WO2014006874A1 - 機能性反射防止積層体 - Google Patents
機能性反射防止積層体 Download PDFInfo
- Publication number
- WO2014006874A1 WO2014006874A1 PCT/JP2013/004078 JP2013004078W WO2014006874A1 WO 2014006874 A1 WO2014006874 A1 WO 2014006874A1 JP 2013004078 W JP2013004078 W JP 2013004078W WO 2014006874 A1 WO2014006874 A1 WO 2014006874A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- layer
- film
- organic
- thin film
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
Definitions
- the present invention relates to a functional antireflection laminate, and more particularly to an antireflection laminate in which a transparent conductive film or a gas barrier thin film is laminated on a surface inorganicized organic-inorganic composite thin film.
- an antireflection film As such an antireflection film, a dielectric multilayer film composed of dielectrics having different refractive indexes, a low refractive index film such as a porous film, a film using surface irregularities, and the like are known. Among these, as the film using the unevenness of the surface, an antireflection film having a fine structure (motheye structure) called Mothey (moth eye), which is one type of film using the unevenness of the surface. is there.
- Mothey moth eye
- an antireflection film having such a moth-eye structure for example, in Patent Document 1, at least one surface of a light-transmitting plastic substrate has fine unevenness, and the period of the unevenness is in the range of 35 nm to 400 nm. And an antireflection film in which the depth of the unevenness is in the range of 100 nm to 700 nm.
- the unevenness has fine unevenness on one surface of the Ni substrate, the unevenness period is in the range of 35 nm to 400 nm, and the depth of the unevenness is in the range of 100 nm to 700 nm. It is formed by embossing a light-transmitting plastic resin using a stamper or casting a plastic resin on this stamper.
- Patent Document 2 discloses an antireflection film laminated on a transparent substrate, which is composed of a transparent resin and fine particles dispersed in the transparent resin.
- the average distance is in the range of 50 nm to 800 nm
- the arrangement structure of the fine particles in the antireflection film is an amorphous structure
- the average height of the protrusions on the surface of the antireflection film is in the range of 40 nm to 500 nm.
- An antireflective coating is disclosed. It is disclosed that the average particle diameter of the fine particles is preferably 50 nm to 500 nm.
- Patent Document 3 has, on the surface, convex portions having an average height of 150 nm or more and 250 nm or less or concave portions having an average depth of 150 nm or more and 250 nm or less, and the convex portions or the concave portions are averaged in at least one direction.
- an antireflection film which exists at a period of 100 nm to 250 nm and has an aspect ratio of 1.0 to 1.5 which is obtained by dividing the average height of the convex part or the average depth of the concave part by the average period.
- the regular reflectance of the antireflection film at an incident angle of 5 ° at a wavelength of 380 nm to 750 nm is 0.1% or less.
- a method of transferring a shape using a mold a method of attaching fine particles, a method of etching with a chemical substance, a method of spraying fine particles, a fine water droplet generated by evaporating an organic solvent
- a method of transferring the shape using a mold is preferable in that the mold can be faithfully transferred and a desired shape can be reliably realized.
- Patent Document 4 discloses an antireflection film in which a hard coat layer is provided on one side of a transparent substrate directly or via another layer, and an antireflection layer is laminated on the surface of the hard coat layer. It is also disclosed that the hard coat layer is preferably provided with irregularities by containing fine particles.
- Patent Documents 1 to 4 None of the antireflection films described in Patent Documents 1 to 4 is disclosed until a functional film such as a transparent conductive film or a gas barrier film is provided on the surface thereof.
- the applicant irradiates the organosilicon compound with ultraviolet light in the presence of the photosensitive compound, so that the surface has a very high hardness, the inside and the back side have an appropriate hardness, and the substrate and Developed an organic-inorganic composite thin film (hard coat film) with excellent adhesion (see Patent Document 5), and further, by making the surface of the film inorganic, it is possible to prevent deterioration, which is a drawback of organic resins, An organic-inorganic composite thin film (hard coat film) having excellent heat resistance has been developed (see Patent Document 6).
- the present invention exhibits high transmittance even when an inorganic thin film having a high refractive index and low light transmittance is laminated on the surface of the organic-inorganic composite thin film, such as a transparent conductive film or a gas barrier thin film.
- an object is to provide a functional antireflection film having excellent adhesion to an inorganic thin film.
- the inventors of the present invention have included a condensate of an organic silicon compound and an organic polymer compound as a first layer on a resin substrate, and a layer provided with irregularities using a mold or the like. It is found that a transparent conductive film layer or a gas barrier film having an excellent antireflection effect can be provided by laminating a transparent conductive film layer or a gas barrier film as a second layer thereon after forming the film. It came to complete.
- the first layer is a) Formula (I) R n SiX 4-n (I) (In the formula, R represents an organic group in which a carbon atom is directly bonded to Si, X represents a hydroxyl group or a hydrolyzable group. N represents 1 or 2, and when n is 2, each R is the same or different.
- each X may be the same or different when (4-n) is 2 or more.
- An organic-inorganic composite thin film having a film thickness of 500 nm or more, containing an organic polymer compound,
- the second layer is a transparent conductive film or gas barrier film having a thickness of 10 nm to 300 nm, and the surface of the second layer has a fine uneven structure with a height of 40 nm to 500 nm and a pitch of 50 nm to 400 nm,
- a functional antireflective laminate having a surface regular reflectance at an incident angle of 12 ° at a wavelength of 500 nm to 700 nm of 3% or less;
- the organic-inorganic composite thin film of the first layer further contains a metal compound whose metal element is at least one of titanium, zirconium, aluminum, tin, lead, tantalum or silicon (1) Or the functional antireflection laminate according to (2), and (4)
- the first layer has a layer in which the condensate of the organosilicon compound represented by the formula (I) is concentrated on the interface side with the second layer.
- the functional antireflection laminate according to any one of the above.
- the present invention even when an inorganic thin film having a high refractive index and a low light transmittance is laminated on the organic-inorganic composite thin film, such as a transparent conductive film or a gas barrier thin film, a high transmittance is expressed. It is possible to provide an antireflection film having excellent adhesion with an inorganic thin film that has never been obtained.
- FIG. 1 It is a figure which shows the outline of the process for producing the antireflection film of this invention.
- a SEM image Magnification 50,000 times.
- the AFM shape image (observation range 2 ⁇ m square) and SEM image (magnification 5) after the indium oxide film (ITO film) is laminated by DC sputtering on the organic-inorganic composite thin film having the concavo-convex shape shown in FIG.
- FIG. It is a figure which shows the SEM image (50,000 times magnification) after laminating
- the functional antireflection laminate of the present invention is laminated on at least one side of a resin substrate in the order of A), B) and C) of the following A) resin substrate, B) first layer and C) second layer.
- This is a thin film laminate having the structure described above. In this case, it is preferable to laminate the second layer directly on the first layer.
- the functional antireflection laminate of the present invention further includes a case where one or more other layers are laminated as long as it functions as a transparent conductive film layer or gas barrier film having an excellent antireflection effect.
- R represents an organic group in which a carbon atom is directly bonded to Si
- X represents a hydroxyl group or a hydrolyzable group.
- N represents 1 or 2, and when n is 2, each R is the same or different.
- each X may be the same or different.
- the surface of the second layer has a height of 40 nm to 500 nm and a pitch of 50 nm to 400 nm. A fine uneven structure is formed.
- the first layer has a layer on which the condensate of the organosilicon compound represented by formula (I) is concentrated on the interface side with the second layer, and the concentration of carbon atoms in the concentrated layer is less than the surface of the second layer.
- the concentration is preferably 20% or more lower than the concentration of carbon atoms in the first layer having a depth of 400 nm.
- the functional antireflection laminate has a surface regular reflectance at an incident angle of 12 ° at a wavelength of 500 nm to 700 nm of 3% or less, preferably 2% or less.
- the outline of the manufacturing process of the functional antireflection laminate of the present invention is shown in FIG. This will be described in detail below.
- Resin Base The resin base used in the present invention is not limited as long as the laminate of the present invention can be formed.
- polyimide bases such as polyamideimide, polyetherimide, polyimide, and polyaminobismaleimide Resins: Polyester resins such as polyethylene terephthalate and polyethylene 2,6-naphthalate; Epoxy resins such as phenolic epoxy resins, alcoholic epoxy resins, glycidyl ether type epoxy resins, glycidyl amine type epoxy resins; polyether ether ketone, poly Polyether resins such as ether ketone, polyether nitrile, and polyether sulfone; Cellulosic resins such as cellulose triacetate, cellulose diacetate, and nitrocellulose; Polystyrene, syndiotactic polymer Polystyrene resins such as restyrene; polyolefin resins such as homopolymers or copolymers of olefins such as ethylene
- Polyamide resin Polyvinyl alcohol resin such as ethylene-polyvinyl alcohol copolymer; Ethylene-tetrafluoroethylene copolymer, Polytrifluoroethylene chloride, Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, Polyfluoride Fluorine resins such as vinyl and perfluoroethylene-perfluoropropylene-perfluorovinyl ether copolymers; polycarbonate, polyvinyl butyrate resin, polyarylate resin, and the like.
- a resin a resin composition made of an acrylic compound having a radical reactive unsaturated compound, a resin composition made of a mercapto compound having an acrylic compound and a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, poly
- a photocurable resin such as a resin composition in which an oligomer such as ether acrylate is dissolved in a polyfunctional acrylate monomer, a mixture thereof, or the like can be used.
- the size and shape of the substrate are not particularly limited, and any flat plate, three-dimensional object, film, or the like can be used, but a film-like one is preferable.
- a coated article can also be used as a substrate.
- the film-like substrate may be made of an unstretched film or may be made of a stretched film.
- the resin substrate include a single layer film and a laminated film obtained by laminating two or more layers by means such as laminating or coating.
- the film-like plastic substrate can be produced by a conventionally known general method.
- a substrate made of an unstretched film that is substantially amorphous and not oriented can be produced by melting a material resin with an extruder, extruding it with an annular die or a T die, and quenching.
- a substrate made of an unstretched film is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, or the like.
- a substrate made of a stretched film can be produced by stretching in a direction perpendicular to the flow direction of the substrate (horizontal axis).
- the draw ratio in this case can be appropriately selected according to the resin as the raw material of the substrate, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
- the thickness of the film-like resin substrate is not particularly limited, but is usually 1 ⁇ m to 1000 ⁇ m, preferably 3 ⁇ m to 500 ⁇ m.
- the organic inorganic composite thin film which is the 1st layer of this invention contains the condensate of an organosilicon compound and an organic polymer compound as an essential component at least, a metal compound, a photoinitiator, It may contain metal oxide particles and the like.
- the organic / inorganic composite thin film usually has a thickness of 500 nm or more, preferably 1 ⁇ m to 10 ⁇ m. If the thickness is less than 500 nm, the influence of surface irregularities of the substrate tends to occur, and if it exceeds 10 ⁇ m, the substrate tends to warp and the flexibility becomes poor.
- the organosilicon compound is represented by the following formula (I).
- R n SiX 4-n (I)
- R represents an organic group in which a carbon atom is directly bonded to Si
- X represents a hydroxyl group or a hydrolyzable group.
- n represents 1 or 2, and when n is 2, each R may be the same or different, and when (4-n) is 2 or more, each X may be the same or different.
- an organic group in which a carbon atom is directly bonded to Si includes an optionally substituted hydrocarbon group, a group composed of an optionally substituted hydrocarbon polymer, and the like.
- the hydrocarbon group in the above “optionally substituted hydrocarbon group” and “group consisting of an optionally substituted hydrocarbon polymer” is usually a hydrocarbon group having 1 to 30 carbon atoms, for example, , Alkyl group, cycloalkyl group, cycloalkylalkyl group, alkenyl group, alkynyl group, aryl group, arylalkyl group, arylalkenyl group and the like.
- a linear or branched alkyl group having 1 to 10 carbon atoms a cycloalkyl group having 3 to 8 carbon atoms, a linear or branched alkenyl group having 2 to 10 carbon atoms, and a carbon number of 3 are preferable.
- hydrocarbon group or “group consisting of a hydrocarbon polymer” may contain an oxygen atom, a nitrogen atom, or a silicon atom.
- linear or branched alkyl group having 1 to 10 carbon atoms examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, and n-pentyl.
- Examples of the long chain alkyl group having more than 10 carbon atoms include lauryl group, tridecyl group, myristyl group, pentadecyl group, palmityl group, heptadecyl group, stearyl group and the like.
- cycloalkyl group having 3 to 8 carbon atoms examples include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and the like.
- “Straight or branched alkenyl group having 2 to 10 carbon atoms” means a straight or branched alkenyl group having 2 to 10 carbon atoms having a carbon-carbon double bond at any one or more positions.
- C3-C8 cycloalkenyl group means a C3-C8 alkenyl group having a carbon-carbon double bond at any one or more positions and having a cyclic portion.
- cyclopenten-1-yl group, 2-cyclopenten-1-yl group, 1-cyclohexen-1-yl group, 2-cyclohexen-1-yl group, and 3-cyclohexen-1-yl group is a C3-C8 alkenyl group having a carbon-carbon double bond at any one or more positions and having a cyclic portion.
- cyclopenten-1-yl group 2-cyclopenten-1-yl group, 1-cyclohexen-1-yl group, 2-cyclohexen-1-yl group, and 3-cyclohexen-1-yl group.
- alkynyl group examples include alkynyl groups having 2 to 10 carbon atoms, such as ethynyl group, prop-1-in-1-yl group, prop-2-yn-1-yl group, but-1-yne. -1-yl group, but-3-yn-1-yl group, penta-1-in-1-yl group, penta-4-in-1-yl group, hexa-1-in-1-yl group, Examples include a hexa-5-in-1-yl group, a hepta-1-in-1-yl group, an octa-1-in-1-yl group, and an octa-7-in-1-yl group.
- cycloalkylalkyl group examples include a group in which a cycloalkyl group having 3 to 8 carbon atoms and an alkyl group having 1 to 8 carbon atoms are bonded, and examples thereof include a cyclopropylmethyl group, a cyclopropylpropyl group, and cyclobutylmethyl.
- arylalkyl group examples include a group in which an aryl group having 6 to 10 carbon atoms and an alkyl group having 1 to 8 carbon atoms are bonded, such as a benzyl group, a phenethyl group, a 3-phenyl-n-propyl group, Examples include 4-phenyl-n-butyl group, 5-phenyl-n-pentyl group, 8-phenyl-n-octyl group, naphthylmethyl group and the like.
- arylalkenyl group examples include a group in which an aryl group having 6 to 10 carbon atoms and an alkenyl group having 2 to 8 carbon atoms are bonded, such as a styryl group, 3-phenyl-prop-1-ene-1- Yl, 3-phenyl-prop-2-en-1-yl, 4-phenyl-but-1-en-1-yl, 4-phenyl-but-3-en-1-yl, 5- Phenyl-pent-1-en-1-yl group, 5-phenyl-pent-4-en-1-yl group, 8-phenyl-oct-1-en-1-yl group, 8-phenyl-oct-7 -En-1-yl group, naphthylethenyl group and the like.
- hydrocarbon group having an oxygen atom examples include a group having an oxirane ring (epoxy group) such as an alkoxyalkyl group, an epoxy group, an epoxyalkyl group, a glycidoxyalkyl group, an acryloxymethyl group, a methacryloxymethyl group, etc. Is mentioned.
- the “alkoxyalkyl group” is usually a group in which an alkoxy group having 1 to 6 carbon atoms and an alkyl group having 1 to 6 carbon atoms are bonded, such as a methoxymethyl group, 2-methoxyethyl group, 3- And ethoxy-n-propyl group.
- the epoxyalkyl group is preferably a linear or branched epoxyalkyl group having 3 to 10 carbon atoms, such as glycidyl group, glycidylmethyl group, 2-glycidylethyl group, 3-glycidylpropyl group, 4-glycidylbutyl group.
- An alkyl group containing a linear epoxy group such as a group, 3,4-epoxybutyl group, 4,5-epoxypentyl group, 5,6-epoxyhexyl group; ⁇ -methylglycidyl group, ⁇ -ethylglycidyl group, ⁇ -propylglycidyl group, 2-glycidylpropyl group, 2-glycidylbutyl group, 3-glycidylbutyl group, 2-methyl-3-glycidylpropyl group, 3-methyl- 2-glycidylpropyl group, 3-methyl-3,4-epoxybutyl group, 3-ethyl-3,4-epoxybutyl group, 4-methyl-4,5-epoxypentyl group, 5-methyl-5,6- Examples thereof include an alkyl group containing a branched epoxy group such as an epoxy hexyl group. Examples of the “glycidoxyalkyl group” include glycidoxymethyl group and
- hydrocarbon group having a nitrogen atom a group having —NR ′ 2 (wherein R ′ represents a hydrogen atom, an alkyl group or an aryl group, and each R ′ may be the same as or different from each other). Or a group having —N ⁇ CR ′′ 2 (wherein R ′′ represents a hydrogen atom or an alkyl group, and each R ′′ may be the same as or different from each other).
- R ′′ represents a hydrogen atom or an alkyl group, and each R ′′ may be the same as or different from each other.
- alkyl group and aryl group for R ′′ include the same groups as those exemplified for R above.
- the group having —NR ′ 2 includes a —CH 2 —NH 2 group, a —C 3 H 6 —NH 2 group, a —CH 2 —NH—CH 3 group, and the like.
- hydrocarbon having a silicon atom examples include groups containing a polymer such as polysiloxane, polyvinylsilane, polyacrylsilane and the like.
- Examples of the above-mentioned “optionally substituted” substituent include a halogen atom, an alkyl group, an alkenyl group, an aryl group, and a methacryloxy group.
- Examples of the halogen atom, alkyl group, alkenyl group and aryl group are the same as those in R.
- the group that is decomposed by irradiation with light having a wavelength of 350 nm or less includes a vinyl group, a group having an oxirane ring, —NR ′ 2 (wherein R ′ represents a hydrogen atom, an alkyl group, or an aryl group). And each R ′ may be the same or different from each other, or —N ⁇ CR ′′ 2 (wherein R ′′ represents a hydrogen atom or an alkyl group, and each R ′′ is the same as each other). But may be different.).
- n 1 or 2
- each R may be the same or different.
- these can be used individually by 1 type or in combination of 2 or more types.
- X represents a hydroxyl group or a hydrolyzable group.
- the hydrolyzable group is, for example, a group that can be hydrolyzed to form a silanol group by heating at 25 ° C. to 100 ° C. in the presence of non-catalyst and excess water
- siloxane condensation Means a group that can form a product, and specific examples include an alkoxy group, an acyloxy group, a halogen atom, an isocyanate group, and the like.
- An alkoxy group having 1 to 4 carbon atoms or a group having 1 to 6 carbon atoms can be used.
- An acyloxy group is preferred.
- Examples of the alkoxy group having 1 to 4 carbon atoms include a methyloxy group, an ethyloxy group, a propyloxy group, an isopropyloxy group, an n-butyloxy group, an isobutyloxy group, a t-butyloxy group, and the like.
- Examples of the acyloxy group (however, the carbon number does not include carbon of the carbonyl group) include an acetyloxy group and a benzoyloxy group.
- Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- Examples of the isocyanate group include an isocyanate group bonded to an alkyl group, an isocyanate group bonded to a cycloalkyl group, an isocyanate group bonded to an aryl group, an isocyanate group bonded to an alkyl group substituted with a cycloalkyl group, and an aryl group. And an isocyanate group bonded to the alkyl group.
- the raw material organosilicon compounds include methyltrichlorosilane, methyltrimethoxysilane, methyltriethoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriisopropoxysilane, ethyltributoxysilane, butyltrimethylsilane.
- Examples of the “group consisting of a hydrocarbon polymer” include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) (Meth) acrylic acid esters such as acrylates; carboxylic acids such as (meth) acrylic acid, itaconic acid and fumaric acid and acid anhydrides such as maleic anhydride; epoxy compounds such as glycidyl (meth) acrylate; diethylaminoethyl (meth) Amino compounds such as acrylate and aminoethyl vinyl ether; Amide compounds such as (meth) acrylamide, itaconic acid diamide, ⁇ -ethylacrylamide, crotonamide, fumaric acid diamide, maleic acid diamide, N-butoxymethyl (meth) acrylamide; Lil, styren
- the condensate of the organosilicon compound used as the main component in the organic-inorganic composite thin film of the present invention means a product obtained by further condensing these organosilicon compounds and / or the condensate thereof.
- the blending ratio of the organosilicon compound condensate is 2 to 98% by mass, preferably 5 to 50% by mass, based on the solid content of the whole organic-inorganic composite thin film.
- Organic polymer compound of the present invention is not particularly limited, and is a polymer of a thermosetting compound or a polymer of an ultraviolet curable compound, preferably photopolymerization.
- a compound or resin having a functional group that undergoes a polymerization reaction upon irradiation with ultraviolet rays in the presence of an initiator is subjected to a polymerization reaction by irradiation with ultraviolet rays in the presence of a photopolymerization initiator.
- Examples thereof include those obtained by polymerizing a (meth) acrylate compound, an epoxy resin, a vinyl compound excluding the acrylate compound, and the like.
- the number of functional groups is not particularly limited as long as it is 1 or more.
- the raw material acrylate compounds include polyurethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, polyamide (meth) acrylate, polybutadiene (meth) acrylate, polystyryl (meth) acrylate, polycarbonate diacrylate, and tripropylene Examples include glycol di (meth) acrylate, hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and siloxane polymer having a (meth) acryloyloxy group.
- the molecular weight is not limited as long as it dissolves in the organic-inorganic composite-forming composition, but is usually 500 to 250,000 as a mass average molecular weight, and preferably 1,000 to 50,000.
- Polyester (meth) acrylate is obtained, for example, by esterifying the hydroxyl groups of a polyester oligomer having hydroxyl groups at both ends with acrylic acid, obtained by condensation of polyvalent carboxylic acid and polyhydric alcohol. Alternatively, it can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a polyvalent carboxylic acid with acrylic acid.
- Polyurethane (meth) acrylate is a reaction product of an isocyanate compound obtained by reacting a polyol with diisocyanate and an acrylate monomer having a hydroxyl group.
- the polyol include polyester polyol, polyether polyol, and polycarbonate diol. .
- the epoxy (meth) acrylate can be obtained by, for example, an esterification reaction between an oxirane ring of a low molecular weight bisphenol type epoxy resin or a novolac epoxy resin and acrylic acid.
- Examples of commercially available urethane (meth) acrylates used in the present invention include trade names manufactured by Arakawa Chemical Industries, Ltd .: Beam Sets 102, 502H, 505A-6, 510, 550B, 551B, 575, 575CB, EM-90, EM92, Sannopco Corporation product name: Photomer 6008, 6210, Shin-Nakamura Chemical Co., Ltd.
- Examples of vinyl compounds excluding the acrylate compounds include N-vinyl pyrrolidone, N-vinyl caprolactam, vinyl acetate, styrene, and unsaturated polyester.
- Epoxy resins include hydrogenated bisphenol A diglycidyl ether, 3,4 -Epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-meta-dioxane, bis (3,4-epoxycyclohexyl) And methyl) adipate.
- the blending ratio of the organic polymer compound is usually 2 to 98% by mass, preferably 30 to 95% by mass, based on the solid content of the whole organic-inorganic composite thin film.
- the photopolymerization initiator used in the present invention includes (a) a compound that generates a cationic species by light irradiation and (b) a compound that generates an active radical species by light irradiation. Can do.
- the compound that generates a cationic species by light irradiation include, for example, a cation moiety having sulfonium, iodonium, diazonium, ammonium, (2,4-cyclopentadien-1-yl) [(1-methylethyl) benzene] -Fe cation.
- the anion moiety is composed of BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , [BX 4 ] ⁇ (wherein X is a phenyl group substituted with at least two fluorine or trifluoromethyl groups).
- Examples of the iodonium salt include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodoniumtetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (dodecylphenyl) iodonium Examples include hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, and bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate.
- diazonium salt examples include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, and phenyldiazonium tetrakis (pentafluorophenyl) borate.
- ammonium salts include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl-2-cyanopyridinium Tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl) -2-cyanopyridinium Examples include tetrafluoroborate, 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate, and the like.
- (2,4-Cyclopentadien-1-yl) [(1-methylethyl) benzene] -Fe salt includes (2,4-cyclopentadien-1-yl) [(1-methylethyl) benzene] -Fe.
- Examples of the compound that generates active radical species by light irradiation include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, xanthone, fluorenone, benzaldehyde.
- the amount of the photopolymerization initiator used in the present invention is preferably 0.01 to 20% by mass based on the solid content of the ultraviolet curable compound as the raw material for the organic polymer compound, preferably 0.1 to 10%. More preferred is mass%.
- a sensitizer can be added as necessary.
- trimethylamine, methyldimethanolamine, triethanolamine, p-dimethylaminoacetophenone, ethyl p-dimethylaminobenzoate, p- Isoamyl dimethylaminobenzoate, N, N-dimethylbenzylamine, 4,4′-bis (diethylamino) benzophenone, and the like can be used.
- the metal compound of the present invention is contained for adjusting the refractive index, strengthening the affinity with the second layer, maintaining the shape, and adjusting the hardness. Titanium, zirconium, aluminum, tin, lead, A metal compound containing at least one element composed of tantalum or silicon is preferable, and titanium, zirconium, aluminum, and tin are more preferable, and titanium is particularly preferable. These may be used alone or in combination of two or more.
- the metal compound is at least one compound selected from the group consisting of metal chelate compounds, organic acid metal salts, metal compounds having two or more hydroxyl groups or hydrolyzable groups, hydrolysates thereof, and condensates thereof. Etc.
- a metal compound can be used individually by 1 type or in combination of 2 or more types.
- it is preferably a metal chelate compound, an organic acid metal salt, a hydrolyzate and / or condensate of a metal compound having two or more hydroxyl groups or hydrolyzable groups. Or a condensate is preferable.
- the metal compound in the thin film include those existing as a raw material compound, those obtained by further condensing the compound, and those chemically bonded to the above-described organosilicon compound.
- the metal chelate compound is preferably a metal chelate compound having a hydroxyl group or a hydrolyzable group, and more preferably a metal chelate compound having two or more hydroxyl groups or hydrolyzable groups.
- having two or more hydroxyl groups or hydrolyzable groups means that the sum of hydrolyzable groups and hydroxyl groups is 2 or more.
- the metal chelate compound is preferably a ⁇ -ketocarbonyl compound, a ⁇ -ketoester compound, or an ⁇ -hydroxyester compound.
- methyl acetoacetate, n-propyl acetoacetate, isopropyl acetoacetate, acetoacetate ⁇ -ketoesters such as n-butyl, sec-butyl acetoacetate, t-butyl acetoacetate; acetylacetone, hexane-2,4-dione, heptane-2,4-dione, heptane-3,5-dione, octane ⁇ -diketones such as -2,4-dione, nonane-2,4-dione and 5-methyl-hexane-2,4-dione; compounds coordinated with hydroxycarboxylic acids such as glycolic acid and lactic acid Can be mentioned.
- the organic acid metal salt is a compound composed of a salt obtained from a metal ion and an organic acid.
- the organic acid include carboxylic acids such as acetic acid, oxalic acid, tartaric acid, and benzoic acid; sulfonic acid, sulfinic acid, thiophenol, and the like.
- Organic compounds exhibiting acidity such as phenolic compounds; enol compounds; oxime compounds; imide compounds; aromatic sulfonamides;
- the metal compound having two or more hydroxyl groups or hydrolyzable groups is other than the metal chelate compound and the organic acid metal salt, such as hydroxide, propoxide, isopropoxide, butoxide and the like. Examples thereof include metal alcoholates.
- hydrolyzable group in the metal compound, the metal chelate compound, or the organic acid metal salt examples include an alkoxy group, an acyloxy group, a halogen group, and an isocyanate group, and include an alkoxy group having 1 to 4 carbon atoms and a carbon number. 1-4 acyloxy groups are preferred.
- having two or more hydroxyl groups or hydrolyzable groups means that the sum of hydrolyzable groups and hydroxyl groups is 2 or more.
- hydrolyzate and / or condensate of a metal compound one obtained by hydrolyzing 0.5 mol or more of water with respect to 1 mol of a metal compound having two or more hydroxyl groups or hydrolyzable groups. It is more preferable that it is hydrolyzed with 0.5 to 2 mol of water.
- the hydrolyzate and / or condensate of the metal chelate compound is preferably one obtained by hydrolyzing with 5 to 100 mol of water with respect to 1 mol of the metal chelate compound. More preferably, it is hydrolyzed with water.
- the hydrolyzate and / or condensate of the organic acid metal salt is preferably hydrolyzed using 5 to 100 mol of water with respect to 1 mol of the metal organic acid salt. More preferably, it is hydrolyzed with molar water.
- the metal compound for improving the hardness include tetrafunctional silane and colloidal silica.
- tetrafunctional silane examples include tetraaminosilane, tetrachlorosilane, tetraacetoxysilane, tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetrabenzyloxysilane, tetraphenoxysilane, tetra (meth) acryloxysilane, tetrakis [2 -(Meth) acryloxyethoxy] silane, tetrakis (2-vinyloxyethoxy) silane, tetraglycidyloxysilane, tetrakis (2-vinyloxybutoxy) silane, tetrakis (3-methyl-3-oxetanemethoxy) silane be able to.
- colloidal silica examples include water-dispersed colloidal silica and organic solvent-dispersed colloidal silica such as methanol or isopropyl alcohol.
- the compounding ratio of the metal compound is 0.1 to 50% by mass, preferably 10 to 50% by mass, based on the solid content of the whole organic-inorganic composite thin film.
- Metal oxide particles As the metal of the metal oxide particles of the present invention, silicon, tungsten, antimony, zirconium, aluminum, titanium, magnesium, iron, tin, zinc, cadmium, nickel, copper, belium, ruthenium, Thorium, yttrium, mercury, cesium, chromium, lanthanum, etc. are mentioned, and metal oxides include silica, tungsten oxide, antimony oxide, zirconia, alumina, titania, magnesium oxide, tin oxide, zinc oxide, cadmium oxide, yttrium oxide. Nickel oxide, copper oxide, beryllium oxide, ruthenium oxide, thorium oxide, mercury oxide, cerium oxide, chromium oxide and the like.
- the metal oxide particles used there are no particular limitations on the metal oxide particles used, whether they are secondary particles or primary particles, but primary particles are preferred.
- the average particle diameter of the metal oxide particles is preferably 50 nm to 500 nm.
- the surface of each metal oxide particle can be modified with a silane coupling agent or the like. Specifically, silica sol or the like that has been subjected to a hydrophobic treatment with a hydrocarbon group or the like is exemplified. can do.
- the blending ratio of the metal oxide particles is 0.1 to 50% by mass, preferably 10 to 50% by mass, based on the solid content of the whole organic-inorganic composite.
- a filler is separately added. It is also possible to add and disperse.
- the filler include water-insoluble pigments such as organic pigments and inorganic pigments, and particulate and fibrous or scale-like metals and alloys other than pigments, and oxides, hydroxides, carbides, nitrides thereof, and the like. Examples thereof include sulfides.
- this filler include particulate, fibrous or scale-like iron, copper, aluminum, nickel, silver, zinc, ferrite, carbon black, stainless steel, silicon dioxide, titanium oxide, aluminum oxide, chromium oxide, Manganese oxide, iron oxide, zirconium oxide, cobalt oxide, synthetic mullite, aluminum hydroxide, iron hydroxide, silicon carbide, silicon nitride, boron nitride, clay, diatomaceous earth, slaked lime, gypsum, talc, barium carbonate, calcium carbonate, carbonic acid
- dehydrating agents such as methyl orthoformate, methyl orthoacetate, tetraethoxysilane, various surfactants, silane coupling agents other than the above, titanium coupling agents, dyes, dispersants, thickeners, leveling agents, etc. These additives can also be added.
- the solution for forming an organic-inorganic composite thin film in the present invention comprises an organosilicon compound and / or a condensate thereof, a raw material of an organic polymer compound and a photopolymerization initiator, and, if necessary, a metal compound, a silanol condensation catalyst, a metal oxidation It is prepared by mixing other components such as product particles, water and / or a solvent. Since the metal compound of the present invention also functions as a silanol catalyst, when using a metal compound, it is not necessary to use a silanol catalyst.
- a metal compound is mixed in a solvent, a predetermined amount of water is added, (partial) hydrolysis is performed, and then an organosilicon compound is added (partial) to be hydrolyzed.
- the raw material of the organic polymer compound is dissolved in a solvent, a photopolymerization initiator is added, and then both solutions are mixed.
- the amount of the predetermined amount of water depends on the type of the metal compound. For example, when the metal compound is a metal compound having two or more hydroxyl groups or hydrolyzable groups, the amount of water is 0.5 with respect to 1 mol of the metal compound. It is preferable to use at least mol of water, and more preferably 0.5 to 2 mol of water. When the metal compound is a metal chelate compound or an organic acid metal salt, it is preferable to use 5 to 100 mol of water with respect to 1 mol of the metal chelate compound or organic acid metal salt, and 5 to 20 mol of water is used. It is more preferable.
- the condensate of the organosilicon compound of the present invention a product obtained by (partially) hydrolyzing an organosilicon compound using a known silanol condensation catalyst may be used.
- the composition for forming an organic-inorganic composite thin film in the present invention preferably contains water and / or a solvent in addition to the above components.
- the solvent to be used is not particularly limited.
- aromatic hydrocarbons such as benzene, toluene and xylene
- aliphatic hydrocarbons such as hexane and octane
- alicyclic hydrocarbons such as cyclohexane and cyclopentane.
- Ketones such as acetone, methyl ethyl ketone and cyclohexanone; ethers such as tetrahydrofuran and dioxane; esters such as ethyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; dimethyl sulfoxide And the like; alcohols such as methanol and ethanol; and polyhydric alcohol derivatives such as ethylene glycol monomethyl ether and ethylene glycol monomethyl ether acetate. These solvents can be used alone or in combination of two or more.
- Examples of the silanol condensation catalyst include acids and bases in addition to the metal compounds.
- Examples of the acid include organic acids and mineral acids. Specific examples of the organic acid include acetic acid, formic acid, oxalic acid, carbonic acid, phthalic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, and the like.
- Examples of the mineral acid include hydrochloric acid, nitric acid, boric acid, borohydrofluoric acid, and the like.
- a photoacid generator that generates an acid by light irradiation, specifically, diphenyliodonium hexafluorophosphate, triphenylphosphonium hexafluorophosphate, and the like are also included.
- the base include strong bases such as tetramethylguanidine and tetramethylguanidylpropyltrimethoxysilane; organic amines, carboxylic acid neutralized salts of organic amines, quaternary ammonium salts and the like.
- the solid content (organic silicon component, organic polymer compound raw material, metal compound, metal oxide particles, silanol condensation catalyst, photopolymerization initiator, etc.) in the solution for forming an organic-inorganic complex in the present invention is 1 to It is preferably 98% by mass, more preferably 10 to 60% by mass.
- organosilicon compound and / or the total mass of the solid content of the organic-inorganic composite forming raw material organosilicon component, organic polymer compound raw material, metal compound, metal oxide particles, silanol condensation catalyst, photopolymerization initiator, etc.
- the content of the condensate, organic polymer compound, metal compound, metal oxide particle, photopolymerization initiator and the like is the same as the content in the organic-inorganic composite film.
- the organic / inorganic composite thin film forming solution of the present invention can be applied on a substrate, and various known laminating methods can be used.
- it can be formed by methods such as micro gravure coating, comma coating, bar coater coating, air knife coating, spin coating coating, dip coating, offset printing, flexographic printing, screen printing, spray coating, and the like.
- a coating method of the organic / inorganic composite thin film forming solution a known coating method can be used. For example, dipping method, spray method, bar coating method, roll coating method, spin coating method, curtain coating method, gravure printing method. , Silk screen method, ink jet method, slot die coating method, die coating method and the like.
- Formation of the substrate for forming fine uneven patterns on the substrate is carried out by applying a solution for forming an organic-inorganic composite thin film on the substrate and then semi-curing it by applying heat and / or electromagnetic radiation.
- the condensate of the organic silicon compound in the solution for forming the organic / inorganic composite thin film is crosslinked, and the organic / inorganic composite thin film layer is semi-cured.
- an organic solvent is used as a diluting solvent or the like, the organic solvent is removed by heating.
- the heating is usually 40 to 200 ° C, preferably 50 to 150 ° C.
- the heating time is usually 10 seconds to 60 minutes, preferably 30 seconds to 10 minutes.
- (Third step) Forming a micro uneven pattern by pressing a mold with an uneven structure having an antireflection function against a substrate for forming a micro uneven pattern, which is a semi-cured product from a solution for forming an organic / inorganic composite thin film laminated on the substrate.
- the base material for use is deformed.
- a Si wafer mold having a specific pattern formed by a hydraulic press machine is used.
- the pressing of the mold can be performed by a known method, but is usually performed at a temperature of 20 to 200 ° C. for 5 seconds to 10 minutes.
- the electromagnetic radiation may be applied while the mold is pressed against the substrate for forming the fine uneven pattern, or the electromagnetic wave may be applied after removing the mold from the substrate on which the substrate for forming the fine uneven pattern is laminated. Also good.
- ultraviolet rays, X-rays, radiation, ionizing radiation, ionizing radiation ( ⁇ , ⁇ , ⁇ rays, neutron rays, electron beams) can be used, and light having a wavelength of 350 nm or less is preferable.
- the irradiation of the active energy ray can be performed using a known apparatus such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, an excimer lamp, a carbon arc lamp, or a xenon arc lamp.
- the light source to be used is preferably a light source containing light of any wavelength in the range of 150 to 350 nm, and more preferably a light source containing light of any wavelength in the range of 250 to 310 nm.
- the amount of light irradiated to sufficiently cure the semi-cured organic-inorganic composite thin film layer includes, for example, about 0.1 to 100 J / cm 2 , and film curing efficiency (irradiation energy and film In consideration of the degree of curing), it is preferably about 1 to 10 J / cm 2 , more preferably about 1 to 5 J / cm 2 .
- light including a wavelength of 350 nm or less means not only a wavelength of 350 nm or less but also ultraviolet rays having a wavelength longer than 350 nm. This is because the organic polymer compound is a compound or resin having a functional group that undergoes a polymerization reaction upon irradiation with ultraviolet rays in the presence of a photopolymerization initiator, and has a sensitivity at a wavelength exceeding 350 nm, preferably around 365 nm. is there.
- irradiation with light having a wavelength of 350 nm or less means irradiation using a light source having light of any wavelength of 350 nm or less as a component, preferably light having any wavelength of 350 nm or less as a main component. Irradiation using a light source, that is, irradiation using a light source having a wavelength of 350 nm or less with the largest component amount.
- the organic-inorganic composite thin film (first layer) of the present invention has a layer in which the condensate of the organosilicon compound represented by formula (I) is concentrated on the interface side with the second layer, and the carbon atoms of the concentrated layer
- the concentration of is 20% or more, preferably 40% or less less than the concentration of carbon atoms in the first layer having a depth of 400 nm from the surface of the second layer.
- the layer in which the condensate of the organosilicon compound of the present invention is concentrated can be confirmed by using TEM (transmission electron microscope) or ESCA (X-ray photoelectron spectroscopy).
- the element concentration in the depth direction of the organic-inorganic composite thin film of the present invention can be measured by ESCA analysis.
- the concentration of carbon atoms means the molar concentration of carbon atoms when (total metal atoms + oxygen atoms + carbon atoms) is 100%. The same applies to the concentrations of other elements.
- the layer in which the condensate of the organosilicon compound is concentrated is defined by the concentration of carbon atoms by ESCA analysis, but in the concentrated layer, the concentration of silicon is high. In the present invention, the lower the carbon concentration, the higher the silicon concentration.
- the plasma treatment is a corona discharge treatment in a nitrogen gas atmosphere or a glow plasma treatment in a rare gas atmosphere such as helium or argon. More specifically, a method of generating plasma by applying a high voltage at a high frequency between parallel plate electrodes in which at least one of the electrode pairs is coated with a dielectric, and holding a base material layer between the electrodes, Or the method of moving this base material layer between these electrodes is mentioned.
- Plasma processing includes atmospheric pressure plasma processing and vacuum plasma processing, but since the density of active species is higher in atmospheric pressure plasma processing than in vacuum plasma processing, electrode surfaces can be processed at high speed and high efficiency. In addition, since there is no need to use a vacuum during processing, there is an advantage that processing can be performed with a small number of steps.
- the atmospheric pressure plasma treatment is performed using an atmospheric pressure plasma generator (for example, atmospheric pressure plasma apparatus S-5000 manufactured by Sakai Semiconductor Co., Ltd., atmospheric pressure plasma surface treatment apparatus RD series manufactured by Sekisui Chemical Co., Ltd.). Can do.
- an atmospheric pressure plasma generator for example, atmospheric pressure plasma apparatus S-5000 manufactured by Sakai Semiconductor Co., Ltd., atmospheric pressure plasma surface treatment apparatus RD series manufactured by Sekisui Chemical Co., Ltd.
- UV ozone treatment means that the thin film is irradiated with UV (ultraviolet rays), oxygen in the air is changed to ozone, and the thin film is modified by the ozone and ultraviolet rays.
- the UV light source is not particularly limited as long as oxygen can be changed to ozone by UV irradiation.
- Examples of the UV light source include a low-pressure mercury lamp. Low pressure mercury lamps generate UV light at 185 nm and 254 nm, and the 185 nm line can convert oxygen to ozone.
- the illuminance upon irradiation varies depending on the light source used, but generally several tens to several hundreds mW / cm 2 are used. Moreover, illumination intensity can be changed by condensing or diffusing.
- the irradiation time varies depending on the illuminance of the lamp and the type of the untreated layer, but is usually 1 minute to 24 hours.
- the treatment temperature is usually 10 to 200 ° C.
- the irradiation amount of UV i.e., ultraviolet amount
- the irradiation amount of UV is usually 1 J / cm 2 or more, preferably 1 ⁇ 100000J / cm 2, more preferably 10 ⁇ 100000J
- Second layer (transparent conductive film or gas barrier film)
- the material of the transparent conductive film which is the second layer of the present invention is not particularly limited as long as it is conductive and transparent, but specifically, an indium oxide film doped with tin (ITO film), Examples thereof include a tin oxide film doped with fluorine (FTO film), a zinc oxide film doped with antimony, and a zinc oxide film doped with indium.
- the gas barrier film is not particularly limited as long as it has gas barrier properties such as oxygen and water vapor, but is preferably a thin film of an inorganic compound, in particular, titanium, zirconium, aluminum, silicon, germanium, indium, tin, tantalum, zinc, A thin film of a metal oxide, metal nitride, metal carbide or a composite thereof having a metal element selected from the group consisting of tungsten and lead is preferred.
- the thickness of the second layer is usually 10 to 300 nm, preferably 10 to 200 nm, more preferably 10 to 100 nm.
- a method of forming a transparent conductive film or gas barrier film made of an inorganic compound on the first layer can be formed by a known method, but physical methods such as sputtering, vacuum deposition, and ion plating are available. It can be performed by a method, a chemical method such as a spray method, a dip method, a thermal CVD method, a plasma CVD method, or the like.
- a film made of silicon oxide can be formed by using, for example, a silicon compound sintered in the presence of oxygen gas as a target, and metal silicon as a target. Films can also be formed by reactive sputtering in the presence of oxygen.
- a film made of silicon oxynitride can be formed on a substrate by supplying silane gas together with oxygen gas and nitrogen gas into a chamber in which plasma is generated and reacting them.
- a film made of silicon oxide can be formed by using, for example, an organic solvent solution containing a silicon compound as an evaporant. In the present invention, it is particularly preferable to form a film by sputtering, vacuum deposition, ion plating, or plasma CVD.
- [D-1] was prepared by adding 12 moles of organosilicon compound and stirring for 12 hours.
- As an electromagnetic radiation curable compound 93.8 g of tack-free urethane acrylate oligomer A and 319.0 g of silica particle dispersion B (manufactured by Nissan Chemical Industries, MIBK-SD) were added and mixed.
- the organic-inorganic composite material [F-1] prepared by the above method is coated on a PET film (Toyobo Co., Ltd., Cosmo Shine A4300, thickness 100 ⁇ m) with a micro gravure coater (manufactured by Yasui Electric) at a thickness of 4 ⁇ m And dried at 150 ° C. by heating.
- a micro gravure coater manufactured by Yasui Electric
- the mold was placed on the organic-inorganic composite material coated on the PET film, and pressed at 60 ° C. under a pressure of 4 MPa for 3 minutes using a nanoimprint apparatus (NANOIMPRINTER manufactured by Myeongchang Kiko).
- FIG. 3 shows an AFM shape image (observation range of 2 ⁇ m square) and an SEM image (magnification of 50,000 times) after forming the transparent conductive layer.
- ITO film indium oxide film
- FIG. 3 shows an AFM shape image (observation range of 2 ⁇ m square) and an SEM image (magnification of 50,000 times) after forming the transparent conductive layer.
- Turbidity / total light transmittance The film slice was measured with a color / turbidity simultaneous measuring device (Nippon Denshoku Industries Co., Ltd .; COH 400). Reflectance: 12 ° specular reflectance was evaluated with a spectrophotometer (Hitachi; U-4100). The measurement wavelength is 250 nm to 850 nm. The back side of the film was rubbed with sandpaper # 100, and measurement was performed while suppressing reflection on the back side. -Adhesiveness ... Tape peeling test was performed as follows.
- Laminate Example 1 provided with the antireflection structure had a total light transmittance of 10% or more and a 12 ° regular reflectance of 10% or more, compared with Comparative Example 2 without the antireflection structure. Further, Example 1 was inferior in total light transmittance and 12 ° regular reflectance as compared with Comparative Example 1 in which no transparent conductive layer was formed, but as a result of AFM and SEM measurement, the antireflection structure was maintained. It was found that a transparent conductive layer was formed.
- Example 2 1 Preparation of organic-inorganic composite material The same procedure as in Example 1 was performed. 2 Formation of concavo-convex pattern on organic / inorganic composite thin film The same procedure as in Example 1 was performed. 3.
- Laminate Example 2 to which the antireflection structure was imparted had a total light transmittance of 9% or higher and a 12 ° regular reflectance of 12% or more, compared with Comparative Example 4 without the antireflection structure. Further, Example 2 was inferior in total light transmittance and 12 ° regular reflectance as compared with Comparative Example 3 in which no gas barrier layer was formed. However, as a result of SEM measurement, the gas barrier was maintained while maintaining the antireflection structure. It was found that a layer was formed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
本願は、2012年 7月 4日に出願された日本国特許出願第2012-150076号に対し優先権を主張し、その内容をここに援用する。
これらのうち、前記表面の凹凸を利用した膜としては、表面の凹凸を利用した膜の1種であるMotheye(モスアイ;蛾の眼)と呼ばれる微細な構造(モスアイ構造)を有する反射防止膜がある。
このようなモスアイ構造の反射防止膜としては、例えば、特許文献1には、光透過性プラスチック基材の少なくとも一方の表面に、微細な凹凸を有し、前記凹凸の周期が35nm~400nmの範囲内であり、且つ前記凹凸の深さが100nm~700nmの範囲内である反射防止膜が開示されている。ここで凹凸は、Ni基体の一方の表面に、微細な凹凸を有し、前記凹凸の周期が35nm~400nmの範囲内であり、かつ、前記凹凸の深さが100nm~700nmの範囲内であるスタンパを用いて光透過性プラスチック樹脂を型押しするか、又はこのスタンパにプラスチック樹脂をキャスティングすることにより形成される。
また、特許文献2には、透明基材上に積層される反射防止膜であって、透明樹脂と該透明樹脂中に分散された微粒子とからなり、前記微粒子の最近接粒子同士の中心間の平均距離が50nm~800nmの範囲にあり、前記反射防止膜中の前記微粒子の配列構造がアモルファス構造であり、且つ、前記反射防止膜の表面に凸部の平均高さが40nm~500nmの範囲にある反射防止膜が開示されている。微粒子の平均粒子径としては、50nm~500nmが好ましいことが開示されている。
さらに、特許文献3には、表面に、平均高さ150nm以上250nm以下の凸部又は平均深さ150nm以上250nm以下の凹部を有し、その凸部又は凹部が、少なくともある一の方向に対し平均周期100nm以上250nm以下で存在し、該凸部の平均高さ又は該凹部の平均深さを該平均周期で割って得られるアスペクト比が1.0以上1.5以下である反射防止膜が開示されている。当該反射防止膜の波長380nm~750nmにおける入射角5°の正反射率は、0.1%以下である。ここでは、凸部又は凹部の形成方法として、型を用いて形状を転写させる方法、微粒子を貼りつける方法、化学物質によってエッチングする方法、微粒子の吹き付けによる方法、有機溶媒を蒸発させ生じた微小水滴を蒸発させる方法等何れも使用できることが記載されており、このうち、型を用いて形状を転写させる方法が、該型を忠実に転写でき、所望の形状を確実に実現できる点で好ましく、アルミニウムを陽極酸化したときに陽極酸化被膜に生じる凹部を型として、その形状を転写させて、反射防止膜の表面に凸部を形成させる方法が、前記平均高さ、平均周期及びアスペクト比について、その特定の数値範囲を実現し易いために特に好ましいことが開示されている。
さらにまた、特許文献4には、透明基板の片面に直接または他の層を介してハードコート層が設けられており、さらに当該ハードコート層の表面に反射防止層が積層された反射防止フィルムが開示されており、ハードコート層には微粒子を含有することにより凹凸を設けることが好ましいことも開示されている。
上記特許文献1~4に記載の反射防止膜はいずれも、その表面に透明導電膜やガスバリア膜等の機能性膜を設けられることまで開示されていない。
他方、出願人は、光感応性化合物の存在下に有機ケイ素化合物に紫外線を照射することにより、表面が非常に高い硬度を有すると共に、内部及び裏面側が適当な硬度を有しつつ、かつ基体との密着性に優れた有機無機複合薄膜(ハードコート膜)を開発し(特許文献5参照)、さらに、膜の表面を無機質にすることにより、有機樹脂の欠点である劣化を防ぎ、耐湿性や耐熱性に優れた有機無機複合薄膜(ハードコート膜)を開発してきた(特許文献6参照)。
(1)樹脂基体上に、第1層、第2層の順に形成された薄膜積層体において、
第1層が、
a)式(I)
RnSiX4-n (I)
(式中、RはSiに炭素原子が直接結合した有機基を表し、Xは水酸基又は加水分解性基を表す。nは1又は2を表し、nが2のとき各Rは同一でも異なっていてもよく、(4-n)が2以上のとき各Xは同一でも異なっていてもよい。)で表される有機ケイ素化合物の縮合物、
b)有機高分子化合物
を含有する、膜厚500nm以上の有機無機複合薄膜であり、
第2層が、膜厚10nm~300nmの透明導電性膜またはガスバリア膜であり、第2層の表面は、高さ40nm~500nm、ピッチ50nm~400nmの微細凸凹構造が形成されており、
波長500nm~700nmにおける入射角12°の表面正反射率が3%以下であることを特徴とする機能性反射防止積層体、
(2)第1層の有機無機複合薄膜が、さらに、平均粒子径が50nm~500nmの金属酸化物粒子の集合体を含有することを特徴とする上記(1)に記載の機能性反射防止積層体、
(3)第1層の有機無機複合薄膜が、さらに金属元素がチタン、ジルコニウム、アルミニウム、スズ、鉛、タンタル又はケイ素の少なくとも1種である金属化合物を含有することを特徴とする上記(1)又は(2)に記載の機能性反射防止積層体、及び、
(4)第1層は、第2層との界面側に式(I)で表される有機ケイ素化合物の縮合物が濃縮した層を有することを特徴とする上記(1)~(3)のいずれかに記載の機能性反射防止積層体に関する。
A)樹脂基体
B)第1層
a)式(I)
RnSiX4-n (I)
(式中、RはSiに炭素原子が直接結合した有機基を表し、Xは水酸基又は加水分解性基を表す。nは1又は2を表し、nが2のとき各Rは同一でも異なっていてもよく、(4-n)が2以上のとき各Xは同一でも異なっていてもよい。)で表される有機ケイ素化合物の縮合物、及び
b)有機高分子化合物
を含有する、膜厚500nm以上である有機無機複合薄膜
C)第2層
膜厚10nm~300nm、好ましくは10nm~100nmの透明導電性膜またはガスバリア膜
第2層の表面は、高さ40nm~500nm、ピッチ50nm~400nmの微細凸凹構造が形成されている。
第1層は第2層との界面側に式(I)で表される有機ケイ素化合物の縮合物が濃縮した層を有し、該濃縮層の炭素原子の濃度は、第2層の表面より400nmの深さの第1層の炭素原子の濃度に比べて20%以上少ないことが好ましい。
上記機能性反射防止積層体は、波長500nm~700nmにおける入射角12°の表面正反射率が3%以下であり、好ましくは2%以下である。
本発明の機能性反射防止積層体の製造工程の概略を図1に示す。
以下に、詳細に説明する。
本発明において使用される樹脂基体は、本発明の積層体を形成することができる限り制限はないが、例えば、ポリアミドイミド、ポリエーテルイミド、ポリイミド、ポリアミノビスマレインイミド等のポリイミド系樹脂;ポリエチレンテレフタレート、ポリエチレン2,6-ナフタレート等のポリエステル系樹脂;フェノール系エポキシ樹脂、アルコール系エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等のエポキシ系樹脂;ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルニトリル、ポリエーテルスルホン等のポリエーテル系樹脂;セルローストリアセテート、セルロースジアセテート、ニトロセルロース等のセルロース系樹脂;ポリスチレン、シンジオタクチックポリスチレン等のポリスチレン系樹脂;エチレン、プロピレン、ブテン等のオレフィンの単独重合体又は共重合体等のポリオレフィン系樹脂;ノルボルネン系樹脂等のシクロオレフィン系樹脂;ナイロン6、ナイロン12、共重合ナイロン等のポリアミド系樹脂;エチレン-ポリビニルアルコール共重合体等のポリビニルアルコール系樹脂;エチレン-四フッ化エチレン共重合体、ポリ三フッ化塩化エチレン、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニル、パーフルオロエチレン-パーフルオロプロピレン-パーフルオロビニルエーテル共重合体等のフッ素系樹脂;ポリカーボネート、ポリビニルブチラート樹脂、ポリアリレート樹脂等が挙げられる。
また、樹脂基体としては、単層フィルムや二層以上をラミネート、コーティング等の手段によって積層させた積層フィルム等が挙げられる。
フィルム状の樹脂基体の厚みは、特に制限されるものではないが、通常1μm~1000μm、好ましくは3μm~500μmである。
本発明の第1層である有機無機複合薄膜は、少なくとも有機ケイ素化合物の縮合物、及び有機高分子化合物を必須成分として含有するが、その他、金属化合物、光重合開始剤、金属酸化物粒子等を含有していてもよい。また、有機無機複合薄膜は通常、厚さが500nm以上であり、好ましくは、1μm~10μmである。厚さが500nm未満では基体の表面凹凸の影響が出やすく、10μmを超えると基体が反り返り易く、屈曲性が悪くなる。
有機ケイ素化合物は、以下の式(I)で表される。
RnSiX4-n (I)
式中、RはSiに炭素原子が直接結合した有機基を表し、Xは水酸基又は加水分解性基を表す。nは1又は2を表し、nが2のとき各Rは同一でも異なっていてもよく、(4-n)が2以上のとき各Xは同一でも異なっていてもよい。
上記「置換されていてもよい炭化水素基」及び「置換されていてもよい炭化水素のポリマーからなる基」の炭化水素基としては、通常、炭素数1~30の炭化水素基であり、例えば、アルキル基、シクロアルキル基、シクロアルキルアルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、アリールアルケニル基等が挙げられる。これらのうち、好ましくは、炭素数1~10の直鎖又は分岐鎖のアルキル基、炭素数3~8のシクロアルキル基、炭素数2~10の直鎖又は分岐鎖のアルケニル基、炭素数3~8のシクロアルケニル基である。
「シクロアルキルアルキル基」としては、炭素数3~8のシクロアルキル基と炭素数1~8のアルキル基の結合した基が挙げられ、例えば、シクロプロピルメチル基、シクロプロピルプロピル基、シクロブチルメチル基、シクロペンチルメチル基、シクロペンチルエチル基、シクロへキシルエチル基、シクロヘプチルメチル基等が挙げられる。
「アリールアルケニル基」としては、炭素数6~10のアリール基と炭素数2~8のアルケニル基が結合した基が挙げられ、例えば、スチリル基、3-フェニル-プロパ-1-エン-1-イル基、3-フェニル-プロパ-2-エン-1-イル基、4-フェニル-ブタ-1-エン-1-イル基、4-フェニル-ブタ-3-エン-1-イル基、5-フェニル-ペンタ-1-エン-1-イル基、5-フェニル-ペンタ-4-エン-1-イル基、8-フェニル-オクタ-1-エン-1-イル基、8-フェニル-オクタ-7-エン-1-イル基、ナフチルエテニル基等が挙げられる。
ここで、エポキシアルキル基としては炭素数3~10の直鎖又は分岐鎖のエポキシアルキル基が好ましく、例えばグリシジル基、グリシジルメチル基、2-グリシジルエチル基、3-グリシジルプロピル基、4-グリシジルブチル基、3,4-エポキシブチル基、4,5-エポキシペンチル基、5,6-エポキシヘキシル基等の直鎖状のエポキシ基を含むアルキル基;
β-メチルグリシジル基、β-エチルグリシジル基、β-プロピルグリシジル基、2-グリシジルプロピル基、2-グリシジルブチル基、3-グリシジルブチル基、2-メチル-3-グリシジルプロピル基、3-メチル-2-グリシジルプロピル基、3-メチル-3,4-エポキシブチル基、3-エチル-3,4-エポキシブチル基、4-メチル-4,5-エポキシペンチル基、5-メチル-5,6-エポキシヘキシル基等の枝分かれ状のエポキシ基を含むアルキル基等
が挙げられる。
「グリシドキシアルキル基」としては、グリシドキシメチル基、グリシドキシプロピル基等が挙げられる。
なお、本発明の有機無機複合薄膜における主成分となる有機ケイ素化合物の縮合物は、これらの有機ケイ素化合物及び/又はその縮合物がさらに縮合したものを意味する。
有機ケイ素化合物の縮合物の配合割合は、有機無機複合薄膜全体の固形分に対して2~98質量%、好ましくは5~50質量%である。有機ケイ素化合物の縮合物の割合が多くなると、基体の樹脂との密着性が悪くなり、逆に少なくなると、濃縮層が形成されにくくなる。
本発明の有機高分子化合物とは、特に限定されるものではなく、熱硬化性化合物の重合物または紫外線硬化性化合物の重合物であるが、好ましくは、光重合開始剤の存在下で紫外線の照射により重合反応を起こす官能基を有する化合物あるいは樹脂を、光重合開始剤の存在下で紫外線の照射により重合反応させたものである。たとえば、(メタ)アクリレート化合物、エポキシ樹脂、前記アクリレート化合物を除くビニル化合物などを重合反応させたものが例示される。官能基の数は、1個以上であれば特に限定されない。
分子量は、有機無機複合体形成用組成物に溶解する限り限度はないが、通常は質量平均分子量として500~250,000、好ましくは1,000~50,000である。
有機高分子化合物の配合割合は、有機無機複合薄膜全体の固形分に対して、通常2~98質量%、好ましくは30~95質量%である。
本発明において使用される光重合開始剤は、(a)光照射によりカチオン種を発生させる化合物及び(b)光照射により活性ラジカル種を発生させる化合物等を挙げることができる。
光照射によりカチオン種を発生させる化合物としては、例えば、カチオン部分が、スルホニウム、ヨードニウム、ジアゾニウム、アンモニウム、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-Feカチオンであり、アニオン部分が、BF4 -、PF6 -、SbF6 -、[BX4]-(ただし、Xは少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基)で構成されるオニウム塩が挙げられる。
具体的に、スルホニウム塩としては、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロホスフェート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドビステトラフルオロボレート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート等が挙げられる。
ヨードニウム塩としては、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
ジアゾニウム塩としては、フェニルジアゾニウムヘキサフルオロホスフェート、フェニルジアゾニウムヘキサフルオロアンチモネート、フェニルジアゾニウムテトラフルオロボレート、フェニルジアゾニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
アンモニウム塩としては、1-ベンジル-2-シアノピリジニウムヘキサフルオロホスフェート、1-ベンジル-2-シアノピリジニウムヘキサフルオロアンチモネート、1-ベンジル-2-シアノピリジニウムテトラフルオロボレート、1-ベンジル-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロホスフェート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロアンチモネート、1-(ナフチルメチル)-2-シアノピリジニウムテトラフルオロボレート、1-(ナフチルメチル)-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-Fe塩としては、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-Fe(II)ヘキサフルオロホスフェート、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-Fe(II)ヘキサフルオロアンチモネート、2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-Fe(II)テトラフルオロボレート、2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-Fe(II)テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
本発明の金属化合物は、屈折率調整、第2層との親和性強化、形状維持、硬度調整のために含有させるものであり、チタン、ジルコニウム、アルミニウム、スズ、鉛、タンタル又はケイ素からなる元素の少なくとも1種を含む金属化合物が好ましく、さらに、チタン、ジルコニウム、アルミニウム、スズが好ましく、特にチタンが好ましい。これらは1種単独で用いてもよいし、2種以上用いることもできる。
金属化合物としては、金属キレート化合物、有機酸金属塩、2以上の水酸基若しくは加水分解性基を有する金属化合物、それらの加水分解物、及びそれらの縮合物からなる群より選ばれる少なくとも1種の化合物等が挙げられる。金属化合物は1種単独、又は、2種以上の組合せで使用することができる。特に、金属キレート化合物、有機酸金属塩、2以上の水酸基若しくは加水分解性基を有する金属化合物の加水分解物及び/又は縮合物であることが好ましく、特に、金属キレート化合物の加水分解物及び/又は縮合物が好ましい。
薄膜中の金属化合物としては、原料である化合物のまま存在するものや、前記化合物がさらに縮合されたもののほか、上述した有機ケイ素化合物等と化学結合したものも包含する。
さらに硬度向上のための金属化合物としては、4官能シランやコロイド状シリカを例示することが出来る。
4官能シランとしては、例えば、テトラアミノシラン、テトラクロロシラン、テトラアセトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトラベンジロキシシラン、テトラフェノキシシラン、テトラ(メタ)アクリロキシシラン、テトラキス[2-(メタ)アクリロキシエトキシ]シラン、テトラキス(2-ビニロキシエトキシ)シラン、テトラグリシジロキシシラン、テトラキス(2-ビニロキシブトキシ)シラン、テトラキス(3-メチル-3-オキセタンメトキシ)シランを挙げることができる。また、コロイド状シリカとしては、水分散コロイド状シリカ、メタノールもしくはイソプロピルアルコールなどの有機溶媒分散コロイド状シリカを挙げることができる。
金属化合物の配合割合は、有機無機複合薄膜全体の固形分に対して、0.1~50質量%、好ましくは10~50質量%である。
本発明の金属酸化物粒子の金属としては、ケイ素、タングステン、アンチモン、ジルコニウム、アルミニウム、チタン、マグネシウム、鉄、スズ、亜鉛、カドミウム、ニッケル、銅、ベリウム、ルテニウム、トリウム、イットリウム、水銀、セシウム、クロム、ランタンなどが挙げられ、金属酸化物としては、シリカ、酸化タングステン、酸化アンチモン、ジルコニア、アルミナ、チタニア、酸化マグネシウム、酸化スズ、酸化亜鉛、酸化カドミウム、酸化イットリウム、酸化ニッケル、酸化銅、酸化ベリウム、酸化ルテニウム、酸化トリウム、酸化水銀、酸化セリウム、酸化クロム等が挙げられる。
用いる金属酸化物粒子は、2次粒子であっても1次粒子であっても特に制限はないが、1次粒子であるのが好ましい。
金属酸化物粒子の平均粒径は、好ましくは、50nm~500nmである。
また、各金属酸化物粒子の表面を、シランカップリング剤等により、表面修飾されたものを用いることができ、具体的には、炭化水素基等で疎水性処理を施されたシリカゾル等を例示することができる。
金属酸化物粒子の配合割合は、有機無機複合体全体の固形分に対して、0.1~50質量%、好ましくは10~50質量%である。
また、第1層の着色防止、厚膜化、下地への紫外線透過防止、防蝕性の付与、耐熱性などの諸特性を発現させるために、別途、充填材を添加・分散させることも可能である。この充填材としては、例えば有機顔料、無機顔料などの非水溶性の顔料または顔料以外の粒子状、繊維状もしくは鱗片状の金属および合金ならびにこれらの酸化物、水酸化物、炭化物、窒化物、硫化物などが挙げられる。この充填材の具体例としては、粒子状、繊維状もしくは鱗片状の鉄、銅、アルミニウム、ニッケル、銀、亜鉛、フェライト、カーボンブラック、ステンレス鋼、二酸化ケイ素、酸化チタン、酸化アルミニウム、酸化クロム、酸化マンガン、酸化鉄、酸化ジルコニウム、酸化コバルト、合成ムライト、水酸化アルミニウム、水酸化鉄、炭化ケイ素、窒化ケイ素、窒化ホウ素、クレー、ケイソウ土、消石灰、石膏、タルク、炭酸バリウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、ベントナイト、雲母、亜鉛緑、クロム緑、コバルト緑、ビリジアン、ギネー緑、コバルトクロム緑、シェーレ緑、緑土、マンガン緑、ピグメントグリーン、群青、紺青、岩群青、コバルト青、セルリアンブルー、ホウ酸銅、モリブデン青、硫化銅、コバルト紫、マルス紫、マンガン紫、ピグメントバイオレット、亜酸化鉛、鉛酸カルシウム、ジンクエロー、硫化鉛、クロム黄、黄土、カドミウム黄、ストロンチウム黄、チタン黄、リサージ、ピグメントエロー、亜酸化銅、カドミウム赤、セレン赤、クロムバーミリオン、ベンガラ、亜鉛白、アンチモン白、塩基性硫酸鉛、チタン白、リトポン、ケイ酸鉛、酸化ジルコン、タングステン白、鉛亜鉛華、バンチソン白、フタル酸鉛、マンガン白、硫酸鉛、黒鉛、ボーンブラック、ダイヤモンドブラック、サーマトミック黒、植物性黒、チタン酸カリウムウィスカー、二硫化モリブデンなどを挙げることができる。
(有機無機複合薄膜形成用溶液の調製)
本発明における有機無機複合薄膜の形成用溶液は、有機ケイ素化合物及び/又はその縮合物、有機高分子化合物の原料及び光重合開始剤、及び必要に応じて、金属化合物、シラノール縮合触媒、金属酸化物粒子、水及び/又は溶媒等のその他の成分を混合して調製される。
本発明の金属化合物はシラノール触媒としても機能するため、金属化合物を使用する場合は、シラノール触媒を使用しなくてもよい。
用いる溶媒としては、特に制限されるものではなく、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ヘキサン、オクタン等の脂肪族炭化水素類;シクロヘキサン、シクロペンタン等の脂環族炭化水素類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;テトラヒドロフラン、ジオキサン等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;メタノール、エタノール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート等の多価アルコール誘導体類等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。
酸としては、有機酸、鉱酸が挙げられ、具体的には例えば、有機酸としては酢酸、ギ酸、シュウ酸、炭酸、フタル酸、トリフルオロ酢酸、p-トルエンスルホン酸、メタンスルホン酸等、鉱酸としては、塩酸、硝酸、ホウ酸、ホウフッ化水素酸等が挙げられる。
ここで、光照射によって酸を発生する光酸発生剤、具体的には、ジフェニルヨードニウムヘキサフルオロホスフェート、トリフェニルホスホニウムヘキサフルオロホスフェート等も包含される。
塩基としては、テトラメチルグアニジン、テトラメチルグアニジルプロピルトリメトキシシラン等の強塩基類;有機アミン類、有機アミンのカルボン酸中和塩、4級アンモニウム塩等が挙げられる。
有機無機複合体形成用原料の固形分(有機ケイ素成分、有機高分子化合物の原料、金属化合物、金属酸化物粒子、シラノール縮合触媒、光重合開始剤等)の全質量に対する、有機ケイ素化合物及び/又はその縮合物、有機高分子化合物、金属化合物、金属酸化物粒子、光重合開始剤等の含有量は、上記有機無機複合膜中の含有量と同様である。
本発明の有機無機複合薄膜の製造方法として、以下の工程を例示することができる。
第1工程:基材上に有機無機複合薄膜形成用溶液を塗工する工程
第2工程:熱及び/又は電磁線によって、塗工面を半硬化させて微細凹凸パターン形成用基材とする工程
第3工程:当該微細凹凸パターン形成用基材に所定の微細凹凸パターンが形成されたマスターモールドをインプリント法により押し付けて微細凹凸パターンを転写する工程
第4工程:転写した当該微細凹凸パターン形成用基材から該マスターモールドを除去した状態、又は除去しない状態で電磁線を照射することにより硬化させる工程
本発明の有機無機複合薄膜形成用溶液を基材の上に塗工して行いうるが、各種の公知の積層方法が使用できる。例えばマイクログラビア塗工、コンマ塗工、バーコーター塗工、エアナイフ塗工、スピンコート塗工、ディップ塗工、オフセット印刷、フレキソ印刷、スクリーン印刷、スプレー塗工などの方法により形成できる。
基材への微細凹凸パターン形成用基材の形成は、基材上に有機無機複合薄膜形成用溶液を塗工等した後に、加熱及び/または電磁線を照射することにより半硬化させて行う。この工程により有機無機複合薄膜形成用溶液中の有機ケイ素化合物の縮合物が架橋し、有機無機複合薄膜層が半硬化する。また希釈溶媒等として有機溶剤を用いた時は、加熱により有機溶剤が除去される。加熱は通常40~200℃、好ましくは50~150℃である。加熱時間は通常10秒~60分、好ましくは30秒~10分である。
基材上に積層された有機無機複合薄膜形成用溶液からの半硬化物である微細凹凸パターン形成用基材に、反射防止機能を有する凹凸構造が形成されたモールドを押し付けて、微細凹凸パターン形成用基材を変形させる。たとえば、油圧式プレス機により特定のパターン形成されたSiウェハモールドを用いて行う。
モールドの押し付けは、公知の手法により行うことができるが、通常、温度が20~200℃において、5秒~10分間行う。
モールドを微細凹凸パターン形成用基材に押し付けたまま電磁線を照射してもよいし、モールドを微細凹凸パターン形成用基材が積層された基材上から取り除いた後、電磁線を照射することもよい。
活性エネルギー線の照射には、例えば、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、エキシマーランプ、カーボンアークランプ、キセノンアークランプ等の公知の装置を用いて行うことができ、照射する光源としては、150~350nmの範囲のいずれかの波長の光を含む光源であることが好ましく、250~310nmの範囲のいずれかの波長の光を含む光源であることがより好ましい。
また、半硬化状態の有機無機複合薄膜層を十分に硬化させるために照射する光の照射光量としては、例えば、0.1~100J/cm2程度が挙げられ、膜硬化効率(照射エネルギーと膜硬化程度の関係)を考慮すると、1~10J/cm2程度であることが好ましく、1~5J/cm2程度であることがより好ましい。
本発明の有機ケイ素化合物の縮合物が濃縮した層はTEM(透過型電子顕微鏡)、あるいはESCA(X線光電子分光法)を用いることにより確認することが出来る。
ここで、「炭素原子の濃度」とは、(全金属原子+酸素原子+炭素原子)を100%とした時の炭素原子のモル濃度を意味する。他の元素の濃度も同様である。
また、「有機ケイ素化合物の縮合物が濃縮した層」をESCA分析による炭素原子の濃度で規定しているが、濃縮した層では、ケイ素の濃度が高くなっている。
本発明においては、炭素濃度が低いほどケイ素濃度が高くなる関係にある。
有機ケイ素化合物の縮合物が濃縮した層の表面の有機物汚れや原料の有機基Rを分解し、表面をSiO2に近い状態に変化させ、ぬれ性および密着性を向上させるには、以下の方法が好ましい。
本発明に置いてプラズマ処理とは、窒素ガス雰囲気でのコロナ放電処理、あるいはヘリウム、アルゴンなどの希ガス雰囲気でのグロープラズマ処理である。
より具体的には、電極対の少なくとも一方を誘電体で被覆した平行平板電極間に、高周波数の高電圧を印加することでプラズマを発生させ、該電極間に基材層を保持する方法、あるいは該電極間で該基材層を移動させる方法が挙げられる。プラズマ処理には、大気圧プラズマ処理と真空プラズマ処理があるが、大気圧プラズマ処理では真空プラズマ処理に比して活性種の密度が高いために、高速、高効率で電極表面の処理ができ、また処理時に真空にする必要がないために、少ない工程数で処理ができるといった利点がある。
本発明の第2層である透明導電性膜の材質は、導電性を有し透明な膜であれば特に限定されないが、具体的には、スズがドープされた酸化インジウム膜(ITO膜)、フッ素がドープされた酸化スズ膜(FTO膜)、アンチモンがドープされた酸化亜鉛膜やインジウムがドープされた酸化亜鉛膜等を例示することができる。
ガスバリア膜は、酸素、水蒸気等のガスバリア性を有する限り特に制限はないが、好ましくは、無機化合物の薄膜であり、特に、チタン、ジルコニウム、アルミニウム、ケイ素、ゲルマニウム、インジウム、スズ、タンタル、亜鉛、タングステン及び鉛から成る群より選ばれた金属元素を有する金属酸化物、金属窒化物、金属炭化物又はそれらの複合物の薄膜が好ましい。
第2層の厚さは、通常10~300nm、好ましくは10~200nm、より好ましくは10~100nmである。膜厚が10nm未満であると均一な膜が得られないことや膜厚が十分ではないことがあり、透明導電性膜又はガスバリア膜としての機能を十分に果たすことができない場合がある。また薄膜にフレキシビリティを保持させるという観点からは200nm以下が好ましく、100nm以下がより好ましい。
無機化合物からなる透明導電性膜又はガスバリア膜を第1層上に形成する方法は、公知の方法により形成することが可能であるが、スパッタリング法、真空蒸着法、イオンプレーティング法等の物理的方法や、スプレー法、ディップ法、熱CVD法、プラズマCVD法等の化学的方法等により行うことができる。
たとえば、スパッター法等によれば、例えばケイ素化合物を酸素ガス存在下で焼結させたもの等をターゲットとして用いることにより、酸化ケイ素からなる膜を成膜することもできし、金属シリコンをターゲットとして酸素存在下で反応性スパッターすることによっても成膜することができる。また、プラズマCVD法によれば、シランガスを、酸素ガスおよび窒素ガスと共に、プラズマを発生させたチャンバーの中に供給し、反応させ、基板上に酸化窒化ケイ素からなる膜を成膜することができる。また、熱CVD法等によれば、例えばケイ素化合物を含有する有機溶媒溶液等を蒸発物として用いることにより、酸化ケイ素からなる膜を成膜することができる。
本発明においては、特に、スパッタリング法、真空蒸着法、イオンプレーティング法又はプラズマCVD法により成膜するのが好ましい。
[実施例1]
ジイソプロポキシビスアセチルアセトナートチタン(日本曹達製、T-50、酸化チタン換算固形分量16.5質量%)50.7gをメチルイソブチルケトン97.6gに溶解させ、溶液[A-1]を作製した。有機ケイ素化合物としてビニルトリメトキシシラン[B-1](信越化学工業製、KBM-1003)97.7gと3-メタクロキシプロピルトリメトキシシラン[B-2](信越化学工業製、KBM-503)70.2gを混合させた液[C-1](ビニルトリメトキシシラン/3-メタクリロキシプロピルトリメトキシシラン=70/30:モル比)を使用した。元素比(Ti/Si=1/9)となるように上記[A-2]148.2gと[C-1]167.8gを混合し、さらにイオン交換水を34.3g(1倍モル/有機ケイ素化合物のモル数)を添加し、12時間攪拌させた[D-1]を作製した。
電磁線硬化性化合物として、タックフリーのウレタンアクリレートオリゴマーA93.8gとシリカ粒子分散液B319.0g(日産化学工業製、MIBK-SD)を加え混合させた。この溶液に光重合開始剤として2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(チバ・スペシャリティ・ケミカルズ製、Irgacure907)をウレタンアクリレートオリゴマーの固形分に対して4質量%となるように溶解させ、溶液[E-1]を作製した。上記[E-1]に、[D-1]265.2gを混合させ。有機無機複合材料[F-1]を作製した。
モールドとしてNILテクノロジー社製の、反射防止構造を持つニッケル電鋳モールドを使用した。モールドは、あらかじめシリカ系界面活性剤からなる有機薄膜形成用有機溶媒溶液SAMLAY(登録商標)(日本曹達社製)で処理して離型性を付与した。
上記方法により調整した有機無機複合材料[F-1]を、PETフィルム(東洋紡績社製、コスモシャインA4300、厚さ100μm)にマイクログラビアコーター(康井電機製)で、4μm厚で塗工し、150℃で加熱乾燥した。
次に、PETフィルム上に塗工した有機無機複合材料の上に上記モールドを乗せ、ナノインプリント装置(明昌機工製 NANOIMPRINTER)を用いて60℃において、4MPaの圧力で3分間プレスした。モールドを取り除いた後、高圧水銀灯により、紫外線を照射した(照射量 1000mJ/cm2@254nm)。AFM(SIIナノテクノロジー社製、SPI-3800N、SPA400ユニット)により有機無機複合材料面を観察したところ、250nmピッチパターンの良好な転写が確認できた。AFMの形状像(観察範囲2μm四方)およびSEM像(倍率5万倍)を図2に示す。
凹凸形状を形成した有機無機複合薄膜上に、DCスパッタ法でスズがドープされた酸化インジウム膜(ITO膜)を約30nm積層した。透明導電層形成後のAFM形状像(観察範囲2μm四方)およびSEM像(倍率5万倍)を図3に示す。
[比較例1]
比較例として、上記実施例1の操作のうち、2までを行った。すなわち、透明導電膜層を形成しなかったものを作製した。
[比較例2]
上記実施例1と同じ操作で有機無機複合薄膜を作製し、凹凸パターンを形成せずに、透明導電層としてITO膜を約30nm積層したものを作製した。
積層膜の評価として、以下の内容を実施した。
・濁度・全光線透過率・・・フィルム切片を色彩・濁度同時測定器(日本電色工業;COH 400)により測定。
・反射率・・・12°正反射率を分光光度計(日立;U-4100)により評価。測定波長は250nm~850nm。フィルム裏面は紙やすり#100でこすり、裏面反射を抑制して測定した。
・密着性・・・テープ剥離試験を以下の要領で実施した。カッターナイフで積層膜を1mm間隔で10×10格子状に傷をつけ、セロテープ(登録商標)を消しゴムでこすりながら貼り付けた後、垂直方向に一気に引き剥がし、膜が剥離していない格子の数を数えた。
・表面形状・・・反射防止構造の形状評価は、上記AFMの他に、FE-SEM(JEOL製)により断面形状を評価した。
結果を表1に示す。
〔実施例2〕
1 有機無機複合材料の調製
〔実施例1〕と同様に行なった。
2 有機無機複合薄膜上への凹凸パターン形成
〔実施例1〕と同様に行なった。
3 ガスバリア膜層の形成
凹凸形状を形成した有機無機複合薄膜上に、窒素雰囲気下、シリコンをターゲットとしたDCスパッタ法で窒化酸化ケイ素膜(SiON膜)を約50nm積層した。ガスバリア層形成後のSEM像(倍率5万倍)を図4に示す。
[比較例3]
比較例として、上記実施例1の操作のうち、2までを行った、すなわち、ガスバリア膜層を形成しなかったものを作製した。
[比較例4]
上記実施例1と同じ操作で有機無機複合薄膜を作製し、凹凸パターンを形成せずに、ガスバリア層としてSiON膜を約50nm積層したものを作製した。
評価方法
実施例1と同様の条件で、濁度・全光線透過率、反射率、密着性及び表面形状について評価を行なった。
結果を表2に示す。
Claims (4)
- 樹脂基体上に、第1層、第2層の順に形成された薄膜積層体において、
第1層が、
a)式(I)
RnSiX4-n (I)
(式中、RはSiに炭素原子が直接結合した有機基を表し、Xは水酸基又は加水分解性基を表す。nは1又は2を表し、nが2のとき各Rは同一でも異なっていてもよく、(4-n)が2以上のとき各Xは同一でも異なっていてもよい。)で表される有機ケイ素化合物の縮合物、
b)有機高分子化合物
を含有する、膜厚500nm以上の有機無機複合薄膜であり、
第2層が、膜厚10nm~300nmの透明導電性膜またはガスバリア膜であり、
第2層の表面は、高さ40nm~500nm、ピッチ50nm~400nmの微細凸凹構造が形成されており、
波長500nm~700nmにおける入射角12°の表面正反射率が3%以下であることを特徴とする機能性反射防止積層体。 - 第1層の有機無機複合薄膜が、さらに、平均粒子径が50nm~500nmの金属酸化物粒子の集合体を含有することを特徴とする請求項1に記載の機能性反射防止積層体。
- 第1層の有機無機複合薄膜が、さらに金属元素がチタン、ジルコニウム、アルミニウム、スズ、鉛、タンタル又はケイ素の少なくとも1種である金属化合物を含有することを特徴とする請求項1又は2に記載の機能性反射防止積層体。
- 第1層は、第2層との界面側に式(I)で表される有機ケイ素化合物の縮合物が濃縮した層を有することを特徴とする請求項1~3のいずれかに記載の機能性反射防止積層体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147034967A KR20150013293A (ko) | 2012-07-04 | 2013-07-01 | 기능성 반사 방지 적층체 |
CN201380032030.4A CN104380150B (zh) | 2012-07-04 | 2013-07-01 | 功能性防反射层叠体 |
JP2014523592A JPWO2014006874A1 (ja) | 2012-07-04 | 2013-07-01 | 機能性反射防止積層体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-150076 | 2012-07-04 | ||
JP2012150076 | 2012-07-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014006874A1 true WO2014006874A1 (ja) | 2014-01-09 |
Family
ID=49881648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/004078 WO2014006874A1 (ja) | 2012-07-04 | 2013-07-01 | 機能性反射防止積層体 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2014006874A1 (ja) |
KR (1) | KR20150013293A (ja) |
CN (1) | CN104380150B (ja) |
TW (1) | TW201410469A (ja) |
WO (1) | WO2014006874A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104380150A (zh) * | 2012-07-04 | 2015-02-25 | 日本曹达株式会社 | 功能性防反射层叠体 |
JP2016188933A (ja) * | 2015-03-30 | 2016-11-04 | 長崎県 | 表面にdlc膜をコーティングしたモスアイ構造を有する透明基材及びその製造方法 |
WO2017094264A1 (ja) * | 2015-12-03 | 2017-06-08 | 日本曹達株式会社 | 導電膜付き基材 |
JP7510640B2 (ja) | 2019-12-17 | 2024-07-04 | 国立研究開発法人産業技術総合研究所 | 反射防止構造体、及びその製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10690823B2 (en) | 2007-08-12 | 2020-06-23 | Toyota Motor Corporation | Omnidirectional structural color made from metal and dielectric layers |
US10788608B2 (en) | 2007-08-12 | 2020-09-29 | Toyota Jidosha Kabushiki Kaisha | Non-color shifting multilayer structures |
US10870740B2 (en) | 2007-08-12 | 2020-12-22 | Toyota Jidosha Kabushiki Kaisha | Non-color shifting multilayer structures and protective coatings thereon |
DE112015001639B4 (de) | 2014-04-01 | 2023-12-14 | Toyota Jidosha Kabushiki Kaisha | Nicht-farbverschiebende mehrschichtige strukturen |
DE102016110192A1 (de) * | 2015-07-07 | 2017-01-12 | Toyota Motor Engineering & Manufacturing North America, Inc. | Omnidirektionale rote strukturelle Farbe hoher Chroma mit Halbleiterabsorberschicht |
JP6687033B2 (ja) * | 2015-09-30 | 2020-04-22 | 住友金属鉱山株式会社 | 導電性基板 |
JP2021523247A (ja) | 2018-06-29 | 2021-09-02 | スリーエム イノベイティブ プロパティズ カンパニー | ポリカーボネートジオール、物品、及び方法を使用して調製されたポリウレタンメタクリレートポリマーを含む光重合性組成物 |
WO2020005413A1 (en) * | 2018-06-29 | 2020-01-02 | 3M Innovative Properties Company | Orthodontic articles prepared using a polycarbonate diol, and methods of making same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003340844A (ja) * | 2002-05-24 | 2003-12-02 | Dainippon Printing Co Ltd | ゾルゲル法による反射防止物品及びその製造方法 |
JP2005031538A (ja) * | 2003-07-10 | 2005-02-03 | Olympus Corp | 反射防止面付光学素子、反射防止面付光学素子を持つ光学系、反射防止面付光学素子を持つ光学系を備えた光学機器 |
WO2008069217A1 (ja) * | 2006-12-05 | 2008-06-12 | Nippon Soda Co., Ltd. | 有機無機複合体 |
JP2008203473A (ja) * | 2007-02-20 | 2008-09-04 | Nissan Motor Co Ltd | 反射防止構造及び構造体 |
JP2009175729A (ja) * | 2007-12-27 | 2009-08-06 | Ind Technol Res Inst | 反射防止板、及びその反射防止構造を製造する方法 |
JP2009276511A (ja) * | 2008-05-14 | 2009-11-26 | Renias:Kk | 反射防止樹脂とその製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3897352B2 (ja) * | 2004-04-30 | 2007-03-22 | 株式会社椿本チエイン | ケーブル類保護案内装置 |
JP2011167924A (ja) * | 2010-02-18 | 2011-09-01 | Kanagawa Acad Of Sci & Technol | 低反射導電性表面を有する材料およびその製造方法 |
JP6077194B2 (ja) * | 2010-12-07 | 2017-02-08 | ソニー株式会社 | 導電性光学素子ならびに情報入力装置および表示装置 |
JPWO2014006874A1 (ja) * | 2012-07-04 | 2016-06-02 | 日本曹達株式会社 | 機能性反射防止積層体 |
-
2013
- 2013-07-01 JP JP2014523592A patent/JPWO2014006874A1/ja active Pending
- 2013-07-01 WO PCT/JP2013/004078 patent/WO2014006874A1/ja active Application Filing
- 2013-07-01 KR KR1020147034967A patent/KR20150013293A/ko active Search and Examination
- 2013-07-01 CN CN201380032030.4A patent/CN104380150B/zh not_active Expired - Fee Related
- 2013-07-03 TW TW102123870A patent/TW201410469A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003340844A (ja) * | 2002-05-24 | 2003-12-02 | Dainippon Printing Co Ltd | ゾルゲル法による反射防止物品及びその製造方法 |
JP2005031538A (ja) * | 2003-07-10 | 2005-02-03 | Olympus Corp | 反射防止面付光学素子、反射防止面付光学素子を持つ光学系、反射防止面付光学素子を持つ光学系を備えた光学機器 |
WO2008069217A1 (ja) * | 2006-12-05 | 2008-06-12 | Nippon Soda Co., Ltd. | 有機無機複合体 |
JP2008203473A (ja) * | 2007-02-20 | 2008-09-04 | Nissan Motor Co Ltd | 反射防止構造及び構造体 |
JP2009175729A (ja) * | 2007-12-27 | 2009-08-06 | Ind Technol Res Inst | 反射防止板、及びその反射防止構造を製造する方法 |
JP2009276511A (ja) * | 2008-05-14 | 2009-11-26 | Renias:Kk | 反射防止樹脂とその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104380150A (zh) * | 2012-07-04 | 2015-02-25 | 日本曹达株式会社 | 功能性防反射层叠体 |
JP2016188933A (ja) * | 2015-03-30 | 2016-11-04 | 長崎県 | 表面にdlc膜をコーティングしたモスアイ構造を有する透明基材及びその製造方法 |
WO2017094264A1 (ja) * | 2015-12-03 | 2017-06-08 | 日本曹達株式会社 | 導電膜付き基材 |
JP7510640B2 (ja) | 2019-12-17 | 2024-07-04 | 国立研究開発法人産業技術総合研究所 | 反射防止構造体、及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014006874A1 (ja) | 2016-06-02 |
TW201410469A (zh) | 2014-03-16 |
KR20150013293A (ko) | 2015-02-04 |
CN104380150B (zh) | 2016-08-24 |
CN104380150A (zh) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014006874A1 (ja) | 機能性反射防止積層体 | |
JP5468265B2 (ja) | 有機無機複合体 | |
TWI408042B (zh) | Production method of copy mold for embossing | |
JP5911182B2 (ja) | 薄膜積層体 | |
KR101565221B1 (ko) | 미세 구조 적층체, 미세 구조 적층체의 제작 방법 및 미세 구조체의 제조 방법 | |
JP5859546B2 (ja) | 有機無機複合体及びその形成用組成物 | |
WO2012017660A1 (ja) | 有機無機複合体及びその形成用組成物 | |
JP5013526B2 (ja) | ハードコートフィルム | |
JP5570007B2 (ja) | 有機無機複合体 | |
JP2017087523A (ja) | 光学積層体、画像表示装置及び硬化性組成物 | |
JP5503316B2 (ja) | 微細凹凸パターン形成用シート | |
JP5883305B2 (ja) | 有機無機複合系薄膜 | |
JP2014015547A (ja) | 有機無機複合薄膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13813044 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014523592 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147034967 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13813044 Country of ref document: EP Kind code of ref document: A1 |