WO2008002607A2 - Electronics with multiple charge rate - Google Patents

Electronics with multiple charge rate Download PDF

Info

Publication number
WO2008002607A2
WO2008002607A2 PCT/US2007/014905 US2007014905W WO2008002607A2 WO 2008002607 A2 WO2008002607 A2 WO 2008002607A2 US 2007014905 W US2007014905 W US 2007014905W WO 2008002607 A2 WO2008002607 A2 WO 2008002607A2
Authority
WO
WIPO (PCT)
Prior art keywords
charge
battery pack
charging
electronic device
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2007/014905
Other languages
English (en)
French (fr)
Other versions
WO2008002607A3 (en
Inventor
Phillip E. Partin
Christina M. Lampe-Onnerud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Power Inc
Original Assignee
Boston Power Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Power Inc filed Critical Boston Power Inc
Priority to CN2007800323612A priority Critical patent/CN101512868B/zh
Priority to JP2009518246A priority patent/JP2009543531A/ja
Priority to EP07809936A priority patent/EP2038981A2/en
Publication of WO2008002607A2 publication Critical patent/WO2008002607A2/en
Publication of WO2008002607A3 publication Critical patent/WO2008002607A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply

Definitions

  • the portable power industry has traditionally been using charge rates between 0.7C and 1C when charging electronic devices, which is the rate used for laptop computers.
  • This current allows the notebook computer's battery pack to be charged at currents that are 70% to 100% of the value of rated capacity of the cells. For example, in a battery pack containing 18650 cells, rated at 2.2Ah, in a 2p3s configuration (two cells in parallel, three cells in series), a charging current of 1C would be equivalent to a charging current of 4.4 A for the pack.
  • This charging current is allowed until a maximum voltage (V max ) is reached, which is typically set at about 4.2V.
  • V max the current is lowered by control circuitry to disallow, in this example, any of the three blocks of two parallel cells to reach voltage levels higher than 4.2V.
  • the charging rate is even slower once V ma ⁇ has been reached.
  • Electronic circuits managing this type of functionality are known in the art and have been implemented in battery packs for notebook computers. For a notebook computer, typical charging times are of several hours to reach a fully charged battery.
  • Li-ion batteries may locally display overcharging, which may deposit lithium onto the carbon anode. This lithium deposit lowers safety of the battery, which may more easily go into thermal runaway, increase its internal gas pressure, and eventually explode.
  • Another problem with fast charging is the rapid change of electrode dimensions, such as thickness variation. Mechanical degradation of the electrode structure is faster during this relatively fast charge than what would be the case for slower charging.
  • An embodiment of the disclosure includes an apparatus for and a corresponding method of charging a charge storage power supply in an electronic device.
  • an electronic device with multiple charge rates comprises the following: a device housing, a charge storage power supply, electronics in the device housing, a charging circuit, and a manually actuated mode switch.
  • the aforementioned charge storage power supply may be coupled to the device housing.
  • the apparatus and method may allow the electronics in the device housing to be powered by said charge storage power supply.
  • the previously mentioned charging circuit may have plural modes of operation to charge the charge storage power supply from an external power source at different charging rates, for example, fast or slow mode charging.
  • the apparatus and method may also allow the manually actuated mode switch to change the charging rate of the charging circuit.
  • the apparatus for and method of charging a charge storage power supply in an electronic device may also include a single storage cell that serves as the charge storage power supply.
  • the charge storage supply may be comprised of multiple cells, preferably in series with no cells in parallel.
  • the mode switch may be located on the battery pack housing of the charge storage power supply.
  • the mode switch may also be implemented in software.
  • the charging circuit may be located in a battery pack housing, which houses the charge storage power supply.
  • Another embodiment of the disclosure may include an apparatus for a battery pack with multiple charge rates comprising the following: a battery pack housing; a charge storage power supply within the battery pack housing; a charging circuit within the battery pack housing having plural modes of operation to charge the charge storage power supply from an external power source at different charging rates; and a manually actuated mode switch to change charging rate of the charging circuit.
  • the charge storage power supply may include a single storage cell or multiple cells in series with no cells in parallel.
  • the apparatus for a battery pack with multiple charge rates may also include normal charge rate and plural fast charge rates.
  • the mode switch may be on the battery pack housing.
  • the battery pack may be coupled to an electronic device, which may be a notebook computer.
  • the mode switch of battery pack coupled to an electronic device may be implemented in software on the electronic device.
  • embodiments of the present invention allow for fast charging of a charge storage power supply that may be coupled to the housing of an electronic device or within the battery pack housing. Additionally, in accordance with the disclosure, an electronic device may be used to more effectively implement a fast charge mode in existing chipsets.
  • Fig. 1 shows a functional block diagram of the electronic circuitry upon which the present embodiment may be implemented.
  • Fig. 2 illustrates a process flow diagram of an exemplary fast charge process.
  • Fig. 3 A illustrates a fast charge button and display on a battery pack upon which the state-of-charge of a battery pack may also be shown.
  • Fig. 3 B provides a close-up view of the aforementioned fast charge button and display on the battery pack of a portable device.
  • Fig. 4A illustrates a notebook computer with a "FAST CHARGE” button located on the keyboard.
  • Fig. 4B shows a close-up view of the "FAST CHARGE” button located on a notebook computer keyboard.
  • Fig. 4C shows an exemplary user interface display window that may appear to present a user with the option to initiate software that will perform the "fast charge” option of the portable device battery pack.
  • Fig. 1 illustrates a functional block diagram of the electronic circuitry 100 in a battery pack as used in current practice upon which the present embodiment may be implemented.
  • a multiple cell battery 101 may be connected to an independent overvoltage protection integrated circuit (OVP) 102, an Analog Front End protection integrated circuit (AFE) 104, and a battery monitor integrated circuit microcontroller (microcontroller) 106.
  • OVP overvoltage protection integrated circuit
  • AFE Analog Front End protection integrated circuit
  • microcontroller battery monitor integrated circuit microcontroller
  • the OVP 102 may allow for monitoring of each cell of the battery pack by comparing each value to an internal reference voltage. By doing so, the OVP 102 may be able to initiate a protection mechanism if cell voltages perform in an undesired manner, e.g., voltages exceeding optimal levels.
  • the OVP 102 is designed to trigger the non-resetting fuse 110 if the preset overvoltage value (i.e., 4.35V, 4.40V, 4.45V, and 4.65V) is exceeded for a preset period of time and provides a third level of safety protection.
  • the preset overvoltage value i.e., 4.35V, 4.40V, 4.45V, and 4.65V
  • the OVP 102 may monitor each individual cell of the multiple cell battery 101 across the Cell 4, Cell 3 , Cell 2, and Cell 1 terminals (which are ordered from the most positive cell to most negative cell, respectively).
  • the OVP 102 is powered by multiple cell battery 101 and may be configured to permit cell control for any individual cell of the multiple cell battery 101.
  • the AFE 104 may be used by the system host controller to monitor battery pack conditions, provide charge and discharge control via charge FET 118 and discharge FET 116 respectively, and to provide updates of the battery status to the system.
  • the AFE 104 communicates with the microcontroller 106 to enhance efficiency and safeness.
  • the AFE 104 may provide power via the VCC connection to the microcontroller 106 using input from a power source (e.g., the multiple cell battery 101), which would eliminate the need for peripheral regulation circuitry.
  • Both the AFE 104 and the microcontroller 106 may have terminals, which may be connected to a series resistor 112 that may allow for monitoring of battery charge and discharge.
  • the AFE 104 may output a voltage value for an individual cell of the multiple cell battery 101 to the VIN terminal of the battery monitor integrated circuit microcontroller 106.
  • the microcontroller 106 communicates with the AFE 104 via the SCLK (clock) and SDATA (data) terminals.
  • the microcontroller 106 may be used to monitor the charge and discharge for the multiple cell battery 101.
  • the microcontroller 106 may monitor the charge and discharge activity using the series resistor 112 placed between the negative cell of the multiple cell battery 101 and the negative terminal of the battery pack.
  • the analog-to-digital converter (ADC) of the microcontroller 106 may be used to measure the charge and discharge flow by monitoring the series resistor 112 terminals.
  • the ADC of the microcontroller 106 may be used to produce control signals to initiate optimal or appropriate safety precautions for the multiple cell battery 101. If the microcontroller 106 detects abnormal or unsafe conditions it will disable the battery pack by triggering the non-resetting fuse 110.
  • the microcontroller 106 may be able to monitor each cell of the multiple cell battery 101 using the CELL terminal of the AFE 104.
  • the ADC may use a counter to permit the integration of signals received over time.
  • the integrating converter may allow for continuous sampling to measure and monitor the battery charge and discharge current by comparing each cell of the multiple cell battery 101 to an internal reference voltage.
  • the display terminal of the microcontroller 106 may be used to run the LED display 108 of the multiple cell battery 101. The display may be initiated by closing a switch 114.
  • the microcontroller 106 may be used to monitor the multiple cell battery 101 conditions and to report such information to the host system controller across a serial communication bus (SMBus).
  • the SMBus communication terminals (SMBC and SMBD) may allow a system host controller, SMBus compatible device, or similar device (hereinafter called "processor") to communicate with the microcontroller 106.
  • a processor may be used to initiate communication with the microcontroller 106 using the SMBC and SMBD pins, which may allow the system to efficiently monitor and manage the multiple cell battery 101.
  • the processor may be the microcontroller 106 itself and may contain internal data flash memory, which can be programmed to include information, such as capacity, internal reference voltage, or other similar programmable information.
  • the AFE 104 and microcontroller 106 provide the primary and secondary means of safety protection in addition to charge and discharge control.
  • Examples of current practice primary safety measures include battery cell and pack voltage protection, charge and discharge overcurrent protection, short circuit protection, and temperature protection.
  • Examples of currently used secondary safety measures include monitoring voltage, battery cell(s), current, and temperature.
  • the continuous sampling of the multiple cell battery 101 may allow the electronic circuitry to monitor or calculate characteristics of a multiple cell battery 101, such as state-of-charge, temperature, charge, or the like.
  • One of the parameters that is controlled by the electronic circuitry 100 is the allowed charging current (ACC).
  • ACC allowed charging current
  • An aspect of the disclosed embodiments is to allow the user of a portable device to have the option to control this parameter by selecting a fast or slow charging mode. When selecting the mode of charging, the ACC parameter changes in addition to other parameters necessary to control the charging of the battery within safe limits. This allows a battery to be optionally charged faster than what would have been traditionally available.
  • the user of the portable device may also control the charge mode by allowing the user to adjust the fast charge mode in steps (e.g., normal, fast, super fast, ultra fast, etc.) or on a continuous scale (e.g., Ix, 2x, 3x, 4x, etc.).
  • steps e.g., normal, fast, super fast, ultra fast, etc.
  • continuous scale e.g., Ix, 2x, 3x, 4x, etc.
  • a user may prefer to have more control over the fast charge mode parameter because such allows the user to balance performance (i.e., battery cycle life) against charge tradeoffs.
  • the program stored for the battery monitor integrated circuit microcontroller 106 may be modified to implement the fast charge indications described herein.
  • the electronic circuit in Fig. 1 could be programmed with parameters suitable for the respective battery used in the battery 101. Each battery manufacturer has unique chemistry and interpretation of how the battery may be used in best mode to provide long cycle life, high capacity, and high safety.
  • a microcontroller used in accordance with the present invention is not limited to the design of Fig. 1.
  • the cells in a multiple cell battery 101 be in series due to different impedances of the cells. Impedance imbalance may result from temperature gradients within the pack and manufacturing variability from cell to cell. Two cells having different impedances may have approximately the same capacity when charged slowly. It may be seen that the cell having the higher impedance reaches its upper voltage limit (V ma ⁇ ) in a measurement set (e.g., 4.2V) earlier than the other cell. If these two cells were in parallel in a battery pack, the charging current would therefore be limited to one cell's performance, which prematurely interrupts the charging for the other cell in parallel. This degrades both pack capacity as well as pack charging rate.
  • V ma ⁇ voltage limit
  • Fig. 2 illustrates a process flow diagram of an exemplary fast charge process
  • Step 200 where a user is presented with the option of choosing the normal charge mode (Step 202) of the portable device battery pack. If the user opts to use the fast charge mode (Step 204), the user can do so via one of three mediums: a switch on the portable device (Step 206), a switch on the battery pack (Step 207), or an icon on the portable device display control panel or menu (Step 208), any one ore more of which may be available. From either of the three mediums, the user can initiate the fast charge function (Step 210). The initiation of the fast charge function (Step 210) can be done either by an alternate firmware setting in the charging battery monitor integrated circuit microcontroller 106 (Step 212) or the logic and charging circuits for fast charging (Step 214).
  • the alternate firmware setting in charging the battery monitor integrated circuit microcontroller 106 uses the logic and charging circuits for fast charging (Step 214).
  • the process will display the charge status to the user (Step 216), which can occur in one of the following mediums: an icon on the portable device control panel or menu (Step 218), an indicator on the portable device (i.e., LED display 108) (Step 220), or an indicator on the portable device battery pack (Step 222).
  • the fast charge process 200 is complete (Step 224).
  • the portable device battery pack may return to normal charge mode (Step 202).
  • Fig. 3A illustrates a fast charge button 300 on a battery pack upon which the fast charge status of a battery pack may also be displayed.
  • This button 300 when pushed, closes switch 114 (see Fig. 1) and triggers the activation of fast charging, which allows the battery to be charged quicker than would normally be allowed. Select numbers of presses of the button may distinguish different functions controlled through switch 114.
  • the fast charge button 300 could also be implemented through software allowing, for example, the use of a mouse click (see Fig. 4C).
  • the fast charge status of the portable device battery pack may be displayed using a display of light-emitting diodes (LEDs) 202.
  • Fig. 3B provides a close-up view of the aforementioned fast charge button 300 and LED display 302 on a portable device battery pack in accordance with the disclosure.
  • Fig. 4A illustrates a model laptop have a "FAST CHARGE” button located on the keyboard.
  • Fig. 4B shows a close-up view of the "FAST CHARGE” button located on the model laptop keyboard.
  • Fig. 4C shows an exemplary pop-up window that may appear to present a user with the option of initiating software that will perform the "fast charge” option of the battery.
  • the user may be presented with the option of charging the portable device battery pack via standard mode or the fast charge mode.
  • the display could show the approximate times either mode may take.
  • the function button brings awareness to electronic device users of the availability of the option of fast charge — compared to the regular charge cycle offered.
  • This button may sit on the face, side or bottom of the laptop device to allow the user to select fast charge.
  • the first step in the process of using the function button is to select the fast charge protocol for a battery pack.
  • the user should select an "activation mode" of circuitry that activates parameters in the electronic circuit having settings suitable for fast charging.
  • the function button may be positioned directly on said battery pack, on the device, in the software, or any combination thereof.
  • the function button may be implemented with multiple portable power type devices, such as laptop computer, cell phone, DVD player, or camcorder.
  • the purpose of the function button is to allow the user to "fast charge” to a charge that is less than 100% in reduced time.
  • the function button may also be connected to a display that displays parametric values, such as percentage (%) of State of Charge (SOC), time to 100% SOC, estimated charge to partial % SOC, and other parameters related to the user's ability to judge when it is appropriate to prematurely (meaning before 100% SOC) interrupt charging sequence.
  • switch includes buttons, physical and display based switches, and can be in the form of knobs, toggles, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
PCT/US2007/014905 2006-06-28 2007-06-27 Electronics with multiple charge rate Ceased WO2008002607A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800323612A CN101512868B (zh) 2006-06-28 2007-06-27 具有多重充电率的电子装置、电池组及充电方法
JP2009518246A JP2009543531A (ja) 2006-06-28 2007-06-27 複数の充電速度で充電可能な電子機器
EP07809936A EP2038981A2 (en) 2006-06-28 2007-06-27 Electronics with multiple charge rate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81697706P 2006-06-28 2006-06-28
US60/816,977 2006-06-28

Publications (2)

Publication Number Publication Date
WO2008002607A2 true WO2008002607A2 (en) 2008-01-03
WO2008002607A3 WO2008002607A3 (en) 2008-03-06

Family

ID=38751627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/014905 Ceased WO2008002607A2 (en) 2006-06-28 2007-06-27 Electronics with multiple charge rate

Country Status (7)

Country Link
US (2) US7825636B2 (enExample)
EP (1) EP2038981A2 (enExample)
JP (1) JP2009543531A (enExample)
KR (1) KR20090035552A (enExample)
CN (1) CN101512868B (enExample)
TW (1) TWI426678B (enExample)
WO (1) WO2008002607A2 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872444B2 (en) 2003-12-11 2011-01-18 Symbol Technologies, Inc. Opportunistic power supply charge system for portable unit
US8084998B2 (en) 2005-07-14 2011-12-27 Boston-Power, Inc. Method and device for controlling a storage voltage of a battery pack
US8138726B2 (en) 2006-06-28 2012-03-20 Boston-Power, Inc. Electronics with multiple charge rate
US8483886B2 (en) 2009-09-01 2013-07-09 Boston-Power, Inc. Large scale battery systems and method of assembly

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200818572A (en) * 2006-10-05 2008-04-16 Wistron Corp Method for adjusting a charging time of an electronic device coupled to a computer system
JP2009116698A (ja) * 2007-11-07 2009-05-28 Toshiba Corp 情報処理装置
KR101549805B1 (ko) 2007-12-10 2015-09-02 바이엘 헬쓰케어, 엘엘씨 배터리로 전원공급되는 체액 분석물질 측정기의 고속 충전 및 전원 관리 방법
US8674662B2 (en) * 2008-02-17 2014-03-18 Dell Products L.P. User selectable charging modes for dynamically charging batteries for an information handling system
US8288994B2 (en) * 2008-03-31 2012-10-16 Lenovo (Singapore) Pte. Ltd. Management of fast battery charging in mobile devices
US8823324B2 (en) * 2008-06-26 2014-09-02 Eveready Battery Company, Inc. Staggered multi-battery battery charging
JP4735683B2 (ja) * 2008-08-22 2011-07-27 ソニー株式会社 充電装置及び充電方法
CN102150101A (zh) * 2008-09-12 2011-08-10 波士顿电力公司 嵌入式电池单元和热管理的方法和设备
JP2012505628A (ja) * 2008-10-07 2012-03-01 ボストン−パワー,インコーポレイテッド 車両および他の大容量適用のためのLiイオン電池アレイ
US20100102780A1 (en) * 2008-10-27 2010-04-29 Tuang-Hock Koh Timekeeper device for a laptop computer storage cabinet
US8716980B2 (en) * 2009-02-04 2014-05-06 Samsung Sdi Co., Ltd. Charge and discharge system of secondary battery and method of controlling charge and discharge of secondary battery
US20100289457A1 (en) * 2009-05-18 2010-11-18 Boston-Power, Inc. Energy efficient and fast charge modes of a rechargeable battery
WO2011028703A2 (en) * 2009-09-01 2011-03-10 Boston-Power, Inc. Safety and performance optimized controls for large scale electric vehicle battery systems
GB2484773B (en) * 2010-10-21 2013-09-11 Chervon Hk Ltd Battery charging system having multiple charging modes
US9385403B2 (en) 2010-11-08 2016-07-05 Raytheon Company Battery pack
JP5758238B2 (ja) * 2011-09-02 2015-08-05 東芝テック株式会社 商品情報処理装置および商品情報処理装置の制御方法
US20130282499A1 (en) * 2012-03-27 2013-10-24 Toshiba Tec Kabushiki Kaisha Pos terminal
US9231434B2 (en) * 2012-06-26 2016-01-05 Intel Corporation Charging a battery using a multi-rate charge
JP6313534B2 (ja) * 2012-07-30 2018-04-18 株式会社東芝 蓄電池システム
CN103532211B (zh) * 2013-10-29 2016-06-08 宇龙计算机通信科技(深圳)有限公司 终端和充电控制方法
US9450440B2 (en) * 2013-11-26 2016-09-20 Lenovo (Singapore) Pte. Ltd. High capacity batteries with on-demand fast charge capability
US10396568B2 (en) 2014-06-03 2019-08-27 Traxxas Lp Battery charger with user interface
US10431992B2 (en) * 2014-06-03 2019-10-01 Traxxas Lp Battery charger with user interface
CN206585005U (zh) 2014-06-03 2017-10-24 特拉克赛卡斯公司 电池、可再充电电池、电动设备、电连接器、母电连接器和公电连接器
CN104065149B (zh) * 2014-07-09 2016-09-14 昂宝电子(上海)有限公司 充电控制电路、反激式电源变换系统及充电控制方法
US9696782B2 (en) 2015-02-09 2017-07-04 Microsoft Technology Licensing, Llc Battery parameter-based power management for suppressing power spikes
US10158148B2 (en) 2015-02-18 2018-12-18 Microsoft Technology Licensing, Llc Dynamically changing internal state of a battery
US9748765B2 (en) 2015-02-26 2017-08-29 Microsoft Technology Licensing, Llc Load allocation for multi-battery devices
US9893542B2 (en) * 2015-06-04 2018-02-13 Google Llc Systems and methods for battery charging
US9939862B2 (en) 2015-11-13 2018-04-10 Microsoft Technology Licensing, Llc Latency-based energy storage device selection
US10061366B2 (en) 2015-11-17 2018-08-28 Microsoft Technology Licensing, Llc Schedule-based energy storage device selection
US10250052B2 (en) * 2015-12-03 2019-04-02 Qualcomm Incorporated Charge rate optimization for enhanced battery cycle life
US9793570B2 (en) 2015-12-04 2017-10-17 Microsoft Technology Licensing, Llc Shared electrode battery
US10439418B2 (en) * 2016-07-29 2019-10-08 Lenovo (Singapore) Pte. Ltd. Systems and methods to charge a battery at different charge rates and indicate when charging at a faster rate is available
US10263449B2 (en) 2017-06-30 2019-04-16 Bose Corporation Battery charging systems and methods
KR102458525B1 (ko) * 2017-11-06 2022-10-26 주식회사 엘지에너지솔루션 체결 인식 기능을 갖춘 배터리 팩
JP2019175755A (ja) * 2018-03-29 2019-10-10 セイコーエプソン株式会社 回路装置、制御装置、受電装置及び電子機器
US10931099B1 (en) 2020-02-26 2021-02-23 Calamp Corp. Systems and methods for automatic threshold sensing for UVLO circuits in a multi-battery environment
WO2021173128A1 (en) * 2020-02-26 2021-09-02 Calamp Corp. Systems and methods for automatic threshold sensing for uvlo circuits in a multi-battery environment
US20210336464A1 (en) * 2020-04-28 2021-10-28 Intel Corporation Inference based fast charging
TWI838654B (zh) * 2021-10-19 2024-04-11 廣達電腦股份有限公司 智能電池裝置及其快速充電的方法
US20230344262A1 (en) * 2022-04-25 2023-10-26 Apple Inc. System and method for variable discharging techniques of a battery cell
US20240250547A1 (en) * 2023-01-19 2024-07-25 Dell Products L.P. Adaptive battery backup unit charging system and method

Family Cites Families (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665285A (en) * 1970-05-27 1972-05-23 Gen Electric Polarity-mated rechargeable battery and charging unit
US4280578A (en) 1979-02-21 1981-07-28 Margaret P. Roberts Motorized walker for the disabled
US5493199A (en) * 1982-06-07 1996-02-20 Norand Corporation Fast battery charger
US4553081A (en) 1982-06-07 1985-11-12 Norand Corporation Portable battery powered system
US4670703A (en) * 1985-05-06 1987-06-02 General Electric Company Battery charger with three different charging rates
GB2242793B (en) * 1990-04-05 1994-08-10 Technophone Ltd Battery charging apparatus
DE69319106D1 (de) 1992-03-18 1998-07-16 Ast Research Inc Stromversorgungs-und batterie-ladesystem
CA2098468C (en) * 1992-07-07 1998-09-01 David J. Theobald Method for battery charging
US5325040A (en) * 1992-09-21 1994-06-28 Motorola, Inc. Method and apparatus for charging a battery powered electronic device
CA2109360A1 (en) 1992-12-21 1994-06-22 Mitsubishi Chemical Corporation Porous film or sheet, battery separator and lithium battery
JP3157369B2 (ja) 1993-10-29 2001-04-16 三洋電機株式会社 二次電池の保護方法及び保護装置
US5506490A (en) * 1993-11-09 1996-04-09 Motorola, Inc. Method and apparatus for determining external power supply type
US5471128A (en) 1993-11-26 1995-11-28 Motorola, Inc. Battery and method for charging/discharging the battery
US5504415A (en) 1993-12-03 1996-04-02 Electronic Power Technology, Inc. Method and apparatus for automatic equalization of series-connected batteries
US5677944A (en) * 1993-12-22 1997-10-14 Matsushita Electric Industrial Co., Ltd. Cordless telephone with battery measuring section
JPH07231294A (ja) * 1993-12-22 1995-08-29 Matsushita Electric Ind Co Ltd コードレス電話装置および充電台
US5694021A (en) 1994-02-28 1997-12-02 Kabushiki Kaisha Toshiba System for executing charge control of a secondary battery and detecting the capacitance thereof
US5567539A (en) 1994-05-23 1996-10-22 Fuji Photo Film Co., Ltd. Non-aqueous secondary cell
JP3296385B2 (ja) 1994-07-06 2002-06-24 ミツミ電機株式会社 電池の電圧検出回路
US5565756A (en) 1994-07-11 1996-10-15 Motorola, Inc. Microprocessor controlled portable battery charger and method of charging using same
US5714866A (en) 1994-09-08 1998-02-03 National Semiconductor Corporation Method and apparatus for fast battery charging using neural network fuzzy logic based control
JPH08103029A (ja) * 1994-09-30 1996-04-16 Sony Corp バッテリパック、充電器、および充電用アダプタ
US5670861A (en) 1995-01-17 1997-09-23 Norvik Tractions Inc. Battery energy monitoring circuits
US6184656B1 (en) 1995-06-28 2001-02-06 Aevt, Inc. Radio frequency energy management system
CA2156800C (en) 1995-08-23 2003-04-29 Huanyu Mao Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
US5871863A (en) 1995-09-06 1999-02-16 Fuji Photo Film Co., Ltd. Lithium ion secondary battery
CA2163187C (en) 1995-11-17 2003-04-15 Huanyu Mao Aromatic monomer gassing agents for protecting non-aqueous lithium batteries against overcharge
JPH09167618A (ja) 1995-12-19 1997-06-24 Fuji Photo Film Co Ltd 非水二次電池
US5789902A (en) 1996-02-22 1998-08-04 Hitachi Metals, Ltd. Bi-direction current control circuit for monitoring charge/discharge of a battery
US6159636A (en) 1996-04-08 2000-12-12 The Gillette Company Mixtures of lithium manganese oxide spinel as cathode active material
KR980006710A (ko) 1996-06-29 1998-03-30 김광호 메모리 효과 방지를 위한 배터리 충전기
US6239579B1 (en) 1996-07-05 2001-05-29 Estco Battery Management Inc. Device for managing battery packs by selectively monitoring and assessing the operative capacity of the battery modules in the pack
KR100286372B1 (ko) * 1996-09-06 2001-04-16 윤종용 휴대용 컴퓨터
WO1998011646A1 (en) 1996-09-10 1998-03-19 Philips Electronics N.V. Battery-powered electrical device
GB2320261B (en) 1996-11-11 2000-10-25 Nippon Kodoshi Corp Method of manufacturing highly-airtight porous paper, highly airtight porous paper manufactured by the method, and non-aqueous battery using the paper
US6265107B1 (en) 1996-12-16 2001-07-24 Daikin Industries, Ltd. Binder for rechargeable battery with nonaqueous electrolyte and battery electrode depolarizing mix prepared using the same
EP0849817A3 (en) 1996-12-20 1999-03-24 Japan Storage Battery Company Limited Positive active material for lithium battery having the same, and method for producing the same
US6133709A (en) 1997-01-21 2000-10-17 Metrixx Limited Signalling system
US6275497B1 (en) 1997-02-10 2001-08-14 Hybrid Networks, Inc. Method and apparatus for controlling communication channels using contention and polling schemes
JPH10268985A (ja) 1997-03-27 1998-10-09 Toshiba Corp 電源制御装置および電源制御方法
JP3204160B2 (ja) 1997-05-12 2001-09-04 インターナショナル・ビジネス・マシーンズ・コーポレーション バッテリパック及び電気・電子機器
WO1998054778A1 (en) 1997-05-27 1998-12-03 Tdk Corporation Non-aqueous electrolytic secondary cell
JP3503453B2 (ja) 1997-12-26 2004-03-08 株式会社日立製作所 電池システム及びそれを用いた電気自動車
US6558846B1 (en) 1998-03-17 2003-05-06 Asahi Glass Company Ltd. Secondary power source
JP3524762B2 (ja) 1998-03-19 2004-05-10 三洋電機株式会社 リチウム二次電池
US5896024A (en) * 1998-03-24 1999-04-20 Black & Decker, Inc. Method and apparatus for manually selecting battery charging process
US6835491B2 (en) 1998-04-02 2004-12-28 The Board Of Trustees Of The University Of Illinois Battery having a built-in controller
US6218806B1 (en) * 1998-06-03 2001-04-17 Black & Decker Inc. Method and apparatus for obtaining product use information
JP2000012030A (ja) 1998-06-24 2000-01-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP3142522B2 (ja) 1998-07-13 2001-03-07 日本碍子株式会社 リチウム二次電池
US20010020927A1 (en) 1998-08-24 2001-09-13 Kyoko Ikawa Secondary cell using system
US6682850B1 (en) 1998-08-27 2004-01-27 Nec Corporation Nonaqueous electrolyte solution secondary battery using lithium-manganese composite oxide for positive electrode
US6267943B1 (en) 1998-10-15 2001-07-31 Fmc Corporation Lithium manganese oxide spinel compound and method of preparing same
US5939864A (en) * 1998-10-28 1999-08-17 Space Systems/Loral, Inc. Lithium-ion battery charge control method
JP2000200605A (ja) 1998-10-30 2000-07-18 Sanyo Electric Co Ltd 非水電解質電池およびその製造方法
US5986433A (en) * 1998-10-30 1999-11-16 Ericsson, Inc. Multi-rate charger with auto reset
AU5601299A (en) 1998-11-04 2000-05-11 Wilson Greatbatch Ltd. Mixed cathode material for high energy density electrochemical cells
US6296065B1 (en) 1998-12-30 2001-10-02 Black & Decker Inc. Dual-mode non-isolated corded system for transportable cordless power tools
JP3754218B2 (ja) 1999-01-25 2006-03-08 三洋電機株式会社 非水電解質電池用正極及びその製造方法、ならびこの正極を用いた非水電解質電池及びその製造方法
TW439342B (en) 1999-02-01 2001-06-07 Mitac Int Corp An external charging/discharging device
JP3869605B2 (ja) 1999-03-01 2007-01-17 三洋電機株式会社 非水電解質二次電池
JP2000323186A (ja) 1999-05-07 2000-11-24 Sanyo Electric Co Ltd 電子機器のバッテリー装置
US6166522A (en) 1999-06-08 2000-12-26 Motorola, Inc. Battery conditioning scheme
US6114835A (en) 1999-07-26 2000-09-05 Unitrode Corporation Multi-cell battery pack charge balancing circuit
JP2001128389A (ja) 1999-10-22 2001-05-11 Sony Corp 電源ユニット
JP4159212B2 (ja) 1999-11-12 2008-10-01 三洋電機株式会社 非水電解質二次電池
JP2001223008A (ja) 1999-12-02 2001-08-17 Honjo Chemical Corp リチウムイオン二次電池、そのための正極活物質及びその製造方法
JP2001195353A (ja) 2000-01-06 2001-07-19 Rohm Co Ltd Dma転送システム
JP4383681B2 (ja) 2000-02-28 2009-12-16 三星エスディアイ株式会社 リチウム二次電池用正極活物質及びその製造方法
JP3705728B2 (ja) 2000-02-29 2005-10-12 株式会社東芝 非水電解液二次電池
JP4392103B2 (ja) 2000-03-30 2009-12-24 セイコーインスツル株式会社 充放電制御回路および充電式電源装置
JP4020565B2 (ja) 2000-03-31 2007-12-12 三洋電機株式会社 非水電解質二次電池
JP3959929B2 (ja) 2000-04-25 2007-08-15 ソニー株式会社 正極及び非水電解質電池
JP4821023B2 (ja) 2000-05-08 2011-11-24 国立大学法人佐賀大学 リチウム二次電池用正極およびこれを用いたリチウムイオン電池
JP2001328818A (ja) 2000-05-19 2001-11-27 National Institute For Materials Science 層状リチウムコバルトマンガン酸化物粒子粉末、およびその製造方法
TW531924B (en) 2000-05-26 2003-05-11 Sony Corp Nonaqueous electrolyte secondary battery
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6677082B2 (en) 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP2002042815A (ja) 2000-07-25 2002-02-08 Kee:Kk 非水系二次電池
JP3890185B2 (ja) 2000-07-27 2007-03-07 松下電器産業株式会社 正極活物質およびこれを含む非水電解質二次電池
JP4524881B2 (ja) 2000-08-14 2010-08-18 ソニー株式会社 非水電解質二次電池
JP2002075369A (ja) 2000-09-04 2002-03-15 Kee:Kk 高容量リチウムイオン二次電池
JP4183374B2 (ja) 2000-09-29 2008-11-19 三洋電機株式会社 非水電解質二次電池
JP2002204532A (ja) 2001-01-05 2002-07-19 Seiko Instruments Inc バッテリー状態監視回路およびバッテリー装置
TW501293B (en) 2001-01-06 2002-09-01 Acer Inc Method and device to raise the battery efficiency of portable electronic device
JP4878683B2 (ja) 2001-01-23 2012-02-15 三洋電機株式会社 リチウム二次電池
JP4878687B2 (ja) 2001-02-23 2012-02-15 三洋電機株式会社 リチウム二次電池
JP4055368B2 (ja) 2001-02-27 2008-03-05 日本電気株式会社 二次電池
EP1296391A4 (en) 2001-03-22 2006-06-28 Matsushita Electric Industrial Co Ltd POSITIF ELECTRODE ACTIVE MATERIAL AND THIS NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US6342774B1 (en) * 2001-03-27 2002-01-29 Motorola, Inc. Battery having user charge capacity control
US7138207B2 (en) 2001-04-20 2006-11-21 Sony Corporation Non-aqueous electrolyte secondary cell
JP3631166B2 (ja) 2001-05-31 2005-03-23 三洋電機株式会社 非水電解質二次電池
WO2002098315A2 (de) * 2001-06-07 2002-12-12 Kaltenbach & Voigt Gmbh & Co. Kg Dentalmedizinisches instrument, versorgungsgerät, pflegegerät und system für das dentalmedizinische instrument
JP4510331B2 (ja) 2001-06-27 2010-07-21 パナソニック株式会社 非水電解質二次電池
JP3799254B2 (ja) * 2001-08-31 2006-07-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 電気機器、コンピュータ装置、電気機器における充電方法、およびプログラム
JP3827545B2 (ja) 2001-09-13 2006-09-27 松下電器産業株式会社 正極活物質、その製造方法および非水電解質二次電池
JP4836371B2 (ja) 2001-09-13 2011-12-14 パナソニック株式会社 正極活物質およびこれを含む非水電解質二次電池
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
TW200302618A (en) * 2001-11-02 2003-08-01 Aker Wade Power Technologies Llc Fast charger for high capacity batteries
JP2003169424A (ja) * 2001-11-29 2003-06-13 Teruhito Irifune 二次電池の充電方法、充電装置
CA2471455C (en) 2001-12-21 2014-08-05 Massachusetts Institute Of Technology Conductive lithium storage electrode
JP3619807B2 (ja) 2001-12-27 2005-02-16 三洋電機株式会社 非水電解質電池
KR100441524B1 (ko) 2002-01-24 2004-07-23 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 슬러리 조성물
US7049031B2 (en) 2002-01-29 2006-05-23 The University Of Chicago Protective coating on positive lithium-metal-oxide electrodes for lithium batteries
JP2003229125A (ja) 2002-01-31 2003-08-15 Sanyo Electric Co Ltd 非水電解質電池
US7358009B2 (en) 2002-02-15 2008-04-15 Uchicago Argonne, Llc Layered electrodes for lithium cells and batteries
JP4197237B2 (ja) 2002-03-01 2008-12-17 パナソニック株式会社 正極活物質の製造方法
KR20030083476A (ko) 2002-04-23 2003-10-30 주식회사 엘지화학 수명 특성과 안전성이 우수한 리튬 금속 복합 산화물 및이의 제조 방법
US6700350B2 (en) 2002-05-30 2004-03-02 Texas Instruments Incorporated Method and apparatus for controlling charge balance among cells while charging a battery array
JP2004006094A (ja) 2002-05-31 2004-01-08 Nec Corp 非水電解液二次電池
US20040202933A1 (en) 2002-07-16 2004-10-14 Takahiro Yamaki Cathode active material for use in lithium ion secondary battery, and lithium ion secondary battery using the active material
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2004139743A (ja) 2002-08-21 2004-05-13 Sanyo Electric Co Ltd 非水電解質二次電池
CA2496513A1 (en) 2002-08-22 2004-03-04 Teijin Limited Non-aqueous secondary battery and separator used therefor
JP3632686B2 (ja) 2002-08-27 2005-03-23 ソニー株式会社 正極活物質及び非水電解質二次電池
JP4501344B2 (ja) 2003-01-23 2010-07-14 ソニー株式会社 二次電池
JP4201619B2 (ja) 2003-02-26 2008-12-24 三洋電機株式会社 非水電解質二次電池、及びそれに使用する電極の製造方法
TW200417706A (en) 2003-03-13 2004-09-16 Wetek Corp The method and apparatus for auto charging-discharging and monitoring of the urgent lighting
CN1534821A (zh) 2003-03-28 2004-10-06 ������������ʽ���� 非水电解质电池
JP4085986B2 (ja) 2003-04-01 2008-05-14 ソニー株式会社 電池
US7041239B2 (en) 2003-04-03 2006-05-09 Valence Technology, Inc. Electrodes comprising mixed active particles
US7314682B2 (en) 2003-04-24 2008-01-01 Uchicago Argonne, Llc Lithium metal oxide electrodes for lithium batteries
US7556889B2 (en) 2003-05-26 2009-07-07 Nec Corporation Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
JP3901140B2 (ja) * 2003-08-26 2007-04-04 松下電工株式会社 充電器
GB0321091D0 (en) * 2003-09-09 2003-10-08 Alizyme Therapeutics Ltd Synthesis
EP2270901B1 (en) 2003-09-26 2012-12-26 LG Chem, Ltd. Method for regulating terminal voltage of cathode during overdischarge and cathode active matrial for lithium secondary battery
JP4554911B2 (ja) 2003-11-07 2010-09-29 パナソニック株式会社 非水電解質二次電池
KR100548988B1 (ko) 2003-11-26 2006-02-02 학교법인 한양학원 리튬이차전지용 양극활물질 제조방법, 그 방법에 사용되는반응기 및 그 방법으로 제조되는 리튬이차전지용 양극활물질
JP5135664B2 (ja) 2003-12-05 2013-02-06 日産自動車株式会社 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP4100341B2 (ja) 2003-12-26 2008-06-11 新神戸電機株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
CN100338800C (zh) 2004-02-17 2007-09-19 比亚迪股份有限公司 一种锂电池正极及其制备方法以及锂离子二次电池
CN100438195C (zh) 2004-05-22 2008-11-26 比亚迪股份有限公司 一种锂离子二次电池
WO2006056744A1 (en) * 2004-11-25 2006-06-01 Moixa Energy Holdings Limited Rechargeable battery assembly
WO2006071972A2 (en) 2004-12-28 2006-07-06 Boston-Power, Inc. Lithium-ion secondary battery
US7811707B2 (en) 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
US20080008933A1 (en) 2005-12-23 2008-01-10 Boston-Power, Inc. Lithium-ion secondary battery
JP5050325B2 (ja) 2005-07-12 2012-10-17 日産自動車株式会社 組電池用制御装置
WO2007011661A1 (en) 2005-07-14 2007-01-25 Boston-Power, Inc. Control electronics for li-ion batteries
JP3927584B2 (ja) 2005-10-26 2007-06-13 三菱電機株式会社 自動車用動力制御装置
JP4963827B2 (ja) 2005-11-29 2012-06-27 三洋電機株式会社 組電池の漏電検出回路と漏電検出方法
JP4853004B2 (ja) 2005-12-08 2012-01-11 トヨタ自動車株式会社 燃料電池車
JP4827613B2 (ja) 2006-05-24 2011-11-30 株式会社ソニー・コンピュータエンタテインメント 端末装置、バッテリ充電制御方法およびゲームシステム
US8003241B2 (en) 2006-06-23 2011-08-23 Boston-Power, Inc. Lithium battery with external positive thermal coefficient layer
ATE487241T1 (de) 2006-06-23 2010-11-15 Boston Power Inc Lithiumbatterie mit einer externen schicht mit positivem wärmeausdehnungskoeffizienten
EP2038944B1 (en) 2006-06-27 2011-11-30 Boston-Power, Inc. Integrated current-interrupt device for lithium-ion cells
TWI426678B (zh) 2006-06-28 2014-02-11 Boston Power Inc 具有多重充電率之電子裝置、電池組、充電於電子裝置中的鋰離子電荷儲存電源供應器之方法及可攜式電腦
WO2009002438A1 (en) 2007-06-22 2008-12-31 Boston-Power, Inc. Cid retention device for li-ion cell
JP5335207B2 (ja) 2007-07-05 2013-11-06 キヤノン株式会社 電子機器
CN102150101A (zh) 2008-09-12 2011-08-10 波士顿电力公司 嵌入式电池单元和热管理的方法和设备
JP2012505628A (ja) 2008-10-07 2012-03-01 ボストン−パワー,インコーポレイテッド 車両および他の大容量適用のためのLiイオン電池アレイ
US20100289457A1 (en) 2009-05-18 2010-11-18 Boston-Power, Inc. Energy efficient and fast charge modes of a rechargeable battery
WO2011028703A2 (en) 2009-09-01 2011-03-10 Boston-Power, Inc. Safety and performance optimized controls for large scale electric vehicle battery systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872444B2 (en) 2003-12-11 2011-01-18 Symbol Technologies, Inc. Opportunistic power supply charge system for portable unit
US8084998B2 (en) 2005-07-14 2011-12-27 Boston-Power, Inc. Method and device for controlling a storage voltage of a battery pack
US8138726B2 (en) 2006-06-28 2012-03-20 Boston-Power, Inc. Electronics with multiple charge rate
US8483886B2 (en) 2009-09-01 2013-07-09 Boston-Power, Inc. Large scale battery systems and method of assembly

Also Published As

Publication number Publication date
US20110115434A1 (en) 2011-05-19
EP2038981A2 (en) 2009-03-25
US8138726B2 (en) 2012-03-20
JP2009543531A (ja) 2009-12-03
TWI426678B (zh) 2014-02-11
TW200820541A (en) 2008-05-01
US7825636B2 (en) 2010-11-02
US20080048614A1 (en) 2008-02-28
CN101512868B (zh) 2012-07-18
WO2008002607A3 (en) 2008-03-06
KR20090035552A (ko) 2009-04-09
CN101512868A (zh) 2009-08-19

Similar Documents

Publication Publication Date Title
US7825636B2 (en) Electronics with multiple charge rate
US20100289457A1 (en) Energy efficient and fast charge modes of a rechargeable battery
US7928696B2 (en) Method for ensuring safe use of a battery pack after impact
CN100492753C (zh) 电池组以及用该电池组作为电源的无绳电动工具
CN101689762B (zh) 用于为蓄电池充电的装置、尤其是充电设备装置
JP4194399B2 (ja) 組電池、並びに、その充電装置およびその方法
TW200531397A (en) Battery pack, battery protection processing apparatus, and control method of the battery protection processing apparatus
KR101442188B1 (ko) 배터리 팩 과열 경고 장치 및 방법
US7825624B2 (en) Battery-operated power output device
KR20140094349A (ko) 배터리의 충전 방법 및 이에 따른 배터리 팩
CN101246975A (zh) 电子设备及其充电方法和电池
CN111106400B (zh) 一种电池控制方法和电池管理设备
WO2021190320A1 (zh) 电池充电保护方法、充电保护装置、移动终端及存储介质
CN101222144B (zh) 可携式电子装置的充电方法
TWI727264B (zh) 可攜式電子裝置與其電池電量管理方法
JP2003346918A (ja) 充電式バッテリの管理方法
CN201134687Y (zh) 延长电池寿命的充电模块
TW201438322A (zh) 用以延長鋰離子與類似型態電池之使用壽命的系統與方法
JP2006148997A (ja) 充電装置及び充電方法
JP2002017049A (ja) 充放電システム
JP2012200113A (ja) 電池パック及び充電システム
CN209088569U (zh) 电源控制装置
WO2006001088A1 (ja) 太陽電池式充電装置
JP2677072B2 (ja) 二次電池の充電回路
TWI552481B (zh) 兼顧分充之電芯主動平衡充電方法及其控制系統

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032361.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07809936

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009518246

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

REEP Request for entry into the european phase

Ref document number: 2007809936

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097001812

Country of ref document: KR

Ref document number: 2007809936

Country of ref document: EP