WO2008069217A1 - 有機無機複合体 - Google Patents

有機無機複合体 Download PDF

Info

Publication number
WO2008069217A1
WO2008069217A1 PCT/JP2007/073423 JP2007073423W WO2008069217A1 WO 2008069217 A1 WO2008069217 A1 WO 2008069217A1 JP 2007073423 W JP2007073423 W JP 2007073423W WO 2008069217 A1 WO2008069217 A1 WO 2008069217A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
compound
inorganic composite
metal
Prior art date
Application number
PCT/JP2007/073423
Other languages
English (en)
French (fr)
Inventor
Nobuo Kimura
Hiromoto Shibata
Kazuki Hasegawa
Original Assignee
Nippon Soda Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/517,467 priority Critical patent/US20100036012A1/en
Application filed by Nippon Soda Co., Ltd. filed Critical Nippon Soda Co., Ltd.
Priority to EP07850071.7A priority patent/EP2090600B1/en
Priority to JP2008548299A priority patent/JP5468265B2/ja
Priority to CN2007800445855A priority patent/CN101547947B/zh
Publication of WO2008069217A1 publication Critical patent/WO2008069217A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Definitions

  • the present invention relates to an organic-inorganic composite, and more particularly to an organic-inorganic composite in which the surface carbon content is reduced from the inside by irradiation with light having a wavelength of 350 nm or less.
  • trifunctional silanes are mainly used as raw materials for commercially available silane-based coating agents, and polysiloxanes having appropriate hardness and flexibility are formed by these trifunctional silanes.
  • the trifunctional silane film does not have sufficient hard coat properties.
  • the trifunctional silane if tetrafunctional silane or colloidal silica force is compensated hardcoat property by mixing S, harden the film, likely cracked, problems force s that adhesion is poor .
  • silane-based coating agent for example, there is a composition for forming an antifouling film containing a trifunctional alkoxysilane compound having an epoxy group (see Patent Document 1).
  • a silane-based coating agent containing a photocatalyst has also been proposed, and a film is cured using a photoacid generator, a crosslinking agent, a curing catalyst, or the like (see, for example, Patent Documents 2 and 3).
  • a silane-based organic-inorganic composite gradient material having a component gradient structure in which the content of the metal compound in the material continuously changes in the depth direction from the surface of the material has also been proposed (for example, (See Patent Document 4)
  • the inventors of the present invention irradiate an organic silicon compound with ultraviolet light in the presence of a photosensitive compound, whereby the surface has a very high hardness, and the inside and the back side have an appropriate hardness.
  • an organic-inorganic composite having excellent adhesion to the substrate was provided (see Patent Document 5).
  • further improvements have been desired in terms of adhesion to substrates and moisture resistance.
  • Patent Document 6 includes (meth) acrylic acid ester mixture (A), photopolymerization initiator (B), ethylenically unsaturated group-containing urethane oligomer (C), colloidal silica.
  • a hard coat film containing a sol (D) and a diluent (E) is described, and the obtained film is described to have good pencil hardness, curl, and adhesion to a substrate.
  • Patent Document 7 describes (A) oxide particles of at least one element selected from the group consisting of silicon, aluminum, zirconium, titanium, zinc, germanium, indium, tin, antimony, and cerium. And (B) a compound having a urethane bond and two or more polymerizable unsaturated groups in the molecule, and (C) a photopolymerization initiator.
  • a curable composition has excellent coating properties, and has high hardness and a high refractive index on the surface of various substrates, as well as scratch resistance and substrate.
  • a coating film (film) excellent in adhesion to the low refractive index layer can be formed.
  • Patent Document 8 comprises a mixture of a hydrolyzate of an organosilicon compound and metal oxide fine particles, (B) a polyfunctional acrylate or metatalylate, and (C) a photopolymerization initiator.
  • Ultraviolet curable hard coat resin composition characterized by the above-mentioned is described, and bleed to the surface of the antistatic agent, deterioration of transparency, deterioration of moisture resistance, etc. can be kept within a practically acceptable range. Further, it is described that the hard coat function (scratch resistance, surface hardness, moisture resistance, solvent resistance, chemical resistance, etc.) is satisfied.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-195417
  • Patent Document 2 JP 2002-363494 A
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-169755
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-336281
  • Patent document 5 WO2006 / 088079
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-235018
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2005-272702
  • Patent Document 8 JP 2001-214092
  • An object of the present invention is to improve adhesion to a substrate and moisture resistance of a film made of a polysiloxane-based organic-inorganic composite having a surface whose hardness is higher than that of the inside. At the same time, it is to improve the hardness by reducing the transparency and flexibility of the hard coat film made of an ultraviolet curable resin.
  • the present inventors have blended a polysiloxane-based organic-inorganic composite with an ultraviolet curable compound, so that the surface has extremely high hardness, It has been found that an organic-inorganic composite having excellent adhesion and moisture resistance can be produced, and the present invention has been completed.
  • the present invention relates to
  • R represents an organic group in which a carbon atom is directly bonded to Si
  • X represents a hydroxyl group or a hydrolyzable group.
  • N represents 1 or 2, and when n is 2, each R is the same or different.
  • (4—n) is 2 or more, each X may be the same or different.
  • An organic-inorganic composite comprising:
  • R in the formula (I) is a group having a bur group, a group having an oxysilane ring, NR ′ (where R
  • the present invention also provides:
  • the metal-chelate compound has a hydroxyl group or a hydrolyzable group (1) to (3)! /,
  • the hydrolyzate and / or condensate of the metal chelate compound is a product hydrolyzed with 5 to 100 mol of water with respect to 1 mol of the metal chelate compound ( 1) to (6)! /,
  • the hydrolyzate and / or condensate of the metal organic acid salt compound is a product hydrolyzed with 5 to 100 mol of water with respect to 1 mol of the metal organic acid salt compound. (1) to (7)! /, The organic-inorganic composite according to any one of the above,
  • the present invention also provides:
  • R represents an organic group in which a carbon atom is directly bonded to Si
  • X represents a hydroxyl group or a hydrolyzable group.
  • N represents 1 or 2, and when n is 2, each R is the same or different.
  • the organic key compound represented by (4 -n) is 2 or more, and each X may be the same or different.
  • An organic-inorganic composite thin film that has a condensate of the product and has a minimum carbon content of 0.5 m or less in the depth direction from the film surface to 80% or less of the carbon content on the film back side.
  • an organic-inorganic composite thin film characterized by further comprising a cured product of an ultraviolet curable compound,
  • R in the formula (I) is a group having a bur group, a group having an oxysilane ring, NR ′ (wherein
  • R ′ represents a hydrogen atom, an alkyl group or an aryl group, and each R ′ may be the same as or different from each other.
  • N CR '' (where R '' is a hydrogen atom or alkyl
  • Each R ′ ′ may be the same as or different from each other.
  • At least one light selected from the group consisting of metal chelate compounds, metal organic acid salt compounds, metal compounds having two or more hydroxyl groups or hydrolyzable groups, hydrolysates thereof, and condensates thereof.
  • a sensitive compound an ultraviolet curable compound and a photopolymerization initiator
  • R represents an organic group in which a carbon atom is directly bonded to Si
  • X represents a hydroxyl group or a hydrolyzable group.
  • N represents 1 or 2, and when n is 2, each R is the same or different. However, when the (4-n) is 2 or more, each X may be the same or different.
  • the light containing a wavelength of 350 nm or less is included in the organic chain compound and / or the condensate thereof.
  • R in formula (I) is a group having a bur group, a group having an oxysilane ring, NR '(wherein
  • R ′ represents a hydrogen atom, an alkyl group or an aryl group, and each R ′ may be the same as or different from each other.
  • N CR '' (where R '' is a hydrogen atom or alkyl
  • Each R ′ ′ may be the same as or different from each other.
  • Is an organic key The method for producing an organic-inorganic composite according to (13), wherein the elemental compound is 20 to 100% by weight with respect to the total amount of the organic compound.
  • the present invention also provides:
  • R represents an organic group in which a carbon atom is directly bonded to Si
  • X represents a hydroxyl group or a hydrolyzable group.
  • N represents 1 or 2, and when n is 2, each R is the same or different.
  • (4—n) is 2 or more, each X may be the same or different.
  • At least one photosensitivity selected from the group consisting of metal chelate compounds, metal organic acid salt compounds, metal compounds having two or more hydroxyl groups or hydrolyzable groups, hydrolysates thereof, and condensates thereof.
  • a composition for forming an organic-inorganic composite comprising:
  • R in formula (I) is a group having a bur group, a group having an oxysilane ring, NR ′ (wherein
  • R ′ represents a hydrogen atom, an alkyl group or an aryl group, and each R ′ may be the same as or different from each other.
  • N CR '' (where R '' is a hydrogen atom or alkyl
  • Each R ′ ′ may be the same as or different from each other.
  • the organic curable compound and / or the condensate thereof, the photosensitive compound, the ultraviolet curable compound, and the photopolymerization initiator are characterized in that the ultraviolet curable compound is 2 to 98% by mass.
  • (17) to (20) are related to the composition for forming an organic-inorganic composite according to any one of!
  • the present invention also provides:
  • R represents an organic group in which a carbon atom is directly bonded to Si
  • X represents a hydroxyl group or a hydrolyzable group.
  • N represents 1 or 2, and when n is 2, each R is the same or different.
  • (4—n) is 2 or more, each X may be the same or different.
  • At least one photosensitivity selected from the group consisting of metal chelate compounds, metal organic acid salt compounds, metal compounds having two or more hydroxyl groups or hydrolyzable groups, hydrolysates thereof, and condensates thereof.
  • An additive for an ultraviolet curable compound comprising an organic-inorganic composite-forming composition containing
  • R in the formula (I) is a group having a bur group, a group having an oxysilane ring, NR '(wherein
  • R ′ represents a hydrogen atom, an alkyl group or an aryl group, and each R ′ may be the same as or different from each other.
  • N CR '' (where R '' is a hydrogen atom or alkyl
  • Each R ′ ′ may be the same as or different from each other.
  • the value of the film thickness used when defining the carbon content in the thin film is: This value is calculated when sputter etching is performed in ESCA analysis, and does not necessarily match the actual film thickness value. The reason is that the film thickness etched by sputter etching depends on the material of the film, and the actual film thickness value can be obtained by converting the etching rate for each film material.
  • the standard sample is a thermally oxidized SiO film formed on a silicon wafer. Ellipso
  • the etching rate was calculated by ESCA analysis of a standard sample whose thickness was measured in advance using a meter while sputter etching.
  • the “minimum value of the carbon content between the film surface and the depth direction of 0.5 in” means that the carbon content in the depth direction from the film surface is measured by ESCA analysis. In the graph of carbon content obtained at this time, it means the minimum value of the measured carbon content at each depth from the film surface to the depth direction 0.5 111. Details of the measurement method are as described in the examples.
  • the carbon content on the back side of the film is a value when the carbon content reaches a constant depth deeper than the depth at which the carbon content gradually increases from the film surface. It may not be the value of the surface.
  • the carbon content is constant in the thickness direction of the film from the depth at which the carbon content is gradually increased, and is not different from the value on the back surface.
  • the organic group bonded to the organosilicon compound is oxidized and decomposed, but not all the organic groups are oxidized and decomposed.
  • An organic cage compound having an organic group with a reactive site such as a group, glycidoxypropyl group or amino group is oxidatively decomposed (see Fig. 19).
  • the decrease in the nearby peak is not observed at all compared to before the ultraviolet irradiation.
  • FIG. 21 shows the absorbance of the organic silicon compound.
  • Some silane compounds absorb light with a wavelength of 350 nm or less (see B-2 and B-5 in Fig. 21).
  • UV light (254 nm to 400 nm) from a high-pressure mercury lamp in the absence of a photosensitive compound
  • the carbon content on the film surface side does not decrease at all due to the oxidation reaction (see Fig. 22). This indicates that the oxidative decomposition of the organic silicon compound does not occur without the addition of the photosensitive compound.
  • oxidative decomposition by ultraviolet irradiation is performed by photo-sensitive compounds. It is inferred that the absorbed light energy is transferred to the reactive site of the organokeloid compound, creating some high energy state (instantaneous high temperature state) and causing oxidative degradation. As for the site to be oxidized, only a portion that is easily oxidized, such as a bull group, is selectively oxidized.
  • the ultraviolet curable resin also has a double bond site such as a bull group and other polymerization reaction sites, which may be oxidatively decomposed by the photosensitive compound.
  • the ultraviolet irradiation amount necessary for curing the ultraviolet curable resin is 300 mj / cm 2 or less, and the irradiation amount necessary for the oxidative decomposition is Since it is different from lOOOOmj / cm 2 or more, the polymerization reaction of the UV curable resin is completed before causing oxidative degradation.
  • photopolymerization initiators are usually designed to effectively use 365nm light emitted by lamps such as high-pressure mercury lamps. Is very fast compared to the oxidation reaction of organosilicon compounds.
  • the wavelength of light used for the reaction is different and the reaction rate is also different.
  • Curing reaction and oxidative decomposition reaction (surface oxidation curing reaction) of the organic silicon compound proceed in two stages.
  • UV curable resin to be combined since it proceeds in the two-stage curing as described above, most UV curable resins can be used without causing inhibition of curing.
  • the effect is obtained by combining both the force S on which urethane acrylate and epoxy acrylate are loaded. Also, in the case of composite systems, a mineralized surface (SiO-like layer) is formed and wear resistance, etc.
  • FIG. 1 is a diagram showing the distribution of film components in the film thickness direction measured by ESCA for the thin film of Example 1.
  • FIG. 2 is a diagram showing the distribution of film components in the film thickness direction measured by ESCA for the thin film of Example 3.
  • FIG. 3 is a graph showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film of Example 4.
  • FIG. 4 is a diagram showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film of Comparative Example 1.
  • FIG. 5 is a diagram showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film of Comparative Example 2.
  • FIG. 6 is a diagram showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film before UV irradiation of Example 3 ′.
  • FIG. 7 is a diagram showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film after UV irradiation of Example 3 ′.
  • FIG. 8 is a diagram showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film after UV irradiation in Example 8 ′.
  • FIG. 9 is a diagram showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film before UV irradiation of Example 9 ′.
  • FIG. 10 is a diagram showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film after UV irradiation of Example 9 ′.
  • FIG. 11 is a graph showing the results of measuring the contact angle of water on the film surface immediately after UV ozone cleaning for the thin films of Examples 4 and 8 and Comparative Example 1.
  • 0-1 is the comparative example 1
  • E-4 is the example 4
  • E-8 is the example 8.
  • FIG. 12 shows the film formation in the film thickness direction measured by ESCA for the thin film of Example 10. It is a figure which shows distribution of minutes.
  • FIG. 13 A diagram showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film of Example 11.
  • FIG. 14 This is a diagram showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film of Example 12.
  • FIG. 14 This is a diagram showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film of Example 12.
  • FIG. 15 A graph showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film of Example 13.
  • FIG. 16 is a graph showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film of Example 14.
  • FIG. 17 A graph showing the distribution of each film component in the film thickness direction measured by ESCA for the thin film of Example 15.
  • FIG. 18 is a graph showing the absorbance distribution in the ultraviolet region of the photosensitive compound of Reference Example 1 measured by a spectrophotometer.
  • FIG. 21 is a graph showing the absorbance distribution in the ultraviolet region measured with a spectrophotometer for the organosilane compound of Reference Example 4 (the curves of B-1 and B-6 overlap in the vicinity of 0 because there is no absorption) ).
  • the organic-inorganic composite of the present invention is
  • R represents an organic group in which a carbon atom is directly bonded to Si
  • X represents a hydroxyl group or a hydrolyzable group.
  • N represents 1 or 2, and when n is 2, each R is the same or different. However, when (4 -n) is 2 or more, each X may be the same or different.
  • B selected from the group consisting of metal chelate compounds, metal organic acid salt compounds, metal compounds having two or more hydroxyl groups or hydrolyzable groups, hydrolysates thereof, and condensates thereof.
  • a photosensitizing compound and / or a derivative thereof is dispersed in a non-bonded state in a condensate of an organic key compound, or a photosensitivity to a condensate of an organic key compound.
  • Including compounds and / or derivatives thereof for example, those having a Si—O—M bond (M represents a metal atom in a light-sensitive compound)) and those composed of a mixture thereof Is done.
  • R and X are as follows.
  • R represents an organic group in which a carbon atom is directly bonded to Si. Examples of such organic groups include substituted! /, May! /, Hydrocarbon groups, substituted les, may! /, Groups composed of hydrocarbon polymers, and the like. It may be substituted with a hydrocarbon group having 1 to 30 carbon atoms that may be substituted! /, May! /, A linear or branched alkyl group with 10 to 10 carbon atoms, substituted! /, Even! /, A cycloalkyl group having 3 to 8 carbon atoms, substituted! /, May!
  • a cycloalkenyl group having 3 to 8 carbon atoms may have a preferred aromatic ring.
  • the organic group may contain an oxygen atom, a nitrogen atom, or a key atom. It may be a group containing a polymer such as polysiloxane, polybutylsilane, or polyacrylsilane.
  • the substituent include a halogen and a methacryloxy group, and examples of the halogen include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group having 1 to 10 carbon atoms examples include linear or branched alkynole groups having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an n propyl group, an isopropyl group, an n Butyl group, isobutyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, 2-methylbutyl group, 2,2-dimethylpropyl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group , Nonyl group, isononyl group, decyl group and the like, and examples of the alkyl group having a longer chain than 10 carbon atoms include lauryl group, tridecyl group, myristyl group, pentadecyl group, normityl group, heptadecy
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like.
  • a straight-chain or branched alkenyl group having 2 to 10 carbon atoms is a straight-chain or branched alkenyl group having 2 to 10 carbon atoms having a carbon-carbon double bond at any one or more positions.
  • Group for example, Etul group, Proper 1-Yen 1-Yil group, Proper 2--Yen 1-Nole group, Proper 1-Yen 2--Yil group, Butter 1-Yen 1-Yil group, Buter 2--Yen 1 Group, butter 3—en-1-inole group, butter 1-en 2—yl group, butter 3-en-l 2-yl group, penta 1-en 1-yl group, penta 4-e 1-yl group, penter 1--2-inole group, penter 4-2-2-inole group, 3 methinolevator 1-- 1- 1 group, hex- 1- 1-yl group, hex- 1- 1 group, hepter 1 Yen 1-inole group, hepter 6—Yen 1-inole group, Otter 1 group
  • the C3-C8 cycloalkenyl group means a C3-C8 alkenyl group having a carbon-carbon double bond at any one or more positions and having a cyclic portion, for example, 1-cyclopentene-1-yl group, 2-cyclopentene-1-yl group, 1-cyclohexene-1-yl group, 2-cyclohexene-1-yl group, 3-cyclohexene-1-yl group Etc.
  • Examples of the organic group having an aromatic ring include C aryl C alkyl group,
  • C aryl C alkenyl group includes styryl group, 3-phenol
  • Examples of the group having an oxygen atom include an oxysilane ring (epoxy group) group such as an epoxy group, an epoxyalkyl group, and a glycidoxypropyl group, an talyloxymethyl group, and a metatalyloxymethyl group.
  • oxysilane ring epoxy group
  • epoxy group such as an epoxy group, an epoxyalkyl group, and a glycidoxypropyl group, an talyloxymethyl group, and a metatalyloxymethyl group.
  • the epoxyalkyl group is preferably a linear or branched epoxyalkyl group having 3 to 10 carbon atoms, such as an epoxymethyl group, an epoxyethynole group, an epoxynpropyl group, an epoxy group.
  • the group having an oxygen atom in addition to the oxysilane ring include a glycidoxypropyl group.
  • the group having a nitrogen atom is NR '(wherein R' is a hydrogen atom, an alkyl group or an alkyl group.
  • Each R ′ may be the same as or different from each other.
  • —N CR ′ ′ (wherein R ′ ′ represents a hydrogen atom or an alkyl group, and each R ′ ′ is the same as each other)
  • Examples of the alkyl group preferred by the group having) include those described above, and examples of the aryl group include a phenyl group, a naphthyl group, an anthracene 1-yl group, a phenanthrene 1-yl group, and the like.
  • the group having -NR 'in includes a CH-NH group, C H-NH group, CH
  • the group that is decomposed by irradiation with light having a wavelength of 350 nm or less includes a group having a bur group, a group having an oxysilane ring, NR '(wherein R' is a hydrogen atom, an alkyl
  • N CR ′ ′ (wherein R ′ ′ represents a hydrogen atom or an alkyl group, and each R ′ ′ represents each other
  • groups having an alkenyl group such as an en-1-ino group, a group having a butyl group such as a methacrylmethyl group, an attaryloxymethyl group and a methacryloxymethyl group.
  • the group having an oxysilane ring, the group having NR ′, and the group having —N ⁇ CR ′′ are as described above.
  • n 1 or 2
  • each R may be the same or different.
  • these can be used individually by 1 type or in combination of 2 or more types.
  • X represents a hydroxyl group or a hydrolyzable group.
  • the hydrolyzable group is, for example, a group that can be hydrolyzed to form a silanol group by heating at 25 ° C to 100 ° C in the presence of no catalyst and excess water, or siloxane condensation.
  • the acyloxy group is preferred.
  • Examples of the alkoxy group having 1 to 4 carbon atoms include a methyloxy group, an ethyloxy group, a propyloxy group, an isopropyloxy group, an n-butyloxy group, an isobutyloxy group, a tert-butyloxy group, and the like.
  • Examples of the ⁇ 6 acyloxy group include an acetyloxy group and a benzoyloxy group.
  • Examples of the halogen include fluorine atom, chlorine atom, fluorine atom, iodine atom and the like.
  • Examples of the isocyanate group include an isocyanate group bonded to an alkyl group, an isocyanate group bonded to a cycloalkyl group, and an aryl group. And an isocyanate group bonded to a group, an isocyanate group bonded to a group, an isocyanate group bonded to an alkyl group substituted with an aryl group, and the like.
  • examples of the organic silicon compound having a group made of a hydrocarbon polymer include ethyl acid, butyl (meth) acrylate, (Meth) acrylic acid esters such as 2-ethylhexyl ylyl, cyclohexyl (meth) acrylate, etc .; carboxylic acids such as (meth) acrylic acid, itaconic acid, fumaric acid, and acid anhydrides such as maleic anhydride
  • An epoxy compound such as glycidyl (meth) acrylate; an amino compound such as jetyl aminoethyl (meth) acrylate and aminoethyl butyl ether;
  • the condensate of the organic silicon compound as the main component in the organic-inorganic composite of the present invention is a method for producing the organic-inorganic composite of the present invention described later and the organic silicon compound in the composition for forming the organic-inorganic composite. And / or a condensed product thereof.
  • the photosensitive compound of the present invention is a compound that can remove the carbon component on the surface side by the action of light with a wavelength of 350 nm or less irradiated from the surface side, regardless of the mechanism, and is preferably
  • the minimum value of the carbon content between the membrane surface and the depth direction of 0.5 m is 80% or less of the carbon content on the back side of the membrane, more preferably 2 to 60%, and even more preferably 2 to It is a compound that can be reduced to 40%, and particularly preferably, a compound that can remove the carbon component to a predetermined depth so that the removal amount gradually decreases from the surface side, that is, carbon from the surface to a predetermined depth.
  • the light having a wavelength of 350 nm or less is light that uses a light source having light of any wavelength of 350 nm or less as a component, preferably light having a wavelength of 350 nm or less. It means light using a light source, that is, light using a light source with a wavelength of 350 nm or less with the largest amount of components.
  • a metal chelate compound As the photosensitive compound in the organic-inorganic composite of the present invention, a metal chelate compound is used.
  • a hydrolyzate and / or condensate of a metal chelate compound is preferred, which is preferably a condensate.
  • the compound derived therefrom include a compound obtained by further condensing a condensate of a metal chelate compound.
  • force, light-sensitive compounds and / or derivatives thereof are in a mixed state where they may be chemically bonded to organic compounds or dissociated in a non-bonded state. But you can.
  • the metal chelate compound is preferably a metal chelate compound having a hydroxyl group or a hydrolyzable group, more preferably a metal chelate compound having two or more hydroxyl groups or hydrolyzable groups. Note that having two or more hydroxyl groups or hydrolyzable groups means that the total of the hydrolyzable groups and hydroxyl groups is 2 or more.
  • As the metal chelate compound ⁇ -ketocarbonyl compounds, ⁇ -ketoester compounds, and ⁇ -hydroxyester compounds are preferred.
  • methyl acetate acetate, ⁇ propyl acetate acetate, isopropyl acetate acetate, acetate acetate ⁇ / 3-ketoesters such as butyl, acetoacetate sec butyl, acetoacetate tbutyl; acetylosylacetone, hexane 2, 4 dione, heptane 2, 4 dione, heptane 3, 5 dione, otatan 2, 4 di 1,3-diketones such as 1,4-dione, 5-methylone hexane-1,4-dione; hydroxycarboxylic acids such as glycolic acid and lactic acid: and the like.
  • the metal organic acid salt compound is a compound composed of a salt obtained from a metal ion and an organic acid.
  • organic acid include carboxylic acids such as acetic acid, oxalic acid, tartaric acid and benzoic acid; Sulfur-containing organic acids such as acids and thiphenols; phenolic compounds; enol compounds; oxime compounds; imide compounds; aromatic sulfonamides;
  • the metal compound having two or more hydroxyl groups or hydrolyzable groups excludes the metal chelate compound and the metal organic acid salt compound.
  • a metal hydroxide or a metal alcoholate is used.
  • Examples of the hydrolyzable group in the metal compound, metal chelate compound, or metal organic acid salt compound include an alkoxy group, an acyloxy group, a halogen group, and an isocyanate group, and an alkoxy group having 1 to 4 carbon atoms, carbon A number 1 to 4 acyloxy group is preferred.
  • having two or more hydroxyl groups or hydrolyzable groups means that the total of the hydrolyzable groups and the hydroxyl groups is 2 or more.
  • a hydrolyzate and / or condensate of such a metal compound 0.5 mol or more of water is used per 1 mol of a metal compound having two or more hydroxyl groups or hydrolyzable groups. It is preferable that it is hydrolyzed. More preferably, it is hydrolyzed using 0.5 to 2 mol of water.
  • the hydrolyzate and / or condensate of the metal chelate compound is preferably one hydrolyzed using 5 to 100 mol of water per 1 mol of the metal chelate compound. More preferably, it is hydrolyzed with 5 to 20 moles of water.
  • the hydrolyzate and / or condensate of the metal organic acid salt compound is one obtained by hydrolyzing with 5 to 100 mol of water with respect to 1 mol of the metal organic acid salt compound. It is more preferable that the product is hydrolyzed with 5 to 20 moles of water.
  • Examples of the metal in the metal compound, metal chelate compound, or metal organic acid salt compound include titanium, zirconium, aluminum, silicon, germanium, indium, tin, tantalum, zinc, tungsten, lead, and the like. Of these, titanium, zirconium, aluminum, and tin are preferred, with titanium being particularly preferred. These may be used alone or in combination of two or more.
  • the ultraviolet curable compound of the present invention is a compound or resin having a functional group that undergoes a polymerization reaction upon irradiation with ultraviolet rays in the presence of a photopolymerization initiator, and is a (meth) acrylate compound, an epoxy.
  • Examples include resins and bur compounds excluding acrylate compounds.
  • the number of functional groups is not particularly limited as long as it is 1 or more.
  • Examples of the acrylate compound include polyurethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, polyamide (meth) acrylate, polybutadiene (meth) acrylate, and polystyryl (meth) acrylate. Rate, polycarbonate diatalylate, Ripropylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, trimethylol propane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, siloxane having (meth) tertyloxy group Powers such as polymers are preferable. Polyester (meth) acrylate, polyurethane (meth) acrylate, and epoxy poly (meth) acrylate are more preferable, and polyurethane (meth) acrylate is more preferable.
  • the molecular weight is not limited as long as it dissolves in the organic-inorganic composite-forming composition, but is usually 500 to 50,000, preferably 1,000 to 10,000 as a weight average molecular weight.
  • a polymer obtained by causing a polymerization reaction by ultraviolet irradiation is a cured product.
  • Epoxy (meth) acrylate is obtained by the force S obtained by an esterification reaction between an oxysilane ring of a low molecular weight bisphenol type epoxy resin and a nopolac epoxy resin and acrylic acid, for example.
  • Polyester (meth) acrylate is obtained, for example, by esterifying the hydroxyl groups of a polyester oligomer having hydroxyl groups at both ends obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol with acrylic acid. Alternatively, it can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding alkylene oxide to a polyvalent carboxylic acid with acrylic acid.
  • Urethane (meth) acrylate is a reaction product of an isocyanate compound obtained by reacting a polyol and diisocyanate and an acrylate monomer having a hydroxyl group.
  • Polyesters include polyester, polyester and polyester.
  • Examples of commercially available urethane (meth) acrylates used in the present invention include trade names of Arakawa Chemical Industries, Ltd .: Beam Set 102, 502H, 505A-6, 510, 550B, 551B, 575, 575CB, EM-90, EM92, Sannopco Co., Ltd. trade name: Former 6008, 6210, Shin-Nakamura Chemical Co., Ltd. trade name: NK Oligo U-2PPA, U-4HA, U-6HA, H- 15HA, UA—32PA, U—324A, U—4H, U—6H, manufactured by Toa Gosei Co., Ltd.
  • Epoxy resins include hydrogenated bisphenol ⁇ diglycidyl ether, 3,4-epoxy cyclohexylmethyl-3,4 epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexylene 5,5-spiro3,4-epoxy) cyclohexane metadioxane, bis (3,4-epoxycyclohexylmethyl) adipate, and the like.
  • Examples of the photopolymerization initiator of the present invention include compounds that generate cationic species by irradiation with ⁇ light, and (b) compounds that generate active radical species by irradiation with light.
  • an onium salt having a structure represented by the following formula (II) can be mentioned as a preferred example.
  • This onium salt is a compound that releases a Lewis acid by receiving light.
  • the cation is an onion ion
  • W is S, Se, Te, P, As, Sb, Bi, 0, I, Br, Cl, or N ⁇ N—
  • R 1 , R 2 , R 3 and R 4 are the same or different organic groups
  • a, b, c and d are each an integer of 0 to 3
  • (a + b + c + d) is the valence of W M is a metal or metalloid constituting the central atom of the halide complex [ML].
  • L is, for example, a halogen atom such as F, Cl, Br, etc.
  • e is the net charge of the halide complex ion
  • f is the valence of M.
  • Specific examples of the anion (ML) in the above formula (II) include tetrafluoroborate e + f
  • an onium salt having an anion represented by the formula [ML (OH) _] can also be used.
  • Onion salts having other anions such as sulfonic acid anions and trinitrotoluene sulfonic acid anions. These are measured by the ability S to be used alone or in combination of two or more.
  • Examples of compounds that generate active radical species by light irradiation include, for example, acetophenone, acetophenone benzil ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane 1-one, xanthone, fluorenone, Benzorenodehydr, fluorene, anthraquinone, triphenylenoamine, carbazole, 3-methylacetophenone, 4-clobenbenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-aminoaminobenzophenone, benzoinpropyletherenole, Benzoinethyl ether, benzil dimethyl ketal, 1- (4-isopropylphenyl) -2 hydroxy-2 methinolepropan 1-one, 2-hydroxy-1-2-methyl-1- 1-phenylpropane 1-one, thixanthone, jetyl Oxanthone, 2-I
  • the blending amount of the photopolymerization initiator used in the present invention is preferably 0.0;! To 20% by mass with respect to the solid content of the (meth) acrylate-based ultraviolet curable compound. 0. 1 ⁇ ; 10% by mass is more preferred.
  • a sensitizer can be added as necessary.
  • trimethylamine methyldimethanolamine, triethanolamine, p-dimethylaminoacetophenone, p-dimethylamino.
  • Ethyl benzoate, p-dimethylaminobenzoic acid isoaminole, N, N-dimethylbenzylamine, 4,4′-bis (jetylamino) benzophenone, and the like can be used.
  • the organic / inorganic composite of the present invention include, for example, a molded body molded in a cage and a thin film formed by coating on a substrate.
  • a thin film there is no particular limitation as long as it is a method of drying after coating on a substrate! /, But it is preferable to irradiate light having a wavelength of 350 nm or less after drying.
  • a thin film (organic-inorganic composite thin film) with higher hardness can be obtained.
  • “light including a wavelength of 350 nm or less” means not only a wavelength of 350 nm or less but also an ultraviolet ray having a wavelength longer than 350 nm. This is because the photosensitive compound requires a wavelength of 350 nm or less, while the ultraviolet curable compound has photosensitivity at a wavelength exceeding 350 nm, preferably around 365 nm.
  • the pencil hardness specified in the JIS K 5600-5-4 pencil method is 1H to It is about 4H, and is preferably 2H to 4H from the viewpoint of adhesion to the substrate and hardness.
  • the pencil hardness specified in the JIS K 5600-5-4 pencil method is preferably 5H or more, and preferably 7H or more.
  • Examples of the substrate on which the thin film of the present invention can be formed include metals, ceramics, glass, and plastics. Conventionally, it has been difficult to form a thin film on a plastic substrate, and it has been limited to inorganic substrates such as glass. However, the thin film of the present invention can be easily formed into a film even if it is difficult to form a plastic substrate. Suitable for optical components. Examples of such plastic include polycarbonate resin, acrylic resin, polyimide resin, polyester resin, epoxy resin, liquid crystal polymer resin, and polyether sulfone.
  • the coating method of the composition for forming an organic-inorganic composite it is possible to use a known coating method, for example, dating method, spray method, bar coating method, roll coating method, spin coating method. , Curtain coating method, gravure printing method, silk screen method, ink jet method, etc.
  • the film thickness to be formed is not particularly limited and is, for example, about 0.05 to 200 ⁇ m.
  • Examples of the drying treatment of the film formed by applying the composition for forming an organic-inorganic composite include 40 to 200. In C;! ⁇ 120 minutes fi force, preferably 60 ⁇ 20. More preferably, C is carried out for about 10 to 60 minutes.
  • irradiation with light having a wavelength of 350 nm or less can be performed using a known device such as a high-pressure mercury lamp, a low-pressure mercury lamp, a metallometer, a ride lamp, or an excimer lamp.
  • a known device such as a high-pressure mercury lamp, a low-pressure mercury lamp, a metallometer, a ride lamp, or an excimer lamp.
  • Is preferably light mainly composed of light of any wavelength in the range of 150 to 350 nm, and light mainly composed of light of any wavelength in the range of 250 to 310 nm. More preferred. If it is sensitive to light, wavelengths in this range and does not respond to light above 350 nm, preferably over 31 Onm, it is hardly affected by sunlight.
  • the irradiation light quantity of the light to be irradiated is, for example, about 0.;! To lOOj / cm 2, and considering the film curing efficiency (relation between irradiation energy and the degree of film
  • Irradiation of light having a wavelength of 350 nm or less is irradiation using a light source having light of any wavelength of 350 nm or less, preferably a light source having light of any wavelength of 350 nm or less as a main component.
  • Irradiation used that is, irradiation using a light source with a wavelength of 350 nm or less with the largest amount of components.
  • the organic-inorganic composite thin film of the present invention preferably has a structure in which the carbon content of the film surface portion is less than the carbon content of the film back surface portion, and the depth from the film surface is preferable.
  • the carbon content of the film surface part is smaller than the carbon content of the film back surface part means that the total carbon amount force S from the film surface to the film center part, and the total carbon from the film back surface to the film center part. Means less than quantity Taste.
  • the organic-inorganic composite thin film of the present invention preferably has a gradual increase in carbon content from the surface of the film to a predetermined depth.
  • it is preferably 5 to 80% of the film thickness, more preferably 10 to 50%, for example, when the film thickness is about!
  • the depth at which the carbon content gradually increases is about 50-2000 °.
  • the organic-inorganic composite and the organic-inorganic composite-based thin film of the present invention may be produced by using an organic silicon compound and / or a condensate thereof in the presence of a photosensitive compound, an ultraviolet curable compound and a photopolymerization initiator. Examples thereof include a method of irradiating light having a wavelength of 350 nm or less, and an organic-inorganic composite-forming composition described later can be used.
  • the organic silicon compound used in the production method of the present invention is preferably a condensate, and the average particle size thereof is preferably 50 nm or less, more preferably 20 nm or less.
  • the light-sensitive compound used in the production method of the present invention is preferably a hydrolyzate and / or a condensate, particularly a hydrolyzate and / or a condensate of a metal chelate compound.
  • the average particle size is preferably 20 nm or less, more preferably l Onm or less. Thereby, the transparency of the organic-inorganic composite (organic-inorganic composite-based thin film) can be improved. These average particle diameters can be measured using, for example, HPPS manufactured by Malvern Instruments Ltd.
  • the organic-inorganic composite-forming composition of the present invention is
  • R represents an organic group in which a carbon atom is directly bonded to Si
  • X represents a hydroxyl group or a hydrolyzable group.
  • N represents 1 or 2, and when n is 2, each R is the same or different.
  • (4—n) is 2 or more, each X may be the same or different.
  • Metal chelate compound metal organic acid salt compound, two or more hydroxyl groups or hydrolyzable At least one photosensitive compound selected from the group consisting of a metal compound having a group, a hydrolyzate thereof, and a condensate thereof,
  • composition further contains water and / or a solvent.
  • organic silicon compound and photosensitive compound represented by the formula (I) are the same as those described above.
  • the solvent to be used is not particularly limited.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic hydrocarbons such as hexane and octane
  • cyclohexane and cyclopentane are examples of aromatic hydrocarbons.
  • Alicyclic hydrocarbons such as acetone, methyl ethyl ketone and cyclohexanone; ethers such as tetrahydrofuran and dioxane; esters such as ethyl acetate and butyl acetate; N, N-dimethylformamide, N, Amides such as N-dimethylacetamide; Sulfoxides such as dimethyl sulfoxide; Anoleco mononoles such as methanol and ethanol; Polyhydric alcohol derivatives such as ethylene glycomonoremonomethinoatenole and ethyleneglycolmonoremonomethyl ether acetate And the like. These solvents can be used alone or in combination of two or more.
  • the solid content in the composition for forming an organic-inorganic composite of the present invention is; Abrasion force S is preferable, and 10 to 60% by mass is more preferable.
  • the UV curable compound is 2 to 98% by mass, preferably 5 to 95% by mass, based on the total mass of the organic key compound and / or its condensate, photosensitive compound, UV curable compound and photopolymerization initiator.
  • the content of the photosensitive compound depends on its type, but generally, the metal atom in the photosensitive compound is 0.01- It is preferably 0.5 molar equivalent, and more preferably 0.05-0.2 molar equivalent.
  • a tetrafunctional silane or colloidal silica may be added to the composition for forming an organic-inorganic composite of the present invention for the purpose of improving the hardness of the resulting coating film.
  • tetrafunctional silanes include tetraaminosilane, tetrachlorosilane, tetraacetoxysilane, and tetramethoxysilane.
  • Tetraethoxy silane, tetrabutoxy silane, tetrabenzyloxy silane, tetraphenoxy silane, tetra (meth) attaoxy silane, tetrakis [2- (meth) attaryloxy ethoxy] silane, tetrakis (2-vinyloxy ethoxy) silane, tetraglyc Cyloxysilane, tetrakis (2-vinyloxybutoxy) silane, tetrakis (3-methyl-3-oxetanemethoxy) silane can be cited.
  • colloidal silica water-dispersed colloidal silica, organic solvent-dispersed colloidal silica such as methanol or isopropyl alcohol, and the like can be cited.
  • composition for forming an organic-inorganic composite of the present invention is used to develop various properties such as coloring of the obtained coating film, thickening of the coating film, prevention of ultraviolet transmission to the base, imparting corrosion resistance, and heat resistance. It is also possible to add and disperse the filler separately.
  • the filler include water-insoluble pigments such as organic pigments and inorganic pigments, and particulate and fibrous or scaly metals and alloys other than pigments, and oxides, hydroxides, carbides, and nitrides thereof. And sulfides.
  • the filler include particulate, fibrous or scale-like iron, copper, aluminum, nickel, silver, zinc, ferrite, carbon black, stainless steel, silicon dioxide, titanium oxide, aluminum oxide, and oxide. Chromium, manganese oxide, iron oxide, zirconium oxide, cobalt oxide, synthetic mullite, aluminum hydroxide, iron hydroxide, silicon carbide, silicon nitride, boron nitride, clay, diatomaceous earth, slaked lime, gypsum, talc, barium carbonate, Calcium carbonate, Magnesium carbonate, Barium sulfate, Bentonite, Mica, Zinc green, Chrome green, Cobalt green, Viridian, Guinea green, Cobalt chromium green, Siele green, Green soil, Manganese green, Pigment green, Ultramarine, Bitumen, Rock Ultramarine blue, cobalt blue, cerulean blue, copper borate, molybdenum blue, copper sulfide, Baltic Purple,
  • the organic-inorganic composite-forming composition of the present invention includes other known dehydrating agents such as methyl orthoformate, methyl orthoacetate, and tetraethoxysilane, various surfactants, and silanes other than those described above.
  • dehydrating agents such as methyl orthoformate, methyl orthoacetate, and tetraethoxysilane
  • various surfactants such as sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfit
  • composition for forming an organic-inorganic composite of the present invention water and / or a solvent are added as necessary, and an organic silicon compound, a photosensitive compound, an ultraviolet curable compound, and a photopolymerization initiator are added. Mix.
  • a photosensitive compound is mixed with a solvent, a predetermined amount of water is added, (part) is hydrolyzed, and then an organosilicon compound is added (part) Hydrolyze.
  • an ultraviolet curable compound is dissolved in a solvent, a photopolymerization initiator is added, and then both solutions are mixed.
  • the amount of the predetermined amount of water depends on the type of the photosensitive compound. For example, when the photosensitive compound is a metal compound having two or more hydroxyl groups or hydrolyzable groups, 1 mol of the metal compound is used. On the other hand, it is preferable to use 0.5 mol or more of water, and more preferably 0.5 to 2 mol of water. In addition, when the photosensitive compound is a metal chelate compound or a metal organic acid salt compound, it is preferable to use 5 to 100 moles of water for 1 mole of the metal chelate compound or the metal organic acid salt compound. More preferably, 20 moles of water is used.
  • R represents an organic group in which a carbon atom is directly bonded to Si
  • X represents a hydroxyl group or a hydrolysis group. Represents a sex group.
  • n represents 1 or 2, and when n is 2, each R may be the same or different. When (4-n) is 2 or more, each X may be the same or different.
  • At least one photosensitivity selected from the group consisting of metal chelate compounds, metal organic acid salt compounds, metal compounds having two or more hydroxyl groups or hydrolyzable groups, hydrolysates thereof, and condensates thereof.
  • composition for forming an organic-inorganic composite containing can be improved in hardness by being added to an ultraviolet curable compound or a resin.
  • composition for forming an organic-inorganic composite having the above composition is the same as that described in WO2006 / 088079, and can be prepared based on the description in this document. What is necessary is just to select suitably the addition ratio with respect to an ultraviolet curable compound according to the objective.
  • butyltrimethoxysilane [B-1] (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-1003) was used.
  • a photopolymerization initiator in this solution As a photopolymerization initiator in this solution
  • a membrane was prepared in the same manner as in Example 3 except that 1-hydroxy-cyclohexyl roof diketone (Irgacure (registered trademark) 184) was used as the polymerization initiator and ethanol was used as the solvent.
  • Irgacure registered trademark
  • a photopolymerization initiator in this solution As a photopolymerization initiator in this solution
  • a coating film forming solution [E-5] was prepared.
  • a membrane was prepared in the same manner as in Example 8 except that 1-hydroxy-cyclohexyl roof di-ketone (Irgacure (registered trademark) 184) was used as the polymerization initiator and ethanol was used as the solvent.
  • Irgacure registered trademark
  • a membrane was prepared in the same manner as in Example 9 except that 1-hydroxy-cyclohexyl roof diketone (Irgacure (registered trademark) 184) was used as the polymerization initiator and ethanol was used as the solvent.
  • Irgacure registered trademark
  • the coating film forming solutions [E— ;!] to [E-8] obtained in Examples 1 to 8 were used as soda lime glass substrates [SLG] or polycarbonate substrates (manufactured by Mitsubishi Engineering Plastics Co., Ltd., Iupilon). NF-2000) Bar coating was formed on [PC] and heated at 60 ° C for 30 minutes in a hot air circulation dryer.
  • a condensing type high-pressure mercury lamp (UV light mainly composed of 365nm, 313nm, and 254nm wavelengths, manufactured by Eye Graphics, 1 lamp type, 120W / cm, lamp height 9.8cm, conveyor speed 8m / Min), purple with an integrated UV irradiation dose of 2100mj / cm 2
  • a thin film was obtained by irradiating with external rays.
  • the film-forming solution [E8] prepared in Example 8 was bar-coated, dried at 60 ° C, and irradiated with ultraviolet rays with a cumulative UV irradiation amount of 800 mj / cm 2 to obtain a thin film of about 4 m. It was.
  • the film-forming solution [E-9] on this thin film was dried at 60 ° C after bar coating so that the film thickness was about 3111, and an ultraviolet ray with an accumulated ultraviolet ray irradiation of 4000 mj / cm 2 was obtained.
  • butyltrimethoxysilane [B-1] (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-1003) was used.
  • the solid content of [C 1] was 27% by weight.
  • a photopolymerization initiator in this solution As a photopolymerization initiator in this solution
  • a coating film-forming composition [E] was used in the same manner as in Example 10 except that 3 methacryloxypropyltrimethoxysilane [B-2] (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-503) was used as the organic key compound. — 12] was produced.
  • composition for forming a coating film was the same as in Example 11 except that 3-glycidoxypropyltrimethoxysilane [B-3] (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403) was used as the organic key compound. [E-15] was produced.
  • Zirconium acetyl diacetate manufactured by Nippon Soda Co., Ltd., ZR-181, solid content in terms of zirconium oxide: 15.0% by weight
  • Og in ethanol / ethyl acetate / 2 butano Solvent 60/20/20 mixed solvent 41.
  • ion-exchanged water After dissolving in Og, ion-exchanged water 5.
  • Og (10 times mole / mole of zirconium oxide) was slowly added dropwise with stirring to cause hydrolysis. One day later, the solution was filtered to obtain a yellow transparent zirconium oxide nano-dispersion [A-2] having a zirconium oxide equivalent concentration of 5% by weight.
  • the particle size in the solution showed a broad distribution with a peak at 4 nm.
  • a photopolymerization initiator in this solution As a photopolymerization initiator in this solution
  • Tetra - Bok propoxytitanium manufactured by Nippon Soda Co., Ltd., A- 1, in terms of titanium oxide solid weight: 28 - 0 wt 0/0
  • 100. 0 g of Etanonore / acetic Echinore / 2-butanol one Norre 60/20 / It was dissolved in 201.0 mixed solvent 418.0 g. While stirring this solution, 42. lg of acetic acid (2 times mol / mole of titanium oxide) was added, and then 63 ⁇ lg of ion-exchanged water (10 times mol / mole of titanium oxide) was slowly added dropwise. Decomposed. One day later, the solution was filtered to obtain a yellow transparent titanium oxide nanodispersion [A-4] having a titanium oxide equivalent concentration of 5% by weight.
  • urethane Atari rate oligomer manufactured by Hitachi Chemical Co., Ltd., Hitaloid 7903- 1
  • 40 weight 0/0 so as ethanol / acetic acid
  • Echiru / 2-butanol 60/20/20 mixture of Dissolved in.
  • the above [C-2] solution and [D-4] solution were mixed in the same manner as in Example 23 except that [4] was used, to prepare a coating film forming solution [E-25].
  • a photopolymerization initiator to this solution 2 heat Dorokishi - 2-methyl - 1-phenyl - propane - 1-one to (Darocure (R) 11 73) with respect to the solid content of the epoxy Atari rate oligomers, 4 weight 0 / 0 and lysed so, to prepare a solution [D-5].
  • the coating film forming solutions [E-10] to [E-15] obtained in Examples 10 to 15 were used as soda lime glass substrates [SLG] or polycarbonate substrates (manufactured by Mitsubishi Engineering Plastics Co., Ltd., Iupilon NF). — 2000) Bar coating was formed on [PC] and heated at 60 ° C for 30 minutes in a hot air circulation dryer.
  • a condensing type high-pressure mercury lamp (365nm, 313nm, UV light mainly composed of light of 254 ⁇ m, made by Eye Graphics, 1 lamp type, 120W / cm, lamp height 9.8cm, conveyor speed 8m / Min), cumulative UV irradiation 2100mj / cm 2
  • the thin film was obtained by irradiating the ultraviolet rays.
  • a coating film was formed in the same manner as in Examples 1 to 9, except that [D-1] was used as the coating film forming solution.
  • a coating film was formed in the same manner as in Examples 1 to 9, except that [C2] was used as the coating film forming solution.
  • a coating was formed in the same manner as in Examples;! To 8, except that [D-4] was used as the coating solution.
  • a coating film was formed in the same manner as in Examples 1 to 8, except that [D-5] was used as the coating film forming solution.
  • Figures 6 to 10 show that after UV irradiation, the concentration of carbon atoms on the film surface decreases and the concentration of oxygen atoms was found to increase.
  • Example 8 ′ since the resin component was many and the film, the film before UV irradiation was tacky, and ESCA measurement was not possible.
  • a pencil hardness test was conducted according to the pencil method of JIS K5600-5-4.
  • a wear wheel (CS-10F) was attached to a Taber abrasion tester (TABER 'S Abrasion T ester, manufactured by Toyo Tester Kogyo Co., Ltd.), and the film after UV irradiation was subjected to a 500-rotation test under a load of 500 g. The subsequent haze ratio was measured. For wear resistance, the haze rate difference before and after the test was evaluated as ⁇ .
  • TABER 'S Abrasion T ester manufactured by Toyo Tester Kogyo Co., Ltd.
  • Example 4 The hydrophilicity of the thin film surfaces of Example 4, Example 8, and Comparative Example 1 was evaluated by measuring the contact angle.
  • the distribution of the elements in the film in the depth direction of the thin film produced by the thin film formation method of Example B was determined using ESCA (Quantum2000 , Al The analysis was performed using a backfail product. The film was etched by Ar sputtering, and the contents of carbon atoms, oxygen atoms, silicon atoms, and titanium atoms in the film were measured by an X-ray photoelectron analyzer (XPS). The results are shown in FIGS.
  • the carbon content (C) at the depth where the carbon content is maximum is assumed to be 100.
  • a thin film was prepared in the same manner as in Examples;! To 8 using the above-mentioned additive for ultraviolet fountain curable compounds [C 1].
  • the solid content of [C-7] was 31.6% by weight.
  • [C-7] a thin film was prepared in the same manner as in Examples 1 to 8, except that the drying temperature was 130 ° C and the cumulative ultraviolet irradiation amount was 4000 mj / cm 2 .
  • the distribution of elements in the film in the depth direction was measured in the same manner as in [Reference Example 2]. The results are shown in FIG.
  • a thin film was prepared and measured in the same manner as in Reference Example 5 using [C10]. The results are shown in FIG.
  • an organic-inorganic composite having an extremely high surface hardness, an appropriate hardness on the inside and the back surface, and excellent adhesion to the substrate and moisture resistance. That's the power S.
  • the thin film of the present invention has a SiO-like structure with a highly polar surface.
  • inorganic thin films include photocatalytic films such as TiO, conductive thin films such as ITO and SnO thin films.
  • dielectric film such as TaO, PZT, piezoelectric thin film, low refractive index film such as Si ⁇ , Mg ⁇ , MgF, Ti
  • High-refractive index films such as O and ZrO are usually difficult to adhere on the resin.
  • silane coupling treatment is also possible, and various treatments are easy, such as changing the surface to water / oil repellency, introducing an amino group, and imparting adhesion to the surface.
  • the thin film of the present invention is produced in two stages of heat curing and ultraviolet curing.
  • heat treatment hydrolysis and polycondensation of the organic key compound proceed, and it changes to polysiloxane and hardens.
  • UV curable compounds are hard to cure when heated, the film after heat treatment can be molded by appropriately selecting the type of organic compound, the type of UV curable compound, and the mixing ratio thereof. Has features.
  • the thin film of the present invention can be formed into a concavo-convex pattern with a mold, for example, on the heat-treated film.
  • Various patterns can be formed by embossing or nanoimprinting. After that, while maintaining the pattern by UV irradiation, the surface mineralization hard- ness, which is the feature of this feature, is obtained by curing the UV curable compound and converting the surface siloxane to SiO.
  • a coating film can be formed.
  • a film can also be formed by a transfer method in the same manner.
  • a film treated with a release film (for example, a polyester film) is coated with the composition of the present invention to form a heat-treated film, which is used as a transfer foil before being irradiated with ultraviolet rays. ,pressure, In this method, the film is transferred by the force of an adhesive or the like and then irradiated with ultraviolet rays.
  • the thin film of the present invention is excellent in printability (adhesion with ink), it can be formed in-mold with various patterns printed on the composition of the present invention, and then irradiated with ultraviolet rays. The pattern and hard coat film can be transferred to the molded body at the same time. It is useful as a method for forming a hard coat film on a molded body with a curved surface.
  • the thin film thus formed can be used as a gas barrier film, an antistatic film, a UV cut film, an antireflection film and the like in addition to the hard coat film.
  • the hard coat film include, for example, automobile glass, headlights, exterior parts, interior parts, electrical parts, sunroofs; mobile phone front cases, rear cases, battery cases; spectacle lenses; optical disks; Building material decorative sheet, film; TV front panel; CRT cover; Video reflector, etc.
  • the thin film of the present invention can be used in a mold for producing these products, and has great industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Photolithography (AREA)

Abstract

 表面が非常に高い硬度を有すると共に、内部及び裏面側が適当な硬度を有しつつ、かつ基体との密着性に優れた有機無機複合体を提供することである。 a)式(I):RnSiX4-n(式中、RはSiに炭素原子が直接結合する有機基を表し、Xは水酸基又は加水分解性基を表す。nは1又は2を表し、nが2のとき各Rは同一でも異なっていてもよく、(4-n)が2以上のとき各Xは同一でも異なっていてもよい。)で表される有機ケイ素化合物の縮合物を主成分とし、 b)金属キレート化合物、金属有機酸塩化合物、2以上の水酸基若しくは加水分解性基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より選ばれる少なくとも1種の350nm以下の波長の光に感応する光感応性化合物、及び/又はそれから誘導される化合物 c)紫外線硬化性化合物の硬化物 を含有することを特徴とする有機無機複合体。

Description

明 細 書
有機無機複合体
技術分野
[0001] 本発明は、有機無機複合体に関し、詳しくは、 350nm以下の波長を含む光を照射 することにより、表面の炭素含有率を内部より少なくした有機無機複合体に関する。 背景技術
[0002] 現在、市販品のシラン系コート剤の原料としては、主として 3官能のシランが用いら れており、かかる 3官能シランにより、適度な硬さと柔軟性を持つポリシロキサンが形 成される。し力もながら、 3官能シランの膜ではハードコート性が充分ではない。そこ で、 3官能シランに、 4官能シランやコロイダルシリカを混合することでハードコート性 を補っている力 S、膜を硬くすれば、ヒビ割れやすくなり、密着性が悪くなるという問題 力 sある。
[0003] シラン系のコート剤としては、例えば、エポキシ基を有する 3官能アルコキシシラン 化合物を含有する防汚膜形成用組成物(特許文献 1参照)がある。また、光触媒を含 有したシラン系コート剤も提案されており、光酸発生剤、架橋剤、硬化触媒等を使用 して、膜を硬化している(例えば、特許文献 2, 3参照)。さらに、材料中の金属系化合 物の含有率が、材料の表面から深さ方向に連続的に変化する成分傾斜構造を有す るシラン系の有機 無機複合傾斜材料も提案されている(例えば、特許文献 4参照)
[0004] 本発明者らは、光感応性化合物の存在下に有機ケィ素化合物に紫外線を照射す ることにより、表面が非常に高い硬度を有すると共に、内部及び裏面側が適当な硬度 を有しつつ、かつ基体との密着性に優れた有機無機複合体を提供した(特許文献 5 参照)。しかしながら、基材への密着性、耐湿性において、さらなる改善が望まれてい た。
[0005] 一方、ハードコート膜としては、 UV硬化樹脂としてアタリレート系樹脂等を用いるこ とが知られている。たとえば、特許文献 6には、(メタ)アクリル酸エステル混合物 (A)、 光重合開始剤(B)、エチレン性不飽和基含有ウレタンオリゴマー(C)、コロイダルシリ カゾル (D)及び希釈剤(E)を含有するハードコートフィルムが記載されており、得られ たフィルムは、鉛筆硬度、カール、基材への密着性が良好であることが記載されてい
[0006] また、特許文献 7には、(A)ケィ素、アルミユウム、ジルコユウム、チタユウム、亜鉛、 ゲルマニウム、インジウム、スズ、アンチモン及びセリウムよりなる群から選ばれる少な くとも一つの元素の酸化物粒子と、重合性不飽和基を含む有機化合物とを結合させ てなる粒子、(B)分子内にウレタン結合及び 2以上の重合性不飽和基を有する化合 物、及び (C)光重合開始剤を含有する硬化性組成物を用いることが記載されており 、優れた塗工性を有し、かつ各種基材の表面に、高硬度及び高屈折率を有するとと もに耐擦傷性並びに基材及び低屈折率層との密着性に優れた塗膜 (被膜)を形成し 得ることが記載されている。
[0007] さらに、特許文献 8には、有機ケィ素化合物の加水分解物と金属酸化物微粒子の 混合物、(B)多官能アタリレート又はメタタリレート、(C)光重合開始剤を配合してなる ことを特徴とする紫外線硬化性ハードコート樹脂組成物が記載されており、帯電防止 剤の表面へのブリード、透明性の低下、耐湿性の劣化等を実用的に許容できる範囲 内に収めることができ、且つハードコートとしての機能(耐擦傷性、表面硬度、耐湿性 、耐溶剤 ·薬品性等)を満足することが記載されている。
[0008] しかしながら、これらのアタリレート系樹脂等を用いるハードコート膜は、耐摩耗性に 関しては無機膜よりも劣るため、金属酸化物ゾルを添加することにより改善を図って おり、そのため、硬度は向上するが、透明性、可撓性が低下するという問題があった
[0009] 特許文献 1:特開平 10— 195417号公報
特許文献 2:特開 2002— 363494号公報
特許文献 3:特開 2000— 169755号公報
特許文献 4 :特開 2000— 336281号公報
特許文献 5: WO2006/088079号公報
特許文献 6 :特開 2002— 235018号公報
特許文献 7:特開 2005— 272702号公報 特許文献 8 :特開 2001— 214092号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明の課題は、表面が内部より高い硬度を有するポリシロキサン系の有機無機 複合体からなる膜の、基体への密着性及び耐湿性を改善することにある。併せて、紫 外線硬化樹脂からなるハードコート膜の透明性、可撓性を低下させなレ、で硬度を向 上させることにある。
課題を解決するための手段
[0011] 本発明者らは、上記課題に取り組み、鋭意研究した結果、ポリシロキサン系の有機 無機複合体に紫外線硬化性化合物を配合することにより、表面が非常に高い硬度を 有すると共に、基体との密着性及び耐湿性に優れた有機無機複合体を製造すること ができることを見い出し、本発明を完成するに至った。
[0012] すなわち本発明は、
(1) a)式 (I)
R SiX · · · (I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物の縮合物、
b)金属キレート化合物、金属有機酸塩化合物、 2以上の水酸基若しくは加水分解性 基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より 選ばれる少なくとも 1種の 350nm以下の波長の光に感応する光感応性化合物及び /又はそれから誘導される化合物、及び
c)紫外線硬化性化合物の硬化物
を含有することを特徴とする有機無機複合体、
(2)式 (I)中の Rがビュル基を有する基、ォキシラン環を有する基、 NR' (式中、 R
2
'は水素原子、アルキル基又はァリール基を表し、各 R'は互いに同一でも異なって いてもよい。)を有する基、又は N = CR' ' (式中、 R' 'は水素原子又はアルキル 基を表し、各 R' 'は互いに同一でも異なっていてもよい。)を有する基である有機ケィ 素化合物が、有機ケィ素化合物の全量に対して 20〜; 100重量%であることを特徴と する、(1)の有機無機複合体、
(3)紫外線硬化性化合物が(メタ)アタリレート系紫外線硬化性化合物であることを特 徴とする(1)又は(2)に記載の有機無機複合体に関する。
[0013] また、本発明は、
(4)金属キレート化合物が、水酸基若しくは加水分解性基を有することを特徴とする( 1)〜(3)の!/、ずれかに記載の有機無機複合体、
(5)金属有機酸塩化合物が、水酸基若しくは加水分解性基を有することを特徴とす る(1)〜(4)の!/、ずれかに記載の有機無機複合体、
(6) 2以上の水酸基若しくは加水分解性基を有する金属化合物の加水分解物及び /又は縮合物が、 2以上の水酸基若しくは加水分解性基を有する金属化合物 1モル に対して、 0. 5モル以上の水を用いて加水分解した生成物であることを特徴とする(
;!)〜(5)の!/、ずれかに記載の有機無機複合体、
(7)金属キレート化合物の加水分解物及び/又は縮合物が、金属キレート化合物 1 モルに対して、 5〜; 100モルの水を用いて加水分解した生成物であることを特徴とす る(1)〜(6)の!/、ずれかに記載の有機無機複合体、
(8)金属有機酸塩化合物の加水分解物及び/又は縮合物が、金属有機酸塩化合 物 1モルに対して、 5〜; 100モルの水を用いて加水分解した生成物であることを特徴 とする(1)〜(7)の!/、ずれかに記載の有機無機複合体、
(9)金属が、 Ti、 Al、 Zr又は Snであることを特徴とする(1)〜(8)の!/、ずれかに記載 の有機無機複合体に関する。
[0014] また、本発明は、
(10)式 (I)
R SiX · · · (I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物の縮合物を有し、膜表面から深さ方向 0. 5 mまでの間における炭素含有量の最 小値が、膜裏面側における炭素含有量の 80%以下である有機無機複合系薄膜に おいて、さらに紫外線硬化性化合物の硬化物を有することを特徴とする有機無機複 合系薄膜、
(11)式 (I)中の Rがビュル基を有する基、ォキシラン環を有する基、 NR' (式中、
2
R'は水素原子、アルキル基又はァリール基を表し、各 R'は互いに同一でも異なって いてもよい。)を有する基、又は N = CR' ' (式中、 R' 'は水素原子又はアルキル
2
基を表し、各 R' 'は互いに同一でも異なっていてもよい。)を有する基である有機ケィ 素化合物が、有機ケィ素化合物の全量に対して 20〜; 100重量%であることを特徴と する、(10)の有機無機複合系薄膜、
(12)紫外線硬化性化合物が (メタ)アタリレート系紫外線硬化性化合物であることを 特徴とする(10)又は(11)に記載の有機無機複合系薄膜に関する。
さらに、本発明は、
(13)金属キレート化合物、金属有機酸塩化合物、 2以上の水酸基若しくは加水分解 性基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群よ り選ばれる少なくとも 1種の光感応性化合物、紫外線硬化性化合物及び光重合開始 剤の存在下、
式 (I)
R SiX · · · (I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物及び/又はその縮合物に、 350nm以下の波長を含む光を照射することを特徴と する有機無機複合体の製造方法、
(14)式 (I)中の Rがビュル基を有する基、ォキシラン環を有する基、 NR' (式中、
2
R'は水素原子、アルキル基又はァリール基を表し、各 R'は互いに同一でも異なって いてもよい。)を有する基、又は N = CR' ' (式中、 R' 'は水素原子又はアルキル
2
基を表し、各 R' 'は互いに同一でも異なっていてもよい。)を有する基である有機ケィ 素化合物が、有機ケィ素化合物の全量に対して 20〜; 100重量%であることを特徴と する、(13)に記載の有機無機複合体の製造方法、
(15)金属力 Ti、 Al、 Zr又は Snであることを特徴とする(13)又は(14)に記載の有 機無機複合体の製造方法、
(16)紫外線硬化性化合物が (メタ)アタリレート系紫外線硬化性化合物であることを 特徴とする(13)〜(; 15)の!/、ずれかに記載の有機無機複合体の製造方法に関する
また、本発明は、
(17) a)式 (I)
R SiX · · · (I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物及び/又はその縮合物、
b)金属キレート化合物、金属有機酸塩化合物、 2以上の水酸基若しくは加水分解性 基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より 選ばれる少なくとも 1種の光感応性化合物、
c)紫外線硬化性化合物、及び、
d)光重合開始剤
を含有することを特徴とする有機無機複合体形成用組成物、
(18)式 (I)中の Rがビュル基を有する基、ォキシラン環を有する基、 NR' (式中、
2
R'は水素原子、アルキル基又はァリール基を表し、各 R'は互いに同一でも異なって いてもよい。)を有する基、又は N = CR' ' (式中、 R' 'は水素原子又はアルキル
2
基を表し、各 R' 'は互いに同一でも異なっていてもよい。)を有する基である有機ケィ 素化合物が、有機ケィ素化合物の全量に対して 20〜; 100重量%であることを特徴と する、(17)に記載の有機無機複合体形成用組成物、
(19)紫外線硬化性化合物が (メタ)アタリレート系紫外線硬化性化合物であることを 特徴とする(17)又は(18)に記載の有機無機複合体形成用組成物、 (20)金属が、 Ti、 Al、 Zr又は Snであることを特徴とする(17)〜(; 19)の!/、ずれかに 記載の有機無機複合体形成用組成物、
(21)有機ケィ素化合物及び/又はその縮合物、光感応性化合物、紫外線硬化性 化合物及び光重合開始剤の全質量に対して、紫外線硬化性化合物が 2〜98質量 %であることを特徴とする(17)〜(20)の!/、ずれかに記載の有機無機複合体形成用 組成物に関する。
[0017] また、本発明は、
(22) a)式(I)
R SiX · · · (I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物及び/又はその縮合物、及び
b)金属キレート化合物、金属有機酸塩化合物、 2以上の水酸基若しくは加水分解性 基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より 選ばれる少なくとも 1種の光感応性化合物
を含有する有機無機複合体形成用組成物からなる紫外線硬化性化合物用添加剤、
(23)式 (I)中の Rがビュル基を有する基、ォキシラン環を有する基、 NR' (式中、
2
R'は水素原子、アルキル基又はァリール基を表し、各 R'は互いに同一でも異なって いてもよい。)を有する基、又は N = CR' ' (式中、 R' 'は水素原子又はアルキル
2
基を表し、各 R' 'は互いに同一でも異なっていてもよい。)を有する基である有機ケィ 素化合物が、有機ケィ素化合物の全量に対して 20〜; 100重量%であることを特徴と する、(22)に記載の紫外線硬化性化合物用添加剤、
(24)紫外線硬化性化合物が (メタ)アタリレート系紫外線硬化性化合物であることを 特徴とする(22)又は(23)に記載の紫外線硬化性化合物用添加剤、
(25)金属が、 Ti、 Al、 Zr又は Snであることを特徴とする(22)〜(24)の!/、ずれかに 記載の紫外線硬化性化合物用添加剤に関する。
[0018] 本明細書において、薄膜中の炭素含有量を規定する時に用いている膜厚の値は、 ESCA分析においてスパッタエッチングした時に算出される値であって、現実の膜厚 の値とは必ずしも一致しない。その理由は、スパッタエッチングによりエッチングされる 膜厚は、膜の材質に依存するためであり、現実の膜厚値は、各膜材料に対するエツ チング速度を換算することで得られる。
本明細書中の ESCA分析では、熱酸化 SiO膜を標準試料とした SiO換算膜厚を
2 2 用いた。標準試料はシリコンウェハー上に形成された熱酸化 SiO膜である。エリプソ
2
メーターによりあらかじめ膜厚を測定してある標準試料を、スパッタエッチングしなが ら ESCA分析することで、エッチング速度を算出した。
[0019] 本明細書において、「膜表面から深さ方向 0. 5 inまでの間における炭素含有量 の最小値」とは、 ESCA分析によって膜表面から深さ方向への炭素含有量を測定し たときに得られる炭素含有量のグラフにおける、膜表面から深さ方向 0. 5 111までの 深さごとの炭素含有量の測定値の最小値を意味する。測定方法の詳細は、実施例 に記載の通りである。
[0020] また、膜裏面側における炭素含有量とは、膜表面から炭素含有量が漸次増加して いる深さよりさらに深部の、炭素含有量が一定に達している時の値であり、必ずしも裏 面の値でなくてもよい。本発明のほとんどの膜は、炭素含有量が漸次増加している深 さより内部では炭素の含有量が膜の厚さ方向で一定になっており、裏面の値と異なら ない。実施例では、スパッタエッチングで膜の裏面を明確に規定することは困難であ るので、この一定になった値を用いて評価した。この値は、 ESCA分析での膜と基板 との界面(濃度がクロスするポイント)から表面側に 50nmから 2000nmの厚みの範囲 のィ直である。
[0021] 本発明の表面層の炭素含有量が、 350nm以下の波長の光の照射により減少する メカニズムは、まだ十分に分かっていないが、 350nm以下の波長の光の照射により 表面層の炭素含有量を減少させると、それに伴い酸素含有量が増加するので、酸化 反応が起こっていると言える。この反応を起こさせるためには、 350nm以下の波長の 光に感応する光感応性化合物が必要で、その化合物だけの吸光度を測定すると、 確かに 350nm以下の波長で吸収を持って!/、る(図 18参照)。
[0022] し力、し、 350nm以下の波長の光に感応する光感応性化合物を添加すれば、どのよ うな有機基でも酸化されるわけではない。例えば、通常の樹脂や本発明の紫外線硬 化樹脂などは、光感応性化合物により高圧水銀灯の紫外線を照射しても、酸化され ることはない。一方、同様な紫外線照射により酸化反応を引き起こす、酸化チタン系 光触媒の場合には全ての有機基は酸化分解するので、本メカニズムは光触媒反応と は異なると言える。
[0023] 本発明の光感応性化合物を添加すると、有機ケィ素化合物に結合した有機基が酸 化分解されるが、全ての有機基が酸化分解されるのではなぐ特にビュル基、メタタリ ロキシプロピル基、グリシドキシプロピル基又はアミノ基等、反応性部位のある有機基 を持った有機ケィ素化合物が酸化分解される(図 19参照)。
[0024] 一方、メチル基、ェチル基、長鎖アルキル基およびパーフルォロアルキル基等の、 反応性部位を有さな!/、有機基を持った有機ケィ素化合物は、光感応性化合物を添 カロしても酸化分解されない(図 20参照)。この場合、積算紫外線照射量として更に過 度な 30j/cm2を照射した試料を、フーリエ変換赤外分光装置 (MAGNA— IR 76 0、 Nicolet社製)により IR分析すると、メチル基(Si— CH )に相当する lSSOcnT1
3
付近のピークは、紫外線照射前と比べて、全く減少が認められない。
[0025] 但し、酸化分解されない有機ケィ素化合物を、酸化分解される有機ケィ素化合物と 混合することにより、複合化する樹脂との親和性を向上させたり、相分離を起こさせた り、撥水性 '撥油性や各種機能を向上させることもできるので、酸化分解されない有 機ケィ素化合物と酸化分解される有機ケィ素化合物の両方を共存させることが好まし い場合もある。
[0026] さらに、光感応性化合物の非存在下で、有機ケィ素化合物に紫外線を照射しても、 酸化分解は起こらない。図 21に有機ケィ素化合物の吸光度を示した。 350nm以下 の波長の光の吸収を持つシラン化合物もある(図 21中の B— 2及び B— 5参照)。しか し、光感応性化合物の非存在下で高圧水銀灯の紫外線(254nm〜400nm)を照射 しても、酸化反応による膜表面側での炭素量の減少が全く生じない(図 22参照)。こ のことは、光感応性化合物の添加なしでは、有機ケィ素化合物の酸化分解は起こら ないことを示している。
[0027] このような現象から推測するに、紫外線照射による酸化分解は、光感応性化合物が 吸収した光エネルギーが有機ケィ素化合物の反応性部位へ移行し、何らかの高エネ ルギー状態(瞬間的な高温状態)を作り出し、酸化分解が起こるものと推察される。酸 化される部位は、特にビュル基のような元々酸化され易い部分だけが選択的に酸化 される。
[0028] 当然、有機ケィ素化合物以外に、紫外線硬化樹脂にもビュル基などの二重結合部 位やその他の重合反応部位は存在しており、光感応性化合物により酸化分解される 恐れがある。しかし、本発明の有機ケィ素化合物と紫外線硬化樹脂との複合体の場 合、紫外線硬化樹脂が硬化するために必要な紫外線照射量は 300mj/cm2以下で あり、酸化分解に必要な照射量 lOOOmj/cm2以上と異なっているので、酸化分解 を引き起こす前に紫外線硬化樹脂の重合反応は終了している。つまり、酸化分解さ れにくぐまた、酸化反応による紫外泉硬化樹脂の硬化阻害を起こすこともない。また 、光重合開始剤は、通常、高圧水銀灯などのランプが最も多量に発している 365nm の光を有効に使用するように設計されているものが多ぐそのことからも紫外線硬化 樹脂の硬化速度は有機ケィ素化合物の酸化反応に比べ非常に速い。
[0029] つまり、本発明の有機ケィ素化合物と紫外線硬化樹脂との複合体の場合、反応に 使用される光の波長が異なり、また、反応速度も異なるので、紫外線照射により、紫 外線硬化樹脂の硬化反応及び有機ケィ素化合物の酸化分解反応(表面酸化硬化 反応)が二段階で進行する。
[0030] このことは、有機ケィ素化合物と紫外線硬化性樹脂の複合系にした場合、お互い の良い特性が加算されることを意味する。さらに、複合系にすることで鉛筆硬度が飛 躍的に向上し、単に足し算的な特性向上以上の効果が現れる場合もある。具体的に は、紫外線硬化樹脂単独では鉛筆硬度 4Hであったもの力 10%の(有機ケィ素化 合物 + TiO光感応性化合物)を添加しただけで、 8Hに達する場合もあり、予測し得
2
ない効果である。
複合化する紫外線硬化樹脂の種類としても、上記のような 2段階の硬化で進行する ので、ほとんどの紫外線硬化樹脂が硬化阻害を起こすことなく使用できる。実施例に はウレタンアタリレートとエポキシアタリレートを載せている力 S、共に複合化することに より効果が現れている。 また、複合系の場合も無機化された表面(SiO状の層)が形成され、耐磨耗性など
2
の機械的特性アップばかりか、印刷適合性や密着性のアップ、親水性表面ゃシラン カップリング処理による撥水性撥油性の付与なども可能である。
図面の簡単な説明
[図 1]実施例 1の薄膜について、 ESCAにより測定した膜厚方向における各膜成分の 分布を示す図である。
[図 2]実施例 3の薄膜について、 ESCAにより測定した膜厚方向における各膜成分の 分布を示す図である。
[図 3]実施例 4の薄膜について、 ESCAにより測定した膜厚方向における各膜成分の 分布を示す図である。
[図 4]比較例 1の薄膜について、 ESCAにより測定した膜厚方向における各膜成分の 分布を示す図である。
[図 5]比較例 2の薄膜について、 ESCAにより測定した膜厚方向における各膜成分の 分布を示す図である。
[図 6]実施例 3'の UV照射前の薄膜について、 ESCAにより測定した膜厚方向にお ける各膜成分の分布を示す図である。
[図 7]実施例 3'の UV照射後の薄膜について、 ESCAにより測定した膜厚方向にお ける各膜成分の分布を示す図である。
[図 8]実施例 8 'の UV照射後の薄膜について、 ESCAにより測定した膜厚方向にお ける各膜成分の分布を示す図である。
[図 9]実施例 9'の UV照射前の薄膜について、 ESCAにより測定した膜厚方向にお ける各膜成分の分布を示す図である。
[図 10]実施例 9'の UV照射後の薄膜について、 ESCAにより測定した膜厚方向にお ける各膜成分の分布を示す図である。
[図 11]実施例 4, 8及び比較例 1の薄膜について、 UVオゾン洗浄直後の膜表面にお ける水の接触角を測定した結果をグラフにした図である。 0—1は比較例1、 E— 4は 実施例 4及び E— 8は実施例 8の薄膜を示す。
[図 12]実施例 10の薄膜について、 ESCAにより測定した膜厚方向における各膜成 分の分布を示す図である。
園 13]実施例 11の薄膜について、 ESCAにより測定した膜厚方向における各膜成 分の分布を示す図である。
園 14]実施例 12の薄膜について、 ESCAにより測定した膜厚方向における各膜成 分の分布を示す図である。
園 15]実施例 13の薄膜について、 ESCAにより測定した膜厚方向における各膜成 分の分布を示す図である。
園 16]実施例 14の薄膜について、 ESCAにより測定した膜厚方向における各膜成 分の分布を示す図である。
園 17]実施例 15の薄膜について、 ESCAにより測定した膜厚方向における各膜成 分の分布を示す図である。
園 18]参考例 1の光感応性化合物について、分光光度計により測定した紫外領域の 吸光度分布を示す図である。
園 19]参考例 2の薄膜について、 ESCAにより測定した膜厚方向における各膜成分 の分布を示す図である(表面層の炭素減少が明確に認められる)。
園 20]参考例 3の薄膜について、 ESCAにより測定した膜厚方向における各膜成分 の分布を示す図である(表面の炭素増加は汚れによるものである)。
[図 21]参考例 4の有機シラン化合物について、分光光度計により測定した紫外領域 の吸光度分布を示す図である(B— 1と B— 6の曲線は、吸収がないので 0近傍で重 なる)。
園 22]参考例 5の薄膜について、 ESCAにより測定した膜厚方向における各膜成分 の分布を示す図である。
園 23]参考例 6の薄膜について、 ESCAにより測定した膜厚方向における各膜成分 の分布を示す図である。
園 24]参考例 7の薄膜について、 ESCAにより測定した膜厚方向における各膜成分 の分布を示す図である(図 22— 24において、表面の酸素増加とシリコン減少は、シ ロキサン結合が形成されずにシラノールになって!/、るためと推測される)。
発明を実施するための最良の形態 [0032] (有機無機複合体)
本発明の有機無機複合体は、
a)式 (I)
R SiX4 …(I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物(以下、単に、有機ケィ素化合物ということがある。)の縮合物を主成分とし、 b)金属キレート化合物、金属有機酸塩化合物、 2以上の水酸基若しくは加水分解性 基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より 選ばれる少なくとも 1種の 350nm以下の波長の光に感応する光感応性化合物、及 び/又はそれから誘導される化合物、及び
c)紫外線硬化性化合物の硬化物
を含有する。本発明の有機無機複合体には、有機ケィ素化合物の縮合物に光感応 性化合物及び/又はその誘導体が非結合状態で分散されてなるものや、有機ケィ 素化合物の縮合物に光感応性化合物及び/又はその誘導体が結合してなるもの( 例えば、 Si— O— M結合を有するもの(Mは光感応性化合物中の金属原子を表す。 ) )や、その混合状態からなるものが包含される。
[0033] (有機ケィ素化合物)
本発明の有機ケィ素化合物の式 (I)中、 R及び Xは各々次のとおりである。 Rは、 Siに炭素原子が直接結合する有機基を表す。かかる有機基としては、置換さ れて!/、てもよ!/、炭化水素基、置換されてレ、てもよ!/、炭化水素のポリマーからなる基等 を挙げること力 Sでき、置換されていてもよい炭素数 1〜30の炭化水素基でもよぐ置 換されて!/、てもよ!/、炭素数;!〜 10の直鎖又は分岐鎖のアルキル基、置換されて!/、て もよ!/、炭素数 3〜8のシクロアルキル基、置換されて!/、てもよ!/、炭素数 2〜; 10の直鎖 又は分岐鎖のアルケニル基又は置換されて!/、てもよ!/、炭素数 3〜8のシクロアルケ二 ル基が好ましぐ芳香環を有していてもよい。
[0034] また、かかる有機基は、酸素原子、窒素原子、又はケィ素原子を含んでいてもよぐ ポリシロキサン、ポリビュルシラン、ポリアクリルシラン等のポリマーを含む基でもよい。 置換基としては、例えば、ハロゲン、メタクリロキシ基等を挙げること力 Sでき、ハロゲンと してはフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
[0035] 炭素数 1〜; 10のアルキル基としては、直鎖、又は分岐鎖の炭素数 1〜; 10のアルキ ノレ基があり、例えばメチル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル 基、イソブチル基、 t ブチル基、 n ペンチル基、イソペンチル基、ネオペンチル基 、 2—メチルブチル基、 2, 2—ジメチルプロピル基、 n へキシル基、イソへキシル基 n へプチル基、 n ォクチル基、ノニル基、イソノニル基、デシル基等が挙げられ、 炭素数 10より長鎖のアルキル基としては、ラウリル基、トリデシル基、ミリスチル基、ぺ ンタデシル基、ノ ルミチル基、ヘプタデシル基、ステアリル基等が挙げられる。
[0036] 炭素数 3〜8のシクロアルキル基としては、例えばシクロプロピル基、シクロブチル基 、シクロペンチル基、シクロへキシル基、シクロへプチル基、シクロォクチル基等が挙 げられる。
[0037] 炭素数 2〜; 10の直鎖又は分岐鎖のアルケニル基とは、いずれか 1力所以上に炭素 炭素二重結合を有する炭素数 2〜; 10の直鎖、又は分岐鎖のアルケニル基を意味 し、例えば、ェテュル基、プロパー 1ーェン 1ーィル基、プロパー 2—ェン 1ーィ ノレ基、プロパー 1ーェンー2—ィル基、ブター 1ーェン 1ーィル基、ブター 2—ェン 1ーィル基、ブター 3—ェンー 1ーィノレ基、ブター 1 ェンー 2—ィル基、ブター 3— ェン一 2—ィル基、ペンタ一 1—ェン一 1—ィル基、ペンタ一 4—ェン一 1—ィル基、 ペンター 1ーェンー2 ィノレ基、ペンター 4ーェンー2 ィノレ基、 3 メチノレーブター 1 ーェンー1ーィル基、へキサ 1ーェン 1ーィル基、へキサー5—ェンー1 ィル基 、ヘプター 1 ェンー 1ーィノレ基、ヘプター 6—ェンー 1ーィノレ基、オタター 1 ェンー 1ーィル基、オタター 7 ェンー 1 ィル基等が挙げられる。
[0038] 炭素数 3〜8のシクロアルケニル基とは、いずれか 1力所以上に炭素 炭素二重結 合を有し、かつ環状部分を有する炭素数 3〜8のアルケニル基を意味し、例えば、 1 —シクロペンテン一 1—ィル基、 2—シクロペンテン一 1—ィル基、 1—シクロへキセン 1ーィル基、 2—シクロへキセン一 1ーィル基、 3—シクロへキセン一 1 ィル基等が 挙げられる。 [0039] 芳香環を有する有機基としては、例えば、 C ァリール C アルキル基として、ベ
6— 10 1 - 8
ンジル基、フエネチル基、 3—フエ二ルー n—プロピル基、 4 フエ二ルー n ブチル 基、 5—フエ二ルー n—ペンチル基、 8—フエ二ルー n ォクチル基、ナフチルメチノレ 基等が挙げられる。また C ァリール C アルケニル基として、スチリル基、 3—フエ
6— 10 2-6
ニル一プロパ一 1—ェン一 1—ィル基、 3 フエ二ノレ一プロパ一 2 ェン一 1—ィル基 、 4 フエニノレーブター 1 ェンー 1ーィノレ基、 4 フエニノレーブター 3—ェンー 1ーィ ノレ基、 5—フエ二ノレ一ペンター 1—ェン一 1—イノレ基、 5—フエ二ノレ一ペンター 4—ェ ン一 1—イノレ基、 8—フエ二ノレ一ォクタ一 1—ェン一 1—イノレ基、 8—フエ二ノレ一ォクタ 7 ェンー 1ーィル基、ナフチルェテュル基等が挙げられる。
[0040] 酸素原子を有する基としては、エポキシ基、エポキシアルキル基、グリシドキシプロ ピル基等のォキシラン環(エポキシ基)を有する基、アタリロキシメチル基、メタタリロキ シメチル基などが挙げられる。
[0041] 酸素原子を有する基のうち、エポキシアルキル基としては炭素数 3〜; 10の直鎖又は 分岐鎖のエポキシアルキル基が好ましぐ例えばエポキシメチル基、エポキシェチノレ 基、エポキシ n プロピル基、エポキシイソプロピル基、エポキシ n ブチル基、 エポキシイソブチノレ基、エポキシ tーブチノレ基、エポキシ n ペンチノレ基、ェポキ シイソペンチノレ基、エポキシネオペンチノレ基、エポキシ 2—メチノレブチノレ基、ェポ キシー 2, 2—ジメチルプロピル基、エポキシ n へキシル基等が挙げられる。ォキ シラン環以外にさらに酸素原子を有する基としては、グリシドキシプロピル基等が挙 げられる。
[0042] 窒素原子を有する基としては NR' (式中、 R'は水素原子、アルキル基又はァリ
2
一ル基を表し、各 R'は互いに同一でも異なっていてもよい。)を有する基、又は—N = CR' ' (式中、 R' 'は水素原子又はアルキル基を表し、各 R' 'は互いに同一でも
2
異なっていてもよい。)を有する基が好ましぐアルキル基としては上記と同じものが挙 げられ、ァリール基としてはフエニル基、ナフチル基、アントラセン 1ーィル基、フエ ナントレン 1 ィル基等が挙げられる。
[0043] 例えば、 -NR' を有する基としては、 CH -NH基、 C H— NH基、 CH
2 2 2 3 6 2
-NH-CH基等が挙げられる。 -N = CR" を有する基としては、 CH— N = CH-CH基、 CH— N = C (CH ) 基、— C H— N = CH— CH基等が挙げら
3 2 3 2 2 5 3
れる。
[0044] 上記のうち、 350nm以下の波長の光の照射によって分解される基としては、ビュル 基を有する基、ォキシラン環を有する基、 NR' (式中、 R'は水素原子、アルキル
2
基又はァリール基を表し、各 R'は互いに同一でも異なっていてもよい。)を有する基 、又は N = CR' ' (式中、 R' 'は水素原子又はアルキル基を表し、各 R' 'は互いに
2
同一でも異なってレ、てもよ!/、。 )を有する基が挙げられる。
[0045] ここで、ビュル基を有する基としては、ェテュル基(ビュル基)、プロパー 2 ェンー
1—ィル基、ブタ一 3—ェン一 1—ィル基、ペンタ一 4—ェン一 1—ィル基、へキサ一 5 ーェンー1ーィノレ基、ヘプター 6 ェンー1ーィノレ基、オタター 7 ェンー1ーィノレ基 等のアルケニル基、メタクリルメチル基、アタリロキシメチル基、メタクリロキシメチル基 等のビュルカルボ二ル基を有する基等を有する基が挙げられる。ォキシラン環を有 する基、 NR' を有する基、 -N = CR" を有する基は、上記のとおりである。
2 2
[0046] また、有機ケィ素化合物の式(I)中、 nは、 1又は 2を表し、 n= lのものが特に好まし い。 n力 のとき、各 Rは同一でも異なっていてもよい。また、これらは、 1種単独又は 2 種以上を組み合わせて使用することができる。
[0047] Xは、水酸基又は加水分解性基を表す。式 (I)の(4 n)が 2以上のとき、各 Xは同 一でも異なっていてもよい。加水分解性基とは、例えば、無触媒、過剰の水の共存下 、 25°C〜; 100°Cで加熱することにより、加水分解されてシラノール基を生成すること ができる基や、シロキサン縮合物を形成することができる基を意味し、具体的には、ァ ルコキシ基、ァシルォキシ基、ハロゲン基、イソシァネート基等を挙げることができ、炭 素数 1〜4のアルコキシ基又は炭素数 1〜6のァシルォキシ基が好ましい。
[0048] 炭素数 1〜4のアルコキシ基としては、メチルォキシ基、ェチルォキシ基、プロピル ォキシ基、イソプロピルォキシ基、 n ブチルォキシ基、イソブチルォキシ基、 tーブチ ルォキシ基等が挙げられ、炭素数 1〜6のァシルォキシ基としては、ァセチルォキシ 基、ベンゾィルォキシ基等が挙げられる。ハロゲンとしてはフッ素原子、塩素原子、臭 素原子、ヨウ素原子等が挙げられる。イソシァネート基としては、例えば、アルキル基 に結合したイソシァネート基、シクロアルキル基に結合したイソシァネート基、ァリール 基に結合したイソシァネート基、 ¾ί イソシァネート基、ァリール基が置換したアルキル基に結合したイソシァネート基等が 挙げられる。
[0049] 具体的に、有機ケィ素化合物としては
Figure imgf000018_0001
以上を組み合わせて使用することができる。
[0050] また、炭化水素のポリマーからなる基を有する有機ケィ素化合物としては、例えば、 酸ェチル、(メタ)アクリル酸ブチル、 リル酸 2—ェチルへキシル、シクロへキシル(メタ)アタリレートなどの(メタ)アクリル酸 エステル;(メタ)アクリル酸、ィタコン酸、フマル酸などのカルボン酸および無水マレイ ン酸などの酸無水物;グリシジル(メタ)アタリレートなどのエポキシ化合物;ジェチル アミノエチル (メタ)アタリレート、アミノエチルビュルエーテルなどのアミノ化合物;(メタ
)アクリルアミド、ィタコン酸ジアミド、 α —ェチルアクリルアミド、クロトンアミド、フマル 酸ジアミド、マレイン酸ジアミド、 Ν—ブトキシメチル (メタ)アクリルアミドなどのアミド化 合物;アクリロニトリル、スチレン、 α—メチルスチレン、塩化ビュル、酢酸ビュル、プロ ピオン酸ビュルなどから選ばれるビュル系化合物を共重合したビュル系ポリマーを式 (I)の R成分とするものを挙げること力 Sできる。
なお、本発明の有機無機複合体における主成分となる有機ケィ素化合物の縮合物 は、後述する本発明の有機無機複合体の製造方法及び有機無機複合体形成用組 成物における有機ケィ素化合物及び/又はその縮合物がさらに縮合したものを意味 する。
[0051] (光感応性化合物)
本発明の光感応性化合物とは、そのメカニズムの如何によらず、表面側から照射さ れる 350nm以下の波長の光の作用によって、表面側の炭素成分を除去することが できる化合物であり、好ましくは、膜表面から深さ方向 0. 5 mまでの間における炭 素含有量の最小値が、膜裏面側における炭素含有量の 80%以下、より好ましくは 2 〜60%、さらに好ましくは 2〜40%とすることができる化合物であり、特に好ましくは、 炭素成分を、その除去量が表面側から漸次減少するように所定深さまで除去すること が可能な化合物、すなわち、表面から所定深さまで炭素含有量が漸次増加する膜を 形成することができる化合物をいう。具体的には、例えば、 350nm以下の波長の光 を吸収して励起する化合物を挙げることができる。
ここで、 350nm以下の波長の光とは、 350nm以下のいずれかの波長の光を成分 とする光源を用いてなる光、好ましくは、 350nm以下のいずれかの波長の光を主成 分とする光源を用いてなる光、すなわち、最も成分量の多い波長が 350nm以下の光 源を用いてなる光を意味する。
[0052] 本発明の有機無機複合体における光感応性化合物としては、金属キレート化合物 、金属有機酸塩化合物、 2以上の水酸基若しくは加水分解性基を有する金属化合物 、それらの加水分解物、及びそれらの縮合物からなる群より選ばれる少なくとも 1種の 化合物であり、加水分解物及び/又は縮合物であることが好ましぐ特に、金属キレ ート化合物の加水分解物及び/又は縮合物が好ましレ、。これから誘導される化合物 としては、例えば、金属キレート化合物の縮合物等がさらに縮合されたもの等を挙げ ること力 Sできる。力、かる光感応性化合物及び/又はその誘導体は、上述のように、有 機ケィ素化合物と化学結合していてもよぐ非結合状態で分散していてもよぐその混 合状態のものでもよい。
[0053] 金属キレート化合物としては、水酸基若しくは加水分解性基を有する金属キレート 化合物であることが好ましぐ 2以上の水酸基若しくは加水分解性基を有する金属キ レート化合物であることがより好ましい。なお、 2以上の水酸基若しくは加水分解性基 を有するとは、加水分解性基及び水酸基の合計が 2以上であることを意味する。また 、前記金属キレート化合物としては、 βーケトカルボニル化合物、 βーケトエステル化 合物、及び α—ヒドロキシエステル化合物が好ましぐ具体的には、ァセト酢酸メチル 、ァセト酢酸 η プロピル、ァセト酢酸イソプロピル、ァセト酢酸 η ブチル、ァセト酢 酸 sec ブチル、ァセト酢酸 t ブチル等の /3—ケトエステル類;ァセチルアセトン、 へキサン 2, 4 ジオン、ヘプタン 2, 4 ジオン、ヘプタン 3, 5 ジオン、オタ タン 2, 4 ジ才ン、ノナン一 2, 4 ジ才ン、 5 メチノレーへキサン一 2, 4 ジオン 等の /3—ジケトン類;グリコール酸、乳酸等のヒドロキシカルボン酸:等が配位した化 合物が挙げられる。
[0054] 金属有機酸塩化合物としては、金属イオンと有機酸から得られる塩からなる化合物 であり、有機酸としては、酢酸、シユウ酸、酒石酸、安息香酸等のカルボン酸類;スル フォン酸、スルフィン酸、チォフエノール等の含硫黄有機酸;フエノール化合物;エノ ール化合物;ォキシム化合物;イミド化合物;芳香族スルフォンアミド;等の酸性を呈 する有機化合物が挙げられる。
[0055] また、 2以上の水酸基若しくは加水分解性基を有する金属化合物は、上記金属キ レート化合物及び金属有機酸塩化合物を除くものであり、例えば、金属の水酸化物 や、金属アルコラ一ト等を挙げることができる。 [0056] 金属化合物、金属キレート化合物又は金属有機酸塩化合物における加水分解性 基としては、例えば、アルコキシ基、ァシルォキシ基、ハロゲン基、イソシァネート基が 挙げられ、炭素数 1〜4のアルコキシ基、炭素数 1〜4のァシルォキシ基が好ましい。 なお、 2以上の水酸基若しくは加水分解性基を有するとは、加水分解性基及び水酸 基の合計が 2以上であることを意味する。
[0057] かかる金属化合物の加水分解物及び/又は縮合物としては、 2以上の水酸基若し くは加水分解性基を有する金属化合物 1モルに対して、 0. 5モル以上の水を用いて 加水分解したものであることが好ましぐ 0. 5〜2モルの水を用いて加水分解したもの であることがより好ましい。
[0058] また、金属キレート化合物の加水分解物及び/又は縮合物としては、金属キレート 化合物 1モルに対して、 5〜; 100モルの水を用いて加水分解したものであることが好 ましぐ 5〜20モルの水を用いて加水分解したものであることがより好ましい。
[0059] また、金属有機酸塩化合物の加水分解物及び/又は縮合物としては、金属有機 酸塩化合物 1モルに対して、 5〜; 100モルの水を用いて加水分解したものであること が好ましぐ 5〜20モルの水を用いて加水分解したものであることがより好ましい。
[0060] また、これら金属化合物、金属キレート化合物又は金属有機酸塩化合物における 金属としては、チタン、ジルコニウム、アルミニウム、ケィ素、ゲルマニウム、インジウム 、スズ、タンタル、亜鉛、タングステン、鉛等が挙げられ、これらの中でもチタン、ジル コユウム、アルミニウム、スズが好ましぐ特にチタンが好ましい。これらは 1種単独で 用いてもよいし、 2種以上用いることもできる。
[0061] (紫外線硬化性化合物)
本発明の紫外線硬化性化合物とは、光重合開始剤の存在下で紫外線の照射によ り重合反応を起こす官能基を有する化合物あるいは樹脂のことであり、(メタ)アタリレ ート系化合物、エポキシ樹脂、アタリレート系化合物を除くビュル化合物などがある。 官能基の数は、 1個以上であれば特に限定はない。
[0062] アタリレート系化合物としては、ポリウレタン (メタ)アタリレート、ポリエステル (メタ)ァ タリレート、エポキシ (メタ)アタリレート、ポリアミド(メタ)アタリレート、ポリブタジエン( メタ)アタリレート、ポリスチリル(メタ)アタリレート、ポリカーボネートジアタリレート、ト リプロピレングリコールジ(メタ)アタリレート、へキサンジオールジ(メタ)アタリレート、 トリメチロールプロパントリ(メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレー ト、(メタ)アタリロイルォキシ基を有するシロキサンポリマー等が挙げられる力 好まし くはポリエステル (メタ)アタリレート、ポリウレタン (メタ)アタリレート、エポキシポリ(メタ) アタリレートであり、より好ましくは、ポリウレタン (メタ)アタリレートである。
分子量は、有機無機複合体形成用組成物に溶解する限り限度はないが、通常は 質量平均分子量として 500〜50, 000、好ましくは 1 , 000—10, 000である。
また、紫外線照射により重合反応を起こして生成した重合物が硬化物である。
[0063] エポキシ (メタ)アタリレートは、例えば、低分子量のビスフエノール型エポキシ樹脂 ゃノポラックエポキシ樹脂のォキシラン環とアクリル酸とのエステル化反応により得る こと力 Sでさる。
ポリエステル (メタ)アタリレートは、例えば、多価カルボン酸と多価アルコールの縮 合によって得られる、両末端に水酸基を有するポリエステルオリゴマーの水酸基をァ クリル酸でエステル化することにより得られる。または、多価カルボン酸にアルキレン ォキシドを付加して得られるオリゴマーの末端の水酸基をアクリル酸でエステル化す ることにより得られる。
ウレタン (メタ)アタリレートは、ポリオールとジイソシァネートとを反応させて得られる イソシァネート化合物と、水酸基を有するアタリレートモノマーとの反応生成物であり、 ポリ才ーノレとしては、ポリエステノレポリ才ーノレ、ポリエーテノレポリ才ーノレ、ポリカーボネ ートジオールが挙げられる。
[0064] 本発明で用いるウレタン (メタ)アタリレートの市販品としては、例えば、荒川化学ェ 業(株)製商品名:ビームセッ卜 102、 502H、 505A— 6、 510、 550B、 551B、 575 、 575CB、 EM— 90、 EM92、サンノプコ(株)製商品名:フォ卜マー 6008、 6210、 新中村化学工業(株)製商品名: NKオリゴ U— 2PPA、 U— 4HA、 U— 6HA、 H— 15HA、 UA— 32PA、 U— 324A、 U— 4H、 U— 6H、東亜合成(株)製商品名:ァ 口ニックス M— 1100、 M— 1200、 M— 1210、 M— 1310、 M— 1600、 M— 1960、 共栄社化学 (株)製商品名: AH— 600、 AT606、 UA— 306H、 日本化薬 (株)製 商品名:カャラッド、 UX— 2201、 UX— 2301、 UX— 3204、 UX— 3301、 UX— 410 1、 UX— 6101、UX— 7101、 日本合成化学工業 (株)製商品名:紫光 UV— 1700
B、 UV- 3000B, UV- 6100B, UV— 6300B、 UV— 7000、 UV— 7600B、 UV 2010B、根上工業(株)製商品名:アートレジン UN— 1255、 UN— 5200、 HDP 4T、 ΗΜΡ— 2、 UN— 901T、 UN— 3320HA、 UN— 3320ΗΒ、 UN— 3320Η
C、 UN— 3320HS、 H— 61、 HDP— M20、ダイセルユーシービー(株)製商品名: Ebecryl 6700、 204、 205、 220、 254、 1259、 1290K、 1748、 2002、 2220、 4 833、 4842、 4866、 5129、 6602、 8301等を挙げ、ることカできる。
[0065] 又、アタリレート系化合物をのぞくビュル化合物としては、 Ν ビュルピロリドン、 Ν
ビュル力プロラタタム、酢酸ビュル、スチレン、不飽和ポリエステルなどがあり、ェポ キシ樹脂としては、水素添加ビスフエノール Αジグリシジルエーテル、 3, 4—エポキシ シクロへキシルメチルー 3, 4 エポキシシクロへキサンカルボキシレート、 2- (3, 4 エポキシシクロへキシノレ 5, 5—スピロ 3, 4—エポキシ)シクロへキサン メタ ジォキサン、ビス(3, 4—エポキシシクロへキシルメチル)アジペートなどを挙げること ができる。
[0066] (光重合開始剤)
本発明の光重合開始剤は、 ω光照射によりカチオン種を発生させる化合物及び( b)光照射により活性ラジカル種を発生させる化合物等を挙げることができる。
光照射によりカチオン種を発生させる化合物としては、例えば、下記式 (II)に示す 構造を有するォニゥム塩を好適例として挙げることができる。
このォニゥム塩は、光を受けることによりルイス酸を放出する化合物である。
[R1 R2 R3 R4 W] +e[ML ]— e (II)
a b e d e + f
(式(II)中、カチオンはォニゥムイオンであり、 Wは、 S、 Se、 Te、 P、 As、 Sb、 Bi、 0、 I、 Br、 Cl、又は N≡N—であり、 R1, R2、 R3及び R4は同一又は異なる有機基であり、 a、 b、 c、及び dは、それぞれ 0〜3の整数であって、(a + b + c + d)は Wの価数に等し い。 Mは、ハロゲン化物錯体 [ML ]の中心原子を構成する金属又はメタロイドであ
e + f
り、 列えば、、 B、 P、 As、 Sb、 Fe、 Sn、 Bi、 Al、 Ca、 In、 Ti、 Zn、 Sc、 V、 Cr、 Mn、 Co 等である。 Lは、例えば、 F、 Cl、 Br等のハロゲン原子であり、 eは、ハロゲン化物錯体 イオンの正味の電荷であり、 fは、 Mの原子価である。 ) [0067] 上記式 (II)中における陰イオン (ML )の具体例としては、テトラフルォロボレート e + f
(BF―)、へキサフルォロホスフェート(PF―)、へキサフルォロアンチモネート(SbF
4 6 6
―)、へキサフルォロアルセネート(AsF―)、へキサクロ口アンチモネート(SbCl一)等
6 6 を挙げること力 sでさる。
また、式〔ML (OH) _〕に示す陰イオンを有するォニゥム塩を用いることもできる。さ f
らに、過塩素酸イオン(CIO―)、トリフルォロメタンスルフォン酸イオン(CF SO一)、
4 3 3 フルォロスルフォン酸イオン(FSO―)、トルエンスルフォン酸イオン、トリニトロべンゼ
3
ンスルフォン酸陰イオン、トリニトロトルエンスルフォン酸陰イオン等の他の陰イオンを 有するォニゥム塩でもよい。これらは、 1種単独で又は 2種以上を組み合わせて用い ること力 Sでさる。
[0068] 光照射により活性ラジカル種を発生させる化合物としては、例えば、ァセトフエノン、 ァセトフエノンべンジルケタール、 1ーヒドロキシシクロへキシルフェニルケトン、 2, 2— ジメトキシ 1 , 2—ジフエニルェタン 1 オン、キサントン、フルォレノン、ベンズァ ノレデヒド、フルオレン、アントラキノン、トリフエニノレアミン、カルバゾール、 3—メチルァ セトフエノン、 4 クロ口べンゾフエノン、 4, 4 'ージメトキシベンゾフエノン、 4, 4 'ージ ァミノべンゾフエノン、ベンゾインプロピルエーテノレ、ベンゾインェチルエーテル、ベン ジルジメチルケタール、 1一(4 イソプロピルフエニル)ー2 ヒドロキシー2 メチノレ プロパン 1—オン、 2—ヒドロキシ一 2—メチル一 1―フエニルプロパン一 1—オン、 チォキサントン、ジェチルチオキサントン、 2—イソプロピルチォキサントン、 2—クロ口 チォキサントン、 2 メチルー 1 [4 (メチルチオ)フエニル ]ー2 モルホリノ プロ パン一 1—オン、 2—ベンジルー 2—ジメチルァミノ一 1一(4—モルフォリノフエニル) ーブタノン 1 , 4一(2 ヒドロキシエトキシ)フエ二ルー(2 ヒドロキシー2 プロピル )ケトン、 2, 4, 6 トリメチルベンゾィルジフエニルフォスフィンオキサイド、ビス一(2, 6 ジメトキシベンゾィル) 2, 4, 4 トリメチルペンチルフォスフィンォキシド、オリゴ (2 ヒドロキシ 2 メチルー 1一(4一( 1 メチルビュル)フエニル)プロパノン)等を 挙げること力 Sでさる。
[0069] 本発明において用いられる光重合開始剤の配合量は、(メタ)アタリレート系紫外線 硬化性化合物の固形分に対して、 0. 0;!〜 20質量%配合することが好ましぐ 0. 1 〜; 10質量%が、さらに好ましい。
[0070] なお、本発明においては、必要に応じて増感剤を添加することができる、例えば、ト リメチルァミン、メチルジメタノールァミン、トリエタノーノレアミン、 p—ジメチルアミノアセ トフエノン、 p—ジメチルァミノ安息香酸ェチル、 p—ジメチルァミノ安息香酸イソアミノレ 、 N, N—ジメチルベンジルァミン及び 4, 4 '—ビス(ジェチルァミノ)ベンゾフエノン等 が使用できる。
[0071] (有機無機複合系薄膜)
上記本発明の有機無機複合体としては、具体的に、例えば、铸型に铸込んで成形 された成形体や、基体上に塗布して形成された薄膜が挙げられる。薄膜を形成する 場合、基体上に塗布した後乾燥する方法であれば特に制限されるものではな!/、が、 乾燥後、 350nm以下の波長を含む光を照射することが好ましぐこれにより、より高 硬度の薄膜 (有機無機複合系薄膜)を得ることができる。本発明において「350nm以 下の波長を含む光」とは、 350nm以下の波長のみならず、 350nmよりも長い波長の 紫外線も有するという意味である。これは、光感応性化合物が 350nm以下の波長を 必須とするのに対し、紫外線硬化性化合物は 350nmを超える波長、好ましくは 365 nm付近に感光性を有するからである。
[0072] 乾燥後の薄膜 (光照射した薄膜においては、膜の内部に相当する。)をガラス基板 に形成したときの、 JIS K 5600— 5— 4鉛筆法に規定する鉛筆硬度は、 1H〜4H 程度であり、基板との密着性及び硬度の点から、 2H〜4Hであることが好ましい。ま た、光照射後の薄膜をガラス基板に形成したときの、 JIS K 5600— 5— 4鉛筆法に 規定する鉛筆硬度は、 5H以上であることが好ましぐ 7H以上であることが好ましい。
[0073] 本発明の薄膜が形成可能な基体としては、金属、セラミックス、ガラス、プラスチック 等が挙げられる。従来、薄膜のプラスチック基体への形成は困難であり、ガラス等の 無機基体に限定されていたが、本発明の薄膜は、形成の難しいプラスチック基体で あっても、容易に皮膜形成でき、プラスチック製光学部品に対しても適している。かか るプラスチックとしては、例えば、ポリカーボネート樹脂、アクリル樹脂、ポリイミド樹脂 、ポリエステル樹脂、エポキシ樹脂、液晶ポリマー樹脂、ポリエーテルスルフォンが挙 げられる。 [0074] また、有機無機複合体形成用組成物の塗布方法としては、公知の塗布方法を用い ること力 Sでき、例えば、デイツビング法、スプレー法、バーコート法、ロールコート法、ス ピンコート法、カーテンコート法、グラビア印刷法、シルクスクリーン法、インクジェット 法等を挙げること力 Sできる。また、形成する膜厚としては、特に制限されるものではな く、例えば、 0. 05—200 μ m程度である。
[0075] 有機無機複合体形成用組成物を塗布して形成した膜の乾燥処理としては、例えば 、 40〜200。Cで、;!〜 120分程度 fiうこと力《好ましく、 60〜 20。Cで、 10〜60分程 度行うことがより好ましい。
[0076] また、 350nm以下の波長を含む光の照射は、例えば、高圧水銀ランプ、低圧水銀 ランプ、メタルノ、ライドランプ、エキシマーランプ等の公知の装置を用いて行うことがで き、照射する光としては、 150〜350nmの範囲のいずれかの波長の光を主成分とす る光であること力好ましく、 250〜310nmの範囲のいずれかの波長の光を主成分と する光であることがより好ましい。力、かる範囲の波長に感応し、 350nm、好ましくは 31 Onmを超える光に反応しないものであれば、太陽光によりほとんど影響を受けること はない。また、照射する光の照射光量としては、例えば、 0. ;!〜 lOOj/cm2程度が 挙げられ、膜硬化効率 (照射エネルギーと膜硬化程度の関係)を考慮すると、 0. 2〜 20j/cm2程度であることが好ましぐ 0. 5〜10j/cm2程度であることがより好ましい
なお、 350nm以下の波長の光の照射とは、 350nm以下のいずれかの波長の光を 成分とする光源を用いる照射、好ましくは、 350nm以下のいずれかの波長の光を主 成分とする光源を用いる照射、すなわち、最も成分量の多い波長が 350nm以下の 光源を用いる照射をいう。
[0077] また、本発明の有機無機複合系薄膜としては、膜表面部の炭素含有量が、膜裏面 部の炭素含有量に比して少ない構成であることが好ましぐ膜表面から深さ方向 0. 5 a mまでの間における炭素含有量の最小値力、膜裏面側における炭素含有量の 80 %以下であることがより好ましぐ 2〜60%であることがさらに好ましい。ここで、膜表 面部の炭素含有量が、膜裏面部の炭素含有量に比して少ないとは、膜表面から膜 中心部までの総炭素量力 S、膜裏面から膜中心部までの総炭素量より少ないことを意 味する。
[0078] また、本発明の有機無機複合系薄膜は、膜の表面から所定深さまで炭素含有量が 漸次増加していることが好ましぐこのような炭素含有量が漸次増加している深さとし ては、膜厚の 5〜80%であることが好ましぐ 10〜50%であることがより好ましぐ具 体的に、例えば、膜厚が;!〜 2. 5 111程度の場合、炭素含有量が漸次増加している 深さは、 50〜2000應程度である。
[0079] (有機無機複合体及び有機無機複合系薄膜の製造方法)
本発明の有機無機複合体及び有機無機複合系薄膜の製造方法としては、光感応 性化合物、紫外線硬化性化合物及び光重合開始剤の存在下、有機ケィ素化合物及 び/又はその縮合物に、 350nm以下の波長を含む光を照射する方法を挙げること ができ、後述する有機無機複合体形成用組成物を用いることができる。
[0080] 本発明の製造方法に用いる有機ケィ素化合物としては、縮合物であることが好まし ぐその平均粒径が、 50nm以下であることが好ましぐ 20nm以下であることがより好 ましい。また、本発明の製造方法において用いる光感応性化合物としては、加水分 解物及び/又は縮合物であることが好ましぐ特に、金属キレート化合物の加水分解 物及び/又は縮合物が好ましぐその平均粒径としては、 20nm以下であることが好 ましぐ l Onm以下であることがより好ましい。これにより、有機無機複合体(有機無機 複合系薄膜)の透明性を向上させることができる。これらの平均粒子径は、例えば、 M alvern Instruments Ltd製 HPPSを用いて測定することができる。
[0081] (有機無機複合体形成用組成物)
本発明の有機無機複合体形成用組成物は、
a) 式 (I)
R SiX · · · (I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物及び/又はその縮合物、
b)金属キレート化合物、金属有機酸塩化合物、 2以上の水酸基若しくは加水分解性 基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より 選ばれる少なくとも 1種の光感応性化合物、
c)紫外線硬化性化合物、及び、
d)光重合開始剤
を含有する組成物であれば特に制限されるものではなぐさらに、水及び/又は溶媒 を含有することが好ましい。式 (I)で表される有機ケィ素化合物及び光感応性化合物 としては、上述したものと同様である。
[0082] 用いる溶媒としては、特に制限されるものではなぐ例えば、ベンゼン、トルエン、キ シレン等の芳香族炭化水素類;へキサン、オクタン等の脂肪族炭化水素類;シクロへ キサン、シクロペンタン等の脂環族炭化水素類;アセトン、メチルェチルケトン、シクロ へキサノン等のケトン類;テトラヒドロフラン、ジォキサン等のエーテル類;酢酸ェチル 、酢酸ブチル等のエステル類; N, N—ジメチルホルムアミド、 N, N—ジメチルァセト アミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;メタノール、エタノール 等のァノレコ一ノレ類;エチレングリコ一ノレモノメチノレエーテノレ、エチレングリコ一ノレモノメ チルエーテルアセテート等の多価アルコール誘導体類;等が挙げられる。これらの溶 媒は 1種単独で、あるいは 2種以上を組み合わせて用いることができる。
[0083] 本発明の有機無機複合体形成用組成物中の固形分(有機ケィ素成分、光感応性 化合物成分、紫外線硬化性化合物及び光重合開始剤)としては、;!〜 75質量%であ ること力 S好ましく、 10〜60質量%であることがより好ましい。有機ケィ素化合物及び/ 又はその縮合物、光感応性化合物、紫外線硬化性化合物及び光重合開始剤の全 質量に対して、紫外線硬化性化合物は 2〜98質量%、好ましくは 5〜95質量%であ
[0084] 光感応性化合物の含有量としては、その種類にもよるが、一般的に、有機ケィ素化 合物中の Siに対して、光感応性化合物中の金属原子が 0. 01-0. 5モル当量、好ま しくは 0. 05—0. 2モル当量であることが好ましい。
[0085] 本発明の有機無機複合体形成用組成物には、得られる塗膜の硬度向上を目的と して 4官能シランやコロイド状シリカを添加することもできる。 4官能シランとしては、例 えば、テトラアミノシラン、テトラクロロシラン、テトラァセトキシシラン、テトラメトキシシラ ン、テトラエトキシシラン、テトラブトキシシラン、テトラべンジロキシシラン、テトラフエノ キシシラン、テトラ (メタ)アタリ口キシシラン、テトラキス [2— (メタ)アタリロキシエトキシ] シラン、テトラキス(2—ビニロキシエトキシ)シラン、テトラグリシジロキシシラン、テトラ キス(2—ビニロキシブトキシ)シラン、テトラキス(3—メチルー 3—ォキセタンメトキシ) シランを挙げること力 Sできる。また、コロイド状シリカとしては、水分散コロイド状シリカ、 メタノールもしくはイソプロピルアルコールなどの有機溶媒分散コロイド状シリカを挙 げること力 Sでさる。
また、本発明の有機無機複合体形成用組成物には、得られる塗膜の着色、厚膜化 、下地への紫外線透過防止、防蝕性の付与、耐熱性などの諸特性を発現させるため に、別途、充填材を添加'分散させることも可能である。この充填材としては、例えば 有機顔料、無機顔料などの非水溶性の顔料または顔料以外の粒子状、繊維状もしく は鱗片状の金属および合金ならびにこれらの酸化物、水酸化物、炭化物、窒化物、 硫化物などが挙げられる。この充填材の具体例としては、粒子状、繊維状もしくは鱗 片状の鉄、銅、アルミニウム、ニッケル、銀、亜鉛、フェライト、カーボンブラック、ステ ンレス鋼、二酸化ケイ素、酸化チタン、酸化アルミニウム、酸化クロム、酸化マンガン、 酸化鉄、酸化ジルコニウム、酸化コバルト、合成ムライト、水酸化アルミニウム、水酸化 鉄、炭化ケィ素、窒化ケィ素、窒化ホウ素、クレー、ケイソゥ土、消石灰、石膏、タルク 、炭酸バリウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、ベントナイト、雲 母、亜鉛緑、クロム緑、コバルト緑、ビリジアン、ギネー緑、コバルトクロム緑、シエーレ 緑、緑土、マンガン緑、ビグメントグリーン、群青、紺青、岩群青、コバルト青、セルリア ンブルー、ホウ酸銅、モリブデン青、硫化銅、コバルト紫、マルス紫、マンガン紫、ビグ メントバイオレット、亜酸化鉛、鉛酸カルシウム、ジンタエロー、硫化鉛、クロム黄、黄 土、カドミウム黄、ストロンチウム黄、チタン黄、リサージ、ビグメントエロー、亜酸化銅、 カドミウム赤、セレン赤、クロムバーミリオン、ベンガラ、亜鉛白、アンチモン白、塩基性 硫酸鉛、チタン白、リトボン、ケィ酸鉛、酸化ジルコン、タングステン白、鉛亜鉛華、バ ンチソン白、フタル酸鉛、マンガン白、硫酸鉛、黒鉛、ボーンブラック、ダイヤモンドブ ラック、サーマトミック黒、植物性黒、チタン酸カリウムゥイスカー、二硫化モリブデンな どを挙げること力 Sできる。 [0087] なお、本発明の有機無機複合体形成用組成物には、その他、オルトギ酸メチル、ォ ノレト酢酸メチル、テトラエトキシシランなどの公知の脱水剤、各種界面活性剤、前記以 外のシランカップリング剤、チタンカップリング剤、染料、分散剤、増粘剤、レべリング 剤などの添加剤を添加することもできる。
[0088] (有機無機複合体形成用組成物の調製方法)
本発明の有機無機複合体形成用組成物の調製方法としては、必要に応じて水及 び/又は溶媒を加え、有機ケィ素化合物、光感応性化合物、紫外線硬化性化合物 及び光重合開始剤を混合する。
[0089] 具体的には、たとえば、光感応性化合物を溶媒に混合し、所定量の水を加え、(部 分)加水分解を行い、続いて、有機ケィ素化合物を添加して(部分)加水分解させる。 一方、紫外線硬化性化合物を溶媒に溶解して光重合開始剤を添加し、その後、両 溶液を混合する。これら 4成分は、同時に混合することもでき、また、有機ケィ素化合 物と光感応性化合物の混合方法につ!/、ては、有機ケィ素化合物と光感応性化合物 を混合した後に、水を加えて (部分)加水分解する方法や、有機ケィ素化合物及び光 感応性化合物を別々に(部分)加水分解したものを混合する方法を挙げることができ る。水や溶媒を加える必要は必ずしもないが、水を加えて(部分)加水分解物として おくことが好ましい。所定量の水の量としては、光感応性化合物の種類にもよるが、 例えば、光感応性化合物が 2以上の水酸基若しくは加水分解性基を有する金属化 合物の場合、金属化合物 1モルに対して、 0. 5モル以上の水を用いることが好ましく 、 0. 5〜2モルの水を用いることがより好ましい。また、光感応性化合物が金属キレー ト化合物又は金属有機酸塩化合物の場合、金属キレート化合物又は金属有機酸塩 化合物 1モルに対して、 5〜100モルの水を用いることが好ましぐ 5〜20モルの水を 用いることがより好ましい。
[0090] (紫外線硬化性化合物用添加剤)
紫外線硬化性化合物に混合する前の、
a)式 (I)
R SiX · · · (I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物及び/又はその縮合物、及び
b)金属キレート化合物、金属有機酸塩化合物、 2以上の水酸基若しくは加水分解性 基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より 選ばれる少なくとも 1種の光感応性化合物
を含有する有機無機複合体形成用組成物は、紫外線硬化性化合物あるいは樹脂に 添加することにより、硬度を向上させることができる。
上記組成を有する有機無機複合体形成用組成物は、 WO2006/088079に記載 されたものと同一であり、当該文献の記載に基づいて調製することができる。紫外線 硬化性化合物に対する添加割合は、 目的に応じて適宜選択すればよい。
実施例
[0091] 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこ れらの例示に限定されるものではない。
[0092] (実施例 A 有機無機複合体形成用組成物の調製)
〔実施例 1〕
1.光感応性化合物
ジイソプロポキシビスァセチルァセトナートチタン(日本曹達株式会社製、 T 50、酸 化チタン換算固形分量: 16. 5重量%) 30. 3gをエタノール/酢酸ェチル /2 ブタ ノール = 60/20/20の混合溶媒 58. 4gに溶解後、攪拌しながらイオン交換水 11. 3g (10倍モル/酸化チタンのモル)をゆっくり滴下し、加水分解させた。 1日後に溶 液を濾過し、黄色透明な酸化チタン換算濃度 5重量%の酸化チタンナノ分散液 [A 1]を得た。酸化チタンの平均粒径は 4. lnmで単分散性であった。
2.有機ケィ素化合物
有機ケィ素化合物として、ビュルトリメトキシシラン [B— 1] (信越化学工業株式会社 製、 KBM— 1003)を使用した。
3. (光感応性化合物 +シラン化合物加水分解縮合物)混合溶液
元素比 (Ti/Si= 1/9)になるように、上記 [A— 1]と [B— 1]を混合した液 [C— 1] を作製した。 [C 1]の固形分は 27重量%であった。
4.紫外線硬化性化合物溶液
紫外線硬化性化合物として、ウレタンアタリレートオリゴマー(日本合成化学工業株式 会社製、紫光 UV7600B)を 30重量%となるようにエタノール/酢酸ェチル /2 ブ タノール = 60/20/20の混合溶媒に溶解させた。この溶液に光重合開始剤として
、 1ーヒドロキシーシクロへキシルーフエ二ルーケトン (和光純薬工業株式会社製)をゥ レタンアタリレートオリゴマーの固形分に対して 4重量%となるように溶解させ、溶液 [ D— 1]を作製した。
5.有機無機複合体形成用組成物の調製
固形分の割合が10重量%/90重量% = [じ—1]/[0—1]となるょぅに、上記 [C— 1]液と [D— 1]溶液を混合させ、塗膜形成用溶液 [E— 1]を作製した。
[0093] 〔実施例 2〕
上記 [C 1 ]と [D— 1 ]の固形分重量%が 50重量%/50重量% = [C— 1 ] / [D— 1]とする以外は実施例 1と同様に、 [じー1]と[0—1]を混合し、塗膜形成用溶液 [E —2]を作製した。
[0094] 〔実施例 3〕
上記[じー1]と[0—1]の固形分重量%が90重量%/10重量% = [じー1]/[0— 1]とする以外は実施例 1と同様に、 [じー1]と[0—1]を混合し、塗膜形成用溶液 [E —3]を作製した。
[0095] 〔実施例 3'〕
重合開始剤として 1ーヒドロキシーシクロへキシルーフエ二ルーケトン(Irgacure (登録 商標) 184)及び溶媒としてエタノールを使用した以外は、実施例 3の方法と同様に膜 を作製した。
[0096] 〔実施例 4〕
1.光感応性化合物
ジイソプロポキシビスァセチルァセトナートチタン(日本曹達株式会社製、 T 50、酸 化チタン換算固形分量: 16. 5重量%) 30. 3gをエタノール/酢酸ェチル /2 ブタ ノール = 60/20/20の混合溶媒 58. 4gに溶解後、攪拌しながらイオン交換水 11. 3g (10倍モル/酸化チタンのモル)をゆっくり滴下し、加水分解させた。 1日後に溶 液を濾過し、黄色透明な酸化チタン換算濃度 5重量%の酸化チタンナノ分散液 [A 1]を得た。酸化チタンの平均粒径は 4. lnmで単分散性であった。
2.有機ケィ素化合物
有機ケィ素化合物として、ビュルトリメトキシシラン [B— 1] (信越化学工業株式会社 製、 KBM— 1003)と 3 メタクリロキシプロピルトリメトキシシラン [B— 2] (信越化学 工業株式会社製、 KBM— 503)を 7/3 (=ビュルトリメトキシシラン /3 メタタリロキ シプロピルトリメトキシシラン)のモル比で混合した液 [F— 1 ]を使用した。
3. (光感応性化合物 +シラン化合物加水分解縮合物)混合溶液の合成
元素比 (Ti/Si= 1/9)になるように上記 [A— 1]と [F— 1]を混合し、 12時間攪拌 した液 [C— 2]を作製した。 C— 2の固形分は 34. 7重量%であった。
4.紫外線硬化性化合物溶液
紫外線硬化性化合物として、ウレタンアタリレートオリゴマー(日本合成化学工業株式 会社製、紫光 UV7600B)を 40重量%となるようにエタノール/酢酸ェチル /2 ブ タノール = 60/20/20の混合溶媒に溶解させた。この溶液に光重合開始剤として
、 1ーヒドロキシーシクロへキシルーフエ二ルーケトン (和光純薬工業株式会社製)をゥ レタンアタリレートオリゴマーの固形分に対して 4重量%となるように溶解させ、溶液 [ D— 2]を作製した。
5.有機無機複合体形成用組成物の調製
固形分の割合が50重量%/50重量% = [じー2]/[0— 2]となるょぅに、上記 [C— 2]液と [D— 2]溶液を混合させ、塗膜形成用溶液 [E— 4]を作製した。
[0097] 〔実施例 5〕
有機ケィ素化合物として、ビュルトリメトキシシラン [B— 1] (信越化学工業株式会社 製、 KBM— 1003)と 3-アタリロキシプロピルトリメトキシシラン [B— 3] (信越化学ェ 業株式会社製、 KBM— 5103)を 7/3 (=ビュルトリメトキシシラン /3_アタリ口キシプ 口ピルトリメトキシシラン)のモル比で混合した液 [F— 2]を使用する事以外は実施例 4 と同様に塗膜形成用溶液 [E— 5]を作製した。
[0098] 〔実施例 6〕 有機ケィ素化合物として、ビュルトリメトキシシラン [B— 1] (信越化学工業株式会社 製、 KBM— 1003)と 3 ァミノプロピルトリメトキシシラン [B— 4] (信越化学工業株式 会社製、 KBM— 903)を 9/1 ( =ビュルトリメトキシシラン /3 ァミノプロピルトリメト キシシラン)のモル比で混合した液 [F— 3]を使用する事以外は実施例 4と同様に塗 膜形成用溶液 [E— 6]を作製した。
[0099] 〔実施例 7〕
有機ケィ素化合物として、ビュルトリメトキシシラン [B— 1] (信越化学工業株式会社 製、 KBM— 1003)と 3 グリシドキシプロピルトリメトキシシラン [B— 5] (信越化学ェ 業株式会社製、 KBM— 403)を 7/3 (=ビュルトリメトキシシラン /3 グリシドキシ プロピルトリメトキシシラン)のモル比で混合した液 [F— 4]を使用する事以外は実施 例 4と同様に塗膜形成用溶液 [E— 7]を作製した。
[0100] 〔実施例 8〕
1.光感応性化合物
ジイソプロポキシビスァセチルァセトナートチタン(日本曹達株式会社製、 T 50、酸 化チタン換算固形分量: 16. 5重量%) 30. 3gをエタノール/酢酸ェチル /2 ブタ ノール = 60/20/20の混合溶媒 58. 4gに溶解後、攪拌しながらイオン交換水 11. 3g (10倍モル/酸化チタンのモル)をゆっくり滴下し、加水分解させた。 1日後に溶 液を濾過し、黄色透明な酸化チタン換算濃度 5重量%の酸化チタンナノ分散液 [A 1]を得た。酸化チタンの平均粒径は 4. lnmで単分散性であった。
2.有機ケィ素化合物
有機ケィ素化合物として、ビュルトリメトキシシラン [B— 1] (信越化学工業株式会社 製、 KBM— 1003)と 3 メタクリロキシプロピルトリメトキシシラン [B— 2] (信越化学 工業株式会社製、 KBM— 503)を 9/1 ( =ビュルトリメトキシシラン /3 メタタリロキ シプロピルトリメトキシシラン)のモル比で混合した液 [F— 5]を使用した。
3. (光感応性化合物 +シラン化合物加水分解縮合物)混合溶液の合成
元素比 (Ti/Si= l/9)になるように上記 [A—1]と [F— 5]を混合し、 12時間攪拌 した液]を作製した。 [C— 3]の固形分は 29. 2重量%であった。
4.紫外線硬化性化合物溶液 紫外線硬化性化合物として、ウレタンアタリレートオリゴマー(日本合成化学工業株式 会社製、紫光 UV7600B)を 40重量%となるようにエタノール/酢酸ェチル /2—ブ タノール = 60/20/20の混合溶媒に溶解させた。この溶液に光重合開始剤として
、 1ーヒドロキシーシクロへキシルーフエ二ルーケトン (和光純薬工業株式会社製)をゥ レタンアタリレートオリゴマーの固形分に対して 4重量%となるように溶解させ、溶液 [ D— 2]を作製した。
5.有機無機複合体形成用組成物の調製
固形分の割合が 10重量%/90重量% = [C— 3] / [D— 2]となるように、上記 [C - 3]液と [D— 2]溶液を混合させ、塗膜形成用溶液 [E— 8]を作製した。
[0101] 〔実施例 8 '〕
重合開始剤として 1ーヒドロキシーシクロへキシルーフエ二ルーケトン(Irgacure (登録 商標) 184)及び溶媒としてエタノールを使用した以外は、実施例 8の方法と同様に膜 を作製した。
[0102] 〔実施例 9〕
上記[じー3]と[0— 2]の固形分重量%が90重量%/10重量% = [じー3]/[0— 2]とする以外は実施例 8と同様に、 [C— 3]と [D— 2]を混合し、塗膜形成用溶液 [E —9]を作製した。
[0103] 〔実施例 9'〕
重合開始剤として 1ーヒドロキシーシクロへキシルーフエ二ルーケトン(Irgacure (登録 商標) 184)及び溶媒としてエタノールを使用した以外は、実施例 9の方法と同様に膜 を作製した。
[0104] (実施例 B 薄膜形成)
実施例 1から 8で得られた塗膜形成用溶液 [E—;!]〜 [E— 8]をソーダライムガラス基 板 [SLG]または、ポリカーボネート基板(三菱エンジニアリングプラスチックス株式会 社製、ユーピロン NF— 2000) [PC]にバーコート製膜し、温風循環型乾燥器にて 60 °Cで 30分間加熱した。続いて、集光型高圧水銀灯(365nm、 313nm、 254nmの波 長の光を主成分とする UV光、アイグラフィックス社製、 1灯型、 120W/cm、ランプ 高 9. 8cm、コンベア速度 8m/分)により、積算紫外線照射量 2100mj/cm2の紫 外線を照射して薄膜を得た。
[0105] 実施例 9で得られた塗膜形成用溶液 [E 9]については、次のようにして 2層薄膜を 作製した。
実施例 8で作製した塗膜形成用溶液 [E 8]を、バーコート製膜後 60°C乾燥し、積 算紫外線照射量 800mj/cm2の紫外線を照射して約 4 mの薄膜を得た。さらに、 この薄膜上に塗膜形成用溶液 [E— 9]を約 3 111の膜厚になるように、バーコート製 膜後 60°C乾燥して、積算紫外線照射量 4000mj/cm2の紫外線を照射し 2層薄膜 を得た。
[0106] 〔実施例 10〕
1.光感応性化合物
ジイソプロポキシビスァセチルァセトナートチタン(日本曹達株式会社製、 T 50、酸 化チタン換算固形分量: 16. 5重量%) 30. 3gをエタノール/酢酸ェチル /2 ブタ ノール = 60/20/20の混合溶媒 58. 4gに溶解後、攪拌しながらイオン交換水 11. 3g (10倍モル/酸化チタンのモル)をゆっくり滴下し、加水分解させた。 1日後に溶 液を濾過し、黄色透明な酸化チタン換算濃度 5重量 %の酸化チタンナノ分散液 [A— 1]を得た。酸化チタンの平均粒径は 4. lnmで単分散性であった。
2.有機ケィ素化合物
有機ケィ素化合物として、ビュルトリメトキシシラン [B— 1] (信越化学工業株式会社 製、 KBM— 1003)を使用した。
3. (光感応性化合物 +シラン化合物加水分解縮合物)混合溶液の合成
元素比 (Ti/Si= 1/9)になるように、上記 [A— 1]と [B— 1]を混合した液 [C— 1] を作製した。 [C 1]の固形分は 27重量%であった。
4.紫外線硬化性化合物溶液
紫外線硬化性化合物として、ウレタンアタリレートオリゴマー(日本合成化学工業株式 会社製、紫光 UV7600B)を 40重量%となるようにエタノール/酢酸ェチル /2 ブ タノール = 60/20/20の混合溶媒に溶解させた。この溶液に光重合開始剤として
、 2—ヒドロキシ一 2—メチル 1—フエ二ループロパン一 1—オン(チノく'スぺシャリテ ィ 'ケミカノレズ社製、 Darocurel l 73)をウレタンアタリレートオリゴマーの固形分に対 して 4重量%となるように溶解させ、溶液 [D— 3]を作製した。
5.有機無機複合体形成用組成物の調製
固形分の割合が50重量%/50重量% = [じ—1]/[0— 3]となるょぅに、上記 [C— 1]液と [D— 3]溶液を混合させ、塗膜形成用組成物 [E— 10]を作製した。
[0107] 〔実施例 11〕
上記 [C 1 ]と [D— 3]の固形分重量%が 90重量%/10重量% = [C— 1 ] / [D—
3]とする以外は実施例 10と同様に、 [C— 1]と [D— 3]を混合し、塗膜形成用組成物
[E— 11]を作製した。
[0108] 〔実施例 12〕
有機ケィ素化合物として、 3 メタクリロキシプロピルトリメトキシシラン [B— 2] (信越 化学工業株式会社製、 KBM— 503)を使用する事以外は実施例 10と同様に塗膜 形成用組成物 [E— 12]を作製した。
[0109] 〔実施例 13〕
有機ケィ素化合物として、 3 メタクリロキシプロピルトリメトキシシラン [B— 2] (信越 化学工業株式会社製、 KBM— 503)を使用する事以外は実施例 11と同様に塗膜 形成用組成物 [E— 13]を作製した。
[0110] 〔実施例 14〕
有機ケィ素化合物として、 3—グリシドキシプロピルトリメトキシシラン [B— 3] (信越 化学工業株式会社製、 KBM— 403)を使用する事以外は実施例 10と同様に塗膜 形成用組成物 [E 14]を作製した。
[0111] 〔実施例 15〕
有機ケィ素化合物として、 3—グリシドキシプロピルトリメトキシシラン [B— 3] (信越 化学工業株式会社製、 KBM— 403)を使用する事以外は実施例 11と同様に塗膜 形成用組成物 [E— 15]を作製した。
[0112] 〔実施例 16〕
1.光感応性化合物
ジルコニウムァセチルジァセトナート(日本曹達株式会社製、 ZR- 181 ,酸化ジルコ ニゥム換算固形分量: 15. 0重量%) 23. Ogをエタノール/酢酸ェチル /2 ブタノ ール = 60/20/20の混合溶媒 41. Ogに溶解後、攪拌しながらイオン交換水 5. Og (10倍モル/酸化ジルコニウムのモル)をゆっくり滴下し、加水分解させた。 1日後に 溶液を濾過し、黄色透明な酸化ジルコニウム換算濃度 5重量%の酸化ジルコニウム ナノ分散液 [A— 2]を得た。溶液中の粒径は 4nmをピークとするブロードな分布を示 した。
2.有機ケィ素化合物
有機ケィ素化合物として、ビュルトリメトキシシラン [B— 1] (信越化学工業株式会社 製、 KBM— 1003)と 3 メタクリロキシトリメトキシシラン [B— 2] (信越化学工業株式 会社製、 KBM— 503)を 7/3 ( =ビュルトリメトキシシラン /3 メタクリロキシプロピ ルトリメトキシシラン)のモル比で混合した液 [F— 1 ]を使用した。
3. (光感応性化合物 +シラン化合物加水分解縮合物)混合溶液の合成
元素比(Zr/Si= 1/9)になるように上記 [A— 2]と [F— 1]を混合し、 12時間攪拌 した液 [C— 4]を作製した。 [C— 4]の固形分は 25. 2重量%であった。
4.紫外線硬化性化合物溶液
紫外線硬化性化合物として、ウレタンアタリレートオリゴマー(日本合成化学工業株式 会社製、紫光 UV7600B)を 40重量%となるようにエタノール/酢酸ェチル /2 ブ タノール = 60/20/20の混合溶媒に溶解させた。この溶液に光重合開始剤として
、 2—ヒドロキシ一 2—メチル 1—フエ二ループロパン一 1—オン(Darocure (登録 商標) 1173)をウレタンアタリレートオリゴマーの固形分に対して、 4重量%となるよう に溶解させ、溶液 [D— 3]を作製した。
5.有機無機複合体形成用組成物の調製
固形分の割合が50重量%/50重量% = [じー4]/[0— 3]となるょぅに、上記 [C— 4]液と [D— 3]溶液を混合させ、塗膜形成用溶液 [E— 16]を作製した。
[0113] 〔実施例 17〕
上記[じー4]と[0— 3]の固形分重量%を10重量%/90重量% = [じー4]/[0— 3]とする以外は実施例 16と同様に、 [C— 4]と [D— 3]を混合し、塗膜形成用溶液 [ E— 17]を作製した。
[0114] 〔実施例 18〕 1.光感応性化合物
トリスァセチルァセトナートアルミニウム(ACROS ORGAMCS社製) 11 · Ogをエタノー ル/酢酸ェチル /2—ブタノール = 60/20/20の混合溶媒 199. 0gに溶解し、無 色透明な酸化アルミニウム換算固形分量: 0. 8重量%の溶液 [A— 3]を調製した。
4.紫外線硬化性化合物用添加剤
元素比 (Al/Si = 2/98)になるように上記 [A— 3]と [F— 1]を混合し、攪拌しなが らイオン交換水 13. 5g (3倍モル/ Siモル)をゆっくり滴下し、加水分解させた液 [C —5]を作製した。 [C— 5]の固形分は 22· 5重量%であった。
5.有機無機複合体形成用組成物の調製
固形分の割合が50重量%/50重量%=「じ—5」/[0— 3]となるょぅに、上記 [C— 5]と [D— 3]を混合させ、塗膜形成用溶液 [E— 18]を作製した。
[0115] 〔実施例 19〕
上記[じー5]と[0— 3]の固形分重量%を10重量%/90重量%=「じー5」/[0— 3]とする以外は実施例 18と同様に、 [C— 5]と [D— 3]を混合し、塗膜形成用溶液 [ E— 19]を作製した。
[0116] 〔実施例 20〕
1.光感応性化合物
テトラ—卜プロポキシチタン(日本曹達株式会社製、 A— 1、酸化チタン換算固形分 量: 28· 0重量0 /0) 100. 0gをエタノーノレ/酢酸ェチノレ /2—ブタノ一ノレ = 60/20/ 20の混合溶媒 418. 0gに溶解させた。この溶液を攪拌しながら酢酸 42. lg (2倍モ ル/酸化チタンのモル)を添加し、続けてイオン交換水 63· lg (10倍モル/酸化チ タンのモル)をゆっくり滴下し、加水分解させた。 1日後に溶液を濾過し、黄色透明な 酸化チタン換算濃度 5重量%の酸化チタンナノ分散液 [A— 4]を得た。
3. (光感応性化合物 +シラン化合物加水分解縮合物)混合溶液
元素比 (Ti/Si= l/9)になるように上記 [A—4]と [F—1]を混合し、 12時間攪拌 した液 [C— 6]を作製した。 [C— 6]の固形分は 33. 2重量%であった。
5.有機無機複合体形成用組成物の調製
固形分の割合が90重量%/10重量%= [じー6]/[0— 3]となるょぅに、上記 [C— 6]液と [D— 3]溶液を混合させ、塗膜形成用溶液 [E— 20]を作製した。
[0117] 〔実施例 21〕
5.有機無機複合体形成用組成物の調製
上記[じー6]と[0— 3]の固形分重量%を50重量%/50重量% = [じー6]/[0— 3]とする以外は実施例 20と同様に、上記 [C— 6]液と [D— 3]溶液を混合させ、塗膜 形成用溶液 [E— 21 ]を作製した。
[0118] 〔実施例 22〕
5.有機無機複合体形成用組成物の調製
上記 [C 6]と [D— 3]の固形分重量%を 10重量%/90重量% = [C— 6] / [D— 3]とする以外は実施例 20と同様に、上記 [C— 6]液と [D— 3]溶液を混合させ、塗膜 形成用溶液 [E— 22]を作製した。
[0119] 〔実施例 23〕
4.紫外線硬化性化合物溶液
紫外線硬化性化合物として、ウレタンアタリレートオリゴマー(日立化成工業株式会社 製、ヒタロイド 7903— 1)を 40重量0 /0となるようにエタノール/酢酸ェチル /2 ブタ ノール = 60/20/20の混合溶媒に溶解させた。この溶液に光重合開始剤として、 2
—ヒドロキシ一 2—メチル一 1—フエ二ノレ一プロパン一 1—オン(Darocure (登録商標 ) 1173)をウレタンアタリレートオリゴマーの固形分に対して、 4重量0 /0となるように溶 解させ、溶液 [D— 4]を作製した。
5.有機無機複合体形成用組成物の調製
固形分の割合が90重量%/10重量% = [じー2]/[0— 4]となるょぅに、上記 [C— 2]液と [D— 4]溶液を混合させ、塗膜形成用溶液 [E— 23]を作製した。
[0120] 〔実施例 24〕
上記[じー2]と[0— 4]の固形分重量%を50重量%/50重量% = [じー2]/[0— 4]とする以外は実施例 23と同様に、上記 [C— 2]液と [D— 4]溶液を混合させ、塗膜 形成用溶液 [E— 24]を作製した。
[0121] 〔実施例 25〕
上記 [C 2]と [D— 4]の固形分重量%を 10重量%/90重量% = [C— 2] / [D— 4]とする以外は実施例 23と同様に、上記 [C— 2]液と [D— 4]溶液を混合させ、塗膜 形成用溶液 [E— 25]を作製した。
[0122] 〔実施例 26〕
4.紫外線硬化性化合物溶液
紫外線硬化性化合物として、エポキシアタリレートオリゴマー(日本ュピカ株式会社製 、ネオポール 8318)を 40重量%となるようにエタノール/酢酸ェチル /2 ブタノ一 ル = 60/20/20の混合溶媒に溶解させた。この溶液に光重合開始剤として、 2 ヒ ドロキシ— 2—メチル— 1—フエニル—プロパン— 1—オン(Darocure (登録商標) 11 73)をエポキシアタリレートオリゴマーの固形分に対して、 4重量0 /0となるように溶解さ せ、溶液 [D— 5]を作製した。
5.有機無機複合体形成用組成物の調製
固形分の割合が90重量%/10重量% = [じー2]/[0— 5]となるょぅに、上記 [C— 2]液と [D— 5]溶液を混合させ、塗膜形成用溶液 [E— 26]を作製した。
[0123] 〔実施例 27〕
上記[じー2]と[0— 5]の固形分重量%を50重量%/50重量% = [じー2]/[0— 5]とする以外は実施例 26と同様に、上記 [C— 2]液と [D— 5]溶液を混合させ、塗膜 形成用溶液 [E— 27]を作製した。
[0124] 〔実施例 28〕
上記 [C 2]と [D— 5]の固形分重量%を 10重量%/90重量% = [C— 2] / [D— 5]とする以外は実施例 26と同様に、上記 [C— 2]液と [D— 5]溶液を混合させ、塗膜 形成用溶液 [E— 28]を作製した。
[0125] (実施例 B 薄膜形成)
実施例 10〜 15で得られた塗膜形成用溶液 [E— 10]〜 [E— 15]をソーダライムガラ ス基板 [SLG]または、ポリカーボネート基板(三菱エンジニアリングプラスチックス株 式会社製、ユーピロン NF— 2000) [PC]にバーコート製膜し、温風循環型乾燥器に て 60°Cで 30分間加熱した。続いて、集光型高圧水銀灯(365nm、 313nm、 254η mの波長の光を主成分とする UV光、アイグラフィックス社製、 1灯型、 120W/cm、 ランプ高 9. 8cm、コンベア速度 8m/分)により、積算紫外線照射量 2100mj/cm2 の紫外線を照射して薄膜を得た。
[0126] 実施例 16、 18、 21、 24、 27で得られた塗膜形成用溶液 [E— 16]、 [E—18]、 [E— 21]、 [E— 24]、 [E— 27]は、成膜を 100°Cで 5分間加熱する以外は実施例;!〜 8と 同様に薄膜を得た。
[0127] 実施例 20、 23、 26で得られた塗膜形成用溶液 [E— 20]、 [E— 23]、 [E— 26]は、 成膜を 120°Cで 5分間加熱する以外は実施例 1〜8と同様に薄膜を得た。
[0128] 実施例 17、 19、 22、 25、 28で得られた塗膜形成用溶液 [E— 17]、 [E— 19]、 [E— 22]、 [E— 25]、 [E— 28]は、成膜を 60°Cで 5分間加熱する以外は実施例;!〜 8と 同様に薄膜を得た。
[0129] 〔比較例 1〕
塗膜形成用溶液に [D—1]を使用した以外は、実施例 1〜9と同様に塗膜形成を行 つた。
[0130] 〔比較例 2〕
塗膜形成用溶液に [C 2]を使用した以外は実施例 1〜9と同様に塗膜形成を行つ た。
[0131] 〔比較例 3〕
塗膜形成用溶液に [D— 4]を使用した以外は、実施例;!〜 8と同様に塗膜形成を行 つた。
[0132] 〔比較例 4〕
塗膜形成用溶液に [D— 5]を使用した以外は、実施例 1〜8と同様に塗膜形成を行 つた。
[0133] (評価試験)
1.膜成分試験
実施例 1、 3、 4及び比較例 1、 2の塗膜について、膜の炭素、ケィ素、チタン及び酸 素の各成分の分布を ESCAで測定した。その結果を図;!〜 5に示す。
また、実施例 3'、 8 '及び 9'について、 UV照射前と後の膜の炭素、ケィ素、チタン及 び酸素の各成分の分布を ESCAで測定した。結果を図 6〜; 10に示す。
図 6〜; 10より、 UV照射後は、膜表面の炭素原子の濃度が減少し、酸素原子の濃度 が増大していることが分かった。なお、実施例 8'については、樹脂成分が多レ、膜で あるため UV照射前の膜はタックがあり、 ESCA測定はできなかった。
[0134] 2.鉛筆硬度試験
JIS K5600— 5— 4の鉛筆法に準じて鉛筆硬度試験を行った。
[0135] 3.密着性試験
JIS K5600に準拠し密着性試験を行った。塗膜に lmm間隔の切り込みを縦横 11 本ずつ入れて、 100個の碁盤目を作成した。各試料 (紫外線硬化後の膜)にセロテ ープ (登録商標)を貼り付け、指の腹で複数回擦り付けて密着させた後、テープを引 き剥がした。密着性は塗膜が剥離せずに残存した格子の数で評価した。
[0136] 4.耐磨耗性試験
テーバー式磨耗試験機 (東洋テスター工業株式会社製 TABER ' S Abrasion T ester)に磨耗輪 (CS— 10F)を装着し、紫外線照射後の膜について、荷重 500gの 条件下で 500回転試験を行った後のヘイズ率を測定した。耐磨耗性については、 試験前後のヘイズ率差を ΔΗとし評価した。
[0137] 5.耐湿性試験
恒温恒湿槽 (ナガノ科学機械製作所製 LH— 30)に、紫外線照射後の膜について 、温度 60°C、湿度 95%RHの環境下に静置した。静置 1週間後の塗膜の変化を確 認した。〇:異常なし、 X:クラック、曇化が発生
[0138] 上記試験結果を表 1〜表 3に示す。
[0139] . [表 1]
Figure imgf000043_0001
[0140] [表 2] 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 基板
16 17 18 19 20 21 22 23 膜厚 [ μ ηη] 6 6 6 6 6 6 7 5 鉛筆硬度 SLG 4H 7H 4H 8H 8H 8H 7H 8H 密着性 PC 100/100 100/100 100/100 100/100 100/100 100/100 100/100 100/100 耐磨耗性 PC - - - - - - - - 耐湿性
- - - - - - - - - 試験
[0141] [表 3]
Figure imgf000044_0001
[0142] 6.親水性試験
接触角の測定により、実施例 4、実施例 8及び比較例 1の薄膜表面の親水性を評価 した。
各試料の表面を UVオゾン洗浄した直後に、マイクロシリンジから水を 5 1滴下し、 6 0秒後に、接触角測定器(360S型:エルマ社製)を用いて接触角を測定した。
結果を図 11に示す。
[0143] 7.膜中元素分析
塗膜形成用組成物 [E— 10]〜 [E— 15]を用い、実施例 Bの薄膜形成方法によつて 作製した薄膜の、膜中元素の深さ方向への分布を、 ESCA(Quantum2000、アル バックフアイ社製)を用いて分析した。 Arスパッタリングにより膜をエッチングし、膜中 の炭素原子、酸素原子、ケィ素原子、及びチタン原子の含有率を X線光電子分析装 置 (XPS)により測定した。結果を図 12から図 17に示す。
膜中において、炭素含有量が最大となる深さの炭素含有量 (C )を 100として、これ
max
と最小値 (C )との差 (C -C )をもって表面層形成の評価を行った。結果を表 4
mm m x min
に示す。
[表 4]
Figure imgf000045_0001
[0145] 〔参考例 1〕
上記で得られた光感応性化合物 [A— 1]、 [A— 2]、 [A— 3]をエタノールで希釈し て、自記分光光度計 (U— 4000、 HITACHI社製)により吸光度を測定した。
結果を図 18に示す。
[0146] 〔参考例 2〕
上記の紫外泉硬化性化合物用添加物 [C 1 ]を使用して、実施例;!〜 8と同様に薄 膜を作製した。
作製した薄膜について膜中元素の深さ方向への分布を、 ESCA(Quantum2000、 アルバックフアイ製)を用いて分析した。
結果を図 19に示す。
[0147] 〔参考例 3〕
有機ケィ素化合物としてメチルトリメトキシシラン [B— 6] (信越化学工業株式会社製、 KR—500)を、元素比(Ti/Si= l : 9)になるように [A— 1]と [B— 6]を混合し、 12 時間攪拌した液 [C— 7]を作製した。 [C— 7]の固形分量は 31. 6重量%であった。 上記 [C— 7]を使用して、乾燥温度 130°C、積算紫外線照射量を 4000mj/cm2と する以外は、実施例 1〜8と同様に薄膜を作製した。 作製した塗膜について、〔参考例 2〕の方法と同様に膜中元素の深さ方向への分布を 測定した。結果を図 20に示す。
[0148] 〔参考例 4〕
上記の有機シラン化合物 [B— 1]、 [B— 2]、 [B— 5]、 [B— 6]を〔参考例 1〕の方法と 同様に吸光度を測定した。結果を図 21に示す。
[0149] 〔参考例 5〕
上記の有機ケィ素化合物ビュルトリメトキシシラン [B l] 35gと、 2 ブタノール/酢 酸ェチル /エタノールの混合溶媒 20gを混合した。この溶液に加水分解水として塩 酸溶液(0. lmol/Uを 8. 5g添加して、 12時間攪拌した液 [C— 8]を作製した。 [C 8]の固形分量は 29. 4重量%であった。
上記 [C— 8]を使用して、〔参考例 3〕の方法と同様にして薄膜を作製した。
作製した薄膜について、〔参考例 2〕の方法と同様に膜中元素の深さ方向への分布を 測定した。結果を図 22に示す。
[0150] 〔参考例 6〕
上記の有機ケィ素化合物 3 メタクリロキシプロピルトリメトキシシラン [B— 2] 27gと、 2 ブタノール/酢酸ェチル /エタノールの混合溶媒 25gを混合した。この溶液に加 水分解水として塩酸溶液(0. Imol/L)を 11. 8g添加して、 12時間攪拌した液 [C —9]を作製した。 [C— 9]の固形分量は 30· 6重量%であった。
上記 [C— 9]を使用して、参考例 5の方法と同様に薄膜の作製及び測定を行った。 結果を図 23に示す。
[0151] 〔参考例 7〕
上記の有機ケィ素化合物 γ グリシドキシプロピルトリメトキシシラン [B— 5] 27gと、 2 ーブタノール/酢酸ェチル /エタノールの混合溶媒 27gを混合した。この溶液に加 水分解水として塩酸溶液(0. lmol/Uを 12. 4g添加して、 12時間攪拌した液 [C 10]を作製した。 [C 10]の固形分量は 28. 8重量%であった。
上記 [C 10]を使用して参考例 5の方法と同様に薄膜の作製及び測定を行った。 結果を図 24に示す。
産業上の利用可能性 [0152] 本発明によれば、表面が非常に高い硬度を有すると共に、内部及び裏面側が適当 な硬度を有しつつ、かつ基体との密着性、耐湿性に優れた有機無機複合体を提供 すること力 Sでさる。
[0153] 本発明の薄膜は、表面が極性の高い SiO状の構造を有しているので、各種の膜を
2
積層した時の層間密着性に優れている。例えば、市販されている多くのシリコン系硬 化膜の場合、その撥水性のために印刷インクとの密着性が問題になっているが、本 発明の薄膜はインクとの密着性が良好である。また、無機薄膜との密着性にも優れて いる。無機薄膜としては、 TiOなどの光触媒膜、 ITO、 SnO系薄膜などの導電性薄
2 2
膜、 Ta O 、 PZTなどの誘電 ·圧電薄膜、 Si〇、 Mg〇、 MgFなどの低屈折率膜、 Ti
2 5 2 2
O 、 ZrOなどの高屈折率膜など通常、樹脂の上には密着し難ぐ Siウェハーゃガラ
2 2
ス基板上への成膜されているような無機膜や、金属 Al、金属 Cr、金属 Cu、金属 Ag、 金属 Auなどの真空蒸着、スパッタ、メツキなどで成膜される金属膜との密着性にも優 れている。
また、シランカップリング処理による表面処理も可能で、表面を撥水撥油性に変え たり、アミノ基を導入し、メツキ密着性を付与したり、各種処理が容易である。
[0154] 本発明の薄膜は、加熱硬化と紫外線硬化の 2段階で製造される。加熱処理では有 機ケィ素化合物の加水分解 ·重縮合が進行し、ポリシロキサンへと変化し硬化してい く。しかし、紫外線硬化性化合物は加熱では硬化が進行しにくいので、有機ケィ素化 合物の種類、紫外線硬化性化合物の種類およびその混合割合を適宜選択すること により、加熱処理後の膜は成型できる特長をもつ。
[0155] 本発明の薄膜は、例えば、加熱処理後の膜へ型により凹凸のパターン形成をする ことも可能である。エンボス加工やナノインプリントなどにより各種のパターンを形成で きる。その後、紫外線照射により、そのパターンを保持した状態で、紫外線硬化性化 合物の硬化および表面のシロキサンの SiO化により本特徴である表面無機化ハード
2
コート膜が形成できる。
[0156] また、同様の方法で、転写法による膜形成も可能である。剥離膜処理されたフィル ム(例えばポリエステルフィルム)に本発明の組成物をコートし、加熱処理した段階の 膜を形成し、これを紫外線照射する前に転写箔として使用し、各種基材に熱、圧力、 粘着剤などの力により膜を転写し、その後紫外線照射する方法である。
[0157] インモールド成型時の転写箔としての使用も可能である。本発明の薄膜は、印刷適 合性 (インクとの密着性)に優れているので本発明の組成物を塗った上に各種柄を印 刷した状態でインモールド成型し、その後紫外線照射すれば、柄とハードコート膜が 同時に成形体に転写できる。曲面のある成形体へのハードコート膜形成法として有 用である。
[0158] こうして形成された薄膜は、ハードコート膜以外にも、ガスバリアー膜、帯電防止膜 、 UVカット膜、反射防止膜等として用いることができる。ハードコート膜の適用例とし ては、例えば、自動車のガラス、ヘッドライト、外装部品、内装部品、電装部品、サン ルーフ;携帯電話のフロントケース、リアケース、バッテリーケース;眼鏡レンズ;光ディ スク;建材化粧シート、フィルム;テレビ前面パネル; CRTカバー;ビデオリフレタター 等を挙げること力 Sでさる。
また、本発明の薄膜は、これ等の製品を作製するための金型にも使用することもで き、産業上の利用可能性は大きい。

Claims

請求の範囲
[1] a)式 (I)
R SiX · · · (I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物の縮合物、
b)金属キレート化合物、金属有機酸塩化合物、 2以上の水酸基若しくは加水分解性 基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より 選ばれる少なくとも 1種の 350nm以下の波長の光に感応する光感応性化合物及び /又はそれから誘導される化合物、及び
c)紫外線硬化性化合物の硬化物
を含有することを特徴とする有機無機複合体。
[2] 式 (I)中の Rがビュル基を有する基、ォキシラン環を有する基、 NR' (式中、 は
2
水素原子、アルキル基又はァリール基を表し、各 R'は互いに同一でも異なっていて もよい。)を有する基、又は N = CR' ' (式中、 R' 'は水素原子又はアルキル基を
2
表し、各 R' 'は互いに同一でも異なっていてもよい。)を有する基である有機ケィ素化 合物が、有機ケィ素化合物の全量に対して 20〜; 100重量%であることを特徴とする
、請求項 1の有機無機複合体。
[3] 紫外線硬化性化合物が(メタ)アタリレート系紫外線硬化性化合物であることを特徴と する請求項 1又は 2に記載の有機無機複合体。
[4] 金属キレート化合物が、水酸基若しくは加水分解性基を有することを特徴とする請求 項;!〜 3のいずれかに記載の有機無機複合体。
[5] 金属有機酸塩化合物が、水酸基若しくは加水分解性基を有することを特徴とする請 求項 1〜4のいずれかに記載の有機無機複合体。
[6] 2以上の水酸基若しくは加水分解性基を有する金属化合物の加水分解物及び/又 は縮合物が、 2以上の水酸基若しくは加水分解性基を有する金属化合物 1モルに対 して、 0. 5モル以上の水を用いて加水分解した生成物であることを特徴とする請求項 ;!〜 5のいずれかに記載の有機無機複合体。
[7] 金属キレート化合物の加水分解物及び/又は縮合物が、金属キレート化合物 1モル に対して、 5〜; 100モルの水を用いて加水分解した生成物であることを特徴とする請 求項;!〜 6のいずれかに記載の有機無機複合体。
[8] 金属有機酸塩化合物の加水分解物及び/又は縮合物が、金属有機酸塩化合物 1 モルに対して、 5〜; 100モルの水を用いて加水分解した生成物であることを特徴とす る請求項:!〜 7のいずれかに記載の有機無機複合体。
[9] 金属が、 Ti、 Al、 Zr又は Snであることを特徴とする請求項 1〜8のいずれかに記載の 有機無機複合体。
[10] 式 (I)
R SiX · · · (I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物の縮合物を有し、膜表面から深さ方向 0. 5 mまでの間における炭素含有量の最 小値が、膜裏面側における炭素含有量の 80%以下である有機無機複合系薄膜に おいて、さらに紫外線硬化性化合物の硬化物を有することを特徴とする有機無機複 合系薄膜。
[11] 式 (I)中の Rがビュル基を有する基、ォキシラン環を有する基、 NR' (式中、 R'は
2
水素原子、アルキル基又はァリール基を表し、各 R'は互いに同一でも異なっていて もよい。)を有する基、又は N = CR' ' (式中、 R' 'は水素原子又はアルキル基を
2
表し、各 R' 'は互いに同一でも異なっていてもよい。)を有する基である有機ケィ素化 合物が、有機ケィ素化合物の全量に対して 20〜; 100重量%であることを特徴とする
、請求項 10の有機無機複合系薄膜。
[12] 紫外線硬化性化合物が(メタ)アタリレート系紫外線硬化性化合物であることを特徴と する請求項 10又は 11に記載の有機無機複合系薄膜。
[13] 金属キレート化合物、金属有機酸塩化合物、 2以上の水酸基若しくは加水分解性基 を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より選 ばれる少なくとも 1種の光感応性化合物、紫外線硬化性化合物及び光重合開始剤 の存在下、
式 (I)
R SiX4 …(I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物及び/又はその縮合物に、 350nm以下の波長を含む光を照射することを特徴と する有機無機複合体の製造方法。
[14] 式 (I)中の Rがビュル基を有する基、ォキシラン環を有する基、 NR' (式中、 R'は
2
水素原子、アルキル基又はァリール基を表し、各 R'は互いに同一でも異なっていて もよい。)を有する基、又は N = CR' ' (式中、 R' 'は水素原子又はアルキル基を
2
表し、各 R' 'は互いに同一でも異なっていてもよい。)を有する基である有機ケィ素化 合物が、有機ケィ素化合物の全量に対して 20〜; 100重量%であることを特徴とする
、請求項 13に記載の有機無機複合体の製造方法。
[15] 金属が、 Ti、 Al、 Zr又は Snであることを特徴とする請求項 13又は 14に記載の有機 無機複合体の製造方法。
[16] 紫外線硬化性化合物が(メタ)アタリレート系紫外線硬化性化合物であることを特徴と する請求項 13〜; 15のいずれかに記載の有機無機複合体の製造方法。
[17] a)式 (I)
R SiX · · · (I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物及び/又はその縮合物、
b)金属キレート化合物、金属有機酸塩化合物、 2以上の水酸基若しくは加水分解性 基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より 選ばれる少なくとも 1種の光感応性化合物、 c)紫外線硬化性化合物、及び、
d)光重合開始剤
を含有することを特徴とする有機無機複合体形成用組成物。
[18] 式 (I)中の Rがビュル基を有する基、ォキシラン環を有する基、 NR' (式中、 R'は
2
水素原子、アルキル基又はァリール基を表し、各 R'は互いに同一でも異なっていて もよい。)を有する基、又は N = CR' ' (式中、 R' 'は水素原子又はアルキル基を
2
表し、各 R' 'は互いに同一でも異なっていてもよい。)を有する基である有機ケィ素化 合物が、有機ケィ素化合物の全量に対して 20〜; 100重量%であることを特徴とする
、請求項 17に記載の有機無機複合体形成用組成物。
[19] 紫外線硬化性化合物が(メタ)アタリレート系紫外線硬化性化合物であることを特徴と する請求項 17又は 18に記載の有機無機複合体形成用組成物。
[20] 金属が、 Ti、 Al、 Zr又は Snであることを特徴とする請求項 17〜; 19のいずれかに記 載の有機無機複合体形成用組成物。
[21] 有機ケィ素化合物及び/又はその縮合物、光感応性化合物、紫外線硬化性化合物 及び光重合開始剤の全質量に対して、紫外線硬化性化合物が 2〜98質量%である ことを特徴とする請求項 17〜20のいずれかに記載の有機無機複合体形成用組成 物。
[22] a)式(I)
R SiX · · · (I)
(式中、 Rは Siに炭素原子が直接結合する有機基を表し、 Xは水酸基又は加水分解 性基を表す。 nは 1又は 2を表し、 nが 2のとき各 Rは同一でも異なっていてもよぐ(4 —n)が 2以上のとき各 Xは同一でも異なっていてもよい。)で表される有機ケィ素化合 物及び/又はその縮合物、及び
b)金属キレート化合物、金属有機酸塩化合物、 2以上の水酸基若しくは加水分解性 基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より 選ばれる少なくとも 1種の光感応性化合物
を含有する有機無機複合体形成用組成物からなる紫外線硬化性化合物用添加剤。
[23] 式 (I)中の Rがビュル基を有する基、ォキシラン環を有する基、 NR' (式中、 R'は 水素原子、アルキル基又はァリール基を表し、各 R'は互いに同一でも異なっていて もよい。)を有する基、又は N = CR' ' (式中、 R' 'は水素原子又はアルキル基を
2
表し、各 R' 'は互いに同一でも異なっていてもよい。)を有する基である有機ケィ素化 合物が、有機ケィ素化合物の全量に対して 20〜; 100重量%であることを特徴とする
、請求項 22に記載の紫外線硬化性化合物用添加剤。
[24] 紫外線硬化性化合物が(メタ)アタリレート系紫外線硬化性化合物であることを特徴と する請求項 22又は 23に記載の紫外線硬化性化合物用添加剤。
[25] 金属が、 Ti、 Al、 Zr又は Snであることを特徴とする請求項 22〜24のいずれかに記 載の紫外線硬化性化合物用添加剤。
PCT/JP2007/073423 2006-05-12 2007-12-04 有機無機複合体 WO2008069217A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/517,467 US20100036012A1 (en) 2006-05-12 2007-11-04 Organic-inorganic composite body
EP07850071.7A EP2090600B1 (en) 2006-12-05 2007-12-04 Organic-inorganic composite body
JP2008548299A JP5468265B2 (ja) 2006-12-05 2007-12-04 有機無機複合体
CN2007800445855A CN101547947B (zh) 2006-12-05 2007-12-04 有机无机复合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-328549 2006-05-12
JP2006328549 2006-12-05
JP2007-093510 2007-03-30
JP2007093510 2007-03-30

Publications (1)

Publication Number Publication Date
WO2008069217A1 true WO2008069217A1 (ja) 2008-06-12

Family

ID=39492102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073423 WO2008069217A1 (ja) 2006-05-12 2007-12-04 有機無機複合体

Country Status (6)

Country Link
US (1) US20100036012A1 (ja)
EP (1) EP2090600B1 (ja)
JP (1) JP5468265B2 (ja)
KR (1) KR20090075748A (ja)
CN (1) CN101547947B (ja)
WO (1) WO2008069217A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004821A1 (ja) * 2007-07-03 2009-01-08 Nippon Soda Co., Ltd. ハードコート層を形成するための成形用シート
JP2009090523A (ja) * 2007-10-05 2009-04-30 Nippon Soda Co Ltd ハードコートフィルム
JP2010202860A (ja) * 2009-02-06 2010-09-16 Nippon Soda Co Ltd 有機無機複合体
JP2011029590A (ja) * 2009-07-02 2011-02-10 Nippon Soda Co Ltd 微細凹凸パターン形成用シート
WO2011161944A1 (ja) 2010-06-23 2011-12-29 日本曹達株式会社 インプリント用レプリカモールドの製造方法
WO2012017660A1 (ja) 2010-08-05 2012-02-09 日本曹達株式会社 有機無機複合体及びその形成用組成物
JP2012109551A (ja) * 2010-10-20 2012-06-07 Tokuyama Corp 光硬化性ナノインプリント用組成物、該組成物を用いたパターンの形成方法、及び該組成物の硬化体を有するナノインプリント用レプリカ金型
WO2013021631A1 (ja) 2011-08-11 2013-02-14 日本曹達株式会社 有機無機複合体及びその形成用組成物
JP2013103444A (ja) * 2011-11-15 2013-05-30 Sekisui Chem Co Ltd ガスバリア性フィルム及びその製造方法
JP2013108050A (ja) * 2011-02-10 2013-06-06 Nippon Soda Co Ltd 有機無機複合系薄膜
WO2013118442A1 (ja) * 2012-02-08 2013-08-15 日本曹達株式会社 薄膜積層体
WO2013128918A1 (ja) 2012-03-02 2013-09-06 日本曹達株式会社 オレフィン系重合体配合有機無機複合体及びその形成用組成物
WO2014006874A1 (ja) * 2012-07-04 2014-01-09 日本曹達株式会社 機能性反射防止積層体
WO2014010217A1 (ja) 2012-07-10 2014-01-16 日本曹達株式会社 有機無機複合体及びその形成用組成物
JP2014015547A (ja) * 2012-07-10 2014-01-30 Nippon Soda Co Ltd 有機無機複合薄膜
JP2014188828A (ja) * 2013-03-27 2014-10-06 Toppan Printing Co Ltd 透明導電性フィルム
JP2015024637A (ja) * 2013-07-29 2015-02-05 フジコピアン株式会社 防汚易滑性積層ハードコートフィルム
KR20170136609A (ko) 2015-06-23 2017-12-11 닛뽕소다 가부시키가이샤 유기 무기 복합체
JP2018150522A (ja) * 2017-03-13 2018-09-27 三洋化成工業株式会社 光硬化性樹脂組成物
JP2018162454A (ja) * 2017-03-27 2018-10-18 三洋化成工業株式会社 活性エネルギー線硬化型樹脂組成物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8398306B2 (en) 2005-11-07 2013-03-19 Kraft Foods Global Brands Llc Flexible package with internal, resealable closure feature
US9232808B2 (en) 2007-06-29 2016-01-12 Kraft Foods Group Brands Llc Processed cheese without emulsifying salts
NZ591354A (en) 2010-02-26 2012-09-28 Kraft Foods Global Brands Llc A low-tack, UV-cured pressure sensitive acrylic ester based adhesive for reclosable packaging
EP2539414A1 (en) 2010-02-26 2013-01-02 Kraft Foods Global Brands LLC Reclosable package using low tack adhesive
KR101523821B1 (ko) * 2012-10-30 2015-05-28 (주)엘지하우시스 실록산 화합물을 포함하는 반사 방지 코팅 조성물, 이를 이용하여 표면 에너지가 조절된 반사 방지 필름
JP5756134B2 (ja) 2013-01-08 2015-07-29 信越化学工業株式会社 金属酸化物含有膜形成用組成物及びパターン形成方法
JP5859466B2 (ja) * 2013-01-08 2016-02-10 信越化学工業株式会社 チタン含有レジスト下層膜形成用組成物及びパターン形成方法
KR101748009B1 (ko) * 2014-10-20 2017-06-16 삼성에스디아이 주식회사 디스플레이 필름 및 이를 포함하는 디스플레이 장치

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143665A (ja) * 1984-08-08 1986-03-03 Nippon Soda Co Ltd 被覆用組成物
JPH10195417A (ja) 1997-01-13 1998-07-28 Sony Corp 防汚膜形成用組成物及び表示素子用フィルター
JP2000169755A (ja) 1998-12-07 2000-06-20 Jsr Corp 親水性硬化物、親水性硬化物を含む積層体、親水性硬化物用組成物および親水性硬化物の製造方法
JP2000336281A (ja) 1998-10-22 2000-12-05 Ube Nitto Kasei Co Ltd 有機−無機複合傾斜材料、その製造方法及びその用途
JP2001214092A (ja) 2000-02-03 2001-08-07 Toppan Printing Co Ltd 帯電防止性ハードコート剤、合成樹脂成型品およびプラスチック製光学物品
JP2002235018A (ja) 2001-02-09 2002-08-23 Nippon Kayaku Co Ltd ハードコート剤用感光性樹脂組成物及びその硬化皮膜を有するフィルム
JP2002363494A (ja) 2001-06-08 2002-12-18 Shin Etsu Chem Co Ltd 光触媒性酸化物含有コーティング用エマルジョン組成物
JP2005272702A (ja) 2004-03-25 2005-10-06 Jsr Corp 硬化性組成物、その硬化物及び積層体
WO2006088079A1 (ja) 2005-02-18 2006-08-24 Nippon Soda Co., Ltd. 有機無機複合体
JP2007332262A (ja) * 2006-06-14 2007-12-27 Nippon Soda Co Ltd 機能性物質含有有機無機複合体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179096C (zh) * 1998-05-04 2004-12-08 3M创新有限公司 包含具有防磨损和防污渍特征的固化陶瓷单体复合涂层的逆反射制品及制法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143665A (ja) * 1984-08-08 1986-03-03 Nippon Soda Co Ltd 被覆用組成物
JPH10195417A (ja) 1997-01-13 1998-07-28 Sony Corp 防汚膜形成用組成物及び表示素子用フィルター
JP2000336281A (ja) 1998-10-22 2000-12-05 Ube Nitto Kasei Co Ltd 有機−無機複合傾斜材料、その製造方法及びその用途
JP2000169755A (ja) 1998-12-07 2000-06-20 Jsr Corp 親水性硬化物、親水性硬化物を含む積層体、親水性硬化物用組成物および親水性硬化物の製造方法
JP2001214092A (ja) 2000-02-03 2001-08-07 Toppan Printing Co Ltd 帯電防止性ハードコート剤、合成樹脂成型品およびプラスチック製光学物品
JP2002235018A (ja) 2001-02-09 2002-08-23 Nippon Kayaku Co Ltd ハードコート剤用感光性樹脂組成物及びその硬化皮膜を有するフィルム
JP2002363494A (ja) 2001-06-08 2002-12-18 Shin Etsu Chem Co Ltd 光触媒性酸化物含有コーティング用エマルジョン組成物
JP2005272702A (ja) 2004-03-25 2005-10-06 Jsr Corp 硬化性組成物、その硬化物及び積層体
WO2006088079A1 (ja) 2005-02-18 2006-08-24 Nippon Soda Co., Ltd. 有機無機複合体
JP2007332262A (ja) * 2006-06-14 2007-12-27 Nippon Soda Co Ltd 機能性物質含有有機無機複合体

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004821A1 (ja) * 2007-07-03 2009-01-08 Nippon Soda Co., Ltd. ハードコート層を形成するための成形用シート
EP2730405A1 (en) 2007-07-03 2014-05-14 Nippon Soda Co., Ltd. Method for forming hard coat layer
US9556317B2 (en) 2007-07-03 2017-01-31 Nippon Soda Co., Ltd. Molding sheet for forming hard coat layer
JP4880755B2 (ja) * 2007-07-03 2012-02-22 日本曹達株式会社 ハードコート層を形成するための成形用シート
JP2009090523A (ja) * 2007-10-05 2009-04-30 Nippon Soda Co Ltd ハードコートフィルム
JP2010202860A (ja) * 2009-02-06 2010-09-16 Nippon Soda Co Ltd 有機無機複合体
JP2011029590A (ja) * 2009-07-02 2011-02-10 Nippon Soda Co Ltd 微細凹凸パターン形成用シート
US9511514B2 (en) 2010-06-23 2016-12-06 Nippon Soda Co., Ltd. Process for production of replica mold for imprinting use
JP5600165B2 (ja) * 2010-06-23 2014-10-01 日本曹達株式会社 インプリント用レプリカモールドの製造方法
WO2011161944A1 (ja) 2010-06-23 2011-12-29 日本曹達株式会社 インプリント用レプリカモールドの製造方法
WO2012017660A1 (ja) 2010-08-05 2012-02-09 日本曹達株式会社 有機無機複合体及びその形成用組成物
US9234117B2 (en) 2010-08-05 2016-01-12 Nippon Soda Co., Ltd. Organic-inorganic complex and composition for forming same
JP2012109551A (ja) * 2010-10-20 2012-06-07 Tokuyama Corp 光硬化性ナノインプリント用組成物、該組成物を用いたパターンの形成方法、及び該組成物の硬化体を有するナノインプリント用レプリカ金型
JP2013108050A (ja) * 2011-02-10 2013-06-06 Nippon Soda Co Ltd 有機無機複合系薄膜
WO2013021631A1 (ja) 2011-08-11 2013-02-14 日本曹達株式会社 有機無機複合体及びその形成用組成物
KR20140035515A (ko) 2011-08-11 2014-03-21 닛뽕소다 가부시키가이샤 유기 무기 복합체 및 그 형성용 조성물
US9217095B2 (en) 2011-08-11 2015-12-22 Nippon Soda Co., Ltd. Organic-inorganic complex, and composition for forming same
JP2013103444A (ja) * 2011-11-15 2013-05-30 Sekisui Chem Co Ltd ガスバリア性フィルム及びその製造方法
JPWO2013118442A1 (ja) * 2012-02-08 2015-05-11 日本曹達株式会社 薄膜積層体
WO2013118442A1 (ja) * 2012-02-08 2013-08-15 日本曹達株式会社 薄膜積層体
WO2013118201A1 (ja) * 2012-02-08 2013-08-15 日本曹達株式会社 有機無機複合薄膜
KR20140116903A (ko) 2012-02-08 2014-10-06 닛뽕소다 가부시키가이샤 유기 무기 복합 박막
WO2013128918A1 (ja) 2012-03-02 2013-09-06 日本曹達株式会社 オレフィン系重合体配合有機無機複合体及びその形成用組成物
JPWO2013128918A1 (ja) * 2012-03-02 2015-07-30 日本曹達株式会社 オレフィン系重合体配合有機無機複合体及びその形成用組成物
US9255210B2 (en) 2012-03-02 2016-02-09 Nippon Soda Co., Ltd. Olefin based polymer-combined organic-inorganic composite and composition for forming same
WO2014006874A1 (ja) * 2012-07-04 2014-01-09 日本曹達株式会社 機能性反射防止積層体
JPWO2014006874A1 (ja) * 2012-07-04 2016-06-02 日本曹達株式会社 機能性反射防止積層体
WO2014010217A1 (ja) 2012-07-10 2014-01-16 日本曹達株式会社 有機無機複合体及びその形成用組成物
JP2014015547A (ja) * 2012-07-10 2014-01-30 Nippon Soda Co Ltd 有機無機複合薄膜
US9790400B2 (en) 2012-07-10 2017-10-17 Nippon Soda Co., Ltd. Organic-inorganic complex, and forming composition thereof
JP2014188828A (ja) * 2013-03-27 2014-10-06 Toppan Printing Co Ltd 透明導電性フィルム
JP2015024637A (ja) * 2013-07-29 2015-02-05 フジコピアン株式会社 防汚易滑性積層ハードコートフィルム
KR20170136609A (ko) 2015-06-23 2017-12-11 닛뽕소다 가부시키가이샤 유기 무기 복합체
JP2018150522A (ja) * 2017-03-13 2018-09-27 三洋化成工業株式会社 光硬化性樹脂組成物
JP2018162454A (ja) * 2017-03-27 2018-10-18 三洋化成工業株式会社 活性エネルギー線硬化型樹脂組成物
JP7001511B2 (ja) 2017-03-27 2022-01-19 三洋化成工業株式会社 活性エネルギー線硬化型樹脂組成物

Also Published As

Publication number Publication date
JPWO2008069217A1 (ja) 2010-03-18
EP2090600A1 (en) 2009-08-19
EP2090600A4 (en) 2011-03-23
KR20090075748A (ko) 2009-07-08
EP2090600B1 (en) 2018-03-07
JP5468265B2 (ja) 2014-04-09
CN101547947B (zh) 2012-10-24
CN101547947A (zh) 2009-09-30
US20100036012A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
WO2008069217A1 (ja) 有機無機複合体
TWI357431B (en) Composition for active energy ray curable coating
EP1849835B1 (en) Organic-inorganic composite body
JP5525152B2 (ja) 紫外線硬化型コーティング用組成物およびその製造方法、並びにこれを被覆してなる樹脂被覆品
TWI447136B (zh) Organic and inorganic composite film
JP5477299B2 (ja) マレイミド基で表面修飾した無機酸化物微粒子を含む硬化型組成物
KR101497409B1 (ko) 수지 조성물
TWI439510B (zh) 有機無機複合體及其形成用組合物
JP5570007B2 (ja) 有機無機複合体
JP5074053B2 (ja) 樹脂積層体及びその製造方法
JP2007046008A (ja) 活性エネルギー線硬化性低屈折率コーティング用組成物および成形品
JP2008088300A (ja) 活性エネルギー線硬化性組成物及び積層体
TW200904899A (en) Composition and method of forming protecting film, laminate and method for manufacturing same
JP2008120870A (ja) 活性エネルギー線硬化性組成物、及び積層体
JP5883305B2 (ja) 有機無機複合系薄膜
JP2005298754A (ja) 活性エネルギー線硬化性コーティング用組成物および保護被膜形成方法
JP4942356B2 (ja) 活性エネルギー線硬化性組成物及び硬化物
JP2005255718A (ja) 活性エネルギー線硬化性コーティング用組成物および保護被膜形成方法
JP2012223910A (ja) 積層体およびその製造方法
JP2008001755A (ja) 活性エネルギー線硬化性組成物及び積層体
JP2014015547A (ja) 有機無機複合薄膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780044585.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548299

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097011084

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 3090/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007850071

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12517467

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE