp-housing-type heat-sink, and LED lighting device
KR101367211B1 (ko) * 2012-02-13 2014-02-26 광전자 주식회사 파워모듈용 알루미늄 베이스 플레이트
JP5548722B2 (ja) 2012-03-30 2014-07-16 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板、及び、ヒートシンク付パワーモジュール用基板の製造方法
JP2014112732A (ja) * 2012-03-30 2014-06-19 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP2013229579A (ja) 2012-03-30 2013-11-07 Mitsubishi Materials Corp パワーモジュール用基板、ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP6127540B2 (ja) * 2012-03-30 2017-05-17 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP5987418B2 (ja) * 2012-03-30 2016-09-07 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板の製造方法
KR101540146B1 (ko) 2012-06-22 2015-07-28 삼성전기주식회사 전력 모듈용 방열 시스템
US8941208B2 (en) * 2012-07-30 2015-01-27 General Electric Company Reliable surface mount integrated power module
JP6201297B2 (ja) * 2012-11-08 2017-09-27 三菱マテリアル株式会社 銅板付きパワーモジュール用基板及び銅板付きパワーモジュール用基板の製造方法
JP6056432B2 (ja) * 2012-12-06 2017-01-11 三菱マテリアル株式会社 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法
JP5971171B2 (ja) * 2013-03-28 2016-08-17 トヨタ自動車株式会社 絶縁基板及びその製造方法、半導体装置
EP2980048B1 (en) * 2013-03-29 2018-08-08 Mitsubishi Materials Corporation Apparatus and method for producing (metallic plate)-(ceramic board) laminated assembly, and apparatus and method for producing substrate for power modules
JP6621076B2 (ja) * 2013-03-29 2019-12-18 三菱マテリアル株式会社 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP6116404B2 (ja) * 2013-07-01 2017-04-19 昭和電工株式会社 放熱装置
JP6139329B2 (ja) * 2013-08-16 2017-05-31 日本碍子株式会社 セラミック回路基板及び電子デバイス
CN105900189B (zh) * 2014-01-08 2018-06-26 三菱综合材料株式会社 电阻器及电阻器的制造方法
JP5949817B2 (ja) * 2014-03-20 2016-07-13 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP6287428B2 (ja) * 2014-03-25 2018-03-07 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板の製造方法
JP6384112B2 (ja) * 2014-04-25 2018-09-05 三菱マテリアル株式会社 パワーモジュール用基板及びヒートシンク付パワーモジュール用基板
CN106463477B (zh) * 2014-07-04 2019-03-12 三菱综合材料株式会社 功率模块用基板单元及功率模块
JP6692299B2 (ja) 2015-02-02 2020-05-13 株式会社東芝 窒化珪素回路基板およびそれを用いた電子部品モジュール
JP6638282B2 (ja) * 2015-09-25 2020-01-29 三菱マテリアル株式会社 冷却器付き発光モジュールおよび冷却器付き発光モジュールの製造方法
JP2017224748A (ja) * 2016-06-16 2017-12-21 株式会社Uacj 回路基板付きヒートシンク及びその製造方法
CN107683016A (zh) * 2017-11-21 2018-02-09 生益电子股份有限公司 一种快速散热pcb
CN111466140B (zh) 2017-12-25 2021-12-03 华为技术有限公司 一种参数调整方法及相关设备
JP7119689B2 (ja) * 2018-07-19 2022-08-17 三菱マテリアル株式会社 ヒートシンク付き絶縁回路基板の製造方法及びヒートシンク付き絶縁回路基板
JP7363613B2 (ja) * 2020-03-13 2023-10-18 三菱マテリアル株式会社 ヒートシンク一体型絶縁回路基板
CN116134607B (zh) * 2020-07-27 2025-03-11 株式会社东芝 接合体、电路基板、半导体装置及接合体的制造方法
KR102720892B1 (ko) * 2021-07-27 2024-10-23 주식회사 아모센스 히트싱크 일체형 세라믹 기판 및 그 제조방법
DE102022204169A1 (de) 2022-04-28 2023-11-02 Robert Bosch Gesellschaft mit beschränkter Haftung Elektronische Baugruppe
KR20240041536A (ko) * 2022-09-23 2024-04-01 주식회사 아모그린텍 히트싱크 일체형 파워모듈용 기판 및 그 제조방법
EP4539117A1 (en) * 2023-05-22 2025-04-16 LX Semicon Co., Ltd. A heat dissipation substrate for a power semiconductor module, a power semiconductor module including the heat dissipation substrate, and a power converter including the power semiconductor module
EP4539116A1 (en) * 2023-05-22 2025-04-16 LX Semicon Co., Ltd. A heat dissipation substrate for a power semiconductor module, a power semiconductor module including the heat dissipation substrate, and a power converter including the power semiconductor module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065075A (ja) 1996-08-22 1998-03-06 Mitsubishi Materials Corp ヒートシンク付セラミック回路基板
JP3171234B2 (ja) 1997-03-26 2001-05-28 三菱マテリアル株式会社 ヒートシンク付セラミック回路基板
JP2002059272A (ja) * 2000-08-11 2002-02-26 Mitsubishi Materials Corp セラミック粉末層を介在させたAl複合材及びその製造方法
JP2004288828A (ja) * 2003-03-20 2004-10-14 Mitsubishi Materials Corp パワーモジュール用基板の製造方法及びパワーモジュール用基板並びにパワーモジュール

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723964Y2 (ja) * 1988-11-11 1995-05-31 三菱マテリアル株式会社 半導体装置用軽量基板
US6707671B2 (en) * 2001-05-31 2004-03-16 Matsushita Electric Industrial Co., Ltd. Power module and method of manufacturing the same
JP4077181B2 (ja) * 2001-09-27 2008-04-16 本田技研工業株式会社 金属用又はセラミック用接合材及び金属又はセラミックの接合方法
JP4387658B2 (ja) 2002-10-30 2009-12-16 三菱マテリアル株式会社 ヒートシンク付セラミック回路基板及びその製造方法
JP4438526B2 (ja) * 2004-06-16 2010-03-24 株式会社安川電機 パワー部品冷却装置
KR100765604B1 (ko) * 2004-11-26 2007-10-09 산요덴키가부시키가이샤 회로 장치 및 그 제조 방법
JP4207896B2 (ja) * 2005-01-19 2009-01-14 富士電機デバイステクノロジー株式会社 半導体装置
JP4037425B2 (ja) 2005-07-04 2008-01-23 電気化学工業株式会社 セラミック回路基板およびそれを用いた電力制御部品。
JP5061442B2 (ja) * 2005-09-15 2012-10-31 三菱マテリアル株式会社 絶縁回路基板および冷却シンク部付き絶縁回路基板
EP2006895B1 (en) * 2006-03-08 2019-09-18 Kabushiki Kaisha Toshiba Electronic component module
JP4786407B2 (ja) * 2006-05-18 2011-10-05 三菱マテリアル株式会社 パワーモジュール
JP2008004871A (ja) * 2006-06-26 2008-01-10 Mitsubishi Materials Corp パワーモジュール用基板およびパワーモジュール用基板の製造方法並びにパワーモジュール
JP5392272B2 (ja) 2011-01-13 2014-01-22 株式会社豊田自動織機 両面基板、半導体装置、半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065075A (ja) 1996-08-22 1998-03-06 Mitsubishi Materials Corp ヒートシンク付セラミック回路基板
JP3171234B2 (ja) 1997-03-26 2001-05-28 三菱マテリアル株式会社 ヒートシンク付セラミック回路基板
JP2002059272A (ja) * 2000-08-11 2002-02-26 Mitsubishi Materials Corp セラミック粉末層を介在させたAl複合材及びその製造方法
JP2004288828A (ja) * 2003-03-20 2004-10-14 Mitsubishi Materials Corp パワーモジュール用基板の製造方法及びパワーモジュール用基板並びにパワーモジュール

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087027A1 (ja) * 2010-01-12 2011-07-21 日本軽金属株式会社 液冷一体型基板および液冷一体型基板の製造方法
JP2011166127A (ja) * 2010-01-12 2011-08-25 Nippon Light Metal Co Ltd 液冷一体型基板の製造方法および液冷一体型基板
JP2011166126A (ja) * 2010-01-12 2011-08-25 Nippon Light Metal Co Ltd 液冷一体型基板および液冷一体型基板の製造方法
CN102714930A (zh) * 2010-01-12 2012-10-03 日本轻金属株式会社 液冷一体型基板及液冷一体型基板的制造方法
KR20120129887A (ko) * 2010-01-12 2012-11-28 도와 메탈테크 가부시키가이샤 액냉 일체형 기판 및 액냉 일체형 기판의 제조 방법
EP2525637A4 (en) * 2010-01-12 2015-06-24 Nippon Light Metal Co LIQUID-COOLED INTEGRATED SUBSTRATE AND METHOD FOR PRODUCING THE LIQUID-COOLED INTEGRATED SUBSTRATE
RU2556020C2 (ru) * 2010-01-12 2015-07-10 Ниппон Лайт Метал Компани, Лтд. Объединенная подложка с жидкостным охлаждением и способ изготовления объединенной подложки с жидкостным охлаждением
US9320129B2 (en) 2010-01-12 2016-04-19 Dowa Metaltech Co., Ltd. Liquid-cooled integrated substrate and manufacturing method of liquid-cooled integrated substrate
KR101708964B1 (ko) * 2010-01-12 2017-02-21 니폰게이긴조쿠가부시키가이샤 액냉 일체형 기판 및 액냉 일체형 기판의 제조 방법
JP2011210947A (ja) * 2010-03-30 2011-10-20 Toyota Central R&D Labs Inc 絶縁基板とその絶縁基板を有するモジュール
JP2012160722A (ja) * 2011-01-14 2012-08-23 Nippon Light Metal Co Ltd 液冷一体型基板の製造方法および液冷一体型基板
US20140318831A1 (en) * 2011-12-12 2014-10-30 Mitsubishi Materials Corporation Power module substrate, power module substrate with heat sink, power module, paste for forming flux component intrusion-preventing layer and method for bonding bonded body

Also Published As

Publication number Publication date
KR101610973B1 (ko) 2016-04-08
EP2259308A1 (en) 2010-12-08
JP2010093225A (ja) 2010-04-22
JP4524716B2 (ja) 2010-08-18
CN101971329A (zh) 2011-02-09
JP2010171437A (ja) 2010-08-05
EP2259308B1 (en) 2022-06-15
US8637777B2 (en) 2014-01-28
CN101971329B (zh) 2012-11-21
JP2013179374A (ja) 2013-09-09
JP5613914B2 (ja) 2014-10-29
JP5440721B2 (ja) 2014-03-12
EP2259308A4 (en) 2014-11-05
KR20100138875A (ko) 2010-12-31
US20110017496A1 (en) 2011-01-27
JP2013065918A (ja) 2013-04-11
JP5434701B2 (ja) 2014-03-05

Similar Documents

Publication Publication Date Title
WO2009116439A1 (ja) ヒートシンク付パワーモジュール用基板及びその製造方法、並びに、ヒートシンク付パワーモジュール、パワーモジュール用基板
KR102097177B1 (ko) 파워 모듈용 기판, 히트싱크가 부착된 파워 모듈용 기판 및 파워 모듈
JP5067187B2 (ja) ヒートシンク付パワーモジュール用基板及びヒートシンク付パワーモジュール
KR102170623B1 (ko) 파워 모듈용 기판, 히트 싱크가 부착된 파워 모듈용 기판 및 파워 모듈
JP2013065918A5 (enrdf_load_stackoverflow)
CN102498564B (zh) 带散热器的功率模块用基板的制造方法、带散热器的功率模块用基板及功率模块
TWI620289B (zh) 附散熱座功率模組用基板,附冷卻器功率模組用基板及功率模組
KR101188150B1 (ko) 냉각 장치
WO2014115677A1 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール
TWI750332B (zh) 附有散熱片功率模組用基板
KR20160146799A (ko) 파워 모듈용 기판 및 히트 싱크가 부착된 파워 모듈용 기판 그리고 히트 싱크가 부착된 파워 모듈
JPWO2007037306A1 (ja) ヒートシンクモジュール及びその製造方法
JP6417834B2 (ja) 冷却器付パワーモジュール用基板及び冷却器付パワーモジュール用基板の製造方法
KR102154369B1 (ko) 파워 모듈
JP2014112732A (ja) ヒートシンク付パワーモジュール用基板及びパワーモジュール
TWI708754B (zh) 接合體,電源模組用基板,電源模組,接合體的製造方法及電源模組用基板的製造方法
JP2013214566A (ja) ヒートシンク付パワーモジュール用基板の製造方法
CN111682002A (zh) 散热板
JP2010098058A (ja) ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール及びヒートシンク付パワーモジュール用基板の製造方法
JP2004343035A (ja) 放熱部品、回路基板および半導体装置
JP2004296493A (ja) 放熱体及びパワーモジュール並びに放熱体の製造方法及びパワーモジュールの製造方法
HK1151627A (en) Substrate for power module with heat sink and method for producing the same, power module with heat sink, and substrate for power module
JP6237058B2 (ja) 銅板付きパワーモジュール用基板、及び銅板付きパワーモジュール用基板の製造方法
JP2003124584A (ja) セラミック回路基板
JP2017168730A (ja) 回路基板及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109188.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107017399

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12922732

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009721361

Country of ref document: EP