WO2013118201A1 - 有機無機複合薄膜 - Google Patents

有機無機複合薄膜 Download PDF

Info

Publication number
WO2013118201A1
WO2013118201A1 PCT/JP2012/004447 JP2012004447W WO2013118201A1 WO 2013118201 A1 WO2013118201 A1 WO 2013118201A1 JP 2012004447 W JP2012004447 W JP 2012004447W WO 2013118201 A1 WO2013118201 A1 WO 2013118201A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
thin film
inorganic composite
film
Prior art date
Application number
PCT/JP2012/004447
Other languages
English (en)
French (fr)
Inventor
和久 熊澤
大幹 芝田
木村 信夫
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to KR1020147021765A priority Critical patent/KR101690847B1/ko
Priority to CN201280069083.9A priority patent/CN104114622B/zh
Publication of WO2013118201A1 publication Critical patent/WO2013118201A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/458Block-or graft-polymers containing polysiloxane sequences containing polyurethane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/05Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0843Cobalt
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0875Antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0881Titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0887Tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0893Zinc

Definitions

  • the present invention relates to an organic-inorganic composite thin film. Specifically, the carbon atom content at a depth of 10 nm from the surface of the film is smaller than the carbon atom content at a depth of 100 nm from the surface of the film, and further from the surface of the film.
  • the present invention relates to an organic-inorganic composite thin film having an O / Si element ratio of 1.8 to 2.5 at a depth of 2 nm.
  • Trifunctional silane is mainly used as a raw material for commercially available silane-based coating agents, and polysiloxane having appropriate hardness and flexibility is formed by the trifunctional silane.
  • a trifunctional silane film does not have sufficient hard coat properties. Therefore, the trifunctional silane is mixed with tetrafunctional silane or colloidal silica to supplement the hard coat properties.
  • the film is hardened, there is a problem in that it becomes easy to crack and the adhesiveness deteriorates.
  • silane-based coating agent examples include a composition for forming an antifouling film containing a trifunctional alkoxysilane compound having an epoxy group (see Patent Document 1).
  • a silane-based coating agent containing a photocatalyst has also been proposed, and a film is cured using a photoacid generator, a crosslinking agent, a curing catalyst, or the like (see, for example, Patent Documents 2 and 3).
  • a silane-based organic-inorganic composite gradient material having a component gradient structure in which the content of the metal compound in the material continuously changes in the depth direction from the surface of the material has also been proposed (for example, Patent Documents). 4).
  • the present inventors By irradiating the organosilicon compound with ultraviolet light in the presence of the photosensitive compound, the present inventors have a very high surface, an appropriate hardness on the inside and the back side, and a substrate and An organic-inorganic composite having excellent adhesion was provided (see Patent Document 5). Furthermore, by making the surface of the film inorganic, the deterioration which is a defect of the organic resin was prevented, and a thin film excellent in moisture resistance and heat resistance was provided (see Patent Document 6). Although these have certain effects, it has been desired to produce a thin film that further improves the adhesion of the film and the mineralization of the film surface.
  • Patent Document 7 discloses (meth) acrylic ester mixture (A), photopolymerization initiator (B), ethylenically unsaturated group-containing urethane oligomer (C), colloidal silica sol (D), and diluent (E). It is described that the hard coat film containing is good, and the obtained film has good pencil hardness, curl, and adhesion to the substrate.
  • Patent Document 8 discloses (A) oxide particles of at least one element selected from the group consisting of silicon, aluminum, zirconium, titanium, zinc, germanium, indium, tin, antimony and cerium, and polymerizable unsaturated.
  • a curable composition containing particles formed by bonding an organic compound containing a group (B) a compound having a urethane bond and two or more polymerizable unsaturated groups in the molecule, and (C) a photopolymerization initiator. It has been described that it has excellent coating properties, and has high hardness and high refractive index on the surface of various base materials, as well as scratch resistance and adhesion between the base material and the low refractive index layer. It is described that an excellent coating film (film) can be formed.
  • Patent Document 9 is characterized by blending (A) a hydrolyzate of an organosilicon compound and metal oxide fine particles, (B) a polyfunctional acrylate or methacrylate, and (C) a photopolymerization initiator.
  • the ultraviolet curable hard coat resin composition is described, and can bleed to the surface of the antistatic agent, decrease in transparency, deterioration in moisture resistance, etc. within a practically acceptable range, and It is described that the hard coat function (scratch resistance, surface hardness, moisture resistance, solvent resistance, chemical resistance, etc.) is satisfied.
  • hard coat films using these acrylate resins and the like are inferior to inorganic films in terms of wear resistance, and therefore are improved by adding a metal oxide sol, so that the hardness is improved, There was a problem that transparency and flexibility were lowered.
  • Patent Document 10 plasma treatment and UV ozone treatment are generally used as methods for cleaning the surface of various substrates (for example, Patent Document 10).
  • Patent Document 11 describes that a wiring board using copper plating imparts hydrophilicity to the surfaces of metal particles and a resin layer by plasma treatment or UV ozone treatment.
  • plasma treatment and UV ozone treatment are generally used as methods for cleaning the surface of various substrates.
  • Patent Document 11 describes that a wiring board using copper plating imparts hydrophilicity to the surfaces of metal particles and a resin layer by plasma treatment or UV ozone treatment.
  • the organic compound on the resin surface is decomposed and the resin surface becomes rough.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to further mineralize the film surface of a film made of a polysiloxane organic-inorganic composite having a surface whose hardness is higher than that of the inside.
  • the inventors of the present invention have worked on the above-mentioned problems, and as a result of earnest research, are organic-inorganic composite thin films that can be further mineralized on the film surface by performing plasma treatment or UV ozone treatment. Found that by selecting a siloxane component in addition to the above treatment, further inorganicization of the film surface can be promoted, and the present invention has been completed.
  • the present invention (1) a) Formula (I) R n SiX 4-n (I) (In the formula, R represents an organic group in which a carbon atom is directly bonded to Si, X represents a hydroxyl group or a hydrolyzable group. N represents 1 or 2, and when n is 2, each R is the same or different.
  • each X may be the same or different.
  • the O / Si element ratio at a depth of 2 nm from the surface of the film is 1.8 to 2.5, preferably 1.9 to 2.4.
  • An organic-inorganic composite thin film (2) The organic according to (1), further comprising c) a metal compound having a metal element selected from the group consisting of titanium, zirconium, aluminum, silicon, germanium, indium, tin, tantalum, zinc, tungsten and lead.
  • Inorganic composite thin film (3) The condensate of the compound in which R in the formula (I) is a vinyl group is contained in an amount of 70% by mass or more of the total condensate of the organosilicon compound, as described in (1) or (2) above Organic-inorganic composite thin film, (4) The organic / inorganic composite thin film according to (1) to (3) above, wherein the Si / C element ratio at a depth of 100 nm from the surface is 0.2 or less, preferably 0.15 or less.
  • the present invention provides (7) a) Formula (I) R n SiX 4-n (I) (In the formula, R represents an organic group in which a carbon atom is directly bonded to Si, X represents a hydroxyl group or a hydrolyzable group. N represents 1 or 2, and when n is 2, each R is the same or different. And, when (4-n) is 2 or more, each X may be the same or different.)
  • the present invention relates to a method for treating an organic / inorganic composite thin film characterized by subjecting an organic / inorganic composite thin film containing an organic polymer compound to plasma treatment or UV ozone treatment.
  • the organic-inorganic composite thin film of the present invention is characterized in that the inside of the film is rich in organic resin, whereas the film surface is almost completely mineralized.
  • the organic-inorganic composite thin film of the present invention is a film material containing a large amount of an organic resin, it is possible to prevent the film surface from being roughened even when a treatment for decomposing an organic substance such as an atmospheric pressure plasma treatment is performed.
  • the organic / inorganic composite thin film of the present invention has an inorganic film surface, a dense monomolecular film made of a hydrolytic condensate of a metal surfactant can be formed on the outer side.
  • the organic inorganic composite thin film of Example 1 it is a figure which shows distribution of each film
  • the organic-inorganic composite thin film of Example 1 it is the image which measured the unevenness
  • the organic-inorganic composite thin film of Example 1 it is the image which measured the unevenness
  • the organic inorganic composite thin film of Example 2 it is a figure which shows distribution of each film
  • the organic-inorganic composite thin film of Example 2 it is the photograph which image
  • the organic-inorganic composite thin film of the present invention contains a condensate of an organic silicon compound and an organic polymer compound as essential components, but also contains a metal compound, a photopolymerization initiator, and the like. May be.
  • the organic-inorganic composite thin film of the present invention is represented by the following formula (I).
  • R n SiX 4-n (I)
  • R represents an organic group in which a carbon atom is directly bonded to Si
  • X represents a hydroxyl group or a hydrolyzable group.
  • n represents 1 or 2, and when n is 2, each R may be the same or different, and when (4-n) is 2 or more, each X may be the same or different.
  • examples of the “organic group in which a carbon atom is directly bonded to Si” represented by R include a hydrocarbon group which may be substituted, a group composed of a polymer of a hydrocarbon which may be substituted, and the like. Can do.
  • the hydrocarbon group in the above “optionally substituted hydrocarbon group” and “group consisting of an optionally substituted hydrocarbon polymer” is usually a hydrocarbon group having 1 to 30 carbon atoms, for example, , Alkyl group, cycloalkyl group, cycloalkylalkyl group, alkenyl group, alkynyl group, aryl group, arylalkyl group, arylalkenyl group and the like.
  • a linear or branched alkyl group having 1 to 10 carbon atoms a cycloalkyl group having 3 to 8 carbon atoms, a linear or branched alkenyl group having 2 to 10 carbon atoms, and a carbon number of 3 are preferable. 8 to 8 cycloalkenyl groups.
  • hydrocarbon group or “group consisting of a hydrocarbon polymer” may contain an oxygen atom, a nitrogen atom, or a silicon atom.
  • linear or branched alkyl group having 1 to 10 carbon atoms examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, and n-pentyl.
  • Examples of the long chain alkyl group having more than 10 carbon atoms include lauryl group, tridecyl group, myristyl group, pentadecyl group, palmityl group, heptadecyl group, stearyl group and the like.
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group.
  • “Straight or branched alkenyl group having 2 to 10 carbon atoms” means a straight or branched alkenyl group having 2 to 10 carbon atoms having a carbon-carbon double bond at any one or more positions.
  • C3-C8 cycloalkenyl group means a C3-C8 alkenyl group having a carbon-carbon double bond at any one or more positions and having a cyclic portion.
  • cyclopenten-1-yl group, 2-cyclopenten-1-yl group, 1-cyclohexen-1-yl group, 2-cyclohexen-1-yl group, and 3-cyclohexen-1-yl group is a C3-C8 alkenyl group having a carbon-carbon double bond at any one or more positions and having a cyclic portion.
  • cyclopenten-1-yl group 2-cyclopenten-1-yl group, 1-cyclohexen-1-yl group, 2-cyclohexen-1-yl group, and 3-cyclohexen-1-yl group.
  • alkynyl group examples include ethynyl group, prop-1-yn-1-yl group, prop-2-yn-1-yl group, but-1-in-1-yl group, but-3-yne -1-yl group, penta-1-in-1-yl group, penta-4-in-1-yl group, hexa-1-in-1-yl group, hexa-5-in-1-yl group, Examples include hepta-1-in-1-yl group, octa-1-in-1-yl group, and octa-7-in-1-yl group.
  • cycloalkylalkyl group examples include a cyclopropylmethyl group, a cyclopropylpropyl group, a cyclobutylmethyl group, a cyclopentylmethyl group, a cyclopentylethyl group, a cyclohexylethyl group, a cycloheptylmethyl group, and the like.
  • arylalkyl group examples include a C 6-10 aryl C 1-8 alkyl group such as a benzyl group, a phenethyl group, a 3-phenyl-n-propyl group, a 4-phenyl-n-butyl group, and a 5-phenyl group.
  • -N-pentyl group, 8-phenyl-n-octyl group, naphthylmethyl group and the like can be mentioned.
  • arylalkenyl group examples include a styryl group, a 3-phenyl-prop-1-en-1-yl group, and a 3-phenyl-prop-2-ene as a C 6-10 aryl C 2-8 alkenyl group.
  • -1-yl group 4-phenyl-but-1-en-1-yl group, 4-phenyl-but-3-en-1-yl group, 5-phenyl-pent-1-en-1-yl group 5-phenyl-pent-4-en-1-yl group, 8-phenyl-oct-1-en-1-yl group, 8-phenyl-oct-7-en-1-yl group, naphthylethenyl group, etc.
  • -1-yl group 4-phenyl-but-1-en-1-yl group, 4-phenyl-but-3-en-1-yl group, 5-phenyl-pent-1-en-1-yl group 5-phenyl-pent-4-en-1-yl group, 8
  • hydrocarbon group having an oxygen atom examples include an oxirane ring (epoxy group) group such as an epoxy group, an epoxyalkyl group, and a glycidoxypropyl group, an acryloxymethyl group, and a methacryloxymethyl group.
  • oxirane ring epoxy group
  • epoxyalkyl group examples include an epoxy group, an epoxyalkyl group, and a glycidoxypropyl group, an acryloxymethyl group, and a methacryloxymethyl group.
  • the epoxyalkyl group is preferably a linear or branched epoxyalkyl group having 3 to 10 carbon atoms, such as an epoxymethyl group, an epoxyethyl group, an epoxy-n-propyl group, an epoxyisopropyl group, or an epoxy-n- group.
  • hydrocarbon group having a nitrogen atom a group having —NR ′ 2 (wherein R ′ represents a hydrogen atom, an alkyl group or an aryl group, and each R ′ may be the same as or different from each other). Or a group having —N ⁇ CR ′′ 2 (wherein R ′′ represents a hydrogen atom or an alkyl group, and each R ′′ may be the same as or different from each other).
  • the aryl group include a phenyl group, a naphthyl group, an anthracen-1-yl group, and a phenanthren-1-yl group.
  • the group having —NR ′ 2 includes a —CH 2 —NH 2 group, a —C 3 H 6 —NH 2 group, a —CH 3 —NH—CH 3 group, and the like.
  • hydrocarbon having a silicon atom examples include groups containing polymers such as polysiloxane, polyvinyl silane, and polyacryl silane.
  • Examples of the above-mentioned “optionally substituted” substituent include a halogen atom, an alkyl group, an alkenyl group, an aryl group, and a methacryloxy group.
  • Examples of the halogen atom, alkyl group, alkenyl group and aryl group are the same as those in R.
  • a vinyl group a group having an oxirane ring, —NR ′ 2 (wherein R ′ represents a hydrogen atom, an alkyl group or an aryl group, and each R ′ may be the same as or different from each other).
  • a group having —N ⁇ CR ′′ 2 (wherein R ′′ represents a hydrogen atom or an alkyl group, and each R ′′ may be the same as or different from each other) From the viewpoint of mineralization of the body surface, this is a preferred group.
  • n 1 or 2
  • each R may be the same or different.
  • these can be used individually by 1 type or in combination of 2 or more types.
  • X represents a hydroxyl group or a hydrolyzable group.
  • (4-n) in formula (I) is 2 or more, each X may be the same or different.
  • a hydrolyzable group is, for example, a group that can be hydrolyzed to form a silanol group or a siloxane condensate by heating at 25 ° C. to 100 ° C. in the presence of no catalyst and excess water.
  • an alkoxy group, an acyloxy group, a halogen group, an isocyanate group and the like can be mentioned, and an alkoxy group having 1 to 4 carbon atoms or an acyloxy group having 1 to 6 carbon atoms can be mentioned. preferable.
  • Examples of the alkoxy group having 1 to 4 carbon atoms include a methyloxy group, an ethyloxy group, a propyloxy group, an isopropyloxy group, an n-butyloxy group, an isobutyloxy group, a t-butyloxy group, and the like.
  • Examples of the acyloxy group include an acetyloxy group and a benzoyloxy group.
  • Examples of the halogen include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the isocyanate group include an isocyanate group bonded to an alkyl group, an isocyanate group bonded to a cycloalkyl group, an isocyanate group bonded to an aryl group, an isocyanate group bonded to an alkyl group substituted with a cycloalkyl group, and an aryl group. And an isocyanate group bonded to the alkyl group.
  • the raw material organosilicon compounds include methyltrichlorosilane, methyltrimethoxysilane, methyltriethoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriisopropoxysilane, ethyltributoxysilane, butyltrimethylsilane.
  • organosilicon compound having a group composed of a hydrocarbon polymer examples include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and cyclohexyl.
  • (Meth) acrylate and other (meth) acrylic acid esters (meth) acrylic acid, itaconic acid, fumaric acid and other carboxylic acids and maleic anhydride and other acid anhydrides; glycidyl (meth) acrylate and other epoxy compounds; diethylaminoethyl Amino compounds such as (meth) acrylate and aminoethyl vinyl ether; amino compounds such as (meth) acrylamide, itaconic acid diamide, ⁇ -ethylacrylamide, crotonamide, fumaric acid diamide, maleic acid diamide, and N-butoxymethyl (meth) acrylamide Compound: A compound in which a vinyl polymer obtained by copolymerizing a vinyl compound selected from acrylonitrile, styrene, ⁇ -methylstyrene, vinyl chloride, vinyl acetate, vinyl propionate and the like is used as the R component of formula (I) can be mentioned.
  • the condensate of the organosilicon compound used as the main component in the organic-inorganic composite thin film of the present invention means a product obtained by further condensing the organosilicon compound as a raw material and / or the condensate thereof.
  • the blending ratio of the organosilicon compound condensate is 2 to 40% by mass, preferably 5 to 30% by mass, based on the solid content of the whole organic-inorganic composite thin film.
  • the organic-inorganic composite thin film of the present invention further contains an organic polymer compound in addition to the condensate of the organosilicon compound.
  • the organic polymer compound of the present invention is not particularly limited, but is preferably a compound or resin having a functional group that causes a polymerization reaction upon irradiation with ultraviolet rays in the presence of a photopolymerization initiator (ultraviolet curable compound). ) In the presence of a photopolymerization initiator by polymerization with ultraviolet irradiation. Examples thereof include those obtained by polymerizing a (meth) acrylate compound, an epoxy resin, a vinyl compound excluding an acrylate compound, and the like.
  • the number of functional groups is not particularly limited as long as it is 1 or more.
  • the raw material acrylate compounds include polyurethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, polyamide (meth) acrylate, polybutadiene (meth) acrylate, polystyryl (meth) acrylate, polycarbonate diacrylate, triacrylate Propylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, siloxane polymer having a (meth) acryloyloxy group, and the like are preferable.
  • polyester (meth) acrylate polyurethane (meth) acrylate, epoxy poly (meth) acrylate, more preferably It is an end (meth) acrylate.
  • the molecular weight is not limited as long as it dissolves in the organic-inorganic composite-forming composition, but is usually 500 to 50,000, preferably 1,000 to 10,000 as a weight average molecular weight. Further, a polymer obtained by causing a polymerization reaction by ultraviolet irradiation is a cured product.
  • Polyester (meth) acrylate is obtained, for example, by esterifying the hydroxyl groups of a polyester oligomer having hydroxyl groups at both ends with acrylic acid, obtained by condensation of polyvalent carboxylic acid and polyhydric alcohol. Alternatively, it can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a polyvalent carboxylic acid with acrylic acid.
  • Polyurethane (meth) acrylate is a reaction product of an isocyanate compound obtained by reacting a polyol and diisocyanate and an acrylate monomer having a hydroxyl group.
  • the polyol include polyester polyol, polyether polyol, and polycarbonate diol. .
  • the epoxy (meth) acrylate can be obtained by, for example, an esterification reaction between an oxirane ring of a low molecular weight bisphenol type epoxy resin or a novolac epoxy resin and acrylic acid.
  • Examples of commercially available products of urethane (meth) acrylate used in the present invention include trade names manufactured by Arakawa Chemical Industries, Ltd .: Beam Set 102, 502H, 505A-6, 510, 550B, 551B, 575, 575CB, EM-90. , EM92, Sannopco Co., Ltd. trade name: Photomer 6008, 6210, Shin-Nakamura Chemical Co., Ltd.
  • Examples of vinyl compounds other than acrylate compounds include N-vinyl pyrrolidone, N-vinyl caprolactam, vinyl acetate, styrene, and unsaturated polyester.
  • Epoxy resins include hydrogenated bisphenol A diglycidyl ether, 3,4 -Epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-meta-dioxane, bis (3,4-epoxycyclohexyl) And methyl) adipate.
  • the blending ratio of the organic polymer compound is 60 to 98% by mass, preferably 70 to 95% by mass, based on the solid content of the whole organic-inorganic composite.
  • photopolymerization initiator examples include (a) a compound that generates cationic species by light irradiation, and (b) a compound that generates active radical species by light irradiation.
  • a compound that generates a cationic species by light irradiation for example, an onium salt having a structure represented by the following formula (II) can be given as a preferred example.
  • M is , A metal or metalloid constituting the central atom of the halide complex [ML e + f ], for example, B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn, Co, etc.
  • L is a halogen atom such as F, Cl, Br, etc.
  • e is the net charge of the halide complex ion
  • f is the valence of M.
  • This onium salt is a compound that releases a Lewis acid by receiving light.
  • anion (ML e + f ) in the above formula (II) include tetrafluoroborate (BF 4 ⁇ ), hexafluorophosphate (PF 6 ⁇ ), hexafluoroantimonate (SbF 6 ⁇ ), hexafluoroarce. Nate (AsF 6 ⁇ ), hexachloroantimonate (SbCl 6 ⁇ ) and the like.
  • An onium salt having an anion represented by the formula [ML f (OH) ⁇ ] can also be used.
  • perchlorate ion (ClO 4 ⁇ ), trifluoromethanesulfonate ion (CF 3 SO 3 ⁇ ), fluorosulfonate ion (FSO 3 ⁇ ), toluenesulfonate ion, trinitrobenzenesulfonate anion, trinitrotoluenesulfone
  • the onium salt which has other anions, such as an acid anion, may be sufficient. These can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the compound that generates active radical species by light irradiation include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, xanthone, fluorenone, benzaldehyde.
  • the blending amount of the photopolymerization initiator used in the present invention is preferably 0.01 to 20% by mass with respect to the solid content of the ultraviolet curable compound which is a raw material of the organic polymer compound, preferably 0.1 to 10 mass% is further more preferable.
  • a sensitizer can be added as necessary.
  • trimethylamine, methyldimethanolamine, triethanolamine, p-dimethylaminoacetophenone, ethyl p-dimethylaminobenzoate, p- Isoamyl dimethylaminobenzoate, N, N-dimethylbenzylamine, 4,4′-bis (diethylamino) benzophenone, and the like can be used.
  • the organic-inorganic composite thin film of the present invention may contain a metal compound having a metal element selected from the group consisting of titanium, zirconium, aluminum, silicon, germanium, indium, tin, tantalum, zinc, tungsten and lead.
  • a metal compound having a metal element selected from the group consisting of titanium, zirconium, aluminum, silicon, germanium, indium, tin, tantalum, zinc, tungsten and lead.
  • titanium, zirconium, aluminum, and tin are preferable as the metal element, and titanium is particularly preferable. These may be used alone or in combination of two or more.
  • the metal compound of the present invention is at least one selected from the group consisting of metal chelate compounds, organic acid metal salts, metal compounds having two or more hydroxyl groups or hydrolyzable groups, hydrolysates thereof, and condensates thereof. It is a seed compound, preferably a hydrolyzate and / or a condensate, and particularly preferably a hydrolyzate and / or a condensate of a metal chelate compound.
  • the metal compound in the thin film includes a compound that exists as a raw material, a compound obtained by further condensing the compound, and a compound that is chemically bonded to the above-described organosilicon compound.
  • the metal chelate compound is preferably a metal chelate compound having a hydroxyl group or a hydrolyzable group, and more preferably a metal chelate compound having two or more hydroxyl groups or hydrolyzable groups.
  • the metal chelate compound is preferably a ⁇ -ketocarbonyl compound, a ⁇ -ketoester compound, or an ⁇ -hydroxyester compound.
  • methyl acetoacetate, n-propyl acetoacetate, isopropyl acetoacetate, acetoacetate ⁇ -ketoesters such as n-butyl, sec-butyl acetoacetate, t-butyl acetoacetate; acetylacetone, hexane-2,4-dione, heptane-2,4-dione, heptane-3,5-dione, octane ⁇ -diketones such as -2,4-dione, nonane-2,4-dione and 5-methyl-hexane-2,4-dione; compounds coordinated with hydroxycarboxylic acids such as glycolic acid and lactic acid Can be mentioned.
  • the organic acid metal salt is a compound composed of a salt obtained from a metal ion and an organic acid.
  • the organic acid include carboxylic acids such as acetic acid, oxalic acid, tartaric acid, and benzoic acid; sulfonic acid, sulfinic acid, thiophenol, and the like.
  • Organic compounds exhibiting acidity such as phenolic compounds; enol compounds; oxime compounds; imide compounds; aromatic sulfonamides;
  • the metal compound having two or more hydroxyl groups or hydrolyzable groups excludes the metal chelate compound and the metal organic acid salt compound, and examples thereof include metal hydroxides and metal alcoholates. .
  • hydrolyzable group in the metal compound of the present invention examples include an alkoxy group, an acyloxy group, a halogen group, and an isocyanate group, and an alkoxy group having 1 to 4 carbon atoms and an acyloxy group having 1 to 4 carbon atoms are preferable.
  • having two or more hydroxyl groups or hydrolyzable groups means that the total of hydroxyl groups and hydrolyzable groups is 2 or more.
  • the hydrolyzate and / or condensate of the metal chelate compound is preferably one obtained by hydrolyzing with 5 to 100 mol of water with respect to 1 mol of the metal chelate compound. More preferably, it is hydrolyzed by use.
  • the hydrolyzate and / or condensate of the metal organic acid salt compound is preferably one hydrolyzed with 5 to 100 mol of water with respect to 1 mol of the metal organic acid salt compound. More preferably, it is hydrolyzed with molar water.
  • hydrolyzate and / or condensate of a metal compound having two or more hydroxyl groups or hydrolyzable groups 0.5 mol or more is used per 1 mol of a metal compound having two or more hydroxyl groups or hydrolyzable groups. It is preferably hydrolyzed using water, more preferably hydrolyzed using 0.5 to 2 mol of water.
  • the compounding amount of the metal compound used in the present invention depends on its kind, but generally 0.01 to 0.5 molar equivalent of metal atoms in the metal compound with respect to Si in the organosilicon compound, Preferably it is 0.05 to 0.2 molar equivalent.
  • Tetrafunctional silane or colloidal silica can be added for the purpose of improving the hardness of the resulting coating film.
  • the tetrafunctional silane include tetraaminosilane, tetrachlorosilane, tetraacetoxysilane, tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetrabenzyloxysilane, tetraphenoxysilane, tetra (meth) acryloxysilane, tetrakis [2 -(Meth) acryloxyethoxy] silane, tetrakis (2-vinyloxyethoxy) silane, tetraglycidyloxysilane, tetrakis (2-vinyloxybutoxy) silane, tetrakis (3-methyl-3-oxetanemethoxy) silane be able to.
  • the colloidal silic examples include te
  • fillers can be added and dispersed separately in order to develop various properties such as coloring, thickening the coating film, preventing UV transmission to the substrate, imparting corrosion resistance, and heat resistance.
  • the filler include water-insoluble pigments such as organic pigments and inorganic pigments, and particulate and fibrous or scale-like metals and alloys other than pigments, and oxides, hydroxides, carbides, nitrides thereof, and the like. Examples thereof include sulfides.
  • this filler include particulate, fibrous or scale-like iron, copper, aluminum, nickel, silver, zinc, ferrite, carbon black, stainless steel, silicon dioxide, titanium oxide, aluminum oxide, chromium oxide, Manganese oxide, iron oxide, zirconium oxide, cobalt oxide, synthetic mullite, aluminum hydroxide, iron hydroxide, silicon carbide, silicon nitride, boron nitride, clay, diatomaceous earth, slaked lime, gypsum, talc, barium carbonate, calcium carbonate, carbonic acid
  • dehydrating agents such as methyl orthoformate, methyl orthoacetate, tetraethoxysilane, various surfactants, silane coupling agents other than the above, titanium coupling agents, dyes, dispersants, thickeners, leveling agents, etc. These additives can also be added.
  • the solution for forming an organic-inorganic composite thin film in the present invention comprises an organic silicon compound, a raw material of an organic polymer compound, a photopolymerization initiator, and If necessary, it is prepared by mixing other components such as a metal compound, water and / or a solvent.
  • a metal compound is mixed in a solvent, a predetermined amount of water is added, (partial) hydrolysis is performed, and then an organosilicon compound is added (partial) to be hydrolyzed.
  • the raw material of the organic polymer compound is dissolved in a solvent, a photopolymerization initiator is added, and then both solutions are mixed.
  • the amount of the predetermined amount of water depends on the type of the metal compound. For example, when the metal compound is a metal compound having two or more hydroxyl groups or hydrolyzable groups, the amount of water is 0.5 with respect to 1 mol of the metal compound. It is preferable to use at least mol of water, and more preferably 0.5 to 2 mol of water. When the metal compound is a metal chelate compound or an organic acid metal salt, it is preferable to use 5 to 100 mol of water with respect to 1 mol of the metal chelate compound or organic acid metal salt, and 5 to 20 mol of water is used. It is more preferable.
  • the condensate of the organosilicon compound of the present invention a product obtained by (partially) hydrolyzing an organosilicon compound using a known silanol condensation catalyst may be used.
  • the composition for forming an organic-inorganic composite thin film in the present invention preferably contains water and / or a solvent in addition to the above components.
  • the solvent to be used is not particularly limited.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic hydrocarbons such as hexane and octane
  • alicyclic hydrocarbons such as cyclohexane and cyclopentane.
  • Ketones such as acetone, methyl ethyl ketone and cyclohexanone; ethers such as tetrahydrofuran and dioxane; esters such as ethyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; dimethyl sulfoxide And the like; alcohols such as methanol and ethanol; and polyhydric alcohol derivatives such as ethylene glycol monomethyl ether and ethylene glycol monomethyl ether acetate. These solvents can be used alone or in combination of two or more.
  • the solid content (organic silicon compound and / or condensate thereof, raw material of organic polymer compound, etc.) in the organic / inorganic composite thin film forming solution in the present invention is preferably 1 to 75% by mass, and preferably 10 to 60%. More preferably, it is mass%.
  • the blending ratio of each component in the solid content in the organic-inorganic composite thin film forming solution is the same as the content ratio of the organic-inorganic composite thin film injection.
  • the organic-inorganic composite thin film of the present invention is obtained by (A) applying the above-mentioned organic-inorganic composite thin film-forming solution on a substrate and heating and drying, (B) a wavelength of 350 nm or less. It can manufacture by passing through the process of irradiating the containing light, and the process of (C) plasma treatment or UV ozone treatment. In the case of performing UV ozone treatment in the step (C), the step B may be omitted.
  • the concentration of carbon atoms at a depth of 10 nm from the surface is 20% or more, preferably 30% or more than the concentration of carbon atoms at a depth of 100 nm from the surface.
  • the O / Si element ratio at a depth of 2 nm from the surface of the film is 1.8 to 2.5, preferably 1.9 to 2.4.
  • the Si / C element ratio at a depth of 100 nm from the surface is preferably 0.2 or less, and more preferably 0.15 or less.
  • the concentration of carbon atoms means the molar concentration of carbon atoms when (total metal atoms + oxygen atoms + carbon atoms) is 100%. The same applies to the concentrations of other elements.
  • the “layer in which the condensate of the organosilicon compound is concentrated” is defined by the concentration of carbon atoms by ESCA analysis, but the concentration in the concentrated layer is also high in the silicon concentration. In the present invention, the lower the carbon concentration, the higher the silicon concentration.
  • the value of the film thickness used when defining the carbon content in the thin film is a value calculated when sputter etching is performed in ESCA analysis, but does not necessarily match the actual film thickness value. . This is because the film thickness etched by sputter etching depends on the material of the film. Therefore, the actual film thickness value can be obtained by converting the etching rate for each film material.
  • a SiO 2 equivalent film thickness using a thermally oxidized SiO 2 film as a standard sample was used.
  • the standard sample is a thermally oxidized SiO 2 film formed on a silicon wafer.
  • An etching rate was calculated by ESCA analysis of a standard sample whose thickness was measured in advance by an ellipsometer while performing sputter etching.
  • the (C) process is indispensable for the mineralization of the surface
  • the condensate of the compound in which R is a vinyl group is converted into the total condensate of the organosilicon compound.
  • the degree of surface mineralization further increases.
  • Examples of the substrate on which the thin film of the present invention can be formed include metals, ceramics, glass, and plastics. Conventionally, it has been difficult to form a thin film on a plastic substrate, and it has been limited to inorganic substrates such as glass. However, the thin film of the present invention can easily form a film even if it is difficult to form a plastic substrate. Suitable for optical components. Examples of such plastic include polycarbonate resin, acrylic resin, polyimide resin, polyester resin, epoxy resin, liquid crystal polymer resin, and polyether sulfone.
  • a coating method of the organic / inorganic composite thin film forming solution a known coating method can be used. For example, dipping method, spray method, bar coating method, roll coating method, spin coating method, curtain coating method, gravure printing method. , Silk screen method, ink jet method and the like.
  • the film thickness to be formed is not particularly limited and is, for example, about 0.1 to 200 ⁇ m.
  • the film formed by applying the organic / inorganic composite thin film forming solution is preferably dried at 40 to 200 ° C. for about 0.5 to 120 minutes, preferably at 60 to 120 ° C. for 1 to 60 minutes. It is more preferable to carry out to the extent.
  • light including a wavelength of 350 nm or less means not only a wavelength of 350 nm or less but also ultraviolet rays having a wavelength longer than 350 nm. This is because the photosensitive compound requires a wavelength of 350 nm or less, while the ultraviolet curable compound has photosensitivity at a wavelength exceeding 350 nm, preferably around 365 nm.
  • Irradiation with light having a wavelength of 350 nm or less can be performed using a known apparatus such as a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, or an excimer lamp.
  • the irradiation light is in the range of 150 to 350 nm.
  • the light is mainly composed of light having any one of the wavelengths, and more preferably light having any wavelength in the range of 250 to 310 nm. As long as it is sensitive to wavelengths in this range and does not react to light exceeding 350 nm, preferably 310 nm, it is hardly affected by sunlight.
  • the irradiation light amount of the light to be irradiated is, for example, about 0.1 to 100 J / cm 2, and considering the film curing efficiency (relation between irradiation energy and film curing degree), 0.2 to 20 J / cm 2. preferably 2 mm, more preferably 0.5 ⁇ 10J / cm 2 or so.
  • irradiation with light having a wavelength of 350 nm or less is irradiation using a light source having light of any wavelength of 350 nm or less, preferably a light source having light of any wavelength of 350 nm or less as a main component. Irradiation used, that is, irradiation using a light source having a wavelength of 350 nm or less with the largest component amount.
  • the pencil hardness specified in the JIS K 5600-5-4 pencil method when a dried thin film (corresponding to the inside of the film in a light-irradiated thin film) is formed on a glass substrate is about 1H to 4H. In view of adhesion to the substrate and hardness, it is preferably 2H to 4H. Further, when the thin film after light irradiation is formed on a glass substrate, the pencil hardness defined in JIS K 5600-5-4 pencil method is preferably 5H or more, and more preferably 7H or more.
  • the plasma treatment is a corona discharge treatment in a nitrogen gas atmosphere or a glow plasma treatment in a rare gas atmosphere such as helium or argon. More specifically, a method of generating plasma by applying a high voltage at a high frequency between parallel plate electrodes in which at least one of the electrode pairs is coated with a dielectric, and holding a base material layer between the electrodes, Or the method of moving this base material layer between these electrodes is mentioned.
  • Plasma processing includes atmospheric pressure plasma processing and vacuum plasma processing, but since the density of active species is higher in atmospheric pressure plasma processing than in vacuum plasma processing, electrode surfaces can be processed at high speed and high efficiency. In addition, since there is no need to use a vacuum during processing, there is an advantage that processing can be performed with a small number of steps.
  • Atmospheric pressure plasma treatment is performed using an atmospheric pressure plasma generator (for example, atmospheric pressure plasma apparatus S-5000 manufactured by Sakai Semiconductor Co., Ltd., atmospheric pressure plasma surface treatment apparatus RD series manufactured by Sekisui Chemical Co., Ltd.). It can be carried out.
  • an atmospheric pressure plasma generator for example, atmospheric pressure plasma apparatus S-5000 manufactured by Sakai Semiconductor Co., Ltd., atmospheric pressure plasma surface treatment apparatus RD series manufactured by Sekisui Chemical Co., Ltd.
  • UV ozone treatment means that the thin film is irradiated with UV (ultraviolet rays), oxygen in the air is changed to ozone, and the thin film is modified by the ozone and ultraviolet rays.
  • the UV light source is not particularly limited as long as oxygen can be changed to ozone by UV irradiation.
  • Examples of the UV light source include a low-pressure mercury lamp. Low pressure mercury lamps generate UV light at 185 nm and 254 nm, and the 185 nm line can convert oxygen to ozone.
  • the illuminance upon irradiation varies depending on the light source used, but generally several tens to several hundreds mW / cm 2 are used. Moreover, illumination intensity can be changed by condensing or diffusing.
  • the irradiation time varies depending on the illuminance of the lamp and the type of the untreated layer, but is usually 1 minute to 24 hours.
  • the treatment temperature is usually 10 to 200 ° C.
  • the irradiation amount of UV i.e., ultraviolet amount
  • the irradiation amount of UV is usually 1 J / cm 2 or more, preferably 1 ⁇ 100000J / cm 2, more preferably 10 ⁇ 100000J
  • the carbon atom content in the film surface portion is smaller than the carbon atom content in the inside of the film (near the junction with the base material) by passing through the step (B). It can be said that a concentrated layer of a silane compound is formed on the film surface. Therefore, even if the plasma treatment and UV ozone treatment in the step (C) are performed, only the silane compound on the film surface reacts and the organic polymer compound inside the film is hardly affected. As a result, even if the average roughness by AFM measurement is compared before and after the step (C), no change is observed.
  • the treatments have been used mainly for the purpose of cleaning dirt derived from organic substances on inorganic compounds such as glass.
  • the silane compound concentrated layer on the surface of the film plays a role as a protective layer against plasma treatment and UV ozone treatment.
  • a layer containing the hydrolytic condensate of metal surfactant may be further provided on the organic-inorganic composite thin film. It can.
  • the layer containing the hydrolytic condensate of the metal surfactant is preferably a monomolecular film. Below, the preparation methods of the layer containing the hydrolysis-condensation product of a metal surfactant are demonstrated.
  • the layer containing the hydrolytic condensate of the metal surfactant is, for example, as described in WO 2008-059840 pamphlet and the like, “a metal surfactant having at least one hydrolyzable group”, “the surfactant It can be prepared by bringing the organic-inorganic composite film into contact with an organic solvent solution containing a compound capable of interacting with a metal surfactant and water.
  • Examples of the “metal surfactant having at least one hydrolyzable group” include formula (III) R 3 S Mx t-s ( III) [Wherein R 3 represents a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent, a halogenated hydrocarbon group having 1 to 30 carbon atoms which may have a substituent, or a linking group. Represents a hydrocarbon group having 1 to 30 carbon atoms or a halogenated hydrocarbon group having 1 to 30 carbon atoms including a linking group, and M represents a silicon atom, a germanium atom, a tin atom, a titanium atom, and a zirconium atom.
  • s represents any positive integer from 1 to (t ⁇ 1), and when s is 2 or more, R 3 may be the same or different from each other.
  • (ts) is 2 or more, X may be the same or different, but at least one of X is a hydrolyzable group.
  • the metal-type surfactant shown by these is preferable.
  • the hydrocarbon group of the hydrocarbon group having 1 to 30 carbon atoms which may have a substituent is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, t-pentyl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, alkyl groups such as n-decyl group and n-octadecyl group; alkenyl groups such as vinyl group, propenyl group, butenyl group, pentenyl group, n-decynyl group and n-octadecynyl group; phenyl group, 1-na
  • Examples of the halogenated hydrocarbon group of the halogenated hydrocarbon group having 1 to 30 carbon atoms which may have a substituent include a halogenated alkyl group having 1 to 30 carbon atoms and a halogenated alkenyl group having 1 to 30 carbon atoms. And a halogenated aryl group having 1 to 30 carbon atoms.
  • a group in which two or more hydrogen atoms in an alkyl group having 1 to 30 carbon atoms are substituted with a halogen atom is preferable, and two or more hydrogen atoms in an alkyl group having 1 to 30 carbon atoms are fluorine atoms.
  • a fluorinated alkyl group substituted with is more preferable.
  • the branched portion is preferably a short chain having 1 to 4 carbon atoms, preferably 1 to 2 carbon atoms.
  • hydrocarbon group of the hydrocarbon group containing a linking group and the halogenated hydrocarbon group of a halogenated hydrocarbon group containing a linking group include the hydrocarbon groups that may have the above-mentioned substituents.
  • the thing similar to what was mentioned as a halogenated hydrocarbon group of the halogenated hydrocarbon group which may have a hydrogen group and a substituent is mentioned.
  • the linking group is preferably present between carbon-carbon bonds of a hydrocarbon group or a halogenated hydrocarbon group, or between carbon of the hydrocarbon group and a metal atom M described later.
  • linking group examples include —O—, —S—, —SO 2 —, —CO—, —C ( ⁇ O) O— or —C ( ⁇ O) NR 51 —
  • R 51 represents A hydrogen atom; an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group; Among these, from the viewpoint of water repellency and durability, an alkyl group having 1 to 30 carbon atoms, a fluorinated alkyl group having 1 to 30 carbon atoms, or a fluorinated alkyl group containing a linking group is preferable.
  • X represents a hydroxyl group or a hydrolyzable group.
  • the hydrolyzable group is not particularly limited as long as it is a group that reacts with water and decomposes.
  • an optionally substituted alkoxy group having 1 to 6 carbon atoms an optionally substituted acyloxy group; a halogen atom such as a fluorine atom, chlorine atom, bromine atom or iodine atom; an isocyanate group Cyano group; amino group; or amide group.
  • alkoxy group having 1 to 6 carbon atoms examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, t-butoxy group, n-pentyloxy group, and n-to A xyloxy group etc. are mentioned.
  • the acyloxy group examples include an acetoxy group, a propionyloxy group, an n-propylcarbonyloxy group, an isopropylcarbonyloxy group, and an n-butylcarbonyloxy group.
  • substituents include a carboxyl group, an amide group, an imide group, an ester group, and a hydroxyl group.
  • a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, an acyloxy group, a halogen atom, or an isocyanate group is preferable, and an alkoxy group or acyloxy group having 1 to 4 carbon atoms is more preferable.
  • M represents one kind of atom selected from the group consisting of a silicon atom, a germanium atom, a tin atom, a titanium atom, and a zirconium atom.
  • a silicon atom is preferable from the viewpoint of availability of raw materials and reactivity.
  • Examples of the metal surfactant represented by the above formula (III) include the following silane coupling agents.
  • M is Si and R 1 is a hydrocarbon group, but the present invention is not limited thereto.
  • Examples of the “compound capable of interacting with a metal-based surfactant” include metal oxides; metal hydroxides; metal alkoxides; metal alkoxides partial hydrolysis products; metal alkoxides hydrolysis products; A coordinated metal compound; at least one selected from a silanol condensation catalyst and an acid catalyst is used.
  • metal oxides include methanol silica sol, IPA-ST, IPA-ST-UP, IPA-ST-ZL, NPC-ST-30, DMAC-ST, MEK-ST, MIBK-ST, and XBA-ST.
  • PMA-ST all of which represent the trade names of organosilica sol manufactured by Nissan Chemical Industries, Ltd.
  • any metal hydroxide may be used as long as it is a metal hydroxide.
  • a manufacturing method of a metal hydroxide the method of hydrolyzing the below-mentioned metal alkoxide, the method of making a metal salt react with a metal hydroxide, etc. are mentioned.
  • what is marketed as a metal hydroxide can also be refine
  • metal alkoxides examples include silicon alkoxides such as Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (OC 3 H 7 -i) 4 , Si (OC 4 H 9 -t) 4 ; Ti ( Titanium alkoxides such as OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (OC 3 H 7 -i) 4 , Ti (OC 4 H 9 ) 4 ; Ti [OSi (CH 3 ) 3 ] 4 , Ti Tetrakistrialkylsiloxytitanium such as [OSi (C 2 H 5 ) 3 ] 4 ; Zr (OCH 3 ) 4 , Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Zr (OC 4 H 9 ) 4 zirconium such alkoxide; Al (OCH 3) 4, Al (OC 2 H 5) 4, Al (OC 3 H 7 -i) 4, Al (OC 4 H 9) 3
  • indium alkoxides Sn Tin alkoxides such as (OCH 3 ) 4 , Sn (OC 2 H 5 ) 4 , Sn (OC 3 H 7 -i) 4 , Sn (OC 4 H 9 ) 4 ; Ta (OCH 3 ) 5 , Ta (OC 2 Tantalum alkoxides such as H 5 ) 5 , Ta (OC 3 H 7 -i) 5 , Ta (OC 4 H 9 ) 5 ; W (OCH 3 ) 6 , W (OC 2 H 5 ) 6 , W (OC 3 H 7- i) tungsten alkoxides such as 6 and W (OC 4 H 9 ) 6 ; zinc alkoxides such as Zn (OC 2 H 5 ) 2 ; lead alkoxides such as Pb (OC 4 H 9 ) 4 ; These metal alkoxides can be used alone or in combination of two or more.
  • the metal alkoxide partial hydrolysis product is obtained before the metal alkoxide is completely hydrolyzed, and examples thereof include a metal oxide sol precursor or an oligomer present in the state of oligomer. Can do.
  • the metal alkoxide partial hydrolysis product is stably dispersed without aggregation in an organic solvent in the absence of at least one selected from the group consisting of acids, bases and dispersion stabilizers.
  • Preferred examples include dispersoids having the above properties.
  • the dispersoid refers to fine particles dispersed in the dispersion system, and specific examples include colloidal particles.
  • the state of stable dispersion without agglomeration means that in the absence of acid, base and / or dispersion stabilizer in the organic solvent, the dispersoid of the hydrolysis product coagulates and becomes heterogeneous.
  • separated is said, Preferably the transparent and homogeneous state is said.
  • Transparent means a state in which the transmittance in visible light is high. Specifically, the concentration of the dispersoid is 0.5% by weight in terms of oxide, the optical path length of the quartz cell is 1 cm, and the control sample is organic. This is a state in which the transmittance is preferably 80 to 100%, expressed as a spectral transmittance measured under the condition of using a solvent and a light wavelength of 550 nm.
  • the particle size of the dispersoid of the hydrolysis product is not particularly limited, but is preferably in the range of 1 to 100 nm and more preferably in the range of 1 to 50 nm in order to obtain a high visible light transmittance. More preferably, it is in the range of 1 to 10 nm.
  • an organic solvent is used in the absence of an acid, a base, and / or a dispersion stabilizer in an amount of 0.5 to 2.0 with respect to the metal alkoxide exemplified above.
  • a preferred example is a method of hydrolyzing in an organic solvent reflux temperature range from ⁇ 100 ° C. using less than double moles of water.
  • the metal alkoxide hydrolysis product used in the present invention is a product obtained by hydrolysis with water equal to or more than twice the metal alkoxides. Even if the hydrolysis product is obtained by hydrolyzing a metal alkoxide with water at least twice as much as the metal alkoxide, the metal alkoxide is less than twice the equivalent of the metal alkoxide.
  • the partial hydrolysis product of the metal alkoxides was obtained by partial hydrolysis with water, and the partial hydrolysis product was further mixed with a predetermined amount of water (the amount of water used in the previous partial hydrolysis and In a total amount of 2 times the equivalent of metal alkoxides).
  • the chelated or coordinated metal compound can be prepared by adding a chelating agent or a coordination compound capable of forming a complex with the metal of the metal compound to a solution of the metal compound.
  • a chelating agent or coordination compound a metal hydroxide, metal alkoxide, or metal alkoxide is chelated or coordinated to the metal of the hydrolysis product obtained by treating with water to form a complex. If it can do, it will not specifically limit.
  • Chelating agents or coordination compounds include saturated aliphatic carboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, lauric acid, myristic acid, palmitic acid, stearic acid; oxalic acid, malonic acid, succinic acid, glutaric acid Saturated aliphatic dicarboxylic acids such as adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, array acid, maleic acid; benzoic acid, toluic acid, Aromatic carboxylic acids such as phthalic acid; halogenocarboxylic acids such as chloroacetic acid and trifluoroacetic acid; ⁇ -diketones such as acetylacetone, benzoylacetone and hexafluoroacetylacetone; ⁇ -ketoesters such as methyl acetoacetate and
  • silanol condensation catalyst examples include carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates.
  • acid catalysts include mineral acids such as hydrochloric acid, nitric acid, boric acid, borohydrofluoric acid, organic acids such as acetic acid, formic acid, oxalic acid, carbonic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, etc.
  • a photoacid generator that generates an acid by light irradiation, specifically, diphenyliodonium hexafluorophosphate, triphenylphosphonium hexafluorophosphate, and the like can be exemplified.
  • the content of water in the organic solvent solution containing a metal-based surfactant having at least one hydrolyzable group, a compound capable of interacting with the metal-based surfactant, and water is preferably 10 to 2000 ppm.
  • a method of adjusting or maintaining the water content to be within a predetermined amount range (i) a method of providing a water layer in contact with the organic solvent solution, and (ii) a water-retaining substance containing water Examples thereof include a method of coexisting, (iii) a method of blowing a gas containing moisture, and the like.
  • the above organic solvent solution is prepared by dipping, spin coating, spraying, roller coating, It can be carried out by bringing the organic-inorganic composite thin film on the organic-inorganic composite into contact with each other by a method such as a Mayer bar method, screen printing, or brush coating method, preferably by a dip method.
  • “atmospheric pressure plasma treatment” used an atmospheric pressure plasma surface treatment apparatus (manufactured by Sekisui Chemical Co., Ltd.) to irradiate the organic-inorganic composite thin film with plasma generated by nitrogen gas.
  • the substrate conveyance speed for the substrate treatment was 20 m / min.
  • “UV ozone treatment” an organic / inorganic composite thin film was washed for 10 minutes using an eye UV ozone washing apparatus (manufactured by Iwasaki Electric Co., Ltd.).
  • Each thin film was evaluated by the following method.
  • the element concentration of carbon atoms and the oxygen / silicon element ratio with respect to the depth from the surface of the thin film were determined by ESCA analysis.
  • the adhesion strength of the thin film was evaluated by a 180 degree peel test. The test was performed according to JIS Z 0237 (adhesive tape, adhesive sheet test method).
  • a pressure-sensitive adhesive tape (polyester 31B tape, width 10 mm, manufactured by Nitto Denko Corporation) was pressure-bonded by reciprocating twice with a 1 kg roller onto an organic-inorganic composite film cut to a length of 300 mm.
  • the organic-inorganic composite film and the adhesive tape were peeled off by 150 mm at a speed of 300 mm / min, and the average value of the test stress for 125 mm excluding the first 25 mm data was measured.
  • Drop Master manufactured by Kyowa Interface Science
  • water repellency of 2 ⁇ l of water and oil repellency of 7 ⁇ l of n-tetradecane were evaluated.
  • the average surface roughness of the thin film was measured in AFM mode using SPI3800N and SPA400 units (both manufactured by SII Nanotechnology Co., Ltd.).
  • An SN-AF01 cantilever was used for AFM measurement, and a 10 ⁇ m square range was measured at a scanning speed of 1 Hz. The surface roughness was obtained from the measured shape image data.
  • the cross section of the thin film was observed using a transmission electron microscope (FE-TEM; HF-2000 manufactured by Hitachi) after processing a section of the sample with a focused ion beam. Cross-sectional observation was performed at an acceleration voltage of 200 kV and an observation magnification of 1,000,000 times.
  • Example 1 Preparation of organic / inorganic composite thin film forming solution
  • 264.7 g of diisopropoxybisacetylacetonate titanium manufactured by Nippon Soda Co., Ltd., “T-50”, solid content in terms of titanium oxide: 16.5 mass%
  • industrial ethanol manufactured by Nippon Alcohol Sales, “Sol Mix (registered trademark) AP-7 ”
  • 51.1 g of ion-exchanged water was added with stirring. This solution was hydrolyzed by stirring for 2 hours while heating to 40 ° C.
  • a microgravure coater manufactured by Yasui Seiki Co., Ltd. was applied to the organic / inorganic composite thin film forming solution [F-1] under the conditions of a drying temperature of 80 ° C. and an integrated UV irradiation amount of 473 mJ / cm 2 (high pressure mercury lamp manufactured by Igraphic). It was used to form a film on a PET film (“Cosmo Shine (registered trademark) A4300” manufactured by Toyobo Co., Ltd.). Further, the coating film surface was subjected to atmospheric pressure plasma treatment to obtain an organic-inorganic composite thin film [X-1] having a thickness of 5 ⁇ m (FIG. 1). When the unevenness of the film surface before and after the atmospheric plasma treatment was measured, the average surface roughness was not changed at all at 3.0 nm before the treatment (FIG. 2) and at 2.8 nm after the treatment (FIG. 3).
  • Example 2 The solution for forming an organic-inorganic composite thin film [F-1] used in Example 1 was subjected to a microgravure coater (Kang) under the conditions of a drying temperature of 80 ° C. and an integrated UV irradiation amount of 473 mJ / cm 2 (high pressure mercury lamp manufactured by Igraphic). The film was formed on a PET film (manufactured by Toyobo Co., Ltd., “Cosmo Shine (registered trademark) A4300”). Further, this coating film surface was subjected to UV ozone treatment to obtain an organic-inorganic composite thin film [X-2] (FIG. 4) having a film thickness of 5 ⁇ m.
  • Example 3 (Preparation of organic / inorganic composite thin film forming solution) Diisopropoxybisacetylacetonate titanium (Nippon Soda Co., Ltd., “T-50”, titanium oxide equivalent solid content: 16.5% by mass) 130.6 g was added to industrial ethanol (Nippon Alcohol Sales, “Sol (Mix (registered trademark) AP-7)) was dissolved in 251.8 g, and 48.6 g of ion-exchanged water was added with stirring. This solution was stirred for 2 hours while being heated to 40 ° C. to be hydrolyzed to obtain a hydrolyzate solution [A-2] (solid content of 5.0% by mass in terms of titanium oxide) of a yellow transparent metal compound.
  • A-2 solid content of 5.0% by mass in terms of titanium oxide
  • An inorganic composite thin film forming solution [F-2] (solid content concentration 55.5% by mass) was prepared. (Preparation of organic-inorganic composite thin film) Using a bar coater (manufactured by Tester Sangyo Co., Ltd.), a solution for forming an organic-inorganic composite thin film [F-2] under the conditions of a drying temperature of 80 ° C. and an integrated UV irradiation amount of 500 mJ / cm 2 (high pressure mercury lamp manufactured by Igraphic). The film was formed on a PET film (Toyobo Co., Ltd., “Cosmo Shine (registered trademark) A4300”). Further, this coating film surface was subjected to atmospheric pressure plasma treatment to obtain an organic-inorganic composite thin film [X-3] having a film thickness of 5 ⁇ m.
  • Example 1 The organic-inorganic composite thin film forming solution [F-2] used in Example 3 was subjected to a microgravure coater (Kang) under the conditions of a drying temperature of 80 ° C. and an integrated UV irradiation amount of 473 mJ / cm 2 (high pressure mercury lamp manufactured by Igraphic).
  • a microgravure coater Karl
  • An organic-inorganic composite thin film having a thickness of 5 ⁇ m was obtained by forming a film on a PET film (manufactured by Toyobo Co., Ltd., “Cosmo Shine (registered trademark) A4300”).
  • Table 1 shows the results of ESCA analysis, adhesion test, and static contact angle test of each organic-inorganic composite thin film obtained in Examples 1 to 3 and Comparative Example 1.
  • Example 4 The organic-inorganic composite thin film [X-1] produced in Example 1 was immersed in a monomolecular film forming agent (SAMLAY-A (registered trademark) manufactured by Nippon Soda Co., Ltd.) for 30 seconds, then pulled up, and NS Clean 100 (registered) Rinsed and washed with a trademark, manufactured by Japan Energy Co., Ltd. By drying the washed thin film, an organic-inorganic composite thin film [Y-1] treated with a monomolecular film was obtained.
  • SAMLAY-A monomolecular film forming agent manufactured by Nippon Soda Co., Ltd.
  • Example 5 Using the organic-inorganic composite thin film [X-2] produced in Example 2, the same treatment as in Example 4 was performed to obtain a monomolecular film-treated organic-inorganic composite thin film [Y-2].
  • Example 6 Using the organic-inorganic composite thin film [X-3] produced in Example 3, the same treatment as in Example 4 was performed to obtain a monomolecular film-treated organic-inorganic composite thin film [Y-3].
  • Example 2 Formation of UV curable resin thin film without silicon compound
  • the UV curable resin solution [E-1] prepared in Example 1 was subjected to a microgravure coater (Yasui Seiki Co., Ltd.) under the conditions of a drying temperature of 80 ° C. and an integrated UV irradiation amount of 473 mJ / cm 2 (high pressure mercury lamp manufactured by Igraphic).
  • the film was formed on a PET film (manufactured by Toyobo Co., Ltd., “Cosmo Shine (registered trademark) A4300”) to obtain an ultraviolet curable resin thin film having a thickness of 5 ⁇ m.
  • a monomolecular film treatment was performed in the same manner as in Example 5 to obtain a film [Z-2].
  • Table 2 shows the results of the adhesion test and the static contact angle test of the thin film after the monomolecular film treatment obtained in Examples 4 to 6 and Comparative Example 2.
  • a bar coater manufactured by Tester Sangyo Co., Ltd.
  • a film was formed on an acrylic sheet (Soft Acrylic SA-00 manufactured by CRD). Further, this coating film surface was subjected to the same atmospheric pressure plasma treatment as in Example 1 to obtain an organic-inorganic composite thin film [X-4] having a thickness of 5 ⁇ m.
  • [Comparative Example 3] [D-1] and [E-1] synthesized in Example 1 were mixed so that the solid content ratio was [D-1] / [E-1] 50% by mass / 50% by mass, The solution was diluted with a MEK solvent to prepare an organic-inorganic composite thin film forming solution [F-4] (solid content concentration 40% by mass).
  • Example 7 Using a bar coater (manufactured by Tester Sangyo Co., Ltd.), a solution for forming an organic / inorganic composite thin film [F-5] under the conditions of a drying temperature of 60 ° C. and an integrated UV irradiation amount of 500 mJ / cm 2 (high pressure mercury lamp manufactured by Igraphic). A film was formed on an acrylic sheet (Soft Acrylic SA-00 manufactured by CRD). Further, this coating film surface was subjected to the same atmospheric pressure plasma treatment as in Example 1 to obtain an organic-inorganic composite thin film [X-5] having a film thickness of 5 ⁇ m.
  • Table 3 The evaluation results of Example 7 and Comparative Example 3 are shown in Table 3.
  • an organic-inorganic composite thin film having a very high surface hardness, excellent flexibility, and excellent adhesion to a substrate and moisture resistance.
  • the thin film of the present invention has a SiO 2 -like structure with a highly polar surface, it has excellent interlayer adhesion when various films are laminated.
  • adhesiveness with printing ink is a problem due to water repellency, but the thin film of the present invention has good adhesiveness with ink.
  • it is excellent also in adhesiveness with an inorganic thin film.
  • inorganic thin films include photocatalytic films such as TiO 2 , conductive thin films such as ITO and SnO 2 -based thin films, dielectric and piezoelectric thin films such as Ta 2 O 5 and PZT, and low refractive index films such as SiO 2 , MgO, and MgF 2.
  • the thin film of the present invention is produced in two stages: curing by heat drying and curing by ultraviolet rays.
  • heat-drying treatment hydrolysis and polycondensation of the organosilicon compound proceeds to change into polysiloxane and harden.
  • the UV curable compound is difficult to cure by heating, the film after the heat drying treatment can be molded by appropriately selecting the type of the organosilicon compound, the type of the UV curable compound, and the mixing ratio thereof. .
  • the thin film of the present invention can be formed into a concavo-convex pattern by molding the film after heat treatment, for example.
  • Various patterns can be formed by embossing or nanoimprinting.
  • the surface inorganicized hard coat film which is the feature of the present invention, can be formed by curing the ultraviolet curable compound and converting the surface siloxane into SiO 2 while maintaining the pattern by ultraviolet irradiation.
  • a film can be formed by a transfer method in the same manner.
  • a film treated with a release film (for example, a polyester film) is coated with the composition of the present invention to form a heat-treated film, which is used as a transfer foil before being irradiated with ultraviolet rays.
  • the film is transferred by force such as pressure and adhesive, and then irradiated with ultraviolet rays.
  • the thin film of the present invention is excellent in print compatibility (adhesion with ink)
  • the pattern of the present invention is applied in the form of various patterns printed on the mold, and then irradiated with ultraviolet rays.
  • the hard coat film can be simultaneously transferred to the molded body. This is useful as a method for forming a hard coat film on a molded body having a curved surface.
  • the thin film thus formed can be used as a gas barrier film, an antistatic film, a UV cut film, an antireflection film or the like in addition to the hard coat film.
  • the hard coat film include, for example, automobile glass, headlights, exterior parts, interior parts, electrical parts, sunroofs; mobile phone front cases, rear cases, battery cases; spectacle lenses; optical discs; Film; TV front panel; CRT cover; Video reflector and the like.
  • the thin film of this invention can also be used for the mold for producing these products, and its industrial applicability is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本発明は、表面が内部より高い硬度を有するポリシロキサン系の有機無機複合体からなる膜の表面を更に無機質化することを課題とする。 本発明の有機無機複合薄膜は、 a)式(I) RSiX4-n (I) (式中、RはSiに炭素原子が直接結合する有機基を表し、Xは水酸基又は加水分解性基を表す。nは1又は2を表し、nが2のとき各Rは同一でも異なっていてもよく、(4-n)が2以上のとき各Xは同一でも異なっていてもよい。)で表される有機ケイ素化合物の縮合物、及び、 b)有機高分子化合物 を含有する層を有する有機無機複合薄膜であって、 該膜の表面に式(I)で表される有機ケイ素化合物の縮合物が濃縮した層が形成されており、表面から10nmの深さの炭素原子の濃度が、表面から100nmの深さの炭素原子の濃度より20%以上少なく、さらに、膜の表面から2nmの深さのO/Si元素比が1.8~2.5である。

Description

有機無機複合薄膜
 本発明は、有機無機複合薄膜に関し、詳しくは、膜の表面から10nmの深さの炭素原子含有率が、膜の表面から100nmの深さの炭素原子含有率より小さく、さらに、膜の表面から2nmの深さでのO/Si元素比が1.8~2.5である有機無機複合薄膜に関する。
 本願は、2012年2月8日に出願された日本国特許出願第2012-25024号及び2012年4月5日に出願された日本国特許出願第2012-86540号に対し優先権を主張し、その内容をここに援用する。
 市販品のシラン系コート剤の原料としては、主として3官能のシランが用いられており、かかる3官能シランにより、適度な硬さと柔軟性を持つポリシロキサンが形成される。しかしながら、3官能シランの膜ではハードコート性が充分ではない。そこで、3官能シランに、4官能シランやコロイダルシリカを混合することでハードコート性を補っているが、膜を硬くすれば、ヒビ割れやすくなり、密着性が悪くなるという問題がある。
 シラン系のコート剤としては、例えば、エポキシ基を有する3官能アルコキシシラン化合物を含有する防汚膜形成用組成物(特許文献1参照)がある。また、光触媒を含有したシラン系コート剤も提案されており、光酸発生剤、架橋剤、硬化触媒等を使用して、膜を硬化している(例えば、特許文献2,3参照)。さらに、材料中の金属系化合物の含有率が、材料の表面から深さ方向に連続的に変化する成分傾斜構造を有するシラン系の有機-無機複合傾斜材料も提案されている(例えば、特許文献4参照)。
 本発明者らは、光感応性化合物の存在下に有機ケイ素化合物に紫外線を照射することにより、表面が非常に高い硬度を有すると共に、内部及び裏面側が適当な硬度を有しつつ、かつ基体との密着性に優れた有機無機複合体を提供した(特許文献5参照)。さらに、膜の表面を無機質にすることにより、有機樹脂の欠点である劣化を防ぎ、耐湿性や耐熱性に優れた薄膜を提供した(特許文献6参照)。これらは一定の効果を奏するものであるが、膜の密着性と膜表面の無機質化をさらに向上した薄膜の製造が望まれていた。
 一方、ハードコート膜としては、UV硬化樹脂としてアクリレート系樹脂等を用いることが知られている。たとえば、特許文献7には、(メタ)アクリル酸エステル混合物(A)、光重合開始剤(B)、エチレン性不飽和基含有ウレタンオリゴマー(C)、コロイダルシリカゾル(D)及び希釈剤(E)を含有するハードコートフィルムが記載されており、得られたフィルムは、鉛筆硬度、カール、基材への密着性が良好であることが記載されている。
 また、特許文献8には、(A)ケイ素、アルミニウム、ジルコニウム、チタニウム、亜鉛、ゲルマニウム、インジウム、スズ、アンチモン及びセリウムよりなる群から選ばれる少なくとも一つの元素の酸化物粒子と、重合性不飽和基を含む有機化合物とを結合させてなる粒子、(B)分子内にウレタン結合及び2以上の重合性不飽和基を有する化合物、及び(C)光重合開始剤を含有する硬化性組成物を用いることが記載されており、優れた塗工性を有し、かつ各種基材の表面に、高硬度及び高屈折率を有するとともに耐擦傷性並びに基材及び低屈折率層との密着性に優れた塗膜(被膜)を形成し得ることが記載されている。
 さらに、特許文献9には、(A)有機ケイ素化合物の加水分解物と金属酸化物微粒子の混合物、(B)多官能アクリレート又はメタクリレート、(C)光重合開始剤を配合してなることを特徴とする紫外線硬化性ハードコート樹脂組成物が記載されており、帯電防止剤の表面へのブリード、透明性の低下、耐湿性の劣化等を実用的に許容できる範囲内に収めることができ、且つハードコートとしての機能(耐擦傷性、表面硬度、耐湿性、耐溶剤・薬品性等)を満足することが記載されている。
 しかしながら、これらのアクリレート系樹脂等を用いるハードコート膜は、耐摩耗性に関しては無機膜よりも劣るため、金属酸化物ゾルを添加することにより改善を図っており、そのため、硬度は向上するが、透明性、可撓性が低下するという問題があった。
 一方、プラズマ処理やUVオゾン処理は、各種基材の表面を洗浄する方法として一般に用いられている(例えば特許文献10)。また、特許文献11には、銅メッキを使った配線基板において、プラズマ処理やUVオゾン処理によって金属粒子や樹脂層の表面に親水性を付与する旨が記載されている。しかし一般に、プラズマ処理やUVオゾン処理を有機樹脂に施すと、樹脂表面の有機化合物が分解され、樹脂表面が荒れるという欠点があった。
特開平10-195417号公報 特開2002-363494号公報 特開2000-169755号公報 特開2000-336281号公報 WO2006/088079号パンフレット WO2008/069217号パンフレット 特開2002-235018号公報 特開2005-272702号公報 特開2001-214092号公報 特開2008-279363号公報 特開2010-080527号公報
 本発明は上記事情に鑑みてなされたものであり、表面が内部より高い硬度を有するポリシロキサン系の有機無機複合体からなる膜の、膜表面を更に無機質化することを課題とする。
 本発明者らは、上記課題に取り組み、鋭意研究した結果、有機無機複合薄膜であって、プラズマ処理又はUVオゾン処理を施すことにより、膜表面の更なる無機質化を達成することができ、さらには、上記処理に加えてシロキサン成分を選択することにより膜表面の更なる無機質化を一層進めることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
(1)a)式(I)
 RSiX4-n  (I)
(式中、RはSiに炭素原子が直接結合する有機基を表し、Xは水酸基又は加水分解性基を表す。nは1又は2を表し、nが2のとき各Rは同一でも異なっていてもよく、(4-n)が2以上のとき各Xは同一でも異なっていてもよい。)で表される有機ケイ素化合物の縮合物、及び、
b)有機高分子化合物
を含有する層を有する有機無機複合薄膜であって、
該膜の表面に式(I)で表される有機ケイ素化合物の縮合物が濃縮した層が形成されており、表面から10nmの深さの炭素原子の濃度が、表面から100nmの深さの炭素原子の濃度より20%以上、好ましくは30%以上少なく、さらに、膜の表面から2nmの深さのO/Si元素比が1.8~2.5、好ましくは1.9~2.4である有機無機複合薄膜、
(2)更にc)チタン、ジルコニウム、アルミニウム、ケイ素、ゲルマニウム、インジウム、スズ、タンタル、亜鉛、タングステン及び鉛から成る群より選ばれた金属元素を有する金属化合物を含有する上記(1)記載の有機無機複合薄膜、
(3)式(I)中のRがビニル基である化合物の縮合物を有機ケイ素化合物の縮合物全体の70質量%以上含有することを特徴とする、上記(1)又は(2)に記載の有機無機複合薄膜、
(4)表面から100nmの深さにおけるSi/C元素比が0.2以下、好ましくは0.15以下であることを特徴とする、上記(1)~(3)に記載の有機無機複合薄膜、
(5)有機無機複合薄膜の上に、さらに、金属界面活性剤の加水分解縮合物を含有する層を有することを特徴とする、上記(1)~(4)のいずれかに記載の有機無機複合薄膜、
(6)金属界面活性剤がシランカップリング剤であることを特徴とする、上記(5)に記載の有機無機複合薄膜に関する。
 さらに、本発明は、
(7)a)式(I)
 RSiX4-n  (I)
(式中、RはSiに炭素原子が直接結合する有機基を表し、Xは水酸基又は加水分解性基を表す。nは1又は2を表し、nが2のとき各Rは同一でも異なっていてもよく、(4-n)が2以上のとき各Xは同一でも異なっていてもよい。)で表される有機ケイ素化合物の縮合物、及び、
b)有機高分子化合物
を含有する有機無機複合薄膜に、プラズマ処理、もしくはUVオゾン処理を施すことを特徴とする有機無機複合薄膜の処理方法に関する。
 従来、表面無機化ハードコートの表面にはシロキサン濃縮層は存在するが、完全に加水分解されてSiOになってはおらず、そのため、膜の表面から2nmの深さのO/Si元素比はせいぜい1.5程度であった。それに対して、本発明によれば、膜の表面から2nmの深さのO/Si元素比が1.8~2.5と、ほぼ完全に加水分解されてSiOになっている。
 すなわち、本発明の有機無機複合薄膜は、膜内部が有機樹脂に富んでいるのに対して、膜表面がほぼ完全に無機化しているという特徴を有するため、表面に無機材料のような化学的、熱的、光的な安定性や親水性を付与し、且つ基体との密着性に優れた有機無機複合薄膜を提供することができる。
 本発明の有機無機複合薄膜は、有機樹脂を多く含む膜材料であるにも関わらず、大気圧プラズマ処理等の有機物を分解する処理を施しても、膜表面の荒れを防ぐことができる。
 また本発明の有機無機複合薄膜は、膜表面が無機質であるため、更に外側に金属界面活性剤の加水分解縮合物からなる緻密な単分子膜を形成することができる。
実施例1の有機無機複合薄膜において、ESCAにより測定した膜厚方向における各膜成分の分布を示す図である。 実施例1の有機無機複合薄膜において、大気圧プラズマ処理を施す前の膜表面の凹凸をAFMにより測定した画像である。 実施例1の有機無機複合薄膜において、大気圧プラズマ処理を施した後の膜表面の凹凸をAFMにより測定した画像である。 実施例2の有機無機複合薄膜において、ESCAにより測定した膜厚方向における各膜成分の分布を示す図である。 実施例2の有機無機複合薄膜において、膜の断面を透過電子顕微鏡で撮影された写真である。
1 有機無機複合薄膜の成分
 本発明の有機無機複合薄膜は、有機ケイ素化合物の縮合物、及び有機高分子化合物を必須成分として含有するが、その他、金属化合物、光重合開始剤などを含有していてもよい。
(有機ケイ素化合物の縮合物)
 本発明の有機無機複合薄膜は、以下の式(I)で表される。
SiX4-n  (I)
 式中、RはSiに炭素原子が直接結合する有機基を表し、Xは水酸基又は加水分解性基を表す。nは1又は2を表し、nが2のとき各Rは同一でも異なっていてもよく、(4-n)が2以上のとき各Xは同一でも異なっていてもよい。
 ここで、Rで表される「Siに炭素原子が直接結合する有機基」としては、置換されていてもよい炭化水素基、置換されていてもよい炭化水素のポリマーからなる基等を挙げることができる。 
 上記「置換されていてもよい炭化水素基」及び「置換されていてもよい炭化水素のポリマーからなる基」の炭化水素基としては、通常、炭素数1~30の炭化水素基であり、例えば、アルキル基、シクロアルキル基、シクロアルキルアルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、アリールアルケニル基等が挙げられる。これらのうち、好ましくは、炭素数1~10の直鎖又は分岐鎖のアルキル基、炭素数3~8のシクロアルキル基、炭素数2~10の直鎖又は分岐鎖のアルケニル基、炭素数3~8のシクロアルケニル基である。
 また、上記「炭化水素基」又は「炭化水素のポリマーからなる基」には、酸素原子、窒素原子、又はケイ素原子を含んでいてもよい。
 「炭素数1~10の直鎖又は分岐鎖のアルキル基」としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、イソノニル基、n-デシル基等が挙げられる。
 なお、炭素数10を超える長鎖のアルキル基としては、ラウリル基、トリデシル基、ミリスチル基、ペンタデシル基、パルミチル基、ヘプタデシル基、ステアリル基等が挙げられる。
 炭素数3~8のシクロアルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
 「炭素数2~10の直鎖又は分岐鎖のアルケニル基」は、いずれか1カ所以上に炭素-炭素二重結合を有する炭素数2~10の直鎖、又は分岐鎖のアルケニル基を意味し、例えば、エテニル基、プロパ-1-エン-1-イル基、プロパ-2-エン-1-イル基、プロパ-1-エン-2-イル基、ブタ-1-エン-1-イル基、ブタ-2-エン-1-イル基、ブタ-3-エン-1-イル基、ブタ-1-エン-2-イル基、ブタ-3-エン-2-イル基、ペンタ-1-エン-1-イル基、ペンタ-4-エン-1-イル基、ペンタ-1-エン-2-イル基、ペンタ-4-エン-2-イル基、3-メチル-ブタ-1-エン-1-イル基、ヘキサ-1-エン-1-イル基、ヘキサ-5-エン-1-イル基、ヘプタ-1-エン-1-イル基、ヘプタ-6-エン-1-イル基、オクタ-1-エン-1-イル基、オクタ-7-エン-1-イル基等が挙げられる。
 「炭素数3~8のシクロアルケニル基」は、いずれか1カ所以上に炭素-炭素二重結合を有し、かつ環状部分を有する炭素数3~8のアルケニル基を意味し、例えば、1-シクロペンテン-1-イル基、2-シクロペンテン-1-イル基、1-シクロヘキセン-1-イル基、2-シクロヘキセン-1-イル基、3-シクロヘキセン-1-イル基等が挙げられる。
 「アルキニル基」としては、例えば、エチニル基、プロパ-1-イン-1-イル基、プロパ-2-イン-1-イル基、ブタ-1-イン-1-イル基、ブタ-3-イン-1-イル基、ペンタ-1-イン-1-イル基、ペンタ-4-イン-1-イル基、ヘキサ-1-イン-1-イル基、ヘキサ-5-イン-1-イル基、ヘプタ-1-イン-1-イル基、オクタ-1-イン-1-イル基、オクタ-7-イン-1-イル基等が挙げられる。
 「シクロアルキルアルキル基」としては、例えば、シクロプロピルメチル基、シクロプロピルプロピル基、シクロブチルメチル基、シクロペンチルメチル基、シクロペンチルエチル基、シクロへキシルエチル基、シクロヘプチルメチル基等が挙げられる。
 「アリールアルキル基」としては、例えば、C6-10アリールC1-8アルキル基として、ベンジル基、フェネチル基、3-フェニル-n-プロピル基、4-フェニル-n-ブチル基、5-フェニル-n-ペンチル基、8-フェニル-n-オクチル基、ナフチルメチル基等が挙げられる。
 「アリールアルケニル基」としては、例えば、C6-10アリールC2-8アルケニル基として、スチリル基、3-フェニル-プロパ-1-エン-1-イル基、3-フェニル-プロパ-2-エン-1-イル基、4-フェニル-ブタ-1-エン-1-イル基、4-フェニル-ブタ-3-エン-1-イル基、5-フェニル-ペンタ-1-エン-1-イル基、5-フェニル-ペンタ-4-エン-1-イル基、8-フェニル-オクタ-1-エン-1-イル基、8-フェニル-オクタ-7-エン-1-イル基、ナフチルエテニル基等が挙げられる。
 「酸素原子を有する炭化水素基」としては、エポキシ基、エポキシアルキル基、グリシドキシプロピル基等のオキシラン環(エポキシ基)を有する基、アクリロキシメチル基、メタクリロキシメチル基などが挙げられる。
 ここで、エポキシアルキル基としては炭素数3~10の直鎖又は分岐鎖のエポキシアルキル基が好ましく、例えばエポキシメチル基、エポキシエチル基、エポキシ-n-プロピル基、エポキシイソプロピル基、エポキシ-n-ブチル基、エポキシイソブチル基、エポキシ-t-ブチル基、エポキシ-n-ペンチル基、エポキシイソペンチル基、エポキシネオペンチル基、エポキシ-2-メチルブチル基、エポキシ-2,2-ジメチルプロピル基、エポキシ-n-ヘキシル基等が挙げられる。
 「窒素原子を有する炭化水素基」としては-NR’(式中、R’は水素原子、アルキル基又はアリール基を表し、各R’は互いに同一でも異なっていてもよい。)を有する基、又は-N=CR’’(式中、R’’は水素原子又はアルキル基を表し、各R’’は互いに同一でも異なっていてもよい。)を有する基が好ましく、アルキル基としては上記と同じものが挙げられ、アリール基としてはフェニル基、ナフチル基、アントラセン-1-イル基、フェナントレン-1-イル基等が挙げられる。
 例えば、-NR’を有する基としては、―CH-NH基、-C-NH基、-CH-NH-CH基等が挙げられる。-N=CR’’を有する基としては、-CH-N=CH-CH基、-CH-N=C(CH基、-C-N=CH-CH基等が挙げられる。
 「ケイ素原子を有する炭化水素」としては、例えば、ポリシロキサン、ポリビニルシラン、ポリアクリルシラン等のポリマーを含む基等が挙げられる。
 上記「置換されていてもよい」の置換基としては、例えば、ハロゲン原子、アルキル基、アルケニル基、アリール基、メタクリロキシ基等を挙げることができる。ハロゲン原子、アルキル基、アルケニル基、アリール基としては、Rにおけるものと同じものを例示することができる。
 上記のうち、ビニル基、オキシラン環を有する基、-NR’(式中、R’は水素原子、アルキル基又はアリール基を表し、各R’は互いに同一でも異なっていてもよい。)を有する基、又は-N=CR’’(式中、R’’は水素原子又はアルキル基を表し、各R’’は互いに同一でも異なっていてもよい。)を有する基は、有機無機複合体の表面の無機化の観点からは、好ましい基である。
 また、有機ケイ素化合物の式(I)中、nは、1又は2を表し、n=1のものが特に好ましい。nが2のとき、各Rは同一でも異なっていてもよい。また、これらは、1種単独又は2種以上を組み合わせて使用することができる。
 式(I)において、Xは、水酸基又は加水分解性基を表す。式(I)の(4-n)が2以上のとき、各Xは同一でも異なっていてもよい。加水分解性基とは、例えば、無触媒、過剰の水の共存下、25℃~100℃で加熱することにより、加水分解されてシラノール基を生成することができる基や、シロキサン縮合物を形成することができる基を意味し、具体的には、アルコキシ基、アシルオキシ基、ハロゲン基、イソシアネート基等を挙げることができ、炭素数1~4のアルコキシ基又は炭素数1~6のアシルオキシ基が好ましい。
 炭素数1~4のアルコキシ基としては、メチルオキシ基、エチルオキシ基、プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、t-ブチルオキシ基等が挙げられ、炭素数1~6のアシルオキシ基としては、アセチルオキシ基、ベンゾイルオキシ基等が挙げられる。ハロゲンとしてはフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。イソシアネート基としては、例えば、アルキル基に結合したイソシアネート基、シクロアルキル基に結合したイソシアネート基、アリール基に結合したイソシアネート基、シクロアルキル基が置換したアルキル基に結合したイソシアネート基、アリール基が置換したアルキル基に結合したイソシアネート基等が挙げられる。
 具体的に、原料となる有機ケイ素化合物としては、メチルトリクロロシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリイソプロポキシシラン、エチルトリブトキシシラン、ブチルトリメトキシシラン、ペンタフルオロフェニルトリメトキシシラン、フェニルトリメトキシシラン、ノナフルオロブチルエチルジメトキシシラン、トリフルオロメチルトリメトキシシラン、ジメチルジアミノシラン、ジメチルジクロロシラン、ジメチルジアセトキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ジブチルジメトキシシラン、ビニルトリメトキシシラン、(メタ)アクリロキシプロピルトリメトキシシラン、3-(3-メチル-3-オキセタンメトキシ)プロピルトリメトキシシラン、オキサシクロヘキシルトリメトキシシラン、メチルトリ(メタ)アクリロキシシラン、メチル[2-(メタ)アクリロキシエトキシ]シラン、メチル-トリグリシジロキシシラン、メチルトリス(3-メチル-3-オキセタンメトキシ)シラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシランを挙げることができる。これらは、1種単独又は2種以上を組み合わせて使用することができる。
 また、炭化水素のポリマーからなる基を有する有機ケイ素化合物としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、シクロヘキシル(メタ)アクリレートなどの(メタ)アクリル酸エステル;(メタ)アクリル酸、イタコン酸、フマル酸などのカルボン酸および無水マレイン酸などの酸無水物;グリシジル(メタ)アクリレートなどのエポキシ化合物;ジエチルアミノエチル(メタ)アクリレート、アミノエチルビニルエーテルなどのアミノ化合物;(メタ)アクリルアミド、イタコン酸ジアミド、α-エチルアクリルアミド、クロトンアミド、フマル酸ジアミド、マレイン酸ジアミド、N-ブトキシメチル(メタ)アクリルアミドなどのアミド化合物;アクリロニトリル、スチレン、α-メチルスチレン、塩化ビニル、酢酸ビニル、プロピオン酸ビニルなどから選ばれるビニル系化合物を共重合したビニル系ポリマーを式(I)のR成分とするものを挙げることができる。
 なお、本発明の有機無機複合薄膜における主成分となる有機ケイ素化合物の縮合物は、原料である有機ケイ素化合物及び/又はその縮合物がさらに縮合したものを意味する。
 有機ケイ素化合物の縮合物の配合割合は、有機無機複合薄膜全体の固形分に対して2~40質量%、好ましくは5~30質量%である。
(有機高分子化合物)
 本発明の有機無機複合薄膜は、上記有機ケイ素化合物の縮合物に加え、さらに有機高分子化合物を含有する。
 本発明の有機高分子化合物とは、特に限定されるものではないが、好ましくは、光重合開始剤の存在下で紫外線の照射により重合反応を起こす官能基を有する化合物あるいは樹脂(紫外線硬化性化合物)を、光重合開始剤の存在下で紫外線の照射により重合反応させたものである。たとえば、(メタ)アクリレート系化合物、エポキシ樹脂、アクリレート系化合物を除くビニル化合物などを重合反応させたものが例示される。官能基の数は、1個以上であれば特に限定されない。
 原料となるアクリレート系化合物としては、ポリウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリアミド(メタ)アクリレート、ポリブタジエン(メタ)アクリレート、ポリスチリル(メタ)アクリレート、ポリカーボネートジアクリレート、トリプロピレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、(メタ)アクリロイルオキシ基を有するシロキサンポリマー等が挙げられるが、好ましくはポリエステル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、エポキシポリ(メタ)アクリレートであり、より好ましくは、ポリウレタン(メタ)アクリレートである。
 分子量は、有機無機複合体形成用組成物に溶解する限り限度はないが、通常は質量平均分子量として500~50,000、好ましくは1,000~10,000である。
 また、紫外線照射により重合反応を起こして生成した重合物が硬化物である。
 ポリエステル(メタ)アクリレートは、例えば、多価カルボン酸と多価アルコールの縮合によって得られる、両末端に水酸基を有するポリエステルオリゴマーの水酸基をアクリル酸でエステル化することにより得られる。または、多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマーの末端の水酸基をアクリル酸でエステル化することにより得られる。
 ポリウレタン(メタ)アクリレートは、ポリオールとジイソシアネートとを反応させて得られるイソシアネート化合物と、水酸基を有するアクリレートモノマーとの反応生成物であり、ポリオールとしては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートジオールが挙げられる。
 エポキシ(メタ)アクリレートは、例えば、低分子量のビスフェノール型エポキシ樹脂やノボラックエポキシ樹脂のオキシラン環とアクリル酸とのエステル化反応により得ることができる。
 本発明で用いるウレタン(メタ)アクリレートの市販品としては、例えば、荒川化学工業(株)製商品名:ビームセット102、502H、505A-6、510、550B、551B、575、575CB、EM-90、EM92、サンノプコ(株)製商品名:フォトマー6008、6210、新中村化学工業(株)製商品名:NKオリゴU-2PPA、U-4HA、U-6HA、H-15HA、UA-32PA、U-324A、U-4H、U-6H、東亜合成(株)製商品名:アロニックスM-1100、M-1200、M-1210、M-1310、M-1600、M-1960、共栄社化学(株)製商品名:AH-600、AT606、UA-306H、日本化薬(株)製商品名:カヤラッドUX-2201、UX-2301、UX-3204、UX-3301、UX-4101、UX-6101、UX-7101、日本合成化学工業(株)製商品名:紫光UV-1700B、UV-3000B、UV-6100B、UV-6300B、UV-7000、UV-7600B、UV-2010B、根上工業(株)製商品名:アートレジンUN-1255、UN-5200、HDP-4T、HMP-2、UN-901T、UN-3320HA、UN-3320HB、UN-3320HC、UN-3320HS、H-61、HDP-M20、ダイセルユーシービー(株)製商品名:Ebecryl 6700、204、205、220、254、1259、1290K、1748、2002、2220、4833、4842、4866、5129、6602、8301等を挙げることができる。
 また、アクリレート系化合物をのぞくビニル化合物としては、N-ビニルピロリドン、N-ビニルカプロラクタム、酢酸ビニル、スチレン、不飽和ポリエステルなどがあり、エポキシ樹脂としては、水素添加ビスフェノールAジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタ-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペートなどを挙げることができる。
 有機高分子化合物の配合割合は、有機無機複合体全体の固形分に対して、60~98質量%、好ましくは70~95質量%である。
(光重合開始剤)
 本発明の光重合開始剤は、(a)光照射によりカチオン種を発生させる化合物及び(b)光照射により活性ラジカル種を発生させる化合物等を挙げることができる。
 光照射によりカチオン種を発生させる化合物としては、例えば、下記式(II)に示す構造を有するオニウム塩を好適例として挙げることができる。
[R W]+e[MLe+f-e  (II)
(式(II)中、カチオンはオニウムイオンであり、Wは、S、Se、Te、P、As、Sb、Bi、O、I、Br、Cl、又はN≡N-であり、R、R、R及びRは同一又は異なる有機基であり、a、b、c、及びdは、それぞれ0~3の整数であって、(a+b+c+d)はWの価数に等しい。Mは、ハロゲン化物錯体[MLe+f]の中心原子を構成する金属又はメタロイドであり、例えば、B、P、As、Sb、Fe、Sn、Bi、Al、Ca、In、Ti、Zn、Sc、V、Cr、Mn、Co等である。Lは、例えば、F、Cl、Br等のハロゲン原子であり、eは、ハロゲン化物錯体イオンの正味の電荷であり、fは、Mの原子価である。)
 このオニウム塩は、光を受けることによりルイス酸を放出する化合物である。
 上記式(II)中における陰イオン(MLe+f)の具体例としては、テトラフルオロボレート(BF )、ヘキサフルオロホスフェート(PF )、ヘキサフルオロアンチモネート(SbF )、ヘキサフルオロアルセネート(AsF )、ヘキサクロロアンチモネート(SbCl )等を挙げることができる。
 また、式〔ML(OH)〕に示す陰イオンを有するオニウム塩を用いることもできる。さらに、過塩素酸イオン(ClO )、トリフルオロメタンスルフォン酸イオン(CFSO )、フルオロスルフォン酸イオン(FSO )、トルエンスルフォン酸イオン、トリニトロベンゼンスルフォン酸陰イオン、トリニトロトルエンスルフォン酸陰イオン等の他の陰イオンを有するオニウム塩でもよい。これらは、1種単独で又は2種以上を組み合わせて用いることができる。
 光照射により活性ラジカル種を発生させる化合物としては、例えば、アセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、チオキサントン、ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2-ベンジルー2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1,4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)等を挙げることができる。
 本発明において用いられる光重合開始剤の配合量は、有機高分子化合物の原料である紫外線硬化性化合物の固形分に対して、0.01~20質量%配合することが好ましく、0.1~10質量%が、さらに好ましい。
 なお、本発明においては、必要に応じて増感剤を添加することができる、例えば、トリメチルアミン、メチルジメタノールアミン、トリエタノールアミン、p-ジメチルアミノアセトフェノン、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸イソアミル、N,N-ジメチルベンジルアミン及び4,4’-ビス(ジエチルアミノ)ベンゾフェノン等が使用できる。
(金属化合物)
 本発明の有機無機複合薄膜は、チタン、ジルコニウム、アルミニウム、ケイ素、ゲルマニウム、インジウム、スズ、タンタル、亜鉛、タングステン及び鉛から成る群より選ばれる金属元素を有する金属化合物を含有していてもよい。
 金属元素としては、これらの中でもチタン、ジルコニウム、アルミニウム、スズが好ましく、特にチタンが好ましい。これらは1種単独で用いてもよいし、2種以上用いることもできる。
 本発明の金属化合物としては、金属キレート化合物、有機酸金属塩、2以上の水酸基若しくは加水分解性基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より選ばれる少なくとも1種の化合物であり、加水分解物及び/又は縮合物であることが好ましく、特に、金属キレート化合物の加水分解物及び/又は縮合物が好ましい。
 薄膜中の金属化合物は、原料である化合物のまま存在するものや、上記化合物がさらに縮合されたもののほか、上述した有機ケイ素化合物等と化学結合したものも包含する。
 金属キレート化合物としては、水酸基若しくは加水分解性基を有する金属キレート化合物であることが好ましく、2以上の水酸基若しくは加水分解性基を有する金属キレート化合物であることがより好ましい。また、前記金属キレート化合物としては、β-ケトカルボニル化合物、β-ケトエステル化合物、及びα-ヒドロキシエステル化合物が好ましく、具体的には、アセト酢酸メチル、アセト酢酸n-プロピル、アセト酢酸イソプロピル、アセト酢酸n-ブチル、アセト酢酸sec-ブチル、アセト酢酸t-ブチル等のβ-ケトエステル類;アセチルアセトン、へキサン-2,4-ジオン、ヘプタン-2,4-ジオン、ヘプタン-3,5-ジオン、オクタン-2,4-ジオン、ノナン-2,4-ジオン、5-メチル-へキサン-2,4-ジオン等のβ-ジケトン類;グリコール酸、乳酸等のヒドロキシカルボン酸等が配位した化合物が挙げられる。
 有機酸金属塩としては、金属イオンと有機酸から得られる塩からなる化合物であり、有機酸としては、酢酸、シュウ酸、酒石酸、安息香酸等のカルボン酸類;スルフォン酸、スルフィン酸、チオフェノール等の含硫黄有機酸;フェノール化合物;エノール化合物;オキシム化合物;イミド化合物;芳香族スルフォンアミド;等の酸性を呈する有機化合物が挙げられる。
 また、2以上の水酸基若しくは加水分解性基を有する金属化合物は、上記金属キレート化合物及び金属有機酸塩化合物を除くものであり、例えば、金属の水酸化物や、金属アルコラート等を挙げることができる。
 本発明の金属化合物における加水分解性基としては、例えば、アルコキシ基、アシルオキシ基、ハロゲン基、イソシアネート基が挙げられ、炭素数1~4のアルコキシ基、炭素数1~4のアシルオキシ基が好ましい。なお、2以上の水酸基若しくは加水分解性基を有するとは、水酸基及び加水分解性基の合計が2以上であることを意味する。
 金属キレート化合物の加水分解物及び/又は縮合物としては、金属キレート化合物1モルに対して、5~100モルの水を用いて加水分解したものであることが好ましく、5~20モルの水を用いて加水分解したものであることがより好ましい。
 金属有機酸塩化合物の加水分解物及び/又は縮合物としては、金属有機酸塩化合物1モルに対して、5~100モルの水を用いて加水分解したものであることが好ましく、5~20モルの水を用いて加水分解したものであることがより好ましい。
 2以上の水酸基若しくは加水分解性基を有する金属化合物の加水分解物及び/又は縮合物としては、2以上の水酸基若しくは加水分解性基を有する金属化合物1モルに対して、0.5モル以上の水を用いて加水分解したものであることが好ましく、0.5~2モルの水を用いて加水分解したものであることがより好ましい。
 本発明において用いられる金属化合物の配合量は、その種類にもよるが、一般的に、有機ケイ素化合物中のSiに対して、金属化合物中の金属原子が0.01~0.5モル当量、好ましくは0.05~0.2モル当量である。
(その他の成分)
 得られる塗膜の硬度向上を目的として4官能シランやコロイド状シリカを添加することもできる。4官能シランとしては、例えば、テトラアミノシラン、テトラクロロシラン、テトラアセトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトラベンジロキシシラン、テトラフェノキシシラン、テトラ(メタ)アクリロキシシラン、テトラキス[2-(メタ)アクリロキシエトキシ]シラン、テトラキス(2-ビニロキシエトキシ)シラン、テトラグリシジロキシシラン、テトラキス(2-ビニロキシブトキシ)シラン、テトラキス(3-メチル-3-オキセタンメトキシ)シランを挙げることができる。また、コロイド状シリカとしては、水分散コロイド状シリカ、メタノールもしくはイソプロピルアルコールなどの有機溶媒分散コロイド状シリカを挙げることができる。
 また、得られる塗膜の着色、厚膜化、下地への紫外線透過防止、防蝕性の付与、耐熱性などの諸特性を発現させるために、別途、充填材を添加・分散させることも可能である。この充填材としては、例えば有機顔料、無機顔料などの非水溶性の顔料または顔料以外の粒子状、繊維状もしくは鱗片状の金属および合金ならびにこれらの酸化物、水酸化物、炭化物、窒化物、硫化物などが挙げられる。この充填材の具体例としては、粒子状、繊維状もしくは鱗片状の鉄、銅、アルミニウム、ニッケル、銀、亜鉛、フェライト、カーボンブラック、ステンレス鋼、二酸化ケイ素、酸化チタン、酸化アルミニウム、酸化クロム、酸化マンガン、酸化鉄、酸化ジルコニウム、酸化コバルト、合成ムライト、水酸化アルミニウム、水酸化鉄、炭化ケイ素、窒化ケイ素、窒化ホウ素、クレー、ケイソウ土、消石灰、石膏、タルク、炭酸バリウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、ベントナイト、雲母、亜鉛緑、クロム緑、コバルト緑、ビリジアン、ギネー緑、コバルトクロム緑、シェーレ緑、緑土、マンガン緑、ピグメントグリーン、群青、紺青、岩群青、コバルト青、セルリアンブルー、ホウ酸銅、モリブデン青、硫化銅、コバルト紫、マルス紫、マンガン紫、ピグメントバイオレット、亜酸化鉛、鉛酸カルシウム、ジンクエロー、硫化鉛、クロム黄、黄土、カドミウム黄、ストロンチウム黄、チタン黄、リサージ、ピグメントエロー、亜酸化銅、カドミウム赤、セレン赤、クロムバーミリオン、ベンガラ、亜鉛白、アンチモン白、塩基性硫酸鉛、チタン白、リトポン、ケイ酸鉛、酸化ジルコン、タングステン白、鉛亜鉛華、バンチソン白、フタル酸鉛、マンガン白、硫酸鉛、黒鉛、ボーンブラック、ダイヤモンドブラック、サーマトミック黒、植物性黒、チタン酸カリウムウィスカー、二硫化モリブデンなどを挙げることができる。
 その他、オルトギ酸メチル、オルト酢酸メチル、テトラエトキシシランなどの公知の脱水剤、各種界面活性剤、前記以外のシランカップリング剤、チタンカップリング剤、染料、分散剤、増粘剤、レベリング剤などの添加剤を添加することもできる。
2 有機無機複合薄膜の製造法
1) 有機無機複合薄膜形成用溶液の調製
 本発明における有機無機複合薄膜の形成用溶液は、有機ケイ素化合物、有機高分子化合物の原料及び光重合開始剤、及び、必要に応じて、金属化合物、水及び/又は溶媒等のその他の成分を混合して調製される。
 具体的には、たとえば、金属化合物を溶媒に混合し、所定量の水を加え、(部分)加水分解を行い、続いて、有機ケイ素化合物を添加して(部分)加水分解させる。一方、有機高分子化合物の原料を溶媒に溶解して光重合開始剤を添加し、その後、両溶液を混合する。これら4成分は、同時に混合することもでき、また、有機ケイ素化合物と金属化合物の混合方法については、有機ケイ素化合物と金属化合物を混合した後に、水を加えて(部分)加水分解する方法や、有機ケイ素化合物及び金属化合物を別々に(部分)加水分解したものを混合する方法を挙げることができる。水や溶媒を加える必要は必ずしもないが、水を加えて(部分)加水分解物としておくことが好ましい。所定量の水の量としては、金属化合物の種類にもよるが、例えば、金属化合物が2以上の水酸基若しくは加水分解性基を有する金属化合物の場合、金属化合物1モルに対して、0.5モル以上の水を用いることが好ましく、0.5~2モルの水を用いることがより好ましい。また、金属化合物が金属キレート化合物又は有機酸金属塩の場合、金属キレート化合物又は有機酸金属塩1モルに対して、5~100モルの水を用いることが好ましく、5~20モルの水を用いることがより好ましい。
 本発明の有機ケイ素化合物の縮合物としては、有機ケイ素化合物を、公知のシラノール縮合触媒を用いて(部分)加水分解させたものを用いても良い。
 本発明における有機無機複合薄膜の形成用組成物としては、上記の各成分に加え、水及び/又は溶媒等を含有することが好ましい。
 用いる溶媒としては、特に制限されるものではなく、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ヘキサン、オクタン等の脂肪族炭化水素類;シクロヘキサン、シクロペンタン等の脂環族炭化水素類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;テトラヒドロフラン、ジオキサン等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;メタノール、エタノール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート等の多価アルコール誘導体類等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 本発明における有機無機複合薄膜形成用溶液中の固形分(有機ケイ素化合物及び/又はその縮合物、有機高分子化合物の原料等)としては、1~75質量%であることが好ましく、10~60質量%であることがより好ましい。
 有機無機複合薄膜形成用溶液中の固形分のうち、各成分の配合割合は、有機無機複合薄膜注の含有割合と同様である。
2) 有機無機複合薄膜の製造法
 本発明の有機無機複合薄膜は、(A)上述した有機無機複合薄膜形成用溶液を基体上に塗布し、加熱乾燥する工程、(B)350nm以下の波長を含む光を照射する工程、及び(C)プラズマ処理もしくはUVオゾン処理を施す工程を経ることにより製造できる。
(C)工程においてUVオゾン処理を行う場合は、B工程は省略してもよい。
 本発明の有機無機複合薄膜は、ESCA分析によって測定された、表面から10nmの深さの炭素原子の濃度が、表面から100nmの深さの炭素原子の濃度より20%以上、好ましくは30%以上少なく、さらに、膜の表面から2nmの深さのO/Si元素比が1.8~2.5、好ましくは1.9~2.4、であることを特徴とする。
 また、表面から100nmの深さにおけるSi/C元素比が0.2以下であることが好ましく、0.15以下であることがさらに好ましい。
 ここで、「炭素原子の濃度」とは、(全金属原子+酸素原子+炭素原子)を100%とした時の炭素原子のモル濃度を意味する。他の元素の濃度も同様である。
 また、「有機ケイ素化合物の縮合物が濃縮した層」をESCA分析による炭素原子の濃度で規定しているが、濃縮した層では、ケイ素濃度においても濃度が高くなっている。
 本発明においては、炭素濃度が低いほどケイ素濃度が高くなる関係にある。
 本明細書において、薄膜中の炭素含有量を規定する時に用いている膜厚の値は、ESCA分析においてスパッタエッチングした時に算出される値であるが、現実の膜厚の値とは必ずしも一致しない。その理由は、スパッタエッチングによりエッチングされる膜厚は、膜の材質に依存するためである。そのため、現実の膜厚値は、各膜材料に対するエッチング速度を換算することで得られる。
 本明細書中のESCA分析では、熱酸化SiO膜を標準試料としたSiO換算膜厚を用いた。標準試料はシリコンウェハー上に形成された熱酸化SiO膜である。エリプソメーターによりあらかじめ膜厚を測定してある標準試料を、スパッタエッチングしながらESCA分析することで、エッチング速度を算出した。
 なお、表面の無機化に(C)工程は必須であるが、式(I)で表される有機ケイ素化合物において、Rがビニル基である化合物の縮合物を有機ケイ素化合物の縮合物全体の70質量%以上含有すると、表面の無機化の程度は一層進む。
 本発明の薄膜が形成可能な基体としては、金属、セラミックス、ガラス、プラスチック等が挙げられる。従来、薄膜のプラスチック基体への形成は困難であり、ガラス等の無機基体に限定されていたが、本発明の薄膜は、形成の難しいプラスチック基体であっても、容易に皮膜形成でき、プラスチック製光学部品に対しても適している。かかるプラスチックとしては、例えば、ポリカーボネート樹脂、アクリル樹脂、ポリイミド樹脂、ポリエステル樹脂、エポキシ樹脂、液晶ポリマー樹脂、ポリエーテルスルフォンが挙げられる。
 有機無機複合薄膜形成用溶液の塗布方法としては、公知の塗布方法を用いることができ、例えば、ディッピング法、スプレー法、バーコート法、ロールコート法、スピンコート法、カーテンコート法、グラビア印刷法、シルクスクリーン法、インクジェット法等を挙げることができる。また、形成する膜厚としては、特に制限されるものではなく、例えば、0.1~200μm程度である。
 有機無機複合薄膜形成用溶液を塗布して形成した膜の乾燥処理としては、例えば、40~200℃で、0.5~120分程度行うことが好ましく、60~120℃で、1~60分程度行うことがより好ましい。
 本発明において「350nm以下の波長を含む光」とは、350nm以下の波長のみならず、350nmよりも長い波長の紫外線も有するという意味である。これは、光感応性化合物が350nm以下の波長を必須とするのに対し、紫外線硬化性化合物は350nmを超える波長、好ましくは365nm付近に感光性を有するからである。
 350nm以下の波長を含む光の照射は、例えば、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、エキシマーランプ等の公知の装置を用いて行うことができ、照射する光としては、150~350nmの範囲のいずれかの波長の光を主成分とする光であることが好ましく、250~310nmの範囲のいずれかの波長の光を主成分とする光であることがより好ましい。かかる範囲の波長に感応し、350nm、好ましくは310nmを超える光に反応しないものであれば、太陽光によりほとんど影響を受けることはない。また、照射する光の照射光量としては、例えば、0.1~100J/cm程度が挙げられ、膜硬化効率(照射エネルギーと膜硬化程度の関係)を考慮すると、0.2~20J/cm程度であることが好ましく、0.5~10J/cm程度であることがより好ましい。
 なお、350nm以下の波長の光の照射とは、350nm以下のいずれかの波長の光を成分とする光源を用いる照射、好ましくは、350nm以下のいずれかの波長の光を主成分とする光源を用いる照射、すなわち、最も成分量の多い波長が350nm以下の光源を用いる照射をいう。
 乾燥後の薄膜(光照射した薄膜においては、膜の内部に相当する。)をガラス基板に形成したときの、JIS K 5600-5-4鉛筆法に規定する鉛筆硬度は、1H~4H程度であり、基板との密着性及び硬度の点から、2H~4Hであることが好ましい。また、光照射後の薄膜をガラス基板に形成したときの、JIS K 5600-5-4鉛筆法に規定する鉛筆硬度は、5H以上であることが好ましく、7H以上であることが好ましい。
 本発明に置いてプラズマ処理とは、窒素ガス雰囲気でのコロナ放電処理、あるいはヘリウム、アルゴンなどの希ガス雰囲気でのグロープラズマ処理である。
 より具体的には、電極対の少なくとも一方を誘電体で被覆した平行平板電極間に、高周波数の高電圧を印加することでプラズマを発生させ、該電極間に基材層を保持する方法、あるいは該電極間で該基材層を移動させる方法が挙げられる。プラズマ処理には、大気圧プラズマ処理と真空プラズマ処理があるが、大気圧プラズマ処理では真空プラズマ処理に比して活性種の密度が高いために、高速、高効率で電極表面の処理ができ、また処理時に真空にする必要がないために、少ない工程数で処理ができるといった利点がある。
 大気圧プラズマ処理は、大気圧プラズマ発生装置(例えば、(株)魁半導体製の大気圧プラズマ装置S-5000、積水化学工業(株)製の常圧プラズマ表面処理装置RDシリーズ等)を用いて行うことができる。
 本発明においてUVオゾン処理とは、薄膜にUV(紫外線)を照射し、空気中の酸素をオゾンに変化させ、このオゾン及び紫外線により当該薄膜を改質することを意味する。
 UV光源は、UV照射により酸素をオゾンに変化させることができれば、特に制限されない。UV光源としては、低圧水銀ランプが挙げられる。低圧水銀ランプは185nmと254nmのUV光を発生し、185nm線が酸素をオゾンに変化させることができる。照射の際の照度は、用いる光源により異なるが、一般的に数十~数百mW/cmのものが使用されている。また、集光や拡散することで照度を変更することができる。照射時間は、ランプの照度及び前記未処理層の種類により異なるが、通常、1分~24時間である。処理温度は、通常、10~200℃である。また、UVの照射量(即ち、紫外線量)は、通常1J/cm以上であり、好ましくは1~100000J/cmであり、より好ましくは10~100000J/cmである。
 本発明における有機無機複合薄膜は、上記(B)工程を経ることで、膜表面部の炭素原子含有量が膜の内部(基材との接合部付近)の炭素原子含有量に比して少ない構成であり、膜表面にシラン化合物の濃縮層を形成しているといえる。
 そのため、上記(C)工程におけるプラズマ処理及びUVオゾン処理を施しても、膜表面のシラン化合物のみが反応し、膜内部の有機高分子化合物はほぼ影響を受けない。その結果、(C)工程の前後でAFM測定による平均粗さを比較しても、変化が見られない。
 一般に有機化合物はプラズマ処理やUVオゾン処理によって分解されるため、当該処理は主にガラス等の無機化合物上で、有機物に由来する汚れを洗浄する目的に用いられてきた。本発明の有機無機複合薄膜においては、膜表面のシラン化合物濃縮層が、プラズマ処理やUVオゾン処理に対する保護層としての役割を果たしているともいえる。
3 金属界面活性剤の加水分解縮合物を含有する層の作製
 また、本発明においては、上記有機無機複合薄膜の上に、さらに金属界面活性剤の加水分解縮合物を含有する層を設けることができる。金属界面活性剤の加水分解縮合物を含有する層としては、好ましくは単分子膜である。
 以下に、金属界面活性剤の加水分解縮合物を含有する層の作製法について説明する。
 金属界面活性剤の加水分解縮合物を含有する層は、たとえば、WO2008―059840パンフレット等に記載されているように、「少なくとも1以上の加水分解性基を有する金属系界面活性剤」、「該金属系界面活性剤と相互作用し得る化合物」及び水を含む有機溶媒溶液に、前記有機無機複合膜を接触させることにより作製することができる。
 「少なくとも1以上の加水分解性基を有する金属系界面活性剤」としては、式(III)
 R Mxt-s     (III)
〔式中、Rは、置換基を有していてもよい炭素数1~30の炭化水素基、置換基を有していてもよい炭素数1~30のハロゲン化炭化水素基、連結基を含む炭素数1~30の炭化水素基、又は連結基を含む炭素数1~30のハロゲン化炭化水素基を表し、Mは、ケイ素原子、ゲルマニウム原子、スズ原子、チタン原子、及びジルコニウム原子からなる群から選ばれる少なくとも1種の金属原子を表し、Xは、水酸基又は加水分解性基を表し、tはMの原子価を表す。sは、1から(t-1)のいずれかの正整数を表し、sが2以上の場合、Rは、互いに同一でも相異なっていてもよい。(t-s)が2以上の場合、Xは同一であっても、相異なっていてもよいが、Xのうち、少なくとも一個は加水分解性基である。〕で示される金属系界面活性剤が好ましい。
 式(III)中、置換基を有していてもよい炭素数1~30の炭化水素基の炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、n-へキシル基、イソへキシル基、n-ヘプチル基、n-オクチル基、n-デシル基、n-オクタデシル基等のアルキル基;ビニル基、プロペニル基、ブテニル基、ペンテニル基、n-デシニル基、n-オクタデシニル基等のアルケニル基;フェニル基、1-ナフチル基、2-ナフチル基等のアリール基等が挙げられる。
 置換基を有していてもよい炭素数1~30のハロゲン化炭化水素基のハロゲン化炭化水素基としては、炭素数1~30のハロゲン化アルキル基、炭素数1~30のハロゲン化アルケニル基、炭素数1~30のハロゲン化アリール基等が挙げられる。これらの中でも、炭素数1~30のアルキル基中の水素原子の2個以上がハロゲン原子に置換された基が好ましく、炭素数1~30のアルキル基中の水素原子の2個以上がフッ素原子に置換されたフッ素化アルキル基がより好ましい。また、フッ素化アルキル基が分岐構造を有する場合には、分岐部分は炭素数1~4、好ましくは炭素数1~2の短鎖であるのが好ましい。
 連結基を含む炭化水素基の炭化水素基及び連結基を含むハロゲン化炭化水素基のハロゲン化炭化水素基としては、具体的には、前記置換基を有していてもよい炭化水素基の炭化水素基及び置換基を有していてもよいハロゲン化炭化水素基のハロゲン化炭化水素基として挙げたものと同様のものが挙げられる。
 前記連結基は、炭化水素基若しくはハロゲン化炭化水素基の炭素-炭素結合間、又は炭化水素基の炭素と後述する金属原子Mとの間に存在するのが好ましい。
 連結基の具体例としては、-O-、-S-、-SO-、-CO-、-C(=O)O-又は-C(=O)NR51-(式中、R51は、水素原子;メチル基、エチル基、n-プロピル基、イソプロピル基等のアルキル基;を表す。)等が挙げられる。
 これらの中でも、撥水性、耐久性の観点から、炭素数1~30のアルキル基、炭素数1~30のフッ素化アルキル基、又は連結基を含むフッ素化アルキル基であるのがそれぞれ好ましい。
 Xは、水酸基又は加水分解性基を表す。加水分解性基としては、水と反応して分解する基であれば特に制約されない。例えば、置換基を有していてもよい炭素数1~6のアルコキシ基;置換基を有していてもよいアシルオキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;イソシアネート基;シアノ基;アミノ基;又はアミド基等が挙げられる。
 炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-へキシルオキシ基等が挙げられる。アシルオキシ基としては、アセトキシ基、プロピオニルオキシ基、n-プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基等が挙げられる。これらの置換基としては、カルボキシル基、アミド基、イミド基、エステル基、水酸基等が挙げられる。これらの中でも、水酸基、炭素数1~4のアルコキシ基、アシルオキシ基、ハロゲン原子、又はイソシアネート基が好ましく、炭素数1~4のアルコキシ基又はアシルオキシ基がより好ましい。
 Mは、ケイ素原子、ゲルマニウム原子、スズ原子、チタン原子、及びジルコニウム原子からなる群から選ばれる1種の原子を表す。これらの中でも、原料の入手容易性、反応性等の観点から、ケイ素原子が好ましい。
 上記式(III)で示される金属系界面活性剤としては、例えば、下記に示すシランカップリング剤が挙げられる。以下においてはMがSiであり、R1が炭化水素基である場合であるが、本発明はこれらに限定されるものではない。
CH(CHSi(OCH、CH(CH11Si(OCH、CH(CH13Si(OCH、CH(CH15Si(OCH、CH(CH17Si(OCH、CH(CH19Si(OCH、CH(CH21Si(OCH、CH(CH17Si(OCHCH、CH(CH17SiCl、CH(CHSi(OCHCH、CH(CHSiCl、CH(CHSi(CH)(OCHCH、CH(CHSi(CH)(OCH、CHCHO(CH15Si(OCH、CH(CHSi(CH(CH15Si(OCH、CH(CHSi(CH(CHSi(OCH、CHCOO(CH15Si(OCH、CHCHO(CH15Si(OC、CH(CHSi(CH(CH15Si(OC、CH(CHSi(CH(CHSi(OC、CHCOO(CH15Si(OC
CHCHO(CH15Si(OCH)(OH)、CH(CHSi(CH(CH15Si(OCH)(OH)、CH(CHSi(CH(CHSi(OCH)(OH)、CHCOO(CH15Si(OCH)(OH)、CHCHO(CH15Si(OC)(OH)、CH(CHSi(CH(CH15Si(OC)(OH)、CH(CHSi(CH(CHSi(OC)(OH)、CHCOO(CH15Si(OC)(OH)
CHCHO(CH15Si(OCH(OH)、CH(CHSi(CH(CH15Si(OCH(OH)、CH(CHSi(CH(CHSi(OCH(OH)、CHCOO(CH15Si(OCH(OH)、CHCHO(CH15Si(OC(OH)、CH(CHSi(CH(CH15Si(OC(OH)、CH(CHSi(CH(CHSi(OC(OH)、CHCOO(CH15Si(OC(OH)、
CHCHO(CH15Si(OH)、CH(CHSi(CH(CH15Si(OH)、CH(CHSi(CH(CHSi(OH)、CHCOO(CH15Si(OH)、CHCHO(CH15Si(OH)、CH(CHSi(CH(CH15Si(OH)、CH(CHSi(CH(CHSi(OH)、CHCOO(CH15Si(OH)、CH(CHSi(NCO)、CH(CH10Si(NCO)、CH(CH11Si(NCO)等。
 また、これらの化合物は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 「金属系界面活性剤と相互作用し得る化合物」としては、金属酸化物;金属水酸化物;金属アルコキシド類;金属アルコキシド類部分加水分解生成物;金属アルコキシド類加水分解生成物;キレート化又は配位化された金属化合物;シラノール縮合触媒及び酸触媒から選ばれる少なくとも1種が使用される。
 金属酸化物として、具体的には、メタノールシリカゾル、IPA-ST、IPA-ST-UP、IPA-ST-ZL、NPC-ST-30、DMAC-ST、MEK-ST、MIBK-ST、XBA-ST、PMA-ST(以上、いずれも日産化学工業(株)社製オルガノシリカゾルの商品名を表す。)等を例示することができる。
 金属水酸化物としては、金属の水酸化物であれば、どのような製造方法で得られたものであってもよい。金属水酸化物の製造方法としては、後述の金属アルコキシド類を加水分解する方法、金属塩を金属水酸化物と反応させる方法等が挙げられる。また、金属水酸化物として市販されているものを、所望により精製して使用することもできる。
 金属アルコキシド類としては、Si(OCH、Si(OC、Si(OC-i)、Si(OC-t)等のケイ素アルコキシド;Ti(OCH、Ti(OC、Ti(OC-i)、Ti(OC等のチタンアルコキシド;Ti[OSi(CH、Ti[OSi(C等のテトラキストリアルキルシロキシチタン;Zr(OCH、Zr(OC、Zr(OC、Zr(OC等のジルコニウムアルコキシド;Al(OCH、Al(OC、Al(OC-i)、Al(OC等のアルミニウムアルコキシド;Ge(OC等のゲルマニウムアルコキシド;In(OCH、In(OC、In(OC-i)、In(OC等のインジウムアルコキシド;Sn(OCH、Sn(OC、Sn(OC-i)、Sn(OC等のスズアルコキシド;Ta(OCH、Ta(OC、Ta(OC-i)、Ta(OC等のタンタルアルコキシド;W(OCH、W(OC、W(OC-i)、W(OC等のタングステンアルコキシド;Zn(OC等の亜鉛アルコキシド;Pb(OC等の鉛アルコキシド;等が挙げられる。これらの金属アルコキシド類は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 金属アルコキシド類部分加水分解生成物は、金属アルコキシド類を完全に加水分解する前に得られるものであって、例えば、金属酸化物ゾルの前駆体、またはオリゴマーの状態で存在するもの等を挙げることができる。
 金属アルコキシド類部分加水分解生成物としては、具体的には、有機溶媒中、酸、塩基及び分散安定化剤からなる群から選ばれる少なくとも1種の非存在下、凝集せずに安定に分散している性質を有する分散質を好ましく例示することができる。この場合、分散質とは、分散系中に分散している微細粒子のことをいい、具体的には、コロイド粒子等を例示することができる。ここで凝集せずに安定に分散している状態とは、有機溶媒中、酸、塩基及び/又は分散安定化剤の非存在下、加水分解生成物の分散質が、凝結して不均質に分離していない状態をいい、好ましくは透明で均質な状態をいう。また透明とは、可視光における透過率が高い状態をいい、具体的には、分散質の濃度を酸化物換算で0.5重量%とし、石英セルの光路長を1cmとし、対照試料を有機溶媒とし、光の波長を550nmとする条件で測定した分光透過率で表して、好ましくは80~100%の透過率を表す状態をいう。加水分解生成物の分散質の粒子径は特に限定されないが、可視光における高い透過率を得るためには、1~100nmの範囲であることが好ましく、1~50nmの範囲であることがより好ましく、1~10nmの範囲であることがさらに好ましい。
 金属アルコキシド類の部分加水分解生成物の製造方法としては、有機溶媒中、酸、塩基、及び/又は分散安定化剤の非存在下、上記例示した金属アルコキシド類に対し0.5~2.0倍モル未満の水を用い、-100℃から有機溶媒還流温度範囲で加水分解する方法を好ましく例示することができる。
 本発明に用いられる金属アルコキシド加水分解生成物は、金属アルコキシド類の2倍当量以上の水で加水分解することによって得られる生成物である。該加水分解生成物は、金属アルコキシド類を該金属アルコキシド類の2倍当量以上の水で加水分解することによって得られたものであっても、金属アルコキシド類を該金属アルコキシド類の2倍当量未満の水で部分加水分解することによって、金属アルコキシド類の部分加水分解生成物を得た後、この部分加水分解生成物を、さらに所定量の水(先の部分加水分解に使用した水の量との合計で金属アルコキシド類の2倍当量以上となる量の水)で加水分解することによって得られたものであってもよい。
 キレート化又は配位化された金属化合物は、金属化合物の溶液に、該金属化合物の金属と錯体を形成し得るキレート化剤又は配位化合物を添加することで、調製することができる。キレート化剤又は配位化合物としては、金属水酸化物、金属アルコキシド類、又は金属アルコキシド類を水で処理して得られた加水分解生成物の金属にキレート化又は配位して、錯体を形成し得るものであれば特に限定されない。
 キレート化剤又は配位化合物としては、酢酸、プロピオン酸、酪酸、吉草酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の飽和脂肪族カルボン酸類;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の飽和脂肪族ジカルボン酸類;アクリル酸、メタクリル酸、クロトン酸、アレイン酸、マレイン酸等の不飽和カルボン酸類;安息香酸、トルイル酸、フタル酸等の芳香族カルボン酸類;クロロ酢酸、トリフルオロ酢酸等のハロゲノカルボン酸類;アセチルアセトン、ベンゾイルアセトン、ヘキサフルオロアセチルアセトン等のβ-ジケトン類;アセト酢酸メチル、アセト酢酸エチル等のβ-ケトエステル類;テトラヒドロフラン、フラン、フランカルボン酸、チオフェン、チオフェンカルボン酸、ピリジン、ニコチン酸、イソニコチン酸等の複素環化合物類;等が挙げられる。これらは1種単独で、あるいは2種以上を組み合わせて用いることができる。
 シラノール縮合触媒としては、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート等を例示することができる。
 具体的には、酢酸第一スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第一スズ、ナフテン酸鉛、ナフテン酸コバルト、2-エチルヘキセン酸鉄、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマー、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレート、チタンテトラエトキサイド、チタンテトラブトキサイド、チタンテトライソプロポキサイド、チタンビス(アセチルアセトニル)ジプロポキサイド等を例示することができる。
 酸触媒としては、塩酸、硝酸、ホウ酸、ホウフッ化水素酸等の鉱酸、酢酸、ギ酸、シュウ酸、炭酸、トリフルオロ酢酸、p-トルエンスルホン酸、メタンスルホン酸等の有機酸等を例示することができ、さらには、光照射によって酸を発生する光酸発生剤、具体的には、ジフェニルヨードニウムヘキサフルオロホスフェート、トリフェニルホスホニウムヘキサフルオロホスフェート等を例示することができる。
 少なくとも1以上の加水分解性基を有する金属系界面活性剤、該金属系界面活性剤と相互作用し得る化合物及び水を含む有機溶媒溶液中における水の含有量は、10~2000ppmが好ましい。水分含量を所定量範囲内になるように調整するか又は保持する方法としては、(i)前記有機溶媒溶液に接触して水層を設ける方法、(ii)水分を含ませた保水性物質を共存させておく方法、(iii)水分を含む気体を吹き込む方法、等を挙げることができる。
 有機無機複合薄膜を有する有機無機複合体上に金属界面活性剤の加水分解縮合物を含有する層を設けるには、上記有機溶媒溶液を、ディップ法、スピンコート法、スプレー法、ローラコート法、メイヤーバー法、スクリーン印刷、刷毛塗り法等の方法、好ましくはディップ法により、有機無機複合体上の有機無機複合薄膜に接触させることにより行うことができる。
 以下に本発明の実施例を示すが、本発明の技術的範囲はこれらに限定されるものではない。
 本実施例において、「大気圧プラズマ処理」は、常圧プラズマ表面処理装置(積水化学工業(株)製)を用い、窒素ガスにより発生したプラズマを有機無機複合薄膜に照射した。当該基材処理のための基材搬送速度は20m/分で行った。
 「UVオゾン処理」は、アイUVオゾン洗浄装置(岩崎電機(株)製)を用い、有機無機複合薄膜を10分間洗浄した。
 各薄膜の評価は以下の方法により行った。
 薄膜表面からの深度に対する炭素原子の元素濃度及び酸素/ケイ素元素比は、ESCA分析により決定した。
 薄膜の密着力測定は、180度ピール試験により評価した。試験はJIS Z 0237(粘着テープ、粘着シート試験方法)に準拠して実施した。長さ300mmにカットした有機無機複合膜に粘着テープ(ポリエステル製31Bテープ、幅10mm。日東電工(株)製)を1kgのローラーで2往復することで圧着した。この有機無機複合膜と粘着テープを300mm/分の速度で150mm引き剥がし、最初の25mm分のデータを除いた125mm分の試験応力の平均値を測定した。
 薄膜の静的接触角は、接触角測定装置として、Drop Master(協和界面科学製)を用い、水2μlの撥水性、n-テトラデカン7μlの撥油性を評価した。
 薄膜の平均表面粗さは、SPI3800NおよびSPA400ユニット(いずれもエスアイアイ・ナノテクノロジー(株)社製)を用い、AFMモードで測定した。AFM測定にはSN-AF01カンチレバーを使用し、走査速度1Hzで10μm四方の範囲を測定した。測定した形状像のデータより表面粗さの大きさを求めた。
薄膜の断面観察は、集束イオンビームで試料の切片を加工した後、透過電子顕微鏡(FE-TEM;日立製 HF-2000)を用いて実施した。断面観察は、加速電圧は200kV、観察倍率は100万倍で行った。
[実施例1]
(有機無機複合薄膜形成用溶液の調製)
 ジイソプロポキシビスアセチルアセトナートチタン(日本曹達(株)製、「T-50」、酸化チタン換算固形分:16.5質量%)264.7gを、工業用エタノール(日本アルコール販売製、「ソルミックス(登録商標)AP-7」)137.3gに溶解した後、攪拌しながらイオン交換水51.1gを加えた。この溶液を40℃に加温しながら、2時間攪拌し加水分解させ、黄色透明な金属化合物の加水分解物溶液[A-1](酸化チタン換算固形分5.0質量%)を得た。
 ビニルトリメトキシシラン[B-1](信越化学工業(株)製、「KBM-1003」)264.8gと3-メタクリロキシプロピルトリメトキシシラン[B-2](信越化学工業(株)製、「KBM-503」)190.2gを混合した液[C-1]([B-1]/[B-2]=70/30:モル)を調製した。次に、[A-1]453.1gと[C-1]455.0gを攪拌混合し、イオン交換水を92.0g加え1日攪拌し縮合した液[D-1]を作製した。
 ウレタンアクリレートオリゴマー(日本合成化学工業(株)製、「UV7600B」)451.8gをメチルイソブチルケトン364.1gに溶解させた。この溶液に光重合開始剤として2-メチル-1-(メチルチオフェニル)-2-モルフォリノプロパン-1-オン(BASF製「Irgacure(登録商標)907」)18.1gを溶解させ、溶液[E-1]を得た。
 固形分の割合が[D-1]/[E-1]=10質量%/90質量%となるように、[D-1]166.1gと[E-1]834.0gを混合させ有機無機複合薄膜形成用溶液[F-1](固形分濃度52.0質量%)を作製した。
(有機無機複合薄膜の作製)
 有機無機複合薄膜形成用溶液[F-1]を、乾燥温度80℃、積算UV照射量473mJ/cm(アイグラフィック社製高圧水銀灯)の条件で、マイクログラビアコーター(康井精機社製)を用いてPETフィルム(東洋紡績(株)製、「コスモシャイン(登録商標)A4300」)上に成膜した。さらに、この塗膜表面に大気圧プラズマ処理を行い、膜厚5μmの有機無機複合薄膜[X-1]を得た(図1)。
 大気プラズマ処理の前後での膜表面の凹凸を測定したところ、平均表面粗さは、処理前3.0nm(図2)、処理後2.8nm(図3)で全く変化がなかった。
[実施例2]
 実施例1で使用した有機無機複合薄膜形成用溶液[F-1]を、乾燥温度80℃、積算UV照射量473mJ/cm(アイグラフィック社製高圧水銀灯)の条件で、マイクログラビアコーター(康井精機社製)を用いてPETフィルム(東洋紡績(株)製、「コスモシャイン(登録商標)A4300」)上に成膜した。さらに、この塗膜表面にUVオゾン処理を行い、膜厚5μmの有機無機複合薄膜[X-2](図4)を得た。
 有機無機複合薄膜[X-2]の断面を透過電子顕微鏡で観察したところ、表面から40.7nmの厚さでシロキサン濃縮層が観測され、そのうちさらに表面から15.5nmの厚さに無機質化した部分が観測された(図5)。
[実施例3]
(有機無機複合薄膜形成用溶液の調製)
 ジイソプロポキシビスアセチルアセトナートチタン(日本曹達(株)製、「T-50」、酸化チタン換算固形分:16.5質量%)130.6gを、工業用エタノール(日本アルコール販売製、「ソルミックス(登録商標)AP-7」)251.8gに溶解した後、攪拌しながらイオン交換水48.6gを加えた。この溶液を40℃に加温しながら、2時間攪拌し加水分解させ、黄色透明な金属化合物の加水分解物溶液[A-2](酸化チタン換算固形分5.0質量%)を得た。
 ビニルトリメトキシシラン[B-1](信越化学工業(株)製、「KBM-1003」)179.9gと3-メタクリロキシプロピルトリメトキシシラン[B-2](信越化学工業(株)製、「KBM-503」)301.6gを混合した液[C-2]([B-1]/[B-2]=50/50:モル比)を調製した。次に、[A-2]431.0gと[C-2]481.5gを攪拌混合し、イオン交換水を87.5g加え1日攪拌し縮合した液[D-2]を作製した。
 ウレタンアクリレートオリゴマー(日本合成化学工業(株)製、「UV7600B」)486.7gをメチルイソブチルケトン332.6gに溶解させた。この溶液に光重合開始剤として2-メチル-1-(メチルチオフェニル)-2-モルフォリノプロパン-1-オン(BASF製「Irgacure(登録商標)907」)19.5gを溶解させ、溶液[E-2]を得た。
 固形分の割合が[D-2]/[E-2]=10質量%/90質量%となるように、[D-2]161.2gと[E-2]838.8gを混合させ有機無機複合薄膜形成用溶液[F-2](固形分濃度55.5質量%)を作製した。
(有機無機複合薄膜の作製)
 有機無機複合薄膜形成用溶液[F-2]を、乾燥温度80℃、積算UV照射量500mJ/cm(アイグラフィック社製高圧水銀灯)の条件で、バーコーター(テスター産業社製)を用いてPETフィルム(東洋紡績(株)製、「コスモシャイン(登録商標)A4300」)上に成膜した。さらに、この塗膜表面に大気圧プラズマ処理を行い、膜厚5μmの有機無機複合薄膜[X-3]を得た。
[比較例1]
 実施例3で使用した有機無機複合薄膜形成用溶液[F-2]を、乾燥温度80℃、積算UV照射量473mJ/cm(アイグラフィック社製高圧水銀灯)の条件で、マイクログラビアコーター(康井精機社製)を用いてPETフィルム(東洋紡績(株)製、「コスモシャイン(登録商標)A4300」)上に成膜し膜厚5μmの有機無機複合薄膜を得た[Z-1]
 実施例1~3及び比較例1で得られた各有機無機複合薄膜のESCA分析、密着力試験、静的接触角試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例4]
 実施例1で作製した有機無機複合薄膜[X-1]を単分子膜形成剤(日本曹達(株)製SAMLAY-A(登録商標))に30秒間浸漬した後、引き上げ、NSクリーン100(登録商標、(株)ジャパンエナジー製)でリンス洗浄した。洗浄後の薄膜を乾燥することで、単分子膜処理した有機無機複合薄膜[Y-1]を得た。
[実施例5]
 実施例2で作製した有機無機複合薄膜[X-2]を用いて、実施例4と同様の処理を行うことで、単分子膜処理した有機無機複合薄膜[Y-2]を得た。
[実施例6]
 実施例3で作製した有機無機複合薄膜[X-3]を用いて、実施例4と同様の処理を行うことで、単分子膜処理した有機無機複合薄膜[Y-3]を得た。
[比較例2]
(ケイ素化合物を含まない、紫外線硬化樹脂薄膜の形成)
 実施例1で作製した紫外線硬化樹脂溶液[E-1]を、乾燥温度80℃、積算UV照射量473mJ/cm(アイグラフィック社製高圧水銀灯)の条件で、マイクログラビアコーター(康井精機社製)を用いてPETフィルム(東洋紡績(株)製、「コスモシャイン(登録商標)A4300」)上に成膜し、膜厚5μmの紫外線硬化樹脂薄膜を得た。大気圧プラズマ処理した後に、実施例5と同様の方法で単分子膜処理を行い膜[Z-2]を得た。
 実施例4~6及び比較例2で得られた単分子膜処理後の薄膜の密着力試験及び静的接触角試験の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 [実施例7]
  実施例1で合成した[D-1]と[E-1]を固形分の割合が[D-1]/[E-1]=30質量%/70質量%となるように、混合させ、MEK溶剤で希釈し、有機無機複合薄膜形成用溶液[F-3](固形分濃度40質量%)を作製した。
 有機無機複合薄膜形成用溶液[F-3]を、乾燥温度60℃、積算UV照射量500mJ/cm(アイグラフィック社製高圧水銀灯)の条件で、バーコーター(テスター産業社製)を用いてアクリルシート(CRD社製ソフトアクリルSA-00)上に成膜した。さらに、この塗膜表面に実施例1と同様の大気圧プラズマ処理を行い、膜厚5μmの有機無機複合薄膜[X-4]を得た。
 [比較例3]
実施例1で合成した[D-1]と[E-1]を固形分の割合が[D-1]/[E-1]=50質量%/50質量%となるように、混合させ、MEK溶剤で希釈し、有機無機複合薄膜形成用溶液[F-4](固形分濃度40質量%)を作製した。
 有機無機複合薄膜形成用溶液[F-5]を、乾燥温度60℃、積算UV照射量500mJ/cm(アイグラフィック社製高圧水銀灯)の条件で、バーコーター(テスター産業社製)を用いてアクリルシート(CRD社製ソフトアクリルSA-00)上に成膜した。さらに、この塗膜表面に実施例1と同様の大気圧プラズマ処理を行い、膜厚5μmの有機無機複合薄膜[X-5]を得た。
 実施例7および比較例3の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、表面が非常に高い硬度を有すると共に屈曲性に優れ、かつ基体との密着性、耐湿性に優れた有機無機複合薄膜を提供することができる。
 本発明の薄膜は、表面が極性の高いSiO状の構造を有しているので、各種の膜を積層した時の層間密着性に優れている。例えば、市販されている多くのシリコン系硬化膜の場合、その撥水性のために印刷インクとの密着性が問題になっているが、本発明の薄膜はインクとの密着性が良好である。また、無機薄膜との密着性にも優れている。無機薄膜としては、TiOなどの光触媒膜、ITO、SnO系薄膜などの導電性薄膜、Ta、PZTなどの誘電・圧電薄膜、SiO、MgO、MgFなどの低屈折率膜、TiO、ZrOなどの高屈折率膜など通常、樹脂の上には密着し難く、Siウェハーやガラス基板上への成膜されているような無機膜や、金属Al、金属Cr、金属Cu、金属Ag、金属Auなどの真空蒸着、スパッタ、メッキなどで成膜される金属膜との密着性にも優れている。
 また、シランカップリング処理による表面処理も可能で、表面を撥水撥油性に変えたり、アミノ基を導入し、メッキ密着性を付与したり、各種処理が容易である。
 本発明の薄膜は、加熱乾燥による硬化と紫外線による硬化の2段階で製造される。加熱乾燥処理では有機ケイ素化合物の加水分解・重縮合が進行し、ポリシロキサンへと変化し硬化していく。しかし、紫外線硬化性化合物は加熱では硬化が進行しにくいため、有機ケイ素化合物の種類、紫外線硬化性化合物の種類およびその混合割合を適宜選択することにより、加熱乾燥処理後の膜は成型可能である。
 本発明の薄膜は、例えば、加熱処理後の膜へモールドにより凹凸のパターン形成をすることも可能である。エンボス加工やナノインプリントなどにより各種のパターンを形成できる。その後、紫外線照射により、そのパターンを保持した状態で、紫外線硬化性化合物の硬化および表面のシロキサンのSiO化により本特徴である表面無機化ハードコート膜が形成できる。
 また、同様の方法で、転写法による膜形成も可能である。剥離膜処理されたフィルム(例えばポリエステルフィルム)に本発明の組成物をコートし、加熱処理した段階の膜を形成し、これを紫外線照射する前に転写箔として使用し、各種基材に熱、圧力、粘着剤などの力により膜を転写し、その後紫外線照射する方法である。
 インモールド成型時の転写箔としての使用も可能である。本発明の薄膜は、印刷適合性(インクとの密着性)に優れているので本発明の組成物を塗った上に各種柄を印刷した状態でインモールド成型し、その後紫外線照射すれば、柄とハードコート膜が同時に成形体に転写できる。曲面のある成形体へのハードコート膜形成法として有用である。
 こうして形成された薄膜は、ハードコート膜以外にも、ガスバリアー膜、帯電防止膜、UVカット膜、反射防止膜等として用いることができる。ハードコート膜の適用例としては、例えば、自動車のガラス、ヘッドライト、外装部品、内装部品、電装部品、サンルーフ;携帯電話のフロントケース、リアケース、バッテリーケース;眼鏡レンズ;光ディスク;建材化粧シート、フィルム;テレビ前面パネル;CRTカバー;ビデオリフレクター等を挙げることができる。
 また、本発明の薄膜は、これ等の製品を作製するためのモールドにも使用することもでき、産業上の利用可能性は大きい。

Claims (7)

  1.  a)式(I)
     RSiX4-n  (I)
    (式中、RはSiに炭素原子が直接結合する有機基を表し、Xは水酸基又は加水分解性基を表す。nは1又は2を表し、nが2のとき各Rは同一でも異なっていてもよく、(4-n)が2以上のとき各Xは同一でも異なっていてもよい。)で表される有機ケイ素化合物の縮合物、及び、
    b)有機高分子化合物
    を含有する有機無機複合薄膜であって、
    該膜の表面に式(I)で表される有機ケイ素化合物の縮合物が濃縮した層が形成されており、表面から10nmの深さの炭素原子の濃度が、表面から100nmの深さの炭素原子の濃度より20%以上少なく、さらに、膜の表面から2nmの深さのO/Si元素比が1.8~2.5である有機無機複合薄膜。
  2.  更に、c)チタン、ジルコニウム、アルミニウム、ケイ素、ゲルマニウム、インジウム、スズ、タンタル、亜鉛、タングステン及び鉛から成る群より選ばれた金属元素を有する金属化合物を含有する請求項1に記載の有機無機複合薄膜。
  3.  式(I)中のRがビニル基である化合物の縮合物を有機ケイ素化合物の縮合物全体の70質量%以上含有することを特徴とする、請求項1又は2に記載の有機無機複合薄膜。
  4.  表面から100nmの深さにおけるSi/C元素比が0.2以下であることを特徴とする、請求項1~3に記載の有機無機複合薄膜。
  5.  有機無機複合薄膜の上に、さらに、金属界面活性剤の加水分解縮合物を含有する層を有することを特徴とする、請求項1~4のいずれかに記載の有機無機複合薄膜。
  6.  金属界面活性剤がシランカップリング剤であることを特徴とする、請求項5に記載の有機無機複合薄膜。
  7.  a)式(I)
     RSiX4-n  (I)
    (式中、RはSiに炭素原子が直接結合する有機基を表し、Xは水酸基又は加水分解性基を表す。nは1又は2を表し、nが2のとき各Rは同一でも異なっていてもよく、(4-n)が2以上のとき各Xは同一でも異なっていてもよい。)で表される有機ケイ素化合物の縮合物、及び、
    b)有機高分子化合物
    を含有する有機無機複合薄膜に、プラズマ処理、もしくはUVオゾン処理を施すことを特徴とする有機無機複合薄膜の処理方法。
PCT/JP2012/004447 2012-02-08 2012-07-10 有機無機複合薄膜 WO2013118201A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147021765A KR101690847B1 (ko) 2012-02-08 2012-07-10 유기 무기 복합 박막
CN201280069083.9A CN104114622B (zh) 2012-02-08 2012-07-10 有机无机复合薄膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012025024 2012-02-08
JP2012-025024 2012-02-08
JP2012086540 2012-04-05
JP2012-086540 2012-04-05

Publications (1)

Publication Number Publication Date
WO2013118201A1 true WO2013118201A1 (ja) 2013-08-15

Family

ID=48947012

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/004447 WO2013118201A1 (ja) 2012-02-08 2012-07-10 有機無機複合薄膜
PCT/JP2013/000383 WO2013118442A1 (ja) 2012-02-08 2013-01-25 薄膜積層体

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000383 WO2013118442A1 (ja) 2012-02-08 2013-01-25 薄膜積層体

Country Status (5)

Country Link
JP (1) JP5911182B2 (ja)
KR (2) KR101690847B1 (ja)
CN (2) CN104114622B (ja)
TW (2) TWI447136B (ja)
WO (2) WO2013118201A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425759A (zh) * 2013-08-27 2015-03-18 财团法人工业技术研究院 有机无机复合薄膜与其形成方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101634895B1 (ko) * 2012-07-10 2016-06-29 닛뽕소다 가부시키가이샤 자기 조직화막을 갖는 박막 적층체
TWI682010B (zh) * 2015-03-31 2020-01-11 日商日揮觸媒化成股份有限公司 被膜形成用之塗佈液及其製造方法、以及附被膜基材之製造方法
JP6467502B2 (ja) * 2015-05-12 2019-02-13 日本曹達株式会社 光触媒含有塗布液及び光触媒担持構造体
CN109273556B (zh) * 2017-06-26 2021-09-10 苏州科技大学 用于太赫兹波探测的器件用衬底及其制备方法
TWI629180B (zh) * 2017-08-23 2018-07-11 國立臺北科技大學 水氣阻障層合體
JP7172627B2 (ja) * 2019-01-17 2022-11-16 凸版印刷株式会社 ガスバリア積層体及びそれを備える包装体
CN111601711B (zh) 2018-01-19 2023-03-31 凸版印刷株式会社 阻气层叠体以及具备该阻气层叠体的包装材料
CN108594501B (zh) * 2018-02-26 2021-04-27 京东方科技集团股份有限公司 一种液晶显示面板及其制作方法
KR102391800B1 (ko) 2018-06-15 2022-04-29 주식회사 엘지화학 비정질 박막의 제조방법
KR102053996B1 (ko) * 2018-09-27 2019-12-09 한양대학교 산학협력단 배리어, 배리어 제조방법, 배리어를 포함하는 디스플레이, 및 배리어를 포함하는 디스플레이의 제조방법
CN111487702B (zh) * 2020-05-12 2021-02-12 深圳大学 轻金属膜粘附重金属胶体的光栅制作工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137073A (en) * 1978-04-17 1979-10-24 Daicel Chem Ind Ltd Antistatic treatment of plastic molded article having abrasion resistant coating
JPS59501416A (ja) * 1982-08-18 1984-08-09 フオスタ−・グラント・コ−ポレ−シヨン 固体基板上の耐磨耗性塗膜形成方法およびそれによる製造物品
JP2001240796A (ja) * 2000-02-29 2001-09-04 Ube Nitto Kasei Co Ltd 有機無機ハイブリッド−無機複合傾斜材料およびその用途
JP2001261970A (ja) * 2000-03-15 2001-09-26 Ube Nitto Kasei Co Ltd 有機−無機複合傾斜材料及びその用途
WO2008059840A1 (fr) * 2006-11-13 2008-05-22 Nippon Soda Co., Ltd. Procédé de formation d'un film mince organique
WO2008069217A1 (ja) * 2006-12-05 2008-06-12 Nippon Soda Co., Ltd. 有機無機複合体
WO2009004821A1 (ja) * 2007-07-03 2009-01-08 Nippon Soda Co., Ltd. ハードコート層を形成するための成形用シート
WO2011161944A1 (ja) * 2010-06-23 2011-12-29 日本曹達株式会社 インプリント用レプリカモールドの製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143665A (ja) * 1984-08-08 1986-03-03 Nippon Soda Co Ltd 被覆用組成物
JP2938458B2 (ja) * 1988-08-10 1999-08-23 触媒化成工業株式会社 透明セラミックス被膜形成用塗布液および透明セラミックス被膜付基材
JPH10195417A (ja) 1997-01-13 1998-07-28 Sony Corp 防汚膜形成用組成物及び表示素子用フィルター
JP3897938B2 (ja) 1998-10-22 2007-03-28 宇部日東化成株式会社 有機−無機複合傾斜材料、その製造方法及びその用途
JP2000169755A (ja) 1998-12-07 2000-06-20 Jsr Corp 親水性硬化物、親水性硬化物を含む積層体、親水性硬化物用組成物および親水性硬化物の製造方法
JP4092841B2 (ja) 2000-02-03 2008-05-28 凸版印刷株式会社 帯電防止性ハードコート剤、合成樹脂成型品およびプラスチック製光学物品
JP2002235018A (ja) 2001-02-09 2002-08-23 Nippon Kayaku Co Ltd ハードコート剤用感光性樹脂組成物及びその硬化皮膜を有するフィルム
JP4111693B2 (ja) 2001-06-08 2008-07-02 信越化学工業株式会社 光触媒性酸化物含有コーティング用エマルジョン組成物
JP4684889B2 (ja) 2003-04-15 2011-05-18 日本曹達株式会社 有機薄膜の製造方法
JP2005272702A (ja) 2004-03-25 2005-10-06 Jsr Corp 硬化性組成物、その硬化物及び積層体
DK1797967T3 (en) 2004-07-22 2017-10-30 Nippon Soda Co PROCEDURE FOR THE CREATION OF ORGANIC THIN FILM
JP4746032B2 (ja) * 2005-02-15 2011-08-10 日本曹達株式会社 チタン酸化物粒子の分散液、チタン酸化物薄膜、有機機能膜形成用溶液、有機機能膜形成基体及びその製造方法
CN101120055B (zh) 2005-02-18 2014-07-23 日本曹达株式会社 有机无机复合体
JP5103184B2 (ja) * 2005-09-20 2012-12-19 三菱樹脂株式会社 ガスバリア性積層フィルム
JP5377820B2 (ja) * 2006-06-14 2013-12-25 日本曹達株式会社 機能性物質含有有機無機複合体
JP2008279363A (ja) 2007-05-10 2008-11-20 Fujifilm Corp 滑水性被膜及びその製造方法
JP5013526B2 (ja) * 2007-10-05 2012-08-29 日本曹達株式会社 ハードコートフィルム
JP5024254B2 (ja) 2008-09-24 2012-09-12 富士通株式会社 配線基板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137073A (en) * 1978-04-17 1979-10-24 Daicel Chem Ind Ltd Antistatic treatment of plastic molded article having abrasion resistant coating
JPS59501416A (ja) * 1982-08-18 1984-08-09 フオスタ−・グラント・コ−ポレ−シヨン 固体基板上の耐磨耗性塗膜形成方法およびそれによる製造物品
JP2001240796A (ja) * 2000-02-29 2001-09-04 Ube Nitto Kasei Co Ltd 有機無機ハイブリッド−無機複合傾斜材料およびその用途
JP2001261970A (ja) * 2000-03-15 2001-09-26 Ube Nitto Kasei Co Ltd 有機−無機複合傾斜材料及びその用途
WO2008059840A1 (fr) * 2006-11-13 2008-05-22 Nippon Soda Co., Ltd. Procédé de formation d'un film mince organique
WO2008069217A1 (ja) * 2006-12-05 2008-06-12 Nippon Soda Co., Ltd. 有機無機複合体
WO2009004821A1 (ja) * 2007-07-03 2009-01-08 Nippon Soda Co., Ltd. ハードコート層を形成するための成形用シート
WO2011161944A1 (ja) * 2010-06-23 2011-12-29 日本曹達株式会社 インプリント用レプリカモールドの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425759A (zh) * 2013-08-27 2015-03-18 财团法人工业技术研究院 有机无机复合薄膜与其形成方法

Also Published As

Publication number Publication date
TW201334969A (zh) 2013-09-01
CN104093560B (zh) 2016-10-26
KR20140116903A (ko) 2014-10-06
JP5911182B2 (ja) 2016-04-27
CN104093560A (zh) 2014-10-08
KR101690847B1 (ko) 2016-12-28
TWI447136B (zh) 2014-08-01
JPWO2013118442A1 (ja) 2015-05-11
KR20140114405A (ko) 2014-09-26
KR101563451B1 (ko) 2015-10-26
TW201333055A (zh) 2013-08-16
CN104114622A (zh) 2014-10-22
CN104114622B (zh) 2016-02-10
TWI455825B (zh) 2014-10-11
WO2013118442A1 (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
WO2013118201A1 (ja) 有機無機複合薄膜
JP5468265B2 (ja) 有機無機複合体
US9511514B2 (en) Process for production of replica mold for imprinting use
US9556317B2 (en) Molding sheet for forming hard coat layer
JP5704764B2 (ja) 有機無機複合体及びその形成用組成物
WO2014006874A1 (ja) 機能性反射防止積層体
JP5570007B2 (ja) 有機無機複合体
JP5883305B2 (ja) 有機無機複合系薄膜
JP5797152B2 (ja) 撥水膜
JP2014015547A (ja) 有機無機複合薄膜
JP5946729B2 (ja) 有機無機複合薄膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147021765

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868159

Country of ref document: EP

Kind code of ref document: A1