WO2009110449A1 - シリカ質膜の製造に用いる浸漬用溶液およびそれを用いたシリカ質膜の製造法 - Google Patents

シリカ質膜の製造に用いる浸漬用溶液およびそれを用いたシリカ質膜の製造法 Download PDF

Info

Publication number
WO2009110449A1
WO2009110449A1 PCT/JP2009/053931 JP2009053931W WO2009110449A1 WO 2009110449 A1 WO2009110449 A1 WO 2009110449A1 JP 2009053931 W JP2009053931 W JP 2009053931W WO 2009110449 A1 WO2009110449 A1 WO 2009110449A1
Authority
WO
WIPO (PCT)
Prior art keywords
dipping
substrate
siliceous film
film
solution
Prior art date
Application number
PCT/JP2009/053931
Other languages
English (en)
French (fr)
Inventor
昌伸 林
Original Assignee
Azエレクトロニックマテリアルズ株式会社
AzエレクトロニックマテリアルズUsaコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azエレクトロニックマテリアルズ株式会社, AzエレクトロニックマテリアルズUsaコーポレーション filed Critical Azエレクトロニックマテリアルズ株式会社
Priority to CN200980107577XA priority Critical patent/CN101965629A/zh
Priority to EP09716895.9A priority patent/EP2264744B1/en
Priority to US12/919,782 priority patent/US20110014796A1/en
Publication of WO2009110449A1 publication Critical patent/WO2009110449A1/ja
Priority to US13/920,617 priority patent/US8603923B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • C03C1/008Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route for the production of films or coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/62Nitrogen atoms

Definitions

  • the present invention relates to a dipping solution used in a process for producing a siliceous film in an electronic device, and a method for producing a siliceous film using the same. More specifically, the present invention is used to form a shallow trench isolation structure or insulating film formed for insulation in an electronic device using a polysilazane compound in the manufacture of an electronic device such as a semiconductor element. The present invention also relates to a dipping solution and a method for manufacturing a shallow trench isolation structure or an insulating film using the dipping solution.
  • an isolation region In general, in an electronic device such as a semiconductor device, semiconductor elements such as transistors, resistors, and others are arranged on a substrate, but they need to be electrically insulated. Therefore, a region for separating the elements is required between these elements, which is called an isolation region. Conventionally, this isolation region is generally performed by selectively forming an insulating film on the surface of a semiconductor substrate.
  • a trench isolation structure is a structure in which a fine groove is formed on the surface of a semiconductor substrate and an insulator is filled in the groove to electrically separate elements formed on both sides of the groove.
  • Such a structure for element isolation is an element isolation structure that is effective for achieving the high degree of integration required in recent years because the isolation region can be made narrower than in the conventional method.
  • Examples of a method for forming such a trench isolation structure include a CVD method and a high density plasma CVD method (see, for example, Patent Document 1).
  • a CVD method and a high density plasma CVD method (see, for example, Patent Document 1).
  • voids are formed in the grooves, which are required recently, for example, in the case of embedding a fine groove of 100 nm or less. These structural defects cause damage to the physical strength and insulating properties of the substrate.
  • Patent Documents 1 to 4 As a method for suppressing such cracks, a method using polysilazane instead of silicon hydroxide has been studied (for example, Patent Documents 1 to 4). These methods attempt to prevent cracks due to volume shrinkage by using polysilazane which has a smaller volume shrinkage when converted to silicon dioxide.
  • the method of forming a trench isolation structure by applying a composition containing polysilazane and embedding a groove and then processing in an oxidizing atmosphere to form high-purity and dense silicon dioxide has excellent composition permeability. Therefore, there is an advantage that voids hardly occur.
  • the film quality in the trench is not uniform, and the film quality tends to deteriorate as it goes deeper in the trench. Furthermore, the distribution of the film properties with respect to the trench depth was particularly remarkable in the low-temperature processed film and the fine trench having a high aspect ratio. Since the circuit density of advanced devices is increasing, a new process capable of obtaining uniform film quality even inside a fine trench has been desired.
  • a dipping solution according to the present invention is a dipping solution for dipping a substrate coated with a polysilazane composition before firing in the production process of a siliceous film, and comprises hydrogen peroxide, alcohol, a surfactant, and its It is characterized by comprising a bubble adhesion preventing agent selected from the group consisting of a mixture and a solvent different from the alcohol.
  • the method for producing a siliceous film according to the present invention includes: An application step of applying a composition comprising a polysilazane compound on the surface of a substrate having irregularities; It comprises a dipping step of dipping the coated substrate in the dipping solution, and a curing step of converting the polysilazane compound into a siliceous film by heat-treating the dipped substrate.
  • the present invention even when the aspect ratio of the trench is very high or the trench width is very narrow, a uniform film quality can be obtained up to the inside of the trench. Even in next-generation devices that require a higher aspect ratio, a polysilazane-based coating-type insulating film material can be extended as an effective technology. In addition, since the adhesion of bubbles is suppressed when using the immersion solution, there is no demerit of using the immersion solution.
  • the immersion solution in the present invention is used for immersing a substrate coated with a polysilazane composition before firing in the production process of a siliceous film described later.
  • a polysilazane composition when a polysilazane composition is heated and fired, an oxidation reaction occurs and a siliceous film is formed.
  • the polysilazane composition filled in the groove formed on the substrate is also oxidized in the same manner as the surface portion, and a uniform siliceous film is formed.
  • the dipping solution according to the present invention comprises hydrogen peroxide, a bubble adhesion preventing agent, and a solvent. Each component will be described as follows.
  • Hydrogen peroxide is well known as a general oxidizing agent.
  • the oxidation of polysilazane that is, the formation of a siliceous film, is achieved exclusively by baking, and the oxidation of polysilazane is not governed by hydrogen peroxide in the dipping solution. Rather, it acts auxiliary to uniformly oxidize the entire coating film formed from the polysilazane composition.
  • the oxygen source is quickly diffused without depending on the film thickness. It is thought that it is important that the oxygen source reacts quickly with polysilazane.
  • preliminary oxidation is performed by immersing the applied polysilazane film in a hydrogen peroxide solution, and a uniform film quality can be obtained even inside a fine trench.
  • a hydrogen peroxide aqueous solution is generally used for preparing the immersion solution. It is preferable that the immersion solution is blended with an aqueous solution so as to obtain a desired hydrogen peroxide concentration.
  • hydrogen peroxide obtained by electrolysis of an aqueous solution of ammonium hydrogen sulfate or hydrolysis of peroxo acid can be directly blended into the dipping solution, but it is easier to use the aqueous solution.
  • the content of hydrogen peroxide in the dipping solution is preferably large from the viewpoint of obtaining a uniform fired film, but is preferably below a certain level in consideration of the safety of workers handling the dipping solution. . From such a viewpoint, the content of hydrogen peroxide in the entire composition is preferably 30 to 60% by weight, and more preferably 30 to 35% by weight.
  • the immersion solution according to the present invention comprises a bubble adhesion preventive agent.
  • the bubble adhesion preventing agent in the dipping solution has an action of reducing bubbles adhering when the substrate is dipped in the dipping solution. Bubbles adhering to the substrate in the dipping solution remain even after being subsequently removed from the dipping solution, resulting in an increase in the surface area of the substrate. The larger the surface area, the easier it is for dust and the like mixed from the environment to adhere, which may eventually lead to defects in the siliceous film formed.
  • the generation of the bubbles can be reduced by the bubble adhesion preventing agent, and the quality of the final siliceous film can be improved. Furthermore, there is also an effect of making the siliceous film after firing more uniform.
  • the bubble adhesion preventing agent used in the present invention is selected from the group consisting of alcohols, surfactants, and mixtures thereof.
  • Alcohol and surfactant can be used in combination, or only one of them can be used. Further, a plurality of types can be selected and combined from any one of alcohol and surfactant.
  • alcohol refers to an alcohol in which at least one of hydrogen contained in a hydrocarbon is substituted with a hydroxyl group.
  • preferred alcohols in the present invention are monools, diols, or triols in which a hydrogen atom of a saturated hydrocarbon having 1 to 3 carbon atoms is substituted with 1 to 3 hydroxyl groups from the viewpoints of handleability and foam adhesion reduction.
  • it has the effect of reducing the surface tension to suppress the generation of bubbles, has a low boiling point to prevent it from remaining on the siliceous film to be formed, and has low reactivity with other components such as hydrogen peroxide. It is desirable. For this reason, it is preferable to use a relatively low molecular weight alcohol. More specifically, it is selected from the group consisting of methanol, ethanol, n-propanol, isopropanol, and mixtures thereof.
  • a surfactant can be used as the bubble adhesion preventing agent in the present invention.
  • Various surfactants are known, and any one can be used as necessary.
  • the surfactant is mixed into the formed siliceous film to deteriorate the physical properties of the insulating film, such as the dielectric constant.
  • Nonionic surfactants are rarely used.
  • polyoxyethylene alkyl ether is one of the preferred surfactants.
  • the content of the bubble adhesion inhibitor in the dipping solution is preferably larger from the viewpoint of reducing the adhesion of bubbles and obtaining a uniform fired film, but from the viewpoint of mixing organic substances into the siliceous film serving as an insulator. Is preferably not more than the upper limit.
  • the bubble adhesion preventing agent is alcohol, its content is preferably 1 to 20% by weight, and more preferably 1 to 10% by weight.
  • the bubble adhesion preventing agent is a surfactant, particularly a nonionic surfactant, its content is preferably 10.1 to 20% by weight, and preferably 0.1 to 10% by weight. More preferred.
  • the immersion solution according to the present invention comprises a solvent. This solvent dissolves the hydrogen peroxide and the bubble adhesion preventive agent uniformly.
  • the alcohol used as the bubble adhesion preventing agent is a liquid and can generally act as a solvent, but in the present invention, alcohol is not included in the solvent. That is, the “solvent” in the present invention is selected from those other than the alcohol.
  • the solvent can be arbitrarily selected as long as it can uniformly dissolve the above-mentioned components, but water is preferably used. In order to prevent impurities from adhering to the substrate, it is preferable to use one having a high purity, for example, distilled water or deionized water.
  • blending hydrogen peroxide or surfactant as aqueous solution for example is also a solvent of the solution for immersion in this invention.
  • the immersion solution according to the present invention is prepared by mixing and uniformly dissolving the above components. At this time, the order of mixing is not particularly limited. Moreover, since the solution for immersion after preparation contains the hydrogen peroxide which is comparatively inferior, when storing, you should store in a cool dark place.
  • a composition containing a polysilazane compound is applied on the surface of an uneven substrate, and (b) a coated substrate is described above. It is immersed in a dipping solution, and (c) the substrate after dipping is heat-treated to convert the polysilazane compound into a silicon dioxide film.
  • substrate used is not specifically limited, For example, a bare silicon, the silicon wafer which formed the thermal oxide film and the silicon nitride film as needed, etc. are mentioned. In the present invention.
  • a substrate having irregularities provided with grooves and holes corresponding to a semiconductor element or the like to be finally manufactured is used. These are irregularities corresponding to a trench isolation structure, a contact hole and the like, and various ones are selected as necessary.
  • a silicon substrate having a desired groove pattern is generally used.
  • An arbitrary method can be used for forming the groove.
  • the groove can be formed by the following method.
  • a silicon dioxide film is formed on the surface of a silicon substrate by, for example, a thermal oxidation method.
  • the thickness of the silicon dioxide film formed here is generally 5 to 30 nm.
  • a silicon nitride film is formed on the formed silicon dioxide film by, for example, a low pressure CVD method.
  • This silicon nitride film can function as a mask in a later etching process or a stop layer in a polishing process described later.
  • the silicon nitride film is generally formed with a thickness of 100 to 400 nm when formed.
  • An arbitrary photoresist is applied on the silicon dioxide film or silicon nitride film thus formed.
  • the photoresist film is dried or cured as necessary, and then exposed and developed with a desired pattern to form a pattern.
  • the exposure method can be performed by any method such as mask exposure or scanning exposure. Also, any photoresist can be selected and used from the viewpoint of resolution and the like.
  • the silicon nitride film and the underlying silicon dioxide film are sequentially etched. By this operation, a desired pattern is formed on the silicon nitride film and the silicon dioxide film.
  • the silicon substrate is dry-etched to form trench isolation grooves.
  • the width of the trench isolation groove to be formed is determined by the pattern for exposing the photoresist film.
  • the trench / isolation groove in the semiconductor element varies depending on the target semiconductor element, but the width is generally 0.02 to 10 ⁇ m, preferably 0.05 to 5 ⁇ m, and the depth is 200 to 1000 nm, preferably 300 to 700 nm.
  • the method according to the present invention makes it possible to uniformly embed a narrower and deeper portion than a conventional trench isolation structure formation method, so that a narrower and deeper trench isolation structure is formed. It is suitable for forming. In particular, in the conventional method for forming a siliceous film, it has been difficult to form a uniform siliceous film up to a deep part of the groove.
  • the groove width is generally 0.5 ⁇ m or less, particularly 0.1 ⁇ m or less, and the aspect ratio is 5
  • the siliceous film in the groove can be formed uniformly by using the dipping solution according to the present invention.
  • a polysilazane composition serving as a material for the siliceous film is applied on the silicon substrate thus prepared to form a coating film.
  • a polysilazane composition a conventionally known arbitrary polysilazane compound dissolved in a solvent can be used.
  • the polysilazane compound used for this invention is not specifically limited, As long as the effect of this invention is not impaired, it can select arbitrarily.
  • These may be either inorganic compounds or organic compounds.
  • these polysilazanes as the inorganic polysilazane, for example, the general formula (I): And having a molecular weight of 690 to 2000, 3 to 10 SiH 3 groups in one molecule, and an element ratio by chemical analysis of Si: 59 to 61 N: 31 to 34 and H: 6.5 to 7.5, and perhydropolysilazane having a polystyrene-reduced average molecular weight in the range of 3,000 to 20,000.
  • Examples of other polysilazanes include, for example, a general formula: (Wherein R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a group directly connected to silicon such as a fluoroalkyl group other than these groups. Represents a carbon group, an alkylsilyl group, an alkylamino group, or an alkoxy group, provided that at least one of R 1 , R 2, and R 3 is a hydrogen atom. Examples thereof include polysilazane having a number average molecular weight of about 100 to 50,000 or a modified product thereof. These polysilazane compounds can be used in combination of two or more.
  • the polysilazane composition used in the present invention comprises a solvent capable of dissolving the polysilazane compound.
  • the solvent used here is different from the solvent used for the dipping solution.
  • Such a solvent is not particularly limited as long as it can dissolve each of the above-mentioned components.
  • Specific examples of preferable solvents include the following: (A) Aromatic compounds such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, trimethylbenzene, triethylbenzene, etc.
  • solvents can be used in combination of two or more as appropriate in order to adjust the evaporation rate of the solvent, to reduce the harmfulness to the human body, or to adjust the solubility of each component.
  • the polysilazane composition used in the present invention may contain other additive components as necessary.
  • examples of such components include viscosity modifiers and crosslinking accelerators.
  • a phosphorus compound such as tris (trimethylsilyl) phosphate may be contained for the purpose of obtaining a sodium gettering effect when used in a semiconductor device.
  • the content of each of the above components varies depending on the intended use of the composition, but the content of the polysilazane compound is 0.1 to 40% by weight in order to form a siliceous material having a sufficient film thickness. It is preferably 0.5 to 20% by weight, more preferably 5 to 20% by weight. Usually, when the content of the polysilazane compound is 5 to 20% by weight, a generally preferred film thickness, for example, 2000 to 8000 mm can be obtained.
  • a conventionally known method such as a spin coating method, a dip method, a spray method, or a transfer method may be used. Of these, the spin coating method is particularly preferred.
  • the coated substrate is preheated (prebaked) to remove (dry) the excess organic solvent from the coating film formed on the substrate surface as necessary, and then immersed in the dipping solution described above. Soaked. Since the preheating is not intended to cure the polysilazane, it is generally performed by heating at a low temperature for a short time. Specifically, it is carried out by heating at 70 to 150 ° C., preferably 100 to 150 ° C. for 1 to 10 minutes, preferably 3 to 5 minutes.
  • the temperature for dipping in the dipping solution that is, the temperature of the dipping solution is not particularly limited, but is generally 20 to 50 ° C., preferably 20 to 30 ° C.
  • the immersion time varies depending on the film thickness, the type of polysilazane compound, or the concentration of the immersion solution, but is generally 1 to 30 minutes, preferably 10 to 30 minutes. At this time, bubbles are less likely to adhere to the substrate in the immersion solution according to the present invention. For this reason, since adhesion of dust or the like in the subsequent process is reduced, final substrate defects are reduced.
  • the substrate is heat-treated, and the polysilazane composition on the surface is cured and converted into a siliceous film.
  • the heat treatment is preferably performed in an atmosphere containing water vapor, oxygen, or a mixed gas thereof, that is, in an oxidizing atmosphere.
  • the oxygen content is preferably 1% or more, more preferably 10% or more, based on the volume.
  • inert gas such as nitrogen and helium, may be mixed in atmosphere.
  • the heat treatment when the heat treatment is performed in an atmosphere containing water vapor, it is preferably 0.1% or more, more preferably 1% or more based on the volume. In the present invention, it is particularly preferable to perform firing in a mixed gas atmosphere containing oxygen and water vapor.
  • the temperature of the heat treatment must be such that the polysilazane compound can be added to the siliceous film.
  • the heat treatment is preferably performed at 400 to 1,200 ° C., more preferably at 400 to 700 ° C.
  • the heating time can be appropriately selected according to the heating temperature, but is generally 0.5 to 5 hours, preferably 0.5 to 1 hour. Further, by performing the heat treatment under a high humidity condition, it is possible to reduce the temperature necessary for the conversion and shorten the necessary time.
  • a uniform siliceous film is formed up to the inside of the recess on the substrate.
  • a siliceous film is uniformly formed even inside a trench isolation groove having a high aspect ratio, and a high-quality trench isolation structure can be obtained.
  • the polysilazane composition was applied to a TEG substrate whose surface was coated with a silicon nitride liner layer by spin coating.
  • the application conditions were a rotation speed of 1000 rpm and a rotation time of 20 seconds.
  • the film thickness was about 0.6 ⁇ m.
  • the pattern of the TEG substrate is a line and space in the order of 0.05 ⁇ m, 0.1 ⁇ m, 0.2 ⁇ m, 0.5 ⁇ m, and 1.0 ⁇ m as follows.
  • the coated substrate was pre-baked for 3 minutes on a hot plate at 150 ° C.
  • the pre-baked polysilazane film was immersed in an immersion solution containing 35% hydrogen peroxide and 10% ethanol for 30 minutes, and then further post-baked for 3 minutes on a hot plate at 150 ° C.
  • absorption attributable to the Si—O bond was obtained at a wave number of 1080 cm ⁇ 1 .
  • the substrate on which the film was formed was cut in a direction perpendicular to the longitudinal direction of the groove, and then 0.5% wt. It was immersed in an aqueous hydrofluoric acid solution at 23 ° C. for 30 seconds, and then thoroughly washed with pure water and then dried.
  • the groove depth of the cross section of the substrate was measured by SEM at 50000 times, and the etching depth was evaluated by observing the deepest portion of the groove from 30 degrees above the elevation angle in the direction perpendicular to the cross section. Those without immersion had a large amount of etching at the bottom of the trench, and the inside of the trench was non-uniform. In the case with the immersion solution treatment, the etching amount at the bottom of the trench was small, and a uniform film inside the trench was a good quality film.
  • the polysilazane composition was applied on the TEG substrate, pre-baked, then immersed in a dipping solution, and the number of bubbles on the substrate surface was measured 5 minutes after the start of dipping.
  • a solution containing 30% hydrogen peroxide and 10% ethanol (Example) and a 30% hydrogen peroxide solution (Comparative Example) containing no ethanol were used as the immersion solution.
  • the obtained results were as shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Formation Of Insulating Films (AREA)
  • Element Separation (AREA)

Abstract

 本発明は、本発明はシリカ質膜の製造過程において用いられる浸漬用溶液に関するものであり、凹凸を有する基板上に凹部の内部まで均一なシリカ質膜を形成させるための浸漬用溶液とそれを用いたシリカ質膜の製造法を提供するものである。この浸漬用溶液は、ポリシラザン組成物塗布済み基板を焼成前に浸漬させるためのものであって、過酸化水素、気泡付着防止剤、および溶媒を含んでなる。

Description

シリカ質膜の製造に用いる浸漬用溶液およびそれを用いたシリカ質膜の製造法
 本発明は、電子デバイスにおけるシリカ質膜の製造過程において用いられる、浸漬用溶液、およびそれを用いたシリカ質膜の製造法に関するものである。より詳しくは、本発明は、半導体素子などの電子デバイスの製造において、電子デバイスに絶縁のために形成されるシャロー・トレンチ・アイソレーション構造または絶縁膜をポリシラザン化合物を用いて形成させるために用いられる浸漬用溶液およびそれを用いたシャロー・トレンチ・アイソレーション構造または絶縁膜の製造方法にも関するものである。
 一般に、半導体装置の様な電子デバイスにおいては、半導体素子、例えばトランジスタ、抵抗、およびその他、が基板上に配置されているが、これらは電気的に絶縁されている必要がある。したがって、これら素子の間には、素子を分離するための領域が必要であり、これをアイソレーション領域と呼ぶ。従来は、このアイソレーション領域を半導体基板の表面に選択的に絶縁膜を形成させることにより行うことが一般的であった。
 一方、電子デバイスの分野においては、近年、高密度化、および高集積化が進んでいる。このような高密度および高集積度化が進むと、必要な集積度に見合った、微細なアイソレーション構造を形成させることが困難となり、そのようなニーズに合致した新たなアイソレーション構造が要求される。そのようなものとして、トレンチ・アイソレーション構造が挙げられる。この構造は、半導体基板の表面に微細な溝を形成させ、その溝の内部に絶縁物を充填して、溝の両側に形成される素子の間を電気的に分離する構造である。このような素子分離のための構造は、従来の方法に比べてアイソレーション領域を狭くできるため、昨今要求される高集積度を達成するために有効な素子分離構造である。
 このようなトレンチ・アイソレーション構造を形成させるための方法として、CVD法や高密度プラズマCVD法が挙げられる(例えば、特許文献1参照)。しかしながら、これらの方法によると、昨今要求される、例えば100nm以下の微細な溝内を埋設使用とする場合に、溝内にボイドが形成されることがあった。これらの構造欠陥は、基板の物理的強度や絶縁特性を損なう原因となる。
 また、一方で、トレンチ溝の埋設性を改良するために、水酸化シリコンを溶液として塗布した後、形成された塗膜を熱処理して二酸化シリコンに転化させる方法も検討されている(例えば、特許文献1参照)。しかし、この方法では、水酸化シリコンが二酸化シリコンに転化する際に体積収縮が起きてクラックが発生することがあった。
 そのようなクラックを抑制するための方法として、水酸化シリコンの代わりにポリシラザンを用いる方法も検討されている(例えば、特許文献1~4)。これらの方法では、二酸化シリコンに転化される際の体積収縮がより小さいポリシラザンを用いることによって、体積収縮に起因するクラックを防止しようとするものである。ポリシラザンを含む組成物を塗布して溝を埋設した後に酸化雰囲気において処理して、高純度かつ緻密な二酸化ケイ素を形成させてトレンチ・アイソレーション構造を形成させる方法は、組成物の浸透性が優れているためにボイドが発生しにくいという利点がある。しかしながら、本発明者らの検討によれば、このようなトレンチ・アイソレーション構造においては、ポリシラザンが二酸化ケイ素に転化してシリカ質膜が形成される際に、塗膜の表面部分とトレンチ内部とで反応条件が微妙に異なるために、シリカ質膜の膜質がトレンチの内部と外部とで、あるいは溝内の深さによって異なり、エッチングレートが均一にならないという問題があることがわかった。この問題は、デバイス設計およびプロセス設計の制限から要求される低温処理を行った場合に顕著であり、特に高アスペクトレシオのトレンチ部でエッチングレートが大きくなるという現象として発現する。
特許第3178412号公報(段落0005~0016) 特開平9-31333号公報 特開2001-308090号公報 特開2005-45230号公報
 従来技術では、トレンチ内の膜質が均一ではなくトレンチの深部に行くにつれて膜質が悪化する傾向があった。さらには、この膜物性のトレンチ深さに対する分布は、特に低温処理膜およびアスペクトレシオが高い微細なトレンチで顕著であった。
 最先端デバイスでは回路の高密度化が進んでいるため、微細なトレンチ内部であっても均一な膜質を得ることができる新たなプロセスが望まれていた。
 本発明による浸漬用溶液は、シリカ質膜の製造過程において、ポリシラザン組成物塗布済み基板を焼成前に浸漬させるための浸漬用溶液であって、過酸化水素と、アルコール、界面活性剤、およびその混合物からなる群から選択される気泡付着防止剤と、前記アルコールとは異なる溶媒とを含んでなることを特徴とするものである。
 また、本発明によるシリカ質膜の製造法は、
 凹凸を有する基板の表面上に、ポリシラザン化合物を含んでなる組成物を塗布する塗布工程、
 塗布済み基板を前記の浸漬用溶液に浸漬させる浸漬工程、および
 浸漬後の基板を加熱処理してポリシラザン化合物をシリカ質膜に転化させる硬化工程
を含んでなることを特徴とするものである。
 本発明により、トレンチのアスペクト比が非常に高い場合、あるいはトレンチ幅が非常に狭い場合でも、トレンチの内部まで均一な膜質を得ることができる。より高いアスペクト比が要求される次世代デバイスにおいても、ポリシラザンをベースとした塗布型絶縁膜材料を有効な技術として延命することができる。また、浸漬用溶液を用いる際に気泡の付着が抑制されるために、浸漬用溶液を用いることのデメリットもない。
浸漬用溶液
 本発明における浸漬用溶液は、後述するシリカ質膜の製造過程において、ポリシラザン組成物塗布済み基板を焼成前に浸漬するのに用いるものである。一般に、ポリシラザン組成物を加熱焼成することにより酸化反応が起こり、シリカ質膜が形成される。ここで、焼成前に本発明による浸漬用溶液で処理することにより、例えば基板上に形成された溝に充填されたポリシラザン組成物も表面部と同様に酸化され、均一なシリカ質膜が形成される。
 本発明による浸漬用溶液は、過酸化水素と、気泡付着防止剤と、溶媒とを含んでなる。
 それぞれの成分について説明すると以下の通りである。
(a)過酸化水素
 過酸化水素は、一般的な酸化剤としてよく知られているものである。しかしながら、本発明においては、ポリシラザンの酸化、すなわちシリカ質膜の形成はもっぱら焼成によって達成されるのであり、浸漬用溶液中の過酸化水素によってポリシラザンの酸化が支配されるわけではない。むしろ、ポリシラザン組成物から形成される塗膜全体を均一に酸化させるために補助的に作用するものである。
 すなわち、一般に凹凸を有する基板上に形成されたポリシラザン塗膜をシリカ質膜に転化させる場合、トレンチ内まで膜質を均一にするためには、酸素源を膜厚に依存することなく速やかに拡散させることが必要であると同時に、その酸素源はポリシラザンと速やかに反応することが重要であると考えられる。本発明においては、塗布されたポリシラザン膜を過酸化水素水に浸漬することで、予備的な酸化を行い、微細なトレンチ内部であっても均一な膜質を得ることができるものと考えられる。
 過酸化水素は、単体では不安定な液体であるため、一般に水溶液として取り扱われる。
 このため、本発明においても浸漬用溶液の調製には過酸化水素水溶液が用いられるのが一般的である。所望の過酸化水素濃度となるように浸漬用溶液に水溶液で配合することが好ましい。例えば硫酸水素アンモニウム水溶液の電気分解や、ペルオキソ酸の加水分解などにより得られた過酸化水素を直接浸漬用溶液に配合することもできるが、水溶液を用いる方が簡便である。
 浸漬用溶液中における過酸化水素の含有量は、均一な焼成膜を得るという観点からは多い方が好ましい一方で、浸漬用溶液を取り扱う作業者の安全性に配慮すると一定以下であることが好ましい。このような観点から、組成物全体に対する過酸化水素の含有量は30~60重量%であることが好ましく、30~35重量%であることがより好ましい。
(b)気泡付着防止剤
 本発明による浸漬用溶液は気泡付着防止剤を含んでなる。本発明において、浸漬用溶液中における気泡付着防止剤は、基板を浸漬用溶液に浸漬したときに付着する気泡を減少させる作用がある。浸漬用溶液中において基板に付着した気泡は、その後浸漬用溶液から取り出された後にも残留し、結果的に基板の表面積を増大させる。表面積が大きいほど環境から混入するダストなどが付着しやすくなり、最終的には形成されるシリカ質膜の欠陥になる可能性がある。本発明においては気泡付着防止剤によりこの気泡の発生を減少させ、最終的なシリカ質膜の品質を改良させることができる。さらには、焼成後のシリカ質膜をさらに均一化させる作用もある。
 本発明において用いられる気泡付着防止剤は、アルコール、界面活性剤、およびそれらの混合物からなる群から選択される。アルコールおよび界面活性剤は、それらを組み合わせて用いても、またそれぞれ一方だけを用いることもできる。また、アルコールまたは界面活性剤のいずれか一方から、複数種類のものを選択して組み合わせることもできる。
 ここで、アルコールとは炭化水素に含まれる水素の少なくとも一つが水酸基で置換されたものをいう。しかしながら、本発明において好ましいアルコールは、取扱い性および泡付着低減の観点から、炭素数1~3の飽和炭化水素の水素が1~3個の水酸基で置換されたモノオール、ジオール、またはトリオールが好ましい。アルコールには、炭化水素鎖の種類や水酸基などの置換基により非常に多くのものがある。しかしながら、泡の発生を抑えるために表面張力を小さくする作用があること、形成されるシリカ質膜への残留を防ぐために低沸点であること、過酸化水素などの他の成分と反応性が低いことが望ましい。このため、比較的低分子量のアルコールを用いることが好ましい。より具体的には、メタノール、エタノール、n-プロパノール、イソプロパノール、およびそれらの混合物からなる群から選択される。
 また、本発明における気泡付着防止剤として界面活性剤を用いることもできる。界面活性剤は種々のものが知られており、必要に応じて任意のものを用いることができるが、形成されるシリカ質膜に混入して絶縁膜としての物性、例えば誘電率などを劣化させることが少ないノニオン系界面活性剤が好ましい。特に、ポリオキシエチレンアルキルエーテルは好ましい界面活性剤の一つである。
 浸漬用溶液中における気泡付着防止剤の含有量は、気泡の付着低減、および均一な焼成膜を得るという観点からは多い方が好ましい一方で、絶縁体となるシリカ質膜への有機物混入の観点からは上限値以下であることが好ましい。このような観点から、気泡付着防止剤がアルコールである場合には、その含有量は1~20重量%であることが好ましく、1~10重量%であることがより好ましい。また気泡付着防止剤が界面活性剤、特にノニオン性界面活性剤である場合には、その含有量は10.1~20重量%であることが好ましく、0.1~10重量%であることがより好ましい。
(c)溶媒
 本発明による浸漬用溶液は、溶媒を含んでなる。この溶媒は、前記の過酸化水素および気泡付着防止剤を均一に溶解させるものである。なお、前記気泡付着防止剤として用いられるアルコールは液体であり、一般的に溶媒としても作用し得るものであるが、本発明においてアルコールは溶媒に含めないものとする。すなわち、本発明における「溶媒」は前記アルコール以外のものから選択されるものである。
 溶媒には、前記の各成分を均一に溶解し得るものであれば任意に選択することができるが、好ましくは水が用いられる。基板への不純物付着を防ぐために、純度が高いもの、例えば蒸留水や脱イオン水を用いることが好ましい。なお、例えば過酸化水素または界面活性剤を水溶液として配合する場合の溶媒(すなわち水)も、本発明における浸漬用溶液の溶媒である。
 本発明による浸漬用溶液は、上記の各成分を混合し、均一に溶解させることにより調製される。このとき、混合の順番は特に限定されない。また、調製後の浸漬用溶液は、比較的安定性の劣る過酸化水素を含むため、保存する場合には冷暗所に保存すべきである。
シリカ質膜の製造法
 本発明によるシリカ質膜の製造法は、(a)凹凸を有する基板の表面上に、ポリシラザン化合物を含んでなる組成物を塗布し、(b)塗布済み基板を前記した浸漬用溶液に浸漬させ、さらに(c)浸漬後の基板を加熱処理してポリシラザン化合物を二酸化シリコン膜に転化させることを含んでなる。
(a)塗布工程
 用いられる基板の表面材質は特に限定されないが、例えばベアシリコン、必要に応じて熱酸化膜や窒化珪素膜を成膜したシリコンウェハー、などが挙げられる。本発明においては。このような基板に対して、最終的に製造しようとする半導体素子などに対応した溝や孔が設けられた、凹凸を有する基板が用いられる。これらは、トレンチ・アイソレーション構造や、コンタクトホールなどに対応した凹凸であり、必要に応じて種々のものが選択される。
 特にトレンチ・アイソレーション構造を形成させる場合には所望の溝パターンを有するシリコン基板を用いるのが一般的である。この溝形成には、任意の方法を用いることができるが、例えば以下に示す方法で形成させることができる。
 まず、シリコン基板表面に、例えば熱酸化法により、二酸化シリコン膜を形成させる。
 ここで形成させる二酸化シリコン膜の厚さは一般に5~30nmである。
 必要に応じて、形成された二酸化シリコン膜上に、例えば減圧CVD法により、窒化シリコン膜を形成させる。この窒化シリコン膜は、後のエッチング工程におけるマスク、あるいは後述する研磨工程におけるストップ層として機能させることのできるものである。
 窒化シリコン膜は、形成させる場合には、一般に100~400nmの厚さで形成させる。
 このように形成させた二酸化シリコン膜または窒化シリコン膜の上に、任意のフォトレジストを塗布する。必要に応じてフォトレジスト膜を乾燥または硬化させた後、所望のパターンで露光および現像してパターンを形成させる。露光の方法はマスク露光、走査露光など、任意の方法で行うことができる。また、フォトレジストも解像度などの観点から任意のものを選択して用いることができる。
 形成されたフォトレジスト膜をマスクとして、窒化シリコン膜およびその下にある二酸化シリコン膜を順次エッチングする。この操作によって、窒化シリコン膜および二酸化シリコン膜に所望のパターンが形成される。
 パターンが形成された窒化シリコン膜および二酸化シリコン膜をマスクとして、シリコン基板をドライエッチングして、トレンチ・アイソレーション溝を形成させる。
 形成されるトレンチ・アイソレーション溝の幅は、フォトレジスト膜を露光するパターンにより決定される。半導体素子におけるトレンチ・アイソレーション溝は、目的とする半導体素子により異なるが、幅は一般に0.02~10μm、好ましくは0.05~5μm、であり、深さは200~1000nm、好ましくは300~700nmである。本発明による方法は、従来のトレンチ・アイソレーション構造の形成方法に比べて、より狭く、より深い部分まで、均一に埋設することが可能であるため、より狭く、より深いトレンチ・アイソレーション構造を形成させる場合に適しているものである。特に、従来のシリカ質膜の形成方法では、溝の深い部分まで均一なシリカ質膜の形成が困難であった、溝の幅が一般に0.5μm以下、特に0.1μm以下、アスペクト比が5以上であるトレンチ・アイソレーション構造を形成する場合、本発明による浸漬用溶液を用いることにより溝内のシリカ質膜を均一に形成させることができる。
 次いで、このように準備されたシリコン基板上に、シリカ質膜の材料となるポリシラザン組成物を塗布して、塗膜を形成させる。このポリシラザン組成物は、従来知られている任意のポリシラザン化合物を溶媒に溶解させたものを用いることができる。
 本発明に用いられるポリシラザン化合物は特に限定されず、本発明の効果を損なわない限り任意に選択することができる。これらは、無機化合物あるいは有機化合物のいずれのものであってもよい。これらポリシラザンのうち、無機ポリシラザンとしては、例えば一般式(I):
Figure JPOXMLDOC01-appb-C000001
で示される構造単位を有する直鎖状構造を包含し、690~2000の分子量を持ち、一分子中に3~10個のSiH基を有し、化学分析による元素比率がSi:59~61、N:31~34およびH:6.5~7.5の各重量%であるペルヒドロポリシラザン、およびポリスチレン換算平均分子量が3,000~20,000の範囲にあるペルヒドロポリシラザンが挙げられる。
 また、他のポリシラザンの例として、例えば、主として一般式:
Figure JPOXMLDOC01-appb-C000002
(式中、R、RおよびRは、それぞれ独立に水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、もしくはこれらの基以外でフルオロアルキル基等のケイ素に直結する基が炭素である基、アルキルシリル基、アルキルアミノ基またはアルコキシ基を表す。但し、R、RおよびRの少なくとも1つは水素原子である。)で表される構造単位からなる骨格を有する数平均分子量が約100~50,000のポリシラザンまたはその変性物が挙げられる。これらのポリシラザン化合物は2種類以上を組み合わせて用いることもできる。
 本発明に用いられるポリシラザン組成物は、前記のポリシラザン化合物を溶解し得る溶媒を含んでなる。ここで用いられる溶媒は、前記の浸漬用溶液に用いられる溶媒とは別のものである。このような溶媒としては、前記の各成分を溶解し得るものであれば特に限定されるものではないが、好ましい溶媒の具体例としては、次のものが挙げられる:
(a)芳香族化合物、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、トリエチルベンゼン等、(b)飽和炭化水素化合物、例えばn-ペンタン、i-ペンタン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i-ヘプタン、n-オクタン、i-オクタン、n-ノナン、i-ノナン、n-デカン、i-デカン等、(c)脂環式炭化水素化合物、例えばエチルシクロヘキサン、メチルシクロヘキサン、シクロヘキサン、シクロヘキセン、p-メンタン、デカヒドロナフタレン、ジペンテン、リモネン等、(d)エーテル類、例えばジプロピルエーテル、ジブチルエーテル、ジエチルエーテル、メチルターシャリーブチルエーテル(以下、MTBEという)、アニソール等、および(e)ケトン類、例えばメチルイソブチルケトン(以下、MIBKという)等。これらのうち、(b)飽和炭化水素化合物、(c)脂環式炭化水素化合物(d)エーテル類、および(e)ケトン類がより好ましい。
 これらの溶媒は、溶剤の蒸発速度の調整のため、人体への有害性を低くするため、または各成分の溶解性の調製のために、適宜2種以上混合したものも使用できる。
 本発明に用いられるポリシラザン組成物は、必要に応じてその他の添加剤成分を含有することもできる。そのような成分として、例えば粘度調整剤、架橋促進剤等が挙げられる。また、半導体装置に用いられたときにナトリウムのゲッタリング効果などを目的に、リン化合物、例えばトリス(トリメチルシリル)フォスフェート等、を含有することもできる。
 また、前記の各成分の含有量は、目的とする組成物の用途によって変化するが、十分な膜厚のシリカ質材料を形成させるためにポリシラザン化合物の含有率が0.1~40重量%であることが好ましく、0.5~20重量%とすることがより好ましく、5~20重量%とすることがさらに好ましい。通常、ポリシラザン化合物の含有量を5~20重量%とすることで、一般的に好ましい膜厚、例えば2000~8000Å、を得ることができる。
 前記のポリシラザン組成物を基板表面に対する組成物の塗布方法としては、従来公知の方法、例えば、スピンコート法、ディップ法、スプレー法、転写法等が挙げられる。これらのうち、特に好ましいのはスピンコート法である。
(b)浸漬工程
 塗布済みの基板は、必要に応じて基板表面に形成された塗布膜から過剰の有機溶媒を除去(乾燥)するために予備加熱(プリベーク)したあと、前記した浸漬用溶液に浸漬される。予備加熱はポリシラザンを硬化させることが目的ではないため、一般に低温で短時間加熱することにより行われる。具体的には70~150℃、好ましくは100~150℃で、1~10分、好ましくは3~5分加熱することにより行われる。
 浸漬用溶液に浸漬する温度、すなわち浸漬用溶液の温度は特に限定されないが、一般に20~50℃、好ましくは20~30℃である。また、浸漬時間は膜厚やポリシラザン化合物の種類、または浸漬用溶液の濃度などにより変化するが、一般に1~30分、好ましくは10~30分である。このとき、本発明による浸漬用溶液中では、基板に気泡が付着しにくい。このために、この後の工程でのダスト等の付着が減少するため、最終的な基板の欠陥が少なくなる。
(c)硬化工程
 浸漬工程のあと、基板は加熱処理され、表面のポリシラザン組成物が硬化してシリカ質膜に転化される。このとき、加熱処理は好ましくは水蒸気、酸素、またはその混合ガスを含む雰囲気中、すなわち酸化雰囲気中で行われる。本発明においては、特に加熱処理を酸素を含む雰囲気下で焼成することが好ましい。ここで、酸素の含有率は体積を基準として1%以上であることが好ましく、10%以上であることがより好ましい。ここで、本発明の効果を損なわない範囲で、雰囲気中に窒素やヘリウムなどの不活性ガスが混在していてもよい。
 また、本発明の方法において、水蒸気を含む雰囲気下で加熱処理を行う場合には、体積を基準として0.1%以上であることが好ましく、1%以上であることがより好ましい。
 本発明においては、特に酸素と水蒸気とを含む混合ガス雰囲気下で焼成を行うことが好ましい。
 加熱処理の温度は、ポリシラザン化合物がシリカ質膜に添加し得る温度で行うことが必要である。好ましくは400~1,200℃、より好ましくは400~700℃で加熱処理を行う。また、加熱時間は加熱温度に応じて適切に選択することができるが、一般に0.5~5時間、好ましくは0.5~1時間である。また、加熱処理を高湿度条件下で行うことにより、転化に必要な温度を低くし、また必要な時間を短縮することが可能である。
 以上の方法により、基板上の凹部の内側まで均一なシリカ質膜が形成される。本発明の方法によれば、アスペクト比の高いトレンチ・アイソレーション溝などの内部においてもシリカ質膜が均一に形成され、品質の高いトレンチ・アイソレーション構造を得ることができる。
実施例
 本発明を諸例を用いて説明すると以下の通りである。
 まず、ペルヒドロポリシラザンをジブチルエーテルに20%の濃度で溶解させたポリシラザン組成物を調製した。
 前記のポリシラザン組成物をスピンコート法で表面が窒化ケイ素ライナー層で被覆されたTEG基板に塗布した。塗布条件は回転速度1000rpm、回転時間20秒とした。
 この条件でベアシリコン基板上に塗布を行ったとき、その膜厚は約0.6μmであった。
 また、TEG基板のパターンは以下のとおり、0.05μm、0.1μm、0.2μm、0.5μm、および1.0μmの順のライン&スペースである。
 次いで、塗布した基板を150℃のホットプレートで3分間プリベークした。
 プリベーク後のポリシラザン膜を35%過酸化水素と10%のエタノールを含有する浸漬用溶液に30分浸漬した後、さらに150℃のホットプレートで3分間のポストベークを行った。この段階で膜をFT-IRで調べたところ、波数1080cm-1にSi-O結合に帰属される吸収が得られた。
 ポストベーク後、200℃に保持したまま、純酸素雰囲気下でキュア炉に導入し、400℃まで昇温速度10℃/minで加熱し、さらに水蒸気濃度80%を含む酸素雰囲気中30分加熱処理して硬化させた。このとき、膜厚変化から計算される、膜の体積収縮率は以下の通りであった。
浸漬用溶液処理なし  16.9%
浸漬用溶液処理あり   8.0%
膜質評価方法
 全工程終了後の成膜された基板を、溝の長手方向に対して直角の方向で切断した後、0.5%wt.フッ化水素酸水溶液に23℃で30秒浸漬し、その後純水でよく洗浄してから乾燥させた。基板断面の溝部分をSEMにより50000倍で、断面に垂直な方向の仰角30度上方から溝最深部を観察してエッチング量を評価した。浸漬なしのものはトレンチ底部のエッチング量が多く、トレンチ内部が不均一であった。浸漬用溶液処理ありのものは、トレンチ底部のエッチング量が少なく、トレンチ内部が均一な膜が良質な膜であった。
気泡付着評価
 前記と同様にして、TEG基板上にポリシラザン組成物を塗布し、プリベークした後、浸漬用溶液に浸漬し、浸漬開始から5分後の基板表面上の気泡数を計測した。ここで、浸漬用溶液としては、30%の過酸化水素と10%のエタノールを含むもの(実施例)と、エタノールを含まない、30%過酸化水素水(比較例)を用いた。得られた結果は表1に示す通りであった。
焼成後の欠陥数評価
 気泡付着を評価した後、浸漬後、および焼成後の実施例および比較例のTEG基板表面の欠陥数を表面欠陥検査計(KLA-2115(商品名)、KLAテンコール社製)により評価した。焼成は、400℃、80%水蒸気雰囲気下で30分の条件でおこなった。得られた結果は表1に示す通りであった。なお、このとき参照例として浸漬用溶液に浸漬しないものについても同様の評価を行った。
Figure JPOXMLDOC01-appb-T000003

Claims (10)

  1.  シリカ質膜の製造過程において、ポリシラザン組成物塗布済み基板を焼成前に浸漬させるための浸漬用溶液であって、過酸化水素と、アルコール、界面活性剤、およびその混合物からなる群から選択される気泡付着防止剤と、前記アルコールとは異なる溶媒とを含んでなることを特徴とする浸漬用溶液。
  2.  前記アルコールが、炭素数1~3の飽和炭化水素の水素が1~3個の水酸基で置換されたモノオール、ジオール、またはトリオールである、請求項1に記載の浸漬用溶液。
  3.  前記アルコールが、メタノール、エタノール、n-プロパノール、イソプロパノール、およびそれらの混合物からなる群から選択される、請求項1または2に記載の浸漬用溶液。
  4.  前記界面活性剤がノニオン性界面活性剤である、請求項1に記載の浸漬用溶液。
  5.  前記ノニオン性界面活性剤がポリオキシエチレンアルキルエーテルである、請求項4に記載の浸漬用溶液。
  6.  前記アルコールとは異なる溶媒が水である、請求項1~5のいずれか1項に記載の浸漬用溶液。
  7.  凹凸を有する基板の表面上に、ポリシラザン化合物を含んでなる組成物を塗布する塗布工程、
     塗布済み基板を請求項1~6のいずれか1項に記載の浸漬用溶液に浸漬させる浸漬工程、および
     浸漬後の基板を加熱処理してポリシラザン化合物をシリカ質膜に転化させる硬化工程
    を含んでなることを特徴とする、シリカ質膜の製造法。
  8.  前記塗布工程と浸漬工程との間に、さらに基板を予備加熱する工程を含んでなる、請求項7に記載のシリカ質膜の製造法。
  9.  前記硬化工程における加熱処理を水蒸気濃度1%以上の不活性ガスまたは酸素雰囲気下で行う、請求項7または8に記載のシリカ質膜の製造法。
  10.  前記硬化工程における加熱処理を400℃以上1,200℃以下の温度で行う、請求項7~9のいずれか1項に記載のシリカ質膜の製造法。 
PCT/JP2009/053931 2008-03-06 2009-03-03 シリカ質膜の製造に用いる浸漬用溶液およびそれを用いたシリカ質膜の製造法 WO2009110449A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980107577XA CN101965629A (zh) 2008-03-06 2009-03-03 用于制备硅质膜的浸渍溶液和使用所述浸渍溶液制备硅质膜的方法
EP09716895.9A EP2264744B1 (en) 2008-03-06 2009-03-03 Dipping solution for use in production of siliceous film and process for producing siliceous film using the dipping solution
US12/919,782 US20110014796A1 (en) 2008-03-06 2009-03-03 Dipping solution for use in production of siliceous film and process for producing siliceous film using the dipping solution
US13/920,617 US8603923B2 (en) 2008-03-06 2013-06-18 Dipping solution for use in production of siliceous film and process for producing siliceous film using the dipping solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-056198 2008-03-06
JP2008056198A JP5405031B2 (ja) 2008-03-06 2008-03-06 シリカ質膜の製造に用いる浸漬用溶液およびそれを用いたシリカ質膜の製造法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/919,782 A-371-Of-International US20110014796A1 (en) 2008-03-06 2009-03-03 Dipping solution for use in production of siliceous film and process for producing siliceous film using the dipping solution
US13/920,617 Division US8603923B2 (en) 2008-03-06 2013-06-18 Dipping solution for use in production of siliceous film and process for producing siliceous film using the dipping solution

Publications (1)

Publication Number Publication Date
WO2009110449A1 true WO2009110449A1 (ja) 2009-09-11

Family

ID=41056004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053931 WO2009110449A1 (ja) 2008-03-06 2009-03-03 シリカ質膜の製造に用いる浸漬用溶液およびそれを用いたシリカ質膜の製造法

Country Status (7)

Country Link
US (2) US20110014796A1 (ja)
EP (1) EP2264744B1 (ja)
JP (1) JP5405031B2 (ja)
KR (1) KR101623764B1 (ja)
CN (1) CN101965629A (ja)
TW (1) TWI538884B (ja)
WO (1) WO2009110449A1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410207B2 (ja) * 2009-09-04 2014-02-05 AzエレクトロニックマテリアルズIp株式会社 シリカ質膜製造方法およびそれに用いるポリシラザン塗膜処理液
US20110256734A1 (en) 2010-04-15 2011-10-20 Hausmann Dennis M Silicon nitride films and methods
US8637411B2 (en) 2010-04-15 2014-01-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9373500B2 (en) 2014-02-21 2016-06-21 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US8956983B2 (en) 2010-04-15 2015-02-17 Novellus Systems, Inc. Conformal doping via plasma activated atomic layer deposition and conformal film deposition
US9390909B2 (en) 2013-11-07 2016-07-12 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US9611544B2 (en) 2010-04-15 2017-04-04 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9076646B2 (en) 2010-04-15 2015-07-07 Lam Research Corporation Plasma enhanced atomic layer deposition with pulsed plasma exposure
US9685320B2 (en) 2010-09-23 2017-06-20 Lam Research Corporation Methods for depositing silicon oxide
FR2980394B1 (fr) * 2011-09-26 2013-10-18 Commissariat Energie Atomique Structure multicouche offrant une etancheite aux gaz amelioree
US8592328B2 (en) 2012-01-20 2013-11-26 Novellus Systems, Inc. Method for depositing a chlorine-free conformal sin film
KR102207992B1 (ko) 2012-10-23 2021-01-26 램 리써치 코포레이션 서브-포화된 원자층 증착 및 등각막 증착
SG2013083241A (en) 2012-11-08 2014-06-27 Novellus Systems Inc Conformal film deposition for gapfill
JP6538300B2 (ja) 2012-11-08 2019-07-03 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated 感受性基材上にフィルムを蒸着するための方法
US9136343B2 (en) 2013-01-24 2015-09-15 Intel Corporation Deep gate-all-around semiconductor device having germanium or group III-V active layer
US9214334B2 (en) 2014-02-18 2015-12-15 Lam Research Corporation High growth rate process for conformal aluminum nitride
SG11201607910PA (en) * 2014-04-24 2016-10-28 Az Electronic Materials Luxembourg Sarl Copolymerized polysilazane, manufacturing method therefor, composition comprising same, and method for forming siliceous film using same
US9478438B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor
US9478411B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS
US10020185B2 (en) 2014-10-07 2018-07-10 Samsung Sdi Co., Ltd. Composition for forming silica layer, silica layer, and electronic device
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
KR101837971B1 (ko) 2014-12-19 2018-03-13 삼성에스디아이 주식회사 실리카계 막 형성용 조성물, 실리카계 막, 및 전자 디바이스
KR101833800B1 (ko) 2014-12-19 2018-03-02 삼성에스디아이 주식회사 실리카계 막 형성용 조성물, 실리카계 막의 제조방법 및 상기 실리카계 막을 포함하는 전자 소자
US10566187B2 (en) 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
US9502238B2 (en) 2015-04-03 2016-11-22 Lam Research Corporation Deposition of conformal films by atomic layer deposition and atomic layer etch
CN106277824A (zh) * 2015-05-25 2017-01-04 吉永新技有限公司 二氧化硅膜的制造方法
US10526701B2 (en) 2015-07-09 2020-01-07 Lam Research Corporation Multi-cycle ALD process for film uniformity and thickness profile modulation
KR20170014946A (ko) * 2015-07-31 2017-02-08 삼성에스디아이 주식회사 실리카 막 형성용 조성물, 실리카 막의 제조방법 및 실리카 막
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
KR102194975B1 (ko) * 2017-10-13 2020-12-24 삼성에스디아이 주식회사 실리카 막 형성용 조성물, 실리카 막의 제조방법 및 실리카 막

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098030A (ja) * 1995-06-23 1997-01-10 Sony Corp シリコン系酸化膜の製造方法
JPH10194719A (ja) * 1996-12-28 1998-07-28 Tonen Corp 低誘電率シリカ質膜の形成方法及び同シリカ質膜
JP3178412B2 (ja) 1998-04-27 2001-06-18 日本電気株式会社 トレンチ・アイソレーション構造の形成方法
JP2001308090A (ja) 2000-04-25 2001-11-02 Tonengeneral Sekiyu Kk 微細溝をシリカ質材料で埋封する方法及びシリカ質膜付き基材
JP2003115532A (ja) * 2001-10-04 2003-04-18 Jsr Corp トレンチアイソレーションの形成方法
JP2003347294A (ja) * 2002-05-27 2003-12-05 Clariant Internatl Ltd ポリシラザン塗膜のシリカ質への転化促進方法
JP2005045230A (ja) 2003-07-21 2005-02-17 Samsung Electronics Co Ltd スピンオンガラスによるシリコン酸化膜の形成方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2871101A (en) * 1950-08-21 1959-01-27 Shell Dev Manufacture of hydrogen peroxide
US2819949A (en) * 1953-01-19 1958-01-14 Shell Dev Purification of hydrogen peroxide
US2749291A (en) * 1954-01-29 1956-06-05 Shell Dev Purification of hydrogen peroxide
US2949343A (en) * 1955-09-06 1960-08-16 Shell Oil Co Purifying hydrogen peroxide
US3074782A (en) * 1959-05-29 1963-01-22 Shell Oil Co Hydrogen peroxide purification
US3992147A (en) * 1974-10-21 1976-11-16 G. D. Searle & Co. Process for sterilizing psyllium seed husk using aqueous isopropanol
US5112617A (en) * 1990-03-01 1992-05-12 Criscuolo Pascual A Method for controlling cold symptoms
JPH06310482A (ja) * 1993-04-22 1994-11-04 Hitachi Ltd 消泡剤及び消泡方法
US5670122A (en) * 1994-09-23 1997-09-23 Energy And Environmental Research Corporation Methods for removing air pollutants from combustion flue gas
EP0781815B1 (en) * 1995-07-13 2010-11-17 AZ Electronic Materials USA Corp. Composition for forming ceramic substances and process for producing ceramic substances
JPH09157544A (ja) * 1995-12-05 1997-06-17 Tonen Corp シリカ系被膜付き基材の製造方法及び本方法で製造されたシリカ系被膜付き基材
KR100207469B1 (ko) * 1996-03-07 1999-07-15 윤종용 반도체기판의 세정액 및 이를 사용하는 세정방법
DE19642770A1 (de) * 1996-10-16 1998-04-23 Basf Ag Verfahren zur Herstellung von Wasserstoffperoxid
JP3611290B2 (ja) * 1998-07-23 2005-01-19 キヤノン株式会社 半導体基材の作製方法および半導体基材
US6555020B1 (en) * 1998-10-29 2003-04-29 Den-Mat Corporation Stable tooth whitening gels containing high percentages of hydrogen peroxide
IT1318679B1 (it) * 2000-08-11 2003-08-27 Enichem Spa Processo per la produzione di acqua ossigenata.
ATE285256T1 (de) * 2001-05-11 2005-01-15 Steris Inc Nicht-dispersiver infrarotsensor für verdampftes wasserstoffperoxid
JP4128394B2 (ja) * 2002-05-16 2008-07-30 クラリアント インターナショナル リミテッド ポリシラザン含有コーティング膜の親水性促進剤及び親水性維持剤
JP2004273519A (ja) * 2003-03-05 2004-09-30 Clariant (Japan) Kk トレンチ・アイソレーション構造の形成方法
JP2008062114A (ja) * 2004-12-13 2008-03-21 Hiromasa Murase メチルシラザン系重合体乃至オリゴマーを原料とした塗膜、及び塗膜の製造方法
JP5410207B2 (ja) * 2009-09-04 2014-02-05 AzエレクトロニックマテリアルズIp株式会社 シリカ質膜製造方法およびそれに用いるポリシラザン塗膜処理液

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098030A (ja) * 1995-06-23 1997-01-10 Sony Corp シリコン系酸化膜の製造方法
JPH10194719A (ja) * 1996-12-28 1998-07-28 Tonen Corp 低誘電率シリカ質膜の形成方法及び同シリカ質膜
JP3178412B2 (ja) 1998-04-27 2001-06-18 日本電気株式会社 トレンチ・アイソレーション構造の形成方法
JP2001308090A (ja) 2000-04-25 2001-11-02 Tonengeneral Sekiyu Kk 微細溝をシリカ質材料で埋封する方法及びシリカ質膜付き基材
JP2003115532A (ja) * 2001-10-04 2003-04-18 Jsr Corp トレンチアイソレーションの形成方法
JP2003347294A (ja) * 2002-05-27 2003-12-05 Clariant Internatl Ltd ポリシラザン塗膜のシリカ質への転化促進方法
JP2005045230A (ja) 2003-07-21 2005-02-17 Samsung Electronics Co Ltd スピンオンガラスによるシリコン酸化膜の形成方法

Also Published As

Publication number Publication date
US8603923B2 (en) 2013-12-10
EP2264744B1 (en) 2018-05-02
EP2264744A1 (en) 2010-12-22
JP5405031B2 (ja) 2014-02-05
JP2009212433A (ja) 2009-09-17
US20130277808A1 (en) 2013-10-24
KR101623764B1 (ko) 2016-05-24
US20110014796A1 (en) 2011-01-20
TW200946453A (en) 2009-11-16
EP2264744A4 (en) 2016-11-09
TWI538884B (zh) 2016-06-21
CN101965629A (zh) 2011-02-02
KR20110116966A (ko) 2011-10-26

Similar Documents

Publication Publication Date Title
JP5405031B2 (ja) シリカ質膜の製造に用いる浸漬用溶液およびそれを用いたシリカ質膜の製造法
JP5172867B2 (ja) ポリシラザンを含むコーティング組成物
JP5535583B2 (ja) トレンチ・アイソレーション構造の形成方法
JP5306669B2 (ja) シリカ質膜の形成方法およびそれにより形成されたシリカ質膜
JP5710308B2 (ja) 二酸化ケイ素膜の製造方法
JP5781323B2 (ja) 絶縁膜の形成方法
WO2007083654A1 (ja) シリカ質膜の製造法およびそれにより製造されたシリカ質膜付き基板
JPWO2008029834A1 (ja) シリカ質膜形成用組成物およびそれを用いたシリカ質膜の製造法
JP2005347636A (ja) トレンチ・アイソレーション構造の形成方法
WO2009157333A1 (ja) シャロー・トレンチ・アイソレーション構造とその形成方法
JP5405437B2 (ja) アイソレーション構造の形成方法
KR20230056014A (ko) 폴리실라잔, 이를 포함하는 실리카질 막-형성 조성물, 및 이를 이용한 실리카질 막의 제조 방법
JP2009256437A (ja) 塗布型シリカ系被膜形成用組成物、シリカ系被膜の形成方法及びシリカ系被膜を有する電子部品
JP2015173283A (ja) 絶縁膜形成に用いられる組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107577.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716895

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12919782

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009716895

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107022181

Country of ref document: KR

Kind code of ref document: A