WO2008111439A1 - 光学ガラス、プレス成形用プリフォーム、光学素子およびそれらの製造方法 - Google Patents

光学ガラス、プレス成形用プリフォーム、光学素子およびそれらの製造方法 Download PDF

Info

Publication number
WO2008111439A1
WO2008111439A1 PCT/JP2008/053897 JP2008053897W WO2008111439A1 WO 2008111439 A1 WO2008111439 A1 WO 2008111439A1 JP 2008053897 W JP2008053897 W JP 2008053897W WO 2008111439 A1 WO2008111439 A1 WO 2008111439A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
optical
content
optical glass
preform
Prior art date
Application number
PCT/JP2008/053897
Other languages
English (en)
French (fr)
Inventor
Mikio Ikenishi
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39759382&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008111439(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to CN200880007001.1A priority Critical patent/CN101622207B/zh
Priority to JP2009503981A priority patent/JP5410270B2/ja
Priority to US12/528,189 priority patent/US8354352B2/en
Priority to KR1020097018488A priority patent/KR101486092B1/ko
Priority to EP08721317.9A priority patent/EP2119682B1/en
Publication of WO2008111439A1 publication Critical patent/WO2008111439A1/ja
Priority to US13/707,743 priority patent/US8728962B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/226Glass filters

Definitions

  • the present invention relates to a fluorinated optical glass and a manufacturing method thereof, a press molding preform and a manufacturing method thereof, and an optical element and a manufacturing method thereof.
  • Fluorophosphate optical glass is very useful as a low-dispersion glass, and such a fluorinate optical glass is described in the publication of Japanese Patent Laid-Open No. Hei 10-1 39 4 5 4. Such glasses are known. Disclosure of the invention
  • the glass component When a fluorinated glass is produced by heating and melting the raw material, the glass component is volatilized from the glass surface heated to a high temperature, so the amount of glass obtained is less than the amount of raw material used.
  • the characteristics such as the refractive index deviate from the desired values. For this reason, it is necessary to devise measures such as increasing the amount of components lost due to volatilization during raw material preparation, but such measures cannot be the fundamental solution to prevent the volatilization of the glass components. .
  • the obtained optical glass flows out from the pipe in a molten state and is cast into a mold or the like to be molded into a glass molded body, the glass component is volatilized and striae in the near-surface layer of the glass molded body. This results in an optically nonuniform part called the
  • the present invention has been made in view of the above circumstances, and when producing optical glass made of fluorophosphate glass, or when the obtained glass flows out of a pipe in a molten state and is molded into a glass molded body, Suppresses volatilization of glass components, and changes in glass composition
  • An object of the present invention is to provide a low-dispersion optical glass capable of suppressing variations in quality and a method for producing the same.
  • the present invention also provides a press-molding preform made of the optical glass and a method for producing the same, and an optical element blank made of the glass and a method for producing the same, and an optical element and a method for producing the same. It is the purpose.
  • p molar ratio of o 2 one content relative to the content of 5+ 0 2 - / P 5+ is a Furrin glasses is 3.5 or more, an Abbe number (V d ) optical glass with more than 70,
  • P 5 + molar ratio O content of O 2 to the content 2 - / P 5 + consists Furrin glasses is 3.5 or more, an Abbe number (v d) is more than 78 optical glass,
  • the molar ratio of the content of O 2 — to the content of P 5 + 0 2 _ZP 5 + is 3.5 or more, the total content of rare earth elements is less than 5 caton%, and the sum of F and O 2 —
  • the molar ratio of the content of F— to the content F— / (F- + 2 ) is composed of fluorophosphate glass exceeding 0.2, and the refractive index (N d ) exceeds 1.53
  • the content of F 1 is 65 anion% or more, and 0 2 to the content of? 5 + - a molar ratio of 0 2-of content of?
  • the inventors have found that the above object can be achieved, and have completed the present invention based on this finding.
  • the present invention (1) Made of a fluorinated glass with an Abbe number (v d ) exceeding 70 and a molar ratio of the O 2 — content to the P 5 + content O 2 / P 5+ is 3.5 or more Optical glass
  • optical glass I of the present invention (Hereinafter referred to as the optical glass I of the present invention),
  • optical glass II of the present invention The optical glass as described in the above item (1), wherein the Abbe number (v d ) exceeds 78 (hereinafter referred to as optical glass II of the present invention),
  • Refractive index (N d) is greater than 1.53, the sum content is less than 5 Kachio emissions 0/0 of rare earth elements, the content of F- to the total content of F- and O 2 one Molar ratio F— /
  • optical glass III of the present invention is composed of a fluorinate glass exceeding 0.2,
  • the optical glass as described in the above item (1) hereinafter referred to as the optical glass III of the present invention
  • the fluorophosphate glass is expressed in terms of cation%
  • optical glass according to item (1) which contains
  • optical glass according to item (2) which contains
  • the fluorophosphate glass is expressed in terms of cation%
  • optical glass according to (3) above which contains
  • optical glass IV of the present invention Optical glass characterized in that the content of F— is 65% or more and the mole ratio of O 2 — to the content of P 5 + is O 2 / P 5+ is 3.5 or more ( Hereinafter referred to as optical glass IV of the present invention),
  • the molar ratio of the total content of O 2 — to the total content of P 5 + in the above-mentioned prepared raw material is prepared so that the O 2 / P 5+ is 3.5 or more.
  • a raw material or a power plate is used to prepare a blended raw material, and after melting the blended raw material, clarification and homogenization produce a molten glass, and the molten glass is molded to form an optical glass made of a fluorinate glass. How to make glass
  • Optical characterized in that said as volatile molten glass is reduced, controlling the molar ratio o 2 one ZP 5+ of the total content of o 2 one to the total content of P 5 + of the preparation in the feed Glass manufacturing method,
  • the total content of rare earth elements is less than 5 cation%, and the molar ratio of the content of F- to the total content of F- and 0 2 _ F-no (F- + 0 2- ) is 0
  • optical glass according to any one of (1) to (10) above or the above (11) A preform for press molding comprising the optical glass obtained by the method according to any one of items (1) to (17),
  • a method for producing a press-molding preform characterized by molding the press-molding preform described in (18) above,
  • a method for producing a press-molding preform characterized by molding the press-molding preform as described in (18) above,
  • the volatility of glass components is suppressed.
  • FIG. 1 is a schematic view of a precision press molding apparatus used in an embodiment of the present invention.
  • the present invention significantly reduces the volatility of glass by suppressing the generation of volatile substances that have been conventionally generated during the melting process of glass.
  • the optical glass of the present invention will be described.
  • the amount of cation component and the total amount of force thione component of each glass are expressed in caton%, and the amount of anion component of each glass is the total amount of anion component. Unless otherwise specified, it shall be displayed in annion%.
  • optical glass I of the present invention will be described.
  • the optical glass I of the present invention is greater than the Abbe number (v d) is 70, O against the content of P 5 + 2 - in a molar ratio O 2 one / P 5 + is a content of 3.5 or more It is an optical glass made of some fluorinate glass.
  • P 5 of O 2 one content relative to the content of the + molar ratio O 2 - / P 5 + consists Furrin glasses is 3.5 or more, an Abbe number (v d) is an optical glass I of greater than 70 in Furrin glasses constituting the, P 5 + ⁇ to the content of 2 - it is preferred that the molar ratio 0 2 _ / P 5 + is the content of 3. is 53 or more, and 3.55 or more Is more preferable.
  • the optical glass I of the present invention preferably has an Abbe number (v d ) of more than 75, more preferably more than 78, and more preferably 80 or more.
  • phosphate is generally used as a raw material for the above-mentioned fluorinate glass.
  • the phosphoric acid present in the molten glass is more phosphorous than metaphosphoric acid, where the ratio of the number of oxygen (O 2 —) atoms to one atom of phosphorus (P 5+ ) (the oxygen atom Z phosphorus atom) is 3. (P 5+ ) Oxygen to 1 atom (O 2 ) The ratio of the number of atoms (oxygen atom / phosphorus atom) is 3.5. Therefore, the optical glass of the present invention, by a against the content of P 5 + of Furrin salt glass ⁇ 2 one content molar ratio O 2 an ZP 5 + 3. 5 or higher, methallyl The glass does not contain acid and suppresses the generation of phosphoryl fluoride, which is a volatile component, to reduce the quality variation associated with fluctuations in glass yarn formation.
  • optical glass I As the optical glass I, the following optical glass Ia can be mentioned.
  • Optical glass I_a is a fluorinated glass
  • P 5+ is an important component that acts as a network former in glass, and if it is less than 3%, the glass becomes extremely unstable. On the other hand, if it exceeds 50%, it is necessary to suppress the amount of fluorine introduced in order to increase the molar ratio O 2 ⁇ P 5 + to 3.5 or more, and the required low dispersibility cannot be obtained. Therefore, the P 5 + content is preferably in the range of 3 to 50%.
  • a 1 3 + is an important component for improving stability in fluorophosphate glass, and if it is less than 5%, the glass becomes unstable. On the other hand, if it exceeds 40%, the total amount of other components On the contrary, it becomes unstable because it becomes too small. Accordingly, the content of A 1 3 + is preferably in the range of 5 to 40%.
  • Mg 2+, Ca 2+, S r 2+, alkaline earth metals such as B a 2 + increases the stability of the glass is a component that increases the refractive index, to the total amount of 10% or more This increases the effect on stability.
  • Order to then force collapses the Palance of the specific Al force Li earth metal component increases the Ri linseed with other components, it is good Mashiku be uniformly introduced, Mg 2+, Ca 2 +, S r 2 + It is preferable to introduce at least two kinds of B a 2 + .
  • Mg 2 + is preferably 0 to 10%
  • ⁇ & 2 + is preferably 0 to 30%
  • Sr 2 + is preferably 0 to 30%
  • Ba 2 + is preferably 0 to 40%.
  • Alkali metals such as L i +, Na + and K + lower the viscosity and glass transition temperature of glass, and the introduction of excessive force reduces the stability when glass is easily manufactured. . Therefore L i + amount of 0-30%, 0-20% of the amount of Na +, is preferably 0 to 20% of the amount of K +.
  • Li + has a significant effect on stability, so it is more preferable to introduce 1 ⁇ 1 + at 0.5% or more, more preferably 1% or more, and 2% or more. It is particularly preferable to do this.
  • Rare earth elements such as Y 3+ , La 3+ , Gd 3 + , Yb 3 + are components that increase the refractive index while maintaining low dispersibility of the glass S, and excessive introduction increases the melting temperature of the glass. Stability is also reduced. Therefore, the amount of each of the above components is preferably set to 0 to 10%.
  • B 3 + is a component that lowers productivity because it is a component that improves the durability of glass and tends to evaporate as a fluoride during melting. Therefore, the introduction amount is 0
  • Zn 2+ and In 3 + can be introduced into glass as easily as alkaline earth metals. It can be expected to improve stability by introducing Zn 2+ I n 3 + into multiple components, but excessive introduction is not preferable. For this reason, the introduction amounts of Zn 2+ and In 3 + are each preferably 0 to 20%, more preferably 0 to 10%, and 0 to 5 ° /. More preferably, it is particularly preferable not to introduce.
  • Optical glass I has a property of high light transmittance in a wide range from a short wavelength to a long wavelength in the visible region in addition to low dispersibility and abnormal partial dispersibility. Forces that are suitable as materials for obtaining various optical elements such as lenses and prisms using such properties, and ions that absorb in the visible range in such applications, such as Fe, Cu, Ni It is desirable not to add ions of metal elements such as Co, Cr, Mn, V, Nd, Ho, and Er.
  • Cu 2+ -containing glass is suitable as a color correction filter material for semiconductor image sensors such as CCD and CMOS.
  • Cu 2 + of ⁇ Ka ⁇ considers the thickness of the filter may be determined as appropriate within the range.
  • Optical glass I is a fluorinated glass
  • F and O 2 are the main anion components. From above to achieve the desired optical properties and excellent glass stability, a F 20 to 95%, it is preferable that the ⁇ 2 one to enter 5% to 80% conductive.
  • the total amount introduced is preferably 0 to 3%, and more preferably 0.1 to 3%.
  • the total amount of F ⁇ , O 2 , CI—, Br— and I 1 is preferably 98 annion% or more, more preferably 99 annion% or more. Desirable, more desirable to be 100 anion%.
  • optical glass II of the present invention will be described.
  • the optical glass II of the present invention is made of a fluorophosphate glass having a molar ratio of o 2 ⁇ content to P 5 + content o 2 1 / P 5 + of 3.5 or more, and has an Abbe number (V d ) Is an optical glass I characterized by exceeding 78.
  • optical glass ⁇ the molar ratio of the content of o 2 — to the content of P 5+ o 2
  • P 5+ is preferably 3.55 or more, and more preferably 3.6 or more.
  • the optical glass II of the present invention can be said to be an embodiment of the optical glass I of the present invention, and the inventors have further studied the Abbe number (v d ) when obtaining the optical glass I of the present invention.
  • v d Abbe number
  • optical glass II examples include optical glass II shown below.
  • Optical glass ⁇ -a is a fluorinated glass in cation% display, the fluorinated glass as a cation component,
  • P 5+ is an important component that acts as a network former in glass, and if it is less than 3%, the glass becomes extremely unstable. On the other hand, if it exceeds 30%, the molar ratio O 2 —ZP 5 + is set to 3.5 or more, so it is necessary to suppress the amount of fluorine introduced, and the required low dispersibility cannot be obtained. Therefore, the P 5 + content is preferably in the range of 3 to 30%.
  • a 1 3 + is an important component for enhancing stability in fluoric acid glass. 1 If it is less than 0%, the glass becomes unstable. On the other hand, if it exceeds 40%, the total amount of other components becomes too small, and it becomes unstable. Therefore, the content of A 1 3 + is preferably in the range of 10 to 40%.
  • Mg 2+, C a 2 +, S r 2+, alkaline earth metals such as B a 2 + increases the stability of the glass is a component that increases the refractive index, the total amount of 10% or more This increases the effect on stability. However, if there are too many specific alkaline earth metal components, the balance with other components will be lost, so it is preferable to introduce them evenly.
  • Mg 2+ , C a 2 + , S r 2 + It is preferable to introduce at least two kinds of B a 2 + . Specifically, Mg 2 + is preferably 0 to 10%, C a 2 + is 0 to 30%, Sr 2 + is 0 to 30%, and B a 2 + is preferably 0 to 30%.
  • Alkali metals such as L i + , Na + , and K + are components that can reduce glass viscosity and glass transition temperature and facilitate glass production, but excessive introduction reduces stability. Therefore, it is preferable that the amount of Li + is 0-30%, the amount of Na + is 0-20%, and the amount of K + is 0-20%. Among alkalis, Li + has a great effect of improving stability. Therefore, Li + is preferably introduced at 0.5% or more, more preferably 1% or more, and particularly preferably 2% or more. Masle.
  • Rare earth elements such as Y 3+ , La 3 + , Gd 3+ , and Yb 3 + are forces S that increase the refractive index while maintaining low dispersibility of the glass. Stability is also reduced. Therefore, the amount of each of the above components is preferably set to 0 to 10%.
  • B 3 + is a component that lowers productivity because it is a component that improves the durability of glass S, and tends to evaporate as a fluoride during melting. Therefore, the introduction amount is preferably 0 to 10%, more preferably 0 to 5%, even more preferably 0 to 1%, and particularly preferably no introduction! /.
  • Zn 2+ and In 3 + can be introduced into glass as easily as alkaline earth metals. It can be expected to improve stability by introducing Zn 2+ and I n 3 + into multiple components, but excessive introduction is not preferable. For this reason, the amount of Zn 2+ and In 3 + introduced is preferably 0 to 20%, more preferably 0 to 10%, and even more preferably 0 to 5%, It is particularly preferable not to introduce it.
  • optical glass II In addition to low dispersion and anomalous partial dispersion, optical glass II has a wide wavelength range from short to long wavelengths in the visible range! /, It has the property of high light transmittance in the range. Force that is suitable as a material for obtaining various optical elements such as lenses and prisms by using such properties. In such applications, ions having absorption in the visible range, such as Fe, Cu, Ni, It is desirable not to add metal element ions such as Co, Cr, Mn, V, Nd, Ho, and Er.
  • Cu 2+ -containing glass is suitable as a color correction filter material for semiconductor image sensors such as CCD and CMOS.
  • the amount of Cu 2+ added may be appropriately determined within the above range in consideration of the thickness of the filter. In the case of Cu 2+ containing glass, except to adjust the absorption characteristics, it is desirable not to add ions having absorption in the visible region other than C u 2+.
  • Optical glass II is a fluorinated glass, and F— and O 2 are the main anion components. In order to achieve the required optical properties and excellent glass stability, it is preferable to introduce 40% to 95% F— and 5% to 60% O 2 .
  • the total amount introduced is preferably 0 to 3%, and more preferably 0.1 to 3%.
  • the total amount of F, O 2 , CI—, Br— and I— is preferably 98 anion% or more, more preferably 99 anion% or more. Desirably, it is more desirable to set it as 100 anion%.
  • Optical glass ⁇ are those said to one aspect of the optical glass I of the present invention, P 5 + O 2 to the content of - the molar ratio O 2 content of - / P 5 + is 3.5 or more, the rare earth The total elemental content is less than 5 cation%, and the molar ratio of the content of F 1 to the total content of F— and ⁇ 2 F—Z (F— + ⁇ 2 —) exceeds 0.2.
  • fluorophosphate glass Made of fluorophosphate glass,
  • the refractive index (N d ) exceeds 1.53 and the Abbe number (v d ) exceeds 70.
  • optical glass III has a refractive index (N d ) of more than 1.53, the total content of rare earth elements is less than 5 cation%, and the total content of F— and O 2 — It is an optical glass I characterized by being made of a fluorinated glass having a molar ratio F-no (F— +0 2 —) exceeding 0.2.
  • the total content of rare earth elements (cation components of rare earth elements) is included.
  • the content is preferably 4% or less, more preferably 3% or less. If the total content of rare earth elements is 5 caton% or more, the melting temperature and liquidus temperature (forming temperature) of the glass will increase, and it will be difficult to separate and form the glass, as will be described later. .
  • the molar ratio of F— content to the total content of F— and O 2 F — / (F— + 0 2 ) is preferably 0.3 or more. More preferably, it is 4 or more. If the molar ratio of the F- content to the total content of F- and O 2 F- / (F- + 0 2- ) is 0.2 or less, the desired anomalous dispersibility cannot be obtained. .
  • the refractive index (N d ) is preferably 1.54 or more, and more preferably 1.55 or more.
  • the optical glass III of the present invention is also an embodiment of the optical glass I of the present invention.
  • the present inventors Upon obtaining the optical glass I of the present invention, the present inventors further studied and found the following matters. It was completed based on this knowledge.
  • a high refractive index, low dispersion fluorophosphate glass having a refractive index (N d ) exceeding 1.53 and an Abbe number (V d ) exceeding 70 is known to contain rare earth elements of 5 caton% or more.
  • the strength of the glass This glass contains a large amount of rare earth elements, so both the melting temperature and the liquidus temperature (forming temperature) become high.
  • the amount of volatilization of the glass component increases as the outflow temperature and forming temperature of the molten glass increase. Therefore, it is preferable to reduce the outflow temperature and forming temperature of the molten glass as much as possible.
  • the contained glass has both a high melting temperature and a high liquidus temperature (molding temperature), so if you try to lower the melt glass outflow temperature or the molding temperature, the glass viscosity at the outflow and during molding will be high. It becomes difficult to perform proper separation and molding. Therefore, the optical glass III, as well as to P 5 + of ⁇ 2 one content relative to the content molar ratio O 2 an / P 5 + in 3.5 above, rare earth Limiting the total content of similar elements to less than 5 cation% suppresses the volatilization of glass components.
  • optical glass ⁇ ⁇ ⁇ -a examples include optical glass ⁇ ⁇ ⁇ -a shown below.
  • Optical glass ⁇ _a is a fluorinated glass, P 5+ 20-50%
  • P 5+ is an important component that acts as a network former in glass, and is particularly important for glasses with relatively little fluorine. If the P 5 + content is less than 20%, the glass becomes extremely unstable, and if it exceeds 50%, the molar ratio of 0 2 ⁇ / ⁇ 5 + will be 3.5 or more. It is necessary to suppress the amount of introduction, and the required low dispersibility cannot be obtained. Therefore, the content of P 5 + is preferably in the range of 20 to 50%.
  • a 1 3 + is an important component for enhancing stability in a fluorophosphate glass, and a glass having less fluorine has a great effect of enhancing durability. If the content of A 1 3 + is less than 5%, the glass becomes unstable and the durability is remarkably reduced.On the other hand, if it exceeds 40%, the total amount of other components becomes too small, which makes it unstable. . Accordingly, the content of A 1 3 + is preferably in the range of 5 to 40%.
  • Mg 2+, C a 2+, S r 2 +, B a 2 + alkaline earth metals such as increases the stability of the glass is a component that increases the refractive index, the total amount of 1 0% or more By making it, the effect on stability is enhanced. However, since the balance with other components will be lost if there are too many specific Al metal components, it is preferable to introduce them evenly.
  • Mg 2 + is preferably 0 to 10%
  • C a 2 + is 0 to 20%
  • Sr 2 + is 0 to 20%
  • B a 2 + is preferably 0 to 40%.
  • Alkali metals such as L i + , Na + and K + reduce the viscosity and glass transition temperature of glass, and the introduction of excess force, which is a component that can facilitate the production of glass, reduces stability. Therefore, it is preferable to set the amount of Li + to 0 to 30%, the amount of Na + to 0 to 20%, and the amount of K + to 0 to 20%. Because in the L i + also alkali greater effect of increasing the stability, it is more preferable to introduce the 1 + 0.5% or more, more preferably introducing 1% or more, it is particularly preferred to introduce 2% or more .
  • Rare earth elements such as Y 3+ , La 3+ , Gd 3+ , and Yb 3 + are components that increase the refractive index while maintaining low dispersion of the glass. It is also a component that raises. Therefore, the amount of each of the above components is preferably 0 to 5% (excluding 5%). Further, the total content of the rare earth elements is preferably less than 5%, more preferably 4% or less, and even more preferably 3% or less.
  • the introduction amount is preferably 0 to 10%, more preferably 0 to 5%, and even more preferably no introduction.
  • Zn 2 +, I n 3 + has a characteristic that can be introduced into the glass easily as with alkaline earth metals, improved stability due to the multi-component by introducing Zn 2+ or I n 3 + Although an effect can be expected, excessive introduction is not preferable.
  • the amount of Zn 2+ and In 3 + introduced is preferably 0 to 20%, more preferably 0 to 10%, and even more preferably 0 to 5%, It is particularly preferable not to introduce it.
  • Optical glass III has properties such as low dispersibility, anomalous partial dispersibility, etc., and high light transmittance in the visible range, wide range from short to long wavelengths. . It is suitable as a material for obtaining various optical elements such as lenses and prisms using such properties, but in such applications, ions having absorption in the visible range, such as Fe, Cu, Ni, etc. It is desirable not to add metal element ions such as Co, Cr, Mn, V, Nd, Ho, and Er.
  • Cu 2+ -containing glass is a good color correction filter material for semiconductor image sensors such as CCD and CMOS. Is suitable.
  • the amount of Cu 2+ added may be appropriately determined within the above range in consideration of the thickness of the filter. In the case of Cu 2+ containing glass, except to adjust the absorption characteristics, it is desirable not to add ions having absorption in the visible region other than C u 2+.
  • Optical glass III is a fluorinated glass, and F— and O 2 are the main anion components.
  • the distribution of F_ and 0 2 _ (F 1 / F— + 0 2 —) is preferably more than 0.2 as described above.
  • the total amount introduced is preferably 0 to 3%, and more preferably 0.1 to 3%.
  • the total amount of F ⁇ , O 2 —, CI—, Br— and I— is preferably 98 anion% or more, more preferably 99 anion% or more. Desirably, it is more desirable to set it as 100 annion%.
  • optical glass IV of the present invention will be described.
  • the optical glass IV of the present invention P 5+ as a cationic component, F rst and 0 2 as Anion component -
  • the optical glass consisting Furrin glasses containing the content of F- is 65 Anion 0/0 or more
  • P 5 + ⁇ to the content of 2 - is characterized in that the content of the molar ratio O 2 one ZP 5 + is 3.5 or more.
  • the content of F- is set to 65% or more. If the F- content is less than 65%, it is difficult to obtain the desired low dispersibility and abnormal dispersibility.
  • the content of F— is 65 anionic% or more, + anomalous dispersibility can be imparted.
  • F- 65 to 95 preferred range of the content of Anion 0/0 the more preferred range 80 to 95 Anion 0 /. It is.
  • glass with a high F- content such as optical glass W has very low viscosity in the glass melt state, and striae due to volatilization and refractive index variation are particularly remarkable.
  • optical glass IV suppressing the formation itself of volatiles by control the molar ratio ⁇ 2 one / P 5 + 3. 5 above, significantly reduces the volatility both reactivity of the glass It also suppresses erosion, so that high-quality optical glass can be produced stably.
  • the preferred glass is in caton% display.
  • Fluorophosphate glass containing Fluorophosphate glass containing.
  • the glass is further expressed in terms of cation%,
  • the cation component content and the total content are expressed in caton%, and the anion component content and the total content are expressed in annihilation%.
  • P 5 + acts as a network former. If the P 5 + content is less than 3%, the stability decreases, and if it exceeds 15%, the molar ratio of O 2 / P 5 + is 3. In order to keep it at 5 or more, the content of O 2 must be increased. As a result, the content of F 1 decreases, and it becomes difficult to obtain sufficiently low dispersibility and abnormal dispersibility. Therefore, the content of P 5 + is preferably 3 to 15%. A more preferable range of the content of P 5 + is 3.5 to 13%, and a more preferable range is 4 to 11%.
  • a 1 3 + is a component that functions to increase the stability of the glass.
  • a 1 3 + content is
  • the content of 3 + is preferably 25 to 40%.
  • a more preferable range of the content of A 13 + is 28 to 33%, and a more preferable range is 30 to 36%.
  • C a 2 + is effective to increase the stability of the glass is a component it is desired to increase the greater the number F one content. If the content of C a 2+ is less than 5%, the above effect is not sufficiently obtained.If the content exceeds 35%, the stability decreases, so the content of C a 2+ may be 5 to 35%. I like it. A more preferable range of the content of C a 2+ is 10 to 35%, and a more preferable range is 20 to 30%.
  • Sr2 + has the effect of increasing the stability of the glass, and if its content is less than 5%, the above effect is not sufficient, and if it exceeds 25%, the stability decreases. Therefore, the content of S r 2+ is preferably 5 to 25%. A more preferable range of the content of S r 2 + is 10 to 25%, and a more preferable range is 15 to 20%.
  • the Mg 2+ works to improve the stability of glass by introducing up to 10%. Therefore, the Mg 2+ content is preferably 0 to 10%, more preferably 1 to 10%, and even more preferably 3 to 8%.
  • B a 2+ works to improve the stability of the glass when introduced up to 20%. Therefore, the content of Ba2 + is preferably 0 to 20%. Glass with a low content of B a 2 + ttF— is strong in improving stability, but has a high F- content. It is not an essential ingredient in old glass. A more preferable range of the content of B a 2+ is 1 to 15%, and a more preferable range is 2 to 10%.
  • L i + is a component that lowers the viscosity of the glass melt but has a very strong effect of lowering the liquidus temperature, and has an overall effect of preventing striae when the molten glass flows out and is molded. It is. These effects greatly contribute to giving up the quality of fluorophosphate glass by synergistic effects with the suppression effect of the generation of volatile components obtained by setting the molar ratio O 2 1 / P 5 + within the required range. .
  • the Li + content is preferably 0 to 20%.
  • a more preferable range of the content of Li + is 0 to 15%, a further preferable range is 1 to 10%, and a more preferable range is 1 to 7%.
  • Na + works to lower the glass transition temperature, but if it is introduced excessively, the stability of the glass decreases. In addition, water resistance is reduced. Therefore, the Na + content is preferably 0 to 10%. A more preferable range of the content of Na + is 0 to 7%, and a more preferable range is 1 to 5 ° / 0 .
  • K + also works to lower the glass transition temperature, but if introduced too much, the stability of the glass will decrease. In addition, water resistance is reduced. Therefore, the K + content is preferably 0 to 10%. A more preferable range of the content of K + is 0 to 5%, and a more preferable range is 0 to 3%.
  • the stability of the glass can be improved by coexisting two or more of the Al force metal components Li +, Na +, and K +.
  • Y 3 + is expected to improve the stability of the glass by introducing a small amount, but its content is If it exceeds 5%, the melting temperature of the glass rises, volatilization from the molten glass is promoted, and the stability of the glass is also lowered. Therefore, the content of Y 3 + is preferably 0 to 5%. A more preferable range of the content of ⁇ 3 + is 1 to 5%, and a more preferable range is 1 to 3%.
  • L a 3 + , G d 3 + , Z r 4 + , and Z n 2 + can be introduced for the purpose of adjusting the refractive index.
  • K + and gamma + total content of the 95% or more more preferably be at least 9 7%, more preferably be at least 9 8%, 9 9 It is preferable to make it at least%.
  • the glass transition temperature of the optical glass IV is preferably less than 500 ° C., more preferably 480 ° C. or less, further preferably 460 ° C. or less, and more preferably 440 ° C. or less.
  • the glass transition temperature is low, it is suitable for precision press molding. It is excellent in moldability when reheated and softened to form glass. Since the glass transition temperature is low as described above, the heating temperature during molding can be kept relatively low. Therefore, since a chemical reaction between the glass and a mold such as a press mold hardly occurs, a glass molded body having a clean and smooth surface can be molded. In addition, deterioration of the mold can be suppressed.
  • the Abbe number (v d ) is preferably 85 or more, more preferably 88 to 100, and still more preferably 90 to 97.
  • a preferable range of the refractive index (N d ) is 1.28 to 1.5, and a more preferable range is 1.43 to: 1.48.
  • Optical glass IV has ultra-low dispersibility and excellent glass stability at a liquidus temperature of 700 ° C or lower, making it a high-quality optical element material suitable for chromatic aberration correction.
  • Fluorophosphate glass can be provided.
  • the optical glass of the present invention does not require components such as Lu, Sc, Hf, and Ge.
  • Lu, Sc, Hf and Ge are expensive components, so it is preferable not to introduce them.
  • the optical glass of the present invention exhibits excellent light transmittance over a wide wavelength range in the visible range. Taking advantage of these properties, it is preferable not to introduce substances that cause coloring such as Cu, Cr, V, Fe, Ni, Co, and Nd when absorption is not allowed in a specific wavelength range. Yes.
  • the manufacturing method of the optical glass of the present invention is a glass manufacturing method I! It consists of three aspects: A first aspect of the optical glass manufacturing method of the present invention (referred to as glass manufacturing method I) is a method for manufacturing an optical glass made of fluorinated glass.
  • glass manufacturing method I is a method for producing the optical glass of the present invention, after melting the raw materials or cullet, clarified, when obtaining the optical glass homogenized, as a raw material or force Retsuto, P 5 + a
  • This is a method using a molar ratio of the total content of o 2 — to the total content ⁇ 2 — / P 5+ is 3.5 or more.
  • the second aspect of the optical glass production method of the present invention (referred to as glass production method ⁇ ) is to prepare a prepared raw material using raw materials or a forcelet, melt the prepared raw material, and then clarify and homogenize it.
  • O 2 to the content of P 5 + - Glass molar ratio O 2 one ZP 5+ content of less than 3.5 is ⁇ substance is generated during glass melting, glass manufacturing Because glass components volatilize over time, in glass manufacturing method I, as a glass raw material or power lettuce, the molar ratio of the total content of o 2 to the total content of P 5 + O 2 — ZP 5+ There 3. by using what is 5 or more, the glass production process ⁇ is ⁇ for P 5 + total content of the formulation in the feed 2 - total content molar ratio O 2 one ZP 5 + 3 of.
  • the blended raw material to be 5 or more, the generation of volatile substances during glass melting is suppressed, and the volatilization of components during glass manufacturing is suppressed.
  • the molar ratio of the total content of o 2 to the total content of P 5 + is 0 2 _ / P 5+ is 3.5 or more so that it has a desired composition
  • a glass alloy such as phosphate, fluoride, etc., weighed and blended appropriately is melted from platinum alloy.
  • Optical glass having the desired characteristics can be obtained by supplying to a container, heating, melting, clarifying, homogenizing, and then flowing out from a pipe and molding.
  • a raw material or a caret is used to prepare a raw material, and after the raw material is melted, it is clarified and homogenized to produce a molten glass.
  • the method for producing optical glass made of fluorophosphate glass by molding the molten glass is described in detail below.
  • the molar ratio is controlled so that the volatility of the molten glass is reduced so that the refractive index (N d ) and the Abbe number (v d ) have desired values.
  • the adjustment range of the molar ratio is 3.5 or more.
  • a preferable range of the molar ratio is as described above.
  • the glass raw material or cullet is heated and melted in an atmosphere of an inert gas such as nitrogen gas.
  • an inert gas such as nitrogen gas.
  • a glass melting apparatus a known fluorophosphate glass melting apparatus may be used.
  • glass manufacturing method ⁇ ⁇ ⁇ and ⁇ produced fluorinated glass with an Abbe number (v d ) of more than 70, and produced fluorinated glass with an Abbe number (V d ) of more than 78.
  • the total content of rare earth elements is less than 5 cation%, and the molar ratio of the content of F_ to the total content of F- and O 2 F-no (F- + 0 2- ) is 0.2.
  • the refractive index (N d) is 1.5 3 production of Furrin glasses more than is suitable for the production of Furrin acid glass content 6 5 Anion 0/0 or more F-. [Preform for press molding and its manufacturing method]
  • the press-molding preform of the present invention is characterized by comprising the optical glass of the present invention or the optical glass obtained by the method of the present invention.
  • the press-molding preform means that a glass having a weight equal to the weight of the press-molded product is previously molded into a shape suitable for press molding.
  • the press molding preform of the present invention is particularly suitable for precision press molding, and when used as a precision press molding preform, a release film such as a carbon film may be formed on the entire surface fc of the preform. preferable.
  • the method for producing a press-molding preform of the present invention comprises two embodiments.
  • molten glass is caused to flow out of a pipe, a desired weight of molten glass lump is separated, and the glass lump is made into glass.
  • the press-molding preform of the present invention is molded.
  • the preform production method I is a method for producing the press-molding preform of the present invention, in which the glass melt is allowed to flow out of the pipe, the glass melt of a desired weight is separated, and This is a method of forming into a preform during the cooling process.
  • the molten glass is caused to flow out of the pipe.
  • molten glass is continuously applied at a constant flow rate from a platinum alloy or platinum pipe heated to a predetermined temperature by an electric heating method, a high-frequency induction heating method, or a heating method that combines these two heating methods. Spill.
  • the molten glass is dropped from the outlet of the pipe, or the tip of the flowing molten glass flow is supported by the support. It is preferable to use a method in which the molten glass lump is separated from the molten glass flow front using the surface tension of the molten glass at a timing at which the molten glass lump of the target weight can be separated by using the surface tension of the molten glass. Les.
  • the separated molten glass ingot is formed into a preform having a desired shape in the process of cooling the glass on the recess of the preform mold. At that time, in order to prevent the preform surface from becoming wrinkled or to prevent breakage in the glass cooling process called can cracking, it is preferable to form the glass lump in the state of being lifted by applying upward wind pressure to the glass block. .
  • the glass does not deform, and after the glass temperature has dropped to the temperature range, the preform is removed from the mold and slowly cooled.
  • the obtained preform is made of optical glass that hardly causes striae.
  • the striae slightly occur on the preform surface, the striae are localized in the preform surface layer. Therefore, it is possible to remove the surface layer by etching or polishing, and finish it into a striking, optically highly homogeneous preform. In both cases of etching and polishing, it is desirable to separate a molten glass lump with a weight obtained by adding a glass weight to be removed in advance to a target preform weight, and to treat it to a target weight after removing the surface layer. .
  • the preform manufacturing method I is particularly suitable as a method for producing a preform for precision press molding.
  • a glass molded body is produced by inserting molten glass into a mold, and the glass
  • the press-molding preform of the present invention is molded.
  • a flat bottom and three side walls that surround this bottom from three directions, and a saddle that opens on one side are placed so that the bottom is horizontal below the pipe that flows out of the glass melt.
  • molten glass that continuously flows out from the pipe is poured onto the bottom surface of the saddle shape, and the glass is filled into the portion surrounded by the side wall and molded into a plate shape.
  • the formed glass is drawn out from the opening at a constant speed in the horizontal direction to obtain a glass plate having a constant width and a constant thickness.
  • the drawn glass sheet is annealed by passing through the annealing furnace at a slow speed.
  • the annealed glass plate is cut perpendicularly to the drawing direction to obtain a glass plate having a desired length.
  • a saddle shape having a through hole may be disposed below the outflow vip so that the through hole faces the vertical direction, and molten glass may be continuously poured into the through hole.
  • the poured glass is quenched and formed into a rod shape, and is drawn downward at a constant speed from the lower end opening of the through hole.
  • the glass rod drawn out from the bowl passes through the atmosphere heated near the glass transition temperature, and after bringing the surface of the glass rod closer to the inside temperature, it is cut horizontally and cut to the desired length. It becomes a glass rod.
  • the plate-shaped or rod-shaped glass molded body thus obtained is divided into glass pieces by cutting or cleaving, and the glass pieces are barrel-polished so as to have a mass corresponding to one target optical element blank. Adjust to obtain a preform for press molding. Barrel polishing can round the edges of glass pieces and remove edges that can cause breakage or breakage during press molding. In addition, the preform surface is roughened to facilitate uniform adhesion of the powder release agent applied to the surface during press molding. The preform obtained in this way is different from the precision press-molded product. This is a glass material for press-molding optical element blanks that are ground and polished to the optical functional surface.
  • Another example is a method of grinding and polishing the glass piece to smooth the glass surface to form a precision press-molding preform, and another method is to polish and smooth the surface of the barrel-polished product. It is a method to make a preform for precision press molding.
  • the optical element blank of the present invention comprises the optical glass of the present invention or the optical glass obtained by the method of the present invention.
  • an optical element blank is a glass molded product that is finished into an optical element by grinding and polishing, and has a shape obtained by adding a processing margin to be removed by polishing and polishing. The shape approximates the shape of the optical element.
  • optical element blank of the present invention comprises two embodiments.
  • optical element blank manufacturing method I The first aspect of the optical element blank manufacturing method of the present invention (referred to as optical element blank manufacturing method I) is a polishing II, a method of manufacturing an optical element blank that is finished into an optical element by polishing.
  • the preform obtained by the method of the invention is heated and press-molded.
  • a powder release agent such as boron nitride is uniformly applied to the surface of the preform prior to heating, placed on a heat-resistant dish, placed in a heat softening furnace, heated until the glass softens, and then pressed. It is introduced into a mold and press-molded. Next, the press-molded product is taken out from the mold and annealed to remove the distortion and adjust the optical characteristics so that the optical characteristics such as the refractive index become a desired value. In this way, an optical element blank can be produced.
  • optical element blank manufacturing method ⁇ The optical element blank manufacturing method of the present invention (referred to as optical element blank manufacturing method ⁇ ) In the method for producing an optical element blank, in which the glass raw material is melted, the obtained molten glass is flowed out, the molten glass lump is separated from the molten glass stream, and the molten glass lump is press-molded. The optical glass obtained by the method of the present invention is melted and molded.
  • the homogenized molten glass flows out onto the lower mold forming surface uniformly coated with a powder release agent such as boron nitride, and the lower end is supported by the lower mold, and the molten glass flow is interrupted. It cuts using the cutting blade called. Thus, a molten glass lump having a desired mass is obtained on the lower mold surface.
  • the lower mold on which the molten glass block is placed is transferred to a position directly below the upper mold, and the molten glass block is pressed into the optical element blank shape by pressing the upper mold and the lower mold. .
  • the press-molded product is taken out of the mold and annealed to remove the distortion and adjust the optical characteristics so that the optical characteristics such as the refractive index become a desired value. In this way, an optical element blank can be produced.
  • Both optical element blank manufacturing methods I and ⁇ can be performed in air.
  • Known conditions and materials can be used for the molding conditions, the material of the press mold, the heating and softening furnace, and the pan on which the preform is placed when heating and softening.
  • the optical element blank which can produce the optical element without defects, such as striae, and its manufacturing method can be provided.
  • the optical element of the present invention is characterized by comprising the optical glass of the present invention or the optical glass obtained by the method of the present invention.
  • the optical element of the present invention is composed of the optical glass of the present invention or the optical glass obtained by the method of the present invention, an optical element utilizing low dispersion characteristics can be provided.
  • the type and shape of the optical element are not particularly limited, and examples include an aspheric lens, a spherical lens, a micro lens, a lens array, a prism, a diffraction grating, a prism with a lens, and a lens with a diffraction grating. .
  • the aspherical lens and the spherical lens include a convex meniscus lens, a concave meniscus lens, a biconvex lens, a biconcave lens, a planoconvex lens, and a planoconcave lens.
  • optical elements constituting the imaging system such as a lens for a digital camera, a camera lens for a mobile phone with a camera, or an optical pickup lens, a collimator lens, an optical communication lens, etc. .
  • an optical thin film such as an antireflection film may be formed on the surface of the optical element.
  • the method for producing an optical element of the present invention comprises two aspects.
  • optical element manufacturing method I is an optical element for polishing and polishing an optical element blank of the present invention or an optical element blank produced by the method of the present invention. It is a manufacturing method.
  • the optical element manufacturing method I is suitable for manufacturing large-diameter lenses such as optical elements that are easy to process by grinding and polishing spherical lenses and prisms, and front lens of telephoto lenses.
  • optical element manufacturing method ⁇ The second aspect of the optical element manufacturing method of the present invention is that the preform of the present invention or the preform obtained by the method of the present invention is heated and subjected to precise press molding. It is a feature. That is, the optical element production method I is a method for producing the optical element of the present invention, in which the preform of the present invention or the preform obtained by the method of the present invention is heated and precision press-molded.
  • the above precision press molding is also called mold optics molding, and is a well-known method in the technical field.
  • optical functional surface a lens surface such as an aspherical surface of an aspherical lens or a spherical surface of a spherical lens corresponds to an optical functional surface in the case of a lens. Therefore, by accurately transferring the molding surface of the press mold to glass, the optical function surface can be formed by press molding, and it is necessary to add mechanical processing such as grinding and polishing to finish the optical function surface. Absent.
  • the optical element manufacturing method of the present invention is suitable for manufacturing optical elements such as lenses, lens arrays, diffraction gratings, and prisms, and is particularly suitable for manufacturing aspherical lenses with high productivity. ing.
  • a press mold used for precision press molding a known mold, for example, a mold having a release film on a molding surface of a heat-resistant ceramic mold such as silicon carbide, zircoure, or alumina can be used.
  • a silicon press mold is preferable, and a carbon-containing film or the like can be used as the release film. From the viewpoint of durability and cost, a carbon film is particularly preferable as the carbon-containing film.
  • the atmosphere during molding be a non-oxidizing gas in order to keep the molding surface of the press mold in good condition.
  • the non-oxidizing gas is preferably nitrogen or a mixed gas of nitrogen and hydrogen.
  • Precision press molding I introduces a preform into a press mold, heats the press mold and the preform together, and performs precision press molding.
  • the temperature of the press mold and the preform is heated to a temperature at which the glass constituting the preform exhibits a viscosity of 10 6 to 10 12 d Pa s. It is preferable to perform precision press molding.
  • the glass preferably has a temperature exhibiting a viscosity of 1 0 12 d Pa ⁇ s or more, more preferably 1 0 1 4 d Pa ⁇ s or more, more preferably 1 0 16 d Pa ⁇ s or more. It is desirable to take out the precision press-molded product from the press mold after cooling.
  • the shape of the molding surface of the press mold can be accurately transferred with glass, and the precision press-molded product can be taken out without being deformed.
  • Precision press molding II is a precision press molding method in which a heated preform is introduced into a preheated press mold.
  • the preform is heated in advance before being introduced into the press-molding die, so that the cycle time for manufacturing the optical element can be shortened and an optical surface having good surface accuracy without surface defects. An element can be manufactured.
  • the preheating temperature of the press mold is preferably set lower than the preheating temperature of the preform.
  • the wear of the press mold can be reduced.
  • the glass constituting the preform is preheated to a temperature exhibiting a viscosity of 10 9 d Pa ⁇ s or less, more preferably 10 9 d Pa ⁇ s.
  • the glass constituting the preform is preheated to a temperature showing a viscosity of 1 0 5 ⁇ 5 ⁇ 1 0 9 d P a ⁇ s It is more preferable to preheat to a temperature exhibiting a viscosity of 10 5 ' 5 d Pa' s or more and less than 10 9 d Pa. S.
  • the temperature of the press mold is adjusted to a temperature lower than the preheating temperature of the preform, and the temperature at which the glass exhibits a viscosity of 10 9 to 10 12 dPa's may be used as a guide.
  • the glass is cooled to a viscosity of 10 12 dPa ⁇ s or more and then released.
  • the precision press-molded optical element is taken out from the press mold and gradually cooled as necessary.
  • the molded product is an optical element such as a lens
  • an optical thin film may be coated on the surface as necessary.
  • Example 1 and Comparative Example 1 Example of optical glass production
  • optical glass Nos. 1-38 having the composition shown in Table 1-11-1 and Table 1-18-1 and optical glass No. 1-2 having the composition shown in Table 1-11-2.
  • phosphates such as diphosphates, fluorides and raw materials and mixed them well.
  • the ratio of the content of F_ to the total content is also shown in Table 1-11 to Table 1-8.
  • optical glass Nos. 1 to 4 correspond to optical glasses I and II of the present invention
  • optical glass Nos. 5 to 9 correspond to optical glasses I and III of the present invention
  • Optical glass Nos. 10 to 38 correspond to optical glass IV.
  • Optical glass No. 1-3 In the production of each optical glass, O 2 with respect to the total content of P 5 + as shown in Table 1 1 to Table 1 1 8 so as to suppress volatility.
  • an optical glass with the desired characteristics with significantly reduced volatility can be obtained. It has gained.
  • phosphates such as diphosphates and unvitrified raw materials such as fluorides are used.
  • cullet may be used, or non-vitrified raw materials and power plates are used in combination. Also good.
  • the refractive index N d (3 h) and the Azbe number v d (3 h) of the 200 g sample obtained in this manner were measured, and the glass transition temperature was measured. The results are shown in Table 1-11 to Table 1-8.
  • the refractive index (N d ), Abbe number (v d ), and glass transition temperature (T g ) of each optical glass were measured by the following methods.
  • the temperature was increased by 4 ° C using a thermomechanical analyzer (Thermo Plus TMA 8 3 1 0) from Rigaku Corporation.
  • Nd (1 h) indicates the value of the refractive index N d when melted at 900 ° C for 1 hour.
  • Nd (3 h) is the refractive index N d when melted at 900 ° C for 3 hours.
  • V d (1 h) is the number of Abbe numbers V d when melted at 900 for 1 hour.
  • V d (3 h) is the number of Abbe numbers vd when melted at 900 for 3 hours.
  • N d (1) indicates the refractive index N d when melted at 900 ° C for 1 hour.
  • Nd (3 h) is the refractive index N d when melted at 900 ° C for 3 hours.
  • V d (1 h) is the Abbe number V d when melted at 900 ° C for 1 hour.
  • V d (3 h) is the value of Abbe number V d when melted at 900 ° C for 3 hours.
  • N d (1 h) is the refractive index N d when melted at 900 ° C for 1 hour.
  • Nd (3 h) is the refractive index N d when melted at 900 ° C for 3 hours.
  • V d (1 h) is 900.
  • the Abbe number V d when melted in C for 1 hour is shown.
  • V d (3 h) is the Abbe number V d when melted at 900 ° C for 3 hours.
  • Nd (1 h) is the refractive index Nd when melted at 900 for 1 hour.
  • Nd (3 h) is the refractive index Nd when melted at 900 ° C for 3 hours.
  • vd (1 h) is the value of Abbe number V d when melted at 900 C for 1 hour.
  • vd (3 h) is the value of Abbe : several V d when melted at 900 ° C for 3 hours.
  • Nd (1 h) is the value of refractive index N d when melted at 900 ° C for 1 hour.
  • Nd (3 h) is the refractive index N d when melted at 900 for 3 hours.
  • vd (1 h) is 900. Shows the value of Abbe number V d when melted for 1 hour.
  • vd (3 h) is the Abbe number V d when melted at 900 ° C for 3 hours. Table 1-6
  • Nd (3 h) is the refractive index N d when melted at 900 ° C for 3 hours.
  • V d (1 h) is 900. Shows the value of the hot number V d when melted in C for 1 hour.
  • V d (3 h) is the Abbe number vd when melted at 900 ° C for 3 hours.
  • N d (1 h) is the refractive index N d when melted at 900 ° C for 1 hour.
  • Nd (3 h) is the refractive index Nd when melted at 900 ° C for 3 hours.
  • V d (1 h) is the Abbe number V d when melted at 900 ° C for 1 hour.
  • V d (3 h) is the Abbe number V d when melted at 900 ⁇ for 3 hours.
  • Nd (1 h) is the refractive index Nd when melted at 900 ° C for 1 hour.
  • Nd (3 h) is the refractive index N d when melted at 900 ° C for 3 hours.
  • V d (1 h) is the value of Abbe number V d when melted at 900 ° C for 1 hour.
  • V d (3 h) is the value of Abbe number V d when melted at 900 ° C for 3 hours.
  • V d (3 h) or V d (1 h) may be used as the Abbe number.
  • v d (1 h) is assumed to be the number of Abbe of the optical glass of the present invention.
  • optical glass No. 1 to 38 is divided into 0.5 to 13 force thiones. It is also possible to use near infrared absorbing glass by adding Cu 0 + of 0 .
  • Example 2 (Example of manufacturing a preform for press molding)
  • each of the obtained molten glass lumps was received by a receiving mold having a gas outlet at the bottom, and gas was ejected from the gas outlet and molded while the glass lumps floated to produce a press molding preform.
  • the shape of the preform was made spherical or flat spherical by adjusting and setting the separation interval of the molten glass.
  • the weight of each preform obtained was exactly the same as the set value, and the surface of each preform was smooth.
  • the entire surface of the molded spherical preform was polished by a known method, and the entire surface layer was removed to obtain an optically homogeneous preform.
  • the temperature of the molten glass consisting of each of the optical glasses No. 1 to 3 8 shown in Tables 1 to 1 to 8 was adjusted to a temperature range where stable outflow was possible without devitrification of the glass.
  • the glass plate formed from the opening on the lateral side of the vertical mold is pulled out at a constant speed in the horizontal direction and passed through the annealing furnace. After removing the strain by annealing, it was cut to a desired length to obtain glass plates one after another.
  • the glass plate was cut into a grid shape to produce a plurality of glass pieces, and these glass pieces were ground and polished to obtain a preform having a smooth surface and an optically uniform shape.
  • Each preform obtained as described above was precision press-molded using the press shown in FIG. 1 to obtain an aspheric lens.
  • the quartz tube 11 is heated in a nitrogen atmosphere. 1 2 was energized to heat the inside of the quartz tube 1 1.
  • the glass to be molded is set to a temperature which exhibits a viscosity of 1 0 8 ⁇ 1 O ⁇ d P a ⁇ s, while maintaining the same temperature, lowering the push rod 1 3 Press the mold 1 to press the preform set in the mold.
  • the press pressure was 8 MPa and the press time was 30 seconds.
  • the pressure of the press is released, and the viscosity of the glass is not less than 1 0 1 2 d Pa ⁇ s with the press-molded glass molded product kept in contact with the lower mold 2 and the upper mold 1
  • the glass molded product was taken out of the mold, and then aspherical lens was obtained.
  • the obtained aspherical lens had extremely high surface accuracy.
  • reference numeral 9 is a support rod
  • reference numeral 10 is a lower die barrel holder
  • reference numeral 14 is a thermocouple.
  • the anti-spherical lens obtained by precision press molding was provided with an antireflection film as required.
  • the same preform as each of the above preforms was precisely press-molded by a method different from the above method.
  • the preform was preheated to a temperature at which the viscosity of the glass constituting the preform became 10 8 d Pa ⁇ s while the preform floated.
  • the lower mold by heating the press mold comprising a cylinder-type, glass constituting the pre-form to a temperature which exhibits a viscosity of 1 0 9 ⁇ 1 0 1 2 d P a ⁇ s, the preheater
  • the preform was introduced into the cavity of the press mold and precision press-molded with 1 OMPa.
  • the press starts, the glass and press mold begin to cool, and the glass is cooled until the viscosity of the glass reaches 10 0 1 2 d Pa ⁇ s or higher. Obtained.
  • the obtained aspheric lens had extremely high surface accuracy.
  • Aspherical lenses obtained by precision press molding were provided with antireflection films as needed.
  • Table 1 _ 1 to Table 1-8 Optical glasses No. 1 to 3 8 Each of the molten glass was adjusted to a temperature range that allows stable outflow without devitrification of the glass.
  • the molten glass was allowed to flow out from the platinum alloy pipe at a constant flow rate, and molten glass was supplied onto the molding surface of the lower mold constituting the press mold. It should be noted that a powder mold release agent such as boron nitride powder is uniformly applied on the lower mold surface before supplying the molten glass.
  • the molten glass flowing out is cut by using a cutting blade called shear to obtain a desired amount of molten glass lump on the lower mold surface.
  • the lower mold with the molten glass lump placed on the position where the upper mold constituting the press mold waits upwards is pressed using the upper and lower molds while the glass lump is in a soft state.
  • the press-molded product thus obtained was released and removed from the press-molding die to obtain an optical element blank.
  • the obtained plank was annealed to remove the distortion, and the optical characteristics such as the refractive index were adjusted to be precisely equal to the desired value to obtain an optical element blank having a desired shape.
  • lens blanks that approximate the shape of various spherical lenses such as convex meniscus lenses, concave meniscus lenses, plano-convex lenses, plano-concave lenses, biconvex lenses, and biconcave lenses were produced.
  • the optical glass shown in Table 1 1-1 and Table 1-8 No! The molten glass consisting of ⁇ 3-8 is continuously discharged in a vertical shape from a platinum alloy pipe whose temperature is adjusted to a temperature range that allows stable outflow without devitrification of the glass. Then, the glass plate formed from the opening on the side surface of the mold is pulled out at a constant speed in the horizontal direction, passed through the annealing furnace, annealed to remove strain, and then cut to the desired length. I got a glass plate one after another.
  • the glass plate is cut into a square shape to produce a plurality of glass pieces.
  • the glass pieces are barrel-polished to remove the edges of the glass pieces, and the weight is adjusted so that the desired weight is obtained. Obtained a roughened preform.
  • powdered boron nitride was uniformly applied to the entire surface of the preform, placed on a heat-resistant dish, placed in a heating furnace, and heated and softened.
  • the soft preform was introduced into a press mold and press molded to obtain an optical element plank.
  • optical element blank was annealed to remove the distortion, and the optical characteristics were adjusted so that the optical characteristics such as the refractive index were precisely equal to the desired values.
  • lens blanks that approximate the shape of various spherical lenses such as convex meniscus lenses, concave meniscus lenses, plano-convex lenses, plano-concave lenses, biconvex lenses, and biconcave lenses were fabricated.
  • Example 5 Example of optical element production
  • the optical element blank obtained in Example 4 was ground and polished to prepare various spherical lenses such as a convex meniscus lens, a concave meniscus lens, a plano-convex lens, a plano-concave lens, a biconvex lens, and a biconcave lens.
  • various spherical lenses such as a convex meniscus lens, a concave meniscus lens, a plano-convex lens, a plano-concave lens, a biconvex lens, and a biconcave lens.
  • the annealed glass plate produced in Example 4 is cut, ground, and polished to produce various spherical lenses and prisms such as convex-mass lens, concave meniscus lens, plano-convex lens, plano-concave lens, biconvex lens, and biconcave lens. did.
  • Optical glass No. 1 to 3 8 obtained in Example 1 is divided into 0.5 to 13% by force and sliced from near-infrared absorbing glass to which DC u 2 + has been added. The main surface was optically polished to produce a near infrared absorption filter.
  • an optical glass made of a fluorophosphate glass when produced, or when the obtained glass flows out of a pipe in a molten state and is molded into a glass molded body, volatilization of glass components is suppressed.
  • a low-dispersion optical glass that can suppress the quality variation accompanying the fluctuation of the glass composition, and to produce optical elements such as press molding preforms and various lenses using the optical glass. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

P5+の含有量に対するO2-の含有量のモル比O2-/P5+が3.5以上であるフツリン酸塩ガラスからなり、アッベ数(νd)が70を超えるか、F-の含有量が65アニオン%以上であることを特徴とする光学ガラスであり、フツリン酸塩ガラスからなる光学ガラスを作製したり、得られたガラスを熔融状態でパイプから流出してガラス成形体に成形する場合に、ガラス成分の揮発を抑制し、ガラス組成の変動に伴う屈折率等の特性変動や脈理発生等の品質のばらつきを抑制し得る低分散の光学ガラスを提供する。

Description

明細書
光学ガラス、 プレス成形用プリフォーム、 光学素子およびそれらの製造方法 技術分野
本発明は、 フッリン酸塩系光学ガラスとその製造方法、プレス成形用プリフォ ームとその製造方法、 および光学素子とその製造方法に関する。 背景技術
フッリン酸塩系光学ガラスは低分散のガラスとして非常に有用なものであり、 このようなフッリン酸塩系光学ガラスとしては特開平 1 0— 1 3 9 4 5 4号公 報に記載されているようなガラスが知られている。 発明の開示
原料を加熱、 熔解して、 フッリン酸塩ガラスを作製する場合、 高温度に加熱さ れたガラス表面からガラス成分が揮発してしまうため、使用する原料量に対して 得られるガラス量が減少し、屈折率等の特性が所望の値からずれてしまう。 この ため、揮発によって失われる成分を原料調合時に多めにしておくなどの工夫が必 要になるが、 このような対策も、上記ガラス成分の揮発を防止する根本的な解決 策にはなり得ない。 また、 得られた光学ガラスを熔融状態でパイプから流出.し、 型などにキャストしてガラス成形体に成形する場合にも、ガラス成分が揮発して、 ガラス成形体の表面近傍層に脈理と呼ばれる光学的に不均一な部分が生じてし まつ。
本発明は上記事情に鑑みてなされたものであり、フッリン酸塩ガラスからなる 光学ガラスを作製したり、得られたガラスを熔融状態でパイプから流出してガラ ス成形体に成形する場合に、ガラス成分の揮発を抑制し、ガラス組成の変動に伴 う品質のばらつきを抑制し得る低分散の光学ガラスとその製造方法を提供する ことを目的とするものである。
また、本発明は、上記光学ガラスからなるプレス成形用プリフォームとその製 造方法を提供すること、および上記ガラスからなる光学素子ブランクとその製造 方法、 光学素子とその製造方法を提供することを目的とするものである。
課題を解決するための手段
本発明者が鋭意検討したところ、 p 5+の含有量に対する o 2一の含有量のモル 比 02—/P5+が 3. 5以上であるフッリン酸塩ガラスからなり、アッベ数(V d) が 70を超える光学ガラス、
P 5 +の含有量に対する O 2 の含有量のモル比 O 2— /P 5 +が 3. 5以上である フッリン酸塩ガラスからなり、 アッベ数 (vd) が 78を超える光学ガラス、
P5 +の含有量に対する O2—の含有量のモル比 02_ZP5 +が 3. 5以上、 希土 類元素の合計含有量が 5カチォン%未満であり、 F と O2—の合計含有量に対す る F—の含有量のモル比 F— / (F-+〇2一) が 0. 2を超えるフッリン酸塩ガラ スからなり、 屈折率 (Nd) が 1. 53を超え、 アッベ数 (V d) が 70を超える 光学ガラス、 および、
カチオン成分として P5 +、ァ-オン成分として F—および〇2—を含むフッリン 酸塩ガラスからなる光学ガラスにおいて、 F一の含有量が 65ァニオン%以上、 ?5 +の含有量に対する02-の含有量のモル比02ー ?5 +が3. 5以上であるこ とを特徴とする光学ガラス、
により上記目的を達成し得ることを見出し、この知見に基づいて本発明を完成す るに至った。
すなわち、 本発明は、 (1) アッベ数 (v d) が 70を超え、 P 5 +の含有量に対する O2—の含有量の モル比 O2一/ P5+が 3. 5以上であるフッリン酸塩ガラスからなる光学ガラス
(以下、 本発明の光学ガラス Iという) 、
(2) アッベ数 (v d) が 78を超えることを特徴とする上記 (1) 項に記載 の光学ガラス (以下、 本発明の光学ガラス IIという) 、
(3) 屈折率 (Nd) が 1. 53を超え、 希土類元素の合計含有量が 5カチォ ン0 /0未満であり、 F—と O 2一の合計含有量に対する F—の含有量のモル比 F—/
(F— +02一) が 0. 2を超えるフッリン酸塩ガラスからなることを特徴とする 上記 (1) 項に記載の光学ガラス (以下、 本発明の光学ガラス IIIという) 、
(4) 前記フッリン酸塩ガラスが、 カチオン%表示にて、
3~50%、
A 13 + 5〜40%、
Mg2 + 0〜10%、
C a 2 + 0〜 30 %、
S r 2 + 0〜30%、
B a 2 + 0〜40%、
(ただし、 Mg2+、 C a 2+、 S r 2+、 B a 2 +の合計含有量が 10 %以上) L i + 0〜 30 %、
N a + 0〜 20。/。、
K+ 0〜 20 %、
γ3 + 0〜10%、
L a 3 + 0〜10%、
Gd3 + 0〜10%、
Yb3 + 0〜10%、
B3 + 0〜10o/o、 Z n2+ 0〜20%、
I n3+ 0〜20%
を含有し、 ァニォン%表示にて、
F' 20〜95%、
2- O 5〜 80 %
を含有する上記 (1) 項に記載の光学ガラス、
(5) 前記フッリン酸塩ガラスが、 カチォン%表示にて、
P5+ 3〜30%、
A13 + 〜40%、
Mg2 + 〜 10%、
C a 2 + 〜30%、
S r 2 + 〜30%、
B a2 + 〜30%、
(ただし、 g2+、 C a2 + S r 2+および B a 2 +の合計含有量が 10 %以上) L i + 0〜 30 %、
N a + 0〜20%、
K + 0〜 20 %、
γ3 + 0〜: 10 %、
L a3 + 0〜 10 %、
Gd3 + 0〜 10。/。、
Yb3 + 0〜 10 %、
B3 + 0〜10%、
Zn2 + 0〜20%、
I n3 +
を含有し、 ァニォン%表示にて、 F— 40〜95%、
O2一 5〜60%
を含有する上記 (2) 項に記載の光学ガラス、
(6) 前記フッリン酸塩ガラスが、 カチオン%表示にて、
p 5 + 20〜 500/
A13 + 5〜 400/ '。、
Mg2 + 0〜 100/
C a2 + 0〜 20
S r 2 + 0〜 200/
B a2 + 0〜 40
(ただし、 Mg2+、 C a 2+、 S r 2+および B a ;
L i + 0〜30 %、
N a + 0〜20 %、
K+ 0〜20 %、
γ3 + 0〜 5 % (ただし、 5%を除く) 、
L a 3 + 0〜 5 % (ただし、 5%を除く) 、
Gd3 + 0〜 5 % (ただし、 5%を除く) 、
Yb3 + 0〜 5 % (ただし、 5%を除く) 、
(ただし、 Y3+、 L a 3 +、 Gd3+および Yb3 +
B3 + 0〜: 10 %、
Zn2 + 0〜20 %、
I n3 + 0〜20 %
を含有する上記 (3) 項に記載の光学ガラス、
(7) F—の含有量が 65ァニオン%以上であることを特徴とする上記 (1) 項または (2) 項に記載の光学ガラス。 (8) カチオン成分として P5+、 ァニオン成分として F—および O2—を含むフ ッリン酸塩ガラスからなる光学ガラスにおいて、
F—の含有量が 65ァニォン%以上、 P5 +の含有量に対する O2—の含有量のモ ル比 O2一/ P5+が 3. 5以上であることを特徴とする光学ガラス (以下、 本発 明の光学ガラス IVという) 、
(9) カチオン%表示にて、
•D 5 + 3 〜1 5%、
A 13 + 25 〜40%、
C a 2 + 5 〜35%、
S r 2 + 5 〜 25 %
含む上記 (8) 項に記載の光学ガラス、
(10) カチォン%表示にて、
Mg2+ 0〜10%、
B a 2+ 0〜20%、
L i + 0〜20%、
N a+ 0〜10%、
K+ 0〜 10%、
Y3+ 0〜5%
含む上記 (9) 項に記載の光学ガラス、
(1 1) フッリン酸ガラスからなる光学ガラスの製造方法において、 原料または力レツトを熔解した後、清澄、均質ィ匕して光学ガラスを得るにあた り、 原料またはカレットとして、 Ρ5 +の合計含有量に対する ο 2一の合計含有量 のモル比 Ο2— /Ρ5 +が 3. 5以上であるものを用い、 上記 (1) 項〜 (10) 項のいずれかに記載の光学ガラスを製造することを特徴とする光学ガラスの製 造方法、 (12) 原料または力レットを用いて調合原料を作り、前記調合原料を熔解 した後、清澄、均質化してフッリン酸塩ガラスからなる光学ガラスを製造する方 法であって、
前記調合原料中の P 5 +の合計含有量に対する O 2—の合計含有量のモル比 O 2一 /P5+が 3. 5以上になるように調合原料を作り、焙解、清澄、均質化を行いァ ッべ数 (v d) が 70を超えるフッリン酸塩ガラスを作製することを特徴とする 光学ガラスの製造方法、
(13) 原料または力レツトを用いて調合原料を作り、前記調合原料を熔解し た後、 清澄、均質化して熔融ガラスを作製し、 前記熔融ガラスを成形してフッリ ン酸塩ガラスからなる光学ガラスを製造する方法にぉレ、て、
前記熔融ガラスの揮発性が低減するように、前記調合原料中の P 5 +の合計含有 量に対する o 2一の合計含有量のモル比 o 2一 ZP5+を制御することを特徴とする 光学ガラスの製造方法、
(14) アッベ数 (vd) が 70を超えるフッリン酸ガラスを作製することを 特徴とする上記 (13) 項に記載の光学ガラスの製造方法、
(15) アッベ数 (vd) が 78を超えるフッリン酸塩ガラスを作製すること を特徴とする上記 (12) 項または (14) 項に記載の光学ガラスの製造方法、
(16) 希土類元素の合計含有量が 5カチオン%未満であり、 F—と〇2_の合 計含有量に対する F—の含有量のモル比 F—ノ (F— + 02— ) が 0. 2を超え、 屈 折率 (Nd) が 1. 53を超えるフッリン酸塩ガラスを作製することを特徴とす る上記 (12) 項〜 (14) 項のいずれかに記載の光学ガラスの製造方法、
(17) F—の含有量が 65ァニオン%以上のフッリン酸ガラスを作製するこ とを特徴とする上記 (12) 項〜 (15) 項のいずれかに記載の光学ガラスの製 造方法、
(18) 上記 (1) 項〜 (10) 項のいずれかに記載の光学ガラスまたは上記 (1 1) 項〜 (17) 項のいずれかに記載の方法により得られた光学ガラスから なることを特徴とするプレス成形用プリフォーム、
(19) 熔融ガラスをパイプから流出させて、所望重量の熔融ガラス塊を分離 し、該ガラス塊をガラスが冷却する過程でプリフォームに成形するプレス成形用 プリフォームの製造方法において、
上記(18)項に記載のプレス成形用プリフォームを成形することを特徴とす るプレス成形用プリフォームの製造方法、
(20) 熔融ガラスを鍚型に鎵込んでガラス成形体を作製し、該ガラス成形体 を加工してプレス成形用プリフォームを作製するプレス成形用プリフォームの 製造方法において、
上記 (18)項に記載のプレス成形用プリフォームを成形することを特徴と するプレス成形用プリフォームの製造方法、
(21) 研削、研磨により光学素子に仕上げられる光学素子ブランクにおいて、 上記 (1) 項〜 (10) 項のいずれかに記載の光学ガラスまたは上記 (1 1) 項〜 (1 7)項のいずれかに記載の方法により得られた光学ガラスからなること を特徴とする光学素子ブランク、
(22) 上記 (1) 項〜 (10) 項のいずれかに記載の光学ガラスまたは上記 (1 1) 項〜 (17) 項のいずれかに記載の方法により得られた光学ガラスから なることを特徴とする光学素子、
(23) 研肖 lj、研磨により光学素子に仕上げられる光学素子ブランクの製造方 法において、
上記 (1 8) 項に記載のプリフォームまたは上記 (1 9) 項または (20) 項 に記載の方法により得られたプリフォームを加熱し、プレス成形することを特徴 とする光学素子ブランクの製造方法、
(24) ガラス原料を熔融し、得られた熔融ガラスを流出し、熔融ガラス流か ら熔融ガラス塊を分離して、該熔融ガラス塊をプレス成形する光学素子ブランク の製造方法において、
上記 (1) 項〜 (10) 項のいずれかに記載の光学ガラスまたは上記 (1 1) 項〜 (1 7) 項のいずれかに記載の方法により得られた光学ガラスを熔融、成形 することを特徴とする光学素子プランクの製造方法、
(25) 上記 ( 21 ) 項に記載の光学素子ブランク、 もしくは上記 ( 23 ) 項 または (24) 項に記載の方法で作製した光学素子ブランクを研削、研磨する光 学素子の製造方法、
(26) 上記(18)項に記載のプリフォームまたは上記(1 9)項または(2 0)項に記載の方法により得られたプリフォームを加熱し、精密プレス成形する ことを特徴とする光学素子の製造方法
を提供するものである。 発明の効果
本発明によれば、 フッリン酸塩ガラスからなる光学ガラスを作製したり、得ら れたガラスを熔融状態でパイプから流出してガラス成形体に成形する場合に、ガ ラス成分の揮努を抑制し、ガラス組成の変動に伴う品質のばらつきを抑制し得る 低分散の光学ガラスとその製造方法を提供することができる。
また、本発明によれば、上記光学ガラスからなるプレス成形用プリフォームと その製造方法、上記ガラスからなる光学素子ブランクとその製造方法ならぴに光 学素子とその製造方法を提供することができる。 図面の簡単な説明
図 1は本発明の実施例で用いた精密プレス成形装置の概略図である。 発明を実施するための最良の形態
本発明は、従来、ガラスの熔融過程で生成していた揮発性物質の生成を抑制し てガラスの揮発性を大幅に低減するものである。
[光学ガラス]
以下、本発明の光学ガラスについて説明するが、各ガラスのカチオン成分量や 力チオン成分の合計量は特記しない限りカチォン%にて表示し、各ガラスのァニ オン成分量ゃァニオン成分の合計量は特記しない限りァニォン%にて表示する ものとする。
(光学ガラス I)
先ず、 本発明の光学ガラス Iについて説明する。
本発明の光学ガラス Iは、 アッベ数 (v d) が 70を超え、 P5 +の含有量に対 する O2—の含有量のモル比 O2一/ P5 +が 3. 5以上であるフッリン酸塩ガラス からなる光学ガラスである。
P 5 +の含有量に対する O 2一の含有量のモル比 O 2— /P 5 +が 3. 5以上である フッリン酸塩ガラスからなり、 アッベ数 (v d) が 70を超える光学ガラス Iを 構成するフッリン酸塩ガラスにおいて、 P5 +の含有量に対する〇2—の含有量の モル比 02_/P5 +は 3. 53以上であることが好ましく、 3. 55以上である ことがより好ましい。
また、 本発明の光学ガラス Iは、 アッベ数 (v d) が 75を超えるものが好適 であり、 78を超えるものがより好適であり、 80以上であるものがさらに好適 である。
上述したように、 アッベ数 (v d) が 70を超えるような低分散性を有するフ ッリン酸塩ガラスを作製する場合、ガラスの作製時ゃ瑢融ガラスの流出時にガラ ス成分が揮発するが、本発明者が検討したところ、驚くべきことに、 P5 +の含有 量に対する O2—の含有量のモル比〇2— ZP5 +が 3. 5以上であるフッリン酸塩 ガラスにより、 上記揮発を抑制し得ることを見出した。
すなわち、上記フッリン酸塩ガラスの原料としては、一般にリン酸塩が用いら れているが、 ァニオン成分としてフッ素 (F— ) の導入量をなるベく多くするた めに、 リン酸塩としては、 リン (P5+) 1原子に対する酸素 (O2一) 原子数の 比 (酸素原子ノリン原子) が小さい、 メタリン酸塩 (酸素原子 Zリン原子 =3) が用いられている。
し力 し、本発明者が検討したところ、上記メタリン酸塩を用いてガラスを作製 した場合、熔融ガラス中において、原料に由来するメタリン酸とフッ素が反応す ることにより、 揮発成分としてフッ化ホスホリル (POF3) が発生してしまう のに対して、熔融ガラス中のリン 1原子当たりの酸素原子の原子比を 3. 5以上 (酸素原子ノリン原子 3. 5) に調整すると、 揮発成分の発生量が大幅に低減 することが判明した。 これは、 熔融ガラス中に存在するリン酸として、 リン (P 5+) 1原子に対する酸素 (O2— ) 原子数の比 (酸素原子 Zリン原子) が 3であ るメタリン酸よりも、 リン (P5+) 1原子に対する酸素 (O2一) 原子数の比 (酸 素原子/リン原子)が 3. 5である 2リン酸の方が安定であるためと考えられる。 そこで、本発明の光学ガラスは、フッリン酸塩ガラス中の P5 +の含有量に対す る〇2一の含有量のモル比 O2一 ZP5 +を 3. 5以上とすることによって、 メタリ ン酸を含まないガラスとし、揮発成分であるフッ化ホスホリルの発生を抑制して、 ガラス糸且成の変動に伴う品質のばらつきを低減したものである。
光学ガラス I として好適なものとしては、以下に示す光学ガラス I - aを挙げ ることができる。
光学ガラス I _aは、 フッリン酸塩ガラスが、 カチオン成分として、
P 5+ 3〜50%、
A 13+ 5〜40%、
Mg 2+ 0〜10%、 C a2 + 0〜30%、
S r 2 + 0〜3 0%、
B a2 + 0〜4 0%、
(ただし、 Mg2+、 C a 2 +
L i + 0〜3 0%、
N a + 0〜2 0%、
K+ 0〜2 0%、
Y 3 + 0〜1 0%、
La3 + 0〜 1 0%、
Gd3 + 0〜 1 0%、
Yb3 + 0〜 1 0%、
B3 + 0〜1 0%、
Zn2 + 0〜2 0%、
I n3 + 0— 2 0%
を含有し、 ァニオン成分として,
F— 20〜95%、
O2 5〜 80 %
を含有するものである。
P5+ はガラス中でネットワークフォーマーとして働く重要な成分であり 3% 未満ではガラスが極端に不安定になる。また、 50%を超えるとモル比 O2ーノ P 5 +を 3. 5以上するために、 フッ素の導入量を抑制する必要が生じ、必要な低分 散性が得られなくなる。 したがって、 P5 +の含有量は 3〜50%の範囲にするこ とが好ましい。
A 13 +はフッリン酸ガラスにおいて安定性を高めるための重要成分であり、 5%未満ではガラスが不安定になる。一方、 40%を超えると他成分の合計量が 少なくなりすぎるために逆に不安定になる。 したがって、 A 13 +の含有量は 5〜 40 %の範囲にすることが好ましい。
Mg2+、 Ca 2+、 S r 2+、 B a 2 +のようなアルカリ土類金属はガラスの安定 性を高め、屈折率を上昇させる成分であり、 その合計量を 10%以上にすること で安定性に対する効果が高くなる。 し力 し、特定のアル力リ土類金属成分があま りに多くなると他の成分とのパランスが崩れるため、満遍なく導入することが好 ましく、 Mg2+、 Ca 2 +、 S r 2 +、 B a 2 +の少なくとも 2種以上を導入するこ とが好ましい。 具体的には Mg 2 +は 0〜: 10%、 〇 & 2 +は0〜30%、 S r 2 + は 0〜30%、 B a 2 +は 0〜40%とすることが好ましい。
L i +、 N a +、 K +のようなアルカリ金属はガラスの粘性、 ガラス転移温度を 低下させ、 ガラスの製造を容易にすることができる成分である力 過剰の導入は 安定性を低下させる。 そこで L i +の量を 0〜30%、 Na+の量を0〜20%、 K+の量を 0〜20%とすることが好ましい。アルカリ金属の中でも L i +は安定 性を高める効果も大きいため、 1^ 1+を0. 5%以上導入することがより好まし く、 1%以上導入することがさらに好ましく、 2%以上導入することが特に好ま しい。
Y3+、 L a 3+、 Gd3 +、 Yb3 +などの希土類元素はガラスの低分散性を保ち つつ屈折率を高める成分である力 S、過剰な導入は熔解温度を上昇させガラスの安 定性も低下させてしまう。 そのため、上記各成分の量をそれぞれ 0〜10%とす ることが好ましい。
B3 +はガラスの耐久性を向上させる成分である力、熔解中にフッ化物として揮 発する傾向があるため、生産性を低下させる成分でもある。 そのため導入量は 0
〜10%にすることが好ましく、 0〜5%にすることがより好ましく、導入しな いことがさらに好ましい。
Zn2+、 I n3 +はアルカリ土類金属と同様に容易にガラス中に導入できる特 性を持ち、 Zn2+ I n3 +を導入して多成分にすることによる安定性の向上効 果が期待できるが、 過剰の導入は好ましくない。 このため、 Zn2+および I n3 +の導入量は、 それぞれ 0〜 20%とすることが好ましく、 それぞれ 0〜 10% とすることがより好ましく、 0〜5°/。とすることがさらに好ましく、 導入しない ことが特に好ましい。
なお、 光学ガラス Iは、 低分散性、 異常部分分散性などに加え、 可視域におい て短波長から長波長にかけての広い範囲で光線透過率が高いという性質を有し ている。 このような性質を利用してレンズ、プリズムなどの各種光学素子を得る ための材料として適している力、このような用途においては可視域に吸収を有す るイオン、 例えば、 Fe、 Cu、 Ni、 Co、 Cr、 Mn、 V、 Nd、 Ho、 Erといった金属元素 のイオンを添カ卩しないことが望ましい。
—方、 C u 2 +を添加することにより近赤外線吸収特性を付与することができる ため、 外割り添カ卩で Cu2 +を 0. 5〜1 3%添加することが望ましい。 Cu2 + 含有ガラスは CCDや CMOSなどの半導体撮像素子の色補正フィルタ材料として好 適である。 Cu2 +の添カ卩量は、前記フィルタの厚さを考慮し、前記範囲内で適宜 定めればよい。 Cu2+含有ガラスの場合も、吸収特性を調整する場合を除き、 C u 2+以外の可視域に吸収を有するイオンを添加しないことが望ましい。
次にァニオン成分、ァユオン添加物について説明する。光学ガラス Iはフッリ ン酸ガラスであり、 F と O 2一が主要ァニオン成分である。 所要の光学特性と優 れたガラス安定性を実現する上から、 F を 20〜95%、 〇2一を 5〜80%導 入することが好ましい。
また、 C l_、 B r一、 I—は、 少量導入することで、 ガラスの製造時または流 出時に使用する白金容器や白金製ノズル等の白金製品に、フッリン酸ガラスが濡 れにくくなるために、 ガラスの製造を容易に行うことが可能になる。 C I—、 B r―、 I—の過剰の導入は、成分揮発による屈折率変動と白金異物の発生を招くた め、 導入量は合計で 0〜3%とすることが好ましく、 0. 1〜3%とすることが より好ましい。
なお、 発明の目的を達成する上から、 F―、 O2一、 C I—、 B r—および I一の 合計量を 98ァニォン%以上とすることが望ましく、 99ァニォン%以上とする ことがより望ましく、 100ァニオン%とすることがさらに望ましレ、。
(光学ガラス II)
次に、 本発明の光学ガラス IIについて説明する。
本発明の光学ガラス IIは、 P5 +の含有量に対する o2-の含有量のモル比 o 2 一/ P5 +が 3. 5以上であるフッリン酸塩ガラスからなり、 アッベ数 ( V d) が 78を超えることを特徴とする光学ガラス Iである。
光学ガラス πにおいて、 P5+の含有量に対する o2—の含有量のモル比 o 2一/
P5+が 3. 55以上であることが好ましく、 3. 6以上であることがより好まし い。
本発明の光学ガラス IIは、 上記本発明の光学ガラス Iの一態様と言えるもの であり、 上記本発明の光学ガラス Iを得るに当たり、 さらに本発明者が検討した ところ、 特にアッベ数 (v d) が 78を超えるフッリン酸塩ガラスからなる光学 ガラスにおいては、 ガラス中へのフッ素 (F— ) の導入量を多くするため、 原料 として多量のメタリン酸塩が用いられ、上記フッ化ホスホリルの揮発を助長して いることを見出し、 本知見に基づいて完成させたものである。
光学ガラス IIとして好適なものとしては、 以下に示す光学ガラス II一 aを挙 げることができる。
光学ガラス Π— aは、 フッリン酸塩ガラスが、 カチオン%表示にて、 前記フッリン酸塩ガラスが、 カチオン成分として、
P5+ 3〜30%、
A 13+ 10〜40%、 Mg2 + 0〜10%、
Ca2 + 0〜30%、
S r 2 + 0〜30%、
B a2 + 0〜30%、
(ただし、 Mg 2 +、 C a
L i + 0〜30%、
N a + 0〜 20 %、
K + 0〜 20 %、
Y 3 + 0〜: L 0 %、
La3 + 0〜10%、
Gd3 + 0—10%、
Yb3 + 0〜 10 %、
B 3 + 0〜10%、
Zn2 + 0— 20%、
I n3 + 0〜 20 % を含有し、 ァニオン%成:
F— 40〜95%、
2一 5〜 60 % を含有するものである。
P5+ はガラス中でネットワークフォーマーとして働く重要な成分であり 3% 未満ではガラスが極端に不安定になる。また、 30%を超えるとモル比 O2— ZP 5 +を 3. 5以上にするために、 フッ素の導入量を抑制する必要が生じ、必要な低 分散性が得られなくなる。 したがって、 P5 +の含有量は 3〜30%の範囲にする ことが好ましい。
A 13 +はフッリン酸ガラスにおいて安定性を高めるための重要成分であり、 1 0%未満ではガラスが不安定になる。 一方、 40%を超えると他成分の合計量が 少なくなりすぎるために逆に不安定になる。 したがって、 A 13 +の含有量は 10 〜40%の範囲にすることが好ましい。
Mg2+、 C a 2 +、 S r 2+、 B a 2 +のようなアルカリ土類金属はガラスの安定 性を高め、 屈折率を上昇させる成分であり、 その合計量を 10%以上にすること で安定性に対する効果が高くなる。 し力 し、特定のアルカリ土類金属成分があま りに多くなると他の成分とのバランスが崩れるため、満遍なく導入することが好 ましく、 Mg2+、 C a 2 +、 S r 2 +、 B a 2 +の少なくとも 2種以上を導入するこ とが好ましい。 具体的には Mg2 +は 0〜10%、 C a2 +は 0〜30%、 S r 2 + は 0〜30%、 B a 2 +は 0〜30%とすることが好ましい。
L i+、 Na+、 K+のようなアルカリ金属はガラスの粘性、 ガラス転移温度を 低下させ、 ガラスの製造を容易にすることができる成分であるが、過剰の導入は 安定性を低下させる。 そこで L i +の量を 0〜30%、 Na+の量を0〜20%、 K +の量を 0〜20%とすることが好ましい。アルカリの中でも L i+は安定性を 高める効果も大きいため、 L i +を 0. 5%以上導入することがより好ましく、 1 %以上導入することがさらに好ましく、 2 %以上導入することが特に好ましレ、。
Y3+、 L a 3 +、 Gd3+、 Yb3 +などの希土類元素はガラスの低分散性を保ち つつ屈折率を高める成分である力 S、過剰な導入は熔解温度を上昇させガラスの安 定性も低下させてしまう。 そのため、上記各成分の量をそれぞれ 0〜10%とす ることが好ましい。
B3 +はガラスの耐久性を向上させる成分である力 S、熔解中にフッ化物として揮 発する傾向があるため、 生産性を低下させる成分でもある。 そのため導入量は 0 〜10%とすることが好ましく、 0〜5%にすることがより好ましく、 0〜1% にすることがさらに好ましく、 導入しないことが特に好まし!/、。
Zn2+、 I n3 +はアルカリ土類金属と同様に容易にガラス中に導入できる特 性を持ち、 Z n 2+や I n 3 +を導入して多成分にすることによる安定性の向上効 果が期待できるが、 過剰の導入は好ましくない。 このため、 Zn2+および I n3 +の導入量は、 それぞれ 0〜 20%とすることが好ましく、 それぞれ 0〜 10% とすることがより好ましく、 0〜5%とすることがさらに好ましく、 導入しない ことが特に好ましい。
なお、 光学ガラス IIは、 低分散性、 異常部分分散性などに加え、 可視域にお レ、て短波長から長波長にかけての広!/、範囲で光線透過率が高いという性質を有 している。 このような性質を利用してレンズ、 プリズムなどの各種光学素子を得 るための材料として適している力 このような用途においては可視域に吸収を有 するイオン、 例えば、 Fe、 Cu、 Ni、 Co、 Cr、 Mn、 V、 Nd、 Ho、 Erといった金属元 素のイオンを添加しないことが望ましい。
一方、 C u 2 +を添加することにより近赤外線吸収特性を付与することができる ため、 外割り添加で Cu2 +を 0. 5〜13%添加することが望ましい。 Cu2 + 含有ガラスは CCDや CMOSなどの半導体撮像素子の色補正フィルタ材料として好 適である。 Cu2 +の添加量は、前記フィルタの厚さを考慮し、前記範囲内で適宜 定めればよい。 Cu2+含有ガラスの場合も、吸収特性を調整する場合を除き、 C u2+以外の可視域に吸収を有するイオンを添加しないことが望ましい。
次にァニオン成分、 ァニオン添加物について説明する。 光学ガラス IIはフッ リン酸ガラスであり、 F—と O 2一が主要ァニオン成分である。 所要の光学特性と 優れたガラス安定性を実現する上から、 F—を 40〜95%、 O2一を 5〜60% 導入することが好ましい。
また、 C I—、 B r -、 I—は、 少量導入することで、 ガラスの製造時または流 出時に使用する白金容器や白金製ノズル等の白金製品に、フッリン酸ガラスが濡 れにくくなるために、 ガラスの製造を容易に行うことが可能になる。 C l—、 B r一、 I—の過剰の導入は、成分揮発による屈折率変動と白金異物の発生を招くた め、 導入量は合計で 0〜3%とすることが好ましく、 0. 1〜3%とすることが より好ましい。
なお、 発明の目的を達成する上から、 F一、 O2一、 C I—、 B r—および I—の 合計量を 98ァニオン%以上とすることが望ましく、 99ァニォン%以上とする ことがより望ましく、 100ァニオン%とすることがさらに望ましい。
なお、 光学ガラス I、 光学ガラス Πともより分散の低いガラスを得る場合、 F 一の含有量を 65ァニオン%以上とする力 F—の含有量がこのように多いガラス は、 ガラス融液状態における粘性が非常に小さく、 従来、 揮発により脈理の発生 や屈折率変動が特に著しいという問題があった。 F—の含有量が 65ァニォン% 以上の光学ガラス Iおよび光学ガラス Πによれば、揮発性が大幅に抑制されてい るので、 上記問題を解決することができる。 さらに、 超低分散性に加え、 異常分 散性を高めることもできる。
(光学ガラス III)
光学ガラス ΠΙは上記本発明の光学ガラス Iの一態様と言えるものであり、 P 5 +の含有量に対する O2—の含有量のモル比 O2— /P5 +が 3. 5以上、 希土類元 素の合計含有量が 5カチオン%未満であり、 F—と〇 2一の合計含有量に対する F 一の含有量のモル比 F—Z (F— +〇2— ) が 0. 2を超えるフッリン酸塩ガラスか らなり、
屈折率 (Nd) が 1. 53を超え、 アッベ数 (vd) が 70を超えるものであ る。
すなわち、 光学ガラス IIIは屈折率 (Nd) が 1. 53を超え、 希土類元素の 合計含有量が 5カチォン%未満であり、 F—と O 2—の合計含有量に対する F一の 含有量のモル比 F—ノ (F— +02— ) が 0. 2を超えるフッリン酸塩ガラスから なることを特徴とする光学ガラス Iである。
光学ガラス IIIにおいて、 希土類元素 (希土類元素のカチオン成分) の合計含 有量は、 4%以下であることが好ましく、 3%以下であることがより好ましレ、。 希土類元素の合計含有量が 5カチォン%以上であると、ガラスの熔解温度および 液相温度 (成形温度) が高くなつてしまい、 後述するように、 ガラスの分離、 成 形が困難になってしまう。
光学ガラス IIIにおいて、 F—と O2一の合計含有量に対する F—の含有量のモ ル比 F— / (F— +02一) は、 0. 3以上であることが好ましく、 0. 4以上で あることがより好ましい。 F—と O2一の合計含有量に対する F—の含有量のモル 比 F— / (F-+02-) が 0. 2以下では、 所望の異常分散性を得ることができ なくなってしまう。
また、 光学ガラス IIIにおいて、 屈折率 (Nd) は 1. 54以上であることが 好適であり、 1. 55以上であることがより好適である。
本発明の光学ガラス IIIも、上記本発明の光学ガラス Iの一態様と言えるもの であり、上記本発明の光学ガラス Iを得るに当たり、 さらに本発明者が検討した ところ、 以下の事項を見出し、 本知見に基づいて完成させたものである。
すなわち、 屈折率 (Nd) が 1. 53を超え、 アッベ数 ( V d) が 70を超える 高屈折率低分散フッリン酸塩ガラスとして、希土類元素を 5カチォン%以上含有 するものが知られている力 このガラスは、希土類元素を多量に含有するために、 熔解温度および液相温度 (成形温度) が共に高くなつてしまう。 上記ガラス成分 の揮発量は、熔融ガラスの流出温度や成形温度が高いほど多くなることから、熔 融ガラスの流出温度や成形温度は可能な限り低下させることが好ましいが、上記 希土類元素を多量に含有するガラスは、 熔解温度および液相温度 (成形温度) が 共に高いため、熔融ガラスの流出温度や成形温度を低下させようとすると、流出 時および成形時におけるガラスの粘性が高くなつて、 良好な分離、成形を行うこ とが困難になってしまう。 このため、光学ガラス IIIにおいては、 P5 +の含有量 に対する〇2一の含有量のモル比 O2一/ P5 +を 3. 5以上にするとともに、 希土 類元素の合計含有量を 5カチオン%未満に制限して、ガラス成分の揮発を抑制し ている。
光学ガラス inとして好適なものとしては、 以下に示す光学ガラス ΙΠ— aを 挙げることができる。
光学ガラス ΙΠ_ aは、 フッリン酸塩ガラスが、 カチォン%成分として、 P5+ 20〜50%、
A 13+ 5〜40%、
Mg 2+ 0〜10%、
C a 2+ 0〜20%、
S r 2+ 0〜20%、
B a 2+ 0〜40%、
(ただし、 Mg2 +、 C a 2 +、 S r 2+および B a 2 +の合計含有量が 10%以上) L i + 0〜 30 %、
N a + 0〜20%、
K+ 0〜20%、
Y3+ 0〜5% (ただし、 5%を除く) 、
L a 3+ 0〜5% (ただし、 5%を除く) 、
Gd3+ 0〜5% (ただし、 5%を除く) 、
Yb 3+ 0〜5% (ただし、 5%を除く) 、
(ただし、 Y3 +、 L a 3+、 0(13+ぉょび¥133 +の合計含有量が5%未満) B3+ 0〜10%、
Zn2+ 0〜20%、
I n3+ 0〜20%
を含有するものである。 P5+ はガラス中でネットワークフォーマーとして働く重要な成分であり、 フ ッ素の比較的少ないガラスでは特に重要になる。 P 5 +の含有量が 20 %未満では ガラスが極端に不安定になり、また、 50%を超ぇるとモル比02ー/^5 +を3. 5以上にするために、 フッ素の導入量を抑制する必要が生じ、 必要な低分散性が 得られなくなる。 したがって、 P5 +の含有量は 20〜5 0%の範囲にすることが 好ましい。
A 1 3 +はフッリン酸ガラスにおいて安定性を高めるための重要成分であり、フ ッ素の少ないガラスでは耐久性を高める効果も大きい。 A 1 3 +の含有量が 5%未 満ではガラスが不安定になり耐久性も著しく低下し、 一方、 40%を超えると他 成分の合計量が少なくなりすぎるために逆に不安定になる。 したがって、 A 1 3 +の含有量は 5〜 40 %の範囲にすることが好ましい。
Mg 2+、 C a 2+、 S r 2 +、 B a 2 +のようなアルカリ土類金属はガラスの安定 性を高め、 屈折率を上昇させる成分であり、 その合計量を 1 0%以上にすること で安定性に対する効果が高くなる。 しかし、特定のアル力リ土類金属成分があま りに多くなると他の成分とのバランスが崩れるため、満遍なく導入することが好 ましく、 Mg 2 +、 C a 2 +、 S r 2 +、 B a 2 +の少なくとも 2種以上を導入するこ とが好ましい。 また、屈折率を高めるために B a 2 +を多く導入すると、 フッ素の 少ないガラスでは安定が向上する。 具体的には Mg 2 +は 0〜1 0%、 C a 2 +は 0〜20%、 S r 2 +は 0〜20%、 B a 2 +は 0〜40%とすることが好ましい。
L i +、 Na+、 K +のようなアルカリ金属はガラスの粘性、 ガラス転移温度を 低下させ、 ガラスの製造を容易にすることができる成分である力 過剰の導入は 安定性を低下させる。 そこで L i +の量を 0〜3 0%、 N a+の量を0〜20%、 K +の量を 0〜 20%とすることが好ましレ、。アルカリの中でも L i +は安定性を 高める効果も大きいため、 1 +を0. 5%以上導入することがより好ましく、 1%以上導入することがさらに好ましく、 2%以上導入することが特に好ましい。 Y3+、 L a 3+、 Gd3+、 Yb3 +などの希土類元素はガラスの低分散性を保ち つつ屈折率を高める成分であるが、 フッ素の少ないガラスでは著しく熔解温度、 液相温度を上昇させる成分でもある。 そのため、上記各成分の量をそれぞれ 0〜 5% (た'だし、 5%を除く) にすることが好ましい。 また、 上記希土類元素の合 計含有量を 5 %未満にすることが好ましく、 4 %以下にすることがより好ましく、 3 %以下にすることがさらに好ましい。
B3 +はガラスの耐久性を向上させる成分である力 熔解中にフッ化物として揮 発する傾向があるため、生産性を低下させる成分でもある。 そのため導入量は 0 〜10%にすることが好ましく、 0〜5%にすることがより好ましく、導入しな いことがさらに好ましい。
Zn2 +、 I n3 +はアルカリ土類金属と同様に容易にガラス中に導入できる特 性を持ち、 Zn2+や I n3 +を導入して多成分にすることによる安定性の向上効 果が期待できるが、 過剰の導入は好ましくない。 このため、 Zn2+および I n3 +の導入量は、 それぞれ 0〜 20%とすることが好ましく、 それぞれ 0〜 10% とすることがより好ましく、 0〜5%とすることがさらに好ましく、 導入しない ことが特に好ましい。
なお、 光学ガラス IIIは、 低分散性、 異常部分分散性などに加え、 可視域にお レ、て短波長から長波長にかけての広レ、範囲で光線透過率が高いという性質を有 している。 このような性質を利用してレンズ、 プリズムなどの各種光学素子を得 るための材料として適しているが、このような用途においては可視域に吸収を有 するイオン、 例えば、 Fe、 Cu、 Ni、 Co、 Cr、 Mn、 V、 Nd、 Ho、 Erといった金属元 素のィオンを添加しないことが望ましい。
—方、 C u 2 +を添加することにより近赤外線吸収特性を付与することができる ため、 外割り添カ卩で Cu 2 +を 0. 5〜: 13%添加することが望ましい。 Cu2 + 含有ガラスは CCDや CMOSなどの半導体撮像素子の色補正フィルタ材科として好 適である。 Cu2 +の添加量は、前記フィルタの厚さを考慮し、前記範囲内で適宜 定めればよい。 Cu2+含有ガラスの場合も、吸収特性を調整する場合を除き、 C u 2+以外の可視域に吸収を有するイオンを添加しないことが望ましい。
次にァニオン成分、 ァニオン添加物について説明する。光学ガラス IIIはフッ リン酸ガラスであり、 F—と O2一が主要ァニオン成分である。 F_と 02_の配分 (F一/ F— + 02— ) は、 上述したように 0. 2超であることが好ましい。
また、 C I—、 B r―、 I—は、 少量導入することで、 ガラスの製造時または流 出時に使用する白金容器や白金製ノズル等の白金製品に、フッリン酸ガラスが濡 れにくくなるために、ガラスの製造を容易に行うことが可能になる。過剰の導入 は成分揮発による屈折率変動と白金異物の発生を招くため、導入量は合計で 0〜 3%とすることが好ましく、 0. 1〜3%とすることがより好ましい。
なお、 発明の目的を達成する上から、 F―、 O2—、 C I—、 B r—および I—の 合計量を 98ァニォン%以上とすることが望ましく、 99ァニオン%以上とする ことがより望ましく、 100ァニォン%とすることがさらに望ましい。
(光学ガラス IV)
次に、 本発明の光学ガラス IVについて説明する。
本発明の光学ガラス IVは、 カチオン成分として P5+、 ァニオン成分として F一 および 02—を含むフッリン酸塩ガラスからなる光学ガラスにおいて、 F—の含有 量が 65ァニオン0 /0以上、 P5 +の含有量に対する〇2—の含有量のモル比 O2一 Z P5 +が 3. 5以上であることを特徴とするものである。
光学ガラス IVにおいて、 超低分散性を実現するため、 F—の含有量を 65ァニ ォン%以上とする。 F—の含有量が 65ァ-オン%未満だと所望の低分散性、 異 常分散性を得ることが困難となる。 F—の含有量を 65ァニオン%以上とするこ とにより、 +分な異常分散性も付与することができる。 F—の含有量の好ましい 範囲は 65〜95ァニオン0 /0、より好ましい範囲は 80〜95ァニオン0 /。である。 フッリン酸ガラスの中でも光学ガラス Wのように F—の含有量が多いガラスは、 ガラス融液状態における粘性が非常に小さく、揮発による脈理の発生、 屈折率変 動が特に著しい。 光学ガラス IVによれば、 モル比〇2一/ P5 +を 3. 5以上に制 御することで揮発性物質の生成そのものを抑制し、揮発性を著しく低下させると ともに、 ガラスの反応性、 侵 fe性も抑制するので、 高品質の光学ガラスを安定し て生産することができる。
次に光学ガラス IVの好ましい組成範囲について説明する。光学ガラス IVの中で 好ましいガラスは、 カチォン%表示にて、
P5+ 3〜15%、
A 13+ 25〜40%、
C a 2+ 5〜35%、
S r 2+ 5〜25%
含むフッリン酸ガラスである。
上記ガラスは、 さらにカチオン%表示にて、
Mg 2+ 0〜10%、
B a2 + 0〜20%、
L i + 0〜 20 %、
N a + 0〜 10%、
K+ 0〜 10 %、
Y VB 3+ + 0 ~ 5 %
含むことができる。
以下、 特記しない限り、 カチオン成分の含有量、 合計含有量はカチォン%表示 とし、 ァニオン成分の含有量、 合計含有量はァニォン%表示とする。
上記ガラスにおいて、 P5 +はネットワークフォーマーとして働く。 P5 +の含 有量が 3%未満だと安定性が低下し、 1 5%を超えるとモル比 O2一/ P5 +を 3. 5以上に保っために O 2一の含有量を増加させなくてはならず、 その結果、 F一の 含有量が低下し、 十分な低分散性、 異常分散性を得ることが困難になる。 したが つて、 P5 +の含有量を 3〜1 5%とすることが好ましい。 P5 +の含有量のより 好ましい範囲は 3. 5〜1 3%、 さらに好ましい範囲は 4〜1 1%である。
A 13 +はガラスの安定性を高める働きをする成分である。 A 13 +の含有量が
25 °/。未満だと安定性が低下し、 40 %を超えても安定性が低下するため、 A 1
3 +の含有量を 25〜40%とすることが好ましい。 A 13 +の含有量のより好ま しい範囲は 28〜33%、 さらに好ましい範囲は 30〜36%である。
C a 2 +はガラスの安定性を高める効果があり、 F一含有量が多くなるほど増量 することが望まれる成分である。 C a 2 +の含有量が 5 %未満だと上記効果を十分 得にくく、 35%を超えるとと安定性が低下するため、 C a 2+の含有量を 5〜3 5%とすることが好ましレ、。 C a 2 +の含有量のより好ましい範囲は 10〜35%、 さらに好ましい範囲は 20〜30%である。
S r 2 +はガラスの安定性を高める効果があり、その含有量が 5%未満だと前記 効果が十分でなく、 25%を超えると安定性が低下する。 したがって、 S r 2 + の含有量を 5〜 25%とすることが好ましい。 S r 2 +の含有量のより好ましい範 囲は 10〜25%、 さらに好ましい範囲は 1 5〜20%である。
このように、 C a 2 +と S r 2 +を共存させることにより、 ガラスの安定性をよ り向上させることができる。
Mg 2 +は 10%までの導入により、 ガラスの安定性を向上させる働きをする。 したがって、 Mg2 +の含有量を0〜l 0%とすることが好ましく、 1〜10%と することがより好ましく、 3〜 8 %とすることがさらに好ましい。
B a 2 +は、 20%までの導入により、ガラスの安定性を向上させる働きをする。 したがって、 B a 2 +の含有量を 0〜20%とすることが好ましレ、。 B a 2 + ttF— の含有量が少ないガラスでは、 安定性を向上させる働きが強いが、 F-の量が多 いガラスでは必須成分ではない。 B a 2 +の含有量のより好ましい範囲は 1〜1 5%、 さらに好ましい範囲は 2〜10%である。
ガラスの安定性を一層向上させる上から、 C a2 +、 S r 2+および Mg2 +を共 存させること、 C a 2 +、 S r 2+および B a 2 +を共存させること、 C a 2 +、 S r 2+、 Mg2+および B a 2 +を共存させることが好ましい。
L i +は、 ガラス融液の粘性を低下させるが、 液相温度を低下させる働きが非 常に強く、 総合的には熔融ガラスを流出、成形する際の脈理を防止する効果があ る成分である。 こうした効果は、 モル比 O2一/ P5 +を所要範囲にすることによ り得られる揮発成分発生の抑制効果との相乗効果によりフッリン酸ガラスの品 質を髙めるのに大きく寄与する。 しかし、 L i +を 20%を超えて導入すると、 ガラス融液の粘性の過剰な低下を起こし、結晶化の促進によるガラスの失透、脈 理の発生といった問題を引き起こす。 したがって、 L i +の含有量は 0〜20% とすることが好ましい。 L i +の含有量のより好ましい範囲は 0〜1 5%、 さら に好ましい範囲は 1〜 10 %、 一層好ましい範囲は 1〜 7 %である。
Na+は、 ガラス転移温度を低下させる働きをするが、 過剰に導入するとガラ スの安定性が低下する。 また、 耐水性も低下する。 したがって、 Na+の含有量 を 0〜10%とすることが好ましい。 N a +の含有量のより好ましい範囲は 0〜 7%、 さらに好ましい範囲は 1〜5°/0である。
K+も、 ガラス転移温度を低下させる働きをするが、 過剰に導入するとガラス の安定性が低下する。 また、 耐水性も低下する。 したがって、 K +の含有量を 0 〜10%とすることが好ましい。 K+の含有量のより好ましい範囲は 0〜5%、 さらに好ましい範囲は 0〜 3%である。
アル力リ金属成分 L i +、 N a +、 K+のうち、複数種を共存させることにより、 ガラスの安定性を向上させることができる。
Y3 +は、少量の導入によりガラスの安定性向上が期待されるが、その含有量が 5 %を超えるとガラスの熔融温度が上昇し、熔融ガラスからの揮発が助長される とともに、 ガラスの安定性も低下する。 したがって、 Y3 +の含有量を 0〜5%と することが好ましい。 Υ 3 +の含有量のより好ましい範囲は 1〜5 %、 さらに好ま しい範囲は 1〜 3 %である。
この他、 屈折率の調整などを目的として少量の L a 3 +、 G d3 +、 Z r 4 +、 Z n2 +を導入することができる。
なお、熔融ガラスの成形性に優れ、品質の高いフッリン酸ガラスを得る上から、 P5+、 A 1 3 +、 L i +、 Mg 2+、 C a 2+、 S r 2 +、 B a 2+、 N a +、 K+および γ +の合計含有量を 9 5 %以上にすることが好ましく、 9 7 %以上にすることが より好ましく、 9 8 %以上にすることがさらに好ましく、 9 9 %以上にすること がー層好ましい。
光学ガラス IVのガラス転移温度は、好ましくは 5 00 °C未満、 より好ましくは 480 °C以下、 さらに好ましくは 46 0 °C以下、一層好ましくは 440 °C以下で ある。このようにガラス転移温度が低いので、精密プレス成形に好適であるほ力 \ ガラスの再加熱、軟化して成形する際の成形性にも優れている。 ガラス転移温度 が上記のように低いので成形時の加熱温度も比較的低く抑えることができる。そ のため、 ガラスとプレス成形型などの成形型との化学反応も起こりにくいため、 清浄かつ平滑な表面を有するガラス成形体を成形することができる。 また、成形 型の劣化も抑制することができる。
光学ガラス IVにおいて、 アッベ数 (v d) の好ましい範囲は 8 5以上、 より好 ましい範囲は 8 8〜 1 00、 さらに好ましい範囲は 9 0〜9 7である。
屈折率(Nd) の好ましい範囲は 1. 4 28〜1. 5、 より好ましい範囲は 1. 43〜: 1. 48である。
光学ガラス IVは、超低分散性を有しつつ、 液相温度が 700°C以下と優れたガ ラス安定性も備えているので、色収差補正に好適な光学素子材料として高品質の フッリン酸ガラスを提供することができる。
なお、光学ガラス I〜! Vは、いずれも、環境への負荷を軽減する上から、 P b、 As、 C d、 Thなどを導入しないものであることが望ましい。 同様に環境への 負荷を軽減する上から T 1、 Te、 C r、 S e、 Uをも導入しないものであるこ とが好ましい。
本発明の光学ガラスは、 Lu、 S c、 H f 、 G eといった成分を必要としない。 Lu、 S c、 Hf 、 Geは高価な成分なので、 これらを導入しないことが好まし い。
本発明の光学ガラスは可視域の広い波長域にわたり、優れた光線透過性を示す。 こうした性質を活かし、特定波長域に吸収を持たせない場合は、 C u、 C r、 V、 F e、 N i、 Co、 N dなどの着色の要因となる物質を導入しないことが好まし い。
〔光学ガラスの製造方法〕
次に、 本発明の光学ガラスの製造方法について、 説明する。
本発明の光学ガラスの製造方法は、 ガラス製法 I〜! Πの 3つの態様からなる。 本発明の光学ガラスの製造方法の第 1の態様 (ガラス製法 Iという) は、 フッ リン酸ガラスからなる光学ガラスの製造方法において、
原料または力レツトを熔解した後、 清澄、 均質ィ匕して光学ガラスを得るにあた り、 原料またはカレットとして、 P5 +の合計含有量に対する o 2一の合計含有量 のモル比 O2一/ P5 +が 3. 5以上であるものを用い、 本発明の光学ガラスを製 造することを特徴とするものである。
すなわち、 ガラス製法 Iは、 本発明の光学ガラスを製造する方法であって、 原 料またはカレットを熔解した後、 清澄、 均質化して光学ガラスを得るにあたり、 原料または力レツトとして、 P 5 +の合計含有量に対する. o2—の合計含有量のモ ル比〇2— /P5+が 3. 5以上であるものを用いる方法である。 本発明の光学ガラスの製造方法の第 2の態様 (ガラス製法 Πという) は、原料 または力レツトを用いて調合原料を作り、 前記調合原料を熔解した後、 清澄、均 質ィ匕してフッリン酸塩ガラスからなる光学ガラスを製造する方法であって、 前記調合原料中の P 5 +の合計含有量に対する O 2—の合計含有量のモル比〇 2一 ZP 5 +が 3. 5以上になるように調合原料を作り、熔解、清澄、均質化を行いァ ッべ数 (vd) が 70を超えるフッリン酸塩ガラスを作製することを特徴とする ものである。
上述したように、 P5 +の含有量に対する O2—の含有量のモル比 O2一 ZP5+が 3. 5未満であるガラスは、 ガラス熔融時に揮宪性物質が生成し、 ガラス製造時 においてガラス成分が揮発してしまうことから、 ガラス製法 Iにおいては、 ガラ ス原料または力レツトとして、 P5 +の合計含有量に対する o 2一の合計含有量の モル比 O2— ZP5+が 3. 5以上であるものを用いることにより、 ガラス製法 Π においては、 調合原料中の P 5 +の合計含有量に対する〇2—の合計含有量のモル 比 O2一 ZP5 +が 3. 5以上になるように調合原料を作ることにより、 ガラス熔 融時に揮発性物質の生成そのものを抑制し、ガラス製造時における成分の揮発を 抑制している。
原料または力レツト中の P 5 +の合計含有量に対する o 2—の合計含有量のモル 比 O2一/ P5 +を 3. 5以上にするためには、 ガラス原料として、 リン (P5+) 1原子に対する酸素 (O2一) 原子数の比 (酸素原子 Zリン原子) が 3. 5である 2リン酸塩を用いたり、該ガラス原料から作製した力レツトを用いることが好ま しい。
ガラス製法 I、 Πにおいては、 例えば、 P5 +の合計含有量に対する o 2一の合 計含有量のモル比 02_/P5+が 3. 5以上であり、 所望組成を有するように適 宜秤量、 調合した、 リン酸塩、 フッ化物などのガラス原料を、 白金合金製の熔融 容器に供給し、 加熱、 熔融し、 清澄、 均質化した後、 パイプから流出、 成形する ことにより所望特性を有する光学ガラスを得ることができる。
本発明の光学ガラスの第 3の態様 (ガラス製法 mという) は、原料またはカレ ットを用いて調合原料を作り、 前記調合原料を熔解した後、清澄、均質化して熔 融ガラスを作製し、前記熔融ガラスを成形してフッリン酸塩ガラスからなる光学 ガラスを製造する方法において、
前記熔融ガラスの揮発性が低減するように、前記調合原料中の P 5 +の合計含有 量に対する o 2一の合計含有量のモル比 o 2一 Z p 5 +を制御することを特徴とする ものである。
ガラス製法 mは、 モル比 o 2一 ZP 5 +が熔融ガラスの揮発性に大きく影響する との新規な知見に基づき、 調合原料中の P 5 +の合計含有量に対する o 2一の合計 含有量のモル比 O 2一 Z P 5 +を熔融ガラスの揮発性が低減するように制御して光 学ガラスを製造する。
すなわち、 屈折率 (N d) 、 アッベ数 (v d) が所望の値になるように、 熔融ガ ラスの揮発性が低減するように上記モル比を制御する。上記モル比の調整範囲は 3 . 5以上とする。 上記モル比の好ましい範囲は上記のとおりである。
ガラス製法 I〜mにおいて、 ガラス原料またはカレットの加熱、 熔融処理は、 窒素ガス等の不活性ガスの雰囲気下で行うことが好ましい。ガラスの熔融装置と しては、 公知のフッリン酸ガラスの熔融装置を使用すればよい。
また、 ガラス製法 Π、 ΙΠもガラス製法 Iと同様、 アッベ数 (v d) が 7 0を超 えるフッリン酸ガラスの製造、 アッベ数 ( V d) が 7 8を超えるフッリン酸塩ガ ラスの製造、 希土類元素の合計含有量が 5カチオン%未満であり、 F—と O 2一の 合計含有量に対する F _の含有量のモル比 F—ノ (F— + 02— ) が 0 . 2を超え、 屈折率(N d) が 1 . 5 3を超えるフッリン酸塩ガラスの製造、 F—の含有量が 6 5ァニオン0 /0以上のフッリン酸ガラスの製造に好適である。 [プレス成形用プリフォームとその製造方法]
次に、 本発明のプレス成形用プリフォームについて説明する。
本発明のプレス成形用プリフォームは、本発明の光学ガラスまたは本発明の方 法により得られた光学ガラスからなることを特徴とするものである。
ここでプレス成形用プリフォームとは、プレス成形品の重量と等しい重量のガ ラスを、 プレス成形に適した形状に予め成形したものを意味する。
本発明のプレス成形用プリフォームは、精密プレス成形用として特に好適であ り、精密プレス成形用プリフォームとして使用する際は、炭素膜などの離型膜を プリフォーム全表面 fc形成することが好ましい。
次に、 本発明のプレス成形用プリフォームの製造方法について説明する。 本発明のプレス成形用プリフォームの製造方法は 2つの態様からなる。
本発明のプレス成形用プリフォームの製造方法の第 1の態様(プリフォーム製 法 Iという) は、 熔融ガラスをパイプから流出させて、 所望重量の熔融ガラス塊 を分離し、該ガラス塊をガラスが冷却する過程でプリフォームに成形するプレス 成形用プリフォームの製造方法において、本発明のプレス成形用プリフォームを 成形することを特徴とするものである。
すなわち、 プリフォーム製法 Iは、本発明のプレス成形用プリフォームを製造 する方法であって、瑢融ガラスをパイプから流出させて、所望重量の熔融ガラス 塊を分離し、該ガラス塊をガラスが冷却する過程でプリフォームに成形する方法 である。
プリフォーム製法 Iにおいては、 先ず、 熔融ガラスをパイプから流出させる。 例えば、通電加熱方式あるいは高周波誘導加熱方式、 またはこれら 2つの加熱方 式を組合わせた加熱法により、所定温度に加熱した白金合金製あるいは白金製の パイプから、 一定流量で連続して熔融ガラスを流出させる。
次いで、流出した熔融ガラスからプリフォーム 1個分の重量、 あるいはプリフ オーム 1個分の重量に後述する除去分の重量を加えた重量の熔融ガラス塊を分 離する。 熔融ガラス塊の分離にあたっては、切断痕が残らないように、切断刃の 使用を避けることが望ましく、例えば、パイプの流出口から熔融ガラスを滴下さ せたり、流出する熔融ガラス流先端を支持体により支持し、 目的重量の熔融ガラ ス塊が分離できるタイミングで支持体を急降下して熔融ガラスの表面張力を利 用して熔融ガラス流先端から熔融ガラス塊を分離する方法を用いることが好ま しレ、。
分離した熔融ガラス塊は、プリフォーム成形型の凹部上において、ガラスが冷 却する過程で所望形状を有するプリフォームに成形する。 その際、プリフォーム 表面にシヮができたり、カン割れと呼ばれるガラスの冷却過程における破損を防 止するため、凹部上でガラス塊に上向きの風圧を加え浮上させた状態で成形する ことが好ましい。
プリフオームに外力を加えても変形しなレ、温度域にまでガラスの温度が低下 してから、 プリフォームを成形型から取り出して、 徐冷する。
得られたプリフォームは、上述したように、脈理を生じにくい光学ガラスから なるものであるが、プリフォーム表面にわずかに脈理が生じる場合、脈理はプリ フォーム表面層に局在しているので、エッチングや研磨加工により上記表面層を 除去し、脈理のなレ、光学的に高度に均質なプリフォームに仕上げることもできる。 エッチング、研磨加工いずれの場合も、予め目的とするプリフォーム重量に除 去するガラス重量を加えた重量の熔融ガラス塊を分離し、表面層の除去後に目的 重量になるように処理することが望ましい。
プリフォーム製法 Iは、特に精密プレス成形用のプリフォームを製造する方法 として好適である。
本発明のプレス成形用プリフォームの製造方法の第 2の態様(プリフォーム製 法 Πという) は、熔融ガラスを铸型に铸込んでガラス成形体を作製し、該ガラス 成形体を加工してプレス成形用プリフォームを作製するプレス成形用プリフォ ームの製造方法において、本発明のプレス成形用プリフォームを成形することを 特徴とするものである。
上記鎊型は成形形状に応じて適宜、公知のものを適用すればよい。 例えば、平 坦な底面とこの底面を 3方向から囲む 3つの側壁を備え、 1つの側方が開口した 錶型を瑢融ガラスを流出するパイプの下方に底面が水平になるように配置する。 そして、錶型の底面上にパイプから連続して流出する熔融ガラスを流し込み、側 壁で囲まれた部分にガラスを満たしつつ、板状に成形する。成形したガラスを上 記開口部より水平方向に一定スピードで引き出し、一定の幅と一定の厚みを有す るガラス板を得る。引き出されたガラス板はそのままァニール炉内をゆつくりと したスピードで通過することでァニールされる。ァニールしたガラス板は引き出 し方向に対して垂直に切断し、 所望長さのガラス板となる。
上記錶型の代わりに、貫通孔を有する铸型を貫通孔が鉛直方向を向くように流 出バイプの下方に配置し、貫通孔に熔融ガラスを連続的に流し込んでもよい。流 し込まれたガラスは急冷されて棒状に成形され、貫通孔の下端開口部より一定ス ピードで下方に引き出される。铸型から引き出されたガラス棒はガラスの転移温 度近傍に加熱された雰囲気中を通過し、ガラス棒の表面と内部の温度を近づける 操作をした後、 水平方向に切断して所望長さのガラス棒となる。
このようにして得られた板状あるいは棒状のガラス成形体を切断または割断 によりガラス片に分割し、これらガラス片をバレル研磨して目的の光学素子ブラ ンク 1個分の質量になるように質量調整を行いプレス成形用プリフォームを得 る。 バレル研磨によって、 ガラス片のエッジを丸め、破損原因やプレス成形時の 折れ込み原因になるエッジを除去することができる。 また、 プリフォーム表面を 粗面化してプレス成形時に表面に塗布する粉末状離型剤を均一に付着させやす くする。 こうして得られたプリフォームは、精密プレス成形品とは異なり、 プレ ス成形品の表面を研削、研磨して光学機能面に仕上げる光学素子ブランクをプレ ス成形するためのガラス素材である。
別の例は、 上記ガラス片を研削、研磨してガラス表面を平滑化して精密プレス 成形用プリフォームにする方法であり、さらに別の方法は上記バレル研磨品の表 面を研磨して平滑化して精密プレス成形用プリフォームにする方法である。
[光学素子ブランクとその製造方法]
次に本発明の光学素子ブランクについて説明する。
本発明の光学素子ブランクは、本発明の光学ガラスまたは本発明の方法により 得られた光学ガラスからなることを特徴とするものである。
光学素子ブランクは、前述のように研削、研磨によって光学素子に仕上げられ るガラス成形品であって、 目的とする光学素子の形状に研肖、研磨により除去す る加工しろを加えた形状、 すなわち、 光学素子形状に近似した形状を有する。 次に本発明の光学素子ブランクの製造方法について説明する。
本発明の光学素子ブランクは 2つの態様からなる。
本発明の光学素子ブランクの製造方法の第 1の態様(光学素子ブランク製法 I という) は、 研肖 II、 研磨により光学素子に仕上げられる光学素子ブランクの製造 方法において、本発明のプリフォームまたは本発明の方法により得られたプリフ オームを加熱し、 プレス成形することを特徴とするものである。
この方法では、加熱に先立ちプリフォームの表面に窒化ホウ素などの粉末状離 型剤を均一に塗布し、 耐熱性皿に載せて加熱軟化炉内に入れ、 ガラスが軟化する まで加熱した後、 プレス成形型に導入してプレス成形する。 次にプレス成形品を 型から取り出し、ァニールして歪を除くとともに屈折率などの光学特性が所望の 値になるように光学特性の調整を行う。このようにして光学素子ブランクを作製 することができる。
本発明の光学素子ブランクの製造方法 (光学素子ブランク製法 Πという) は、 ガラス原料を熔融し、得られた熔融ガラスを流出し、熔融ガラス流から熔融ガラ ス塊を分離して、該熔融ガラス塊をプレス成形する光学素子ブランクの製造方法 において、本発明の光学ガラスまたは本発明の方法により得られた光学ガラスを 熔融、 成形することを特徴とするものである。
この方法では、均質化した熔融ガラスを窒化ホウ素などの粉末状離型剤を均一 に塗布した下型成形面上に流出し、下端部が下型に支持された熔融ガラス流を途 中でシァと呼ばれる切断刃を用いて切断する。 こうして、所望質量の熔融ガラス 塊を下型成形面上に得る。 次に、熔融ガラス塊を載せた下型を別の位置に待機す る上型の真下に移送し、上型おょぴ下型で熔融ガラス塊をプレスして光学素子ブ ランク形状に成形する。 次にプレス成形品を型から取り出し、 ァニールして歪を 除くとともに屈折率などの光学特性が所望の値になるように光学特性の調整を 行う。 このようにして光学素子ブランクを作製することができる。
光学素子ブランク製法 I、 πは、ともに大気中で行うことができる。成形条件、 プレス成形型の材質、加熱軟化炉および加熱、軟化する際にプリフォームを載せ る皿などについては公知の条件やものを使用することができる。
本発明によれば、脈理などの欠陥のない光学素子を作製できる光学素子ブラン クとその製造方法を提供することができる。
[光学素子とその製造方法]
次に、 本発明の光学素子について説明する。
本発明の光学素子は、本発明の光学ガラスまたは本発明の方法により得られた 光学ガラスからなることを特徴とするものである。
本発明の光学素子は、上記の本発明の光学ガラスまたは本発明の方法により得 られた光学ガラスからなるので、低分散特性を活かした光学素子を提供すること ができる。 光学素子の種類、形状などについては特に限定はないが、例えば、非球面レン ズ、 球面レンズ、 マイクロレンズ、 レンズアレイ、 プリズム、 回折格子、 レンズ 付きプリズム、 回折格子付きレンズなどを挙げることができる。 非球面レンズ、 球面レンズの具体例としては、 凸メニスカスレンズ、 凹メニスカスレンズ、 両凸 レンズ、 両凹レンズ、 平凸レンズ、 平凹レンズなどを挙げることができる。 用途の面からは、撮像系を構成する光学素子、例えば、 デジタルカメラのレン ズゃカメラ付き携帯電話のカメラ用レンズ、 あるいは光ピックアップレンズ、 コ リメータレンズ、 光通信用レンズなどを挙げることができる。
光学素子の表面には、必要に応じて反射防止膜などの光学薄膜を形成してもよ い。
次に、 本発明の光学素子の製造方法について説明する。
本発明の光学素子の製造方法は、 2つの態様からなる。
本発明の光学素子の製造方法の第 1の態様 (光学素子製法 Iという) は、本発 明の光学素子プランク、もしくは本発明の方法で作製した光学素子ブランクを研 肖 lj、 研磨する光学素子の製造方法である。
上記研削、研磨は公知の方法を適用すればよい。光学素子製法 Iは球面レンズ やプリズムなどの研削、研磨によって加工しやすい光学素子や望遠レンズの前玉 レンズのように大口径レンズの製造に好適である。
本発明の光学素子の製造方法の第 2の態様 (光学素子製法 Πという) は、本発 明のプリフォームまたは本発明の方法により得られたプリフォームを加熱し、精 密プレス成形することを特徴とするものである。 すなわち、 光学素子製法 Iは、 本発明の光学素子を製造する方法であって、本発明のプリフォームまたは本発明 の方法により得られたプリフォームを加熱し、 精密プレス成形するものである。 上記精密プレス成形はモールドォプテイクス成形とも呼ばれ、当該技術分野に おいて周知の方法である。光学素子において、光線を透過したり、屈折させたり、 回折させたり、反射させたりする面を光学機能面(レンズを例にとると非球面レ ンズの非球面や球面レンズの球面などのレンズ面が光学機能面に相当する) とい う 、精密プレス成形によればプレス成形型の成形面を精密にガラスに転写する ことにより、プレス成形によって光学機能面を形成することができ、光学機能面 を仕上げるために研削や研磨などの機械加工を加える必要がない。
したがって、本発明の光学素子の製造方法は、 レンズ、 レンズアレイ、 回折格 子、 プリズムなどの光学素子の製造に好適であり、特に非球面レンズを高い生産 性のもとに製造する方法として適している。
精密プレス成形に使用するプレス成形型としては公知のもの、例えば炭化珪素、 ジルコユア、アルミナなどの耐熱性セラミックスの型材の成形面に離型膜を設け たものを使用することができるが、中でも炭化珪素製のプレス成形型が好ましく、 離型膜としては炭素含有膜などを使用することができる。耐久性、 コストの面か ら炭素含有膜としては特にカーボン膜が好ましい。
精密プレス成形では、プレス成形型の成形面を良好な状態に保っため成形時の 雰囲気を非酸化性ガスにすることが望ましい。非酸化性ガスとしては窒素、窒素 と水素の混合ガスなどが好ましい。
本発明の光学素子の製造方法で用いられる精密プレス成形の態様として、 以下、 精密プレス成形 Iと IIの 2つの態様を示す。
(精密プレス成形 I )
精密プレス成形 Iは、 プレス成形型にプリフォームを導入し、プレス成形型と プリフォームを一緒に加熱し、 精密プレス成形するものである。
この精密プレス成形 Iにおいて、プレス成形型と前記プリフォームの温度をと もに、 プリフォームを構成するガラスが 1 0 6〜1 0 1 2 d P a . sの粘度を示す 温度に加熱して精密プレス成形を行うことが好ましい。 また上記ガラスが、 好ましくは 1 012 d P a · s以上、 より好ましくは 1 01 4 d P a · s以上、 さらに好ましくは 1 016 d P a · s以上の粘度を示す温度に まで冷却してから精密プレス成形品をプレス成形型から取り出すことが望まし レ、。
上記の条件により、プレス成形型成形面の形状をガラスにより精密に転写する ことができるとともに、精密プレス成形品を変形することなく取り出すこともで さる。
(精密プレス成形 II)
精密プレス成形 IIは、 予熱したプレス成形型に、 加熱したプリフォームを導 入して精密プレス成形するものである。
この精密プレス成形 IIによれば、 プリフォームをプレス成形型に導入する前 に予め加熱するので、光学素子を製造するサイクルタイムを短縮ィヒしつつ、表面 欠陥のない良好な面精度を有する光学素子を製造することができる。
なおプレス成形型の予熱温度は、プリフォームの予熱温度よりも低く設定する ことが好ましい。 このようにプレス成形型の予熱温度を低くすることにより、 プ レス成形型の消耗を低減することができる。
精密プレス成形 IIにおいて、前記プリフォームを構成するガラスが 1 09 d P a · s以下、 より好ましくは 1 09 d P a · sの粘度を示す温度に予熱すること が好ましい。
また、上記プリフォームを浮上しながら予熱することが好ましく、 さらに前記 プリフォームを構成するガラスが 1 05· 5〜1 09 d P a · sの粘度を示す温度 に予熱することがより好ましく、 1 05' 5 d P a ' s以上 1 09 d P a . s未満の 粘度を示す温度に予熱することがさらに好ましい。
またプレス開始と同時又はプレスの途中からガラスの冷却を開始することが 好ましレヽ。 なお、プレス成形型の温度は、前記プリフォームの予熱温度よりも低い温度に 調温するが、前記ガラスが 109〜1012 d Pa'sの粘度を示す温度を目安にす ればよい。
この方法において、 プレス成形後、 前記ガラスの粘度が 1012 d Pa · s以上 にまで冷却してから離型することが好ましい。
精密プレス成形された光学素子はプレス成形型より取り出され、必要に応じて 徐冷される。成形品がレンズなどの光学素子の場合には、必要に応じて表面に光 学薄膜をコートしてもよい。 実施例
以下、 本発明を実施例によりさらに詳細に説明するが、本発明は、 これらの例 によってなんら限定されるものではない。
実施例 1および比較例 1 (光学ガラスの製造例)
表 1一 1〜表 1一 8に示す組成を有する光学ガラス No. 1〜38および表 1 一 2に示す組成を有する光学ガラス No. 1〜 2を作製するために、 各ガラス成 分に対応する、 2リン酸塩などのリン酸塩や、 フッ化物といつた原料を秤量し、 十分に混合した。 各混合原料中の、 P5 +の合計含有量に対する O 2一の合計含有 量の比 (O2— ZP5+) 、 希土類元素の含有割合 (カチオン%) 、 F—と O2—の合 計含有量に対する F_の含有量の比 (F - Z (F— +02— ) ) を表 1一 1〜表 1一 8に併記する。 上記混合原料を白金坩堝に投入して、 900°Cの電気炉内で、 攪 拌しながら 1〜 3時間かけて原料を加熱熔解し、 清澄、 均質化することにより、 光学ガラス No. 1〜 38および比較光学ガラス No. :!〜 2を得た。 表 1—1 〜表 1—8において、 光学ガラス No. 1〜4が本発明の光学ガラス I、 IIに相 当し、 光学ガラス No. 5〜 9が本発明の光学ガラス I、 IIIに相当し、 光学ガ ラス No. 10〜 38が光学ガラス IVに相当する。 光学ガラス N o . 1-3 8の各光学ガラスの作製では、揮努性が抑制されるよ う、 表 1一 1〜表 1一 8に示すように P 5 +の合計含有量に対する O 2—の合計含 有量の比 (O2— ZP5+) を 3. 5以上に制御し、 その他成分の含有量をバラン スさせて揮発性が大幅に低減された所望特性を有する光学ガラスを得ている。ま た、 上記製造例では、 2リン酸塩などのリン酸塩や、 フッ化物といった未ガラス 化原料を使用したが、 カレットを用いてもよいし、未ガラス化原料と力レツトを 併用してもよい。
各光学ガラス、比較光学ガラスについて、原料を 1時間熔解して得られた 20 0 gのサンプルの屈折率 Nd (1 h) およびアッベ数 v d (1 h) と、 原料を 3 時間熔解して得られた 200 gのサンプルの屈折率 N d (3 h) およびアツベ数 v d (3 h) を測定するとともに、 ガラス転移温度を測定した。 結果を表 1一 1 〜表 1— 8に示す。
なお、 各光学ガラスの屈折率 (Nd) 、 アッベ数 (v d) およびガラス転移温度 (Tg) は、 以下の手法によりそれぞれ測定したものである。
(1) 屈折率 (Nd) 及ぴアッベ数 d)
徐冷降温速度を一 3 0°C/時にして得られた光学ガラスについて測定した。 (2) ガラス転移温度 (Tg)
理学電機株式会社の熱機械分析装置 (サーモ プラス TMA 8 3 1 0) によ り昇温速度を 4 °Cノ分にして測定した。
表 1ー 1
Figure imgf000044_0001
Nd ( 1 h ) は 900 °Cで 1時間熔解したときの屈折率 N dの値を示す。
Nd (3 h) は 900 °Cで 3時間熔解したときの屈折率 N dの値を示す。
V d (1 h) は 900 で 1時間熔解したときのァッべ数 V dの値を示す。
V d (3 h) は 900でで 3時間熔解したときのァッべ数 v dの値を示す。 表 1—2
Figure imgf000045_0001
(注) N d (1 ) は 900 °Cで 1時間熔解したときの屈折率 N dの値を示す。
Nd (3 h) は 900 °Cで 3時間熔解したときの屈折率 N dの値を示す。
V d (1 h ) は 900 °Cで 1時間熔解したときのァッべ数 V dの値を示す。
V d (3 h) は 900 °Cで 3時間熔解したときのァッべ数 V dの値を示す。 P T/JP2008/053897
表 1一 3
Figure imgf000046_0001
(注) N d ( 1 h ) は 900 °Cで 1時間熔解したときの屈折率 N dの値を示す。
Nd (3 h) は 900 °Cで 3時間熔解したときの屈折率 N dの値を示す。
V d (1 h) は 900。Cで 1時間熔解したときのアッベ数 V dの値を示す。
V d (3 h) は 900 °Cで 3時間熔解したときのアッベ数 V dの値を示す。 表 1— 4
Figure imgf000047_0001
(注) Nd (1 h) は 9 00でで 1時間熔解したときの屈折率 Ndの を示す。
Nd (3 h) は 900 °Cで 3時間熔解したときの屈折率 Ndの値を示す。 v d ( 1 h ) は 900 Cで 1時間熔解したときのァッべ数 V dの値を示す。 v d (3 h) は 900 °Cで 3時間熔解したときのアッベ :数 V dの値を示す。 5
Figure imgf000048_0001
(注) Nd (1 h) は 900 °Cで 1時間熔解したときの屈折率 N dの値を示す。
Nd (3 h) は 900でで 3時間熔解したときの屈折率 N dの値を示す。 v d (1 h) は 900。 で 1時間熔解したときのァッべ数 V dの値を示す。 v d (3 h) は 900 °Cで 3時間熔解したときのアッベ数 V dの値を示す。 表 1一 6
Figure imgf000049_0001
Nd (3 h) は 900 °Cで 3時間熔解したときの屈折率 N dの値を示す。
V d ( 1 h ) は 900。Cで 1時間熔解したときのアツベ数 V dの値を示す。
V d (3 h) は 900°Cで 3時間熔解したときのアッベ数 v dの値を示す。 表 1一 7
Figure imgf000050_0001
(注) N d (1 h) は 900 °Cで 1時間熔解したときの屈折率 N dの値を示す。
Nd (3 h) は 900°Cで 3時間熔解したときの屈折率 Ndの値を示す。
V d (1 h) は 900°Cで 1時間熔解したときのアッベ数 V dの値を示す。
V d (3 h) は 900 ^で 3時間熔解したときのァッべ数 V dの値を示す。 表 1一 8
Figure imgf000051_0001
Nd (1 h) は 900 °Cで 1時間熔解したときの屈折率 N dの値を示す。 Nd (3 h) は 900 °Cで 3時間熔解したときの屈折率 N dの値を示す。
V d ( 1 h ) は 900 °Cで 1時間熔解したときのァッべ数 V dの値を示す。
V d (3 h) は 900 °Cで 3時間熔解したときのァッべ数 V dの値を示す。 本発明の光学ガラスは、原料の熔解時間の違レ、によるアツベ数の差が小さいこ とから、 V d ( 3 h ) と V d ( 1 h ) のいずれをアッベ数としてもよいが、 アツ ベ数を厳密に求める必要がある場合は、 v d ( 1 h ) を本発明の光学ガラスのァ ッべ数とするものとする。
なお、 上記各光学ガラス N o . 1〜 3 8に外割りで 0 . 5〜1 3力チオン。 /0の C u 2 +を添カ卩し、 近赤外線吸収ガラスとしてもよい。
光学ガラス N o . 1〜3 8とこれら光学ガラスに外割りで 0 . 5〜1 3力チォ ン%の C u 2 +を添加した近赤外線吸収ガラスのいずれにも脈理は認められず、光 学的に極めて均質であった。
実施例 2 (プレス成形用プリフォームの製造例)
表 1一 1〜表 1一 8に示した光学ガラス N o . :!〜 3 8のそれぞれからなる熔 融ガラスを、ガラスが失透することなく、安定した流出が可能な温度域に温度調 整された白金合金製のパイプから一定の流量で流出させ、ガラス塊を滴下する方 法力 \又は支持体を用いて熔融ガラス流先端を支持した後、支持体を急降下して ガラス塊を分離する方法にて熔融ガラス塊を分離した。得られた各熔融ガラス塊 は、目的とするプリフォーム 1個分の重量に後述する除去分の重量を加えた重量 を有するものである。
次いで、 得られた各熔融ガラス塊をガス噴出口を底部に有する受け型に受け、 ガス噴出口からガスを噴出してガラス塊を浮上しながら成形し、プレス成形用プ リフォームを作製した。 プリフォームの形状は、 熔融ガラスの分離間隔を調整、 設定することにより、球状や扁平球状とした。得られた各プリフォームの重量は 設定値に精密に一致しており、 いずれも表面が滑らかなものであった。
また別の方法として、成形した球状のプリフォームの全表面を公知の方法で研 磨加工し、 全表面層を除去して光学的に均質なプリフォームを得た。 表 1一 1〜表 1一 8に示される光学ガラス N o . 1〜3 8のそれぞれからなる 熔融ガラスを、ガラスが失透することなく、安定した流出が可能な温度域に温度 調整された白金合金製のパイプから一定の流量で流出させ、錄型に連続して流し 込みつつ、鎵型側面の開口部から成形したガラス板を水平方向に一定スピードで 引き出し、ァニール炉の中を通過させてァニールし歪を除去した後、所望の長さ に切断し、 次々とガラス板を得た。
次にガラス板を賽の目状に切断して複数個のガラス片を作製し、これらガラス 片を研削、 研磨して表面が滑らかで光学的に均質なプリフォームを得た。
実施例 3 (光学素子の製造例)
上記のようにして得た各プリフォームを、図 1に示すプレス装置を用いて精密 プレス成形して非球面レンズを得た。
すなわち、 プリフォーム 4を、 上型 1、 下型 2および胴型 3からなるプレス成 形型の下型 2と上型 1の間に設置した後、石英管 1 1内を窒素雰囲気としてヒー ター 1 2に通電して石英管 1 1内を加熱した。 プレス成形型内部の温度を、成形 されるガラスが 1 0 8〜1 O ^ d P a · sの粘度を示す温度に設定し、 同温度を 維持しつつ、押し棒 1 3を降下させて上型 1を押して成形型内にセットされたプ リフォームをプレスした。プレスの圧力は 8 M P a、プレス時間は 3 0秒とした。 プレスの後、プレスの圧力を解除し、プレス成形されたガラス成形品を下型 2及 ぴ上型 1と接触させたままの状態で前記ガラスの粘度が 1 0 1 2 d P a · s以上に なる温度まで徐冷し、次いで室温まで急冷してガラス成形品を成形型から取り出 し非球面レンズを得た。得られた非球面レンズは、極めて高い面精度を有するも のであった。
なお、 図 1において、 参照数字 9は支持棒、 参照数字 1 0は下型'胴型ホルダ 一、 参照数字 1 4は熱電対である。 精密プレス成形により得られた非球面レンズには、必要に応じて反射防止膜を 設けた。
次に上記各プリフォームと同じプリフォームを上記の方法とは別の方法で精 密プレス成形した。 この方法では、 先ず、 プリフォームを浮上しながら、 プリフ オームを構成するガラスの粘度が 1 0 8 d P a · sになる温度にプリフォームを 予熱した。 一方で上型、 下型、胴型を備えるプレス成形型を加熱して、 前記プリ フォームを構成するガラスが 1 0 9〜1 0 1 2 d P a · sの粘度を示す温度にし、 上記予熱したプリフォームをプレス成形型のキヤビティ内に導入して、 1 O MP aで精密プレス成形した。プレス開始とともにガラスとプレス成形型の冷却を開 始し、 成形されたガラスの粘度が 1 0 1 2 d P a · s以上となるまで冷却した後、 成形品を離型して非球面レンズを得た。得られた非球面レンズは、極めて高い面 精度を有するものであった。
精密プレス成形により得られた非球面レンズには必要に応じて反射防止膜を 設けた。
このようにして、 内部品質の高いガラス製光学素子を生産性よく、 しかも高精 度に得ることができた。
実施例 4 (光学素子ブランクの製造例)
表 1 _ 1〜表 1—8に示される光学ガラス N o . 1〜3 8のそれぞれからなる 熔融ガラスを、ガラスが失透することなく、安定した流出が可能な温度域に温度 調整された白金合金製のパイプから一定の流量で流出させ、熔融ガラスをプレス 成形型を構成する下型の成形面上に供給した。 なお、下型成形面上には熔融ガラ スを供給する前に窒化ホウ素粉末などの粉末状離型剤を均一に塗布しておく。 次いで流出する熔融ガラスをシァと呼ばれる切断刃を用いて切断し、下型成形 面上に所望量の熔融ガラス塊を得る。 次いでプレス成形型を構成する上型が上方で待機する位置に熔融ガラス塊を 載せた下型をして上下型を用いてガラス塊が軟ィ匕状態にあるうちにプレス成形 する。こうして得たプレス成形品を離型してプレス成形型から取り出して光学素 子ブランクを得た。次いで得られたプランクをァニールして歪を除去するととも に、屈折率などの光学特性が所望値に精密に等しくなるように調整を行い、所望 形状の光学素子ブランクを得た。 このようにして凸メニスカスレンズ、凹メニス カスレンズ、 平凸レンズ、 平凹レンズ、 両凸レンズ、 両凹レンズなどの各種球面 レンズの形状に近似するレンズブランクを作製した。
次に、表 1一 1〜表 1一 8に示される光学ガラス N o . :!〜 3 8のそれぞれか らなる熔融ガラスを、 ガラスが失透することなく、安定した流出が可能な温度域 に温度調整された白金合金製のパイプから一定の流量で流出させ、錄型に連続し て流し込みつつ、錄型側面の開口部から成形したガラス板を水平方向に一定スピ ードで引き出し、 ァニール炉の中を通過させてァニールし歪を除去した後、所望 の長さに切断し、 次々とガラス板を得た。
次にガラス板を賽の目状に切断して複数個のガラス片を作製し、これらガラス 片をバレル研磨してガラス片のエッジを除去するとともに、所望の重量になるよ う重量調整を行って表面が粗面化されたプリフオームを得た。
そして、プリフォーム全表面に粉末状の窒化ホウ素を均一に塗布し、耐熱性の 皿に載せて加熱炉内に入れ、加熱、軟ィヒさせた。 軟ィヒしたプリフォームをプレス 成形型内に導入し、 プレス成形して光学素子プランクを得た。
こうして得た光学素子ブランクをァニールして歪を除去するとともに、屈折率 などの光学特性が所望の値に精密に等しくなるように光学特性の調整を行った。 このようにして凸メニスカスレンズ、 凹メ-スカスレンズ、 平凸レンズ、 平凹レ ンズ、両凸レンズ、 両凹レンズなどの各種球面レンズの形状に近似するレンズブ ランクを作製した。 実施例 5 (光学素子の製造例)
実施例 4で得た光学素子ブランクを研削、研磨して凸メニスカスレンズ、 凹メ ニスカスレンズ、 平凸レンズ、 平凹レンズ、 両凸レンズ、 両凹レンズなどの各種 球面レンズを作製した。
また、 実施例 4で作製したァニール済みガラス板を切断、 研削、 研磨して、 凸 メ-スカスレンズ、凹メニスカスレンズ、平凸レンズ、平凹レンズ、両凸レンズ、 両凹レンズなどの各種球面レンズ、 プリズムを作製した。
このようにして、 内部品質の高いガラス製光学素子を生産性よく、 しかも高精 度に得ることができた。
実施例 6 (光学素子の製造例)
実施例 1で得た光学ガラス N o . 1〜 3 8に外割りで 0 . 5〜1 3力チォン% (D C u 2 +を添加した近赤外線吸収ガラスをスライスして平板上とし、平板の主表 面を光学研磨して近赤外線吸収フィルターを作製した。 産業上の利用可能性
本発明によれば、 フッリン酸塩ガラスからなる光学ガラスを作製したり、得ら れたガラスを熔融状態でパイプから流出してガラス成形体に成形する場合に、ガ ラス成分の揮発を抑制し、ガラス組成の変動に伴う品質のばらつきを抑制し得る 低分散の光学ガラスを得ることができ、該光学ガラスを用いてプレス成形用プリ フォーム、 さらには各種レンズ等の光学素子を製造することができる。

Claims

請求の範囲
1. アッベ数 (v d) が 70を超え、 P5 +の含有量に対する〇2—の含有量のモ ル比 O2一/ P5+が 3. 5以上であるフッリン酸塩ガラスからなる光学ガラス。
2. アッベ数(V d) が 78を超えることを特徴とする請求項 1に記載の光学ガ ラス。
3. 屈折率 (Nd) が 1. 53を超え、 希土類元素の合計含有量が 5カチオン。 /0 未満であり、 F—と〇2—の合計含有量に対する F—の含有量のモル比 F—/ (F— + 02一)が 0. 2を超えるフッリン酸塩ガラスからなることを特徴とする請求項 1に記載の光学ガラス。
4. 前記フッリン酸塩ガラスが、 カチォン%表示にて、
P 5+ 3〜50%、
A 13 + -40%、
Mg 2 + -10 %、
C a 2 + -30%、
S r 2 + -30%、
B a 2 + -40%、
(ただし 2 +、 C a 2 + S r 2 +、 Β a 2 +の合計含有量が 10 %以上) L i + -30%、
N a + -20%、
K+ -20%、
Υ3 + - 10%、
L a 3 + - 10%、
Gd3 + -1 0%、 Yb3 + 0〜 10%、
B3 + 0〜 10%、
Zn2 + 0〜20%、
I n3 + 0〜 20 %
を含有し、 ァニオン%表示にて、
F一 20〜95%、
2- 5〜 80 %
を含有する請求項 1に記載の光学ガラス。
5. 前記フッリン酸塩ガラスが、 カチォン%表示にて、
P 5+ 3〜30%、
A 13 + 0〜40%、
Mg 2 + 0〜 10%、
C a2 + 0〜 30%、
S r 2 + 0〜30%、
B a2 + 0〜30%、
(ただし、 Mg2+、 C a 2 +、 S r 2+および B a 2 +の合計含有量が 10%以上) L i + 0〜 30 %、
N a + 0〜20%、
K + 0〜20%、
γ 3 + 0〜 10%、
L a3 + 0〜 10%、
Gd3 + 0〜 10%、
Yb3 + 0—10%、
B3 + 0〜10%、 Z n2+ 0〜20%、
I n3+ 0〜20%
を含有し、 ァニオン。 /o表示にて、
F一 40〜95%、
O2- 5〜60%
を含有する請求項 2に記載の光学ガラス
6. 前記フッリン酸塩ガラスが、 カチォン%表示にて、
20〜 50
A l 3 + 5〜 400ノ、
Mg2 + 0〜 100/、
C a2 + 0〜 20
S r 2 + 0〜 20 、
B a 2 + 0〜 400/ '。、
(ただし、 Mg2 +、 C a 2 + , S r 2+および B
L i + 0〜30 %、
N a + 0〜20 %、
K + 0〜20 %、
Y 0〜 5 % (ただし、 5%を除く)
L a 3 + 0〜 5 % (ただし、 5%を除く)
Gd3 + 0〜 5 % (ただし、 5%を除く)
Yb3 + 0〜 5 % (ただし、 5%を除く)
(ただし、 Y3 +、 L a 3 +、 0(13+ぉょび丫
B3 + 0〜 10 %、
Zn2 + 0〜20 %、 I n3+ 0〜20%
を含有する請求項 3に記載の光学ガラス
7. F—の含有量が 65ァユオン%以上であることを特徴とする請求項 1また は 2に記載の光学ガラス。
8. カチオン成分として P5 +、 ァニオン成分として F—および O2一を含むフッ リン酸塩ガラスからなる光学ガラスにおいて、
F一の含有量が 65ァニォン%以上、 P5 +の含有量に対する O2—の含有量のモ ノレ比 O 2一 ZP 5+が 3. 5以上であることを特徴とする光学ガラス。
9. カチォン%表示にて、
P5+ 3〜1 5%、
A 13+ 25-40%,
C a 2+ 5〜35%、 .
S r 2+ 5〜25%
含む請求項 8に記載の光学ガラス。
10. カチォン%表示にて、
Mg 2+ 0〜10%、
0〜20%、
L i + 0〜20%、
N a + 0〜 10%、
K + 0〜10%、
V 3 + 0〜 5 %
含む請求項 9に記載の光学ガラス (
1 1 . フッリン酸ガラスからなる光学ガラスの製造方法において、
原料または力レツトを熔解した後、清澄、均質ィヒして光学ガラスを得るにあた り、 原料またはカレットとして、 P 5 +の合計含有量に対する o 2一の合計含有量 のモル比 O 2— /P 5 +が 3 . 5以上であるものを用い、 請求項 1〜請求項 1 0の レ、ずれかに記載の光学ガラスを製造することを特徴とする光学ガラスの製造方 法。
1 2. 原料または力レツトを用いて調合原料を作り、 前記調合原料を熔解した 後、清澄、均質ィ匕してフッリン酸塩ガラスからなる光学ガラスを製造する方法で あってヽ
前記調合原料中の P 5 +の合計含有量に対する o 2一の合計含有量のモル比 o 2
/P 5 +が 3 . 5以上になるように調合原料を作り、 熔解、 清澄、 均質化を行いァ ッべ数 (v d ) が 7 0を超えるフッリン酸塩ガラスを作製することを特徴とする 光学ガラスの製造方法。
1 3. 原料またはカレッ トを用いて調合原料を作り、 前記調合原料を熔解した 後、 清澄、 均質化して熔融ガラスを作製し、 前記熔融ガラスを成形してフッリン 酸塩ガラスからなる光学ガラスを製造する方法において、
前記熔融ガラスの揮発性が低減するように、前記調合原料中の P 5 +の合計含有 量に対する O 2一の合計含有量のモル比〇 2一 Z P 5 +を制御することを特徴とする 光学ガラスの製造方法。
1 4. アッベ数(V d)が 7 0を超えるフッリン酸ガラスを作製することを特徴 とする請求項 1 3に記載の光学ガラスの製造方法。
1 5. アッベ数(V d) が 7 8を超えるフッリン酸塩ガラスを作製することを特 徴とする請求項 1 2または 1 4に記載の光学ガラスの製造方法。
1 6 . 希土類元素の合計含有量が 5カチオン%未満であり、 F と O 2—の合計 含有量に対する F—の含有量のモル比 F—Z ( F— + 0 2— ) が 0 . 2を超え、 屈折 率 (N d) が 1 . 5 3を超えるフッリン酸塩ガラスを作製することを特徴とする 請求項 1 2〜1 4のいずれかに記載の光学ガラスの製造方法。
1 7 . F—の含有量が 6 5ァニオン0 /。以上のフッリン酸ガラスを作製すること を特徴とする請求項 1 2〜1 5のいずれかに記載の光学ガラスの製造方法。
1 8 . 請求項 1〜1 0のいずれかに記載の光学ガラスまたは請求項 1 1〜1 7 のいずれかに記載の方法により得られた光学ガラスからなることを特徴とする プレス成形用プリフォーム。
1 9 . 熔融ガラスをパイプから流出させて、所望重量の熔融ガラス塊を分離し、 該ガラス塊をガラスが冷却する過程でプリフォームに成形するプレス成形用プ リフォームの製造方法において、
請求項 1 8に記載のプレス成形用プリフォームを成形することを特徴とする プレス成形用プリフォームの製造方法。
2 0 . 熔融ガラスを錄型に鏡込んでガラス成形体を作製し、 該ガラス成形体を 加工してプレス成形用プリフォームを作製するプレス成形用プリフォームの製 造方法において、
請求項 1 8に記載のプレス成形用プリフォームを成形することを特徴とす るプレス成形用プリフォームの製造方法。
2 1 . 研削、 研磨により光学素子に仕上げられる光学素子ブランクにおいて、 請求項 1〜1 0のいずれかに記載の光学ガラスまたは請求項 1 1〜1 7のい ずれかに記載の方法により得られた光学ガラスからなることを特徴とする光学 素子ブランク
2 2 . 請求項 1〜1 0のいずれかに記載の光学ガラスまたは請求項 1 1〜1 7 のいずれかに記載の方法により得られた光学ガラスからなることを特徴とする 光学素子。
2 3 . 研削、 研磨により光学素子に仕上げられる光学素子ブランクの製造方法 において、
請求項 1 8に記載のプリフォームまたは請求項 1 9または 2 0に記載の方法 により得られたプリフォームを加熱し、プレス成形することを特徴とする光学素 子ブランクの製造方法。
2 4 . ガラス原料を熔融し、 得られた熔融ガラスを流出し、 熔融ガラス流から 熔融ガラス塊を分離して、該熔融ガラス塊をプレス成形する光学素子ブランクの 製造方法において、
請求項 1〜1 0のいずれかに記載の光学ガラスまたは請求項 1 1〜1 7のい ずれかに記載の方法により得られた光学ガラスを熔融、成形することを特徴とす る光学素子ブランクの製造方法。
2 5 . 請求項 2 1に記載の光学素子プランク、 もしくは請求項 2 3または 2 4 に記載の方法で作製した光学素子ブランクを研削、研磨する光学素子の製造方法。
2 6 . 請求項 1 8に記載のプリフォームまたは請求項 1 9または 2 0に記載の 方法により得られたプリフォームを加熱し、精密プレス成形することを特徴とす る光学素子の製造方法。
PCT/JP2008/053897 2007-03-06 2008-02-27 光学ガラス、プレス成形用プリフォーム、光学素子およびそれらの製造方法 WO2008111439A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200880007001.1A CN101622207B (zh) 2007-03-06 2008-02-27 光学玻璃、模压成形用预成形件、光学元件以及它们的制造方法
JP2009503981A JP5410270B2 (ja) 2007-03-06 2008-02-27 光学ガラス、プレス成形用プリフォーム、光学素子およびそれらの製造方法
US12/528,189 US8354352B2 (en) 2007-03-06 2008-02-27 Optical glass, preform for press forming, optical element, and processes for producing these
KR1020097018488A KR101486092B1 (ko) 2007-03-06 2008-02-27 광학 유리, 프레스 성형용 프리폼, 광학 소자 및 이들의 제조 방법
EP08721317.9A EP2119682B1 (en) 2007-03-06 2008-02-27 Optical glass, preform for press forming, optical element, and processes for producing these
US13/707,743 US8728962B2 (en) 2007-03-06 2012-12-07 Optical glass, preform for press forming, optical element, and processes for producing these

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-055316 2007-03-06
JP2007055316 2007-03-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/528,189 A-371-Of-International US8354352B2 (en) 2007-03-06 2008-02-27 Optical glass, preform for press forming, optical element, and processes for producing these
US13/707,743 Division US8728962B2 (en) 2007-03-06 2012-12-07 Optical glass, preform for press forming, optical element, and processes for producing these

Publications (1)

Publication Number Publication Date
WO2008111439A1 true WO2008111439A1 (ja) 2008-09-18

Family

ID=39759382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053897 WO2008111439A1 (ja) 2007-03-06 2008-02-27 光学ガラス、プレス成形用プリフォーム、光学素子およびそれらの製造方法

Country Status (7)

Country Link
US (2) US8354352B2 (ja)
EP (1) EP2119682B1 (ja)
JP (4) JP5410270B2 (ja)
KR (1) KR101486092B1 (ja)
CN (3) CN106277761B (ja)
TW (1) TWI428308B (ja)
WO (1) WO2008111439A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105418A1 (en) * 2008-03-28 2009-09-30 Hoya Corporation Fluorophosphate glass, glass material for press molding, optical element blank, optical element and methods of manufacuring the same
JP2010059021A (ja) * 2008-09-04 2010-03-18 Hoya Corp フツリン酸ガラス、プレス成形用ガラス素材、光学素子ブランク、光学素子それぞれの製造方法
JP2011037637A (ja) * 2009-08-06 2011-02-24 Ohara Inc 光学ガラス、光学素子及びプリフォーム
US20110287922A1 (en) * 2009-08-26 2011-11-24 Hoya Corporation Fluorophosphate glass, glass material for press molding, optical element blank, optical element, processes for production of same, and process for production of glass moldings
JP2012001422A (ja) * 2010-05-18 2012-01-05 Ohara Inc 光学ガラス、光学素子およびプリフォーム
JP2012012282A (ja) * 2010-06-02 2012-01-19 Ohara Inc 光学ガラス、光学素子およびプリフォーム
WO2012050112A1 (ja) * 2010-10-14 2012-04-19 Hoya株式会社 フツリン酸塩ガラス、プレス成型用ガラス素材、光学素子それぞれの製造方法。
US8637415B2 (en) 2008-03-28 2014-01-28 Hoya Corporation Fluorophosphate glass, precision press molding preform, optical element blank, optical element and methods of manufacturing the same
US8642490B2 (en) 2008-03-28 2014-02-04 Hoya Corporation Fluorophosphate glass, precision press molding preform, optical element blank, optical element and method of manufacturing the same
JP2014101255A (ja) * 2012-11-21 2014-06-05 Nippon Electric Glass Co Ltd フツリン酸ガラスの製造方法
EP2412684A4 (en) * 2009-03-27 2016-04-06 Cdgm Glass Co Ltd OPTICAL FLUORPHOSPHATE GLASS
CN110156323A (zh) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
JP2020050582A (ja) * 2018-09-19 2020-04-02 Hoya株式会社 光学ガラス及び光学素子
JP2022502333A (ja) * 2018-09-28 2022-01-11 シーディージーエム グラス カンパニー リミテッド フルオロリン酸光学ガラス、並びに光学プリフォーム、素子、及び機器

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060252775A1 (en) * 2005-05-03 2006-11-09 Henderson Samuel T Methods for reducing levels of disease associated proteins
JP5188269B2 (ja) * 2008-05-30 2013-04-24 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランク、光学素子およびそれらの製造方法
CN102260043B (zh) * 2010-05-18 2016-05-18 株式会社小原 光学玻璃、光学元件和预成型坯
CN106045307A (zh) * 2010-12-20 2016-10-26 株式会社小原 光学玻璃、光学元件和预成型坯
CN102557437B (zh) * 2010-12-20 2016-08-17 株式会社小原 光学玻璃、光学元件和预成型坯
JP5801773B2 (ja) * 2011-08-11 2015-10-28 Hoya株式会社 フツリン酸ガラス及びその製造方法並びに近赤外光吸収フィルター
CN107140829A (zh) * 2012-04-11 2017-09-08 成都光明光电股份有限公司 近红外光吸收玻璃、元件及滤光器
CN102923949A (zh) * 2012-04-11 2013-02-13 成都光明光电股份有限公司 近红外光吸收玻璃、元件及滤光器
DE102012210552B4 (de) * 2012-06-22 2014-06-05 Schott Ag Farbgläser, Verfahren zu ihrer Herstellung und Verwendung
CN104470860B (zh) * 2012-07-18 2018-04-13 Hoya株式会社 玻璃成型品及其制造方法、光学元件坯料、以及光学元件及其制造方法
WO2014014060A1 (ja) * 2012-07-18 2014-01-23 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子とそれらの製造方法
CN105016619B (zh) * 2014-04-22 2018-02-16 成都光明光电股份有限公司 氟磷酸盐光学玻璃
JP6391392B2 (ja) * 2014-09-26 2018-09-19 ダイハツ工業株式会社 自動車の車体前部構造
TWI698326B (zh) * 2015-01-14 2020-07-11 德商科思創德意志股份有限公司 以全相光學元件製備光學鑄件之方法及光學鑄件
CN107614449B (zh) * 2015-07-07 2020-08-21 Hoya株式会社 玻璃、光学玻璃、磷酸盐光学玻璃、抛光用玻璃材料、压制成型用玻璃材料及光学元件
CN105601106B (zh) * 2016-01-13 2017-12-12 中国科学院上海光学精密机械研究所 掺钕氟磷酸盐玻璃及其制备方法
CN107445475B (zh) 2016-06-24 2020-02-07 成都光明光电股份有限公司 光学玻璃、光学预制件和光学元件
JP6992494B2 (ja) * 2016-12-26 2022-01-13 Agc株式会社 近赤外線カットフィルタガラス及び近赤外線カットフィルタ
CN108623152B (zh) * 2018-06-14 2021-11-26 成都光明光电股份有限公司 光学玻璃、光学预制件及光学元件
CN110606660A (zh) * 2018-06-14 2019-12-24 成都光明光电股份有限公司 光学玻璃、光学预制件及光学元件
JP6964050B2 (ja) * 2018-07-20 2021-11-10 オリンパス株式会社 光学素子の製造方法
CN111217522A (zh) * 2018-11-27 2020-06-02 宜城市泳瑞玻璃科技有限公司 一种适合于二次压型以及非球面精密压型的光学玻璃
CN111434634B (zh) * 2019-01-11 2023-04-28 株式会社小原 光学玻璃、光学元件以及预制件
CN113880425A (zh) * 2021-11-25 2022-01-04 成都光明光电股份有限公司 近红外光吸收玻璃、元件及滤光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124740A (ja) * 1988-10-06 1990-05-14 Sumita Kogaku Glass Seizosho:Kk フツリン酸塩光学ガラス
JPH05208842A (ja) * 1991-09-27 1993-08-20 Carl Zeiss:Fa 青色領域で正異常部分分散を示す光学ガラス
JPH06157068A (ja) * 1992-11-20 1994-06-03 Ohara Inc 弗燐酸塩光学ガラス
JPH10139451A (ja) 1996-11-06 1998-05-26 Nippon Steel Corp ガラス成形金型用合金およびそれから製作されたガラス成形金型
JPH1160267A (ja) * 1997-08-14 1999-03-02 Ohara Inc 弗燐酸塩光学ガラス

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2120814A (en) 1934-10-30 1938-06-14 Ici Ltd Azo dyestuffs
FR2011703A6 (ja) * 1968-06-27 1970-03-06 Leitz Ernst Gmbh
JPS53105517A (en) * 1977-02-28 1978-09-13 Hoya Glass Works Ltd Fluorophosphate laser glass
DE2717916C3 (de) * 1977-04-22 1980-06-12 Jenaer Glaswerk Schott & Gen., 6500 Mainz Gläser mit kleiner nichtlinearer Brechzahl, insbesondere für die Lasertechnik
JPS5842138B2 (ja) * 1979-10-04 1983-09-17 株式会社 小原光学硝子製造所 弗化物ガラスの製造方法
JPS6081042A (ja) * 1983-10-08 1985-05-09 Ohara Inc 弗燐酸塩光学ガラス
JPS62100452A (ja) * 1985-10-19 1987-05-09 エルンスト ライツ ヴエツラ− ゲセルシヤフト ミツト ベシユレンクテル ハフツング 異常な正の部分分散があり且つ改善された物理化学的性質を有する光学弗燐酸塩ガラスおよびその製造方法
JPS6483537A (en) * 1987-09-26 1989-03-29 Hoya Corp Fluorophosphate glass
JPH01270537A (ja) * 1988-04-20 1989-10-27 Sumita Kogaku Glass Seizosho:Kk 弗燐酸塩光学ガラス
JP2616983B2 (ja) * 1988-12-01 1997-06-04 株式会社住田光学ガラス フツリン酸塩光学ガラス
JPH02188442A (ja) * 1989-01-17 1990-07-24 Nikon Corp リン酸系光学ガラス
JP2727735B2 (ja) * 1990-05-07 1998-03-18 株式会社ニコン 軽量弗燐酸塩光学ガラス
FR2664516B1 (fr) * 1990-07-13 1993-06-18 Air Liquide Four de maintien en temperature et de traitement metallurgique.
JP4179641B2 (ja) * 1994-10-31 2008-11-12 株式会社住田光学ガラス Tb又はEuを含有するフツ燐酸塩蛍光ガラス
JP3961585B2 (ja) * 1995-11-21 2007-08-22 株式会社住田光学ガラス 可視蛍光を呈するフツ燐酸塩蛍光ガラス
JPH09211505A (ja) * 1996-01-30 1997-08-15 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ増幅器
JP3823402B2 (ja) 1996-11-13 2006-09-20 フジノン株式会社 弗燐酸系光学ガラスの射出成形方法
JP5349721B2 (ja) * 2000-06-05 2013-11-20 株式会社オハラ 光照射による屈折率変化の小さい光学ガラス
JP2002234753A (ja) * 2001-02-02 2002-08-23 Minolta Co Ltd 弗燐酸塩光学ガラス
US7151064B2 (en) 2001-10-30 2006-12-19 Sumita Optical Glass, Inc. Optical glass suitable for mold forming
JP3973410B2 (ja) * 2001-11-26 2007-09-12 Hoya株式会社 光学ガラスおよび光学部品
JP4305816B2 (ja) * 2002-11-08 2009-07-29 Hoya株式会社 光学ガラス、プレス成形用ガラス成形体および光学素子
JP4165703B2 (ja) * 2003-09-01 2008-10-15 Hoya株式会社 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP4570576B2 (ja) 2005-03-30 2010-10-27 Hoya株式会社 光学ガラス、プレス成形用プリフォームとその製造方法、および光学素子とその製造方法
CN1854100B (zh) * 2005-03-30 2012-05-09 Hoya株式会社 光学玻璃、模压预制体、其制造方法、光学元件及其制造方法
JP4498315B2 (ja) * 2005-07-28 2010-07-07 Hoya株式会社 光学ガラスおよび光学素子とその製造方法
CN1903765A (zh) * 2005-07-28 2007-01-31 Hoya株式会社 光学玻璃、光学元件及其制造方法
JP5004202B2 (ja) * 2005-09-14 2012-08-22 Hoya株式会社 光学ガラス、精密プレス成形用プリフォームおよび光学素子
JP5085049B2 (ja) * 2006-03-31 2012-11-28 Hoya株式会社 モールドプレス用ガラス素材、該ガラス素材の製造方法、及びガラス光学素子の製造方法
JP5491686B2 (ja) * 2006-09-07 2014-05-14 株式会社オハラ ガラス
JP4597937B2 (ja) * 2006-10-10 2010-12-15 株式会社オハラ 光学ガラス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124740A (ja) * 1988-10-06 1990-05-14 Sumita Kogaku Glass Seizosho:Kk フツリン酸塩光学ガラス
JPH05208842A (ja) * 1991-09-27 1993-08-20 Carl Zeiss:Fa 青色領域で正異常部分分散を示す光学ガラス
JPH06157068A (ja) * 1992-11-20 1994-06-03 Ohara Inc 弗燐酸塩光学ガラス
JPH10139451A (ja) 1996-11-06 1998-05-26 Nippon Steel Corp ガラス成形金型用合金およびそれから製作されたガラス成形金型
JPH1160267A (ja) * 1997-08-14 1999-03-02 Ohara Inc 弗燐酸塩光学ガラス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2119682A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105418A1 (en) * 2008-03-28 2009-09-30 Hoya Corporation Fluorophosphate glass, glass material for press molding, optical element blank, optical element and methods of manufacuring the same
US8642490B2 (en) 2008-03-28 2014-02-04 Hoya Corporation Fluorophosphate glass, precision press molding preform, optical element blank, optical element and method of manufacturing the same
US8637415B2 (en) 2008-03-28 2014-01-28 Hoya Corporation Fluorophosphate glass, precision press molding preform, optical element blank, optical element and methods of manufacturing the same
JP2010059021A (ja) * 2008-09-04 2010-03-18 Hoya Corp フツリン酸ガラス、プレス成形用ガラス素材、光学素子ブランク、光学素子それぞれの製造方法
EP2412684A4 (en) * 2009-03-27 2016-04-06 Cdgm Glass Co Ltd OPTICAL FLUORPHOSPHATE GLASS
JP2011037637A (ja) * 2009-08-06 2011-02-24 Ohara Inc 光学ガラス、光学素子及びプリフォーム
US8633121B2 (en) * 2009-08-26 2014-01-21 Hoya Corporation Fluorophosphate glass, glass material for press molding, optical element blank, optical element, processes for production of same, and process for production of glass moldings
US20110287922A1 (en) * 2009-08-26 2011-11-24 Hoya Corporation Fluorophosphate glass, glass material for press molding, optical element blank, optical element, processes for production of same, and process for production of glass moldings
JP2012001422A (ja) * 2010-05-18 2012-01-05 Ohara Inc 光学ガラス、光学素子およびプリフォーム
JP2012012282A (ja) * 2010-06-02 2012-01-19 Ohara Inc 光学ガラス、光学素子およびプリフォーム
JP2012082114A (ja) * 2010-10-14 2012-04-26 Hoya Corp フツリン酸塩ガラス、プレス成型用ガラス素材、光学素子それぞれの製造方法。
WO2012050112A1 (ja) * 2010-10-14 2012-04-19 Hoya株式会社 フツリン酸塩ガラス、プレス成型用ガラス素材、光学素子それぞれの製造方法。
JP2014101255A (ja) * 2012-11-21 2014-06-05 Nippon Electric Glass Co Ltd フツリン酸ガラスの製造方法
JP2020050582A (ja) * 2018-09-19 2020-04-02 Hoya株式会社 光学ガラス及び光学素子
JP7410677B2 (ja) 2018-09-19 2024-01-10 Hoya株式会社 光学ガラス及び光学素子
JP2022502333A (ja) * 2018-09-28 2022-01-11 シーディージーエム グラス カンパニー リミテッド フルオロリン酸光学ガラス、並びに光学プリフォーム、素子、及び機器
CN110156323A (zh) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器

Also Published As

Publication number Publication date
CN106277761A (zh) 2017-01-04
KR101486092B1 (ko) 2015-01-23
JP2012153602A (ja) 2012-08-16
JP2018083756A (ja) 2018-05-31
CN106277761B (zh) 2019-09-03
TWI428308B (zh) 2014-03-01
TW200900370A (en) 2009-01-01
EP2119682B1 (en) 2017-01-18
KR20090120477A (ko) 2009-11-24
JPWO2008111439A1 (ja) 2010-06-24
CN103011588A (zh) 2013-04-03
US8354352B2 (en) 2013-01-15
CN101622207B (zh) 2016-08-31
US8728962B2 (en) 2014-05-20
US20100113247A1 (en) 2010-05-06
JP6364382B2 (ja) 2018-07-25
JP5410270B2 (ja) 2014-02-05
CN101622207A (zh) 2010-01-06
EP2119682A4 (en) 2012-02-08
EP2119682A1 (en) 2009-11-18
JP6850746B2 (ja) 2021-03-31
US20140005025A1 (en) 2014-01-02
JP2015178455A (ja) 2015-10-08
JP5914140B2 (ja) 2016-05-11
CN103011588B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP6850746B2 (ja) 光学ガラス、プレス成形用プリフォーム、光学素子およびそれらの製造方法
JP5115984B2 (ja) フツリン酸ガラス、プレス成形用ガラス素材、光学素子ブランク、光学素子とそれぞれの製造方法
JP5063537B2 (ja) フツリン酸ガラス、精密プレス成形用プリフォーム、光学素子ブランクおよび光学素子とそれら製造方法
JP5004202B2 (ja) 光学ガラス、精密プレス成形用プリフォームおよび光学素子
JP5069649B2 (ja) フツリン酸ガラス、精密プレス成形用プリフォーム、光学素子ブランクおよび光学素子とそれら製造方法
JP5443417B2 (ja) フツリン酸ガラス、精密プレス成形用プリフォーム、光学素子ブランクおよび光学素子とそれら製造方法
JP2010059021A (ja) フツリン酸ガラス、プレス成形用ガラス素材、光学素子ブランク、光学素子それぞれの製造方法
JP5443416B2 (ja) フツリン酸ガラス、精密プレス成形用プリフォーム、光学素子ブランクおよび光学素子とそれら製造方法
JP4437807B2 (ja) 光学ガラスの製造方法、精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP5927227B2 (ja) 光学ガラス、精密プレス成形用プリフォーム、及び光学素子
JP5916934B1 (ja) 光学ガラス、精密プレス成形用プリフォーム、及び光学素子
CN102300823B (zh) 氟磷酸盐玻璃、模压成型用玻璃材料、光学元件坯料、光学元件及其制造方法和玻璃成型体的制造方法
JP5153527B2 (ja) カレット原料、フツリン酸ガラス、プレス成形用ガラス素材、光学素子ブランク、光学素子それぞれの製造方法
JP5658599B2 (ja) フツリン酸ガラス、プレス成形用ガラス素材、光学素子ブランク、光学素子とそれぞれの製造方法
JP2010189269A (ja) 光学ガラス、精密プレス成形用プリフォームおよび光学素子
JP5215743B2 (ja) 光学ガラスの製造方法、精密プレス成形用プリフォームの製造方法および光学素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880007001.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009503981

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2008721317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008721317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12528189

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097018488

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE