TW200848492A - Luminescence device - Google Patents

Luminescence device Download PDF

Info

Publication number
TW200848492A
TW200848492A TW097108615A TW97108615A TW200848492A TW 200848492 A TW200848492 A TW 200848492A TW 097108615 A TW097108615 A TW 097108615A TW 97108615 A TW97108615 A TW 97108615A TW 200848492 A TW200848492 A TW 200848492A
Authority
TW
Taiwan
Prior art keywords
light
semiconductor
crystal
particles
layer
Prior art date
Application number
TW097108615A
Other languages
Chinese (zh)
Inventor
Yoshihiko Tsuchida
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW200848492A publication Critical patent/TW200848492A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Led Devices (AREA)

Abstract

This invention provides a luminescence device. The luminescence device of the present invention is consitituted by spreading the semiconductor particle having a hetero structure into an organic layer and radiates by charge injection.

Description

200848492 九、發明說明: 【發明所屬之技術領域】 本發明係關於有機-無機混成(hybrid)型之發光元件。 【先前技術】 一近年來,有機電激發光(electro luminescence)(有機EL) ^件已日益業化,更加速了使用高分子材料作為發光材 料之高分子發光二極體(高分子LED)之開發。高分子材料 係為可溶解於有機溶媒,而可藉由調整高分子材料之濃度 來控制溶液黏度。若利用此點,即可藉由塗佈法而以低成 本製程來製造有機EL元件。此外,藉由使用由高分子材 =等而成之軟性基板,發光元件本身亦可作成軟性,因此 可期待對於以各種顯示器為代表之照明領域之應用。 另方面’使用無機半導體材料作為發光材料之元 件在耐久性方面要優於使用有機材料作為發光材料之元 件。然而,已實用化之使用無機半導體材料為發光材料之 =件係為砲彈型燈,而難以使用作為面發光光源。無機半 導體材料又硬又脆弱,因此難以由其製造軟性發光元件。 七此外’同分子會因為發光材料之劣化等而有在電 固定情形下初期亮度隨時間之經過而降低之現象。以由 门刀子材料而成之發光材料之劣化原因而言,已有報告指 出有氧化反應、分子量之變化等數種可能性。此種劣化原 口係為有機材料,尤其為高分子材料所特有之現象。一般 已去n分子材料有因紫外線而低分子量化,亦有在太陽光 下而ί久性(耐光性)較低之問題。耐久性或亮度降低等之問 5 320038 200848492 通可藉由提高發光元件之發光效率、並按此提高程度控制 投入電力而加以解決。因此,習知高分子LED之開發、改 良之努力乃朝向發光材料高性能化之檢討。 【發明内容】 —本發明之目的係在於提供一種可解決上述問題之長壽 命之有機-無機混成型發光元件。 本發明之另一目的係在於提供一種經提昇光取出效率 之有機-無機混成型發光元件。 ―、為了達成上述目的,經本發明人等檢討之結果,終至 完成本發明。 本發明係提供(1)至(1〇)。 strud t種發光兀件,其係由具有異質結構(het⑽ re之半導體粒子分散於有機 注入而發光。 ,丑糟田兔何 (2)、一種發光元件, 子分散於有 糸由具有Pn接合之半導體粒 id 且藉由電荷注入而發光。 ^光元件,其係由呈有 結構之半導體鮮、有又異貝(―ble hetero) 而發光。 料層中而成,且藉由電荷注入 (4) 、一種發光元件,1 粒子分散於有機#巾% &/、’、 /、有量子阱結構之半導體 5T而成,且藉由 (5) 、-種發光元件…:::何注入而發光。 之半導體結晶分散於有機層中早結晶微粒上結晶成長 光。 均 成’且藉由電荷注入而發 320038 6 200848492 (6)、如(1)至(5)中任一 粒子係在單結晶《先兀件其中,半導體 。日日U粒子上結晶成長而成。 Λ1 (7)、如(5)或(6)之發光元件,其中,…代… Α12〇3,在單έ士 a他, 干、、、口日日被粒子係 、、〇日日试粒子上結晶成長之士曰 族氮化物系化合物半導體。 ¥版、、、。日日係為3-5 (8) 、如(5)或(6)之發光元件,其中 成長於單結晶微粒子 +V體結晶 r 結晶成長而成。 ^係以不形成低溫緩衝層之方式 (9) -種發光元件,係包括 · 所成群組選擇之至少 ()(11)、㈣及㈣ Μ , 1 裡千^體粒子,及有機;,Β企、音 體粒子係分散於有機層中而成: 料層’且+導 ⑴具有單異質結構, ⑴)具有ρη接合, (出)具有雙異質結構,. (lv)具有量子阱結構。 半導一種發光元件,係由在單結晶微粒上社曰成再 +導體結晶分散於有機層中而成。 、、”日成長之 ,本發明之發光元件係使用無機 亚且使用高分子材料作為電荷傳輪 =$光材料, 材料之劣化,而得以實現且右:# L而抑制高分子 70仵者。猎由以此方式使用高斗 卩之1先 =材料優點之塗佈製程,而;藉子屬於高 ί:光^件。此外’藉由高分子材料與I機半導本製 射率之差,作成將無機半導體埋入高分子材料之^大 320038 7 200848492 藉此即可構成光取出效率經提昇之有機_無機混成型發光 7〇件。 【實施方式】 欲茶照圖式說明本發明之實施形態。 一茲陳述本發明發光元件之一實施形態,其在結構上之 -大特徵係為於具有電流注入功能之有機半導體材料中配 置有無機半導體粒子,而該無機半導體粒子具備藉由電荷 「注入而發光之功能者。以更具體之實施形態而言,係可舉 出在由至少一方為透明或半透明之有機材料所組成之一對 1極間(陽極及陰極間),配置藉由電荷注人而發光之無機 ^光性半導體粒子之構成。亦即,本發明之發光元件係具 子ίίΠΓ分子v或高分子)中配置發光性半導體粒 :之基本構成。發光性半導體粒子係可使们 族化^物半導體或4族半導體來構成。 次26 為陽發光元件10係在基板1上疊層有發揮作 洞傳輸層:之在:’極2 ’而於透明電極2上則形成有電 半導^子7 傳輸層3巾係分散衫乡數個發光性200848492 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to an organic-inorganic hybrid type light-emitting element. [Prior Art] In recent years, organic electroluminescence (organic EL) has been increasingly industrialized, and the polymer light-emitting diode (polymer LED) using a polymer material as a light-emitting material has been accelerated. Development. The polymer material is soluble in the organic solvent, and the viscosity of the solution can be controlled by adjusting the concentration of the polymer material. By using this point, the organic EL element can be manufactured by a coating method in a low cost process. Further, since the light-emitting element itself can be made soft by using a flexible substrate made of a polymer material or the like, it can be expected to be applied to an illumination field represented by various displays. On the other hand, an element using an inorganic semiconductor material as a light-emitting material is superior in durability to an element using an organic material as a light-emitting material. However, it has been practical to use an inorganic semiconductor material as a luminescent material. The member is a bullet-type lamp, and it is difficult to use it as a surface-emitting light source. The inorganic semiconductor material is hard and fragile, so it is difficult to manufacture a flexible light-emitting element therefrom. In addition, the same molecule may have a phenomenon that the initial luminance decreases with time in the case of electrical fixation due to deterioration of the luminescent material. In view of the deterioration of the luminescent material made of the door knive material, there have been reports of several possibilities such as oxidation reaction and molecular weight change. Such a deteriorated precursor is an organic material, especially a phenomenon peculiar to a polymer material. In general, n molecular materials have been low-molecular-weight due to ultraviolet rays, and have low temperature (light resistance) under sunlight. Durability or brightness reduction, etc. 5 320038 200848492 can be solved by increasing the luminous efficiency of the light-emitting element and controlling the input power according to the degree of improvement. Therefore, the development and improvement of the conventional polymer LEDs are toward the review of the high performance of the luminescent materials. SUMMARY OF THE INVENTION An object of the present invention is to provide an organic-inorganic hybrid light-emitting device which can solve the above problems and which has a long life. Another object of the present invention is to provide an organic-inorganic hybrid light-emitting device which has improved light extraction efficiency. ― In order to achieve the above object, the present invention has been completed by reviewing the results of the present inventors. The present invention provides (1) to (1). Strud t kind of luminescent element, which is composed of a semiconductor structure having a heterostructure (het(10) re dispersed in an organic injection to emit light. ugly field rabbit (2), a light-emitting element, sub-dispersed in a ruthenium with Pn bonding The semiconductor grain id is emitted by charge injection. The optical element is made of a semiconductor having a structure and is bleed to emit light. It is formed in a layer and is charged by charge (4). a light-emitting element, in which a particle is dispersed in an organic semiconductor material, a semiconductor device having a quantum well structure, and is formed by (5), a light-emitting element...::: Luminescence. The semiconductor crystal is dispersed in the organic layer to crystallize and grow light on the early crystal particles. Both are formed and sent by charge injection 320038 6 200848492 (6), such as any one of (1) to (5) Crystallization "In the first part, semiconductor. It is formed by crystal growth on U particles. Λ1 (7), such as (5) or (6) light-emitting elements, among them... 代12〇3, in a single gentleman a He, the dry, the, and the mouth are crystallized on the daily basis by the particle system and the daily test particles. A lanthanide nitride-based compound semiconductor. The Japanese version is a light-emitting element of 3-5 (8), such as (5) or (6), in which crystal growth occurs in a single crystal fine particle + V body crystal. The method is to form a low-temperature buffer layer (9) - a kind of light-emitting element, which includes at least () (11), (4), and (4) Μ, 1 千千体体, and Organic; Β enterprise, sound body particle system is dispersed in the organic layer: material layer 'and + lead (1) has a single heterostructure, (1)) has ρη junction, (out) has a double heterostructure, (lv) has quantum Well structure. A semi-conductive light-emitting element is formed by dispersing a crystal of a single crystal on a single crystal particle and dispersing it in an organic layer. In the case of the growth of the present invention, the light-emitting element of the present invention uses an inorganic sub-material and uses a polymer material as a charge transfer wheel = a light material, and the deterioration of the material is achieved, and the right: # L suppresses the polymer 70. Hunting in this way uses the high-boiler 1 first = material advantage coating process, and the borrowing belongs to high ί: optical parts. In addition, by the difference between the polymer material and the I machine semi-conductivity In the case of embedding an inorganic semiconductor in a polymer material, 320038 7 200848492, an organic-inorganic hybrid molding light-emitting device having improved light extraction efficiency can be constructed. [Embodiment] The present invention is intended to illustrate the present invention. Embodiments of the present invention are directed to an embodiment of a light-emitting element of the present invention, wherein the structure is characterized in that inorganic semiconductor particles are disposed in an organic semiconductor material having a current injection function, and the inorganic semiconductor particles are provided with an electric charge. "The function of injecting and emitting light. In a more specific embodiment, it is exemplified by an organic material composed of at least one of transparent or translucent organic material (anode and cathode). In the case of the inorganic light-emitting semiconductor particles which emit light by charge injection, that is, the light-emitting element of the present invention has a basic structure in which luminescent semiconductor particles are disposed. The luminescent semiconductor particles can be formed by a semiconductor or a group of semiconductors. The second luminescent element 10 is formed by laminating a substrate on the substrate 1 to be a hole transport layer: On the transparent electrode 2, an electric semi-conductor 7 is formed, and the transport layer 3 is dispersed.

CriL ^半導體粒子7分散配置在電洞傳 體粒子7為無機半導1=二後詳述者,發光性半導 無機半導體微粒子之發光性半導體:子二’包:使屬於 佈於透明電極2上之步驟,來〜$放於溶媒並塗 子7之電洞傳輸層3之製膜 丁刀放有發光性半導體粒 7分散配置在供電洞傳輪層二^將發光性半導體粒子 曰 之有機材料中時,亦可設 320038 8 200848492 3與透明電極2之 成為將電洞注入材料疊層在電洞傳輪層 間之構成。 •雷、、外,亦可在使發光性半導體粒子7分散於用以形成 二Γ…輸層3之有機材料中之後,採用將電洞傳輸層3進 仃衣膜而形成電洞傳輸層3之方法。 •纟電洞傳輸層3上疊層有電子傳輪層5,而在電子傳 2層5上則形成有陰極6。$外,亦可在電洞傳輸層3盘 r、笔子傳,層5之間設置發光高分子層。此外,亦可將電^ 注入層疊層於電子傳輸層5與陰極6之間,或亦可將電洞 阻推層(block layer)疊層於分散有發光性半導體粒子7之 電洞傳輸層3與電子傳輸層5之間。 /接著說明發光性半導體粒子7。發光性半導體粒子7 係可使用在基材粒子之表面設置3_5族氮化物系化合物半 導體微結晶者。3·5族氮化物系化合物半導體微結晶係⑴ 具有異質結構、⑼具有ρη接合、或㈣具有量子胖結構。 I 3-5族氮化物系化合物半導體微結晶亦可滿足⑴至(丨⑴中 任一者或2個以上。以製造此種3_5族氮化物系化合物半 導體微結晶之方法而言,係可舉出有藉由HvpE⑽㈣e Vapor Phase Epitaxy,氫化物氣相磊晶法)等方法來製造 A1N或GaN微粒子,且在所獲得之微粒子藉由 (Metal 0rganic Vapor PW __,有機金屬氣相屋晶 法)、¥BE(M〇IcularBeamEpitaxy,分子束蟲晶法)等方法 來成長之方法。上述3-5族氮化物系化合物半導體微結晶 之層結構係可直接使用在習知之化合物半導體發光元件中 320038 9 200848492 發光性半導體粒子7之發光層結構亦可設 以下呪明發光性半導體粒子7之另一實施形皞。 以發光性半導體粒子7之另一實施形態而言;;可舉出 在作為基材粒子而準備之Al2〇3粒子之表面’形成3_5族 氮化物系化合物半導體結晶而成之粒子。在半導體結晶中 係包括:異質結構、pn接合、量子味層之任—者,或異質CriL ^ semiconductor particles 7 are dispersed and arranged in the case where the hole-transporting particles 7 are inorganic semiconductors 1 = two, and the luminescent semiconductors of the luminescent semi-conductive inorganic semiconductor particles: sub-two packages: are placed on the transparent electrode 2 In the above step, the film-forming dicing blade of the hole transport layer 3 placed on the solvent and the coating 7 is provided with the luminescent semiconductor particles 7 dispersedly disposed in the power supply hole transfer layer 2, and the luminescent semiconductor particles are organic. In the case of the material, 320038 8 200848492 3 and the transparent electrode 2 may be formed by laminating the hole injecting material between the layers of the hole-passing wheel. • Ray, and, in addition, after the luminescent semiconductor particles 7 are dispersed in the organic material for forming the bismuth...transport layer 3, the hole transport layer 3 is formed into the coating film to form the hole transport layer 3. The method. The electron transport layer 5 is laminated on the crucible hole transport layer 3, and the cathode 6 is formed on the electron transport layer 2. In addition, a light-emitting polymer layer may be disposed between the hole transport layer 3, the pen pass, and the layer 5. Further, a laminate layer may be implanted between the electron transport layer 5 and the cathode 6, or a hole block layer may be laminated on the hole transport layer 3 in which the luminescent semiconductor particles 7 are dispersed. Between the electron transport layer 5. / Next, the luminescent semiconductor particles 7 will be described. As the light-emitting semiconductor particles 7, those in which a group 3-5 nitride compound semiconductor microcrystal is provided on the surface of the substrate particles can be used. The Group 3 nitride-based compound semiconductor microcrystal system (1) has a heterostructure, (9) has a ρη junction, or (4) has a quantum fat structure. The Group 3-5 nitride-based compound semiconductor microcrystals may satisfy any one of (1) to (1) or two or more. For the method of producing such a Group 3-5 nitride-based compound semiconductor microcrystal, The A1N or GaN microparticles are produced by a method such as HvpE (10) (e) Vapor Phase Epitaxy, hydride vapor phase epitaxy, and the obtained microparticles are obtained by (Metal 0rganic Vapor PW__, organometallic vapor phase method), ¥BE (M〇IcularBeamEpitaxy, molecular beam crystallization method) and other methods to grow. The layer structure of the above-mentioned group 3-5 nitride-based compound semiconductor microcrystals can be directly used in a conventional compound semiconductor light-emitting device. 320038 9 200848492 The light-emitting layer structure of the light-emitting semiconductor particles 7 can also be used as the light-emitting semiconductor particles 7 Another implementation form. In another embodiment of the luminescent semiconductor particles 7, a particle obtained by forming a crystal of a Group 3-5 nitride compound semiconductor on the surface of Al2〇3 particles prepared as a substrate particle is exemplified. In semiconductor crystallization, including: heterostructure, pn junction, quantum layer, or heterogeneity

所採用之結構 為雙異質結構 結構、卯接合、量子阱層之2個或全部。在Al2〇3粒;上 形成3_5族氮化物系化合物半導體結晶係為一例,但並不 限定於此。例如’亦可取代3_5族氮化物系化合物半導體 結晶,以砷化物、磷化物或此等5族元素之混晶亦可 製得。 水 發光層之層結構係可直接使用例如在習知之化合物半 導體發光元件中所採用之異質結構、pn接合結構、供量子 阱結構用之習知之層結構。至於雙異質結構亦屬相同。 為了使發光特性良好,須使在作為基材粒子而準備之 Al2〇3粒子表面所設之3-5族氮化物系化合物半導體結晶 之結晶性為良好者。若其結晶性不良,則發光效率就不佳, 而無法獲得充分亮度之發光。 在Al2〇3粒子表面形成3-5族氮化物系化合物半導體 結晶時,可使用HVPE、MOVPE、MBE等方法來培育良質 之結晶。 在上逑之本實施形態中’ Al2〇3粒子具有六方晶結構, 對於要成長3-5族氮化物系化合物半導體結晶較為方便。 320038 10 200848492 雖亦可在Α12〇—子表面預先形成低溫 成3-5知虱化物糸化合物半導體結晶亦可。 使二此Al2〇3粒子,則當然容易使粒徑-致而 使/、粒径收於某範圍内,且亦可將A1203粒子作成六方晶 3面因:可使半導體結晶以極佳結晶性形成於佩: -子盖由:在半導體結晶中包含異質結構,接合、 里子U,因此可藉由來自外部之電場注入電子盘電 :於+:體結:曰:中利用電子與電洞之再結合而發光。 作為其施形態之說明中’雖已說明使用Al2〇3粒子 ^基=粒子之例,及使用彻3粒子之The structure employed is a double heterostructure structure, a tantalum junction, or two or all of the quantum well layers. The Al 3 〇 3 particles are formed, and the 3 - 5 nitride-based compound semiconductor crystal system is formed as an example, but is not limited thereto. For example, it is also possible to substitute a group 3-5 nitride compound semiconductor crystal, and it is also possible to obtain an arsenide compound, a phosphide or a mixed crystal of these Group 5 elements. The layer structure of the water-emitting layer can be directly used, for example, a heterostructure employed in a conventional compound semiconductor light-emitting device, a pn junction structure, and a conventional layer structure for a quantum well structure. The double heterostructure is also the same. In order to improve the luminescent properties, the crystallinity of the 3-5-nitride-based compound semiconductor crystal provided on the surface of the Al2〇3 particles prepared as the substrate particles is good. If the crystallinity is poor, the luminous efficiency is not good, and the light of sufficient brightness cannot be obtained. When a group 3-5 nitride-based compound semiconductor crystal is formed on the surface of the Al2〇3 particle, a good crystal can be cultivated by a method such as HVPE, MOVPE, or MBE. In the present embodiment, the 'Al2〇3 particles have a hexagonal crystal structure, and it is convenient to grow a 3-5-nitride-based compound semiconductor crystal. 320038 10 200848492 It is also possible to preliminarily form a low temperature Α 虱 虱 糸 compound semiconductor crystal on the surface of the Α12〇-sub-surface. When the two Al 2 〇 3 particles are used, it is of course easy to make the particle size - such that the particle size is within a certain range, and the A1203 particles can also be made into a hexagonal crystal 3 surface: the crystal can be crystallized with excellent crystallinity. Formed in Pei: - Sub-cover: Contains a heterostructure in the semiconductor crystal, bonding, neutron U, so it can be injected into the electronic disk by an external electric field: in +: body: 曰: using electrons and holes Then combine to emit light. In the description of the embodiment, the case of using Al2〇3 particles ^base = particles has been described, and the use of the 3 particles is described.

=步具體詳細說明作為形成有半導體結晶之基材之I 如上所述,藉由氣相成長法在基材粒子表面形成半導 預先準借基板’且於基板上配置多數個 基材粒子,而於此狀態下在各基材粒子 晶之後,將形成有半導體結晶之基材粒子從 可獲得發光性半導體粒子7。 土板上刀離即 /其^ ^為了將^光性半導體粒子7從基板分離,係以 在基板上不形成半導體纟士#立* 之基板之例子而言石!:形成半導體結晶 牛廉饧之石英基板。亦可使用將 320038 11 200848492 si〇2薄膜形成於藍寳石(sapphire)基板等上者。 用以形成半導體結晶所使用之基材粒子必須為耐承受 製程者。亦即,以形成氮化物系化合物半導體結晶之停件 而言1要近觸七之高溫、及随3等還原氣體環境:、此 外,亂化物系化合物半導體結晶須選擇性形成為粒子。以 滿足此等條件之基材粒子之材料而言,係彳Al2〇3、Si、 s心AIN、MgAl2〇4、LiTa〇3等。此等材料之中,係以A叫、 s” slC為較佳,且以Al2〇3更佳,又以〇 —氧化邮 尤I基材粒子之形狀並未特別限定,惟以板狀為較佳。 以卜氧化紹之例子而言,係有以「s_k〇rand〇m 曰=)」(直徑為勘咖至18陣)之商品名而由住 t有限公司所銷售者。此外,以開發品而言,可取得直徑 為 3〇随、50nm、70nm、inn μ 随7〇請100賊之卜氧化链之微粒子。 此專微粒子係為單結晶,也可獲得粒徑—致者。—般而古, =族氮化物系化合物半導體雖可在單結晶藍寶石基板上 緩衝層之後藉由蟲晶成長而獲得單結晶,惟會由 監實石(α — Al2〇3)之結晶格子之錯合(misfit)而產生 二數缺陷°針對此點’藉由將直徑3〇随至⑽麵左右尺 氧化料為基板使用,即使無低溫緩 侍尚品質之結晶。 " 從形成半導體結晶之容易 之結晶結構,且適當地選 晶系為較佳。另外,基材 重疊而能均一地分布者。 使用於本發明之基材粒子, 性方面來看,重要的是具有特定 擇成長方向。結晶結構係以六方 粒子較宜為不會在預定之基板上 320038 12 200848492 以在基材粒子表面形成半導體結晶之方法而言,係可 使用有機金屬氣相磊晶法(MOVPE)、分子束磊晶法 (MBE)、氫化物氣相磊晶法(HVPE)、脈衝雷射疊層法 • (PLD,Pulse Laser Deposit)等。然而,以 MOCVD ' MBE 法較佳。 接著說明製造本發明之發光性半導體粒子7之方法之 一實施形態。首先準備石英基板,且在該石英基板上配置 基材粒子。基材粒子對於石英基板上之配置,可舉例如以 ( 超純水等將屬於微粒子之基材粒子作成漿料(slurry)狀,且 以旋塗機(spin coater)等在石英基板上塗佈之方法。藉由此 種方法,屬於微粒子之基材粒子排列在石英基板上,而不 會重疊。此外,亦可藉由將石英基板浸潰於包含基材粒子 與媒介物之漿料中之方法、或是將漿料塗佈或喷霧在石英 •基板之方法。亦可使用藉由蒸鍍將Si02薄膜形成在藍寶石 等基板上,以取代石英基板者。 I 以基材粒子而言,以AI2O3粒子為較佳。採用AI2O3 粒子時,無論是何種形狀,均可藉由在石英基板上塗佈漿 料,而以較平坦面配置於石英基板上。所使用之媒介物係 為水、曱醇(methanol)、乙醇(ethanol)、異丙醇 (isopropanol)、正丁醇(n-butanol)、乙二醇(ethylene glycol)、二甲基乙醯胺(dimethylacetamide)、甲基乙基酮 (methyl ethyl ketone)、曱基異 丁基酮(methyl isobutyl ketone)等,較佳為水。乾燥後,如Al2〇3等之基材粒子係 藉由分子間結合力而固定於石英基板。 13 320038 200848492The step is specifically described as a substrate on which a semiconductor crystal is formed. As described above, a semi-conductive substrate is formed on the surface of the substrate particle by a vapor phase growth method, and a plurality of substrate particles are disposed on the substrate. In this state, after the base material particles are crystallized, the base material particles on which the semiconductor crystal is formed are obtained from the light-emitting semiconductor particles 7. The knife on the earth plate is separated from the substrate. In order to separate the photo-semiconductor particles 7 from the substrate, it is an example of a substrate on which no semiconductor semiconductors are formed on the substrate! : Forming a semiconductor crystal, a quartz substrate of Niu Lianzhen. It is also possible to form a film of 320038 11 200848492 si〇2 on a sapphire substrate or the like. The substrate particles used to form the semiconductor crystal must be resistant to the process. In other words, in the case of forming a stop of the nitride-based compound semiconductor crystal, the high temperature of the light is required to be nearly seven, and the atmosphere of the reducing gas is required to be three: In addition, the compound semiconductor crystal of the disordered compound must be selectively formed into particles. The material of the substrate particles satisfying these conditions is 彳Al2〇3, Si, s-heart AIN, MgAl2〇4, LiTa〇3, and the like. Among these materials, A is called s" slC is preferred, and Al2〇3 is better, and the shape of the ruthenium-oxidized postal I substrate particles is not particularly limited, but the plate shape is For example, in the case of Bu Oxid, there is a product sold under the trade name of "s_k〇rand〇m 曰=)" (diameter is from Kanaka to 18). In addition, in terms of development products, it is possible to obtain microparticles of oxidized chains of 100 thief diameters of 3 〇, 50 nm, 70 nm, and in μ with 7 。. This special microparticle is a single crystal, and the particle size can also be obtained. As a general rule, a group nitride compound semiconductor can obtain a single crystal by crystal growth after a buffer layer on a single crystal sapphire substrate, but a crystal lattice of a solid stone (α-Al2〇3) Misfit produces a binary defect. For this point, 'the oxidized material with a diameter of 3 〇 to the (10) plane is used as a substrate, even if there is no low temperature, it is a crystal of good quality. " From the formation of an easy crystal structure of semiconductor crystallization, and a suitable crystal system is preferred. Further, the substrates are overlapped and uniformly distributed. For the substrate particles used in the present invention, it is important in terms of properties to have a specific growth direction. The crystal structure is preferably a hexagonal particle which does not form a semiconductor crystal on the surface of the substrate particle on the predetermined substrate 320038 12 200848492, and an organometallic vapor phase epitaxy (MOVPE) or molecular beam can be used. Crystallization (MBE), hydride vapor phase epitaxy (HVPE), pulsed laser deposition (PLD, Pulse Laser Deposit), etc. However, the MOCVD 'MBE method is preferred. Next, an embodiment of a method of producing the luminescent semiconductor particles 7 of the present invention will be described. First, a quartz substrate is prepared, and substrate particles are placed on the quartz substrate. For the arrangement of the substrate particles on the quartz substrate, for example, the substrate particles belonging to the fine particles are formed into a slurry shape by ultrapure water, and coated on a quartz substrate by a spin coater or the like. By this method, the substrate particles belonging to the microparticles are arranged on the quartz substrate without overlapping. Alternatively, the quartz substrate can be impregnated into the slurry containing the substrate particles and the vehicle. The method or the method of coating or spraying the slurry on the quartz substrate. The SiO 2 film may be formed on a substrate such as sapphire by vapor deposition instead of the quartz substrate. It is preferable to use AI2O3 particles. When AI2O3 particles are used, the slurry can be applied to a quartz substrate by a slurry on a quartz substrate regardless of the shape. The medium used is water. , methanol, ethanol, isopropanol, n-butanol, ethylene glycol, dimethylacetamide, methyl ethyl Methyl ethyl ketone Methyl isobutyl ketone or the like is preferably water. After drying, substrate particles such as Al2?3 are fixed to a quartz substrate by intermolecular bonding force. 13 320038 200848492

在用以將半導體結晶形成於基材粒子表面之3-5族氮 化物系化合物半導體結晶之磊晶成長,係使用例如MOVPE ‘ 裝置。為了 3-5族氮化物系化合物半導體結晶之磊晶成 " 長,以基材粒子而言,係以具有六方晶結構之αι2ο3粒子 為較佳。其理由已如先前所述。 茲說明關於製造包含多重量子阱層之3-5族氮化物系 化合物半導體微結晶時之磊晶結晶成長之一實施形態。首 先,將αι2ο3粒子配置在石英基板或經蒸鍍Si02之藍寶石 f ' ' 等基板上作為基材粒子,且於基材粒子表面上,於未有緩 衝層之狀態下,形成η型GaN之後,形成多重量子陳結構, 而作成發光性半導體粒子。 在製造包括pn接合之3-5族氮化物系化合物半導體微 結晶時,係以上述方式將多重量子阱結構疊層。其後,亦 可將p型AlGaN層、p型GaN層、通道注入層(薄膜η型 層)疊層。 I 兹說明供上述蟲晶結晶成長之原料。以2族原料氣體 而言,係混合使用選擇自Mg、Ca、Sr、Ba及Ζη所成群 組之1種以上之元素之有機金屬化合物。以有機金屬基而 言,可例示有二曱基(dimethyl)、二乙基(diethyl)、雙環戊 二稀基(Bis-cyclopentadienyl)、雙曱基環戊二烯基 (Bis-Methyl-Cyclopentadienyl)-雙乙基環戊二婦基 (Bis-ethyl-Cyclopentodienyl)等。 以鎵原料氣體、鋁原料氣體、銦原料氣體而言,通常 係使用碳數為1至3之烷基或氫與各金屬原子結合之三烷 14 320038 200848492 基化物或三氫化物。例如,以Ga之原料而言,係可使用 -三甲基鎵⑻methyl galli聰)((CH3)3Ga)、三乙基錄⑻ - gallium)((C2H5)3Ga)等。 . 讀原料而言,通常雖使用氨(ammcmia),惟亦可舉出 有聯氨(hydrazine)、甲基聯氨、u_^基聯氨、i 二甲 基聯氨、第三丁基胺(t_bUtylamine)、乙二胺 ⑽咖—㈣等。此等原料係可單㈣以任意組合來混 广合使用。此等原料之+,由於氨與聯氨㈣心㈣在分子 、中並不含碳原子,因此對於半導體中之碳污染較少而較理 想。 、成長t氣體環i兄氣體及有機金屬原料之載體 (ier)氣體而言,係可單獨或混合使用氮、氫、氬、氦等 氣粗在氫氣、氦氣氣體環境巾,由於原料之前分解受到 抑制,因此較佳。 茲於第4圖顯示依據M〇vpE法製造本發明發光性半 I.導㈣子所使用之氣相成長半導體製造裝置之—例之概 略一孔相成長半導體製造裝置係具備反應爐12,其係從未 t不之原料供給裝置經由原料供給線11接受原料氣體之 供給。在反應爐12内係設有用以將基板13加熱之支持座 (=咐。〇14。支持座i 4係為多角柱體,在其表面係安裝 一子夂數片基板13。此情形中,在基板13之各表面之未圖 =SlC>2層上係分卿成以上述方式均-地塗布有基材 津子(未圖示)之狀態。 支持座14係為可藉由旋轉裝置15而旋轉之結構。在 320038 15 200848492 支持座2之内部係具備有用以將支持座14加 燈16。藉由從加熱用電源17將加 =外線 .線燈】6’即可將基板u加熱至所希望,於:-外 此加熱,經由原料供給線 ^皿度。错由 材粒子之表面,較13上之未圖示基 化合物而形成發光芦。'供^氣相成長所希望之 未反声之眉",、、、·°至反應爐12之原料氣體之令, '未反應之原料氣體係從排氣孔( 部,且被輪送至排氣處理裝置。出至反應益之外 發光:此Γ在基板13上之基材粒子之表面成長形成之 =:由於係載設於基板13之表面之Si〇2層上,因此 等酸而與基材粒子一同剝離作為發光性半導 胆粒子°错由剝離所獲得之發光性半導體粒子係可直接作 為各,么光元件來使用。再者’亦可不將該發光性半導體 ,子仗基板上剝取,而藉由雷射燒钱(laser ablati〇n)、磁控 (magnetron) ^ . CVD(Chemical VaporFor epitaxial growth of a 3-5-group nitride-based compound semiconductor crystal for forming a semiconductor crystal on the surface of a substrate particle, for example, a MOVPE ‘device is used. In order to epitaxially crystallize the 3-5-nitride-based compound semiconductor crystal, it is preferable to use the αι2ο3 particle having a hexagonal crystal structure as the substrate particle. The reason for this has been as previously described. An embodiment of epitaxial crystal growth in the case of producing a microcrystal of a Group 3-5 nitride-based compound semiconductor including a multiple quantum well layer will be described. First, the αι2ο3 particles are disposed on a quartz substrate or a substrate such as a SiO2 deposited by SiO2, as a substrate particle, and after n-type GaN is formed on the surface of the substrate particle without a buffer layer. A multiple quantum structure is formed to form luminescent semiconductor particles. When a 3-5-nitride-based compound semiconductor microcrystal including a pn junction is produced, the multiple quantum well structure is laminated in the above manner. Thereafter, a p-type AlGaN layer, a p-type GaN layer, and a channel injection layer (thin film n-type layer) may be laminated. I Describe the raw materials for the growth of the above crystals. In the case of the two-group raw material gas, an organometallic compound of one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, and Ζη is used in combination. Examples of the organometallic group include dimethyl, diethyl, Bis-cyclopentadienyl, and Bis-Methyl-Cyclopentadienyl. - Bis-ethyl-Cyclopentodienyl and the like. In the case of a gallium source gas, an aluminum source gas, and an indium source gas, a trialkyl group having a carbon number of 1 to 3 or a trioxane 14 320038 200848492 or a trihydride in which a hydrogen atom is bonded to each metal atom is usually used. For example, in the case of the raw material of Ga, trimethylgallium (8)methyl galli ((CH3)3Ga), triethyl (8)-gallium) ((C2H5)3Ga), or the like can be used. For reading raw materials, ammonia (ammcmia) is usually used, but hydrazine, methyl hydrazine, u_^ hydrazine, i dimethyl hydrazine, and tert-butylamine are also mentioned. t_bUtylamine), ethylenediamine (10) coffee - (four) and so on. These raw materials can be used in any combination (4) in any combination. The + of these raw materials, because ammonia and hydrazine (tetra) core (4) do not contain carbon atoms in the molecule, is therefore less desirable for carbon contamination in semiconductors. For the growth of the gas ring i gas and the carrier material of the organic metal material (ier) gas, nitrogen, hydrogen, argon, helium, etc. may be used alone or in combination with hydrogen gas or helium gas environmental towel, which is decomposed due to the decomposition of the raw material. Suppression is therefore preferred. In the fourth embodiment, a vapor-phase-growing semiconductor manufacturing apparatus for manufacturing the luminescent semi-I. (IV) of the present invention by the M〇vpE method is shown in the drawings. The supply of the material gas is received via the raw material supply line 11 from the raw material supply device that has never been used. In the reaction furnace 12, a support for heating the substrate 13 is provided (=咐.〇14. The support base 4 is a polygonal cylinder, and a sub-plate 13 is mounted on the surface thereof. In this case, On the surface of each of the surfaces of the substrate 13 (not shown), the substrate is uniformly coated with a substrate (not shown) in the above-described manner. The support 14 is made of a rotating device 15 The structure of the rotation. In 320038 15 200848492, the internal structure of the support base 2 is useful to light the support base 14. The substrate u can be heated by adding the external line and the line light 6' from the heating power source 17 to It is desirable that the heating is carried out outside the material supply line, and the surface of the wrong material particles is formed into a light-emitting reed than the base compound (not shown) on the 13th. The sound of the eyebrows ",,, · ° to the raw material gas of the reaction furnace 12, 'unreacted raw material gas system from the exhaust hole (part, and was sent to the exhaust gas treatment device. External luminescence: the ruthenium is formed on the surface of the substrate particles on the substrate 13 =: due to the surface of the substrate 13 On the Si〇2 layer, the luminescent semiconductor particles obtained by peeling off together with the substrate particles as the luminescent semiconducting particles can be directly used as the optical element. The illuminating semiconductor, the ruthenium substrate may not be stripped, but by laser burning, magnetron CVD (Chemical Vapor)

Deposition ’化學氣相沉積)等之手法來疊層於發光元件 上另外’半導體結晶之層結構係可直接使用例如在習知 化口物半‘體發光元件中作為發光層使用之異質接合結 #、ρη接合結構、量子阱結構、雙異質接合結構等習知層 結構。 由於發光元件10係由以上方式所構成,因此若將電壓 施加於一對電極間,亦即施加於屬於陽極之透明電極2與 陰極6之間’藉此即會在由有機材料所構成之電洞傳輸層 16 320038 200848492 3及電子傳輸層5中產生、恭 '電荷之移動而使散佈在移動’且藉由此等 •子7發光。來自發光性半導體^中t發光性半導體粒 •極2而取出至外部。在光可經由透明電 率與發光性半導體粒子電洞傳輸層3之折射 半導體粒子7::::二^ 明電極2以極為"子内政射’藉此即可從透 W 1 之效率將光取出。結果,可大幅改盖 「發先讀1G中之光取出效率。 穴巾田改善 第2圖係為顯示本發明菸# — 式性剖面圖。 ,先兀件之另-貫施形態之模 導體粒w輸高光性半 之夷^凡件20係在叠層有發揮陽極功能之透明電極2 ,分^4設分散有發光性半導體粒子7之發光性高 ι半導錄高分子層4之形鋪藉由使發光性 7之、、容料於/謂’且將分散有發光性半導體粒子 奋媒塗佈於透明電極2上,生 發光性半導體粒子7,之^ 在透明電極2上敷設 膜亦可。在使發光性層4之製 子層4之體粒子7分散敷設於發光性高分 :、X兀件2〇之情形而言,亦可作成發光性高分子 二Μ透明電極2之間疊層電洞傳輸 材料之結構。 X电/U/主入 此外亦可在發光性半導體粒子7分散於發光性高分 320038 17 200848492 子材料中以形成發光性高分子芦二 作電洞傳輪層3,亦可再於' W,在透明電極上製 .疊層電洞注入層。 、層3與透明電極之間 此外,亦可在將發光性邕雕 分子材料中之發光性高分子居7分散於發光性高 ㈣之前將電子傳輪層予以=後,於形成陰 傳輸層5與陰極6之間疊;此外,亦可設成在電子 散有發光性半導體粒子乂 層之結構’亦可在分 :層5之間疊層電靠擋層。Μ子層4與電子傳輸 依據第2圖所示夕恭止— 極間,藉此而與發光元η2。,將電壓施加於一對電 粒子7發光庫屬火妙 之炀形同樣地使發光性半導體Deposition 'Chemical Vapor Deposition" or the like is laminated on the light-emitting element. Further, the layer structure of the semiconductor crystal can directly use a heterojunction junction which is used as a light-emitting layer in a conventional half-body light-emitting element. a conventional layer structure such as a ρη junction structure, a quantum well structure, or a double heterojunction structure. Since the light-emitting element 10 is constituted by the above method, if a voltage is applied between a pair of electrodes, that is, between the transparent electrode 2 and the cathode 6 belonging to the anode, the electricity is composed of an organic material. The hole transport layer 16 320038 200848492 3 and the electron transport layer 5 are generated, and the movement of the charge "scatters the movement" and thereby emits light. From the luminescent semiconductor, the t-emitting semiconductor particles are taken out to the outside. In the light, the refractive semiconductor particles 7 through the transparent electric current and the illuminating semiconductor particle hole transport layer 3::::2, the electrode 2 is extremely "quote", so that the efficiency of the W 1 will be Light is taken out. As a result, the light extraction efficiency in the first read 1G can be greatly changed. The second figure of the face towel field improvement is a cross-sectional view showing the smoke of the present invention. In the case of a transparent light electrode 2 which exhibits an anode function, a light-emitting high-molecular semi-conductive polymer layer 4 in which luminescent semiconductor particles 7 are dispersed is disposed in a layer. By coating the luminescent property 7 with the luminescent material, the luminescent semiconductor particles are dispersed on the transparent electrode 2, and the luminescent semiconductor particles 7 are coated on the transparent electrode 2. In the case where the bulk particles 7 of the sub-layer 4 of the luminescent layer 4 are dispersed and applied to the luminescent high score: X 兀 2 〇, the luminescent polymer bismuth transparent electrode 2 can also be formed. The structure of the interlayer laminated hole transmission material. The X-ray/U/main-input can also be dispersed in the luminescent high-concentration 320038 17 200848492 sub-material to form the luminescent polymer The wheel layer 3 can also be formed on the transparent electrode by the 'W, laminated hole injection layer. Layer 3 and transparent Further, between the electrodes, the electron-transporting layer may be disposed before the luminescent polymer layer 7 in the luminescent enamel molecular material is dispersed in the luminescent property (four), and then between the negative transmission layer 5 and the cathode 6 is formed. Alternatively, the structure may be such that the electron scatters the luminescent layer of the luminescent semiconductor particles, and the barrier layer may be laminated between the sub-layers 5. The raft layer 4 and the electron transport are shown in FIG.夕恭止— The pole, and thus the illuminating element η2. Applying a voltage to the pair of electric particles 7

Hit 而且由於發紐高分子層4亦會發 圖係為頦示本發明發光元杏 模式性剖面圖。第3円斛_ 4义千之又另只%形恶之 導體粒子7分散= 先元件3°’在將發光性半 之發光元件5中方面,係與第1圖所示 發光元件30係於疊層有 之基板〗上進—步疊層電== 材料中分散有發光性半導且將在電子傳輸性 上,藉此即可形成電子傳^ 5者豐層於電洞傳輸層3 體粒子7分散於溶佈5。,一 粒子7敷設於電洞傳幹^3丁f佈,错此而將發光性半導體 在电子傳輪性材料令分散發光性半導體粒子厂^ 320038 18 200848492 5用層電子傳輪層5時,亦可設成在電子傳輸層 :極6之間疊層電洞傳輪材料及/或電洞注入材料之 輸芦二’-Π在將分散有發光性半導體粒子7之電子傳 I:亦:丁衣版之後’於形成陰極6之前疊層電子注入層。 *透明::Γ分散有發光性半導體粒子7之電子傳輸層5 古八子二#之間豐層發光性高分子層,或亦可在發光性 :::傳 电位2之間《層電洞注入層。 為帝子於陰極6與發光層之間僅設置—層時,此層係 2电子注入層,而於陰極6與發光層之間設 4,係以與陰極相接之層作為電子注入層,而宜:;之ί 傳輸層。電子注入層係為具有將來自陰極之‘ 自^子ΪΓίί之功能之層,而電子傳輸層係為具有將來 改:層或更接近陰極之電子傳輸層之f子注入效率 改善之功能之層。 双卞 發光=注t層、或電子傳輸層具有阻止從電洞傳輸層或 輸:'洞至電子傳輸層之功能時,係有將此等層稱 為電洞阻擋層之情形。、 “冉 舉例Γί在發揮陽極功能之透明電極2與發光層之間者可 2心=、電洞傳輸層、電子阻擋層等。在陽極 陽:先層之間僅設置一層時,此層係為電子 光層之間設有二層以上時,係以與陽極相接: 洞注入層’而其以外之層則稱為電洞傳輪層。電祠 320038 19 200848492 展入运係為具有將來自陰極之電洞注入效率改善之功能之 曰,而電洞傳輸層係為具有將來自電洞注人層或更接近陽 極之電洞傳輸層之電洞注入改善之功能之層。此外,電祠 二電洞傳輸層具有阻止從電子傳輸層或發光層傳 輸層之功能時,有將此等層稱為電子阻擋 (產業上之可利用性) 依據本發明,電流注入功能係由有機半導體材料來分 擔,而發光功能則係由無機半導體材料來分擔,因此可抑 制有機材料成為激發狀態時所產生之分子量降低及氧化等 副反應之產生,且可抑制因為有機材料本身之自發光所導 致之亮度降低。此外,由於使㈣光性 材料作為發光材料,故在屋外亦可使用。再者 射率較大之無機粒子與折射率較小之有機材料之合而‘ 光取出效率提昇,而可提供高亮度之發光元件。 【圖式簡單說明】 第1圖係為本發明發光元件之模式性剖面圖。 =2圖係為本發明另一發光元件之模式性剖面圖。 =3圖係為本發明另—發光元件之模式性剖面圖。 尸第4圖係為顯示使用在製造本發明發光性半導體粒子 之氣相成長半導體製造裝置之概略圖。 【主要元件符號說明】 基板 1 透明電極(陽極) 3 電洞傳輸層 4 發光性高分子層 320038 20 200848492 5 電子傳輸層 6 陰極 7 發光性半導體粒子 10、 20、30 發光元件 11 原料供給 線 12 反應爐 13 基板 14 基座 15 旋轉裝置 16 紅外線燈 17 加熱用電 源 18 排氣孔(port) 21 320038Hit and the hair polymer layer 4 are also shown as a schematic cross-sectional view of the luminescent apricot of the present invention. The third element _ 4 is also the only one-shaped conductor particle 7 dispersion = the first element 3 ° ' in the luminescent half of the light-emitting element 5, and the light-emitting element 30 shown in Figure 1 The laminated substrate has a step-up laminated electric == The material has a luminescent semi-conductive dispersed therein and will be in electron transport property, thereby forming an electron transport layer in the hole transport layer 3 body The particles 7 are dispersed in the dissolution cloth 5. a particle 7 is applied to the hole and dried, and the illuminating semiconductor is used in the electron-transporting material to disperse the illuminating semiconductor particle factory (320038 18 200848492 5). Alternatively, the electron transport layer: the pole 6 may be laminated with a hole transporting material and/or a hole injecting material, and the electrons to be dispersed in the luminescent semiconductor particles 7 may also be: After the plate is printed, the electron injection layer is laminated before the cathode 6 is formed. *Transparent:: 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 古 古 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光Floor. When the emperor is provided with only a layer between the cathode 6 and the light-emitting layer, the layer is a 2-electron injection layer, and a layer 4 is provided between the cathode 6 and the light-emitting layer, and a layer connected to the cathode is used as an electron injection layer. And ̄:: ί transport layer. The electron injecting layer is a layer having a function of "self-contained" from the cathode, and the electron transporting layer is a layer having a function of improving the sub-injection efficiency of the electron transporting layer of the layer or the cathode. Double 卞 Illumination = The t-layer, or the electron-transport layer has the function of preventing the transmission layer or the transmission from the hole: the hole to the electron transport layer, and the layer is referred to as a hole barrier.冉 冉 冉 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在When there are two or more layers between the electronic light layers, they are connected to the anode: the hole injection layer' and the other layer is called the hole transmission layer. The electric raft 320038 19 200848492 The hole injection efficiency from the cathode is improved, and the hole transport layer is a layer having a function of improving the injection of holes from the hole injection layer or the hole transport layer of the anode. When the second hole transmission layer has a function of blocking the transmission layer from the electron transport layer or the light-emitting layer, the layers are referred to as electron blocking (industrial availability). According to the present invention, the current injection function is composed of an organic semiconductor material. The light-emitting function is shared by the inorganic semiconductor material, so that the molecular weight reduction and the side reaction such as oxidation generated when the organic material is in an excited state can be suppressed, and the organic material can be suppressed. The brightness caused by self-luminescence is reduced. In addition, since the (4) photo-material is used as a luminescent material, it can be used outside the house. Furthermore, the inorganic particles having a large irradiance and the organic material having a small refractive index are combined. The extraction efficiency is improved, and a high-luminance light-emitting element can be provided. [Schematic Description] Fig. 1 is a schematic cross-sectional view of a light-emitting element of the present invention. = 2 is a schematic cross-sectional view of another light-emitting element of the present invention. Fig. 3 is a schematic cross-sectional view of a light-emitting element of the present invention. Fig. 4 is a schematic view showing a vapor-phase-grown semiconductor manufacturing apparatus used for producing the luminescent semiconductor particles of the present invention. 】 substrate 1 transparent electrode (anode) 3 hole transport layer 4 luminescent polymer layer 320038 20 200848492 5 electron transport layer 6 cathode 7 luminescent semiconductor particles 10, 20, 30 light-emitting element 11 raw material supply line 12 reaction furnace 13 substrate 14 Base 15 Rotating device 16 Infrared light 17 Heating power supply 18 Vent (port) 21 320038

Claims (1)

200848492 、申請專利範圍·· 2· 子:ΐ::: ’係由具有異質(heiero)結構之半導體粒 :刀放於有機層中而成,且藉由電荷注入而發光。 3. 有疋件,係由具有pn接合之半導體粒子分散於 有&層中而成’且藉由電荷注入而發光。 種發光元件,係由具有雔所 半導靜朽羋八也 有又^貝(d〇uble hetero)結構之 :粒子刀放於有機層中而成,且藉由電荷注入而發 4· ^光7C件’係由具有量子_結構之半導體粒子分散 ;有機層中而成,且藉由電荷注入而發光。 I :種發光Μ ’係由在單結晶微粒上結晶成長之半導體 '、、。晶分散於有機層中而成,且藉由電荷注人而發光。 =申請專利範圍第!至5項中任一項之發光元件,其 ,該發光70件係由半導體粒子在單結晶微 曰 成長而成。 7. 如申請專利範圍第5或6項之發光元件,其中,單梦曰 =子係ai2〇3,在單結晶微粒子上結晶成長之半= 結晶係為3-5族氮化物系化合物半導體。 版 8. 如申請專利範圍第5至6項中任一項之發光元件,其 中,在使半導體結晶成長於單結晶微粒子上時,係以 形成低溫缓衝層方式而結晶成長而成。 “ 9. -種發光元件,係包括m⑴、⑼、㈣及( 成群組選擇之至少丨種半導體粒子;及有機層,且 體粒子係分散於有機層中而成: ¥ 320038 22 200848492 摹· (i) 具有單異質結構, (ii) 具有pn接合, (iii) 具有雙異質結構, ' (iv)具有量子阱結構。 10·—種發光元件,係由在單結晶微粒上結晶成長之半導體 結晶分散於有機層中而成。200848492, the scope of application for patents····················································· 3. A component is obtained by dispersing semiconductor particles having a pn junction in a layer of & and emitting light by charge injection. A kind of illuminating element is made up of a semi-conducting static enthalpy and a d〇uble hetero structure: a particle knife is placed in an organic layer, and is generated by charge injection. The piece 'is dispersed by a semiconductor particle having a quantum structure; is formed in an organic layer, and emits light by charge injection. I: A kind of luminescence Μ ' is a semiconductor that grows crystallized on a single crystal particle. The crystal is dispersed in the organic layer and emits light by charge injection. = Patent application scope! The light-emitting element according to any one of the items 5, wherein the light-emitting element is formed by growing semiconductor particles in a single crystal micro-turn. 7. The light-emitting element according to claim 5 or 6, wherein the single crystal is a sub-system ai2〇3, and the crystal is grown on the single crystal fine particles by half; the crystal is a group 3-5 nitride-based compound semiconductor. The light-emitting device according to any one of claims 5 to 6, wherein when the semiconductor crystal is grown on the single crystal fine particles, the crystal is grown by forming a low temperature buffer layer. 9. A light-emitting element comprising m(1), (9), (4) and (at least a plurality of semiconductor particles selected in groups; and an organic layer, wherein the bulk particles are dispersed in the organic layer: ¥ 320038 22 200848492 摹· (i) has a single heterostructure, (ii) has a pn junction, (iii) has a double heterostructure, and '(iv) has a quantum well structure. 10. A kind of light-emitting element is a semiconductor grown by crystal growth on a single crystal particle. The crystal is dispersed in the organic layer. 23 32003823 320038
TW097108615A 2007-03-14 2008-03-12 Luminescence device TW200848492A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007065785A JP5020667B2 (en) 2007-03-14 2007-03-14 Light emitting device

Publications (1)

Publication Number Publication Date
TW200848492A true TW200848492A (en) 2008-12-16

Family

ID=39759608

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097108615A TW200848492A (en) 2007-03-14 2008-03-12 Luminescence device

Country Status (3)

Country Link
JP (1) JP5020667B2 (en)
TW (1) TW200848492A (en)
WO (1) WO2008111680A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513368B (en) * 2009-05-14 2015-12-11 Innolux Corp Organic electroluminescence manufacturing method and image display system having the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407209B1 (en) * 2010-10-07 2014-06-16 포항공과대학교 산학협력단 Method for formation of micro- and nano-scale patterns and method for producing micro- and nano-scale channel transistor, and micro- and nano-scale channel light emitting transistor using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366282A (en) * 1986-09-05 1988-03-24 Res Dev Corp Of Japan Fluorescent substance of ultrafine particle
JP2004202361A (en) * 2002-12-25 2004-07-22 Sony Corp Growth method of fine particle, growth apparatus of fine particle, and fine particle
JP2006117735A (en) * 2004-10-19 2006-05-11 Toyota Motor Corp Powder light-emitting element and light-emitting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513368B (en) * 2009-05-14 2015-12-11 Innolux Corp Organic electroluminescence manufacturing method and image display system having the same

Also Published As

Publication number Publication date
WO2008111680A1 (en) 2008-09-18
JP5020667B2 (en) 2012-09-05
JP2008226738A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
Abbasi et al. The fabrication of white light-emitting diodes using the n-ZnO/NiO/p-GaN heterojunction with enhanced luminescence
KR101268139B1 (en) Method for manufacturing iii nitride semiconductor light emitting element, iii nitride semiconductor light emitting element and lamp
US20070158661A1 (en) ZnO nanostructure-based light emitting device
US9461196B2 (en) Non-crystalline inorganic light emitting diode
US6303404B1 (en) Method for fabricating white light emitting diode using InGaN phase separation
JP2008544567A (en) Light emitting diode with nanorod array structure having nitride multiple quantum well, method for manufacturing the same, and nanorod
TW200816523A (en) Nitride-based light emitting device
KR101238459B1 (en) Nitride Semiconductor Light Emitting Device
TW201145572A (en) Method for producing semiconductor light emitting device and semiconductor light emitting device, lamp, electronic device, machinery equipment
CN115714155A (en) Deep ultraviolet light emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light emitting diode
JPH0246779A (en) Pn junction type light emitting diode using silicon carbide semiconductor
CN116525735B (en) Light-emitting diode epitaxial wafer and preparation method thereof
CN112687773B (en) Epitaxial wafer of ultraviolet light-emitting diode and preparation method thereof
Shih et al. Blue, green and white InGaN light-emitting diodes grown on Si
TW200848492A (en) Luminescence device
JP2000353820A (en) AlGaInP LIGHT EMITTING ELEMENT WITH WINDOW LAYER
JP2009516377A (en) Method for manufacturing a high quality semiconductor light emitting device on a silicon substrate
CN105098008A (en) GaN-based light-emitting diode (LED) epitaxy structure containing ternary superlattice and preparation method of GaN-based LED epitaxy structure
CN115172537A (en) Flexible deep ultraviolet LED epitaxial structure and preparation method thereof
JP2011258631A (en) Light-emitting diode element and method of manufacturing the same
JP2001102633A (en) Method of manufacturing nitride-based compound semiconductor light emitting element
JP2009267002A (en) Light emitting element and method for manufacturing the same
KR20080030042A (en) Light emitting diode of a nanorod array structure having a nitride-baseed multi quantum well
JP4439400B2 (en) Boron phosphide-based semiconductor light emitting device, manufacturing method thereof, and light emitting diode
CN118039760B (en) Deep ultraviolet LED epitaxial wafer, preparation method thereof and LED chip