WO2009113458A1 - Iii族窒化物半導体素子及びその製造方法、iii族窒化物半導体発光素子及びその製造方法、並びにランプ - Google Patents
Iii族窒化物半導体素子及びその製造方法、iii族窒化物半導体発光素子及びその製造方法、並びにランプ Download PDFInfo
- Publication number
- WO2009113458A1 WO2009113458A1 PCT/JP2009/054310 JP2009054310W WO2009113458A1 WO 2009113458 A1 WO2009113458 A1 WO 2009113458A1 JP 2009054310 W JP2009054310 W JP 2009054310W WO 2009113458 A1 WO2009113458 A1 WO 2009113458A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- group iii
- iii nitride
- buffer layer
- nitride semiconductor
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 302
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 181
- 238000000034 method Methods 0.000 title claims description 161
- 238000004519 manufacturing process Methods 0.000 title claims description 58
- 239000000758 substrate Substances 0.000 claims abstract description 213
- -1 nitride compound Chemical class 0.000 claims abstract description 24
- 239000013078 crystal Substances 0.000 claims description 91
- 229910021478 group 5 element Inorganic materials 0.000 claims description 11
- 239000007769 metal material Substances 0.000 claims description 9
- 230000003213 activating effect Effects 0.000 claims description 4
- 230000001143 conditioned effect Effects 0.000 claims description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 712
- 229910002601 GaN Inorganic materials 0.000 description 105
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 98
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 90
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 58
- 238000004544 sputter deposition Methods 0.000 description 58
- 230000015572 biosynthetic process Effects 0.000 description 53
- 230000004888 barrier function Effects 0.000 description 43
- 239000000463 material Substances 0.000 description 39
- 238000005253 cladding Methods 0.000 description 38
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 34
- 239000012535 impurity Substances 0.000 description 33
- 239000000203 mixture Substances 0.000 description 32
- 239000007789 gas Substances 0.000 description 31
- 238000005546 reactive sputtering Methods 0.000 description 27
- 230000008569 process Effects 0.000 description 26
- 229910002704 AlGaN Inorganic materials 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 23
- 239000002184 metal Substances 0.000 description 23
- 229910052757 nitrogen Inorganic materials 0.000 description 23
- 229910052594 sapphire Inorganic materials 0.000 description 23
- 239000010980 sapphire Substances 0.000 description 23
- 229910021529 ammonia Inorganic materials 0.000 description 16
- 239000011777 magnesium Substances 0.000 description 15
- 239000002994 raw material Substances 0.000 description 15
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 13
- 229910001873 dinitrogen Inorganic materials 0.000 description 12
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 11
- 235000012431 wafers Nutrition 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 8
- 229910052732 germanium Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 7
- 239000012159 carrier gas Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 239000002019 doping agent Substances 0.000 description 7
- 238000010030 laminating Methods 0.000 description 7
- 238000001552 radio frequency sputter deposition Methods 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000001451 molecular beam epitaxy Methods 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 238000009832 plasma treatment Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 3
- 229910001195 gallium oxide Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000001947 vapour-phase growth Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 2
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical compound CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- GSWGDDYIUCWADU-UHFFFAOYSA-N aluminum magnesium oxygen(2-) Chemical compound [O--].[Mg++].[Al+3] GSWGDDYIUCWADU-UHFFFAOYSA-N 0.000 description 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 150000002259 gallium compounds Chemical class 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 150000002291 germanium compounds Chemical class 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- QBJCZLXULXFYCK-UHFFFAOYSA-N magnesium;cyclopenta-1,3-diene Chemical compound [Mg+2].C1C=CC=[C-]1.C1C=CC=[C-]1 QBJCZLXULXFYCK-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- QQXSEZVCKAEYQJ-UHFFFAOYSA-N tetraethylgermanium Chemical compound CC[Ge](CC)(CC)CC QQXSEZVCKAEYQJ-UHFFFAOYSA-N 0.000 description 1
- ZRLCXMPFXYVHGS-UHFFFAOYSA-N tetramethylgermane Chemical compound C[Ge](C)(C)C ZRLCXMPFXYVHGS-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000010005 wet pre-treatment Methods 0.000 description 1
- AXWLFOKLQGDQFR-UHFFFAOYSA-N zinc iron(2+) manganese(2+) oxygen(2-) Chemical compound [O-2].[Fe+2].[Zn+2].[Mn+2].[O-2].[O-2] AXWLFOKLQGDQFR-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02516—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/12—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/49105—Connecting at different heights
- H01L2224/49107—Connecting at different heights on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/16—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
Definitions
- the present invention is a light emitting diode (LED), a laser diode (LD), a electronic device, etc., suitably used, formula Al a Ga b In c N ( 0 ⁇ a ⁇ 1,0 ⁇ b ⁇ 1,0 ⁇
- This application claims priority based on Japanese Patent Application No. 2008-064111 filed in Japan on March 13, 2008, the contents of which are incorporated herein by reference.
- Group III nitride semiconductors have a direct transition type band gap of energy corresponding to the range from visible light to ultraviolet light, and are excellent in luminous efficiency. Therefore, light emitting diodes (LEDs) and laser diodes (LDs) It is commercialized as a semiconductor light emitting device such as, and is used in various applications. Even when used in an electronic device, the group III nitride semiconductor has a potential to obtain superior characteristics as compared with the case of using a conventional group III-V compound semiconductor.
- Such a group III nitride semiconductor is generally produced by metal organic chemical vapor deposition (MOCVD) using trimethylgallium, trimethylaluminum and ammonia as raw materials.
- MOCVD metal organic chemical vapor deposition
- the MOCVD method is a method in which a vapor of a raw material is contained in a carrier gas and conveyed to the substrate surface, and the raw material is decomposed on the surface of the heated substrate to grow crystals.
- group III nitride semiconductor single crystal wafers are not commercially available, and group III nitride semiconductors are generally obtained by growing crystals on single crystal wafers of different materials.
- group III nitride semiconductors are generally obtained by growing crystals on single crystal wafers of different materials.
- gallium nitride (GaN) is directly grown on a sapphire (Al 2 O 3 ) substrate
- there is a 16% lattice mismatch between the two
- gallium nitride is directly grown on a substrate made of SiC
- there is a 6% lattice mismatch between the two In general, when there is a large lattice mismatch as described above, it is difficult to epitaxially grow a crystal directly on a substrate, and a crystal with good crystallinity cannot be obtained even when grown
- a group III nitride semiconductor crystal is epitaxially grown on a sapphire single crystal substrate or SiC single crystal substrate by metal organic chemical vapor deposition (MOCVD), first, aluminum nitride (AlN) or nitride is formed on the substrate.
- AlN aluminum nitride
- a method of laminating a layer called a low temperature buffer layer made of aluminum gallium (AlGaN) and epitaxially growing a group III nitride semiconductor crystal on the layer at a high temperature has been proposed (for example, Patent Document 1, 2).
- Patent Document 3 a technique for forming the buffer layer by a method other than MOCVD.
- a method of growing crystals of the same composition by MOCVD on a buffer layer formed by high-frequency sputtering has been proposed ( For example, Patent Document 3).
- Patent Document 3 the method described in Patent Document 3 has a problem that a good crystal cannot be stably stacked on the substrate.
- the present invention has been made in view of the above problems, and a well-oriented highly uniform buffer layer is formed on a substrate, and a layer made of a group III nitride semiconductor having good crystallinity is formed on the buffer layer. It is an object of the present invention to provide a group III nitride semiconductor device having excellent device characteristics and a method for manufacturing the same. It is another object of the present invention to provide a group III nitride semiconductor light emitting device having excellent light emission characteristics, a method for manufacturing the same, and a lamp.
- the present inventors have conducted extensive research to form a group III nitride semiconductor crystal having excellent crystallinity, and appropriately control the lattice constant of each crystal axis of the buffer layer formed on the substrate. As a result, it was found that the uniformity of the buffer layer was improved and the crystallinity of the group III nitride semiconductor formed on the buffer layer was improved, and the present invention was completed. That is, the present invention relates to the following.
- a group III nitride semiconductor device in which a buffer layer made of at least a group III nitride compound is laminated on a substrate, The buffer layer is made of AlN; A group III nitride semiconductor device wherein the a-axis lattice constant of the buffer layer is smaller than the a-axis lattice constant of AlN in the bulk state.
- a lattice constant of the buffer layer satisfies a relationship represented by the following formula (1).
- [5] The group III nitride semiconductor device according to any one of [1] to [3], wherein the buffer layer is formed of an aggregate of columnar crystals.
- [6] The group III nitride semiconductor device according to any one of [1] to [5], wherein the buffer layer has a thickness in a range of 10 to 500 nm.
- [7] The group III nitride semiconductor device according to any one of [1] to [5], wherein the buffer layer has a thickness in a range of 20 to 100 nm.
- [8] The group III nitride semiconductor device according to any one of [1] to [7], wherein the buffer layer is formed to cover at least 90% of the substrate surface.
- the group III nitride semiconductor device according to any one of [1] to [8], wherein the substrate is made of sapphire.
- the group III nitride semiconductor device described.
- an X-ray rocking curve half-value width of the (10-10) plane of the base layer is 300 arcsec or less.
- At least an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer are sequentially stacked on the base layer provided in the group III nitride semiconductor device according to any one of [12] to [16].
- a Group III nitride semiconductor light emitting device is sequentially stacked on the base layer provided in the group III nitride semiconductor device according to any one of [12] to [16].
- a method for producing a group III nitride semiconductor device wherein a buffer layer made of at least a group III nitride compound is stacked on a substrate, Production of Group III Nitride Semiconductor Device, wherein the Buffer Layer is Formed from AlN and is Conditioned to Satisfy a Relationship in which the A-axis Lattice Constant of the Buffer Layer is Smaller than the AlN Lattice Constant of AlN in Bulk Method.
- the buffer layer is formed under a condition that a lattice constant of the buffer layer satisfies a relationship represented by the following formula (1).
- the buffer layer is made of AlN, and the a-axis lattice constant of the buffer layer is smaller than the a-axis lattice constant of AlN in the bulk state. And a well-oriented buffer layer can be obtained. Further, the crystallinity of the underlayer formed thereon and made of a group III nitride semiconductor is improved. As a result, a group III nitride semiconductor device having excellent device characteristics can be obtained.
- the group III nitride semiconductor light emitting device of the present invention is formed by sequentially laminating an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer on a base layer provided in the group III nitride semiconductor device. It will be excellent.
- FIG. 3 is a diagram schematically illustrating an example of a group III nitride semiconductor device according to the present invention, which is an index of the lattice constant of a buffer layer made of AlN, and is represented by the following formula ⁇ (c 0 ⁇ c) / (a 0 ⁇ a) ⁇ And the X-ray rocking curve half-value width of the (0002) plane of the underlying layer made of GaN.
- FIG. 2 is a diagram schematically illustrating an example of a group III nitride semiconductor device according to the present invention, in which a lattice constant of a buffer layer made of AlN and an X-ray rocking curve half of a (10-10) plane of a base layer made of GaN are illustrated. It is a graph which shows the relationship with a value range.
- SYMBOLS 1 ... Group III nitride semiconductor light-emitting device, 10 ... Multilayer semiconductor (Group III nitride semiconductor device), 11 ... Substrate, 11a ... Surface, 12 ... Buffer layer, 13 ... Underlayer, 14 ... N-type semiconductor layer, 15 ... Light emitting layer, 16 ... p-type semiconductor layer, 3 ... lamp, 40 ... sputtering device (film forming device), 41 ... chamber
- Group III nitride semiconductor device Group III nitride semiconductor light emitting device
- a buffer layer 12 made of at least a group III nitride compound is stacked on the substrate 11, and the buffer layer 12 is made of AlN, and the a-axis lattice constant of the buffer layer 12 is smaller than the a-axis lattice constant of AlN in the bulk state (see the stacked semiconductor 10 shown in FIG. 1).
- the lattice constant of the buffer layer 12 satisfies the above relationship and satisfies the relationship represented by the following formula (1).
- c 0 is the c-axis lattice constant of bulk AlN
- c is the c-axis lattice constant of the buffer layer
- a 0 is the a-axis lattice constant of bulk AlN
- a is the buffer layer constant.
- a-axis lattice constant is the c-axis lattice constant of bulk AlN
- FIG. 1 is a diagram for explaining an example of a semiconductor device according to the present invention, and is a schematic cross-sectional view showing an example of a laminated semiconductor in which a group III nitride semiconductor is formed on a substrate.
- the substrate 11 is made of a Group III nitride compound and has the relationship represented by the above formula (1).
- a buffer layer 12 having a lattice constant to be satisfied is laminated.
- a base layer 13 is formed on the buffer layer 12. Further, in the laminated semiconductor 10 of the example shown in FIG.
- an n-type semiconductor layer 14, a light emitting layer 15, and a p-type semiconductor layer 16 are sequentially laminated on the base layer 13, and an LED structure including these layers. (Semiconductor layer 20) is formed.
- the laminated semiconductor 10 is configured as a group III nitride semiconductor light emitting device.
- group III nitride semiconductor light emitting device group III nitride semiconductor light emitting device
- substrate The material of the substrate 11 is not particularly limited, but sapphire is preferably used.
- the substrate material on which the group III nitride semiconductor crystal is laminated may be any substrate material on which the group III nitride semiconductor crystal is epitaxially grown on the surface.
- the size of the substrate is usually about 2 inches in diameter, but in the group III nitride semiconductor device of the present invention, it is also possible to use a substrate having a diameter of 4 to 6 inches.
- the buffer layer without using ammonia.
- the buffer layer of this embodiment acts as a coat layer when an underlayer described later is formed by a method using ammonia, which is effective in preventing chemical alteration of the substrate. .
- the sputtering method can keep the substrate temperature low, even when a substrate made of a material that decomposes at a high temperature is used, the substrate 11 is not damaged. These layers can be formed.
- the buffer layer 12 is laminated on the substrate 11 made of the above material.
- the buffer layer 12 is made of AlN, and can be formed, for example, by a reactive sputtering method in which a gas containing a group V element and a metal material are activated and reacted with plasma.
- a film formed by a method using a plasma metal raw material as in this embodiment has an effect that alignment is easily obtained.
- the group III nitride crystal forming such a buffer layer has a hexagonal crystal structure, and can be formed into a single crystal film by controlling the film forming conditions. Further, the group III nitride crystal can be formed into a columnar crystal composed of a texture based on a hexagonal column by controlling the film forming conditions. Note that the columnar crystal described here is a crystal which is separated by forming a crystal grain boundary between adjacent crystal grains, and is itself a columnar shape as a longitudinal sectional shape.
- the buffer layer 12 preferably has a single crystal structure from the viewpoint of the buffer function.
- the group III nitride crystal has a hexagonal crystal and forms a structure based on a hexagonal column.
- the group III nitride crystal can be formed as a crystal grown in the in-plane direction by controlling conditions such as film formation.
- the buffer layer 12 having such a single crystal structure is formed on the substrate 11, the buffer function of the buffer layer 12 effectively acts. Therefore, the group III nitride semiconductor layer formed thereon is A crystal film having good orientation and crystallinity is obtained.
- the thickness of the buffer layer 12 is preferably in the range of 10 to 500 nm.
- the film thickness of the buffer layer 12 By setting the film thickness of the buffer layer 12 within this range, the film has good orientation, the lattice constant is represented by the above formula (1), and the group III nitride semiconductor is formed on the buffer layer 12.
- the buffer layer 12 that effectively functions as a coat layer is obtained when each of the layers is formed. If the thickness of the buffer layer 12 is less than 10 nm, the above-described function as a coat layer may not be sufficient. Further, when the buffer layer 12 is formed with a film thickness exceeding 500 nm, the film forming process time becomes long despite the fact that the function as the coat layer is not changed, and the productivity may be lowered.
- the thickness of the buffer layer 12 is less than 10 nm or more than 500 nm, it is difficult to control the lattice constant so as to satisfy the relationship represented by the above expression (1).
- the film thickness of the buffer layer 12 is more preferably in the range of 20 to 100 nm.
- the composition of the buffer layer 12 is made of AlN.
- the composition of the buffer layer 12 to be laminated on the substrate is preferably a composition containing Al, and may be a group III nitride compound represented by the general formula Al X Ga 1-X N (1 ⁇ X ⁇ 0). Any material can be used. Furthermore, a composition containing As or P as the group V can also be used.
- the composition of the buffer layer includes Al, GaAlN is preferable. In this case, the composition of Al is more preferably 50% or more.
- the configuration of the buffer layer 12 is most preferably made of AlN.
- a material constituting the buffer layer 12 a material having the same crystal structure as that of the group III nitride semiconductor can be used, but the length of the lattice is close to that of the group III nitride semiconductor constituting the underlayer described later. And nitrides of group IIIa elements of the periodic table are particularly preferred.
- the buffer layer 12 is required to cover at least 60% or more, preferably 80% or more, of the surface 11a of the substrate 11, and is formed so as to cover 90% or more as a coating layer of the substrate 11. It is more preferable from a functional aspect.
- the buffer layer 12 is most preferably formed so as to cover 100% of the surface 11a, that is, the surface 11a of the substrate 11 without any gap.
- the substrate 11 is greatly exposed and does not function as a coat layer, and a reaction occurs between the semiconductor raw material for growing the group III nitride semiconductor crystal and the substrate.
- the flatness of an underlayer 13 described later formed on the buffer layer 12 may be impaired.
- the a-axis lattice constant of the buffer layer 12 is preferably smaller than the a-axis lattice constant of AlN in the bulk state.
- the semiconductor element of the present embodiment is more preferably a film in which the lattice constant of the buffer layer 12 satisfies the above relationship and further satisfies the relationship represented by the following formula (1) (see FIG. 6). See regions E1 and E2 in the graph).
- c 0 is the c-axis lattice constant of bulk AlN
- c is the c-axis lattice constant of the buffer layer
- a 0 is the a-axis lattice constant of bulk AlN
- a is the buffer layer constant.
- the lattice constant of AlN in the bulk state is 3.111 ⁇ for the a-axis and 4.980 ⁇ for the c-axis (reference: I. Akasaki and H. Amano et al., Jpn. J. Appl. Phys. 36 (1997). 5393-5408.)
- the buffer layer 12 has a lattice constant in the above range, and is configured under conditions closer to the a-axis of sapphire than AlN in the bulk state, thereby matching the a-axis of sapphire and having few crystal defects.
- a buffer layer 12 is obtained.
- the base layer 13 inherits the orientation information of the single crystal substrate 11 made of, for example, sapphire.
- the underlayer 13 excellent in the crystal of the (10-10) plane is obtained.
- the lattice constant is represented by the length of the crystal axis and the angle between the axes.
- the length (a) of the a axis and c It is represented by the length ( ⁇ ) of the axis (a-axis ⁇ c-axis in the case of hexagonal crystal).
- the present inventors have established a lattice constant of the buffer layer formed on the substrate 11 made of sapphire and a lower layer made of the group III nitride semiconductor formed thereon. As a result of earnest research on the relationship with the crystallinity of the formation, we have found the following relationships.
- FIG. 6 shows the relationship between the a-axis length and the c-axis length of the buffer layer 12 formed from AlN on the sapphire substrate by reactive sputtering, that is, the a-axis lattice constant and the c-axis length. It is a graph which shows the relationship with a lattice constant.
- FIG. 7 shows a numerical value of ⁇ (c 0 -c) / (a 0 -a) ⁇ shown on the left side of the above equation (1) and a GaN layer formed thereon (AlN) in the buffer layer made of AlN. It is a graph which shows the relationship with the XRC (X-ray rocking curve) half value width of the (0002) surface of a base layer. In the graph of FIG.
- the half width of the XRC spectrum of the (0002) plane is an index of crystal flatness (mosaicity), and the XRC of the (10-10) plane.
- the spectrum half width is an index of dislocation density (twist).
- the GaN layer (underlayer) grown thereon is The surface mainly becomes a mirror-like crystal (see the plots indicated by ⁇ and ⁇ in the graph of FIG. 6).
- the lattice constant of the buffer layer 12 when the lattice constant of the buffer layer 12 further satisfies the relationship expressed by the above formula (1), (0002) of the GaN layer (underlayer) grown thereon is (0002). )
- the orientation of the surface becomes even better (see the regions E1 and E2 on the left side of the broken line G in the graph of FIG. 6).
- the GaN layer grown thereon has surface abnormalities such as generation of cracks and clouding of the surface. Thus, it can be seen that good crystals cannot be obtained (see the plot of ⁇ in the graph of FIG. 6).
- FIG. 8 shows the length of the c-axis in the lattice constant of the buffer layer made of AlN, and the XRC (X-ray rocking curve) half width of the (10-10) plane of the GaN layer (underlayer) formed thereon. It is a graph which shows the relationship.
- the broken line with the symbol k is a straight line indicating the bulk lattice constant of AlN.
- the lattice constant of the buffer layer is larger than 4.98298 (c-axis) of AlN in the bulk state represented by the broken line k, the GaN layer formed on the buffer layer It can be seen that the (10-10) plane XRC full width at half maximum is small.
- the crystallinity of the GaN layer formed thereon is improved by controlling the lattice constant (c-axis) of the buffer layer made of AlN so as to be larger than the bulk state. Furthermore, when the c-axis lattice constant of the buffer layer is 5 or more, the XRC half-value width of the (10-10) plane of the underlying layer made of GaN formed thereon is 300 arcsec or less, and the crystallinity is good It becomes. Thus, if the crystallinity of the GaN layer (underlayer) is good, each of the n-type semiconductor layer, the light emitting layer, and the p-type semiconductor layer formed on the group III nitride semiconductor (GaN) is formed. It is clear that it contributes to the improvement of crystallinity.
- the following explanation can be given as the reason why the surface flatness and crystallinity of the underlying layer made of GaN improves when the lattice constant of the buffer layer is in the above range. Since the buffer layer made of AlN grows on the substrate in the c-axis orientation, the consistency between the a-axis lattice constant of AlN and the lattice constant of the substrate becomes a problem. Since the substrate made of sapphire has a lattice constant of a-axis smaller than that of AlN, the lattice mismatch caused by this causes a state in which many crystal defects exist in the buffer layer made of AlN in the conventional semiconductor element. It was.
- the buffer layer (AlN) is smaller than the a-axis lattice constant of AlN in the bulk state and matched to the sapphire lattice by appropriately controlling the film formation conditions of the buffer layer made of AlN. ) Can be formed.
- Such a buffer layer made of AlN has few crystal defects and is a well-oriented film. Therefore, the underlayer made of GaN grown thereon becomes a mirror-like crystal with a good surface state.
- the a-axis lattice constant of the buffer layer made of AlN is made small so as to match the sapphire forming the substrate, the crystal extends in the c-axis direction in an attempt to relieve the stress applied to the crystal. Will increase. At this time, if the stress in the AlN crystal is too large, non-uniform distortion occurs in the crystal.
- the lattice constant of the buffer layer 12 made of AlN is defined within the above range, the stress in the AlN crystal becomes moderate and the lattice is uniformly deformed.
- the XRC half-value width of the (0002) plane showing crystallinity in the c-axis direction is reduced, and the crystal has excellent surface flatness.
- the stress may be relieved due to the occurrence of crystal defects inside.
- the c-axis lattice constant of the buffer layer made of AlN is larger than the c-axis lattice constant of AlN in the bulk state, since there are few crystal defects in AlN, GaN stacked thereon (underlayer 13)
- the lattice constant of the buffer layer 12 is in the range included in the regions E1 and E2 as described above, the buffer layer 12 is well oriented, so that the GaN layer ( The surface flatness and crystallinity of the underlayer are improved.
- the orientation of the GaN layer (underlayer) formed thereon is inferior.
- the relationship between the lattice constants is on the right side of the straight line G, and the a-axis lattice constant is larger than the a-axis lattice constant (3.113) of AlN in the bulk state.
- the surface flatness of the GaN layer (underlayer) formed thereon is inferior.
- the surface flatness and crystallinity of the GaN layer (underlayer) formed thereon are There is a problem that the film becomes inferior.
- the buffer layer 12 is controlled so that the lattice constant satisfies the above relationship, whereby the buffer layer 12 made of AlN and the substrate 11 made of sapphire Since the lattice matching is improved, the buffer layer 12 is a layer having excellent orientation. Since the underlayer 13 formed on the buffer layer 12 and made of a group III nitride semiconductor (GaN) is a layer having excellent crystallinity, a group III nitride semiconductor device having excellent device characteristics can be obtained. . In addition, by configuring the LED structure using the group III nitride semiconductor device provided with the buffer layer 12 as described above, it is possible to realize a group III nitride semiconductor light emitting device having excellent light emission characteristics. .
- an underlayer 13 made of a group III nitride semiconductor is formed on the buffer layer 12 as described above. Further, an n-type semiconductor layer 14 made of a group III nitride semiconductor, a light emitting layer 15 and a p-type semiconductor layer 16 are sequentially stacked on the base layer 13 to form a semiconductor layer 20.
- Symbol M represents a group V element different from nitrogen (N), and 0 ⁇ A ⁇ 1.
- Many gallium nitride-based compound semiconductors are known.
- Symbol M is nitrogen
- a gallium nitride-based compound semiconductor represented by (N) represents another group V element and 0 ⁇ A ⁇ 1) can be used without any limitation.
- Gallium nitride compound semiconductors can contain other group III elements in addition to Al, Ga, and In, and contain elements such as Ge, Si, Mg, Ca, Zn, Be, P, and As as necessary. You can also Furthermore, it is not limited to the element added intentionally, but may include impurities that are inevitably included depending on film forming conditions and the like, and trace impurities that are included in the raw materials and reaction tube materials.
- the base layer 13 of the present embodiment is made of a group III nitride semiconductor, and is deposited on the buffer layer 12 by a conventionally known MOCVD method.
- the material of the underlayer 13 is not necessarily the same as that of the buffer layer 12 formed on the substrate 11, and a different material may be used, but an Al y Ga 1-y N layer (0 ⁇ y ⁇ 1, preferably 0 ⁇ y ⁇ 0.5, more preferably 0 ⁇ y ⁇ 0.1).
- a group III nitride compound containing Ga that is, a GaN-based compound semiconductor is preferably used, and in particular, AlGaN or GaN can be suitably used.
- the buffer layer 12 is formed as an aggregate of columnar crystals made of AlN, it is necessary to loop dislocations by migration so that the base layer 13 does not inherit the crystallinity of the buffer layer 12 as it is.
- examples of such a material include the GaN-based compound semiconductor containing Ga, and AlGaN or GaN is particularly preferable.
- the film thickness of the underlayer 13 is preferably in the range of 0.1 to 8 ⁇ m from the viewpoint of obtaining an underlayer with good crystallinity, and in the range of 0.1 to 2 ⁇ m is required for film formation. It is more preferable in that the process time can be shortened and productivity is improved.
- the underlayer 13 may have a configuration in which n-type impurities are doped within the range of 1 ⁇ 10 17 to 1 ⁇ 10 19 atoms / cm 3 as necessary, but undoped ( ⁇ 1 ⁇ 10 17 atoms / cm 3). 3 ), and undoped is preferable in that good crystallinity can be maintained.
- the substrate 11 is conductive
- electrodes can be formed above and below the light emitting element by doping the base layer 13 with a dopant to make it conductive.
- an insulating material is used for the substrate 11
- a chip structure in which the positive electrode and the negative electrode are provided on the same surface of the light emitting element is employed.
- crystallinity becomes favorable, it is preferable.
- it does not specifically limit as an n-type impurity For example, Si, Ge, Sn, etc. are mentioned, Preferably Si and Ge are mentioned.
- the underlayer 13 of this embodiment preferably has a (0002) plane X-ray rocking curve (XRC) half width of 100 arcsec or less. If the XRC half width of the (0002) plane is such a value, the underlayer 13 can be configured as a layer having excellent crystallinity, and an n-type semiconductor layer 14 stacked on the underlayer 13; The crystallinity of each layer of the light emitting layer 15 and the p-type semiconductor layer 16 can be improved. If the XRC half-value width of the (0002) plane of the underlayer 13 is more than 100 arcsec, the layer becomes inferior in crystallinity, and surface anomalies such as cloudiness and rough surface occur. As a result, the crystallinity of each layer formed thereon Decreases.
- XRC X-ray rocking curve
- the XRC half width of the (10-10) plane is preferably 300 arcsec or less. If the XRC half width of the (10-10) plane is such a value, the underlayer 13 can be configured as a layer having better crystallinity, and the crystallinity of each layer stacked thereon can be improved. It becomes possible to improve.
- the lattice constant of the buffer layer 12 satisfies the above relationship, and the base layer 13 is formed on the buffer layer 12.
- the underlayer 13 having excellent crystallinity is obtained, and the crystallinity of each layer formed on the base layer 13 and made of a group III nitride semiconductor is improved.
- the n-type semiconductor layer 14 of the present embodiment is formed on the base layer 13 and includes an n-type contact layer 14a and an n-type cladding layer 14b.
- the underlayer 13 as described above can also serve as an n-type contact layer.
- the n-type contact layer 14a of the present embodiment is made of a group III nitride semiconductor, and can be deposited on the underlayer 13 by MOCVD or sputtering.
- the n-type contact layer 14a is an Al X Ga 1-X N layer (0 ⁇ x ⁇ 1, preferably 0 ⁇ x ⁇ 0.5, more preferably 0 ⁇ x ⁇ , similarly to the base layer 13 described above. 0.1).
- the n-type impurity is preferably doped, and the n-type impurity has a concentration of 1 ⁇ 10 17 to 1 ⁇ 10 19 atoms / cm 3 , preferably 1 ⁇ 10 18 to 1 ⁇ 10 19 atoms / cm 3 .
- the n-type contact layer 14 a can be set to the same temperature as the growth temperature of the base layer 13.
- the composition of the gallium nitride compound semiconductor constituting the n-type contact layer 14a is preferably the same as that of the base layer 13. Further, the total film thickness of the underlayer 13 and the n-type contact layer 14a may be set in the range of 0.1 to 20 ⁇ m, preferably in the range of 0.5 to 15 ⁇ m, and more preferably in the range of 1 to 12 ⁇ m. preferable. When the film thickness is within this range, the crystallinity of each layer is maintained well.
- n-type cladding layer 14b is preferably provided between the n-type contact layer 14a as described above and the light-emitting layer 15 described in detail later.
- the n-type cladding layer 14b can be formed of AlGaN, GaN, GaInN, or the like using the MOCVD method or the like.
- the thickness of the n-type cladding layer 14b is not particularly limited, but is preferably in the range of 5 to 500 nm, and more preferably in the range of 5 to 100 nm. Further, the n-type doping concentration of the n-type cladding layer 14b is preferably in the range of 1 ⁇ 10 17 to 1 ⁇ 10 20 pieces / cm 3 , more preferably 1 ⁇ 10 18 to 1 ⁇ 10 19 pieces / cm 3. It is in the range of cm 3 . A doping concentration within this range is preferable in terms of maintaining good crystallinity and reducing the operating voltage of the light emitting element.
- the n-type cladding layer 14b is a layer including a superlattice structure, a detailed illustration is omitted, but an n-side first layer made of a group III nitride semiconductor having a thickness of 100 angstroms or less. And an n-side second layer made of a group III nitride semiconductor having a composition different from that of the n-side first layer and having a film thickness of 100 angstroms or less may be included.
- the n-type cladding layer 14b may include a structure in which n-side first layers and n-side second layers are alternately and repeatedly stacked. Further, it is preferable that either the n-side first layer or the n-side second layer is in contact with the light emitting layer 15.
- composition of the n-side first layer and the n-side second layer as described above is, for example, an AlGaN system containing Al (sometimes simply referred to as AlGaN) or a GaInN system containing In (sometimes simply referred to as GaInN). ), GaN.
- AlGaN AlGaN
- GaInN GaInN
- the n-side first layer and the n-side second layer are composed of an alternate structure of GaInN / GaN, an alternate structure of AlGaN / GaN, an alternate structure of GaInN / AlGaN, and an alternate structure of GaInN / GaInN having different compositions (“The description of “differing composition” means that each elemental composition ratio is different, and the same applies hereinafter), and may be an AlGaN / AlGaN alternating structure having a different composition.
- the n-side first layer and the n-side second layer are preferably GaInN / GaInN having different GaInN / GaN structures or different compositions.
- the superlattice layers of the n-side first layer and the n-side second layer are each preferably 60 angstroms or less, more preferably 40 angstroms or less, and each in the range of 10 angstroms to 40 angstroms. Most preferred. If the film thickness of the n-side first layer and the n-side second layer forming the superlattice layer is more than 100 angstroms, crystal defects are likely to occur, which is not preferable.
- the n-side first layer and the n-side second layer may each have a doped structure, or a combination of a doped structure and an undoped structure.
- the impurity to be doped conventionally known impurities can be applied to the material composition without any limitation.
- Si is suitable as an impurity.
- the n-side superlattice multilayer film as described above may be manufactured while doping is appropriately turned ON / OFF, even if the composition represented by GaInN, AlGaN, or GaN is the same.
- the light emitting layer 15 is a layer that is stacked on the n-type semiconductor layer 14 and the p-type semiconductor layer 16 is stacked thereon, and can be formed using a conventionally known MOCVD method or the like. Further, as shown in FIG. 1, the light emitting layer 15 is formed by alternately and repeatedly laminating a barrier layer 15a made of a gallium nitride compound semiconductor and a well layer 15b made of a gallium nitride compound semiconductor containing indium. In the illustrated example, a barrier layer 15a is disposed on the n-type semiconductor layer 14 side and the p-type semiconductor layer 16 side.
- gallium indium nitride such as Ga 1-s In s N (0 ⁇ s ⁇ 0.4) can be used as a gallium nitride compound semiconductor containing indium.
- the barrier layer 15a is made of nitride such as Al c Ga 1-c N (0 ⁇ c ⁇ 0.3) having a larger band gap energy than the well layer 15b made of a gallium nitride compound semiconductor containing indium, for example.
- Gallium-based compound semiconductors can be preferably used.
- the film thickness of the entire light emitting layer 15 is not particularly limited, but is preferably in the range of 1 to 500 nm, for example, and more preferably about 100 nm. When the film thickness is in the above range, it contributes to the improvement of the light emission output.
- the p-type semiconductor layer 16 is usually composed of a p-type cladding layer 16a and a p-type contact layer 16b, and is formed by using the MOCVD method or the reactive sputtering method. It is also possible to configure the p-type contact layer to also serve as the p-type cladding layer.
- a p-type impurity for controlling the conductivity to be p-type is added to the p-type semiconductor layer 16 of the present embodiment.
- Mg metal-oxide-semiconductor
- Zn metal-oxide-semiconductor
- the film thickness of the entire p-type semiconductor layer 16 is not particularly limited, but is preferably in the range of 0.05 to 1 ⁇ m.
- the composition of the p-type cladding layer 16a is not particularly limited as long as the band gap energy is larger than that of the light emitting layer 15 to be described in detail later and carriers can be confined in the light emitting layer 15, but preferably Al d Ga 1 -DN (0 ⁇ d ⁇ 0.4, preferably 0.1 ⁇ d ⁇ 0.3).
- the p-type cladding layer 16a is preferably made of such AlGaN in terms of carrier confinement in the light emitting layer 15.
- the film thickness of the p-type cladding layer 16a is not particularly limited, but is preferably 1 to 400 nm, and more preferably 5 to 100 nm.
- the p-type dopant concentration obtained by adding p-type impurities to the p-type cladding layer 16a is preferably in the range of 1 ⁇ 10 18 to 5 ⁇ 10 21 atoms / cm 3 , more preferably 1 ⁇ 10 19 to 5 ⁇ 10 20 pieces / cm 3 .
- the p-type dopant concentration is in the above range, a good p-type crystal can be obtained without reducing the crystallinity.
- the p-type cladding layer 16a of the present embodiment can include a superlattice structure that is laminated a plurality of times, like the n-type cladding layer 14b described above.
- the p-type cladding layer 16a is a layer including a superlattice structure, a detailed illustration is omitted, but a p-side first layer made of a group III nitride semiconductor having a thickness of 100 angstroms or less, A structure may be included in which a p-side second layer made of a group III nitride semiconductor having a composition different from that of the p-side first layer and having a film thickness of 100 angstroms or less is stacked. Further, a structure in which the p-side first layer and the p-side second layer are alternately and repeatedly stacked may be included.
- compositions of the p-side first layer and the p-side second layer as described above may be different from each other, for example, any composition of AlGaN, GaInN, or GaN, and GaInN / GaN. Alternatively, an alternate structure of AlGaN / GaN, or an alternate structure of GaInN / AlGaN may be used.
- the composition of the p-side first layer and the p-side second layer is preferably an AlGaN / AlGaN or AlGaN / GaN alternating structure.
- the superlattice layers of the p-side first layer and the p-side second layer are each preferably 60 angstroms or less, more preferably 40 angstroms or less, and each in the range of 10 angstroms to 40 angstroms. Is most preferred. If the thickness of the p-side first layer and the p-side second layer forming the superlattice layer exceeds 100 angstroms, it becomes a layer containing many crystal defects and the like, which is not preferable.
- the structures of the p-side first layer and the p-side second layer may each be a doped structure or a combination of a doped structure / undoped structure.
- the impurity to be doped conventionally known impurities can be applied to the material composition without any limitation.
- Mg is suitable as the impurity.
- the p-side superlattice multilayer film as described above may be manufactured while doping is appropriately turned on and off even if the composition represented by GaInN, AlGaN, and GaN is the same.
- the p-type contact layer 16b includes at least Al e Ga 1-e N (0 ⁇ e ⁇ 0.5, preferably 0 ⁇ e ⁇ 0.2, more preferably 0 ⁇ e ⁇ 0.1). This is a gallium nitride compound semiconductor layer.
- Al composition is in the above range, it is preferable in terms of maintaining good crystallinity and good ohmic contact with a p-ohmic electrode (see translucent electrode 17 described later).
- the thickness of the p-type contact layer 16b is not particularly limited, but is preferably 10 to 500 nm, and more preferably 50 to 200 nm. When the film thickness is within this range, it is preferable in terms of light emission output.
- the p-type dopant concentration obtained by adding the p-type impurity to the p-type contact layer 16b is in the range of 1 ⁇ 10 18 to 1 ⁇ 10 21 atoms / cm 3. In the range of 5 ⁇ 10 19 to 5 ⁇ 10 20 pieces / cm 3 .
- the laminated semiconductor 10 includes the buffer layer 12 whose lattice constant satisfies the relationship represented by the above formula (1), and the base layer 13 made of a group III nitride semiconductor is provided thereon. Since it is provided, a group III nitride semiconductor device having excellent device characteristics can be obtained. Further, in the case of an LED structure in which an n-type semiconductor layer 14 made of a group III nitride semiconductor, a light emitting layer 15 and a p-type semiconductor layer 16 are sequentially laminated on the base layer 13, each layer is crystalline. Therefore, it is possible to realize a group III nitride semiconductor light emitting device having excellent light emission characteristics.
- the translucent positive electrode 17 is formed on the p-type semiconductor layer 16 provided in the laminated semiconductor 10, and the positive electrode bonding pad 18 is formed thereon.
- the negative electrode 19 is formed in the exposed region 14 d provided in the n-type contact layer 14 a of the n-type semiconductor layer 14, the light-emitting diode (Group III nitride semiconductor light-emitting device) 1 can be configured.
- the translucent positive electrode 17 is a translucent electrode formed on the p-type semiconductor layer 16 (p-type contact layer 16b) of the laminated semiconductor 10 described above.
- the material of the translucent positive electrode 17 is not particularly limited, but ITO (In 2 O 3 —SnO 2 ), AZO (ZnO—Al 2 O 3 ), IZO (In 2 O 3 —ZnO), GZO (ZnO— Ga 2 O 3 ) and the like can be used, and the light-transmitting positive electrode 17 can be provided using these materials by conventional means well known in this technical field. Further, any structure including a conventionally known structure can be used without any limitation.
- the translucent positive electrode 17 may be formed so as to cover almost the entire surface of the p-type semiconductor layer 16 doped with Mg, or may be formed in a lattice shape or a tree shape with a gap.
- the positive electrode bonding pad 18 is an electrode formed on the translucent positive electrode 17 described above.
- Examples of the material of the positive electrode bonding pad 18 include Au, Al, Ni, Cu, and the like. Various structures using these materials are well known, and those known materials and structures can be used without any limitation.
- the thickness of the positive electrode bonding pad 18 is preferably in the range of 100 to 1000 nm. In addition, in view of the characteristics of the bonding pad, the thicker one has higher bondability, so the thickness of the positive electrode bonding pad 18 is more preferably 300 nm or more. Furthermore, the thickness is preferably 500 nm or less from the viewpoint of manufacturing cost.
- the negative electrode 19 is formed to be in contact with the n-type contact layer 14 a of the n-type semiconductor layer 14 in the semiconductor layer in which the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are sequentially stacked on the substrate 11. The Therefore, when the negative electrode 19 is provided, an exposed region 14d of the n-type contact layer 14a is formed by removing a part of the p-type semiconductor layer 16, the light emitting layer 15, and the n-type semiconductor layer 14, and the exposed region 14d is formed thereon. A negative electrode 19 is formed.
- negative electrodes having various compositions and structures are well known, and these known negative electrodes can be used without any limitation, and can be provided by conventional means well known in this technical field.
- the buffer layer 12 formed on the substrate 11 is made of AlN, and the a-axis lattice constant of the buffer layer 12 is bulky. Since it is smaller than the a-axis lattice constant of AlN, the buffer layer 12 with high crystal uniformity and good orientation can be obtained. Further, the crystallinity of the underlying layer 13 formed thereon and made of a group III nitride semiconductor is improved. As a result, a group III nitride semiconductor device having excellent device characteristics can be obtained.
- the group III nitride semiconductor light-emitting device 1 having an LED (light-emitting diode) structure is formed by sequentially laminating an n-type semiconductor layer 14, a light-emitting layer 15, and a p-type semiconductor layer 16 on an underlayer 13. Therefore, the light emission characteristics are excellent.
- the method for producing a group III nitride semiconductor device of the present embodiment is a method in which a buffer layer 12 made of at least a group III nitride compound is stacked on a substrate 11, the buffer layer 12 is made of AlN, and In this method, the a-axis lattice constant of the buffer layer 12 is satisfied as a condition satisfying a relationship smaller than the a-axis lattice constant of bulk AlN.
- the buffer layer 12 is formed under the condition that the lattice constant of the buffer layer 12 satisfies the above relationship and satisfies the relationship represented by the following expression (1).
- a group III nitride semiconductor crystal is epitaxially grown on the substrate 11 to obtain a stacked semiconductor (group III nitride semiconductor device, group III nitride semiconductor light emitting device) 10 as shown in FIG.
- a buffer layer 12 having a lattice constant satisfying the relationship expressed by the above formula (1) is formed on the substrate 11, and then a base layer 13 is formed thereon.
- the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are sequentially stacked on the base layer 13, so that the group III nitride having the LED structure (semiconductor layer 20) is formed.
- a semiconductor light emitting device is manufactured.
- the buffer layer 12 is formed using a reactive sputtering method, and then the base layer 13 is formed thereon using a MOCVD method, thereby manufacturing a group III nitride semiconductor device.
- an n-type contact layer 14a constituting the n-type semiconductor layer 14 is further formed on the base layer 13 by a reactive sputtering method, and the n-type cladding layer 14b and the light emitting layer 15 thereon.
- Each of these layers is formed by the MOCVD method, and the p-type semiconductor layer 16 is formed by the sputtering method, whereby a group III nitride semiconductor light-emitting device including the semiconductor layer 20 having the LED structure is manufactured.
- the manufacturing method of the group III nitride semiconductor device (group III nitride semiconductor light emitting device) of this embodiment will be described in detail.
- the buffer layer 12 is formed on the substrate 11 by activating and reacting a gas containing a group V element and a metal material with plasma.
- the buffer layer 12 is formed using a reactive sputtering method.
- the buffer layer 12 is formed of AlN, and the a-axis lattice constant of the buffer layer 12 is smaller than the a-axis lattice constant of bulk AlN.
- the lattice constant is controlled according to the conditions for forming the buffer layer 12. Specifically, it is possible to control the lattice constant by reducing impurities by ultimate vacuum, dummy discharge, substrate pretreatment, etc., and appropriately setting conditions such as substrate temperature and power (and bias). There are conditions and procedures as detailed below.
- Pretreatment of substrate In this embodiment, after the substrate 11 is introduced into the reactor (see the sputtering apparatus 40 shown in FIG. 5), before the buffer layer 12 is formed, pretreatment is performed using a method such as reverse sputtering by plasma treatment. It is desirable to do. Specifically, the surface can be prepared by exposing the substrate 11 to Ar or N 2 plasma. For example, organic matter and oxide attached to the surface of the substrate 11 can be removed by reverse sputtering in which plasma such as Ar gas or N 2 gas is applied to the surface of the substrate 11. In this case, if a voltage is applied between the substrate 11 and the chamber, the plasma particles efficiently act on the substrate 11.
- the buffer layer 12 can be formed on the entire surface 11a of the substrate 11, and the crystallinity of the film made of a group III nitride semiconductor formed thereon can be improved. It becomes possible to raise. Further, it is more preferable that the substrate 11 is subjected to a wet pretreatment before the pretreatment by reverse sputtering as described above.
- the pretreatment of the substrate 11 is preferably performed by plasma treatment performed in an atmosphere in which an ion component and a radical component having no charge are mixed, such as the reverse sputtering described above.
- plasma treatment performed in an atmosphere in which an ion component and a radical component having no charge such as the reverse sputtering described above.
- an ion component and a radical component having no charge such as the reverse sputtering described above.
- plasma processing performed in an atmosphere in which an ionic component and a radical component are mixed as described above is used as a pretreatment for the substrate 11, and a reactive species having appropriate energy is allowed to act on the substrate 11.
- the contamination is effectively removed by performing the above pretreatment on the surface of the substrate 11, so that the buffer layer 12 formed on the substrate 11 is a well-oriented layer. Can be formed.
- the buffer layer 12 formed thereon can be easily controlled so that the lattice constant satisfies the above relationship.
- Deposition by reactive sputtering In this example, after performing the above pretreatment on the surface of the substrate 11, an argon and nitrogen element-containing gas is introduced into the chamber 41 of the sputtering apparatus 40 (see FIG. 5), and the substrate 11 is heated to about 500 ° C. Warm up. Then, a high frequency bias is applied to the substrate 11 side, and power is applied to the metal target 47 side where metal Al is used as a group III metal raw material to generate plasma in the chamber 41, and the pressure in the chamber 41 is kept constant.
- the buffer layer 12 made of AlN is formed on the substrate 11 while maintaining the above.
- Examples of the method for forming the buffer layer 12 on the substrate 11 include a reactive sputtering method, a MOCVD method, a pulse laser deposition (PLD) method, a pulsed electron beam deposition (PED) method, and the like.
- the reactive sputtering method is the most convenient and suitable for mass production, but it is a suitable method.
- a magnet 42 is disposed below the metal target 47 (downward in FIG. 5), and the magnet 42 swings below the metal target 47 by a driving device (not shown). Nitrogen gas and argon gas are supplied to the chamber 41, and a buffer layer is formed on the substrate 11 attached to the heater 44. At this time, since the magnet 42 is swung below the metal target 47 as described above, the plasma confined in the chamber 41 moves, and the surface of the substrate 11 is uneven as well as the side surface. Thus, it is possible to form a buffer layer.
- Examples of the method for forming the buffer layer by reactive sputtering include RF sputtering and DC sputtering.
- RF sputtering when a reactive sputtering method is used as in the manufacturing method according to the present invention and a film is formed using nitrogen gas as a nitrogen element-containing gas, it is known that nitrogen is adsorbed on the target (metal material) surface.
- the DC sputtering method is preferably used from the viewpoint of film formation efficiency.
- pulsed DC sputtering that can be biased in a pulse manner among RF sputtering and DC sputtering, and sputtering that can be processed by such a sputtering method. It is preferred to use an apparatus.
- the film is formed by the reactive sputtering method in which a nitrogen-containing gas is circulated in the reactor, so that the crystallinity is improved by controlling the reaction. It is preferable that a sputtering apparatus capable of being processed by such a reactive sputtering method is employed.
- a sputtering apparatus employing the RF sputtering method
- a specific motion method can be selected depending on a sputtering apparatus to be used, and can be swung or rotated.
- a magnet 42 is provided below the target 47, and the magnet 42 is configured to be able to rotate under the target 47.
- the reactive sputtering method a technique for improving efficiency by confining plasma in a magnetic field is generally used.
- a method for using the target without unevenness it is preferable to use an RF sputtering method in which film formation is performed while moving the position of the cathode magnet 42 within the target 47 as in the above-described sputtering apparatus 40.
- a specific magnet movement method in such a case can be appropriately selected depending on the sputtering apparatus to be used. For example, the magnet can be swung or rotated.
- the buffer layer 12 is preferably formed so as to cover the side surface of the substrate 11, and more preferably formed so as to cover the side surface and the back surface of the substrate 11. Further, as described above, the buffer layer 12 is preferably formed so as to cover at least 90% of the surface of the substrate 11.
- the buffer layer is formed by a conventional sputtering apparatus and film formation method, it is necessary to perform the film formation process about 6 to 8 times at the maximum, which is a long process.
- a method of forming a film on the entire surface of the substrate by placing it in the chamber without holding the substrate can be considered, but the apparatus becomes complicated when it is necessary to heat the substrate. There is a fear.
- a sputtering apparatus capable of swinging or rotating the substrate, it is possible to form a film while changing the position of the substrate with respect to the sputtering direction of the film forming material. It becomes possible.
- a sputtering apparatus and a film forming method it is possible to form the surface and side surfaces of the substrate in a single step. Further, by performing a film forming process on the back surface of the substrate subsequent to this process, the entire surface of the substrate can be covered in a total of two processes.
- the sputtering apparatus is configured so that the film forming material source is generated from a generation source (target) having a large area, and the material generation position is moved to form a film on the entire surface of the substrate without moving the substrate.
- a possible configuration is also possible.
- film formation is performed while moving the position of the cathode magnet in the target by swinging or rotating the magnet as in the sputtering apparatus 40 shown in FIG.
- An apparatus using an RF sputtering method can be given.
- an apparatus that moves both the substrate side and the cathode side may be employed.
- a cathode see the target dish 43 in FIG. 5
- the generated plasma is not supplied to the substrate in the form of a beam, but is wrapped around the substrate. If it is configured to supply, simultaneous film formation on the substrate surface and side surfaces is possible.
- the ultimate vacuum in the chamber 41 of the sputtering apparatus (film forming apparatus) 40 used for forming the buffer layer 12 is 1.5 ⁇ 10 ⁇ 3 Pa or less, and the chamber 41 is within this range.
- the buffer layer 12 is preferably formed after the degree of vacuum is reached.
- impurities typified by oxygen-containing substances such as moisture adhering to the inner wall of the chamber 41 of the sputtering apparatus 40 are formed during the sputtering film formation process. Then, impurities are inevitably mixed in the buffer layer 12 formed on the substrate 11 by being knocked out from the inner wall of the chamber 41. It is considered that such impurities such as oxygen-containing substances are mainly caused by oxygen and moisture in the atmosphere entering the chamber 41 and adhering to the inner wall when the atmosphere is opened for maintenance of the chamber 41. It is done.
- the ultimate vacuum in the chamber 41 of the sputtering apparatus 40 used for forming the buffer layer 12 is set to 1.5 ⁇ 10 ⁇ 3 Pa or less, and the chamber 41 is set to a vacuum degree in this range.
- the impurities adhere to the inner wall of the chamber 41 or are removed by reducing impurities such as oxygen-containing substances existing in the space in the chamber 41 and then buffered.
- Layer 12 is formed.
- the dummy discharge without the film forming process is performed in the chamber 41 of the sputtering apparatus 40 before the sputtering film forming process of the buffer layer 12 is performed. It is preferable to do so.
- a dummy discharge method a method of performing a discharge program similar to the film forming process without introducing a substrate is common. By performing dummy discharge in this way, it is possible to knock out impurities that are springed out under the conditions for film formation even if it is not clear what component is knocked out as an impurity by what mechanism. It becomes possible.
- the dummy discharge by setting the conditions so that impurities are more easily ejected.
- the set temperature for substrate heating is set high (the heater 44 in the sputtering apparatus 40 in FIG. 5), or the power for generating plasma is set high. Is mentioned.
- the dummy discharge as described above can be performed simultaneously with the suction in the chamber 41.
- the ultimate vacuum in the chamber 41 before film formation can be further increased. Thereby, it is possible to more reliably remove and reduce oxygen-containing impurities present in the inner wall and space of the chamber 41. Therefore, the lattice matching between the substrate 11 and the buffer layer 12 is further improved, and the orientation of the buffer layer 12 can be further increased.
- the temperature of the substrate 11 when forming the buffer layer 12 is preferably in the range of room temperature to 1000 ° C., more preferably in the range of 400 to 800 ° C. If the temperature of the substrate 11 is less than the lower limit, the buffer layer 12 cannot cover the entire surface of the substrate 11 and the surface of the substrate 11 may be exposed, and a buffer layer having a desired lattice constant that satisfies the above relationship is obtained. There is a risk of being lost. When the temperature of the substrate 11 exceeds the above upper limit, migration of the metal raw material becomes active and is not suitable as the buffer layer 12.
- the room temperature described in the present invention is a temperature affected by the process environment and the like, but the specific temperature is in the range of 0 to 30 ° C.
- the buffer layer 12 when the buffer layer 12 is formed using the reactive sputtering method, it is preferable that the power applied to the metal target 47 is in the range of 1 W / cm 2 to 20 W / cm 2 .
- the buffer layer 12 has a lattice constant satisfying the above relationship, has a specific anisotropy, and has a good uniformity. As a result, it is possible to form a film on the substrate 11.
- the film quality of AlN can be controlled by changing the power applied to the metal target 47 when the buffer layer 12 made of AlN is formed, and the lattice constant satisfying the above relationship is satisfied. It becomes possible to control well as a film
- the bias value applied to the substrate 11 when the buffer layer 12 is formed by sputtering is 1 W / cm 2 or more.
- the buffer layer 12 has a lattice constant satisfying the above relationship, has specific anisotropy, and has good uniformity. It becomes possible to form a film on the substrate 11 as a simple alignment film.
- the bias value applied to the substrate 11 is preferably higher and is preferably 2 W / cm 2 or more. However, if the bias value applied to the substrate 11 is too high, the buffer layer formed on the substrate is etched, so that the bias value applied to the substrate 11 is lower than the power applied to the metal target 47. There is a need.
- the energy of the Al element in the metal target 47 colliding with the substrate 11 or the nitrogen reactive species increases, and the buffer layer made of AlN Crystallization is promoted, and the film can be satisfactorily controlled as a film having a lattice constant satisfying the above relationship.
- a generally known nitrogen compound can be used without any limitation, but ammonia and nitrogen (N 2 ) are easy to handle and compared. It is preferable because it is inexpensive and available. Ammonia has good decomposition efficiency and can be deposited at a high growth rate. However, because of its high reactivity and toxicity, it requires a detoxification facility and a gas detector. It is necessary to make these materials chemically stable. In addition, when nitrogen (N 2 ) is used as a raw material, a simple apparatus can be used, but a high reaction rate cannot be obtained.
- nitrogen (N 2 ) is the most preferable nitrogen source.
- the ratio of the nitrogen flow rate to the flow rate of nitrogen (N 2 ) and Ar (inert gas) in the gas containing the group V element, that is, nitrogen is preferably more than 20%. If the nitrogen content is 20% or less, the amount of nitrogen present is small and metal is deposited on the substrate 11, so that the crystal structure required for the group III nitride compound as the buffer layer 12 is not obtained. Further, if the flow rate ratio of nitrogen exceeds 99%, the amount of Ar is too small and the sputtering rate is greatly reduced, which is not preferable.
- the nitrogen gas fraction in the gas containing nitrogen is more preferably in the range of 40% to 95%, and most preferably in the range of 60% to 80%.
- the buffer layer 12 by supplying active nitrogen reactive species to the substrate 11 at a high concentration, migration on the substrate 11 can be suppressed, thereby suppressing self-organization and appropriately setting the buffer layer 12.
- a single crystal structure can be obtained.
- a semiconductor layer made of a group III nitride semiconductor stacked thereon can be used. It becomes possible to control the crystallinity well.
- the pressure in the chamber 41 when the buffer layer 12 is formed using the reactive sputtering method is preferably 0.2 Pa or more. If the pressure in the chamber 41 is less than 0.2 Pa, the kinetic energy of the generated reactive species becomes too large, and the film quality of the formed buffer layer becomes insufficient.
- the upper limit of the pressure in the chamber 41 is not particularly limited. However, when the pressure is 0.8 Pa or more, the dimer charged particles contributing to the film orientation are subjected to the interaction of the charged particles in the plasma.
- the pressure in 41 is preferably in the range of 0.2 to 0.8 Pa.
- the film formation rate when forming the buffer layer 12 is preferably in the range of 0.01 nm / s to 10 nm / s.
- the film formation rate is less than 0.01 nm / s, the film grows in an island shape without forming a layer, and there is a possibility that the surface of the substrate 11 cannot be covered.
- the film formation rate exceeds 10 nm / s, the film does not become crystalline but becomes amorphous.
- target When forming a mixed crystal as a buffer layer using a reactive sputtering method in which a gas containing a group V element and a metal material are activated and reacted with plasma, for example, a mixture of metal materials containing Al or the like ( There may be a method of using an alloy as a target. Alternatively, two targets made of different materials may be prepared and sputtered at the same time. For example, when a film having a certain composition is formed, a mixed material target is used, and when several kinds of films having different compositions are formed, a plurality of targets may be installed in the chamber.
- the base layer 13 is formed on the buffer layer 12 formed on the substrate 11 by using a conventionally known MOCVD method. Further, an n-type semiconductor layer 14, a light emitting layer 15, and a p-type semiconductor layer 16 are sequentially stacked on the base layer 13 to form a semiconductor layer 20 including these layers.
- the growth method of the gallium nitride compound semiconductor when forming the base layer 13, the n-type semiconductor layer 14, the light emitting layer 15 and the p-type semiconductor layer 16 is not particularly limited. All methods known to grow nitride semiconductors, such as MOCVD (metal organic chemical vapor deposition), HVPE (hydride vapor deposition), MBE (molecular beam epitaxy) can be applied. Among these methods, in MOCVD, hydrogen (H 2 ) or nitrogen (N 2 ) is used as a carrier gas, trimethyl gallium (TMG) or triethyl gallium (TEG) is used as a Ga source which is a group III material, and trimethyl aluminum is used as an Al source.
- MOCVD metal organic chemical vapor deposition
- HVPE hydrogen vapor deposition
- MBE molecular beam epitaxy
- TMA triethylaluminum
- TAI trimethylindium
- TEI triethylindium
- NH 3 ammonia
- N 2 H 4 hydrazine
- a dopant for n-type, monosilane (SiH 4 ) or disilane (Si 2 H 6 ) is used as a Si raw material, germanium gas (GeH 4 ) or tetramethyl germanium ((CH 3 ) 4 Ge) is used as a Ge raw material.
- organic germanium compounds such as tetraethylgermanium ((C 2 H 5 ) 4 Ge) can be used.
- elemental germanium can also be used as a doping source.
- the p-type for example, biscyclopentadienyl magnesium (Cp 2 Mg) or bisethylcyclopentadienyl magnesium (EtCp 2 Mg) is used as the Mg raw material.
- the gallium nitride compound semiconductor as described above can contain other group III elements in addition to Al, Ga, and In, and dopant elements such as Ge, Si, Mg, Ca, Zn, and Be as necessary. Can be contained. Furthermore, it is not limited to the element added intentionally, but may include impurities that are inevitably included depending on film forming conditions and the like, and trace impurities that are included in the raw materials and reaction tube materials.
- a base layer 13 made of a group III nitride semiconductor is formed on the buffer layer 12 formed on the substrate 11 under the above conditions and procedures using a conventionally known MOCVD method.
- a group III nitride semiconductor film is formed by a vapor phase chemical film formation method such as MOCVD, MBE, or VPE
- the film is processed through a temperature rising process and a temperature stabilization process without film formation.
- the group V source gas is often circulated in the chamber, resulting in an annealing effect.
- a general gas can be used without any limitation, and hydrogen, nitrogen, or the like widely used in a gas phase chemical film forming method such as MOCVD may be used.
- chemically relatively active hydrogen is used as the carrier gas, it is preferable to shorten the processing time because there is a risk of impairing the crystallinity and the flatness of the crystal surface.
- the underlayer 13 is formed using the MOCVD method.
- the method of laminating the underlayer 13 is not particularly limited, and a crystal growth method capable of causing dislocation looping. If it is, it can be used without any limitation.
- the MOCVD method, the MBE method, the VPE method, and the like are preferable in that a film with favorable crystallinity can be formed because migration can occur.
- the MOCVD method can be used more suitably in that a film having particularly good crystallinity can be obtained.
- the temperature of the substrate 11 when the underlayer 13 is formed is preferably 800 ° C. or higher. This is because by increasing the temperature of the substrate 11 when the underlayer 13 is formed, atom migration is likely to occur, and dislocation looping easily proceeds.
- the temperature of the substrate 11 is more preferably 900 ° C. or higher, and most preferably 1000 ° C. or higher.
- the temperature of the substrate 11 when forming the base layer 13 needs to be lower than the temperature at which the crystals decompose, and is preferably less than 1200 ° C. If the temperature of the substrate 11 when forming the underlayer 13 is within the above temperature range, the underlayer 13 with good crystallinity can be obtained.
- the underlayer 13 formed on the substrate 11 by the manufacturing method of the present embodiment is made of Al X Ga 1-X N (1 ⁇ X ⁇ 0), and is formed on the buffer layer 12 that satisfies the above relationship. Therefore, it becomes a layer with excellent crystallinity.
- each of the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 stacked on the base layer 13 and constituting the semiconductor layer 20 can be formed as a layer having excellent crystallinity. It becomes possible.
- the underlayer 13 made of a group III nitride semiconductor using a reactive sputtering method.
- the apparatus can have a simple configuration as compared with the MOCVD method, the MBE method, or the like.
- a method of forming the film by the reactive sputtering method in which the group V raw material (nitrogen) is circulated in the reactor is used to control the reaction. It is more preferable in that the crystallinity can be kept good and the good crystallinity can be stably reproduced.
- the n-type semiconductor layer 14 including the n-type contact layer 14a and the n-type cladding layer 14b is formed on the base layer 13 formed under the above conditions and procedures.
- the n-type contact layer 14a and the n-type cladding layer 14b are formed using a conventionally known MOCVD method. It is also possible to form the n-type contact layer 14a by reactive sputtering.
- a film forming apparatus for forming the n-type contact layer 14a and the n-type clad layer 14b a film forming apparatus used for forming the base layer 13 and the light emitting layer 15 described later can be used by appropriately changing various conditions. It is. Further, when the n-type contact layer 14a is formed by the reactive sputtering method, the sputtering apparatus used is the same apparatus as the sputtering apparatus 40 (see FIG. 5) used for forming the buffer layer 12 described above. In this case, the material used for the target and the film formation conditions such as the gas atmosphere in the chamber 41 may be appropriately changed.
- the light emitting layer 15 is formed by a conventionally known MOCVD method. As illustrated in FIG. 1, the light emitting layer 15 formed in the present embodiment has a stacked structure starting with a GaN barrier layer and ending with the GaN barrier layer, and includes six barrier layers 15 a made of GaN, and a non-doped layer. The five well layers 15b made of In 0.2 Ga 0.8 N are alternately stacked.
- the light emitting layer 15 is formed by a conventionally known MOCVD method by using the same film forming apparatus (MOCVD apparatus) used for forming the underlayer 13 and the n-type cladding layer 14b. A film can be formed.
- MOCVD apparatus film forming apparatus
- a p-type semiconductor layer 16 composed of a p-type cladding layer 16a and a p-type contact layer 16b is formed on the light-emitting layer 15, that is, on the barrier layer 15a that is the uppermost layer of the light-emitting layer 15, using a conventionally known MOCVD method. Form.
- a p-type clad layer 16a made of Al 0.1 Ga 0.9 N doped with Mg is formed on the light emitting layer 15 (the uppermost barrier layer 15a), and further, Mg A p-type contact layer 16b made of Al 0.02 Ga 0.98 N doped with is formed.
- the same MOCVD apparatus as that used for forming the n-type semiconductor layer 14 and the light-emitting layer 15 can be used for stacking the p-type cladding layer 16a and the p-type contact layer 16b.
- not only Mg but also zinc (Zn), for example, can be used as the p-type impurity. It is also possible to form the p-type semiconductor layer 16 by reactive sputtering.
- the transparent semiconductor layer 16 is formed on the p-type semiconductor layer 16 provided in the laminated semiconductor 10 formed according to the above conditions and procedures.
- the light-emitting diode (III) is formed by forming the light-positive electrode 17 and forming the positive-electrode bonding pad 18 thereon, and forming the negative electrode 19 in the exposed region 14d provided in the n-type contact layer 14a of the n-type semiconductor layer 14.
- Group nitride semiconductor light emitting device) 1 can be manufactured.
- the translucent positive electrode 17 made of ITO is formed on the p-type contact layer 16b of the laminated semiconductor 10 in which the respective layers are formed by the above method.
- the method for forming the translucent positive electrode 17 is not particularly limited, and can be provided by conventional means well known in this technical field. Further, any structure including a conventionally known structure can be used without any limitation.
- the material of the translucent positive electrode 17 is not limited to ITO, and can be formed using materials such as AZO, IZO, and GZO. Further, after forming the translucent positive electrode 17, thermal annealing may be performed for the purpose of alloying or transparency, but it may not be performed.
- a positive electrode bonding pad 18 is further formed on the translucent positive electrode 17 formed on the laminated semiconductor 10.
- the positive electrode bonding pad 18 can be formed, for example, by laminating Ti, Al, and Au materials in order from the surface side of the translucent positive electrode 17 by a conventionally known method.
- the negative electrode 19 When forming the negative electrode 19, first, a part of the p-type semiconductor layer 16, the light emitting layer 15, and the n-type semiconductor layer 14 formed on the substrate 11 is removed by a method such as dry etching, whereby n An exposed region 14d of the mold contact layer 14a is formed (see FIGS. 2 and 3). Then, on this exposed region 14d, for example, each material of Ni, Al, Ti, and Au is laminated in order from the surface side of the exposed region 14d by a conventionally known method, so that a detailed illustration is omitted.
- the negative electrode 19 can be formed.
- a light emitting element chip (light emitting element 1) can be obtained by cutting into a square of 350 ⁇ m square.
- the buffer layer 12 is formed of AlN on the substrate 11, and the lattice constant of the buffer layer 12a axis is bulk AlN. Therefore, the buffer layer 12 with high crystal uniformity and good orientation can be formed, and the crystallinity of the underlying layer 13 formed thereon is improved. As a result, a group III nitride semiconductor device excellent in device characteristics can be manufactured.
- an n-type semiconductor layer 14, a light-emitting layer 15, and a p-type semiconductor layer 16 are sequentially stacked on the base layer 13 to form an LED (light-emitting diode) structure. A nitride semiconductor light emitting device can be manufactured.
- the buffer layer 12 can be formed by improving the ultimate vacuum in the chamber 41 of the sputtering apparatus 40 used for the pretreatment of the substrate 11 and the formation of the buffer layer 12. Reduction of impurities mixed during film formation is aimed at.
- conditions such as the temperature of the substrate 11 and the applied power and bias are set as appropriate. Thereby, the lattice constant of the buffer layer 12 can be controlled to the above relationship.
- a lamp By combining the group III nitride semiconductor light emitting device according to the present invention and the phosphor as described above, a lamp can be configured by means well known to those skilled in the art. Conventionally, a technique for changing the emission color by combining a light emitting element and a phosphor is known, and such a technique can be adopted without any limitation. For example, it is possible to obtain light having a longer wavelength than that of the light emitting element by appropriately selecting the phosphor, and white light emission by mixing the light emission wavelength of the light emitting element itself with the wavelength converted by the phosphor. It can also be set as the lamp which exhibits. Further, the lamp can be used for any purpose such as a general bullet type, a side view type for a portable backlight, and a top view type used for a display.
- one of the two frames (frame 31 in FIG. 4)
- the light emitting element 1 is bonded, the negative electrode of the light emitting element 1 (see reference numeral 19 shown in FIG. 3) is bonded to the frame 32 with a wire 34, and the positive electrode bonding pad of the light emitting element 1 (see reference numeral 18 shown in FIG. 3) is attached.
- the wire 33 is joined to the frame 31. Then, by molding the periphery of the light emitting element 1 with a transparent resin 35, a bullet-type lamp 3 as shown in FIG. 4 can be produced.
- the group III nitride semiconductor device having excellent crystallinity obtained in the present invention includes a semiconductor layer provided in a light emitting device such as a light emitting diode (LED) or a laser device (LD) as described above, as well as a solar layer. It can also be used for a photoelectric conversion element such as a battery or a light receiving element, or an electronic device such as an HBT (Heterojunction Bipolar Transistor) or HEMT (High Electron Mobility Transistor). Many of these semiconductor elements have various structures, and the layered structure of the group III nitride semiconductor according to the present invention is not limited at all including these known element structures.
- group III nitride semiconductor device and the manufacturing method thereof and the group III nitride semiconductor light emitting device and the manufacturing method thereof according to the present invention will be described in more detail with reference to examples.
- the present invention is limited only to these examples. Is not to be done.
- FIG. 1 shows a schematic cross-sectional view of a laminated semiconductor of a group III nitride compound semiconductor light-emitting device manufactured in this experimental example.
- a single crystal layer made of AlN is formed as the buffer layer 12 using RF sputtering, and on the GaN using MOCVD as the underlayer 13.
- a layer made of (Group III nitride semiconductor) was formed.
- the pressure in the chamber is maintained at 1.0 Pa, a high frequency bias of 50 W is applied to the substrate 11 side, The surface of the substrate 11 was cleaned by exposure to plasma.
- the inside of the chamber is sucked by a vacuum pump, and simultaneously, at the same time, dummy discharge is repeated a total of 16 times to reduce the pressure in the chamber of the sputtering apparatus, and the internal pressure is reduced to 6.0 ⁇ 10 ⁇ 6 Pa. Was removed.
- argon and nitrogen gas were introduced into the sputtering apparatus while keeping the temperature of the substrate 11 as it was. Then, a high frequency bias of 2000 W was applied to the metal Al target side, the pressure in the furnace was maintained at 0.5 Pa, Ar gas was flowed at 5 sccm, and nitrogen gas was flowed at 15 sccm (the ratio of nitrogen in the entire gas was 75%)
- the single crystal buffer layer 12 made of AlN was formed on the substrate 11 made of sapphire. The magnet in the target was swung both when the substrate 11 was cleaned and when the film was formed.
- the plasma operation is stopped and the temperature of the substrate 11 is lowered after the film formation of 40 nm of AlN (buffer layer 12) by processing for a specified time. It was.
- the X-ray rocking curve (XRC) of the buffer layer 12 formed on the substrate 11 was measured using an X-ray measuring device (Spectris, model number: X'part Pro MRD). This measurement was performed using a CuK ⁇ ray X-ray generation source as a light source.
- XRC half-value width of the buffer layer 12 shows excellent characteristics of 0.10 deg in the (0002) plane and 1.40 deg in the (10-10) plane, and the buffer layer 12 of this example is well oriented. I was able to confirm.
- XRD X-ray diffraction
- the substrate 11 on which AlN (buffer layer 12) was formed was taken out of the sputtering apparatus and transferred into the MOCVD apparatus, and a base layer 13 made of GaN was formed on the buffer layer 12 by the following procedure.
- the MOCVD apparatus used for forming the underlayer 13 a conventionally known apparatus was used.
- the substrate 11 was introduced into a reaction furnace (MOCVD apparatus).
- the heater was operated to raise the substrate temperature from room temperature to 500 ° C.
- ammonia (NH 3 ) gas and nitrogen gas were circulated while maintaining the substrate temperature at 500 ° C., and the pressure in the vapor phase growth reactor was set to 95 kPa (pressure unit: Pa). Subsequently, the temperature of the substrate 11 was raised to 1000 ° C., and the substrate surface was subjected to thermal cleaning. Note that the supply of nitrogen gas into the vapor growth reactor was continued even after the thermal cleaning was completed. Then, while continuing the circulation of ammonia gas, the temperature of the substrate was raised to 1100 ° C. in a hydrogen atmosphere, and the pressure in the reactor was 40 kPa.
- the X-ray rocking curve (XRC) of the base layer 13 made of undoped GaN formed as described above was measured using an X-ray measurement apparatus (Spectris, model number: X'part Pro MRD). This measurement was performed on a (0002) plane which is a symmetric plane and a (10-10) plane which is an asymmetric plane, using a Cu ⁇ ray X-ray generation source as a light source.
- the undoped GaN layer produced by the manufacturing method of the present invention has an XRC half-value width of 39 arcsec in the (0002) plane measurement and 266 arcsec in the (10-10) plane, and has surface flatness and crystallinity. It was confirmed that it was good.
- a total of 54 samples are produced by the steps from the pretreatment of the substrate 11 to the formation of the underlayer 13 as described above, and the lattice constant of the buffer layer 12 of each sample is obtained by the same method as described above. And the XRC half width of the underlayer 13 was measured. Then, the a-axis and c-axis of the lattice constant of the buffer layer 12 were plotted on a graph, and indicated by ⁇ in the graph of FIG. As shown in the graph of FIG. 6, in the sample manufactured in this example, the relationship between the lattice constants of the a axis and the c axis of the buffer layer 12 is all included in the region E1 or E2, and is defined by the present invention. It was confirmed that the relationship was satisfied.
- the XRC half-value width of the base layer 13 formed on the buffer layer 12 is in the range of 35 to 72 arcsec in the measurement of the (0002) plane, and is 204 in the (10-10) plane. It was in the range of ⁇ 295 arcsec, and it was confirmed that the surface flatness and crystallinity were good.
- the n-type contact layer 14a and the n-type cladding layer 14b are further obtained by the following procedure on the sample obtained by sequentially stacking the buffer layer 12 and the base layer 13 on the substrate 11 by the above procedure.
- the light emitting layer 15 and the p-type semiconductor layer 16 were formed.
- n-type contact layer 14a made of GaN was formed on the underlayer 13 using the same MOCVD apparatus as used for forming the underlayer 13. At this time, the n-type contact layer 14a was doped with Si. Crystal growth was performed under the same conditions as the underlayer 13 except that SiH 4 was circulated as a Si dopant material.
- an AlN buffer layer 12 having a single crystal structure is formed on a substrate 11 made of sapphire whose surface has been reverse sputtered, and an undoped GaN layer (underlayer 13) having a thickness of 8 ⁇ m is formed thereon. Then, a 2 ⁇ m Si-doped GaN layer (initial layer forming the n-type contact layer 14a) having a carrier concentration of 5 ⁇ 10 18 cm ⁇ 3 was formed. The substrate taken out from the apparatus after film formation was colorless and transparent, and the surface of the GaN layer (here, the initial layer forming the n-type contact layer 14a) was a mirror surface.
- n-type cladding layer 14b and a light-emitting layer 15 were stacked on the sample n-type contact layer 14a produced by the above procedure by using the MOCVD method.
- Formation of n-type cladding layer After introducing the sample in which the n-type contact layer 14a was grown by the above procedure into the MOCVD apparatus, the substrate temperature was lowered to 760 ° C. with nitrogen as the carrier gas while circulating ammonia. At this time, the supply amount of SiH 4 was set while waiting for the temperature change in the furnace. The amount of SiH 4 to be circulated was calculated in advance and adjusted so that the electron concentration of the Si-doped layer was 4 ⁇ 10 18 cm ⁇ 3 . Ammonia continued to be fed into the furnace at the same flow rate.
- SiH 4 gas and vapors of TMI and TEG generated by bubbling were circulated into the furnace while ammonia was circulated in the chamber, and a layer made of Ga 0.99 In 0.01 N was formed to a thickness of 1.
- a layer composed of 7 nm and GaN was formed to a thickness of 1.7 nm.
- a layer made of Ga 0.99 In 0.01 N was grown again with a film thickness of 1.7 nm. Further, the SiH 4 flow was continued during this process.
- an n-type cladding layer 14b having a superlattice structure of Si-doped Ga 0.99 In 0.01 N and GaN was formed.
- a light-emitting layer 15 composed of a barrier layer 15a made of GaN and a well layer 15b made of Ga 0.92 In 0.08 N and having a multiple quantum well structure was formed.
- a barrier layer 15a is first formed on the n-type cladding layer 14b made of Si-doped Ga 0.99 In 0.01 N, and Ga 0. A well layer 15b made of 92 In 0.08 N was formed.
- the sixth barrier layer 15a is formed on the fifth stacked well layer 15b, and the barrier layers 15a are arranged on both sides of the light emitting layer 15 having the multiple quantum well structure.
- the structure was as follows.
- the susceptor temperature was lowered to 760 ° C.
- the supply of TEG and SiH 4 was started, and after the final barrier layer having a thickness of 3.5 nm was grown, the supply of TEG and SiH 4 was stopped again.
- the growth of the GaN barrier layer was completed.
- the amount of SiH 4 was adjusted so that the Si concentration was 1 ⁇ 10 17 cm ⁇ 3 .
- TEG and TMI are supplied into the furnace to form a well layer, and a Ga 0.92 In 0.08 N layer having a thickness of 3 nm ( A well layer 15b) was formed. Then, after the growth of the well layer 15b made of Ga 0.92 In 0.08 N, the setting of the TEG supply amount was changed. Subsequently, the supply of TEG and SiH 4 was restarted, and the second barrier layer 15a was formed.
- barrier layer 15a made of five layers of Si-doped GaN and a well layer 15b made of five layers of Ga 0.92 In 0.08 N were formed.
- a sixth barrier layer was formed.
- the supply of SiH 4 is stopped, an initial barrier layer made of undoped GaN is formed, and then the substrate temperature is kept at 920 ° C. while the supply of TEG into the furnace is continued.
- the intermediate barrier layer was grown for a specified time at a substrate temperature of 920 ° C., and then the supply of TEG into the furnace was stopped.
- the substrate temperature was lowered to 760 ° C., the supply of TEG was started, and after the final barrier layer was grown, the supply of TEG was stopped again, and the growth of the GaN barrier layer was completed.
- a barrier layer made of undoped GaN having a total film thickness of 4 nm was formed (three layers of the initial barrier layer, the intermediate barrier layer, and the final barrier layer). (See upper barrier layer 15a).
- a well layer with a non-uniform thickness (the first to fourth well layers 15b from the n-type semiconductor layer 14 side in FIGS. 1 and 3) and a well layer with a uniform thickness (FIG. 1).
- the light emitting layer 15 having a multiple quantum well structure including the fifth well layer 15b from the n-type semiconductor layer 14 side in FIG.
- the p-type cladding layer 16a having a superlattice structure made of GaN doped with four layers of non-doped Al 0.06 Ga 0.94 N and three layers of Mg is formed using the same MOCVD apparatus.
- the substrate temperature was raised to 975 ° C. while supplying NH 3 gas, and then the carrier gas was switched from nitrogen to hydrogen at this temperature. Subsequently, the substrate temperature was changed to 1050 ° C. Then, by supplying TMG and TMA into the furnace, a layer made of non-doped Al 0.06 Ga 0.94 N was formed to a thickness of 2.5 nm. Subsequently, without taking an interval, the TMA valve was closed and the Cp 2 Mg valve was opened to form a Mg-doped GaN layer with a thickness of 2.5 nm. The above operation was repeated three times, and finally a layer of undoped Al 0.06 Ga 0.94 N was formed to form a p-type cladding layer 16a having a superlattice structure.
- the epitaxial wafer for LED produced as described above is formed by forming an AlN layer (buffer layer 12) having a single crystal structure on a substrate 11 made of sapphire having a c-plane, and then sequentially starting from the substrate 11 side.
- An n-type contact comprising an 8 ⁇ m-thick undoped GaN layer (underlayer 13), a 2 ⁇ m-thick Si-doped GaN initial layer having an electron concentration of 5 ⁇ 10 18 cm ⁇ 3 , and a 200-nm-thick Si-doped GaN regrowth layer Superlattice having Si concentration of layer 14a, 4 ⁇ 10 18 cm ⁇ 3 , 20 layers of Ga 0.99 In 0.01 N with a thickness of 1.7 nm and 19 layers of GaN with a thickness of 1.7 nm
- An n-type cladding layer 14b having a structure, a five-layer Si-doped GaN barrier layer (barrier layer 15a) having a thickness of 6 nm
- FIG. 3 15 (see the uppermost barrier layer 15a), a light emitting layer 15 having a multiple quantum well structure, four layers of non-doped Al 0.06 Ga 0.94 N having a thickness of 2.5 nm, and a film thickness Is a p-type cladding layer 16a composed of three layers having a superlattice structure made of Mg-doped Al 0.01 Ga 0.99 N with a thickness of 2.5 nm, and a p-type made of Mg-doped GaN with a thickness of 200 nm
- a p-type semiconductor layer 16 composed of the contact layer 16b is stacked.
- Example 3 an LED was fabricated by forming each electrode on the epitaxial wafer obtained in Example 2 (see the laminated semiconductor 10 shown in FIG. 1).
- the transparent electrode 17 made of ITO is formed on the surface of the Mg-doped AlGaN layer (p-type semiconductor layer 16b) of the epitaxial wafer by a known photolithography technique, and titanium, aluminum, and gold are sequentially formed thereon.
- a positive electrode bonding pad 18 (p-electrode bonding pad) having a laminated structure was formed as a p-side electrode. Further, dry etching is performed on the wafer to expose a region for forming the n-side electrode (negative electrode) of the n-type contact layer 14a, and three layers of Cr, Ti, and Au are sequentially stacked on the exposed region 14d.
- a negative electrode 19 (n-side electrode) was formed. By such a procedure, each electrode having a shape as shown in FIG. 2 was formed on the wafer (see the laminated semiconductor 10 in FIG. 1).
- the light emission wavelength was 450 to 460 nm, and the light emission output was in the range of 17 to 19 mW.
- Such characteristics of the light-emitting diode were obtained with no variation for light-emitting diodes manufactured from almost the entire surface of the manufactured wafer.
- a single-crystal layer made of AlN is formed as the buffer layer 12 on the c-plane of the substrate 11 made of sapphire using the MOCVD method, and the GaN using the MOCVD method as the base layer 13 thereon.
- a layer made of (Group III nitride semiconductor) was formed.
- the substrate 11 was transferred into the MOCVD apparatus, and AlN (buffer layer 12) was formed by the following procedure.
- MOCVD apparatus used for forming the buffer layer 12
- a conventionally known apparatus was used as the MOCVD apparatus used for forming the buffer layer 12.
- the substrate 11 was introduced into a reaction furnace (MOCVD apparatus).
- the heater was operated to raise the temperature of the substrate 11 from room temperature to 1170 ° C.
- hydrogen gas and nitrogen gas were circulated, and the surface of the substrate 11 was subjected to thermal cleaning. Note that after the thermal cleaning was completed, the supply of nitrogen gas into the gas phase reaction furnace was stopped, and the supply of gas into the reaction furnace was limited to hydrogen.
- the temperature of the substrate 11 was lowered to 1150 ° C. And after confirming that the temperature of the board
- TMA trimethylaluminum
- the supply of ammonia gas was resumed, and the temperature of the substrate 11 was lowered to 1100 ° C. in a hydrogen atmosphere.
- the supply of trimethylgallium (TMG) into the vapor phase growth reactor is started, and the group III nitride forming the underlayer 13 is formed on the buffer layer 12.
- the process of forming a physical semiconductor (GaN) film was started. After growing GaN in this way, the TMG piping valve was switched, the supply of the source gas to the reactor was terminated, and the growth of GaN was stopped.
- an undoped base layer 13 made of GaN having a thickness of 8 ⁇ m was formed on the buffer layer 12 made of AlN formed on the substrate 11. Further, in the above process, when the supply of TMA is stopped and the film formation of AlN (buffer layer 12) is completed, the substrate 11 is taken out from the reaction furnace, so that only AlN (buffer layer 12) is formed on the substrate 11. A film-formed sample was prepared.
- the XRC half-value width was (0002). It was 0.51 deg on the surface and 0.91 deg on the (10-10) surface.
- the buffer layer 12 has a lattice constant of 3.109a for the a-axis and 4.993 ⁇ for the c-axis, and the relationship between the a-axis and the c-axis is included in the region E3 in the graph shown in FIG. It was confirmed that
- this GaN (underlayer 13) was colorless and transparent, but it was confirmed that the roughness was larger than the surface of the underlayer 13 in Example 1. It was done.
- the X-ray rocking curve (XRC) half width of this GaN underlayer was measured by the same method as in Example 1. As a result, it was 198 arcsec for the (0002) plane measurement and 327 arcsec for the (10-10) plane measurement. Compared to Example 1 above, it was confirmed that the surface flatness and crystallinity were inferior.
- Pretreatment of the substrate using plasma treatment is not performed, the ultimate vacuum in the chamber before film formation is appropriately set at a vacuum higher than 1.0 ⁇ 10 ⁇ 3 Pa, and the final film thickness is Except for the point exceeding 500 nm or less than 10 nm, a buffer layer was laminated on the substrate in the same procedure as in Example 1, and an undoped GaN layer (underlayer) was further laminated thereon.
- the X-ray rocking curve (XRC) of the buffer layer formed on the substrate was measured by the same method as in Example 1, the XRC half-value width was 0.29 deg in the (0002) plane and in the (10-10) plane. 2.10 deg.
- the buffer layer has a lattice constant of 3.117 ⁇ for the a-axis and 4.982 ⁇ for the c-axis, and the relationship between the a-axis and the c-axis is a range that satisfies the above relationship in the graph shown in FIG. It was confirmed that it is included in the region E3 that is out of the regions E1 and E2.
- the substrate was taken out from the chamber after film formation and visually confirmed, it was confirmed that the surface of the substrate, that is, the surface of the GaN underlayer was colorless, but the surface was rough and cloudy and cracks were generated. It was.
- the X-ray rocking curve (XRC) half-value width of this GaN underlayer was measured by the same method as in the above example, and it was 172 arcsec for the (0002) plane measurement and 426 arcsec for the (10-10) plane measurement. Yes, it was confirmed that the surface flatness and crystallinity were inferior to those of Example 1.
- Samples plotted with ⁇ marks are examples in which surface abnormalities were observed and surface flatness was low.
- the lattice constant relationship between the a-axis and the c-axis of the buffer layer 12 deviates from the regions E1 and E2 and is included in the region E3. It became.
- the group III nitride semiconductor device according to the present invention has good crystallinity and excellent device characteristics, and also has an LED (light emitting diode) structure. It is apparent that the nitride semiconductor light emitting device has excellent light emission characteristics.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Led Devices (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
本願は、2008年3月13日に、日本に出願された特願2008-064111号に基づき優先権を主張し、その内容をここに援用する。
また、上記特許文献1~5の何れにおいても、特に、結晶の転位密度に大きく関わり、LED等の発光素子の特性を向上させるために重要となる、GaNからなる下地層の(10-10)面の結晶性が低いという大きな問題があった。
すなわち、本発明は以下に関する。
前記バッファ層が、AlNからなり、
前記バッファ層のa軸の格子定数が、バルク状態におけるAlNのa軸の格子定数よりも小さいIII族窒化物半導体素子。
[2] 前記バッファ層の格子定数が、下記(1)式で表される関係を満たす上記[1]に記載のIII族窒化物半導体素子。
(c0-c)/(a0-a) ≧ ―1.4 ・・・・・(1)
(但し、(1)式中、c0はバルクのAlNのc軸の格子定数、cはバッファ層のc軸の格子定数、a0はバルクのAlNのa軸の格子定数、aはバッファ層のa軸の格子定数である。)
[3] 前記バッファ層のc軸の格子定数が5Å以上である上記[1]又は[2]に記載のIII族窒化物半導体素子。
[4] 前記バッファ層が、単結晶組織からなる上記[1]~[3]の何れか1項に記載のIII族窒化物半導体素子。
[5] 前記バッファ層が、柱状結晶の集合体からなる上記[1]~[3]の何れか1項に記載のIII族窒化物半導体素子。
[6] 前記バッファ層の膜厚が、10~500nmの範囲である上記[1]~[5]の何れか1項に記載のIII族窒化物半導体素子。
[7] 前記バッファ層の膜厚が、20~100nmの範囲である上記[1]~[5]の何れか1項に記載のIII族窒化物半導体素子。
[8] 前記バッファ層が、前記基板表面の少なくとも90%を覆うように形成されている上記[1]~[7]の何れか1項に記載のIII族窒化物半導体素子。
[10] 前記バッファ層は、V族元素を含むガスと金属材料とを、プラズマで活性化して反応させることによって成膜されたものである上記[1]~[9]の何れか1項に記載のIII族窒化物半導体素子。
[11] 前記バッファ層は、反応性スパッタ法によって成膜されたものである上記[10]に記載のIII族窒化物半導体素子。
[12] 前記バッファ層上に、III族窒化物半導体からなる下地層が形成されている上記[1]~[11]の何れか1項に記載のIII族窒化物半導体素子。
[13] 前記下地層がGaNからなる上記[12]に記載のIII族窒化物半導体素子。
[14] 前記バッファ層上に形成される下地層が、MOCVD法によって成膜されるものである上記[12]又は[13]に記載のIII族窒化物半導体素子。
[15] 前記下地層の(0002)面のX線ロッキングカーブ半値幅が100arcsec以下である上記[12]~[14]のいずれか1項に記載のIII族窒化物半導体素子。
[16] 前記下地層の(10-10)面のX線ロッキングカーブ半値幅が300arcsec以下である上記[12]~[15]の何れか1項に記載のIII族窒化物半導体素子。
[17] 上記[12]~[16]の何れか1項に記載のIII族窒化物半導体素子に備えられる下地層上に、少なくとも、n型半導体層、発光層及びp型半導体層が順次積層されてなるIII族窒化物半導体発光素子。
前記バッファ層を、AlNから形成し、且つ、前記バッファ層のa軸の格子定数がバルク状態におけるAlNのa軸の格子定数よりも小さい関係を満たす条件として形成するIII族窒化物半導体素子の製造方法。
[19] 前記バッファ層を、該バッファ層の格子定数が下記(1)式で表される関係を満たす条件として形成する上記[18]に記載のIII族窒化物半導体素子の製造方法。
(c0-c)/(a0-a) ≧ ―1.4 ・・・・・(1)
(但し、(1)式中、c0はバルクのAlNのc軸の格子定数、cはバッファ層のc軸の格子定数、a0はバルクのAlNのa軸の格子定数、aはバッファ層のa軸の格子定数である。)
[20] 前記バッファ層を、該バッファ層のc軸の格子定数が5Å以上である関係を満たす条件として形成する上記[18]又は[19]に記載のIII族窒化物半導体素子の製造方法。
[21] 前記バッファ層を、V族元素を含むガスと金属材料とをプラズマで活性化して反応させることによって成膜する上記[18]~[20]の何れか1項に記載のIII族窒化物半導体素子の製造方法。
[22] 前記バッファ層を、反応性スパッタ法を用いて成膜する上記[21]に記載のIII族窒化物半導体素子の製造方法。
[24] 前記成膜装置のチャンバ内においてダミー放電を行なった後、前記バッファ層を形成する上記[18]~[23]のいずれか1項に記載のIII族窒化物半導体素子の製造方法。
[25] 前記基板に対してプラズマ処理による前処理を施した後、前記バッファ層を形成する上記[18]~[24]の何れか1項に記載のIII族窒化物半導体素子の製造方法。
[26] 前記プラズマ処理が逆スパッタである上記[25]に記載のIII族窒化物半導体素子の製造方法。
[27] 前記バッファ層を、前記基板の温度を400~800℃の範囲として形成する上記[18]~[26]の何れか1項に記載のIII族窒化物半導体素子の製造方法。
[28] 前記バッファ層上に、MOCVD法を用いて下地層を形成する上記[18]~[27]の何れか1項に記載のIII族窒化物半導体素子の製造方法。
[29] 上記[28]に記載の製造方法で得られるIII族窒化物半導体素子に備えられる下地層の上に、少なくとも、n型半導体層、発光層及びp型半導体層を順次積層するIII族窒化物半導体発光素子の製造方法。
[31] 上記[29]に記載の製造方法によって得られるIII族窒化物半導体発光素子。
[32] 上記[17]又は[31]の何れか1項に記載のIII族窒化物半導体発光素子が用いられてなるランプ。
本実施形態のIII族窒化物半導体素子(以下、半導体素子と略称することがある)においては、基板11上に、少なくともIII族窒化物化合物からなるバッファ層12が積層されており、該バッファ層12がAlNからなり、バッファ層12のa軸の格子定数(lattice constant)が、バルク状態におけるAlNのa軸の格子定数よりも小さい(図1に示す積層半導体10を参照)。また、本実施形態の半導体素子においては、バッファ層12の格子定数が上記関係を満たすとともに、下記(1)式で表される関係を満たすことが好ましい。
(c0-c)/(a0-a) ≧ ―1.4 ・・・・・(1)
但し、(1)式中、c0はバルクのAlNのc軸の格子定数、cはバッファ層のc軸の格子定数、a0はバルクのAlNのa軸の格子定数、aはバッファ層のa軸の格子定数である。
図1は、本発明に係る半導体素子の一例を説明するための図であり、基板上にIII族窒化物半導体が形成された積層半導体の一例を示す概略断面図である。
図1に示す積層半導体(III族窒化物半導体素子、III族窒化物半導体発光素子)10においては、基板11上に、III族窒化物化合物からなり、上記(1)式で表される関係を満たす格子定数を有するバッファ層12が積層されており、図示例では、バッファ層12の上に下地層13が形成されている。
また、図1に示す例の積層半導体10においては、下地層13の上に、さらに、n型半導体層14、発光層15、及びp型半導体層16が順次積層され、これら各層からなるLED構造(半導体層20)が形成される。これにより、積層半導体10は、III族窒化物半導体発光素子として構成されている。
以下、本実施形態のIII族窒化物半導体素子(III族窒化物半導体発光素子)の積層構造について詳述する。
基板11の材料としては、特に限定されないが、サファイアを用いることが好ましい。
一般に、III族窒化物半導体結晶が積層される基板の材料としては、表面上にIII族窒化物半導体結晶がエピタキシャル成長する基板の材料であればよく、例えば、サファイア、SiC、シリコン、酸化亜鉛、酸化マグネシウム、酸化マンガン、酸化ジルコニウム、酸化マンガン亜鉛鉄、酸化マグネシウムアルミニウム、ホウ化ジルコニウム、酸化ガリウム、酸化インジウム、酸化リチウムガリウム、酸化リチウムアルミニウム、酸化ネオジウムガリウム、酸化ランタンストロンチウムアルミニウムタンタル、酸化ストロンチウムチタン、酸化チタン、ハフニウム、タングステン、モリブデン等が挙げられる。この中でも、サファイア、SiC等の六方晶構造を有する材料を基板に用いることが、結晶性の良好なIII族窒化物半導体を積層できる点で好ましく、サファイアを用いることが最も好ましい。
また、基板の大きさとしては、通常は直径2インチ程度のものが用いられるが、本発明のIII族窒化物半導体素子では、直径4~6インチの基板を使用することも可能である。
バッファ層12は、上記材料からなる基板11上に積層される。また、バッファ層12は、AlNからなり、例えば、V族元素を含むガスと金属材料とをプラズマで活性化して反応させる反応性スパッタ法によって形成することができる。
本実施形態のような、プラズマ化した金属原料を用いた方法で成膜された膜は、配向が得られ易いという作用がある。
バッファ層12の膜厚が10nm未満だと、上述したコート層としての機能が充分でなくなる虞がある。また、500nmを超える膜厚でバッファ層12を形成した場合、コート層としての機能には変化が無いのにも関わらず成膜処理時間が長くなり、生産性が低下する虞がある。また、バッファ層12の膜厚が、10nm未満あるいは500nm超の場合には、格子定数を、上記(1)式で表される関係を満たすように制御するのが困難となる。
また、バッファ層12の膜厚は、20~100nmの範囲とされていることがより好ましい。
一般に、基板上に積層させるバッファ層12の組成としては、Alを含有する組成が好ましく、一般式AlXGa1-XN(1≧X≧0)で表されるIII族窒化物化合物であれば、如何なる材料でも用いることができる。さらに、V族としてAsやPが含有される組成を用いることもできる。なかでも、バッファ層の組成がAlを含む場合には、GaAlNが好ましく、この場合には、Alの組成が50%以上であることがより好ましい。また、上述したように、バッファ層12の構成はAlNからなることが最も好ましい。
本実施形態では、バッファ層12のa軸の格子定数が、バルク状態におけるAlNのa軸の格子定数よりも小さいことが好ましい。また、本実施形態の半導体素子は、バッファ層12の格子定数が上記関係を満たすとともに、さらに、下記(1)式で表される関係を満たす膜とされていることがより好ましい(図6のグラフにおける領域E1、E2を参照)。
(c0-c)/(a0-a) ≧ ―1.4 ・・・・・(1)
但し、(1)式中、c0はバルクのAlNのc軸の格子定数、cはバッファ層のc軸の格子定数、a0はバルクのAlNのa軸の格子定数、aはバッファ層のa軸の格子定数である。
なお、本発明において説明するバルク状態とは、外部から応力等が付加された状態ではなく、表面や界面の影響を無視できる程度の大きさを持った結晶の集合体若しくは単結晶の状態のことである。また、上記結晶は単一の組成からなる。バルク状態におけるAlNの格子定数は、a軸が3.111Å、c軸が4.980Åである(参考文献:I.Akasaki and H.Amano et al., Jpn. J. Appl. Phys. 36 (1997) 5393-5408.)
また、バッファ層12においては、c軸の格子定数が、バルク状態におけるAlNのc軸の格子定数=4.980Åよりも大きいことが好ましく、5Å以上であることがより好ましい(図6における領域E2を参照)。
また、図7は、AlNからなるバッファ層において、上記(1)式中の左辺に示す{(c0-c)/(a0-a)}の数値とその上に形成されるGaN層(下地層)の(0002)面のXRC(X線ロッキングカーブ)半値幅との関係を示すグラフである。図7のグラフ中、符号Jの破線は、上記(1)式中において{(c0-c)/(a0-a)=-1.4}を示す直線である。
ここで、一般的に、GaN等のIII族窒化物半導体の場合、(0002)面のXRCスペクトルの半値幅は結晶の平坦性(モザイシティ、mosaicity)の指標となり、(10-10)面のXRCスペクトル半値幅は転位密度(ツイスト、twist)の指標となる。
さらに、バッファ層のc軸の格子定数を5Å以上とした場合には、その上に形成されるGaNからなる下地層の(10-10)面のXRC半値幅は300arcsec以下となり、結晶性が良好となる。
このように、GaN層(下地層)の結晶性が良好であれば、その上に成膜されIII族窒化物半導体(GaN)からなるn型半導体層、発光層、p型半導体層の各層の結晶性の向上に寄与することが明らかである。
AlNからなるバッファ層は、c軸配向で基板上に成長するため、AlNのa軸の格子定数と基板の格子定数との整合性が問題となる。サファイアからなる基板は、a軸の格子定数がAlNよりも小さいことから、これによって生じる格子不整合のため、従来の半導体素子においては、AlNからなるバッファ層中に多くの結晶欠陥が存在する状態となっていた。これに対し、本発明のように、AlNからなるバッファ層の成膜条件を適宜制御することにより、バルク状態におけるAlNのa軸の格子定数よりも小さく、サファイアの格子に整合したバッファ層(AlN)を成膜できる。このようなAlNからなるバッファ層には結晶欠陥が少なく、良好に配向した膜となる。そのため、その上に成長するGaNからなる下地層は、表面状態の良好なミラー状の結晶となる。
また、AlN結晶中に応力が加わった際、内部に結晶欠陥が生じることによって応力が緩和されることがある。AlNからなるバッファ層のc軸格子定数が、バルク状態におけるAlNのc軸の格子定数よりも大きい場合には、AlN中の結晶欠陥が少ないため、その上に積層されるGaN(下地層13)の転位密度の指標となる(10-10)面のXRC半値幅が小さくなる。よって、バッファ層12のc軸の格子定数が5Å以上の場合には、下地層13の結晶性が良好となる。
これに対して、後述の実施例において詳細を説明するが、図6のグラフ中、格子定数の関係が、直線Gよりも右側、つまり、a軸の格子定数が大となる側に含まれるバッファ層(AlN)の場合には、その上に形成されるGaN層(下地層)の配向性が劣ることが明らかとなっている。また、図6のグラフ中、格子定数の関係が、直線Gよりも右側であって、且つ、a軸の格子定数が、バルク状態におけるAlNのa軸の格子定数(3.11Å)よりも大きなバッファ層(AlN)の場合には、その上に形成されるGaN層(下地層)の表面平坦性が劣ることが明らかとなっている。
このように、格子定数が、本発明で規定する関係を満たす条件とされていない従来のバッファ層の場合には、その上に形成されるGaN層(下地層)の表面平坦性や結晶性が劣る膜となるという問題がある。
図1に示すように、本実施形態の積層半導体10においては、上述のようなバッファ層12上に積層され、かつIII族窒化物半導体からなる下地層13が形成されている。また、下地層13の上に、さらに、III族窒化物半導体からなるn型半導体層14、発光層15及びp型半導体層16が順次積層されることにより、半導体層20が形成されている。
本実施形態の下地層13は、上述したようにIII族窒化物半導体からなり、従来公知のMOCVD法によってバッファ層12上に積層して成膜される。
下地層13の材料としては、必ずしも基板11上に成膜されたバッファ層12と同じである必要はなく、異なる材料を用いても構わないが、AlyGa1―yN層(0≦y≦1、好ましくは0≦y≦0.5、さらに好ましくは0≦y≦0.1)から構成されることが好ましい。また、下地層13に用いる材料としては、Gaを含むIII族窒化物化合物、即ちGaN系化合物半導体が用いられることが好ましく、特に、AlGaN、又はGaNを好適に用いることができる。
なお、バッファ層12をAlNからなる柱状結晶の集合体として形成した場合には、下地層13がバッファ層12の結晶性をそのまま引き継がないように、マイグレーションによって転位をループ化させる必要がある。このような材料としても上記Gaを含むGaN系化合物半導体が挙げられ、特に、AlGaN、又はGaNが好適である。
基板11が導電性である場合には、下地層13にドーパントをドープして導電性とすることにより、発光素子の上下に電極を形成することができる。一方、基板11に絶縁性の材料を用いる場合には、発光素子の同じ面に正極及び負極の各電極が設けられたチップ構造をとることになるので、下地層13はドープしない結晶とした方が、結晶性が良好となるので好ましい。n型不純物としては、特に限定されないが、例えば、Si、GeおよびSn等が挙げられ、好ましくはSiおよびGeが挙げられる。
また、本実施形態の下地層13は、(10-10)面のXRC半値幅が300arcsec以下であることが好ましい。(10-10)面のXRC半値幅がこのような数値であれば、下地層13を、より優れた結晶性を有する層として構成することができ、その上に積層される各層の結晶性を向上させることが可能となる。
本実施形態のn型半導体層14は、下地層13上に成膜され、n型コンタクト層14a及びn型クラッド層14bから構成される。なお、上述のような下地層13が、n型コンタクト層を兼ねることも可能である。
本実施形態のn型コンタクト層14aは、III族窒化物半導体からなり、MOCVD法、又はスパッタ法によって下地層13上に積層して成膜することができる。
n型コンタクト層14aは、上述したような下地層13と同様に、AlXGa1―XN層(0≦x≦1、好ましくは0≦x≦0.5、さらに好ましくは0≦x≦0.1)から構成されることが好ましい。また、n型不純物がドープされていることが好ましく、n型不純物を1×1017~1×1019個/cm3、好ましくは1×1018~1×1019個/cm3の濃度で含有することが、負極との良好なオーミック接触の維持、クラック発生の抑制、良好な結晶性の維持の点で好ましい。n型不純物としては、特に限定されないが、例えば、Si、GeおよびSn等が挙げられ、好ましくはSiおよびGeである。また、n型コンタクト層14aの成長温度は、下地層13の成長温度と同様の温度とすることができる。
上述したようなn型コンタクト層14aと、詳細を後述する発光層15との間には、n型クラッド層14bを設けることが好ましい。n型クラッド層14bを設けることにより、n型コンタクト層14aの最表面に生じた平坦性の悪化を改善することができる。n型クラッド層14bは、MOCVD法等を用いて、AlGaN、GaN、GaInN等により成膜することが可能である。また、これらの構造のヘテロ接合や複数回積層した超格子構造を用いてもよい。GaInNとする場合には、発光層15のGaInNのバンドギャップよりも大きくすることが望ましいことは言うまでもない。
また、n型クラッド層14bのn型ドープ濃度は1×1017~1×1020個/cm3の範囲とされていることが好ましく、より好ましくは1×1018~1×1019個/cm3の範囲である。ドープ濃度がこの範囲であると、良好な結晶性の維持および発光素子の動作電圧低減の点で好ましい。
発光層15は、n型半導体層14上に積層されるとともにp型半導体層16がその上に積層される層であり、従来公知のMOCVD法等を用いて成膜することができる。また、発光層15は、図1に示すように、窒化ガリウム系化合物半導体からなる障壁層15aと、インジウムを含有する窒化ガリウム系化合物半導体からなる井戸層15bとが交互に繰り返して積層されてなり、図示例では、n型半導体層14側及びp型半導体層16側に障壁層15aが配されている。
また、障壁層15aには、例えば、インジウムを含有した窒化ガリウム系化合物半導体からなる井戸層15bよりもバンドギャップエネルギーが大きいAlcGa1-cN(0≦c<0.3)等の窒化ガリウム系化合物半導体を、好適に用いることができる。
p型半導体層16は、通常、p型クラッド層16a及びp型コンタクト層16bから構成され、MOCVD法、又は反応性スパッタ法を用いて成膜される。また、p型コンタクト層がp型クラッド層を兼ねるように構成されることも可能である。
また、p型半導体層16全体の膜厚は、特に限定されないが、好ましくは0.05~1μmの範囲である。
p型クラッド層16aの組成は、詳細を後述する発光層15よりもバンドギャップエネルギーが大きく、発光層15へのキャリアの閉じ込めができるものであれば特に限定されないが、好ましくは、AldGa1-dN(0<d≦0.4、好ましくは0.1≦d≦0.3)のものが挙げられる。p型クラッド層16aが、このようなAlGaNからなることが、発光層15へのキャリアの閉じ込めの点で好ましい。
p型クラッド層16aの膜厚は、特に限定されないが、好ましくは1~400nmであり、より好ましくは5~100nmである。
p型コンタクト層16bとしては、少なくともAleGa1-eN(0≦e<0.5、好ましくは0≦e≦0.2、より好ましくは0≦e≦0.1)を含んでなる窒化ガリウム系化合物半導体層である。Al組成が上記範囲であると、良好な結晶性の維持およびpオーミック電極(後述の透光性電極17を参照)との良好なオーミック接触の点で好ましい。
p型コンタクト層16bの膜厚は、特に限定されないが、10~500nmが好ましく、より好ましくは50~200nmである。膜厚がこの範囲であると、発光出力の点で好ましい。
図2の平面図及び図3の断面図に示す例のように、積層半導体10に備えられるp型半導体層16上に透光性正極17を形成し、その上に正極ボンディングパッド18を形成するとともに、n型半導体層14のn型コンタクト層14aに設けられる露出領域14dに負極19を形成することにより、発光ダイオード(III族窒化物半導体発光素子)1を構成することができる。
透光性正極17は、上述した積層半導体10のp型半導体層16(p型コンタクト層16b)上に形成される透光性の電極である。
透光性正極17の材質としては、特に限定されず、ITO(In2O3-SnO2)、AZO(ZnO-Al2O3)、IZO(In2O3-ZnO)、GZO(ZnO-Ga2O3)等が挙げられ、これらの材料を用いて、この技術分野でよく知られた慣用の手段で、透光性正極17を設けることができる。また、その構造も、従来公知の構造を含めて如何なる構造のものも何ら制限なく用いることができる。
また、透光性正極17は、Mgがドープされたp型半導体層16上のほぼ全面を覆うように形成しても構わないし、隙間を開けて格子状や樹形状に形成しても良い。
正極ボンディングパッド18は、上述の透光性正極17上に形成される電極である。
正極ボンディングパッド18の材料としては、Au、Al、Ni及びCu等が挙げられ、これらを用いた各種構造が周知であり、これら周知の材料、構造のものを何ら制限無く用いることができる。
正極ボンディングパッド18の厚さは、100~1000nmの範囲内であることが好ましい。また、ボンディングパッドの特性上、厚い方が、ボンダビリティーが高くなるため、正極ボンディングパッド18の厚さは300nm以上とすることがより好ましい。さらに、製造コストの観点から500nm以下とすることが好ましい。
負極19としては、各種組成および構造の負極が周知であり、これら周知の負極を何ら制限無く用いることができ、この技術分野でよく知られた慣用の手段で設けることができる。
また、LED(発光ダイオード)構造を有するIII族窒化物半導体発光素子1は、下地層13の上に、さらに、n型半導体層14、発光層15及びp型半導体層16が順次積層されてなるので、発光特性に優れたものとなる。
本実施形態のIII族窒化物半導体素子の製造方法は、基板11上に、少なくともIII族窒化物化合物からなるバッファ層12を積層する方法であり、バッファ層12を、AlNから形成し、且つ、バッファ層12のa軸の格子定数がバルクのAlNのa軸の格子定数よりも小さい関係を満たす条件として形成する方法である。また、本実施形態の製造方法は、バッファ層12の格子定数が上記関係を満たすとともに、下記(1)式で表される関係を満たす条件として、バッファ層12を形成することが好ましい。
(c0-c)/(a0-a) ≧ ―1.4 ・・・・・(1)
但し、(1)式中、c0はバルクのAlNのc軸の格子定数、cはバッファ層のc軸の格子定数、a0はバルクのAlNのa軸の格子定数、aはバッファ層のa軸の格子定数である。
以下、本実施形態のIII族窒化物半導体素子(III族窒化物半導体発光素子)の製造方法について詳述する。
本実施形態では、バッファ層12を、V族元素を含むガスと金属材料とをプラズマで活性化して反応させることによって基板11上に成膜する。本例では、バッファ層12を反応性スパッタ法を用いて成膜する。また、本実施形態では、バッファ層12をAlNから形成し、且つ、バッファ層12のa軸の格子定数が、バルクのAlNのa軸の格子定数よりも小さい条件として形成する方法であり、またさらに、次式{(c0-c)/(a0-a)≧―1.4}(但し、式中、c0はバルクのAlNのc軸の格子定数、cはバッファ層のc軸の格子定数、a0はバルクのAlNのa軸の格子定数、aはバッファ層のa軸の格子定数である)で表される関係を満たす条件として形成することができる。このように、バッファ層12を成膜する際の条件によって格子定数を制御する。具体的には、到達真空度、ダミー放電及び基板の前処理等による不純物の低減や、基板温度やパワー(及びバイアス)等の条件を適宜設定することによって格子定数の制御を行なうことが可能であり、以下に詳述するような条件並びに手順としている。
本実施形態では、基板11を反応器(図5に示すスパッタ装置40を参照)中に導入した後、バッファ層12を形成する前に、プラズマ処理による逆スパッタ等の方法を用いて前処理を行うことが望ましい。具体的には、基板11をArやN2のプラズマ中に曝す事によって表面を整えることができる。例えば、ArガスやN2ガスなどのプラズマを基板11表面に作用させる逆スパッタにより、基板11表面に付着した有機物や酸化物を除去することができる。この場合、基板11とチャンバとの間に電圧を印加すれば、プラズマ粒子が効率的に基板11に作用する。このような前処理を基板11に施すことにより、基板11の表面11a全面にバッファ層12を成膜することができ、その上に成膜されるIII族窒化物半導体からなる膜の結晶性を高めることが可能となる。
また、基板11には、上述のような逆スパッタによる前処理を行なう前に、湿式の前処理を施すことがより好ましい。
ここで、基板の表面からコンタミ等を除去するために、例えば、イオン成分等を単独で基板表面に供給した場合には、エネルギーが強すぎて基板表面にダメージを与えてしまい、基板上に成長させる結晶の品質を低下させてしまうという問題がある。
本実施形態では、基板11への前処理として、上述のようなイオン成分とラジカル成分とが混合された雰囲気で行なわれるプラズマ処理を用い、基板11に適度なエネルギーを持つ反応種を作用させることにより、基板11表面にダメージを与えずにコンタミ等の除去を行なうことが可能となる。このような効果が得られるメカニズムとしては、イオン成分の割合が少ないプラズマを用いることで基板表面に与えるダメージが抑制されることと、基板表面にプラズマを作用させることによって効果的にコンタミを除去できること等が考えられる。
本例では、基板11の表面に対して上記前処理を施した後、スパッタ装置40(図5参照)のチャンバ41内にアルゴン及び窒素元素含有ガスを導入し、基板11を500℃程度に加温する。そして、基板11側に高周波バイアスを印加するとともに、III族金属原料として金属Alが用いられた金属ターゲット47側にパワーを印加してチャンバ41内にプラズマを発生させ、チャンバ41内の圧力を一定に保ちながら、基板11上にAlNからなるバッファ層12を成膜する。
バッファ層12を基板11上に成膜する方法としては、反応性スパッタ法の他、例えば、MOCVD法、パルスレーザーデポジション(PLD)法、パルス電子線堆積(PED)法等が挙げられ、適宜選択して用いることができるが、反応性スパッタ法が最も簡便で量産にも適しているため、好適な方法である。
図5に示す例のスパッタ装置40では、金属ターゲット47の下方(図5の下方)にマグネット42が配され、該マグネット42が図示略の駆動装置によって金属ターゲット47の下方で揺動する。チャンバ41には窒素ガス、及びアルゴンガスが供給され、ヒータ44に取り付けられた基板11上に、バッファ層が成膜される。この際、上述のようにマグネット42が金属ターゲット47の下方で揺動しているため、チャンバ41内に閉じ込められたプラズマが移動し、基板11の表面11aの他、側面に対しても、むらなくバッファ層を成膜することが可能となる。
しかしながら、従来のスパッタ装置並びに成膜方法でバッファ層を成膜した場合、最大で6回から8回程度の成膜処理を行う必要があり、長時間の工程となってしまう。これ以外の成膜方法としては、基板を保持せずにチャンバ内に設置することにより、基板全面に成膜する方法も考えられるが、基板を加熱する必要がある場合には装置が複雑になる虞がある。そこで、例えば、基板を揺動させたり又は回転運動させたりすることが可能なスパッタ装置を用いることにより、基板の位置を、成膜材料のスパッタ方向に対して変更させつつ、成膜することが可能となる。このようなスパッタ装置並びに成膜方法とすることにより、基板の表面及び側面を一度の工程で成膜することが可能となる。また、この工程に続いて基板裏面への成膜工程を行うことにより、計2回の工程で基板全面を覆うことが可能となる。
本実施形態の製造方法では、バッファ層12の形成に用いるスパッタ装置(成膜装置)40のチャンバ41内の到達真空度を1.5×10-3Pa以下とし、チャンバ41内をこの範囲の真空度とした後、バッファ層12を形成することが好ましい。
上述したように、反応性スパッタ法を用いてバッファ層を形成した場合、スパッタ装置40のチャンバ41の内壁に付着した、水分等の酸素含有物に代表される不純物が、スパッタ成膜処理の際にチャンバ41の内壁から叩き出され、基板11上に成膜されるバッファ層12の膜中に不純物が不可避的に混入する。このような酸素含有物等の不純物は、主として、チャンバ41のメンテナンスを行うために大気開放した際、大気中の酸素や水分がチャンバ41内に侵入し、内壁に付着することによって生じるものと考えられる。
これにより、AlNからなるバッファ層12を、不純物が大量に混入しない状態で成膜することができるので、サファイアからなる基板11との間の格子整合性が向上し、配向性に優れた層となる。
本実施形態の製造方法では、上述の到達真空度をより向上させるため、バッファ層12のスパッタ成膜処理を行なう前に、スパッタ装置40のチャンバ41内において、成膜処理を伴わないダミー放電を行なうことが好ましい。
ダミー放電の方法としては、成膜処理と同様の放電プログラムを、基板を導入せずに行う方法が一般的である。このような方法でダミー放電を行なうことにより、如何なる成分が、如何なる機構で不純物として叩き出されてくるのかが明らかでなくとも、成膜を行う条件で湧出される不純物を、予め叩き出すことが可能となる。
また、このようなダミー放電は、通常の成膜条件と同様の条件として行う方法以外にも、さらに不純物を叩き出し易い条件に設定して行なうことも可能である。このような条件としては、例えば、基板加熱用の設定温度を高めに設定したり(図5のスパッタ装置40におけるヒータ44)、プラズマを発生させるためのパワーを高めに設定したりする等の条件が挙げられる。
またさらに、上述のようなダミー放電は、チャンバ41内の吸引と同時に行なうことも可能である。
バッファ層12を成膜する際の基板11の温度は、室温~1000℃の範囲とすることが好ましく、400~800℃の範囲とすることがより好ましい。基板11の温度が上記下限未満だと、バッファ層12が基板11全面を覆うことができず、基板11表面が露出する虞があり、また、上記関係を満たす所望の格子定数のバッファ層が得られなくなる虞がある。
基板11の温度が上記上限を超えると、金属原料のマイグレーションが活発となり、バッファ層12としては不適である。なお、本発明で説明する室温とは、工程の環境等にも影響される温度であるが、具体的な温度としては、0~30℃の範囲である。
本実施形態では、反応性スパッタ法を用いてバッファ層12を成膜する際、金属ターゲット47に印加するパワーを1W/cm2~20W/cm2の範囲とすることが好ましい。金属ターゲット47に印加するパワーを上記範囲としてスパッタ成膜を行なうことにより、バッファ層12を、上記関係を満たす格子定数を有し、特定の異方性を有するとともに、均一性の良好な配向膜として基板11上に成膜することが可能となる。
また、バッファ層12の成膜レートは、金属ターゲット47に印加するパワーによって変化するが、20W/cm2のパワーとした場合には、成膜されるバッファ層の膜厚の増加が見られた。このため、金属ターゲット47に印加するパワーはより高い方が、工程時間の短縮等の面から好ましい。
本実施形態の製造方法では、AlNからなるバッファ層12を成膜する際の、金属ターゲット47に印加するパワーを変化させることにより、AlNの膜質を制御することができ、上記関係を満たす格子定数を有する膜として良好に制御することが可能となる。
また、基板11に印加するバイアス値はより高いことが好ましく、2W/cm2以上とすることが好ましい。しかしながら、基板11に印加するバイアス値が高すぎると、基板上に成膜されたバッファ層がエッチングされてしまうので、基板11に印加するバイアス値は、金属ターゲット47に印加するパワーよりも低くする必要がある。
本実施形態で用いるV族元素を含むガスとしては、一般に知られている窒素化合物を何ら制限されることなく用いることができるが、アンモニアや窒素(N2)は取り扱いが簡単であるとともに、比較的安価で入手可能であることから好ましい。
アンモニアは分解効率が良好であり、高い成長速度で成膜することが可能であるが、反応性や毒性が高いため、除害設備やガス検知器が必要となり、また、反応装置に使用する部材の材料を化学的に安定性の高いものにする必要がある。
また、窒素(N2)を原料として用いた場合には、装置としては簡便なものを用いることができるが、高い反応速度は得られない。しかしながら、窒素を電界や熱等により分解してから装置に導入する方法とすれば、アンモニアよりは成膜速度は低いものの、工業生産的に利用可能な程度の成膜速度を得ることができるため、装置コストとの兼ね合いを考えると、窒素(N2)は最も好適な窒素源である。
反応性スパッタ法を用いてバッファ層12を成膜する際のチャンバ41内の圧力は、0.2Pa以上であることが好ましい。このチャンバ41内の圧力が0.2Pa未満だと、発生する反応種の持つ運動エネルギーが大きくなりすぎ、形成されるバッファ層の膜質が不十分となる。また、チャンバ41内の圧力の上限は特に限定されないが、0.8Pa以上になると、膜の配向に寄与する二量体荷電粒子がプラズマ中の荷電粒子の相互作用を受けるようになるため、チャンバ41内の圧力は0.2~0.8Paの範囲とすることが好ましい。
バッファ層12を成膜する際の成膜速度は、0.01nm/s~10nm/sの範囲とすることが好ましい。成膜速度が0.01nm/s未満だと、膜が層とならずに島状に成長してしまい、基板11の表面を覆うことができなくなる虞がある。成膜速度が10nm/sを超えると、膜が結晶体とならずに非晶質となってしまう。
V族元素を含むガスと金属材料とをプラズマで活性化して反応させる反応性スパッタ法を用いて、バッファ層として混晶を成膜する際には、例えば、Al等を含む金属材料の混合物(必ずしも、合金を形成していなくても構わない)をターゲットとして用いる方法もあるし、異なる材料からなる2つのターゲットを用意して同時にスパッタする方法としても良い。例えば、一定の組成の膜を成膜する場合には混合材料のターゲットを用い、組成の異なる何種類かの膜を成膜する場合には複数のターゲットをチャンバ内に設置すれば良い。
本実施形態の製造方法においては、基板11上に形成されたバッファ層12の上に、下地層13を従来公知のMOCVD法を用いて形成する。また、下地層13の上に、さらに、n型半導体層14、発光層15及びp型半導体層16を順次積層し、これら各層からなる半導体層20を形成する。
本実施形態では、上記各条件及び手順で基板11上に形成されたバッファ層12の上に、III族窒化物半導体からなる下地層13を、従来公知のMOCVD法を用いて形成する。
本実施形態では、上記各条件及び手順で形成された下地層13の上に、n型コンタクト層14a及びn型クラッド層14bからなるn型半導体層14を形成する。本実施形態では、従来公知のMOCVD法を用いて、n型コンタクト層14a及びn型クラッド層14bを形成する。また、n型コンタクト層14aを、反応性スパッタ法で形成することも可能である。
また、n型コンタクト層14aを反応性スパッタ法によって形成する場合、使用するスパッタ装置としては、上述したバッファ層12の成膜に用いたスパッタ装置40(図5を参照)と同じ装置を用いることができ、この場合には、ターゲットに用いる材料や、チャンバ41内のガス雰囲気等の成膜条件を適宜変更すれば良い。
n型クラッド層14b上には、発光層15を、従来公知のMOCVD法によって形成する。
本実施形態で形成する発光層15は、図1に例示するように、GaN障壁層に始まりGaN障壁層に終わる積層構造を有しており、GaNからなる6層の障壁層15aと、ノンドープのIn0.2Ga0.8Nからなる5層の井戸層15bとを交互に積層して形成する。
また、本実施形態の製造方法では、下地層13やn型クラッド層14bの成膜に用いる成膜装置(MOCVD装置)と同じものを使用することにより、従来公知のMOCVD法で発光層15を成膜することができる。
発光層15上、つまり、発光層15の最上層となる障壁層15aの上には、p型クラッド層16a及びp型コンタクト層16bからなるp型半導体層16を、従来公知のMOCVD法を用いて形成する。
なお、上述したように、p型不純物としては、Mgのみならず、例えば亜鉛(Zn)等も同様に用いることができる。
また、p型半導体層16を、反応性スパッタ法によって形成することも可能である。
本実施形態の製造方法においては、図2の平面図及び図3の断面図に示す例のように、上記各条件及び手順によって形成された積層半導体10に備えられるp型半導体層16上に透光性正極17を形成し、その上に正極ボンディングパッド18を形成するとともに、n型半導体層14のn型コンタクト層14aに設けられる露出領域14dに負極19を形成することにより、発光ダイオード(III族窒化物半導体発光素子)1を製造することができる。
上記方法によって各層が形成されてなる積層半導体10のp型コンタクト層16b上に、ITOからなる透光性正極17を形成する。
透光性正極17の形成方法としては、特に限定されず、この技術分野でよく知られた慣用の手段で設けることができる。また、その構造も、従来公知の構造を含めて如何なる構造のものも何ら制限なく用いることができる。
また、透光性正極17を形成した後、合金化や透明化を目的とした熱アニールを施す場合もあるが、施さなくても構わない。
積層半導体10上に形成された透光性正極17上に、さらに、正極ボンディングパッド18を形成する。この正極ボンディングパッド18は、例えば、透光性正極17の表面側から順に、Ti、Al、Auの各材料を、従来公知の方法で積層することによって形成することができる。
また、下地層13の上に、さらに、n型半導体層14、発光層15及びp型半導体層16を順次積層してLED(発光ダイオード)構造を形成することにより、発光特性に優れたIII族窒化物半導体発光素子を製造することが可能となる。
以上説明したような、本発明に係るIII族窒化物半導体発光素子と蛍光体とを組み合わせることにより、当業者周知の手段によってランプを構成することができる。従来より、発光素子と蛍光体と組み合わせることによって発光色を変える技術が知られており、このような技術を何ら制限されることなく採用することが可能である。
例えば、蛍光体を適正に選定することにより、発光素子より長波長の発光を得ることも可能となり、また、発光素子自体の発光波長と蛍光体によって変換された波長とを混ぜることにより、白色発光を呈するランプとすることもできる。
また、ランプとしては、一般用途の砲弾型、携帯のバックライト用途のサイドビュー型、表示器に用いられるトップビュー型等、何れの用途にも用いることができる。
図1に、本実験例で作製したIII族窒化物化合物半導体発光素子の積層半導体の断面模式図を示す。
本例では、サファイアからなる基板11のc面上に、バッファ層12としてRFスパッタ法を用いてAlNからなる単結晶の層を形成し、その上に、下地層13としてMOCVD法を用いてGaN(III族窒化物半導体)からなる層を形成した。
まず、表面を鏡面研磨した直径2インチの(0001)c面サファイアからなる基板を、フッ酸及び有機溶媒によって洗浄した後、チャンバ中へ導入した。この際、スパッタ装置としては、図5に例示するスパッタ装置40ように、高周波式の電源を有し、また、ターゲット内でマグネットの位置を動かすことができる機構を有する装置を使用した。なお、ターゲットとしては、金属Alからなるものを用いた。
そして、チャンバ内で基板11を500℃まで加熱し、窒素ガスを15sccmの流量で導入した後、チャンバ内の圧力を1.0Paに保持し、基板11側に50Wの高周波バイアスを印加し、窒素プラズマに晒すことによって基板11表面を洗浄した。
次いで、真空ポンプによってチャンバ内を吸引し、これと同時にダミー放電を計16回繰り返すことによってスパッタ装置のチャンバ内を減圧し、6.0×10-6Paまで内圧を低下させ、チャンバ内の不純物を除去した。
そして、予め測定した成膜速度(0.067nm/s)に従い、規定した時間の処理により、40nmのAlN(バッファ層12)を成膜後、プラズマ動作を停止し、基板11の温度を低下させた。
次いで、AlN(バッファ層12)が成膜された基板11を、スパッタ装置内から取り出してMOCVD装置内に搬送し、バッファ層12上に、以下の手順でGaNからなる下地層13を成膜した。ここで、下地層13の成膜に使用するMOCVD装置としては、従来公知の装置を使用した。
まず、基板11を反応炉(MOCVD装置)内に導入した。次いで、反応炉内に窒素ガスを流通させた後、ヒータを作動させて、基板温度を室温から500℃に昇温した。そして、基板の温度を500℃に保ったまま、アンモニア(NH3)ガスおよび窒素ガスを流通させて、気相成長反応炉内の圧力を95kPa(圧力単位:Pa)とした。続いて、基板11の温度を1000℃まで昇温させ、基板表面をサーマルクリーニング(thermal cleaning)した。なお、サーマルクリーニングの終了後も、気相成長反応炉内への窒素ガスの供給を継続させた。
その後、アンモニアガスの流通を続けながら、水素雰囲気中で基板の温度を1100℃に昇温させるとともに、反応炉内の圧力を40kPaとした。基板温度が1100℃で安定するのを確認した後、トリメチルガリウム(TMG)の、気相成長反応炉内への供給を開始し、バッファ層12上に下地層13を構成するIII族窒化物半導体(GaN)を成膜する工程を開始した。このようにしてGaNを成長させた後、TMGの配管のバルブを切り替え、原料の反応炉への供給を終了してGaNの成長を停止した。
以上の工程により、基板11上に成膜された単結晶組織のAlNからなるバッファ層12の上に、アンドープで8μmの膜厚のGaNからなる下地層13を成膜した。成膜後に反応炉内から取り出した試料は無色透明であり、GaN層(下地層13)の表面は鏡面であった。
この測定の結果、本発明の製造方法で作製したアンドープGaN層は、XRC半値幅が、(0002)面の測定では39arcsec、(10-10)面では266arcsecを示し、表面平坦性及び結晶性が良好であることが確認できた。
また、本例で作製したサンプルは、バッファ層12上に形成された下地層13のXRC半値幅が、(0002)面の測定では全て35~72arcsecの範囲、(10-10)面では全て204~295arcsec範囲であり、表面平坦性及び結晶性が良好であることが確認できた。
本例では、上記手順で、基板11上にバッファ層12及び下地層13が順次積層されて得られたサンプルの上に、さらに、以下の手順により、n型コンタクト層14a、n型クラッド層14b、発光層15及びp型半導体層16を形成した。
まず、下地層13上に、該下地層13の成膜に用いたものと同じMOCVD装置を用いて、GaNからなるn型コンタクト層14aの初期層を形成した。この際、n型コンタクト層14aにはSiをドープした。結晶成長は、Siのドーパント原料としてSiH4を流通させた以外は、下地層13と同じ条件によって行った。
上記手順で作製したサンプルのn型コンタクト層14a上に、MOCVD法を用いてn型クラッド層14b及び発光層15を積層した。
上記手順でn型コンタクト層14aを成長させたサンプルをMOCVD装置に導入した後、アンモニアを流通させながら、キャリアガスを窒素として、基板温度を760℃へ低下させた。
この際、炉内の温度の変更を待つ間に、SiH4の供給量を設定した。流通させるSiH4の量については事前に計算を行い、Siドープ層の電子濃度が4×1018cm-3となるように調整した。アンモニアはそのままの流量で炉内へ供給し続けた。
次いで、GaNからなる障壁層15aと、Ga0.92In0.08Nからなる井戸層15bとから構成され、多重量子井戸構造を有する発光層15を形成した。この、発光層15の形成にあたっては、SiドープGa0.99In0.01Nからなるn型クラッド層14b上に、まず、障壁層15aを形成し、この障壁層15a上に、Ga0.92In0.08Nからなる井戸層15bを形成した。このような積層手順を5回繰り返した後、5番目に積層した井戸層15b上に、6番目の障壁層15aを形成し、多重量子井戸構造を有する発光層15の両側に障壁層15aを配した構造とした。
そして、Ga0.92In0.08Nからなる井戸層15bの成長終了後、TEGの供給量の設定を変更した。引き続いて、TEGおよびSiH4の供給を再開し、2層目の障壁層15aの形成を行なった。
上述の各工程に引き続き、同じMOCVD装置を用いて、4層のノンドープのAl0.06Ga0.94Nと3層のMgをドープしたGaNよりなる超格子構造を持つp型クラッド層16aを成膜し、更に、その上に膜厚が200nmのMgドープGaNからなるp型コンタクト層16bを成膜し、p型半導体層16とした。
以上のような操作を3回繰り返し、最後にアンドープAl0.06Ga0.94Nの層を形成することにより、超格子構造よりなるp型クラッド層16aを形成した。
本例では、実施例2で得られたエピタキシャルウェーハ(図1に示す積層半導体10を参照)上に、各電極を形成することによってLEDを作製した。
上述のようにして作製した発光ダイオードのp側およびn側の電極間に順方向電流を流したところ、電流20mAにおける順方向電圧は3.1~3.3Vの範囲であった。また、p側の透光性電極17を通してサンプルチップからの発光状態を観察したところ、発光波長は450~460nmであり、発光出力は17~19mWの範囲を示した。このような発光ダイオードの特性は、作製したウェーハのほぼ全面から作製された発光ダイオードについて、ばらつきなく得られた。
本実験例では、サファイアからなる基板11のc面上に、バッファ層12としてMOCVD法を用いてAlNからなる単結晶の層を形成し、その上に、下地層13としてMOCVD法を用いてGaN(III族窒化物半導体)からなる層を形成した。
まず、基板11を反応炉(MOCVD装置)に導入した。次いで、反応炉内に窒素ガスを流通させた後、ヒータを作動させて、基板11の温度を室温から1170℃に昇温した。そして、基板11の温度を1170℃に保ったまま、水素ガスおよび窒素ガスを流通させ、基板11の表面をサーマルクリーニング(Thermal cleaning)した。なお、サーマルクリーニングの終了後、気相反応炉内への窒素ガスの供給を停止し、反応炉内へのガスの供給を水素のみとした。
以上の工程により、基板11上に成膜されたAlNからなるバッファ層12の上に、アンドープで8μmの膜厚のGaNからなる下地層13を成膜した。
また、上記工程において、TMAの供給を停止し、AlN(バッファ層12)の成膜が終了した時点で基板11を反応炉内から取り出すことにより、基板11上にAlN(バッファ層12)のみが成膜された試料を作製した。
プラズマ処理を用いた基板の前処理を行なわず、また、成膜前のチャンバ内の到達真空度を1.0×10-3Paよりも高圧の真空度で適宜設定するとともに、最終膜厚を500nm超あるいは10nm未満とした点を除き、上記実施例1と同様の手順で、基板上にバッファ層を積層し、その上に、さらに、アンドープGaN層(下地層)を積層した。
Claims (15)
- 基板上に、少なくともIII族窒化物化合物からなるバッファ層が積層されてなるIII族窒化物半導体素子であって、
前記バッファ層が、AlNからなり、
前記バッファ層のa軸の格子定数が、バルク状態におけるAlNのa軸の格子定数よりも小さいIII族窒化物半導体素子。 - 前記バッファ層の格子定数が、下記(1)式で表される関係を満たす請求項1に記載のIII族窒化物半導体素子。
(c0-c)/(a0-a) ≧ ―1.4 ・・・・・(1)
(但し、(1)式中、c0はバルクのAlNのc軸の格子定数、cはバッファ層のc軸の格子定数、a0はバルクのAlNのa軸の格子定数、aはバッファ層のa軸の格子定数である。) - 前記バッファ層のc軸の格子定数が5Å以上である請求項1に記載のIII族窒化物半導体素子。
- 前記バッファ層が、単結晶組織からなる請求項1に記載のIII族窒化物半導体素子。
- 前記バッファ層の膜厚が、10~500nmの範囲とされている請求項1に記載のIII族窒化物半導体素子。
- 前記バッファ層は、V族元素を含むガスと金属材料とを、プラズマで活性化して反応させることによって成膜されたものである請求項1に記載のIII族窒化物半導体素子。
- 前記バッファ層上に、III族窒化物半導体からなる下地層が形成されている請求項1に記載のIII族窒化物半導体素子。
- 前記下地層の(0002)面のX線ロッキングカーブ半値幅が100arcsec以下である請求項7に記載のIII族窒化物半導体素子。
- 前記下地層の(10-10)面のX線ロッキングカーブ半値幅が300arcsec以下である請求項7に記載のIII族窒化物半導体素子。
- 請求項7に記載のIII族窒化物半導体素子に備えられる下地層上に、少なくとも、n型半導体層、発光層及びp型半導体層が順次積層されてなるIII族窒化物半導体発光素子。
- 基板上に、少なくともIII族窒化物化合物からなるバッファ層を積層するIII族窒化物半導体素子の製造方法であって、
前記バッファ層を、AlNから形成し、且つ、前記バッファ層のa軸の格子定数がバルク状態におけるAlNのa軸の格子定数よりも小さい関係を満たす条件として形成するIII族窒化物半導体素子の製造方法。 - 前記バッファ層を、該バッファ層の格子定数が下記(1)式で表される関係を満たす条件として形成することを特徴とする請求項11に記載のIII族窒化物半導体素子の製造方法。
(c0-c)/(a0-a) ≧ ―1.4 ・・・・・(1)
(但し、(1)式中、c0はバルクのAlNのc軸の格子定数、cはバッファ層のc軸の格子定数、a0はバルクのAlNのa軸の格子定数、aはバッファ層のa軸の格子定数である。) - 前記バッファ層上に、MOCVD法を用いて下地層を形成する請求項11に記載のIII族窒化物半導体素子の製造方法。
- 請求項13に記載の製造方法で得られるIII族窒化物半導体素子に備えられる下地層の上に、少なくとも、n型半導体層、発光層及びp型半導体層を順次積層するIII族窒化物半導体発光素子の製造方法。
- 請求項10に記載のIII族窒化物半導体発光素子が用いられてなるランプ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801153529A CN102017082B (zh) | 2008-03-13 | 2009-03-06 | Ⅲ族氮化物半导体元件及其制造方法、ⅲ族氮化物半导体发光元件及其制造方法和灯 |
US12/921,695 US8569794B2 (en) | 2008-03-13 | 2009-03-06 | Group III nitride semiconductor device and method for manufacturing the same, group III nitride semiconductor light-emitting device and method for manufacturing the same, and lamp |
JP2010502792A JP4644754B2 (ja) | 2008-03-13 | 2009-03-06 | Iii族窒化物半導体素子及びiii族窒化物半導体発光素子 |
KR1020107021247A KR101159995B1 (ko) | 2008-03-13 | 2009-03-06 | Ⅲ족 질화물 반도체 소자 및 그 제조 방법, ⅲ족 질화물 반도체 발광 소자 및 그 제조 방법, 및 램프 |
EP09718583.9A EP2273536B1 (en) | 2008-03-13 | 2009-03-06 | Group iii nitride semiconductor device and method for manufacturing the same, group iii nitride semiconductor light-emitting device and method for manufacturing the same, and lamp |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008064111 | 2008-03-13 | ||
JP2008-064111 | 2008-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009113458A1 true WO2009113458A1 (ja) | 2009-09-17 |
Family
ID=41065127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/054310 WO2009113458A1 (ja) | 2008-03-13 | 2009-03-06 | Iii族窒化物半導体素子及びその製造方法、iii族窒化物半導体発光素子及びその製造方法、並びにランプ |
Country Status (6)
Country | Link |
---|---|
US (1) | US8569794B2 (ja) |
EP (1) | EP2273536B1 (ja) |
JP (2) | JP4644754B2 (ja) |
KR (1) | KR101159995B1 (ja) |
CN (1) | CN102017082B (ja) |
WO (1) | WO2009113458A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012182283A (ja) * | 2011-03-01 | 2012-09-20 | Sanken Electric Co Ltd | 半導体装置 |
JP5576507B2 (ja) * | 2010-12-27 | 2014-08-20 | キヤノンアネルバ株式会社 | エピタキシャル膜形成方法、スパッタリング装置、半導体発光素子の製造方法、半導体発光素子、および照明装置 |
JP2014199839A (ja) * | 2013-03-29 | 2014-10-23 | 株式会社タムラ製作所 | 結晶積層構造体及びその製造方法、並びに半導体素子 |
JP2017055116A (ja) * | 2015-09-11 | 2017-03-16 | 国立大学法人三重大学 | 窒化物半導体基板の製造方法、窒化物半導体基板およびその加熱装置 |
JP2020061473A (ja) * | 2018-10-10 | 2020-04-16 | 国立大学法人三重大学 | 窒化物半導体の製造方法、窒化物半導体、及び発光素子 |
CN112877657A (zh) * | 2021-01-12 | 2021-06-01 | 有研工程技术研究院有限公司 | 一种AlN薄膜的制备方法 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5272390B2 (ja) * | 2007-11-29 | 2013-08-28 | 豊田合成株式会社 | Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ |
JP5709899B2 (ja) | 2010-01-05 | 2015-04-30 | ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. | 発光ダイオード及びその製造方法 |
WO2011094391A1 (en) | 2010-01-27 | 2011-08-04 | Yale University | Conductivity based selective etch for gan devices and applications thereof |
JP5310604B2 (ja) * | 2010-03-05 | 2013-10-09 | 豊田合成株式会社 | 半導体発光素子の製造方法および半導体発光素子、ランプ、電子機器、機械装置 |
JP5781292B2 (ja) * | 2010-11-16 | 2015-09-16 | ローム株式会社 | 窒化物半導体素子および窒化物半導体パッケージ |
US9269870B2 (en) | 2011-03-17 | 2016-02-23 | Epistar Corporation | Light-emitting device with intermediate layer |
JP2013033930A (ja) * | 2011-06-29 | 2013-02-14 | Sumitomo Electric Ind Ltd | Iii族窒化物半導体素子、及び、iii族窒化物半導体素子の製造方法 |
US20130026480A1 (en) * | 2011-07-25 | 2013-01-31 | Bridgelux, Inc. | Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow |
JP5883331B2 (ja) | 2012-01-25 | 2016-03-15 | 住友化学株式会社 | 窒化物半導体エピタキシャルウェハの製造方法及び電界効果型窒化物トランジスタの製造方法 |
JP5934575B2 (ja) * | 2012-05-16 | 2016-06-15 | サンケン電気株式会社 | 窒化物半導体装置の製造方法 |
WO2014004261A1 (en) * | 2012-06-28 | 2014-01-03 | Yale University | Lateral electrochemical etching of iii-nitride materials for microfabrication |
JP5362085B1 (ja) * | 2012-09-05 | 2013-12-11 | 株式会社東芝 | 窒化物半導体ウェーハ、窒化物半導体素子及び窒化物半導体ウェーハの製造方法 |
JP5698321B2 (ja) * | 2013-08-09 | 2015-04-08 | Dowaエレクトロニクス株式会社 | Iii族窒化物半導体エピタキシャル基板およびiii族窒化物半導体発光素子ならびにこれらの製造方法 |
US9460917B2 (en) * | 2014-02-12 | 2016-10-04 | Translucent, Inc. | Method of growing III-N semiconductor layer on Si substrate |
US11095096B2 (en) | 2014-04-16 | 2021-08-17 | Yale University | Method for a GaN vertical microcavity surface emitting laser (VCSEL) |
EP3201952B1 (en) | 2014-09-30 | 2023-03-29 | Yale University | A method for gan vertical microcavity surface emitting laser |
US11018231B2 (en) | 2014-12-01 | 2021-05-25 | Yale University | Method to make buried, highly conductive p-type III-nitride layers |
TWI568016B (zh) * | 2014-12-23 | 2017-01-21 | 錼創科技股份有限公司 | 半導體發光元件 |
US10554017B2 (en) | 2015-05-19 | 2020-02-04 | Yale University | Method and device concerning III-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer |
JP6266742B1 (ja) * | 2016-12-20 | 2018-01-24 | 古河機械金属株式会社 | Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法 |
JP7055595B2 (ja) * | 2017-03-29 | 2022-04-18 | 古河機械金属株式会社 | Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法 |
JP6727186B2 (ja) * | 2017-12-28 | 2020-07-22 | 日機装株式会社 | 窒化物半導体素子の製造方法 |
CN110459652B (zh) * | 2018-05-08 | 2020-10-27 | 中国科学院宁波材料技术与工程研究所 | AlGaN基紫外LED器件及其制备方法与应用 |
JP7352271B2 (ja) * | 2018-09-03 | 2023-09-28 | 国立大学法人三重大学 | 窒化物半導体基板の製造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0326087B2 (ja) | 1986-09-06 | 1991-04-09 | Kurita Machinery Manuf | |
JPH04297023A (ja) | 1991-01-31 | 1992-10-21 | Nichia Chem Ind Ltd | 窒化ガリウム系化合物半導体の結晶成長方法 |
JPH0586646B2 (ja) | 1984-02-14 | 1993-12-13 | Nippon Telegraph & Telephone | |
JPH0983016A (ja) * | 1995-09-18 | 1997-03-28 | Nichia Chem Ind Ltd | 窒化物半導体の成長方法 |
JP2002176197A (ja) * | 2000-05-22 | 2002-06-21 | Ngk Insulators Ltd | フォトニックデバイス用基板およびその製造方法 |
JP3440873B2 (ja) | 1999-03-31 | 2003-08-25 | 豊田合成株式会社 | Iii族窒化物系化合物半導体素子の製造方法 |
JP3700492B2 (ja) | 1999-09-21 | 2005-09-28 | 豊田合成株式会社 | Iii族窒化物系化合物半導体素子 |
JP2008064111A (ja) | 2007-11-13 | 2008-03-21 | Honda Motor Co Ltd | 内燃機関の排気浄化装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3026087B2 (ja) | 1989-03-01 | 2000-03-27 | 豊田合成株式会社 | 窒化ガリウム系化合物半導体の気相成長方法 |
JP2999435B2 (ja) | 1996-06-14 | 2000-01-17 | 松下電器産業株式会社 | 半導体の製造方法及び半導体発光素子 |
KR100648759B1 (ko) * | 1998-09-10 | 2006-11-23 | 로무 가부시키가이샤 | 반도체발광소자 및 그 제조방법 |
US6495894B2 (en) | 2000-05-22 | 2002-12-17 | Ngk Insulators, Ltd. | Photonic device, a substrate for fabricating a photonic device, a method for fabricating the photonic device and a method for manufacturing the photonic device-fabricating substrate |
JP3634243B2 (ja) | 2000-06-30 | 2005-03-30 | 学校法人 名城大学 | Iii族窒化物半導体単結晶の作製方法及びiii族窒化物半導体単結晶の使用方法 |
JP3941449B2 (ja) | 2000-10-18 | 2007-07-04 | 日本碍子株式会社 | Iii族窒化物膜 |
JP2003045900A (ja) | 2001-05-25 | 2003-02-14 | Sharp Corp | 窒化物系iii−v族化合物半導体装置 |
JP3534252B2 (ja) | 2003-01-27 | 2004-06-07 | 豊田合成株式会社 | 気相成長方法 |
JP2005203605A (ja) | 2004-01-16 | 2005-07-28 | Toyoda Gosei Co Ltd | 有機金属気相成長法及びそれにより形成したiii族窒化物系化合物半導体光素子 |
JP2005277374A (ja) * | 2004-02-26 | 2005-10-06 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体発光素子及びその製造方法 |
US7514707B2 (en) * | 2004-11-16 | 2009-04-07 | Showa Denko K.K. | Group III nitride semiconductor light-emitting device |
JP4451811B2 (ja) * | 2005-05-09 | 2010-04-14 | ローム株式会社 | 窒化物半導体素子の製法 |
EP1755172A1 (en) | 2005-08-17 | 2007-02-21 | Ngk Insulators, Ltd. | Semiconductor layered structure and its method of formation, and light emitting device |
JP2007095786A (ja) | 2005-09-27 | 2007-04-12 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体発光素子 |
JP5086646B2 (ja) | 2006-03-23 | 2012-11-28 | 株式会社リコー | 像担持体用保護剤及びその製造方法、並びに保護層形成装置、画像形成方法、画像形成装置、及びプロセスカートリッジ |
JP2008021745A (ja) | 2006-07-11 | 2008-01-31 | Showa Denko Kk | Iii族窒化物化合物半導体積層構造体およびその成長方法 |
JP2008047763A (ja) | 2006-08-18 | 2008-02-28 | Showa Denko Kk | Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ |
JP4912843B2 (ja) * | 2006-11-22 | 2012-04-11 | 昭和電工株式会社 | Iii族窒化物化合物半導体発光素子の製造方法 |
JP2008288397A (ja) * | 2007-05-17 | 2008-11-27 | Eudyna Devices Inc | 半導体発光装置 |
JP5049659B2 (ja) * | 2007-06-11 | 2012-10-17 | 昭和電工株式会社 | Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ |
JP2009283785A (ja) * | 2008-05-23 | 2009-12-03 | Showa Denko Kk | Iii族窒化物半導体積層構造体およびその製造方法 |
-
2009
- 2009-03-06 KR KR1020107021247A patent/KR101159995B1/ko active IP Right Grant
- 2009-03-06 US US12/921,695 patent/US8569794B2/en active Active
- 2009-03-06 WO PCT/JP2009/054310 patent/WO2009113458A1/ja active Application Filing
- 2009-03-06 EP EP09718583.9A patent/EP2273536B1/en active Active
- 2009-03-06 CN CN2009801153529A patent/CN102017082B/zh active Active
- 2009-03-06 JP JP2010502792A patent/JP4644754B2/ja active Active
-
2010
- 2010-08-09 JP JP2010178847A patent/JP5246219B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0586646B2 (ja) | 1984-02-14 | 1993-12-13 | Nippon Telegraph & Telephone | |
JPH0326087B2 (ja) | 1986-09-06 | 1991-04-09 | Kurita Machinery Manuf | |
JPH04297023A (ja) | 1991-01-31 | 1992-10-21 | Nichia Chem Ind Ltd | 窒化ガリウム系化合物半導体の結晶成長方法 |
JPH0983016A (ja) * | 1995-09-18 | 1997-03-28 | Nichia Chem Ind Ltd | 窒化物半導体の成長方法 |
JP3440873B2 (ja) | 1999-03-31 | 2003-08-25 | 豊田合成株式会社 | Iii族窒化物系化合物半導体素子の製造方法 |
JP3700492B2 (ja) | 1999-09-21 | 2005-09-28 | 豊田合成株式会社 | Iii族窒化物系化合物半導体素子 |
JP2002176197A (ja) * | 2000-05-22 | 2002-06-21 | Ngk Insulators Ltd | フォトニックデバイス用基板およびその製造方法 |
JP2008064111A (ja) | 2007-11-13 | 2008-03-21 | Honda Motor Co Ltd | 内燃機関の排気浄化装置 |
Non-Patent Citations (3)
Title |
---|
AKASAKI; H. AMANO ET AL., JPN. J. APPL. PHYS., vol. 36, 1997, pages 5393 - 5408 |
MAT. RES. SOC. SYMP. PROC., vol. 68, 1986, pages 357 |
See also references of EP2273536A4 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5576507B2 (ja) * | 2010-12-27 | 2014-08-20 | キヤノンアネルバ株式会社 | エピタキシャル膜形成方法、スパッタリング装置、半導体発光素子の製造方法、半導体発光素子、および照明装置 |
US10844470B2 (en) | 2010-12-27 | 2020-11-24 | Canon Anelva Corporation | Epitaxial film forming method, sputtering apparatus, manufacturing method of semiconductor light-emitting element, semiconductor light-emitting element, and illumination device |
JP2012182283A (ja) * | 2011-03-01 | 2012-09-20 | Sanken Electric Co Ltd | 半導体装置 |
JP2014199839A (ja) * | 2013-03-29 | 2014-10-23 | 株式会社タムラ製作所 | 結晶積層構造体及びその製造方法、並びに半導体素子 |
US10260146B2 (en) | 2015-09-11 | 2019-04-16 | Mie University | Method for manufacturing nitride semiconductor substrate |
JP2018056568A (ja) * | 2015-09-11 | 2018-04-05 | 国立大学法人三重大学 | 窒化物半導体基板の製造方法 |
JP2018046283A (ja) * | 2015-09-11 | 2018-03-22 | 国立大学法人三重大学 | 窒化物半導体基板の製造方法 |
JP2017055116A (ja) * | 2015-09-11 | 2017-03-16 | 国立大学法人三重大学 | 窒化物半導体基板の製造方法、窒化物半導体基板およびその加熱装置 |
JP2021073702A (ja) * | 2015-09-11 | 2021-05-13 | 国立大学法人三重大学 | 窒化物半導体基板 |
JP7244116B2 (ja) | 2015-09-11 | 2023-03-22 | 国立大学法人三重大学 | 窒化物半導体基板 |
JP2020061473A (ja) * | 2018-10-10 | 2020-04-16 | 国立大学法人三重大学 | 窒化物半導体の製造方法、窒化物半導体、及び発光素子 |
JP7296614B2 (ja) | 2018-10-10 | 2023-06-23 | 国立大学法人三重大学 | 窒化物半導体の製造方法、窒化物半導体、及び発光素子 |
CN112877657A (zh) * | 2021-01-12 | 2021-06-01 | 有研工程技术研究院有限公司 | 一种AlN薄膜的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2273536A4 (en) | 2011-10-19 |
CN102017082A (zh) | 2011-04-13 |
KR101159995B1 (ko) | 2012-06-25 |
JP4644754B2 (ja) | 2011-03-02 |
JP5246219B2 (ja) | 2013-07-24 |
EP2273536B1 (en) | 2013-10-30 |
CN102017082B (zh) | 2013-03-20 |
US20110101391A1 (en) | 2011-05-05 |
US8569794B2 (en) | 2013-10-29 |
JP2010272887A (ja) | 2010-12-02 |
EP2273536A1 (en) | 2011-01-12 |
JPWO2009113458A1 (ja) | 2011-07-21 |
KR20100116685A (ko) | 2010-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5246219B2 (ja) | Iii族窒化物半導体素子の製造方法及びiii族窒化物半導体発光素子の製造方法 | |
JP5272390B2 (ja) | Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ | |
TWI491064B (zh) | Iii族氮化物半導體發光元件及該製造方法、以及燈 | |
JP4191227B2 (ja) | Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子並びにランプ | |
US20100219445A1 (en) | Group iii nitride semiconductor light-emitting device, method for manufacturing the same, and lamp | |
WO2010032423A1 (ja) | Iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子並びにランプ | |
KR101074178B1 (ko) | Ⅲ족 질화물 화합물 반도체 발광 소자의 제조 방법, 및 ⅲ족 질화물 화합물 반도체 발광 소자, 및 램프 | |
WO2009148075A1 (ja) | Iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子、およびランプ | |
JP2009123718A (ja) | Iii族窒化物化合物半導体素子及びその製造方法、iii族窒化物化合物半導体発光素子及びその製造方法、並びにランプ | |
JP2009277882A (ja) | Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ | |
JP2008177525A (ja) | Iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ | |
JP2008124060A (ja) | Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ | |
JP2011082570A (ja) | Iii族窒化物半導体発光素子の製造方法 | |
JP2009161434A (ja) | Iii族窒化物半導体結晶の製造方法及びiii族窒化物半導体結晶 | |
JP2008106316A (ja) | Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ | |
JP2008135463A (ja) | Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ | |
JP2009155672A (ja) | Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体製造装置、iii族窒化物半導体及びiii族窒化物半導体発光素子、並びにランプ | |
JP2008294449A (ja) | Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子並びにランプ | |
JP5179055B2 (ja) | Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ | |
JP2008159954A (ja) | Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ | |
JP2008177523A (ja) | Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ | |
JP2008306113A (ja) | Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ | |
JP2009049234A (ja) | Iii族窒化物半導体の製造方法及びiii族窒化物半導体製造装置、iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980115352.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09718583 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010502792 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20107021247 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009718583 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12921695 Country of ref document: US |