WO2009104759A1 - 半導体基板、半導体素子、発光素子及び電子素子 - Google Patents

半導体基板、半導体素子、発光素子及び電子素子 Download PDF

Info

Publication number
WO2009104759A1
WO2009104759A1 PCT/JP2009/053078 JP2009053078W WO2009104759A1 WO 2009104759 A1 WO2009104759 A1 WO 2009104759A1 JP 2009053078 W JP2009053078 W JP 2009053078W WO 2009104759 A1 WO2009104759 A1 WO 2009104759A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
substrate
layer
graphite
semiconductor substrate
Prior art date
Application number
PCT/JP2009/053078
Other languages
English (en)
French (fr)
Inventor
藤岡 洋
Original Assignee
財団法人神奈川科学技術アカデミー
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人神奈川科学技術アカデミー, 国立大学法人東京大学 filed Critical 財団法人神奈川科学技術アカデミー
Priority to CN2009801052960A priority Critical patent/CN101952984B/zh
Priority to US12/735,826 priority patent/US8212335B2/en
Priority to KR1020107018464A priority patent/KR101164107B1/ko
Priority to EP09712251.9A priority patent/EP2246910B1/en
Publication of WO2009104759A1 publication Critical patent/WO2009104759A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials

Definitions

  • the present invention relates to a semiconductor substrate, a semiconductor element, a light emitting element, and an electronic element.
  • Nitride LEDs using AlN, GaN, InN, which are Group 13 nitrides, and PN junctions of mixed crystal phases thereof have been widely put into practical use. It is known that nitride-based LEDs are inorganic and have a long life and a high internal luminous efficiency (internal quantum efficiency) of 90% due to the high binding energy of the materials. These nitride-based LEDs are often mass-produced on an expensive single crystal substrate such as sapphire or silicon carbide using a low-productivity metal organic chemical vapor deposition method (MOCVD method). For this reason, it is expensive to use as a surface light source, and has been used exclusively as a point light source.
  • MOCVD method metal organic chemical vapor deposition method
  • an organic EL element is known as a surface light source (see, for example, Patent Document 1).
  • the organic EL element can use a cheap plastic substrate or glass substrate as a starting material, so that the price of the element can be reduced and it can be used as a surface light source.
  • it is expected to be used as a light-emitting element that can be bent and illumination.
  • JP 2008-21480 A JP 2008-21480 A
  • the light emitting layer constituting the organic EL is an organic substance, there are problems such as low heat resistance and short lifetime. Also, the luminous efficiency was lower than that of nitride LEDs.
  • an object of the present invention is to provide a semiconductor substrate, a semiconductor element, a light emitting element, and an electronic element that are inexpensive, have a long lifetime, have high light emission efficiency, and can be bent. .
  • a semiconductor substrate according to the present invention includes a graphite substrate having heat resistance and flexibility against an external force, and a first semiconductor layer provided on the graphite substrate and made of a group 13 nitride. It is characterized by providing.
  • the graphite substrate having heat resistance and flexibility with respect to external force and the first semiconductor layer made of a group 13 nitride provided on the graphite substrate are provided.
  • the first semiconductor layer can be manufactured at low cost.
  • the group 13 nitride is an inorganic substance, it has a long life and high luminous efficiency can be obtained.
  • the graphite substrate has flexibility with respect to external force, it can be bent. Accordingly, a semiconductor substrate that is inexpensive, has a long life, has high light emission efficiency, and can be bent can be obtained.
  • the semiconductor substrate is characterized in that the graphite substrate contains a sintered polymer.
  • the graphite substrate contains the sintered polymer, it has high heat resistance and can be easily bent by an external force. Since the treatment can be performed at a high temperature, the treatment can be performed at a high temperature such as a pulse sputter deposition method, a metal organic chemical vapor deposition method, or a molecular beam epitaxy method.
  • the thickness of the graphite substrate is 100 ⁇ m or less. According to the present invention, since the thickness of the graphite substrate is 100 ⁇ m or less, it has extremely excellent flexibility against external force.
  • the semiconductor substrate further includes a second semiconductor layer provided between the graphite substrate and the first semiconductor layer and including at least one of HfN (halfnium nitride) and ZrN (zirconium nitride). It is characterized by. HfN and ZrN are known to have high light reflectance. According to the present invention, since the second semiconductor layer including at least one of HfN and ZrN is further provided between the graphite substrate and the first semiconductor layer, light is reflected by the second semiconductor layer. Can do. Thereby, when using a 1st semiconductor layer as a light emitting layer, the utilization efficiency of the light from the said light emitting layer can be improved.
  • the semiconductor substrate further includes a third semiconductor layer provided between the graphite substrate and the first semiconductor layer and containing AlN (aluminum nitride).
  • a third semiconductor layer provided between the graphite substrate and the first semiconductor layer and containing AlN (aluminum nitride).
  • AlN aluminum nitride
  • the grain size of the first semiconductor layer can be increased.
  • the electrical characteristics of the first semiconductor layer can be enhanced.
  • the optical characteristics of the first semiconductor layer can also be enhanced.
  • a semiconductor element according to the present invention is characterized by including the above-described semiconductor substrate. According to the present invention, it is possible to obtain a semiconductor element that can be used in a wider range of fields than a conventional one provided with a semiconductor substrate that is inexpensive, has a long lifetime, has high luminous efficiency, and can be bent.
  • a light-emitting element according to the present invention includes the above-described semiconductor element. According to the present invention, a long-life element capable of surface light emission with flexibility can be obtained at low cost.
  • An electronic device includes the semiconductor device described above. According to the present invention, an element having flexibility and high electrical characteristics can be obtained at low cost.
  • a semiconductor substrate, a semiconductor element, a light emitting element, and an electronic element that are inexpensive, have a long lifetime, have high luminous efficiency, and can be bent.
  • FIG. 1 is a diagram showing a configuration of a semiconductor substrate 1 according to the present embodiment.
  • the semiconductor substrate 1 has a configuration in which a buffer layer 3 is provided on a heat dissipation sheet 2 and a semiconductor layer 4 is laminated on the buffer layer 3.
  • the semiconductor substrate 1 is mounted on a light emitting element or an electronic element.
  • the heat dissipation sheet 2 is made of, for example, a graphite film prepared by sintering a polymer such as polyoxadiazole at about 3000 ° C.
  • the graphite film has a thermal conductivity of about 1700 W / m ⁇ K in the in-plane direction, and the value of this thermal conductivity is about four times that of Cu. Moreover, since it has high heat resistance, it can be processed even at high temperatures. Furthermore, it has a high electrical conductivity of about 5 ⁇ 10 ⁇ 5 S / cm in the in-plane direction of the film. Since this graphite film is as thin as 25 ⁇ m to 100 ⁇ m, it has flexibility against external forces. For this reason, it can be bent.
  • the graphite sheet 2 can have a large area of 50 cm 2 or more.
  • the buffer layer 3 is a layer made of, for example, zirconium nitride (ZrN (111)), and is interposed between the heat dissipation sheet 2 and the semiconductor layer 4.
  • FIG. 2 is a graph showing the light reflectance of zirconium nitride. The horizontal axis of the graph indicates the wavelength, and the vertical axis of the graph indicates the light reflectance.
  • FIG. 3 is a table showing the correspondence between the light reflectance of zirconium nitride and the wavelength of the light.
  • the light reflectance at 470 nm which is the wavelength range of blue light in zirconium nitride is 65.6%. Based on this, it can be said that the buffer layer 3 made of zirconium nitride can reflect almost 65% or more of light when irradiated with blue light.
  • the semiconductor layer 4 is a semiconductor layer made of, for example, a group 13 nitride semiconductor.
  • group 13 nitride include GaN (gallium nitride), AlN (aluminum nitride), InN (indium nitride), and the like, and have a general formula of In X Ga Y Al 1-XY N (0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ 1, 0 ⁇ X + Y ⁇ 1).
  • FIG. 4 is a diagram showing a configuration of a sputtering apparatus which is a manufacturing apparatus for the semiconductor layer 4 and the buffer layer 3 described above.
  • the sputtering apparatus 10 is mainly composed of a chamber 11, a substrate electrode 12, a target electrode 13, a DC power supply 14, a power supply control unit 15, a nitrogen supply source 16, and a heating device 17. Has been.
  • the chamber 11 is provided so that it can be sealed with respect to the outside.
  • the inside of the chamber 11 can be decompressed by a vacuum pump (not shown).
  • the substrate electrode 12 is disposed in the chamber 11 and can hold the heat dissipation sheet 2.
  • the target electrode 13 is provided in the chamber 11 so as to face the substrate electrode 12, and can hold the target 13a.
  • the target 13a is made of, for example, Zr (zirconium) or an alloy thereof.
  • the DC power supply 14 is a voltage source that is electrically connected to the substrate electrode 12 and the target electrode 13 and applies a DC voltage between the substrate electrode 12 and the target electrode 13.
  • the control unit 15 is connected to the DC power supply 14 and performs control related to the operation timing of the DC power supply 14.
  • the control unit 15 can apply a pulse voltage between the substrate electrode 12 and the target electrode 13.
  • the nitrogen supply source 16 is connected to the inside of the chamber 11 by, for example, a supply pipe and supplies nitrogen gas into the chamber 11.
  • an argon gas supply source for supplying argon gas into the chamber is also provided.
  • the heating device 17 is fixed to the substrate electrode 12, for example, and can adjust the ambient temperature of the heat dissipation sheet 2 on the substrate electrode 12.
  • a process for manufacturing the semiconductor substrate 1 according to this embodiment using the sputtering apparatus 10 will be described.
  • a PSD method pulse sputter deposition method
  • a pulse DC voltage is applied between a substrate and a target
  • the semiconductor thin film is formed on the heat dissipation sheet 2 capable of increasing the area, it can be said that the PSD method is significant.
  • argon gas is supplied into the chamber 11, and nitrogen gas is supplied into the chamber 11 from the nitrogen supply source 16. After the inside of the chamber 11 reaches a predetermined pressure by the argon gas and the nitrogen gas, the heat radiation sheet 2 is held on the substrate electrode 12 and the target 13 a is placed on the target electrode 13.
  • the ambient temperature of the heat dissipation sheet 2 is adjusted by the heating device 17.
  • a DC pulse voltage is applied between the substrate electrode 12 and the target electrode 13.
  • a large amount of high-energy Zr atoms is supplied onto the heat dissipation sheet 2, and the surface of the heat dissipation sheet 2 is in a metal-rich state.
  • Zr atoms on the heat dissipation sheet 2 migrate to stable lattice positions.
  • Zr atoms migrated to a stable lattice position react with nitrogen radicals activated in the chamber 11 to form a metal nitride (ZrN) crystal.
  • ZrN metal nitride
  • the semiconductor layer 4 is formed on the formed buffer layer 3 by the same method. In this way, the semiconductor substrate 1 shown in FIG. 1 is completed.
  • a method such as a pulse sputter deposition method can be used when forming the semiconductor layer 4 on the heat dissipation sheet 2 made of a graphite film that can be processed at a high temperature. it can.
  • the group 13 nitride is an inorganic substance, it has a long life and high luminous efficiency can be obtained.
  • the heat dissipation sheet 2 has flexibility with respect to external force, it can be bent. Accordingly, a semiconductor substrate that is inexpensive, has a long life, has high light emission efficiency, and can be bent can be obtained.
  • the heat-dissipating sheet 2 is sintered at about 3000 ° C. as a polymer, such as polyoxadiazole, as an example of the “graphite substrate having heat resistance and flexibility against external force” of the present invention.
  • a polymer such as polyoxadiazole
  • the present invention is not limited to this.
  • any substrate may be used as long as it has heat resistance and is flexible to external force, which is configured by laminating a graphite layer on a substrate other than graphite. Further, it can withstand a temperature environment of 600 ° C.
  • the “graphite substrate having heat resistance and flexibility to external force” of the present invention is a graphite having a structure close to a single crystal made by a method of graphitizing a polymer by thermal decomposition, and has high thermal conductivity. It is particularly preferable that the graphite film is used as a heat conductive sheet and has features such as flexibility with respect to external force.
  • the buffer layer 3 and the semiconductor layer 4 are formed by the pulse sputtering method, it is not restricted to this,
  • PLD method pulse laser deposition method
  • PED method pulse electron beam deposition
  • PXD method Pulsed Excitation Deposition
  • metal organic growth method molecular beam epitaxy method, or other thin film forming methods.
  • the buffer layer 3 made of ZrN (111) is formed on the heat radiating sheet 2.
  • the present invention is not limited to this.
  • the buffer layer 3 made of HfN (111) It may be configured to form.
  • the semiconductor layer 4 may be grown directly on the heat dissipation sheet 2 without forming the buffer layer 3, or the semiconductor layer 4 may be stacked (for example, GaN layer / AlN layer / graphite, etc.) ).
  • Example 1 according to the present invention will be described.
  • the heat-dissipating sheet 2 used in the above embodiment was observed by XRD measurement and electron microscope (SEM).
  • FIG. 5 is a graph showing the results of XRD measurement for the heat dissipation sheet 2 described in the above embodiment.
  • the graphite constituting the heat-dissipating sheet 2 shows a strong orientation at (002) and (004), and can be said to be a high-quality single crystal.
  • FIG. 6A and 6B are electron micrographs of the surface of the heat dissipation sheet 2 described in the above embodiment.
  • FIG. 6B is an enlarged photograph of one of the grains in FIG.
  • the grain size of graphite is 10 ⁇ m or more, and it can be seen that the crystallinity is high.
  • FIG. 6B it can be seen that the surface has no irregularities and is flat.
  • an AlN layer was formed on the heat dissipation sheet 2 by the method of the above embodiment (pulse sputtering method), and a GaN layer was further formed on the AlN layer.
  • heating was performed at a temperature of about 1000 ° C. to 1200 ° C., and the heating time was about 30 min to 60 min.
  • heating was performed at a temperature of about 650 ° C. to 750 ° C., and the heating time was set to 60 min to 120 min.
  • FIG. 7 is a graph showing measurement results by XRD for the graphite layer and the AlN layer. As shown in the figure, the graphite layer grows in the (002) direction, the AlN layer grows in the (0002) direction, and the AlN layer is recognized to exhibit c-axis orientation.
  • FIG. 8 is an EBSD measurement diagram of the AlN layer. As shown in the figure, it can be seen that many crystals having a grain size of 1 ⁇ m or more are formed in the AlN layer.
  • FIG. 9 is a ⁇ 10-12 ⁇ EBSD pole figure for a portion of the AlN layer. As shown in the figure, a clear pattern is recognized on the apex of the regular hexagon. This shows that the crystallinity of the AlN layer is good.
  • FIG. 10 is a graph showing measurement results by XRD for the graphite layer and the GaN layer. As shown in the figure, the GaN layer grows in the (0002) direction like the AlN layer, and it is recognized that it exhibits c-axis orientation.
  • FIG. 11 is an SEM image of the surface of the GaN layer. As shown in the figure, it can be seen that the surface of the GaN layer has no particularly large irregularities and is formed on a relatively flat surface.
  • FIG. 12 is an EBSD measurement diagram of the GaN layer. As shown in the figure, it is understood that many crystals having a grain size of 1 ⁇ m or more are formed in the GaN layer.
  • FIG. 13 is an EBSD pole figure of the GaN layer.
  • FIG. 13A is a ⁇ 10-12 ⁇ EBSD pole figure for a part of the GaN layer
  • FIG. 13B is a ⁇ 10-12 ⁇ EBSD pole figure for the other part of the GaN layer.
  • a clear pattern is recognized on the apex of the regular hexagon. This indicates that each grain has high crystallinity.
  • FIG. 14 is a graph showing the results of PL measurement of the GaN layer at room temperature.
  • FIG. 15 is a graph showing the results of PL measurement at room temperature of GaN produced by conventional MOCVD.
  • the vertical axis of the graph is the PL intensity
  • the horizontal axis of the graph is the emission energy.
  • FIG. 14 in the GaN layer obtained in this example, a strong peak is observed when the emission energy is around 3.4 eV. It was 63 meV when the half width of this peak was measured.
  • FIG. 15 in the conventional GaN substrate, a strong peak is recognized in the vicinity of 3.4 eV. It was 66 meV when the half value width of this peak was measured. Comparing the results of FIGS. 14 and 15, it can be seen that the light emission characteristics of the GaN layer obtained in this example are equal to or higher than the light emission characteristics of the conventional GaN substrate.
  • an HfN layer was formed on the heat dissipation sheet 2 by the method of the above embodiment (pulse sputtering method), and a GaN layer was further formed on the HfN layer.
  • heating was performed at a temperature of about 1000 ° C. to 1200 ° C., and the heating time was about 30 min to 60 min.
  • heating was performed at a temperature of about 650 ° C. to 750 ° C., and the heating time was set to 60 min to 120 min.
  • the semiconductor substrate (GaN / HfN / graphite) thus prepared was evaluated by evaluation methods of X-ray diffraction (XRD), scanning electron microscope (SEM), and electron beam backscatter diffraction (EBSD).
  • XRD X-ray diffraction
  • SEM scanning electron microscope
  • EBSD electron beam backscatter diffraction
  • FIG. 16 is an SEM image of the surface of the HfN layer. As shown in the figure, it can be seen that the surface of the HfN layer has no particularly large irregularities and is formed on a relatively flat surface.
  • FIG. 17 is a graph showing measurement results by XRD for the graphite layer and the HfN layer. As shown in the figure, it is recognized that the graphite layer grows in the (002) direction and the HfN layer grows in the (111) direction. From these results, it can be seen that the HfN layer has good crystallinity and it is possible to grow an HfN thin film having a high (111) orientation on the graphite sheet.
  • FIG. 18 is an SEM image of the surface of the GaN layer. As shown in the figure, it can be seen that the surface of the GaN layer has no particularly large irregularities and is formed on a relatively flat surface.
  • FIG. 19 is a ⁇ 10-12 ⁇ EBSD pole figure for the other part of the GaN layer. As shown in FIG. 19, a clear pattern is recognized on the regular hexagonal apex. This indicates that each grain has high crystallinity. It can be seen that a high-quality GaN thin film can be grown on the graphite sheet by using the HfN buffer layer.

Abstract

 安価で、長寿命であり、発光効率が高く、しかも曲げることが可能な半導体基板、半導体素子、発光素子及び電子素子を提供すること。耐熱性を有すると共に外力に対する可撓性を有するグラファイト基板と、当該グラファイト基板上に設けられ13属窒化物からなる第1半導体層とを備えることとしたので、グラファイト基板上に第1半導体層を形成する際にパルススパッタ堆積法などの手法を用いることができるため、安価に製造することができる。また、13属窒化物は無機物であるため長寿命であり、高い発光効率を得ることができる。しかも、グラファイト基板が外力に対する可撓性を有するため曲げることも可能となる。

Description

半導体基板、半導体素子、発光素子及び電子素子
 本発明は、半導体基板、半導体素子、発光素子及び電子素子に関する。
 本願は、2008年2月21日に、日本に出願された特願2008-039672号に基づき優先権を主張し、その内容をここに援用する。
 13属窒化物であるAlN、GaN、InNおよびその混晶相のPN接合を利用した窒化物系LEDが広く実用化されている。窒化物系LEDは無機物であり、しかも材料の結合エネルギーが高いため、寿命が長く、内部発光効率(内部量子効率)が90%と高いことが知られている。これらの窒化物系LEDはサファイアや炭化珪素などの高価な単結晶基板上に量産性の低い有機金属気相成長法(MOCVD法)を用いて量産されることが多い。このため面光源として用いるには価格が高く、専ら点光源として利用されてきた。
 一方、面光源としては有機EL素子が知られている(例えば、特許文献1参照。)。有機EL素子は価格の安いプラスチック基板やガラス基板を出発材料として用いることができるため、素子の価格を安価にでき、面光源としての利用が可能である。また、曲げることのできる発光素子や照明としての利用も期待されている。 
特開2008-21480号公報
 しかしながら、有機ELを構成する発光層は有機物であるため、耐熱性が低い、寿命が短いといった問題があった。また、発光効率も窒化物系LEDに比べ低かった。
 以上のような事情に鑑み、本発明の目的は、安価で、長寿命であり、発光効率が高く、しかも曲げることが可能な半導体基板、半導体素子、発光素子及び電子素子を提供することにある。
 上記目的を達成するため、本発明に係る半導体基板は、耐熱性を有すると共に外力に対する可撓性を有するグラファイト基板と、前記グラファイト基板上に設けられ、13属窒化物からなる第1半導体層とを備えることを特徴とする。
 本発明によれば、耐熱性を有すると共に外力に対する可撓性を有するグラファイト基板と、当該グラファイト基板上に設けられ13属窒化物からなる第1半導体層とを備えることとしたので、グラファイト基板上に第1半導体層を形成する際にパルススパッタ堆積法などの手法を用いることができるため、安価に製造することができる。また、13属窒化物は無機物であるため長寿命であり、高い発光効率を得ることができる。しかも、グラファイト基板が外力に対する可撓性を有するため曲げることも可能となる。これにより、安価で、長寿命であり、発光効率が高く、しかも曲げることが可能な半導体基板を得ることができる。
 上記の半導体基板は、前記グラファイト基板は、焼結されたポリマーを含んでいることを特徴とする。 
 本発明によれば、グラファイト基板が焼結されたポリマーを含んでいることとしたので、耐熱性が高く、外力によって容易に曲げることが可能である。高温下で処理を行うことも可能であるため、パルススパッタ堆積法や有機金属気相成長法、分子線エピタキシー法など高温下で行う処理が可能となる。
 上記の半導体基板は、前記グラファイト基板の厚さは100μm以下であることを特徴とする。 
 本発明によれば、グラファイト基板の厚さが100μm以下であるとしたので、外力に対して極めて優れた可撓性を有することとなる。
 上記の半導体基板は、前記グラファイト基板と前記第1半導体層との間に設けられ、HfN(ハーフニウムナイトライド)及びZrN(ジルコニウムナイトライド)のうち少なくとも一方を含む第2半導体層を更に備えることを特徴とする。 
 HfN及びZrNは高い光反射率を有することが知られている。本発明によれば、グラファイト基板と第1半導体層との間に、HfN及びZrNのうち少なくとも一方を含む第2半導体層を更に備えることとしたので、当該第2半導体層によって光を反射することができる。これにより、第1半導体層を発光層として用いる場合、当該発光層からの光の利用効率を高めることができる。
 上記の半導体基板は、前記グラファイト基板と前記第1半導体層との間に設けられ、AlN(アルミニウムナイトライド)を含む第3半導体層を更に備えることを特徴とする。
 本発明によれば、グラファイト基板と第1半導体層との間に、AlNを含む第3半導体層を更に備えることとしたので、第1半導体層のグレインサイズを増大させることができる。これにより、第1半導体層の電気的特性を高めることができ、特に第1半導体層を発光層として用いる場合には当該第1半導体層の光学特性についても高めることができる。
 本発明に係る半導体素子は、上記の半導体基板を備えることを特長とする。 
 本発明によれば、安価で、長寿命であり、発光効率が高く、しかも曲げることが可能な半導体基板を備える従来に比べて広い分野で利用可能な半導体素子を得ることができる。
 本発明に係る発光素子は、上記の半導体素子を備えることを特徴とする。 
 本発明によれば、柔軟性を持ち面発光が可能な長寿命の素子を安価で得ることができる。
 本発明に係る電子素子は、上記の半導体素子を備えることを特徴とする。
 本発明によれば、柔軟性を持ち電気的特性の高い素子を安価で得ることができる。
 本発明によれば、安価で、長寿命であり、発光効率が高く、しかも曲げることが可能な半導体基板、半導体素子、発光素子及び電子素子を得ることができる。
本発明の実施形態に係る半導体基板の構成を示す図。 ZrNの光反射率を示すグラフ。 ZrNの光反射率と反射波長の対応関係とを示す図。 本実施形態に係るスパッタ装置の構成を示す図。 本発明の実施例1に係る放熱シートのXRD測定グラフ。 本発明の実施例1に係る放熱シートの表面のSEM像。 本発明の実施例2に係るグラファイト層及びAlN層のXRD測定グラフ。 本発明の実施例2に係るAlN層のEBSD測定図。 本発明の実施例2に係るAlN層のEBSD極点図。 本発明の実施例2に係るグラファイト層及びGaN層のXRD測定グラフ。 本発明の実施例2に係るGaN層の表面のSEM像。 本発明の実施例2に係るGaN層のEBSD測定図。 本発明の実施例2に係るGaN層のEBSD極点図。 本発明の実施例2に係るGaN層の室温でのPL測定の結果を示すグラフ。 従来のGaN層の室温でのPL測定の結果を示すグラフ。 本発明の実施例3に係るHfN層の表面のSEM像。 本発明の実施例3に係るグラファイト層及びHfN層のXRD測定グラフ。 本発明の実施例3に係るGaN層の表面のSEM像。 本発明の実施例3に係るGaN層のEBSD極点図。
符号の説明
1…半導体基板 2…放熱シート 3…バッファ層 4…半導体薄膜 10…スパッタ装置 11…チャンバ 12…基板電極 13…ターゲット電極 13a…ターゲット 14…直流電源 15…制御部 16…窒素供給源 17…加熱装置
 本発明の実施の形態を図面に基づき説明する。 
 図1は、本実施形態に係る半導体基板1の構成を示す図である。 
 同図に示すように、半導体基板1は、放熱シート2上にバッファ層3が設けられ、当該バッファ層3上に半導体層4が積層された構成になっている。この半導体基板1は、発光素子や電子素子などに搭載される。
 放熱シート2は、例えば、ポリオキサジアゾールなどのポリマーを約3000℃程度で焼結させて作製したグラファイトフィルムからなる。当該グラファイトフィルムは、フィルム面内方向に約1700W/m・K程度の熱伝導率を有しており、この熱伝導率の値はCuの4倍程度である。また、耐熱性が高いため、高温下においても処理可能になっている。さらに、フィルム面内方向に5×10-5S/cm程度という高い電気伝導率を有している。
このグラファイトフィルムは、厚さが25μm~100μm程度と薄いため外力に対する可撓性を有することとなる。このため、曲げることができるようになっている。グラファイトシート2は50cm以上の大面積化が可能である。
 バッファ層3は、例えば、ジルコニウムナイトライド(ZrN(111))からなる層であり、放熱シート2と半導体層4との間に介在する。図2は、ジルコニウムナイトライドの光反射率を示すグラフである。グラフの横軸は波長、グラフの縦軸は光反射率を示している。
図3は、ジルコニウムナイトライドの光反射率と当該光の波長との対応関係を示す表である。
 図2及び図3に示すように、ジルコニウムナイトライドにおいて青色光の波長範囲である470nmでの光反射率は65.6%になっている。これをもとにすると、ジルコニウムナイトライドからなるバッファ層3においては、青色光を照射したときにはほぼ65%以上の光を反射することが可能であるといえる。
 半導体層4は、例えば13族窒化物半導体からなる半導体層である。13族窒化物としては、例えばGaN(ガリウムナイトライド)、AlN(アルミニウムナイトライド)、InN(インジウムナイトライド)などが挙げられ、一般式InGaAl1-X-YN(0≦X≦1、0≦Y≦1、0≦X+Y≦1)で表される。
 図4は、上記の半導体層4及びバッファ層3の製造装置であるスパッタ装置の構成を示す図である。 
 同図に示すように、スパッタ装置10は、チャンバ11と、基板電極12と、ターゲット電極13と、直流電源14と、電源制御部15と、窒素供給源16と、加熱装置17を主体として構成されている。
 チャンバ11は、外部に対して密閉可能に設けられている。チャンバ11内は図示しない真空ポンプなどによって減圧できるようになっている。 
 基板電極12は、チャンバ11内に配置されており、上記の放熱シート2を保持可能になっている。
 ターゲット電極13は、チャンバ11内に基板電極12に対向して設けられており、ターゲット13aを保持可能になっている。ターゲット13aは、例えば、Zr(ジルコニウム)又はその合金からなる。
 直流電源14は、基板電極12及びターゲット電極13にそれぞれ電気的に接続されており、基板電極12とターゲット電極13との間に直流電圧を印加する電圧源である。 
 制御部15は、直流電源14に接続されており、直流電源14の動作のタイミングに関する制御を行う。制御部15により、基板電極12とターゲット電極13との間にパルス電圧を印加することが可能になっている。
 窒素供給源16は、例えば供給管などによってチャンバ11内に接続されており、チャンバ11内に窒素ガスを供給する。図示しないが、窒素供給源16の他、チャンバ内にアルゴンガスを供給するアルゴンガス供給源も設けられている。 
 加熱装置17は、例えば基板電極12に固定されており、基板電極12上の放熱シート2の周囲温度を調節できるようになっている。
 次に、上記のスパッタ装置10を用いて本実施形態に係る半導体基板1を製造する工程を説明する。本実施形態では、基板-ターゲット間にパルス直流電圧を印加するPSD法(パルススパッタ堆積法)を例に挙げて説明する。特に本実施形態では、大面積化が可能な放熱シート2上に半導体薄膜を形成するため、PSD法を行う意義は大きいといえる。
 まず、チャンバ11内にアルゴンガスを供給し、窒素供給源16から窒素ガスをチャンバ11内に供給する。アルゴンガス及び窒素ガスによってチャンバ11内が所定の圧力になった後、放熱シート2を基板電極12に保持し、ターゲット13aをターゲット電極13上に設置する。
 放熱シート2及びターゲット13aを配置した後、加熱装置17によって、放熱シート2の周囲温度を調節する。放熱シート2の周囲温度を調節したら、基板電極12とターゲット電極13との間に直流パルス電圧を印加する。
 パルス電圧が印加されている間、アルゴンガスによるプラズマが発生し、ターゲット13aに衝突する。この衝突エネルギーを受けて、ターゲット13aを構成するZr原子がチャンバ11内に放出される。この高エネルギーを有するZr原子は、放熱シート2上に供給される。放熱シート2の表面では、チャンバ内の窒素が窒素ラジカルになっている。
 放熱シート2上には高エネルギーを有するZr原子が大量に供給され、放熱シート2の表面は金属リッチの状態になる。金属リッチの状態では、放熱シート2上のZr原子は安定な格子位置にマイグレーションする。安定な格子位置にマイグレーションしたZr原子は、チャンバ11内で活性化した窒素ラジカルと反応して金属窒化物(ZrN)の結晶となる。基板電極12とターゲット電極13との間にパルス電圧が印加される毎に、結晶構造の安定したZrNが堆積されることになる。
 次に、形成されたバッファ層3上に、同様の手法によって半導体層4を形成する。このようにして、図1に示す半導体基板1が完成する。
 本実施形態によれば、高温下で処理可能なグラファイトフィルムからなる放熱シート2上に半導体層4を形成する際にパルススパッタ堆積法などの手法を用いることができるため、安価に製造することができる。また、13属窒化物は無機物であるため長寿命であり、高い発光効率を得ることができる。しかも、放熱シート2が外力に対する可撓性を有するため曲げることも可能となる。これにより、安価で、長寿命であり、発光効率が高く、しかも曲げることが可能な半導体基板を得ることができる。
 本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。
 例えば、上記実施形態では、放熱シート2は、本発明の「耐熱性を有すると共に外力に対する可撓性を有するグラファイト基板」の一例として、ポリオキサジアゾールなどのポリマーを約3000℃程度で焼結させて作製したグラファイトフィルムからなるが、これに限られることはない。例えば、基板の片面がグラファイト構造であれば、グラファイト以外の基板上にグラファイト層を積層して構成された耐熱性を有すると共に外力に対する可撓性を有する基板であれば、構わない。また、600℃以上、好ましくは1200℃以上、さらに好ましくは2000℃以上の温度環境にも耐えることができると共に、基板の両端に外力を加える場合には120度以下、好ましくは90度以下、さらに好ましくは60度以下の角度で曲げることができるグラファイト基板であれば構わない。また、本発明の「耐熱性を有すると共に外力に対する可撓性を有するグラファイト基板」は、ポリマーを熱分解によりグラファイト化する方法で作られた単結晶に近い構造を持つグラファイトで,高い熱伝導性と外力に対する可撓性などの特長を持った、熱伝導シートとして使われているグラファイトフィルムであることが特に好ましい。
 また、上記実施形態では、バッファ層3及び半導体層4をパルススパッタ法によって形成しているが、これに限られることはなく、例えばPLD法(パルスレーザ堆積法)やPED法(パルス電子線堆積法)を含むPXD法(Pulsed Excitation Deposition:パルス励起堆積法)有機金属成長法、分子線エピタキシー法など、他の薄膜形成方法によって形成しても構わない。
 また、上記実施形態では、一例として、放熱シート2上にZrN(111)からなるバッファ層3を形成することとしたが、これに限られることは無く、例えばHfN(111)からなるバッファ層3を形成する構成であっても構わない。また、バッファ層3を形成することなく、放熱シート2上に直接半導体層4を成長させる構成であっても構わないし、半導体層4を積層する構成(例えば、GaN層/AlN層/グラファイト、など)であっても構わない。
 次に、本発明に係る実施例1を説明する。本実施例では、上記実施形態で用いた放熱シート2についてXRD測定及び電子顕微鏡(SEM)による観察を行った。 
 図5は、上記実施形態で説明した放熱シート2についてのXRD測定の結果を示すグラフである。 
 同図に示すように、放熱シート2を構成するグラファイトは(002)及び(004)に強い配向を示しており、高品質な単結晶であるといえる。
 図6(a)及び図6(b)は、上記実施形態で説明した放熱シート2の表面についての電子顕微鏡写真である。図6(b)は図6(a)のグレインの1つを拡大して撮影したものである。 
 図6(a)に示すように、グラファイトのグレインサイズは10μm以上となっており、結晶性が高いことが分かる。図6(b)に示すように、表面に凹凸が見られず、平坦になっていることが分かる。
 図5及び図6の結果から、放熱シート2の材料としてポリマー焼結グラファイトを用いることにより、半導体薄膜の結晶成長の下地基板として優れた特性を有しているといえる。
 本実施例では、上記実施形態の手法(パルススパッタ法)によって放熱シート2上にAlN層を形成し、当該AlN層上にGaN層をさらに形成した。AlN成長時には温度1000℃~1200℃程度で加熱し、加熱時間を30min~60min程度とした。GaN成長時には、温度650℃~750℃程度で加熱し、加熱時間を60min~120minとした。
 また、このようにして作製した半導体基板(GaN/AlN/グラファイト)について、反射型高速電子線回折(RHEED)、X線回折(XRD)、走査型電子顕微鏡(SEM)、電子線後方散乱回折(EBSD)、フォトルミネッセンス(PL)の評価法で評価した。
 図7は、グラファイト層及びAlN層についてのXRDによる測定結果を示すグラフである。 
 同図に示すように、グラファイト層は(002)方向に成長しており、AlN層は(0002)方向に成長しており、AlN層はc軸配向性を示していると認められる。
 図8はAlN層のEBSD測定図である。 
 同図に示すように、AlN層には1μm以上のグレインサイズを有する結晶が多く形成されていることが分かる。
 図9は、AlN層の一部についての{10-12}EBSD極点図である。 
 同図に示すように、正六角形の頂点上に明確なパターンが認められる。このことからAlN層の結晶性が良好であることが分かる。
 図10は、グラファイト層及びGaN層についてのXRDによる測定結果を示すグラフである。 
 同図に示すように、GaN層はAlN層と同様に(0002)方向に成長しており、c軸配向性を示していると認められる。
 図11は、GaN層の表面のSEM像である。 
 同図に示すように、GaN層の表面には特段に大きな凹凸は見られず、比較的平坦な表面に形成されていることが分かる。
 図12は、GaN層のEBSD測定図である。 
 同図に示すように、GaN層には1μm以上のグレインサイズを有する結晶が多く形成されていることがわかる。
 図13は、GaN層のEBSD極点図である。図13(a)はGaN層の一部分についての{10-12}EBSD極点図であり、図13(b)はGaN層の他部分についての{10-12}EBSD極点図である。 
 図13(a)及び図13(b)に示すように、正六角形の頂点上に明確なパターンが認められる。このことからそれぞれのグレインは高い結晶性を有していることが分かる。
 図14は、GaN層の室温でのPL測定の結果を示すグラフである。図15は、従来のMOCVDで作製したGaNの室温でのPL測定の結果を示すグラフである。両図共に、グラフの縦軸がPL強度であり、グラフの横軸が発光エネルギーである。 
 図14に示すように、本実施例で得られたGaN層については、発光エネルギーが3.4eV付近において強いピークが認められる。このピークの半値幅を測定したら、63meVであった。また、図15に示すように、従来のGaN基板については、3.4eV付近において強いピークが認められる。このピークの半値幅を測定したら、66meVであった。図14と図15との結果とを比較すると、本実施例で得られたGaN層の発光特性は、従来のGaN基板の発光特性に比べて同等以上であることが分かる。
 本実施例では、上記実施形態の手法(パルススパッタ法)によって放熱シート2上にHfN層を形成し、当該HfN層上にGaN層をさらに形成した。HfN成長時には温度1000℃~1200℃程度で加熱し、加熱時間を30min~60min程度とした。GaN成長時には、温度650℃~750℃程度で加熱し、加熱時間を60min~120minとした。
 また、このようにして作製した半導体基板(GaN/HfN/グラファイト)について、X線回折(XRD)、走査型電子顕微鏡(SEM)、電子線後方散乱回折(EBSD)の評価法で評価した。
 図16は、HfN層の表面のSEM像である。 
 同図に示すように、HfN層の表面には特段に大きな凹凸は見られず、比較的平坦な表面に形成されていることが分かる。
 図17は、グラファイト層及びHfN層についてのXRDによる測定結果を示すグラフである。 
 同図に示すように、グラファイト層は(002)方向に成長しており、HfN層は(111)方向に成長しておると認められる。 これらの結果からHfN層の結晶性が良好でありグラファイトシート上に高い(111)配向性を有したHfN薄膜の成長が可能であることが分かる。
 図18は、GaN層の表面のSEM像である。 
 同図に示すように、GaN層の表面には特段に大きな凹凸は見られず、比較的平坦な表面に形成されていることが分かる。 
 図19はGaN層の他部分についての{10-12}EBSD極点図である。 
 図19に示すように、正六角形の頂点上に明確なパターンが認められる。このことからそれぞれのグレインは高い結晶性を有していることが分かる。
 HfNバッファー層を用いることで、グラファイトシート上に良質なGaN薄膜を成長可能であることが分かる。

Claims (8)

  1.  耐熱性を有すると共に外力に対する可撓性を有するグラファイト基板と、
     前記グラファイト基板上に設けられ、13属窒化物からなる第1半導体層と
     を備えることを特徴とする半導体基板。
  2.  前記グラファイト基板は、焼結されたポリマーを含んでいる
     ことを特徴とする請求項1に記載の半導体基板。
  3.  前記グラファイト基板の厚さは100μm以下である
     ことを特徴とする請求項1又は請求項2に記載の半導体基板。
  4.  前記グラファイト基板と前記第1半導体層との間に設けられ、HfN及びZrNのうち少なくとも一方を含む第2半導体層を更に備える
     ことを特徴とする請求項1から請求項3のうちいずれか一項に記載の半導体基板。
  5.  前記グラファイト基板と前記第1半導体層との間に設けられ、AlNを含む第3半導体層を更に備える
     ことを特徴とする請求項1から請求項4のうちいずれか一項に記載の半導体基板。
  6.  請求項1から請求項5のうちいずれか一項に記載の半導体基板を備えることを特長とする半導体素子。
  7.  請求項6に記載の半導体素子を備えることを特徴とする発光素子。
  8.  請求項6に記載の半導体素子を備えることを特徴とする電子素子。
PCT/JP2009/053078 2008-02-21 2009-02-20 半導体基板、半導体素子、発光素子及び電子素子 WO2009104759A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801052960A CN101952984B (zh) 2008-02-21 2009-02-20 半导体基板、半导体元件、发光元件以及电子元件
US12/735,826 US8212335B2 (en) 2008-02-21 2009-02-20 Semiconductor substrate having a flexible, heat resistant, graphite substrate
KR1020107018464A KR101164107B1 (ko) 2008-02-21 2009-02-20 반도체 기판, 반도체 소자, 발광 소자 및 전자 소자
EP09712251.9A EP2246910B1 (en) 2008-02-21 2009-02-20 Semiconductor substrate, semiconductor element, light emitting element and electronic element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-039672 2008-02-21
JP2008039672A JP5386747B2 (ja) 2008-02-21 2008-02-21 半導体基板、半導体素子、発光素子及び電子素子

Publications (1)

Publication Number Publication Date
WO2009104759A1 true WO2009104759A1 (ja) 2009-08-27

Family

ID=40985636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053078 WO2009104759A1 (ja) 2008-02-21 2009-02-20 半導体基板、半導体素子、発光素子及び電子素子

Country Status (6)

Country Link
US (1) US8212335B2 (ja)
EP (1) EP2246910B1 (ja)
JP (1) JP5386747B2 (ja)
KR (1) KR101164107B1 (ja)
CN (1) CN101952984B (ja)
WO (1) WO2009104759A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326266A (zh) * 2009-10-20 2012-01-18 松下电器产业株式会社 发光二极管元件及其制造方法
CN102482797A (zh) * 2009-09-07 2012-05-30 国立大学法人东京大学 半导体基板、半导体基板的制造方法、半导体生长用基板、半导体生长用基板的制造方法、半导体元件、发光元件、显示面板、电子元件、太阳能电池元件及电子设备

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718652B2 (ja) 2009-10-21 2011-07-06 パナソニック株式会社 太陽電池およびその製造方法
KR101172950B1 (ko) * 2009-12-02 2012-08-10 정경화 그라파이트 기반의 발광다이오드용 기판 및 이를 이용한 발광다이오드
WO2011067893A1 (ja) * 2009-12-04 2011-06-09 パナソニック株式会社 基板およびその製造方法
WO2011132394A1 (ja) 2010-04-20 2011-10-27 パナソニック株式会社 発光ダイオード
WO2011138851A1 (ja) 2010-05-07 2011-11-10 パナソニック株式会社 発光ダイオード
JP4949540B2 (ja) * 2010-06-07 2012-06-13 パナソニック株式会社 太陽電池及びその製造法
GB201021112D0 (en) 2010-12-13 2011-01-26 Ntnu Technology Transfer As Nanowires
JP5896701B2 (ja) * 2011-11-28 2016-03-30 東洋炭素株式会社 窒化ガリウム層を備える黒鉛材及びその製造方法
GB201211038D0 (en) 2012-06-21 2012-08-01 Norwegian Univ Sci & Tech Ntnu Solar cells
JP6307703B2 (ja) 2013-05-31 2018-04-11 パナソニックIpマネジメント株式会社 波長変換素子、波長変換素子を備えた発光装置、発光装置を備えた車両、および波長変換素子の製造方法
GB201311101D0 (en) * 2013-06-21 2013-08-07 Norwegian Univ Sci & Tech Ntnu Semiconducting Films
JP6458344B2 (ja) * 2014-02-27 2019-01-30 東ソー株式会社 窒化ガリウム膜および積層基材の製造方法
KR102369298B1 (ko) * 2014-04-29 2022-03-03 삼성디스플레이 주식회사 플렉서블 디스플레이 장치 및 그 제조방법
KR102281329B1 (ko) 2014-12-19 2021-07-26 삼성디스플레이 주식회사 플렉서블 디스플레이 장치 및 그 제조방법
BR112018000603A2 (pt) 2015-07-13 2018-09-11 Crayonano As fotodetetores e diodos emitindo luz com forma de nanofios/nanopirâmides
AU2016292850B2 (en) 2015-07-13 2019-05-16 Crayonano As Nanowires or nanopyramids grown on graphitic substrate
CA2993884A1 (en) 2015-07-31 2017-02-09 Crayonano As Process for growing nanowires or nanopyramids on graphitic substrates
JP2017024984A (ja) * 2016-09-16 2017-02-02 住友化学株式会社 Iii族窒化物基板の製造方法
GB201705755D0 (en) 2017-04-10 2017-05-24 Norwegian Univ Of Science And Tech (Ntnu) Nanostructure
US10874876B2 (en) * 2018-01-26 2020-12-29 International Business Machines Corporation Multiple light sources integrated in a neural probe for multi-wavelength activation
CN109346578B (zh) * 2018-12-04 2023-07-07 西安赛富乐斯半导体科技有限公司 形成半极性氮化镓单量子阱蓝光发光器件的方法
CN109390443B (zh) * 2018-12-04 2024-02-09 西安赛富乐斯半导体科技有限公司 半极性氮化镓单量子阱层发光器件及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246604A (ja) * 1985-08-26 1987-02-28 住友電気工業株式会社 加圧焼結用モ−ルド
JPH04147613A (ja) * 1990-10-09 1992-05-21 Oki Electric Ind Co Ltd 結晶成長基板
JPH08250264A (ja) * 1995-03-08 1996-09-27 Matsushita Electric Ind Co Ltd フィルム状ヒーター、保温座席、蒸着ボートおよび加熱炉
JPH097587A (ja) * 1995-06-21 1997-01-10 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極
JPH09283797A (ja) * 1996-02-16 1997-10-31 Toshiba Corp 半導体bcn化合物を用いた半導体デバイス
JPH10321954A (ja) * 1997-05-15 1998-12-04 Fuji Electric Co Ltd Iii 族窒化物半導体素子およびその製造方法
JP2000022205A (ja) * 1998-07-03 2000-01-21 Tdk Corp 半導体発光素子
JP2003059845A (ja) * 2001-08-20 2003-02-28 Osaka Gas Co Ltd 半導体素子および半導体成長方法
JP2007323814A (ja) * 2006-05-30 2007-12-13 Dainippon Printing Co Ltd エリア発光型有機el表示パネルおよび階調制御方法
JP2008021480A (ja) 2006-07-12 2008-01-31 Canon Inc 有機エレクトロルミネッセンス素子

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961997A (en) * 1975-05-12 1976-06-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fabrication of polycrystalline solar cells on low-cost substrates
DE2638269C2 (de) * 1976-08-25 1983-05-26 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Verfahren zur Herstellung von substratgebundenem, großflächigem Silicium
JPS61275116A (ja) * 1985-05-30 1986-12-05 Res Dev Corp Of Japan グラフアイトフイルムおよび繊維の製造方法
US5308594A (en) * 1985-12-04 1994-05-03 Massachusetts Institute Of Technology Edge-heat-sink technique for zone melting recrystallization of semiconductor-on-insulator films
US5079481A (en) * 1990-08-02 1992-01-07 Texas Instruments Incorporated Plasma-assisted processing magneton with magnetic field adjustment
JPH05235391A (ja) * 1991-03-07 1993-09-10 Mitsubishi Electric Corp 薄膜太陽電池及びその製造方法並びに半導体装置の製造方法
US5650592A (en) * 1993-04-05 1997-07-22 Olin Corporation Graphite composites for electronic packaging
JP2000178016A (ja) * 1998-12-11 2000-06-27 Matsushita Electric Ind Co Ltd グラファイトシートの製造方法及びグラファイトシートを用いた熱伝導体
US6758263B2 (en) * 2001-12-13 2004-07-06 Advanced Energy Technology Inc. Heat dissipating component using high conducting inserts
US7187114B2 (en) * 2002-11-29 2007-03-06 Ngk Insulators, Ltd. Electron emitter comprising emitter section made of dielectric material
JP4554152B2 (ja) * 2002-12-19 2010-09-29 株式会社半導体エネルギー研究所 半導体チップの作製方法
JP4119439B2 (ja) * 2005-06-13 2008-07-16 株式会社エピクエスト 急速変調成長分子線エピタキシー装置とその運転方法
US7288332B2 (en) * 2005-10-06 2007-10-30 Los Almos National Security, Llc Conductive layer for biaxially oriented semiconductor film growth
JP2007109743A (ja) * 2005-10-11 2007-04-26 Kaneka Corp 発光ダイオード
US7420810B2 (en) * 2006-09-12 2008-09-02 Graftech International Holdings, Inc. Base heat spreader with fins
JP2009212243A (ja) 2008-03-03 2009-09-17 C I Kasei Co Ltd 線状発光素子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246604A (ja) * 1985-08-26 1987-02-28 住友電気工業株式会社 加圧焼結用モ−ルド
JPH04147613A (ja) * 1990-10-09 1992-05-21 Oki Electric Ind Co Ltd 結晶成長基板
JPH08250264A (ja) * 1995-03-08 1996-09-27 Matsushita Electric Ind Co Ltd フィルム状ヒーター、保温座席、蒸着ボートおよび加熱炉
JPH097587A (ja) * 1995-06-21 1997-01-10 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極
JPH09283797A (ja) * 1996-02-16 1997-10-31 Toshiba Corp 半導体bcn化合物を用いた半導体デバイス
JPH10321954A (ja) * 1997-05-15 1998-12-04 Fuji Electric Co Ltd Iii 族窒化物半導体素子およびその製造方法
JP2000022205A (ja) * 1998-07-03 2000-01-21 Tdk Corp 半導体発光素子
JP2003059845A (ja) * 2001-08-20 2003-02-28 Osaka Gas Co Ltd 半導体素子および半導体成長方法
JP2007323814A (ja) * 2006-05-30 2007-12-13 Dainippon Printing Co Ltd エリア発光型有機el表示パネルおよび階調制御方法
JP2008021480A (ja) 2006-07-12 2008-01-31 Canon Inc 有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2246910A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482797A (zh) * 2009-09-07 2012-05-30 国立大学法人东京大学 半导体基板、半导体基板的制造方法、半导体生长用基板、半导体生长用基板的制造方法、半导体元件、发光元件、显示面板、电子元件、太阳能电池元件及电子设备
EP2476787A1 (en) * 2009-09-07 2012-07-18 The University of Tokyo Semiconductor substrate, method for producing semiconductor substrate, substrate for semiconductor growth, method for producing substrate for semiconductor growth, semiconductor element, light-emitting element, display panel, electronic element, solar cell element, and electronic device
EP2476787A4 (en) * 2009-09-07 2014-12-31 Univ Tokyo SEMICONDUCTOR SUBSTRATE, METHOD FOR MANUFACTURING SEMICONDUCTOR SUBSTRATE, SUBSTRATE FOR GROWING SEMICONDUCTORS, METHOD FOR MANUFACTURING SUBSTRATE FOR GROWING SEMICONDUCTORS, SEMICONDUCTOR ELEMENT, LIGHT EMITTING ELEMENT, D-PANEL DISPLAY, ELECTRONIC ELEMENT, SOLAR CELL ELEMENT, AND ELECTRONIC DEVICE
US9000449B2 (en) 2009-09-07 2015-04-07 The University Of Tokyo Semiconductor substrate, method for producing semiconductor substrate, substrate for semiconductor growth, method for producing substrate for semiconductor growth, semiconductor element, light-emitting element, display panel, electronic element, solar cell element, and electronic device
CN102326266A (zh) * 2009-10-20 2012-01-18 松下电器产业株式会社 发光二极管元件及其制造方法

Also Published As

Publication number Publication date
EP2246910A4 (en) 2014-03-19
EP2246910A1 (en) 2010-11-03
EP2246910B1 (en) 2019-03-27
US8212335B2 (en) 2012-07-03
US20100320450A1 (en) 2010-12-23
CN101952984B (zh) 2012-08-08
JP5386747B2 (ja) 2014-01-15
CN101952984A (zh) 2011-01-19
KR101164107B1 (ko) 2012-07-12
JP2009200207A (ja) 2009-09-03
KR20100099347A (ko) 2010-09-10

Similar Documents

Publication Publication Date Title
JP5386747B2 (ja) 半導体基板、半導体素子、発光素子及び電子素子
JP3945782B2 (ja) 半導体発光素子及びその製造方法
TWI491064B (zh) Iii族氮化物半導體發光元件及該製造方法、以及燈
WO2010052810A1 (ja) 窒化物系半導体素子およびその製造方法
JP2008285364A (ja) GaN基板、それを用いたエピタキシャル基板及び半導体発光素子
TWI505498B (zh) A film forming method, a vacuum processing apparatus, a manufacturing method of a semiconductor light emitting element, a semiconductor light emitting element, a lighting device
JP5490368B2 (ja) エピタキシャル薄膜の形成方法及び半導体基板の製造方法
JP5545576B2 (ja) 半導体基板、半導体層の製造方法、半導体基板の製造方法、半導体素子、発光素子、表示パネル、電子素子、太陽電池素子及び電子機器
CN111033763A (zh) 13族元素氮化物层、自立基板以及功能元件
JPWO2005006420A1 (ja) 窒化物半導体素子並びにその作製方法
JP2009016505A (ja) Iii族窒化物化合物半導体発光素子
JP2007129271A (ja) 半導体発光素子及びその製造方法
JP5641505B2 (ja) 窒化物系半導体発光素子の製造方法
JP5058642B2 (ja) 半導体基板の製造方法
JP7160815B2 (ja) 窒化ガリウム基板、自立基板および機能素子
TW200848492A (en) Luminescence device
JP5192869B2 (ja) 半導体基板の製造方法
JP2008198705A (ja) Iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP6596875B2 (ja) 窒化ガリウムを含む積層体およびその製造方法
Chen et al. A nanorods AlN layer prepared by sputtering at oblique-angle and application as a buffer layer in a GaN-based light emitting diodes
Ferguson et al. Epitaxial growth of GaN-based LEDs on simple sacrificial substrates
Agreement Solid State Lighting Program Final Report
JP2020061526A (ja) 半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法
TW201926738A (zh) 於經ibad紋理化之基材上的第三族氮化物裝置及系統
JP2020031175A (ja) 積層体及び積層体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105296.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712251

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12735826

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107018464

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009712251

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE