WO2008133355A1 - 圧縮着火内燃機関の燃料噴射システム - Google Patents

圧縮着火内燃機関の燃料噴射システム Download PDF

Info

Publication number
WO2008133355A1
WO2008133355A1 PCT/JP2008/058511 JP2008058511W WO2008133355A1 WO 2008133355 A1 WO2008133355 A1 WO 2008133355A1 JP 2008058511 W JP2008058511 W JP 2008058511W WO 2008133355 A1 WO2008133355 A1 WO 2008133355A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
fuel injection
pressure
sub
Prior art date
Application number
PCT/JP2008/058511
Other languages
English (en)
French (fr)
Inventor
Takashi Koyama
Hisashi Ohki
Masahiro Nagae
Kiyoshi Fujiwara
Tomohiro Kaneko
Takafumi Yamada
Hajime Shimizu
Seiji Ogura
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP08752403.9A priority Critical patent/EP2154354B1/en
Priority to US12/597,723 priority patent/US8261755B2/en
Priority to CN2008800134884A priority patent/CN101680391B/zh
Publication of WO2008133355A1 publication Critical patent/WO2008133355A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a fuel injection system for a compression ignition internal combustion engine.
  • sub fuel injection may be performed a plurality of times before the main fuel injection in one combustion cycle.
  • Japanese Patent Laid-Open No. 2 0 0 3-2 6 9 2 2 9 describes that the number of executions of sub fuel injection during the combustion cycle (hereinafter simply referred to as sub fuel injection) (Referred to as the “number of executions”).
  • Japanese Laid-Open Patent Publication No. 6- 1 2 9 2 96 describes a technique for increasing the number of sub fuel injections as the cooling water temperature is lower when starting an internal combustion engine.
  • Japanese Patent Application Laid-Open No. 2 0 0 1-1 2 2 7 7 and Japanese Patent Application Laid-Open No. 2 0 0 0-1 8 9 7 7 also describe a technique related to sub fuel injection. Disclosure of the invention
  • This invention is made
  • the operating range to which the operating state of the internal combustion engine belongs is such that the lower the engine load of the internal combustion engine and the lower the engine speed of the internal combustion engine, the more the number of executions of sub fuel injection.
  • the number of sub fuel injections is changed based on the range.
  • the lower the atmospheric pressure, the lower the cooling water temperature of the internal combustion engine, or the lower the intake air temperature of the internal combustion engine, the more the operating region where the number of sub fuel injections is performed is expanded to the high load side and the high rotation side. .
  • a fuel injection system for a compression ignition internal combustion engine is:
  • a fuel injection system for a compression ignition internal combustion engine that executes a plurality of sub fuel injections at a time earlier than the main fuel injection by the fuel injection valve
  • the operating range to which the operating state of the internal combustion engine belongs is such that the lower the engine load of the internal combustion engine is, and the lower the engine speed of the internal combustion engine is, the more the number of executions of sub fuel injection in one combustion cycle increases.
  • the operation region determined by the engine load and engine speed of the internal combustion engine is divided into a plurality of regions, and the number of times of sub fuel injection is determined for each operation region. Then, the determined number of sub fuel injections is greater in the operating region where the engine load of the internal combustion engine is lower and in the operating region where the engine speed of the internal combustion engine is lower.
  • the lower the atmospheric pressure the lower the cooling water temperature of the internal combustion engine.
  • the operation region where the number of sub fuel injections is larger is expanded to the high load side and the high rotation side.
  • the higher the atmospheric pressure the higher the cooling water temperature of the internal combustion engine, the higher the intake air temperature of the internal combustion engine, or Reduced to the rotation side. This will reduce smoke emissions.
  • the operating region where the number of executions of sub fuel injection is the largest may be expanded to the higher load side after the predetermined period elapses.
  • the engine load of the internal combustion engine may fluctuate drastically. If the number of sub fuel injections is repeatedly changed in a short period of time in response to such fluctuations in the engine load of the internal combustion engine, it may be difficult to smoothly start the internal combustion engine.
  • the predetermined period is a period until the engine load of the internal combustion engine is stabilized.
  • the present invention may further include: a common rail that supplies fuel to the fuel injection valve; and a pressure changing unit that changes the pressure in the common rail according to the number of times the sub fuel injection is performed.
  • a common rail that supplies fuel to the fuel injection valve
  • a pressure changing unit that changes the pressure in the common rail according to the number of times the sub fuel injection is performed.
  • the number of executions of the auxiliary fuel injection when the number of executions of the auxiliary fuel injection is decreased by the number of times changing means, the number of executions of the auxiliary fuel injection may be reduced after the change of the pressure in the common rail by the pressure changing means is completed.
  • the number of executions of sub fuel injection when the number of executions of sub fuel injection is increased by the number of times changing means, the number of executions of sub fuel injection may be increased simultaneously with the start of the pressure change in the common rail by the pressure changing means.
  • the number of sub fuel injections is less than the pressure in the common rail while the pressure in the common rail is changing. Is suppressed. Therefore, it is possible to suppress an increase in combustion noise while the pressure in the common rail is changing. Also, misfires are less likely to occur when the number of sub fuel injections is greater than when the number of sub fuel injections is less. Therefore, according to the above, it is possible to suppress the occurrence of misfire while the pressure in the common rail is changing.
  • FIG. 1 is a diagram illustrating a schematic configuration of an internal combustion engine and an intake / exhaust system thereof according to a first embodiment.
  • FIG. 2 is a first map, a second map, and a third map showing the relationship between the operating state of the internal combustion engine according to the first embodiment and the number of executions of sub fuel injection.
  • FIG. 3 is a map showing the relationship between the atmospheric pressure, the cooling water temperature of the internal combustion engine, and the map used to set the number of times of sub fuel injection according to the first embodiment.
  • FIG. 4 is a flowchart showing a fuel injection control routine according to the first embodiment.
  • FIG. 5 is a first start time map, a second start time map, and a third start time that show the relationship between the operating state of the internal combustion engine and the number of executions of sub fuel injection when the internal combustion engine according to the second embodiment is started. It is a time map.
  • FIG. 6 is a time chart showing changes in the number of sub fuel injections and the pressure in the common rail when the number of sub fuel injections is changed in accordance with the change in the operating state of the internal combustion engine according to the third embodiment. is there.
  • (A) in FIG. 6 shows a case where the number of executions of sub fuel injection is decreased, and (b) in FIG. 6 shows a case where the number of executions of sub fuel injection is increased.
  • FIG. 7 shows changes in the number of sub fuel injections and the pressure in the common rail when the number of sub fuel injections is changed in accordance with a change in the operating state of the internal combustion engine according to a modification of the third embodiment. It is a time chart.
  • (A) in Fig. 7 shows a case where the number of sub fuel injections is reduced, and (b) in Fig. 7 shows a case where the number of sub fuel injections is increased.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and its intake / exhaust system according to the present embodiment.
  • the internal combustion engine 1 is a compression ignition internal combustion engine for driving a vehicle having a plurality of cylinders 2.
  • a piston 3 is slidably provided in each cylinder 2 of the internal combustion engine 1.
  • Each cylinder 2 is provided with a fuel injection valve 10 for directly injecting fuel (light oil) into the combustion chamber in the upper part of the cylinder 2.
  • Each fuel injection valve 10 has a common rail from the fuel tank (not shown) 1 6 The fuel is supplied via
  • the common rail 16 is provided with a pressure control valve 17 for controlling the pressure in the common rail 16.
  • the common rail 16 is provided with a common rail pressure sensor 18 for detecting the pressure in the common rail 16.
  • An intake port 4 and an exhaust port 5 are connected to the combustion chamber of the cylinder 2.
  • the openings of the intake port 4 and the exhaust port 5 to the combustion chamber are opened and closed by an intake valve 6 and an exhaust valve 7, respectively.
  • the intake port 4 and the exhaust port 5 are connected to the intake passage 8 and the exhaust passage 9, respectively.
  • the internal combustion engine is provided with a coolant temperature sensor 12 for detecting the coolant temperature, an intake temperature sensor 13 for detecting the intake air temperature, and a crank position sensor 14 for detecting the crank angle. Further, the vehicle equipped with the internal combustion engine 1 is provided with an atmospheric pressure sensor 15 for detecting atmospheric pressure.
  • the internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 20.
  • the ECU 20 is electrically connected to a coolant temperature sensor 1 2, an intake air temperature sensor 1 3, a crank position sensor 1 4, an atmospheric pressure sensor 1 5, and a common rail pressure sensor 1 8. These output values are input to the ECU 20.
  • the ECU 20 calculates the engine speed of the internal combustion engine 1 based on the detection value of the crank position sensor 14.
  • a fuel injection valve 10 and a pressure control valve 17 are electrically connected to the ECU 20. These are controlled by the ECU 20.
  • the ECU 20 controls the injection pressure of the fuel from the fuel injection valve 10 by controlling the pressure in the common rail 16 by the pressure control valve 17. Further, the ECU 20 calculates the engine load of the internal combustion engine 1 based on the fuel injection amount from the fuel injection valve 10.
  • the fuel injection valve 10 performs the auxiliary fuel injection at a time earlier than the main fuel injection in one combustion cycle together with the main fuel injection.
  • the main fuel injection is performed near the top dead center of the compression stroke, and the sub fuel injection is performed during the compression stroke.
  • Secondary fuel injection When executed, the temperature in the cylinder 2 rises due to the cold flame reaction of the fuel injected by the sub fuel injection, and fire is generated in the cylinder 2. This improves the ignitability of the fuel when main fuel injection is performed.
  • the number of sub fuel injections is changed based on the operating state of the internal combustion engine 1.
  • FIGS. (A), (b), and (c) in FIG. 2 are a first map, a second map, and a third map showing the relationship between the operating state of the internal combustion engine 1 and the number of sub fuel injections performed.
  • the vertical axis represents the engine load Q f of the internal combustion engine 1
  • the horizontal axis represents the engine speed N e of the internal combustion engine 1.
  • region A represents an operation region in which the number of sub fuel injections is three
  • region B represents the number of sub fuel injections performed
  • Region C represents the operation region where the number of sub fuel injections is one.
  • the first map in which the relationship between the operating state of the internal combustion engine 1 and the number of sub fuel injections is different, There are two maps and a third map. Then, one of these maps is selected based on the atmospheric pressure and the cooling water temperature of the internal combustion engine 1, and the number of sub fuel injections is set based on the selected map.
  • FIG. 3 is a map showing the relationship between the atmospheric pressure and the cooling water temperature of the internal combustion engine 1 and the map used for setting the number of sub fuel injections.
  • the vertical axis represents the atmospheric pressure Pa
  • the horizontal axis represents the cooling water temperature T e w of the internal combustion engine 1.
  • region X represents the region where the map used to set the number of executions of sub fuel injection is the first map ((a)) shown in Fig. 2
  • region Y represents sub fuel injection.
  • the map used to set the number of executions is shown in the area shown in Fig. 2 as the second map ((b)).
  • Region Z shows the map used to set the number of executions of secondary fuel injection. This represents the area designated as the third map ((c)) shown in FIG.
  • the map shown in FIG. 3 is stored in ECU 20 in advance.
  • the operation area A is expanded to the high load side and the high rotation side than the third map, and in the first map, the operation area A is also higher in the second map. Further expanded to the load side and the high rotation side.
  • the operation region B may be the lowest load / low rotation region without providing the operation region A.
  • the first map shown in FIG. 2 is used as a map used to set the number of sub fuel injections.
  • the third map shown in FIG. 2 is selected as a map used for setting the number of times of sub fuel injection.
  • the atmospheric pressure Pa and the cooling water temperature T ew of the internal combustion engine 1 belong to the region Y, which is the region between the region X and the region Z, the number of sub fuel injections is set.
  • the second map shown in FIG. 2 is selected as the map used for this.
  • the lower the atmospheric pressure Pa, or the lower the cooling water temperature T ew of the internal combustion engine 1, the more frequently the operation region A in which the number of sub fuel injections is performed is three. And enlarged to the high rotation side. According to this, the lower the atmospheric pressure Pa or the lower the coolant temperature T ew of the internal combustion engine 1, the higher the engine load Q f of the internal combustion engine 1 and the higher the engine speed N e of the internal combustion engine. Even if it is high, the number of sub fuel injections is set to three, which is the highest number.
  • the fuel injection control routine according to the present embodiment will be described based on a flowchart shown in FIG. This routine is stored in the ECU 20 in advance, and the internal combustion engine
  • the ECU 20 first reads the atmospheric pressure Pa in S 1 0 1.
  • the ECU 20 proceeds to S 102 and reads the cooling water temperature T ew of the internal combustion engine 1.
  • the ECU 20 proceeds to S 1 03 and substitutes the atmospheric pressure Pa read in S 1 0 1 and the cooling water temperature T ew of the internal combustion engine 1 read in S 1 02 into the map shown in ⁇ 3.
  • the map for setting the number of sub fuel injections ns is selected from the first map, the second map, and the third map shown in FIG.
  • the ECU 20 proceeds to S 104 and sets the number ns of sub fuel injections to be executed based on the map selected in S 103.
  • the ECU 20 that executes S 104 corresponds to the number changing means according to the present invention.
  • the ECU 20 proceeds to S 1 05 and executes the auxiliary fuel injection and the main fuel injection. Thereafter, the ECU 20 once terminates execution of this routine.
  • the horizontal axis of the map shown in FIG. As the intake air temperature of the internal combustion engine 1 is lower, the operation region A in which the number of executions of the auxiliary fuel injection is three is expanded to the high load side and the high rotation side. Therefore, the ignitability of the fuel can be improved when the intake air temperature of the internal combustion engine 1 is low. As a result, the amount of unburned fuel components can be reduced.
  • the operation region A in which the number of executions of the auxiliary fuel injection is three times is reduced to the low load side and the low rotation side. In this case as well, smoke emissions can be reduced.
  • the fuel injection valve 10 performs the auxiliary fuel injection at a time earlier than the main fuel injection in one combustion cycle together with the main fuel injection.
  • a method of setting the number of executions of the auxiliary fuel injection at the start of the internal combustion engine 1 according to the present embodiment will be described with reference to FIG. (A), (b), and (c) of FIG. 5 are a first start-time map showing the relationship between the operating state of the internal combustion engine 1 and the number of executions of sub fuel injection when the internal combustion engine 1 is started.
  • a map for the second start and a map for the third start In (a), (b) and (c) of FIG.
  • region A represents an operation region in which the number of sub fuel injections is performed three times
  • region B represents the number of sub fuel injections performed
  • Region C represents the operation region where the number of sub fuel injections is one.
  • the fuel injection amount is adjusted so as to keep the engine speed constant, so the engine load of the internal combustion engine 1 may fluctuate drastically.
  • the operating state of the internal combustion engine 1 is determined in each map. There may be repeated travel between operation area A and operation area B. In this case, the number of executions of the auxiliary fuel injection is repeatedly changed in a short time, and as a result, there is a possibility that it is difficult to start the internal combustion engine 1 smoothly.
  • the first map, the second map, and the third map shown in FIG. 2 are used as a map for setting the number of executions of the auxiliary fuel injection for a predetermined period from the time when the internal combustion engine 1 is started.
  • the first start map, the second start map, and the third start map shown in FIG. 5 are used. That is, for a predetermined period from the time when the internal combustion engine 1 is started, when the atmospheric pressure Pa and the cooling water temperature T ew of the internal combustion engine 1 belong to the region X in FIG. If the map for the first start ((a)) shown in Fig.
  • the second start-up map ((b)) shown in FIG. 5 is selected as the map used to set the engine pressure, and the atmospheric pressure Pa and the cooling water temperature T ew of the internal combustion engine 1 belong to the region Z in FIG.
  • the third starting map ((c)) shown in FIG. 5 is selected.
  • the predetermined period is a period until the engine load of the internal combustion engine 1 is stabilized, and is predetermined by an experiment or the like.
  • the first start map, the second start map, and the third start map are operated in comparison with the first map, the second map, and the third map shown in FIG. Area A is expanded to the high load side.
  • Such a map for the first start, the second start By using either the time map or the third start time map to set the number of sub fuel injections, the operating state of the internal combustion engine 1 is likely to belong to the operating region A immediately after the internal combustion engine 1 is started. In addition, the operation state is prevented from repeatedly going back and forth between the control region A and the operation region B. Therefore, the number of sub fuel injections is three times and it becomes easy to stabilize. In other words, when the internal combustion engine 1 is started, the number of executions of sub fuel injection is prevented from being repeatedly changed in a short time.
  • the internal combustion engine 1 can be started smoothly.
  • the number of executions of sub fuel injection is set in the same manner as in the first embodiment.
  • the fuel injection valve 10 and the main fuel injection together with the sub fuel injection are performed at a time earlier than the main fuel injection in one combustion cycle.
  • the number of executions of sub fuel injection is set in the same manner as in the first embodiment.
  • the pressure in the common rail 16 is changed by the pressure control valve 17 according to the number of executions of the auxiliary fuel injection. More specifically, the higher the number of sub fuel injections, the higher the pressure in the common rail 16.
  • the pressure control valve 17 corresponds to the pressure changing means according to the present invention.
  • FIG. 6 shows the change in the number of sub fuel injections ns and the change in the pressure P r in the common rail 16 when the number of sub fuel injections ns is changed in accordance with the change in the operating state of the internal combustion engine 1 in this embodiment. It is a time chart that shows. (A) of FIG. 6 shows a case where the number of executions n s of the auxiliary fuel injection is decreased, and (b) of FIG. 6 shows a case where the number of executions of the sub fuel injection n s is increased.
  • the pressure in the common rail 16 is changing (during the response delay period A tp).
  • a reduction in the number of sub fuel injections ns relative to the pressure P r in the common rail 16 is suppressed. Therefore, it is possible to suppress an increase in combustion noise while the pressure P r in the common rail 16 is changing.
  • misfires are less likely to occur when the number of secondary fuel injections n s is greater than when the number of secondary fuel injections ns is small. Therefore, according to the present embodiment, it is possible to suppress the occurrence of misfire while the pressure P r in the common rail 16 is changing.
  • FIG. 7 shows the number of sub fuel injections ns and the pressure P r in the common rail 16 when the number of sub fuel injections ns is changed in accordance with the change in the operating state of the internal combustion engine 1 in this modification. Showing changes in It is the first time chia.
  • A) in FIG. 7 shows the case where the number of executions of sub fuel injection ns is decreased, and (b) in FIG. 7 shows the case where the number of executions of sub fuel injection ns is increased.
  • the pressure P r in the common rail 16 changes when the number of sub fuel injections ns changes even when the pressure P r in the common rail 16 decreases. It is possible to suppress the increase of combustion noise and the occurrence of misfire during the operation.
  • the amount of unburned fuel component emitted can be suppressed in an internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本発明は、内燃機関において、未燃燃料成分の排出量を抑制することを目的とする。本発明では、内燃機関の機関負荷が低いほど、また、内燃機関の機関回転数が低いほど、副燃料噴射の実行回数が増加するように、内燃機関の運転状態が属する運転領域に基づいて副燃料噴射の実行回数を変更する。さらに、大気圧が低いほど、内燃機関の冷却水温が低いほど、または、内燃機関の吸気温度が低いほど、副燃料噴射の実行回数が多い運転領域を高負荷側および高回転側に拡大する。

Description

明 細 書 圧縮着火内燃機関の燃料噴射システム 技術分野
本発明は圧縮着火内燃機関の燃料噴射システムに関する。
背景技術
圧縮着火内燃機関 (以下、 単に内燃機関と称する) では、 一燃焼サイクル中におけ る主燃料噴射よりも前の時期に副燃料噴射を複数回実行する場合がある。 また、 特開 2 0 0 3 - 2 6 9 2 2 9号公報には、 内燃機関の機関負荷および機関回転数に応じて —燃焼サイクル中における副燃料噴射の実行回数 (以下、 単に副燃料噴射の実行回数 と称する) を変更する技術が記載されている。 また、 特開平 6— 1 2 9 2 9 6号公報 には、 内燃機関の始動時において、 冷却水温が低いほど副燃料噴射の実行回数を増加 させる技術が記載されている。 また、 特開 2 0 0 1 — 1 2 2 7 7号公報及び特開 2 0 0 0 - 1 8 9 7 7号公報にも副燃料噴射に関する技術が記載されている。 発明の開示
内燃機関においては、 大気圧が低い場合、 または、 内燃機関の温度が低い場合、 内 燃機関の吸気温度が低い場合、 気筒内に噴射された燃料が着火し難い。 そのため、 未 燃燃料成分の排出量が増加する虞がある。 内燃機関の圧縮比が低くなるほど、 このよ うな問題が生じ易い。
本発明は、 上記問題に鑑みてなされたものであって、 内燃機関において、 未燃燃料 成分の排出量を抑制することが可能な技術を提供することを目的とする。
本発明では、 内燃機関の機関負荷が低いほど、 また、 内燃機関の機関回転数が低い ほど、 副燃料噴射の実行回数が増加するように、 内燃機関の運転状態が属する運転領 域に基づいて副燃料噴射の実行回数が変更される。 そして、 大気圧が低いほど、 内燃 機関の冷却水温が低いほど、 または、 内燃機関の吸気温度が低いほど、 副燃料噴射の 実行回数が多い運転領域が高負荷側および高回転側に拡大される。
より詳しくは、 本発明に係る圧縮着火内燃機関の燃料噴射システムは、
内燃機関の気筒内に燃料を直接噴射する燃料噴射弁を備え、
該燃料噴射弁によって主燃料噴射と共に該主燃料噴射よりも早い時期に複数回の副 燃料噴射を実行する圧縮着火内燃機関の燃料噴射システムであって、
前記内燃機関の機関負荷が低いほど、 また、 前記内燃機関の機関回転数が低いほど、 一燃焼サイクル中における副燃料噴射の実行回数が増加するように、 前記内燃機関の 運転状態が属する運転領域に基づいて一燃焼サイクル中における副燃料噴射の実行回 数を変更する回数変更手段をさらに備え、
大気圧が低いほど、 前記内燃機関の冷却水温が低いほど、 または、 前記内燃機関の 吸気温度が低いほど、 一燃焼サイクル中における副燃料噴射の実行回数が多い運転領 域を高負荷側および高回転側に拡大することを特徴とする。
本発明においては、 内燃機関の機関負荷および機関回転数によって定まる運転領域 が複数の領域に区分けされ、 運転領域毎に副燃料噴射の実行回数が定められている。 そして、 内燃機関の機関負荷が低い運転領域ほど、 また、 内燃機関の機関回転数が低 い運転領域ほど、 定められた副燃料噴射の実行回数が多い。
これにより、 内燃機関の運転状態が、 機関負荷が高い運転領域から機関負荷が低い 領域に移った場合、 または、 機関回転数が高い運転領域から機関回転数が低い運転領 域に移った場合、 回数変更手段によって副燃料噴射の実行回数が増加される。 一方、 機関負荷が低い運転領域から機関負荷が高い領域に移った場合、 または、 機関回耘数 が低い運転領域から機関回転数が高い運耘領域に移った場合、 回数変更手段によって 副燃料噴射の実行回数が減少される。
さらに、 本発明においては、 大気圧が低いほど、 内燃機関の冷却水温が低いほど、 または、 内燃機関の吸気温度が低いほど、 副燃料噴射の実行回数が多い運転領域が高 負荷側および高回転側に拡大される。
これによれば、 大気圧が低いほど、 内燃機関の冷却水温が低いほど、 または、 内燃 機関の吸気温度が低いほど、 内燃機関の機関負荷がよリ高い場合や内燃機関の機関回 転数がより高い場合においても副燃料噴射の実行回数が多くなる。 そのため、 大気圧 が低い場合、 内燃機関の温度が低い場合または内燃機関の吸気温度が低い場合におけ る燃料の着火性が向上する。 その結果、 未燃燃料成分の排出量を抑制することが出来 る。
また、 本発明によれば、 大気圧が高いほど、 内燃機関の冷却水温が高いほど、 内燃 機関の吸気温度が高いほど、 または、 副燃料噴射の実行回数が多い運転領域は低負荷 側および低回転側に縮小される。 これにより、 スモークの排出量を抑制することが出 来る。
本発明においては、 内燃機関が始動された時点から所定期間は、 副燃料噴射の実行 回数が最も多い運転領域を所定期間が経過した後よリも高負荷側に拡大してもよい。 内燃機関の始動直後は該内燃機関の機関負荷が激しく変動する場合がある。 このよ うな内燃機関の機関負荷の変動に応じて副燃料噴射の実行回数が短期間に繰り返し変 更されると、 内燃機関のスムーズな始動が困難となる虞がある。
ここで、 所定期間は、 内燃機関の機関負荷が安定するまでの期間である。
上記によれば、 内燃機関の始動直後は、 副燃料噴射が最も多い回数で安定して実行 され易くなる。 即ち、 内燃機関の始動時に副燃料噴射の実行回数が短期間に繰り返し 変更されることが抑制される。 そのため、 内燃機関のスムーズな始動が可能となる。 本発明においては、 燃料噴射弁に燃料を供給するコモンレールと、 副燃料噴射の実 行回数に応じてコモンレール内の圧力を変更する圧力変更手段と、 をさらに備えても よい。 この場合、 内燃機関の運転状態の変化に伴って回数変更手段によって一燃焼サ イクル中における副燃料噴射の実行回数が減少または増加されるときは、 圧力変更手 段によってコモンレール内の圧力が変更される。
このとき、 回数変更手段によって副燃料噴射の実行回数を減少させるときは、 圧力 変更手段によるコモンレール内の圧力の変更が完了してから副燃料噴射の実行回数を 減少させてもよい。 また、 回数変更手段によって副燃料噴射の実行回数を増加させる ときは、 圧力変更手段によるコモンレール内の圧力の変更開始と同時に副燃料噴射の 実行回数を増加させてもよい。
コモンレール内の圧力を変更する場合、 その変更が開始されてから実際の圧力が目 標値に達するまでにある程度の時間がかかる。 また、 コモンレール内の圧力が同一の 場合、 副燃料噴射の実行回数が多い方が副燃料噴射の実行回数が少ない場合に比べて 燃焼騒音が小さい。
上記によれば、 副燃料噴射の実行回数およびコモンレール内の圧力を変更する場合 において、 コモンレール内の圧力が変化している最中にコモンレール内の圧力に対し て副燃料噴射の実行回数が少ない状態となることが抑制される。 そのため、 コモンレ ール内の圧力が変化している最中における燃焼騒音の増加を抑制することが出来る。 また、 副燃料噴射の実行回数が多い方が副燃料噴射の実行回数が少ない場合に比べ て失火が生じ難い。 そのため、 上記によれば、 コモンレール内の圧力が変化している 最中における失火の発生を抑制することが出来る。 図面の簡単な説明
図 1は、 実施例 1に係る内燃機関およびその吸排気系の概略構成を示す図である。 図 2は、 実施例 1に係る内燃機関の運耘状態と副燃料噴射の実行回数との関係を示 す第一マップ、 第二マップおよび第三マップである。
図 3は、 実施例 1に係る大気圧および内燃機関の冷却水温と副燃料噴射の実行回数 を設定するために用いるマツプとの関係を示すマップである。
図 4は、 実施例 1に係る燃料噴射制御のルーチンを示すフローチヤ一卜である。 図 5は、 実施例 2に係る内燃機関の始動時における該内燃機関の運転状態と副燃料 噴射の実行回数との関係を示す第一始動時用マップ、 第二始動時用マップおよび第三 始動時用マップである。
図 6は、 実施例 3に係る、 内燃機関の運転状態の変化に伴い副燃料噴射の実行回数 を変更するときの、 副燃料噴射の実行回数およびコモンレール内の圧力の変化を示す タイムチヤ一卜である。 図 6の (a ) は副燃料噴射の実行回数を減少させる場合を示 しておリ、 図 6の (b ) は副燃料噴射の実行回数を増加させる場合を示している。 図 7は、 実施例 3の変形例に係る、 内燃機関の運転状態の変化に伴い副燃料噴射の 実行回数を変更するときの、 副燃料噴射の実行回数およびコモンレール内の圧力の変 化を示すタイムチャートである。 図 7の (a ) は副燃料噴射の実行回数を減少させる 場合を示しており、 図 7の (b ) は副燃料噴射の実行回数を増加させる場合を示して いる。 発明を実施するための最良の形態
以下、 本発明に係る圧縮着火内燃機関の燃料噴射システムの具体的な実施形態につ いて図面に基づいて説明する。
(実施例 1 )
<内燃機関とのその吸排気系の概略構成 >
図 1は、 本実施例に係る内燃機関およびその吸排気系の概略構成を示す図である。 内燃機関 1は、 複数の気筒 2を有する車両駆動用の圧縮着火内燃機関である。 尚、 本 実施例に係る内燃機関 1は圧縮比が比較的低い値 (例えば、 ε = 1 4 ) に設定されて いる。
内燃機関 1の各気筒 2内にはピストン 3が摺動自在に設けられている。 また、 各気 筒 2には該気筒 2内上部の燃焼室に燃料 (軽油) を直接噴射する燃料噴射弁 1 0が設 けられている。 各燃料噴射弁 1 0には、 燃料タンク (図示略) からコモンレール 1 6 を介して燃料が供給される。 コモンレール 1 6には該コモンレール 1 6内の圧力を制 御する圧力制御弁 1 7が設けられている。 また、 コモンレール 1 6には該コモンレー ル 1 6内の圧力を検出するコモンレール圧センサ 1 8が設けられている。
気筒 2の燃焼室には、 吸気ポー卜 4および排気ポー卜 5が接続されている。 吸気ポ 一卜 4および排気ポー卜 5の燃焼室への開口部は、 それぞれ吸気弁 6および排気弁 7 によって開閉される。 吸気ポー卜 4および排気ポ一卜 5は、 それぞれ吸気通路 8およ び排気通路 9に接続されている。
内燃機関〗には、 冷却水温を検出する冷却水温センサ 1 2、 吸気温度を検出する吸 気温度センサ 1 3、 および、 クランク角を検出するクランクポジションセンサ 1 4が 設けられている。 また、 内燃機関 1を搭載した車両には大気圧を検出する大気圧セン サ 1 5が設けられている。
以上述べたように構成された内燃機関 1 には電子制御ユニット (ECU) 20が併 設されている。 ECU 20には、 冷却水温センサ 1 2、 吸気温度センサ 1 3、 クラン クポジションセンサ 1 4、 大気圧センサ 1 5およびコモンレール圧センサ 1 8が電気 的に接続されている。 これらの出力値が ECU 20に入力される。 ECU 20はクラ ンクポジションセンサ 1 4の検出値に基づいて内燃機関 1の機関回転数を算出する。 また、 E CU 20には、 燃料噴射弁 1 0および圧力制御弁 1 7が電気的に接続され ている。 ECU 20によってこれらが制御される。 ECU 20は、 圧力制御弁 1 7に よってコモンレール 1 6内の圧力を制御することで燃料噴射弁 1 0からの燃料の噴射 圧を制御する。 また、 ECU 20は燃料噴射弁 1 0からの燃料噴射量に基づいて内燃 機関 1の機関負荷を算出する。
<燃料噴射制御 >
本実施例においては、 燃料噴射弁 1 0によって主燃料噴射と共に一燃焼サイクル中 における該主燃料噴射よりも早い時期に副燃料噴射が行われる。 主燃料噴射は圧縮行 程上死点近傍の時期に実行され、 副燃料噴射は圧縮行程中に行われる。 副燃料噴射が 実行されると、 該副燃料噴射によって噴射された燃料の冷炎反応によって気筒 2内の 温度が上昇すると共に気筒 2内に火種が生じる。 そのため、 主燃料噴射が実行された ときの燃料の着火性が向上する。
本実施例においては、 内燃機関 1の運転状態に基づいて副燃料噴射の実行回数を変 更する。.ここで、 本実施例における副燃料噴射の実行回数の設定方法について図 2お よび 3に基づいて説明する。 図 2の (a ) 、 (b ) および (c ) は、 内燃機関 1の運 転状態と副燃料噴射の実行回数との関係を示す第一マップ、 第二マップおよび第三マ ップである。 図 2の (a ) 、 ( b ) および (c ) において、 縦軸は内燃機関 1の機関 負荷 Q f を表しており、 横軸は内燃機関 1の機関回転数 N eを表している。 また、 図 2の (a ) 、 ( b ) および (c ) において、 領域 Aは副燃料噴射の実行回数を三回と する運転領域を表しており、 領域 Bは副燃料噴射の実行回数を二回とする運転領域を 表しており、 領域 Cは副燃料噴射の実行回数を一回とする運転領域を表している。 図 2に示すこれらのマップは E C U 2 0に予め記憶されている。
内燃機関 1の機関負荷 Q f が低いほど、 また、 内燃機関 1の機関回転数 N eが低い ほど、 気筒 2内において燃料が着火し難い。 そこで、 本実施例では、 図 2の (a ) 、 ( b ) および (c ) それぞれに示すように、 内燃機関 1の機関負荷 Q f が低いほど、 また、 内燃機関 1の機関回転数 N eが低いほど、 副燃料噴射の実行回数を多くする。 副燃料噴射の実行回数が多いほど気筒 2内における燃料の着火性が向上する。 従つ て、 上記によれば、 内燃機関 1の機関負荷 Q f や機関回転数 N eが低い場合における 燃料の着火性を向上させることが出来、 以つて未燃燃料成分の排出量を抑制すること が出来る。
また、 上記によれば、 内燃機関 1の機関負荷 Q f が高いほど、 また、 内燃機関 1の 機関回転数 N eが高いほど、 副燃料噴射の実行回数は少なくなる。 そのため、 スモー クの排出量も抑制することが出来る。
内燃機関 1の運転状態が同一の場合であっても、 大気圧が低いほど、 また、 内燃機 関 1の温度が低いほど、 気筒 2内において燃料が着火し難くなる。 そこで、 本実施例 では、 図 2の (a ) 、 ( b ) および (c ) に示すような、 内燃機関 1の運耘状態と副 燃料噴射の実行回数との関係が異なる第一マップ、 第二マップおよび第三マップが設 けられている。 そして、 大気圧および内燃機関 1の冷却水温に基づいてこれらのマツ プのうちいずれかを選択し、 選択したマップに基づいて副燃料噴射の実行回数を設定 する。
図 3は、 大気圧および内燃機関 1の冷却水温と副燃料噴射の実行回数を設定するた めに用いるマップとの関係を示すマップである。 図 3において、 縦軸は大気圧 P aを 表しており、 横軸は内燃機関 1の冷却水温 T e wを表している。 また、 図 3において、 領域 Xは副燃料噴射の実行回数を設定するために用いるマツプを図 2に示す第一マッ プ ( (a ) ) とする領域を表しており、 領域 Yは副燃料噴射の実行回数を設定するた めに用いるマップを図 2に示す第二マップ ( (b ) ) とする領域を表しており、 領域 Zは副燃料噴射の実行回数を設定するために用いるマップを図 2に示す第三マップ ( ( c ) ) とする領域を表している。 図 3に示すマップは E C U 2 0に予め記憶され ている。
図 2に示すように、 第二マップにおいては第三マップよりも運転領域 Aが高負荷側 および高回転側に拡大されており、 第一マップにおいては第二マップょリも運転領域 Aが高負荷側および高回転側にさらに拡大されている。 尚、 第三マップにおいては、 運転領域 Aを設けずに、 最も低負荷 ·低回転の領域も運転領域 Bとしてもよい。
そして、 図 3に示すように、 大気圧 P aおよび内燃機関 1の冷却水温 T e wが最も 低い領域 Xでは副燃料噴射の実行回数を設定するために用いるマップとして図 2に示 す第一マップが選択され、 大気圧 P aおよび内燃機関 1の冷却水温 T e wが最も高い 領域 Zでは、 副燃料噴射の実行回数を設定するために用いるマップとして図 2に示す 第三マップが選択される。 また、 大気圧 P aおよび内燃機関 1の冷却水温 T e wが領 域 Xと領域 Zとの間の領域である領域 Yに属する場合は副燃料噴射の実行回数を設定 するために用いるマップとして図 2に示す第二マップが選択される。
つまリ、 本実施例においては、 大気圧 P aが低いほど、 または、 内燃機関 1の冷却 水温 T ewが低いほど、 副燃料噴射の実行回数が三回となる運転領域 Aが高負荷側お よび高回転側に拡大される。 これによれば、 大気圧 P aが低いほど、 または、 内燃機 関 1の冷却水温 T ewが低いほど、 内燃機関 1の機関負荷 Q fがより高い場合や内燃 機関の機関回転数 N eがよリ高い場合においても副燃料噴射の実行回数が最も多い数 である三回に設定される。
従って、 本実施例によれば、 大気圧が低い場合または内燃機関の温度が低い場合に おける燃料の着火性を向上させることが出来る。 その結果、 未燃燃料成分の排出量を 抑制することが出来る。
また、 本実施例においては、 大気圧 P aが高いほど、 または、 内燃機関 1の冷却水 温 T e wが高いほど、 副燃料噴射の実行回数が三回となる運転領域 Aが低負荷側およ び低回転側に縮小される。 これにより、 スモークの排出量を抑制することが出来る。 ここで、 本実施例に係る燃料噴射制御のルーチンについて図 4に示すフローチヤ一 卜に基づいて説明する。 本ルーチンは、 ECU 20に予め記憶されており、 内燃機関
1の運転中、 所定の間隔で繰り返し実行される。
本ルーチンでは、 ECU 20は、 先ず S 1 0 1において、 大気圧 P aを読み込む。 次に、 ECU 20は、 S 1 02に進み、 内燃機関 1の冷却水温 T ewを読み込む。 次に、 ECU 20は、 S 1 03に進み、 囿 3に示すマップに S 1 0 1 において読み 込まれた大気圧 P aおよび S 1 02において読み込まれた内燃機関 1の冷却水温 T e wを代入することで、 副燃料噴射の実行回数 n sを設定するためのマップを図 2に示 す第一マップ、 第二マップ、 および第三マップの中から選択する。
次に、 ECU 20は、 S 1 04に進み、 S 1 03において選択されたマップに基づ いて副燃料噴射の実行回数 n sを設定する。 本実施例においては、 この S 1 04を実 行する ECU 20が本発明に係る回数変更手段に相当する。 次に、 ECU 20は、 S 1 05に進み、 副燃料噴射および主燃料噴射を実行する。 その後、 ECU 20は本ルーチンの実行を一旦終了する。
尚、 内燃機関 1の運転状態が同一の場合、 内燃機関 1の吸気温度が低いほど、 気筒 2内において燃料が着火し難くなる。 そこで、 本実施例においては、 図 3に示すマツ プの横軸を内燃機関 1の吸気温度としてもよい。 この場合、 内燃機関 1の吸気温度が 低いほど、 副燃料噴射の実行回数が三回となる運転領域 Aが高負荷側および高回転側 に拡大される。 従って、 内燃機関 1の吸気温度が低い場合における燃料の着火性を向 上させることが出来る。 その結果、 未燃燃料成分の排出量を抑制することが出来る。 また、 上記の場合、 内燃機関 1の吸気温度が高いほど、 副燃料噴射の実行回数が三 回となる運転領域 Aが低負荷側および低回転側に縮小される。 この場合も、 スモーク の排出量を抑制することが出来る。
(実施例 2 )
本実施例に係る内燃機関およびその吸排気系の概略構成は実施例 1と同様である。 <燃料噴射制御 >
本実施例においても、 実施例 1と同様、 燃料噴射弁 1 0によって主燃料噴射と共に 一燃焼サイクルにおける該主燃料噴射よりも早い時期に副燃料噴射が行われる。 ここで、 本実施例に係る内燃機関 1の始動時における副燃料噴射の実行回数の設定 方法について図 5に基づいて説明する。 図 5の (a) 、 (b) および (c) は、 内燃 機関 1の始動時における該内燃機関 1の運転状態と副燃料噴射の実行回数との関係を 示す第一始動時用マップ、 第二始動時用マップ、 第 3始動時用マップである。 図 5の (a) 、 (b) および (c) において、 縦軸は内燃機関 1の機関負荷 Q f を表してお リ、 横軸は内燃機関 1の機関回転数 N eを表している。 また、 図 5の (a) 、 (b) および (c) において、 領域 Aは副燃料噴射の実行回数を三回とする運転領域を表し ており、 領域 Bは副燃料噴射の実行回数を二回とする運転領域を表しており、 領域 C は副燃料噴射の実行回数を一回とする運転領域を表している。 図 5に示すこれらのマ ップは E C U 2 0に予め記憶されている。
内燃機関 1の始動時においては、 機関回転数を一定に保つべく燃料噴射量が調整さ れるため、 内燃機関 1の機関負荷が激しく変動する場合がある。 このような場合、 副 燃料噴射の実行回数を設定するために図 2に示す第一マップ、 第二マップおよび第三 マップのうち何れかが用いられると、 内燃機関 1の運転状態が各マップにおける運転 領域 Aと運転領域 Bとの間で行き来を繰り返す場合がある。 この場合、 副燃料噴射の 実行回数が短期間に繰り返し変更され、 その結果、 内燃機関 1のスムーズな始動が困 難となる虞がある。
そこで、 本実施例では、 内燃機関 1が始動された時点から所定期間は、 副燃料噴射 の実行回数を設定するためのマップとして、 図 2に示す第一マップ、 第二マップおよ び第三マップに代えて、 図 5に示す第一始動時用マップ、 第二始動時用マップおよび 第三始動時用マップを用いる。 つまり、 内燃機関 1が始動された時点から所定期間は、 大気圧 P aおよび内燃機関 1の冷却水温 T e wが図 3における領域 Xに属する場合は 副燃料噴射の実行回数を設定するために用いるマップとして図 5に示す第一始動時用 マップ ( (a ) ) が選択され、 大気圧 P aおよび内燃機関 1の冷却水温 T e wが図 3 における領域 Yに属する場合は副燃料噴射の実行回数を設定するために用いるマップ として図 5に示す第二始動時用マップ ( (b ) ) が選択され、 大気圧 P aおよび内燃 機関 1の冷却水温 T e wが図 3における領域 Zに属する場合は副燃料噴射の実行回数 を設定するために用いるマップとして図 5に示す第三始動時用マップ ( (c ) ) が選 択される。
ここで、 所定期間は、 内燃機関 1の機関負荷が安定するまでの期間であり、 実験等に よって予め定められている。
図 5に示すように、 第一始動時用マップ、 第二始動時用マップおよび第三始動時用 マップにおいては、 図 2に示す第一マップ、 第二マップおよび第三マップに比べて、 運転領域 Aが高負荷側に拡大されている。 このような第一始動時用マップ、 第二始動 時用マツプおよび第三始動時用マツプのいずれかを副燃料噴射の実行回数を設定する ために用いることで、 内燃機関 1の始動直後は、 内燃機関 1の運転状態が運転領域 A に属し易くなリ、 該運転状態が運耘領域 Aと運転領域 Bとの間で行き来を繰リ返すこ とが抑制される。 そのため、 副燃料噴射の実行回数が三回で安定し易くなる。 つまり、 内燃機関 1の始動時に副燃料噴射の実行回数が短期間に繰り返し変更されることが抑 制される。 従って、 本実施例によれば、 内燃機関 1のスムーズな始動が可能となる。 尚、 本実施例においても、 内燃機関 1が始動された時点から所定期間が経過した後 は、 実施例 1と同様の方法で副燃料噴射の実行回数が設定される。
(実施例 3 )
本実施例に係る内燃機関およびその吸排気系の概略構成は実施例 1と同様である。 <燃料噴射制御 >
本実施例においても、 実施例 1と同様、 燃料噴射弁 1 0によって主燃料噴射と共に一 燃焼サイクルにおける該主燃料噴射よりも早い時期に副燃料噴射が行われる。 また、 本実施例においても、 実施例 1と同様の方法で副燃料噴射の実行回数が設定される。 本実施例においては、 副燃料噴射の実行回数に応じて、 圧力制御弁 1 7によってコ モンレール 1 6内の圧力が変更される。 より詳細には、 副燃料噴射の実行回数が多い ほどコモンレール 1 6内の圧力を高くする。 本実施例においては、 圧力制御弁 1 7が 本発明に係る圧力変更手段に相当する。
図 6は、 本実施例において、 内燃機関 1の運転状態の変化に伴い副燃料噴射の実行 回数 n sを変更するときの、 副燃料噴射の実行回数 n sおよびコモンレール 1 6内の 圧力 P rの変化を示すタイムチヤ一卜である。 図 6の (a ) は副燃料噴射の実行回数 n sを減少させる場合を示しており、 図 6の (b ) は副燃料噴射の実行回数 n sを増 加させる場合を示している。
コモンレール 1 6内の圧力 P rを変更する場合、 図 6の (a ) および (b ) に示す ように、 その変更を開始してから実際の圧力 P rが目標値に達すまでにはある程度の 時間が係る。 つまり、 応答遅れ期間 A t pが生じる。 また、 コモンレール 1 6内の圧 力 P rが同一の場合、 副燃料噴射の実行回数 n sが多い方が副燃料噴射の実行回数 n sが少ない場合に比べて燃焼騒音が小さい。
そこで、 本実施例では、 副燃料噴射の実行回数 n sを減少させる場合、 図 6の ( a ) に示すように、 コモンレール 1 6内の圧力 P rの変更を副燃料噴射の実行回数 n sの減少よりも先に開始する。 そして、 実際の圧力 P rが、 減少した後の副燃料噴 射の実行回数 n sに対応した目標値に達してから (即ち、 コモンレール 1 6内の圧力 P rの変更を開始した時点から応答遅れ期間 Δ t pが経過してから) 、 副燃料噴射の 実行回数 n sを減少させる。
一方、 副燃料噴射の実行回数 n sを増加させる場合、 図 6の (b ) に示すように、 コモンレール 1 6内の圧力 P rの変更の開始と同時に副燃料噴射の実行回数 n sを増 加させる。
上記によれば、 副燃料噴射の実行回数 n sおよびコモンレール 1 6内の圧力 P rを 変更する場合において、 コモンレール 1 6内の圧力が変化している最中 (応答遅れ期 間 A t p中) にコモンレール 1 6内の圧力 P rに対して副燃料噴射の実行回数 n sが 少なくなることが抑制される。 そのため、 コモンレール 1 6内の圧力 P rが変化して いる最中における燃焼騒音の増加を抑制することが出来る。
また、 副燃料噴射の実行回数 n sが多い方が副燃料噴射の実行回数 n sが少ない場 合に比べて失火が生じ難い。 そのため、 本実施例によれば、 コモンレール 1 6内の圧 力 P rが変化している最中における失火の発生を抑制することが出来る。
<変形例 >
ここで、 本実施例に係る変形例について説明する。 本変形例においては、 副燃料噴 射の実行回数が多いほどコモンレール 1 6内の圧力を低くする。 図 7は、 本変形例に おいて、 内燃機関 1の運転状態の変化に伴い副燃料噴射の実行回数 n sを変更すると きの、 副燃料噴射の実行回数 n sおよびコモンレール 1 6内の圧力 P rの変化を示す タイムチヤ一卜である。 図 7の (a ) は副燃料噴射の実行回数 n sを減少させる場合 を示してぉリ、 図 7の (b ) は副燃料噴射の実行回数 n sを増加させる場合を示して いる。
本変形例においても、 副燃料噴射の実行回数 n sを減少させる場合、 図 7の (a ) に示すように、 コモンレール 1 6内の圧力 P rの変更を副燃料噴射の実行回数 n sの 減少よりも先に開始する。 そして、 実際の圧力 P rが、 減少した後の副燃料噴射の実 行回数 n sに対応した目標値に達してから (即ち、 コモンレール 1 6内の圧力 P rの 変更を開始した時点から応答遅れ期間△ t pが経過してから) 、 副燃料噴射の実行回 数 n sを減少させる。 また、 副燃料噴射の実行回数 n sを増加させる場合、 図 7の ( b ) に示すように、 コモンレール 1 6内の圧力 P rの変更の開始と同時に副燃料噴 射の実行回数 n sを増加させる。
これによれば、 副燃料噴射の実行回数 n sが多いほどコモンレール 1 6内の圧力 P rを低くする場合においても、 副燃料噴射の実行回数 n sの変更時にコモンレール 1 6内の圧力 P rが変化している最中における燃焼騒音の増加および失火の発生を抑制 することが出来る。
尚、 上記各実施例では、 一燃焼サイクル中における副燃料噴射の実行回数を 1〜3 回のいずれかにする場合について説明したが、 該回数はこれらに限られるものではな い。
上記各実施例は可能な限リ組み合わせることが出来る。 産業上の利用可能性
本発明によれば、 内燃機関において、 未燃燃料成分の排出量を抑制することが出来 る。

Claims

請 求 の 範 囲 1 . 内燃機関の気筒内に燃料を直接噴射する燃料噴射弁を備え、
該燃料噴射弁によって主燃料噴射と共に該主燃料噴射よりも早い時期に複数回の副 燃料噴射を実行する圧縮着火内燃機関の燃料噴射システムであって、
前記内燃機関の機関負荷が低いほど、 また、 前記内燃機関の機関回転数が低いほど、 一燃焼サイクル中における副燃料噴射の実行回数が増加するように、 前記内燃機関の 運転状態が属する運転領域に基づいて一燃焼サイクル中における副燃料噴射の実行回 数を変更する回数変更手段をさらに備え、
大気圧が低いほど、 前記内燃機関の冷却水温が低いほど、 または、 前記内燃機関の 吸気温度が低いほど、 一燃焼サイクル中における副燃料噴射の実行回数が多い運転領 域を高負荷側および高回転側に拡大することを特徴とする圧縮着火内燃機関の燃料噴 ンステ厶。
2 . 前記内燃機関が始動された時点から所定期間は、 一燃焼サイクル中における 副燃料噴射の実行回数が最も多い運転領域を前記所定期間が経過した後よりも高負荷 側に拡大することを特徴とする請求項 1記載の圧縮着火内燃機関の燃料噴射システム。
3 . 前記所定期間は、 前記内燃機関の機関負荷が安定するまでの期間であることを 特徴とする請求項 2記載の圧縮着火内燃機関の燃料噴射システム。
4 . 前記燃料噴射弁に燃料を供給するコモンレールと、
—燃焼サイクル中における副燃料噴射の実行回数に応じて前記コモンレール内の圧 力を変更する圧力変更手段と、 をさらに備え、
前記回数変更手段によって一燃焼サイクル中における副燃料噴射の実行回数を減少 させるときは、 前記圧力変更手段による前記コモンレール内の圧力の変更が完了して から副燃料噴射の実行回数を減少させ、
前記回数変更手段によって一燃焼サイクル中における副燃料噴射の実行回数を増加 させるときは、 前記圧力変更手段による前記コモンレール内の圧力の変更開始と同時 に副燃料噴射の実行回数を増加させることを特徴とする請求項 1から 3のいずれか 1 に記載の圧縮着火内燃機関の燃料噴射システム。
PCT/JP2008/058511 2007-04-27 2008-04-28 圧縮着火内燃機関の燃料噴射システム WO2008133355A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08752403.9A EP2154354B1 (en) 2007-04-27 2008-04-28 Fuel injection system of compression ignition internal combustion engine
US12/597,723 US8261755B2 (en) 2007-04-27 2008-04-28 Fuel injection system of compression ignition internal combustion engine
CN2008800134884A CN101680391B (zh) 2007-04-27 2008-04-28 压缩点火式内燃机的燃料喷射系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007118573A JP4826540B2 (ja) 2007-04-27 2007-04-27 圧縮着火内燃機関の燃料噴射システム
JP2007-118573 2007-04-27

Publications (1)

Publication Number Publication Date
WO2008133355A1 true WO2008133355A1 (ja) 2008-11-06

Family

ID=39925792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058511 WO2008133355A1 (ja) 2007-04-27 2008-04-28 圧縮着火内燃機関の燃料噴射システム

Country Status (5)

Country Link
US (1) US8261755B2 (ja)
EP (1) EP2154354B1 (ja)
JP (1) JP4826540B2 (ja)
CN (1) CN101680391B (ja)
WO (1) WO2008133355A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816651B2 (ja) * 2008-01-25 2011-11-16 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP5730679B2 (ja) * 2011-06-16 2015-06-10 ヤンマー株式会社 エンジン装置
JP5834699B2 (ja) * 2011-09-26 2015-12-24 マツダ株式会社 圧縮自己着火式エンジンの始動制御装置
JP5887877B2 (ja) * 2011-11-25 2016-03-16 マツダ株式会社 圧縮自己着火式エンジンの始動制御装置
US8949002B2 (en) * 2012-02-21 2015-02-03 Ford Global Technologies, Llc System and method for injecting fuel
US10352266B2 (en) * 2017-05-11 2019-07-16 Ford Global Technologies, Llc Method of fuel injection control in diesel engines
JP2018193915A (ja) * 2017-05-17 2018-12-06 マツダ株式会社 ディーゼルエンジンの燃料噴射制御方法及び燃料噴射制御装置
CN112096535B (zh) * 2020-08-13 2021-11-02 东风汽车集团有限公司 发动机燃油喷射次数控制方法、系统及汽车
CN115142962B (zh) * 2022-07-11 2024-01-16 上海汽车集团股份有限公司 车辆发动机可变气门正时和喷油的控制方法、系统及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129296A (ja) 1992-10-15 1994-05-10 Nippondenso Co Ltd 蓄圧式燃料噴射装置
JP2000018977A (ja) 1998-07-06 2000-01-21 Denso Corp 指針計器
JP2001012277A (ja) 1999-06-23 2001-01-16 Isuzu Motors Ltd コモンレール式ディーゼルエンジンの始動制御装置
JP3265627B2 (ja) * 1992-07-17 2002-03-11 株式会社デンソー ディーゼル機関の燃料噴射装置
JP2003269229A (ja) 2002-03-12 2003-09-25 Toyota Motor Corp ディーゼルエンジンの燃料噴射制御装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059455B2 (ja) * 1990-03-16 2000-07-04 旭硝子株式会社 ポリエーテル化合物の製造方法
DE69212754T2 (de) * 1991-09-27 1997-02-27 Nippon Denso Co Kraftstoffeinspritzanlage mit geteilter Kraftstoffeinspritzung für Dieselmotoren
JP3040610B2 (ja) * 1992-08-24 2000-05-15 三菱重工業株式会社 パイロット噴射装置
JPH11294228A (ja) * 1998-04-10 1999-10-26 Isuzu Motors Ltd ディーゼルエンジンの燃料噴射制御装置
JP3811313B2 (ja) 1998-04-28 2006-08-16 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
DE69913423T2 (de) 1998-04-28 2004-11-04 Toyota Jidosha K.K., Toyota Kraftstoffeinspritzungssteuerapparat für einen Verbrennungsmotor
DE19850016A1 (de) * 1998-10-30 2000-05-04 Hydraulik Ring Gmbh Einspritzvorrichtung für Verbrennungsmotoren, vorzugsweise Dieselmotoren
JP3458776B2 (ja) * 1999-01-28 2003-10-20 株式会社デンソー 蓄圧式燃料噴射装置および蓄圧室内圧力制御方法
JP3721873B2 (ja) * 1999-08-03 2005-11-30 いすゞ自動車株式会社 エンジンの燃料噴射制御装置
CN1237265C (zh) * 2000-03-09 2006-01-18 罗伯特-博希股份公司 控制内燃机中燃油喷射的方法和装置
JP2001263145A (ja) * 2000-03-14 2001-09-26 Isuzu Motors Ltd コモンレール式燃料噴射装置
US6912992B2 (en) * 2000-12-26 2005-07-05 Cummins Westport Inc. Method and apparatus for pilot fuel introduction and controlling combustion in gaseous-fuelled internal combustion engine
EP1318288B1 (en) * 2001-12-06 2017-09-06 Denso Corporation Fuel injection system for internal combustion engine
JP3855846B2 (ja) * 2002-05-21 2006-12-13 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP4161690B2 (ja) * 2002-11-20 2008-10-08 株式会社デンソー 蓄圧式燃料噴射装置
US7201127B2 (en) * 2005-07-14 2007-04-10 Caterpillar Inc Internal combustion engine start-up operating mode and engine using same
JP2007092626A (ja) * 2005-09-28 2007-04-12 Iseki & Co Ltd 作業機用エンジン
JP2007187149A (ja) * 2005-12-13 2007-07-26 Nissan Motor Co Ltd エンジンの燃料噴射制御方法及び燃料噴射制御装置
JP4315218B2 (ja) * 2007-06-12 2009-08-19 トヨタ自動車株式会社 燃料噴射制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265627B2 (ja) * 1992-07-17 2002-03-11 株式会社デンソー ディーゼル機関の燃料噴射装置
JPH06129296A (ja) 1992-10-15 1994-05-10 Nippondenso Co Ltd 蓄圧式燃料噴射装置
JP2000018977A (ja) 1998-07-06 2000-01-21 Denso Corp 指針計器
JP2001012277A (ja) 1999-06-23 2001-01-16 Isuzu Motors Ltd コモンレール式ディーゼルエンジンの始動制御装置
JP2003269229A (ja) 2002-03-12 2003-09-25 Toyota Motor Corp ディーゼルエンジンの燃料噴射制御装置

Also Published As

Publication number Publication date
JP2008274831A (ja) 2008-11-13
CN101680391B (zh) 2012-10-17
EP2154354B1 (en) 2019-07-03
EP2154354A1 (en) 2010-02-17
JP4826540B2 (ja) 2011-11-30
EP2154354A4 (en) 2017-05-31
US8261755B2 (en) 2012-09-11
CN101680391A (zh) 2010-03-24
US20100043747A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2008133355A1 (ja) 圧縮着火内燃機関の燃料噴射システム
JP4424147B2 (ja) 内燃機関の排気浄化装置
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
US7966989B2 (en) Engine control apparatus
US7252069B2 (en) Gas fuel engine and control method for the same
US20130152898A1 (en) Variable ignition type diesel-gasoline dual fuel powered combustion engine, system, and method
JP4918911B2 (ja) 筒内直接燃料噴射式火花点火エンジンの燃圧制御装置
JP6424067B2 (ja) エンジン制御装置
JP5321844B2 (ja) 内燃機関の燃料噴射制御装置
WO2008136525A1 (ja) 圧縮着火内燃機関の燃料噴射システム
JP2005201186A (ja) 直噴火花点火式内燃機関の制御装置
JP2020033963A (ja) 内燃機関の制御装置
JP4120625B2 (ja) 内燃機関の制御装置
JP4687141B2 (ja) 圧縮着火内燃機関の燃焼制御システム
JP2006097593A (ja) 筒内直接噴射式火花点火内燃機関の制御装置
EP1750000A2 (en) Fuel injection control system and method for a compression ignition internal combustion engine
JP2006214285A (ja) 燃料噴射制御装置
JP2006118427A (ja) 圧縮着火内燃機関
JP2004245103A (ja) 直噴ディーゼルエンジン
JP2006144750A (ja) 圧縮着火内燃機関
JP4479909B2 (ja) 内燃機関のアイドル回転数制御装置
JP4807125B2 (ja) 圧縮着火内燃機関の着火時期制御装置
EP1749999A2 (en) Fuel injection control system and method of compression ignition internal combustion engine
KR20240064726A (ko) 엔진 제어 장치 및 엔진 제어 방법
JP2006112364A (ja) 筒内直接噴射式火花点火内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880013488.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08752403

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12597723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008752403

Country of ref document: EP