WO2008132204A2 - Nitridhalbleiterbauelement-schichtstruktur auf einer gruppe-iv-substratoberfläche - Google Patents

Nitridhalbleiterbauelement-schichtstruktur auf einer gruppe-iv-substratoberfläche Download PDF

Info

Publication number
WO2008132204A2
WO2008132204A2 PCT/EP2008/055181 EP2008055181W WO2008132204A2 WO 2008132204 A2 WO2008132204 A2 WO 2008132204A2 EP 2008055181 W EP2008055181 W EP 2008055181W WO 2008132204 A2 WO2008132204 A2 WO 2008132204A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
substrate surface
substrate
symmetry
nitride semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2008/055181
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2008132204A3 (de
Inventor
Armin Dadgar
Alois Krost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azzurro Semiconductors AG
Original Assignee
Azzurro Semiconductors AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azzurro Semiconductors AG filed Critical Azzurro Semiconductors AG
Priority to IN7391DEN2009 priority Critical patent/IN2009DN07391A/en
Priority to EP08749803A priority patent/EP2150970B1/de
Priority to US12/451,151 priority patent/US20100133658A1/en
Priority to AT08749803T priority patent/ATE533176T1/de
Priority to HK10105635.8A priority patent/HK1138941B/xx
Priority to JP2010504724A priority patent/JP2010525595A/ja
Priority to CN2008800225012A priority patent/CN101689483B/zh
Priority to ES08749803T priority patent/ES2375591T3/es
Publication of WO2008132204A2 publication Critical patent/WO2008132204A2/de
Publication of WO2008132204A3 publication Critical patent/WO2008132204A3/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0133Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
    • H10H20/01335Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials

Definitions

  • the present invention relates to a nitride semiconductor device having a group III nitride layer structure on a group IV substrate surface such as silicon, germanium, diamond, or a mixed crystal in this group IV semiconductor system.
  • Recent developments also allow epitaxial growth on a Si (IOO) substrate surface, but with poorer crystal quality.
  • a Si (I O0) surface as a substrate surface for a group III nitride layer structure is of interest for applications in microelectronics because, for example, the integration of GaN-based components into the silicon electronics can be facilitated.
  • growth on a substrate surface - as is common in the art in the linguistic usage - it can be assumed that this growth is epitaxial or took place.
  • An epitaxially deposited layer is known to take over the lattice structure of the substrate on which it grows, or is based on the symmetry prescribed by them and takes over the lattice constants depending on the lattice mismatch even on thick monolayers to micrometers.
  • the term "epitaxial” is therefore not necessarily additionally mentioned below when referring to growth on a substrate surface: known non-epitaxial deposition processes such as sputtering give rise to amorphous or polycrystalline, but in the best case textured, non-monocrystalline layers useful for optoelectronic devices today's standards are not suitable.
  • the quality of the Group III nitride semiconductor layers fabricated on silicon (11-1) and particularly on silicon (001) is generally not as good as that of the still widely used sapphire or SiC substrates of hexagonal crystal structure.
  • One reason for the poorer quality is a poorer lattice matching of GaN crystallites, or possibly of AIN crystallites used as seed layer, in particular their twisting, also called "twist", on the silicon surface, which usually has one after 1 ⁇ m layer growth Step dislocation density of more than 10 9 cm "2 result.
  • thin-film devices such as high-efficiency LEDs, FETs, or MEMS on Si (100) is due to poor crystal quality, and to Si (1 1 1) due to a difficult removal of the substrate by etching difficult, just like z.
  • a nitride semiconductor device having a group III-nitride layer structure which is epitaxially deposited on a substrate having a group IV substrate surface of a group IV cubic substrate material in which the group IV substrate surface, without consideration of a surface reconstruction, has a unit cell with a C2 symmetry, but no higher rotational symmetry than the C2 symmetry, the group III nitride layer structure immediately adjacent to the group IV Substrate surface a Ankeim harsh of either GaN or AIN or from ternary or quatermärem AI 1-x . y ln x Ga y N, 0 ⁇ x, y ⁇ 1 and x + y ⁇ 1.
  • the Ankeim harsh is therefore made in the last case of AlInGaN, AlInN, InGaN or Al-GaN.
  • a nitride semiconductor device is here referred to a semiconductor device having a group-III nitride layer structure.
  • a Group III nitride layered structure is a layered structure containing, in various embodiments, either a Group III nitride layer or a plurality of Group III nitride layers.
  • the group III nitride layer structure may consist of a single group III nitride layer.
  • a group III nitride layer is a material layer of a compound containing at least one group III element and nitrogen.
  • other group V elements may also be present in amounts such that nitrogen has at least 50% of the group V atoms of the material.
  • the ratio of atoms of group III elements to atoms of group V elements is 1: 1 in group III nitrides.
  • group V elements other than nitrogen may be useful for further reducing lattice mismatch, but may be solely due to the needs of a particular application of the nitride semiconductor device.
  • a group IV substrate surface is a substrate surface formed by a group IV substrate material, that is, a material forming the substrate surface from one or more group IV elements.
  • a group IV substrate material thus belongs to the system Ci- x- ySi ⁇ Gey with 0 ⁇ x, y ⁇ 1 and x + y ⁇ 1.
  • the group IV substrate surface forms one in the nitride semiconductor component for the purposes of the definition as ideally assumed interface between the Group IV material and the Group III nitride layer structure.
  • the group IV substrate surface may be the surface of a wafer of the group IV material or the surface of a thin film, such as on a foreign substrate or on a silicon-on-insulator (SOI) type substrate.
  • SOI silicon-on-insulator
  • the C2 symmetry belongs to the family of finite cyclic symmetry groups in the Euclidean plane. It forms a discrete symmetry group, whose symmetry operations do not include any displacements or mirror-images, but rotations about a point by multiples of 180 °.
  • the group IV substrate surface is characterized by a substrate surface formed by unit cells of group IV atoms, with an elementary cell imaged within 360 degrees of rotation divided by two - that is, 180 degrees - and multiples thereof becomes. Therefore, in the presence of the C2 symmetry, one also speaks of a twofold symmetry (English, twofold symmetry).
  • a unit cell with C2 symmetry and with no higher rotational symmetry has a (trivial) monotone, ie C1 symmetry and a twofold, ie C2 symmetry, but no higher rotational symmetry, for example, no C3 or C4 symmetry.
  • C1 is the symmetry group of a completely unbalanced object, with identity as the only element.
  • any surface reconstruction will be disregarded for the purposes of the definition in the context of the present description and the claims.
  • the group IV substrate material in a hypothetical section in a plane parallel to its substrate surface also has an elementary cell with a C2 symmetry, but with no higher rotational symmetry than the C2 symmetry.
  • such a substrate surface is also referred to as a surface with (only) twofold symmetry.
  • Group IV substrate surfaces having a unit cell with a C2 symmetry, but no higher rotational symmetry than the C2 symmetry, have the advantage that they have in one direction a particularly high lattice match to group III nitrides and so the single crystal epitaxial Allow deposition of a group III nitride layer structure with particularly high crystallographic quality. This reduces the defect density in the group III nitride layer structure, whereby the performance and life of the nitride semiconductor device can be improved.
  • the claimed nitride semiconductor device can in this aspect
  • the following description will mostly include examples using silicon as the substrate material. However, this is not to be understood as limiting the applicability of the invention.
  • the invention is applicable with respect to the substrate material for the entire system Ci -x- ySi ⁇ Gey with 0 ⁇ x, y ⁇ 1 and x + y ⁇ 1.
  • group IV substrate materials other than silicon other lattice parameters of the crystal lattice are known to exist in the substrate surface.
  • the group III-nitride layer structure of the nitride semiconductor device immediately adjacent to the group IV substrate surface has a seed layer AI 1 -x .yln x Ga y N.
  • some binary or ternary or quaternary material for a seed layer is most suitably selectable for some twofold group IV substrate surfaces due to the ratios of the lattice parameters.
  • a low lattice mismatch between the Group IV substrate surface and the seed layer is of great importance for the crystalline quality of the Group III nitride layer structure in a large group of different nitride semiconductor devices.
  • the crystalline quality in turn influences the performance parameters and the lifetime of (opto) electronic components.
  • AlN is a suitable material for a seed layer.
  • lattice matching of the Si (110) surface to GaN is also good. Therefore, a GaN seed layer is also suitable.
  • the lattice mismatch here is about 2% in the direction that has a small mismatch also in the AIN and about 16.9% in the other direction.
  • meltback etching is the reaction of the gallium of a growing Group III nitride layer with the silicon of the substrate material.
  • the Al content of the seed layer on the group III elements in particular when MOVPE is used to avoid the meltback etching, in some embodiments 90% or greater, in relation to the total number of group Ill contained. Atoms, and the proportion of Ga accordingly not more than 10%.
  • an alloy of Si with Ge is present as a Group IV substrate material. This substrate material allows deposition with less likelihood of the occurrence of meltback etching.
  • An appropriately selected SiGe alloy can, moreover, enable a particularly good lattice matching of a GaN seed layer.
  • the group IV substrate surface is a Si (HO) surface. This has a very low lattice mismatch in one direction to the c-axis oriented and m-plane AIN and thus allows better orientation of the layers of the group III nitride layer structure on the substrate. With similarly favorable lattice mismatch properties to AIN, Group IV substrate materials can be used with other Group IV ⁇ 1 10 ⁇ substrate surfaces.
  • Substrates having a Si (H O) substrate surface also have the advantage that they are commercially available in large quantities and therefore can be procured easily and at low cost.
  • the ⁇ 120 ⁇ group IV substrate surfaces are useful for forming other embodiments, and also other higher indexed surfaces of the type ⁇ nmO ⁇ , where n, m are non-zero integers, are also of interest for the growth of a high-value group illusory.
  • Nitride layer structure but also, for example, a high-grade Group III nitride single layer such as a GaN layer.
  • a method of fabricating a nitride semiconductor device comprises epitaxially depositing a group of semiconductor devices.
  • pel III-nitride layer structure on a group IV substrate surface of a group IV substrate substrate material having a cubic crystal structure wherein the group III nitride layer structure is deposited on a group IV substrate surface, for the purpose of the conceptual definition without regard to surface reconstruction, has a unit cell with a C2 symmetry but no higher rotational symmetry than the C2 symmetry, and where immediately adjacent to the group IV substrate surface a seed layer of either AIN, GaN or ternary or quaternary AI 1-x .
  • y ln x Ga y N, 0 ⁇ x, y ⁇ 1 and x + y ⁇ 1 is deposited epitaxially.
  • the method includes partially or completely dry or wet-chemical removal of the substrate after deposition of the Group III nitride layer structure.
  • Figure 2 is a cross-sectional view of an embodiment of a
  • Nitride semiconductor device having a Group III nitride layer structure
  • FIG. 1 shows a plan view of a group IV substrate surface in the form of a) silicon (IOO), b) silicon (1 10) for explaining an exemplary embodiment of a nitride semiconductor component and for comparison with solutions from the prior art.
  • - and c) silicon (11 1) surface each with Al 1-x . y ln x Ga y N coverage, 0 ⁇ x, y ⁇ 1 and x + y ⁇ 1.
  • FIG. 1 b) is relevant, the two other FIGS. 1 a) and 1 c) make comparison conditions on already used in the prior art substrate surfaces.
  • the best lattice matching in one direction is obtained by using ternary materials for Al 0 97In 0 03N and Al O 7sGao 22 N. It is even a slight addition of Ga and in helpful the material parameters to improve. When using a quaternary material, the ideal In and Ga concentrations are correspondingly lower. However, higher concentrations are possible and advantageous depending on the process, since then also the lattice mismatch in the [1-10] direction, but at the expense of perpendicular thereto, is reduced.
  • the AI 1-x .yln x Ga y N land cover the silicon substrate surface forms, in the present embodiment of Fig. 1 b) a germination layer at the start of growing a Group III nitride layer structure on the substrate surface, as commonly used for the Growth of GaN finds use.
  • the following considerations are to be understood as examples.
  • other combinations of Group IV substrate surface materials and the Group III nitride layer structure growing thereon could also be used for illustration.
  • the Al atoms are arranged at vertices of hexagonal unit cells.
  • y In x Ga y N is extend in (l ⁇ TOO -directions.
  • the distances are 5.41 ⁇ in the non-ideal use of AIN, and may, for example, with Al or Al O 97ln O o3N 78Ga 0 022 N to 5:43 ⁇ is reduced to a mismatch of 0%, thus providing improved layer characteristics over use of an AIN seed layer
  • the shorter distance of the Si unit cell extends in (l ⁇ ) directions and is 5.43 ⁇ , so the mismatch is in the direction AI (GaJn) N (lT ⁇ )
  • AIN On most highly indexed surfaces with a twofold symmetry, AIN also grows preferentially with c-axis orientation.
  • the ⁇ 410 ⁇ surfaces are advantageous for silicon, since every 10.86 ⁇ repeats the structure, with a mismatch of approximately 7.5% for in two Al 097 0 O O 78 sn or AI Gao 22 N unit cells in the c direction (8.6% AIN) at 0% in the vertical plane for m-AI (GaJn) N (0.37% for AIN) are very low mismatch values.
  • an area of the type ⁇ 411 ⁇ with I ⁇ 2 and ⁇ 1 14 ⁇ can be used, since this results in a better lattice matching.
  • the resulting nitride semiconductor layer has a tensile stress that may be slightly anisotropic due to the thermal mismatch of the materials after cooling unless countermeasures are taken during growth by pre-stressing. This is due to the low symmetry of the crystal orientation, which is not isotropic, in contrast to the tridentate Si (11) (Fig. 1 c) or fivefold Si (100) orientation. H. in which Si ⁇ 100> and Si ⁇ 1 10> directions are different. Therefore, detached layers can be recognized by an anisotropic strain, which can be detected, for example, with curvature or better X-ray measurements.
  • Si (11 1) substrate can be removed only wet-chemically in a reasonable time by working with the latter etching solution.
  • this dissolves many metals and thus makes it more difficult to detach nitride semiconductor component layers bonded to substrates, which are to be further processed as a thin film.
  • the use of surfaces with twofold symmetry of Ci -xy Si ⁇ Ge y (0 ⁇ x, y ⁇ 1, x + y ⁇ 1) has the additional advantage that the wet chemical cal etching can be facilitated.
  • the (11) surface is typically chemically more stable for comparison and therefore less likely to be removed in a wet chemical etch step.
  • the use of surfaces with only twofold symmetry therefore eliminates the expense of laboriously protecting the novel carrier with acid-resistant substances, the adhesion-promoting layer, frequently metal layers such as Au / Sn, for the new carrier.
  • the invention is applicable to any nitride semiconductor device having a Group III nitride layer structure.
  • Optical, optoelectronic and electronic components such as light-emitting diodes, laser diodes, transistors and MEMS components are to be understood as application examples which, however, do not exhaust the applicability of the invention.
  • Their advantage lies in a high achievable crystal quality, the growth of c-, a- and m-plane GaN and in the easy way to remove the substrate in whole or in part, as this wet-chemically lighter than otherwise used (1 11) -oriented Substrates is possible.
  • FIG. 2 shows a schematic view of the layer structure of a nitride semiconductor device 100.
  • the nitride semiconductor device 100 may form an intermediate in the production of a thin-film nitride semiconductor device.
  • Fig. 2 The illustration in Fig. 2 is not to scale. In particular, the exact ratio of the layer thicknesses of the individual layers shown to one another can not be determined from the FIG. The layer thickness ratios shown in the figure only provide a very rough indication. In the following description, the shortage of representing half process aspects in parallel to device aspects will be explained.
  • the nitride semiconductor product 100 includes a group III nitride layer structure 102 on a silicon wafer 104.
  • the growth surface of the wafer used which is perpendicular to the paper plane of FIG. 1, is a (HO) silicon surface.
  • a silicon wafer may also be an SOI substrate or any another substrate, preferably with a (HO) silicon surface, may be used.
  • A is a ternary or quaternary Nitridankeim harsh in combination with a
  • Buffer layer, B a masking layer
  • C nitride semiconductor layers in particular n-type GaN layers
  • E a p-doped nitride semiconductor cap layer, in particular p-GaN and
  • the growth surface of the wafer 104 Prior to depositing layers, the growth surface of the wafer 104 is passivated. This means that they lung either by wet chemical treatment or is deoxidized by heating in vacuum or in hydrogen at temperatures above 1000 0 C and a hydrogen-terminated surface is generated.
  • the seed layer 106 has a thickness of between 10 and 50 nm.
  • a layer thickness of at most 400 nm is formed.
  • Suitable is an Al 1-xy In x Ga y N seed layer, O ⁇ x, y ⁇ 1 and x + y ⁇ 1, (also referred to as Ankeim harsh), either at low temperature, ie below 1000 0 C, for example 600 to 800 0 C or at high temperature, ie ordinary growth temperatures of Al 1-x . y ln x Ga y N above 1000 0 C, is grown.
  • the optional buffer layer is preferably also made of Al 1-x . y ln x Ga y N or AIN and is applied at high growth temperatures.
  • the buffer layer can also consist of AIGaN. When using AIGaN, the seed layer may also have a greater thickness, for example about 600 nm.
  • Nitriding of the substrate can lead to unwanted polycrystalline growth, ie non-epitaxial growth.
  • a masking layer 108 of silicon nitride is deposited on the graft and buffer layer 106 composite. This is done by simultaneously passing a silicon precursor such as silane or disilane or an organic silicon compound, and a nitrogen precursor such as ammonia or dimethylhydrazine. On the growth surface, the two precursors react to form silicon nitride.
  • a silicon precursor such as silane or disilane or an organic silicon compound
  • a nitrogen precursor such as ammonia or dimethylhydrazine
  • the layer thickness of a GaN layer 110 deposited thereon is between 800 and 1600 nm.
  • An aluminum-containing nitride semiconductor intermediate layer in the form of an (optional) low-temperature AlN intermediate layer 12 is then deposited for the strain engineering.
  • the low temperature AlN interlayer has a thickness of 8 to 15 nm here.
  • the insertion of the low-temperature AlN intermediate layer 112 makes it possible to achieve a higher overall layer thickness of the GaN layer by growing a succession of further GaN layers and low-temperature AlN interlayers.
  • the low temperature AlN interlayer 1 12 follows accordingly second GaN layer 114 again from about 800 to 1600 nm thickness, again followed by another low-temperature AlN interlayer 1 15.
  • a third GaN layer 116 is deposited.
  • a second masking layer 1 17 is deposited from SiN.
  • the second SiN masking layer 117 brings about a reduction in the dislocation density in the subsequent fourth GaN layer 1 18.
  • the four GaN layers 110, 114, 116 and 118 are n-doped. The doping takes place during growth by adding a suitable dopant precursor.
  • this multi-quantum well structure 120 is deposited on the fourth GaN layer 1 18 .
  • the material choice and precise layer structure of this multi-quantum well structure 120 is set according to the desired wavelength of the light emission.
  • the parameters to be set for this such as layer stoichiometry and layer thickness, are known to the person skilled in the art.
  • the addition of indium reduces the band gap of a nitride semiconductor, for example starting from pure GaN, in the direction of the band gap of indium nitride.
  • the band gap is increased in the direction of the value of AIN. In this way, a light emission with a desired wavelength can be set, which lies between the red and the ultraviolet spectral range.
  • multi-quantum well structure 120 may optionally be provided an injection barrier of about 10 to 30 nm thickness, which is not shown in Fig. 1.
  • 3a) to 3f) show different process stages in the production of a light-emitting diode from the nitride semiconductor component of FIG. 1.
  • the method procedure described here follows the production of the nitride semiconductor component of FIG.
  • a top-side metallization is first provided on the nitride semiconductor component 100. This serves on the one hand for subsequent bonding to a carrier 126 and on the other hand to improve the light extraction from the resulting device.
  • the carrier 126 is made of copper or AISi and has a metallization 130 on a side 128 which is used for bonding.
  • FIG. 3b) shows a process stage after bonding. The bonding is carried out at a temperature of 280 0 C. The use of such a low temperature has the advantage that no additional strains caused by the thermal cycle during bonding.
  • the Si wafer 104 is removed. This is shown schematically in Fig. 3c).
  • the Si wafer 104 is removed by grinding and etching.
  • the etching can be wet or dry chemical. Compared with the use of substrates with (11) growth surface, the removal is significantly facilitated.
  • the top is patterned by etching.
  • the etching for example with KOH or H 3 PO 4, produces pyramidal structures which improve the light extraction from the component (FIG. 3 e).
  • contact structures are created.
  • a negative contact 136 is provided on the surface and a contact to be poled positively on the carrier (FIG. 3f).
  • the layer growth according to the invention is possible on large substrates and thus allows either the production of large components or a cost-efficient production of a large number of smaller components.
  • the described process management does not require the usual laser stripping with the use of sapphire substrates and is therefore simpler and cheaper. Only for the production of backside contact and a structuring before the separation of the components photolithography steps are required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
PCT/EP2008/055181 2007-04-27 2008-04-28 Nitridhalbleiterbauelement-schichtstruktur auf einer gruppe-iv-substratoberfläche Ceased WO2008132204A2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
IN7391DEN2009 IN2009DN07391A (enExample) 2007-04-27 2008-04-28
EP08749803A EP2150970B1 (de) 2007-04-27 2008-04-28 Nitridhalbleiterbauelement-schichtstruktur auf einer gruppe-iv-substratoberfläche und herstellungsverfahren
US12/451,151 US20100133658A1 (en) 2007-04-27 2008-04-28 Nitride semiconductor component layer structure on a group iv substrate surface
AT08749803T ATE533176T1 (de) 2007-04-27 2008-04-28 Nitridhalbleiterbauelement-schichtstruktur auf einer gruppe-iv-substratoberfläche und herstellungsverfahren
HK10105635.8A HK1138941B (en) 2007-04-27 2008-04-28 Nitride semi-conductor component layer structure on a group iv substrate surface
JP2010504724A JP2010525595A (ja) 2007-04-27 2008-04-28 Iv族基板表面上での窒化物半導体部材の層構造
CN2008800225012A CN101689483B (zh) 2007-04-27 2008-04-28 第ⅳ族衬底表面上的氮化物半导体元件层结构
ES08749803T ES2375591T3 (es) 2007-04-27 2008-04-28 Estructura de capas de un componente semiconductor de nitruro sobre una superficie de substrato del grupo iv y procedimiento para su fabricación.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US92644407P 2007-04-27 2007-04-27
US60/926,444 2007-04-27
DE102007020979A DE102007020979A1 (de) 2007-04-27 2007-04-27 Nitridhalbleiterbauelement mit Gruppe-III-Nitrid-Schichtstruktur auf einer Gruppe-IV-Substratoberfläche mit höchstens zweizähliger Symmetrie
DE102007020979.9 2007-04-27

Publications (2)

Publication Number Publication Date
WO2008132204A2 true WO2008132204A2 (de) 2008-11-06
WO2008132204A3 WO2008132204A3 (de) 2009-01-22

Family

ID=39777592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/055181 Ceased WO2008132204A2 (de) 2007-04-27 2008-04-28 Nitridhalbleiterbauelement-schichtstruktur auf einer gruppe-iv-substratoberfläche

Country Status (12)

Country Link
US (1) US20100133658A1 (enExample)
EP (1) EP2150970B1 (enExample)
JP (2) JP2010525595A (enExample)
KR (1) KR20100017413A (enExample)
CN (1) CN101689483B (enExample)
AT (1) ATE533176T1 (enExample)
DE (1) DE102007020979A1 (enExample)
ES (1) ES2375591T3 (enExample)
IN (1) IN2009DN07391A (enExample)
MY (1) MY149217A (enExample)
TW (1) TWI455182B (enExample)
WO (1) WO2008132204A2 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009051520A1 (de) 2009-10-31 2011-05-05 X-Fab Semiconductor Foundries Ag Verfahren zur Herstellung von Siliziumhalbleiterscheiben mit Schichtstrukturen zur Integration von III-V Halbleiterbauelementen
WO2011051500A1 (de) 2009-10-31 2011-05-05 X-Fab Semiconductor Foundries Ag Verfahren zur herstellung von halbleiterscheiben für die integration von silizium-bauelementen mit hemts sowie eine entsprechende halbleiterschichtanordnung
JP2013506980A (ja) * 2009-09-30 2013-02-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光ダイオードの製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829190B2 (ja) * 2007-08-22 2011-12-07 株式会社東芝 発光素子
DE102010027411A1 (de) * 2010-07-15 2012-01-19 Osram Opto Semiconductors Gmbh Halbleiterbauelement, Substrat und Verfahren zur Herstellung einer Halbleiterschichtenfolge
DE102010046215B4 (de) * 2010-09-21 2019-01-03 Infineon Technologies Austria Ag Halbleiterkörper mit verspanntem Bereich, Elektronisches Bauelement und ein Verfahren zum Erzeugen des Halbleiterkörpers.
KR20120032329A (ko) 2010-09-28 2012-04-05 삼성전자주식회사 반도체 소자
DE102010048617A1 (de) * 2010-10-15 2012-04-19 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Halbleiterschichtenfolge, strahlungsemittierender Halbleiterchip und optoelektronisches Bauteil
KR101749694B1 (ko) 2010-12-17 2017-06-22 삼성전자주식회사 반도체 소자 및 그 제조 방법과 상기 반도체 소자를 포함하는 전자 장치
DE102010056409A1 (de) * 2010-12-26 2012-06-28 Azzurro Semiconductors Ag Gruppe-III-Nitrid basierte Schichtenfolge, Halbleiterbauelement, umfassend eine Gruppe-III-Nitrid basierte Schichtenfolge und Verfahren zur Herstellung
CN103236395B (zh) * 2011-05-25 2016-09-28 新加坡科技研究局 在基底上形成纳米结构的方法及其用途
DE102011108080B4 (de) * 2011-07-21 2015-08-20 Otto-Von-Guericke-Universität Magdeburg Gruppe-III-Nitrid-basierte Schichtenfolge, deren Verwendung und Verfahren ihrer Herstellung
JP5127978B1 (ja) * 2011-09-08 2013-01-23 株式会社東芝 窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法
DE102011114665B4 (de) * 2011-09-30 2023-09-21 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines optoelektronischen Nitrid-Verbindungshalbleiter-Bauelements
JP5175967B1 (ja) 2011-10-11 2013-04-03 株式会社東芝 半導体発光素子及び半導体ウェーハ
JP6156833B2 (ja) * 2012-10-12 2017-07-05 エア・ウォーター株式会社 半導体基板の製造方法
KR102061696B1 (ko) 2013-11-05 2020-01-03 삼성전자주식회사 반극성 질화물 반도체 구조체 및 이의 제조 방법
US9917156B1 (en) 2016-09-02 2018-03-13 IQE, plc Nucleation layer for growth of III-nitride structures
JP6264628B2 (ja) * 2017-01-13 2018-01-24 アルパッド株式会社 半導体ウェーハ、半導体素子及び窒化物半導体層の製造方法
US12100936B2 (en) * 2019-10-09 2024-09-24 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor structure, nitride semiconductor device, and method for fabricating the device
DE102021107019A1 (de) * 2021-03-22 2022-09-22 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur herstellung einer halbleiterschichtenfolge und halbleiterschichtenfolge

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2830814B2 (ja) * 1996-01-19 1998-12-02 日本電気株式会社 窒化ガリウム系化合物半導体の結晶成長方法、及び半導体レーザの製造方法
JPH11135832A (ja) * 1997-10-26 1999-05-21 Toyoda Gosei Co Ltd 窒化ガリウム系化合物半導体及びその製造方法
US6562644B2 (en) * 2000-08-08 2003-05-13 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate, method of manufacturing the semiconductor substrate, semiconductor device and pattern forming method
JP2002185041A (ja) * 2000-12-15 2002-06-28 Nobuhiko Sawaki 半導体素子
US6541799B2 (en) * 2001-02-20 2003-04-01 Showa Denko K.K. Group-III nitride semiconductor light-emitting diode
JP3577463B2 (ja) * 2001-02-20 2004-10-13 昭和電工株式会社 Iii族窒化物半導体発光ダイオード
DE10151092B4 (de) * 2001-10-13 2012-10-04 Azzurro Semiconductors Ag Verfahren zur Herstellung von planaren und rißfreien Gruppe-III-Nitrid-basierten Lichtemitterstrukturen auf Silizium Substrat
US20030132433A1 (en) * 2002-01-15 2003-07-17 Piner Edwin L. Semiconductor structures including a gallium nitride material component and a silicon germanium component
JP2004356114A (ja) * 2003-05-26 2004-12-16 Tadahiro Omi Pチャネルパワーmis電界効果トランジスタおよびスイッチング回路
TWI240439B (en) * 2003-09-24 2005-09-21 Sanken Electric Co Ltd Nitride semiconductor device and manufacturing method thereof
FR2860248B1 (fr) * 2003-09-26 2006-02-17 Centre Nat Rech Scient Procede de realisation de substrats autosupportes de nitrures d'elements iii par hetero-epitaxie sur une couche sacrificielle
GB0505752D0 (en) * 2005-03-21 2005-04-27 Element Six Ltd Diamond based substrate for gan devices
WO2007034761A1 (en) * 2005-09-20 2007-03-29 Showa Denko K.K. Semiconductor device and method for fabrication thereof
JP2007273946A (ja) * 2006-03-10 2007-10-18 Covalent Materials Corp 窒化物半導体単結晶膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506980A (ja) * 2009-09-30 2013-02-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光ダイオードの製造方法
US8828768B2 (en) 2009-09-30 2014-09-09 Osram Opto Semiconductors Gmbh Method for producing a light-emitting diode
US9184337B2 (en) 2009-09-30 2015-11-10 Osram Opto Semiconductors Gmbh Method for producing a light-emitting diode
JP2018022909A (ja) * 2009-09-30 2018-02-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 層構造の製造方法
DE102009051520A1 (de) 2009-10-31 2011-05-05 X-Fab Semiconductor Foundries Ag Verfahren zur Herstellung von Siliziumhalbleiterscheiben mit Schichtstrukturen zur Integration von III-V Halbleiterbauelementen
WO2011051500A1 (de) 2009-10-31 2011-05-05 X-Fab Semiconductor Foundries Ag Verfahren zur herstellung von halbleiterscheiben für die integration von silizium-bauelementen mit hemts sowie eine entsprechende halbleiterschichtanordnung
WO2011051499A1 (de) 2009-10-31 2011-05-05 X-Fab Semiconductor Foundries Ag Verfahren zur herstellung von silizium-halbleiterscheiben mit einer schicht zur integration von iii-v halbleiterbauelementen
DE102009051521A1 (de) 2009-10-31 2011-05-19 X-Fab Semiconductor Foundries Ag Verfahren zur Herstellung von Siliziumhalbleiterscheiben mit III-V-Schichtstrukturen für die Integration von Siliziumbauelementen mit auf Gruppe III-V-Schichtstrukturen basierenden High Electron Mobility Transistoren (HEMT) und entsprechende Halbleiterschichtanordnung
US8546207B2 (en) 2009-10-31 2013-10-01 X-Fab Semiconductor Foundries Ag Method for fabricating semiconductor wafers for the integration of silicon components with HEMTs, and appropriate semiconductor layer arrangement
US8759169B2 (en) 2009-10-31 2014-06-24 X—FAB Semiconductor Foundries AG Method for producing silicon semiconductor wafers comprising a layer for integrating III-V semiconductor components
DE102009051520B4 (de) * 2009-10-31 2016-11-03 X-Fab Semiconductor Foundries Ag Verfahren zur Herstellung von Siliziumhalbleiterscheiben mit Schichtstrukturen zur Integration von III-V Halbleiterbauelementen

Also Published As

Publication number Publication date
JP2012231156A (ja) 2012-11-22
JP2010525595A (ja) 2010-07-22
EP2150970A2 (de) 2010-02-10
KR20100017413A (ko) 2010-02-16
CN101689483B (zh) 2012-07-04
JP5546583B2 (ja) 2014-07-09
TWI455182B (zh) 2014-10-01
ES2375591T3 (es) 2012-03-02
IN2009DN07391A (enExample) 2015-07-24
MY149217A (en) 2013-07-31
WO2008132204A3 (de) 2009-01-22
US20100133658A1 (en) 2010-06-03
CN101689483A (zh) 2010-03-31
HK1138941A1 (en) 2010-09-03
DE102007020979A1 (de) 2008-10-30
ATE533176T1 (de) 2011-11-15
TW200913018A (en) 2009-03-16
EP2150970B1 (de) 2011-11-09

Similar Documents

Publication Publication Date Title
EP2150970B1 (de) Nitridhalbleiterbauelement-schichtstruktur auf einer gruppe-iv-substratoberfläche und herstellungsverfahren
EP1875523B1 (de) Nitridhalbleiter-bauelement und verfahren zu seiner herstellung
DE10392313B4 (de) Auf Galliumnitrid basierende Vorrichtungen und Herstellungsverfahren
DE112010003214B4 (de) Epitaxiesubstrat für eine halbleitervorrichtung, verfahren zur herstellung eines epitaxiesubstrats für eine halbleitervorrichtung, und halbleitervorrichtung
EP1314209B1 (de) Verfahren zum herstellen eines strahlungsemittierenden halbleiterchips auf iii-v-nitridhalbleiter-basis und strahlungsemittierender halbleiterchip
DE19629720C2 (de) Herstellungsverfahren für eine lichtemittierende Halbleitervorrichtung
EP2483914B1 (de) Verfahren zur herstellung einer leuchtdiode
DE102019114131A1 (de) Feldeffekttransistor unter verwendung von übergangsmetall-dichalcogenid und verfahren zu dessen herstellung
DE102013106683A1 (de) Halbleitervorrichtungen und Verfahren zur Herstellung derselben
DE19510922A1 (de) Verfahren zur Herstellung eines Halbleiterbauelements, Verfahren zur Reinigung einer Kristalloberfläche eines Halbleiters sowie Halbleiterbauelement
DE102006008929A1 (de) Nitridhalbleiter-Bauelement und Verfahren zu seiner Herstellung
DE112016005028T5 (de) Epitaxialsubstrat für halbleiterelemente, halbleiterelement und produktionsverfahren für epitaxialsubstrate für halbleiterelemente
EP1908099B1 (de) Halbleitersubstrat sowie verfahren und maskenschicht zur herstellung eines freistehenden halbleitersubstrats mittels der hydrid-gasphasenepitaxie
WO2011051499A1 (de) Verfahren zur herstellung von silizium-halbleiterscheiben mit einer schicht zur integration von iii-v halbleiterbauelementen
DE112007002182T5 (de) Gruppe-III-Nitridverbindungshalbleiter-Lichtemissionsvorrichtung, Verfahren zum Herstellen einer Gruppe-III-Nitridverbindungshalbleiter-Lichtemissionsvorrichtung, und Lampe
DE102006040479A1 (de) Gruppe III-Nitrid Halbleiterdünnfilm, Verfahren zu dessen Herstellung sowie Gruppe III-Nitrid Halbleiterleuchtvorrichtung
DE102017103879B4 (de) Halbleiterkomponenten mit Aluminiumsiliziumnitridschichten
DE102012217631A1 (de) Optoelektronisches Bauelement mit einer Schichtstruktur
DE112014000633B4 (de) Halbleiterschichtenfolge und Verfahren zur Herstellung einer Halbleiterschichtenfolge
DE19838810A1 (de) Verfahren zum Herstellen einer Mehrzahl von Ga(In,Al)N-Leuchtdiodenchips
WO2012035135A1 (de) Halbleiterchip und verfahren zu dessen herstellung
WO2019145216A1 (de) Verfahren zur herstellung eines nitrid-verbindungshalbleiter-bauelements
DE69938609T2 (de) Epitaktisches substrat aus aluminium-galliumnitrid-halbleitern und herstellungsverfahren dafür
DE102011108080B4 (de) Gruppe-III-Nitrid-basierte Schichtenfolge, deren Verwendung und Verfahren ihrer Herstellung
DE102009001379B4 (de) Halbleiterverbund-Epitaxialwafer und dessen Herstellungsverfahren

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880022501.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08749803

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008749803

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12009502040

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2010504724

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7391/DELNP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20097024727

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PI 20094519

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 12451151

Country of ref document: US