WO2007141984A1 - ハイブリッド車両の制御装置およびハイブリッド車両 - Google Patents

ハイブリッド車両の制御装置およびハイブリッド車両 Download PDF

Info

Publication number
WO2007141984A1
WO2007141984A1 PCT/JP2007/059561 JP2007059561W WO2007141984A1 WO 2007141984 A1 WO2007141984 A1 WO 2007141984A1 JP 2007059561 W JP2007059561 W JP 2007059561W WO 2007141984 A1 WO2007141984 A1 WO 2007141984A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
value
hybrid vehicle
control unit
mode
Prior art date
Application number
PCT/JP2007/059561
Other languages
English (en)
French (fr)
Inventor
Takashi Kawai
Naoki Asai
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to JP2008520465A priority Critical patent/JP4434302B2/ja
Priority to US12/227,375 priority patent/US8660725B2/en
Priority to EP07742996.7A priority patent/EP2025904B1/en
Priority to KR1020097000180A priority patent/KR101085506B1/ko
Priority to CN2007800208563A priority patent/CN101460726B/zh
Publication of WO2007141984A1 publication Critical patent/WO2007141984A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/103Accelerator thresholds, e.g. kickdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/14Starting of engines by means of electric starters with external current supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/046Energy or power necessary for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/104Control of the starter motor torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a hybrid vehicle control device and a hybrid vehicle, and more particularly to engine start control. Background art
  • a hybrid vehicle is capable of running using only a motor without using an engine, that is, EV running if the state of charge of the battery is sufficient.
  • Japanese Laid-Open Patent Publication No. 2 0 3-3 4 3 3 0 4 discloses a hybrid vehicle that starts the engine when the amount of change in the accelerator opening is large during EV traveling. This enhances acceleration response.
  • Hybrid vehicles are also being studied that adopt a configuration that allows charging from the outside by increasing the battery capacity and reducing the engine operation rate and reducing fuel supply. Such a vehicle is referred to as an externally chargeable hybrid vehicle.
  • the battery With externally chargeable hybrid vehicles, the battery has a higher output and higher capacity compared to a normal hybrid vehicle that replenishes only fuel. It will actively drive EVs with the aim of improving fuel efficiency and reducing carbon dioxide emissions.
  • Fig. 14 is a waveform diagram for explaining an example in which the acceleration response deteriorates.
  • the engine start threshold is set for the required drive output PD (power required for driving the vehicle). In other words, the engine starts when the drive request output PD increases to a high load that exceeds the threshold.
  • the start threshold of the drive request output that starts the engine when the vehicle load increases is set as shown in Fig. 14. Can be considered.
  • the threshold value is changed in this way, the engine start timing is delayed from time t 3 1 to time t 3 2 when a high load request is made suddenly from low speed, such as full-open acceleration from zero speed. .
  • the drive request output PD does not increase so quickly that the threshold value is exceeded. This is because the drive request output PD is determined mainly by the product of the drive request torque determined based on the accelerator opening A c c and the vehicle speed. Therefore, if the vehicle speed is low even when the accelerator opening A cc is fully open, the drive request output PD will not exceed the threshold value, so the engine start timing will be delayed until the vehicle speed increases. Become.
  • the externally chargeable hybrid vehicle has a significantly worse acceleration response than a normal hybrid vehicle. Disclosure of the invention
  • An object of the present invention is to provide a hybrid vehicle control device and a hybrid vehicle that are both capable of maintaining acceleration response and reducing fuel consumption.
  • the present invention provides a control device for a hybrid vehicle that uses an engine and a motor together for traveling, an instruction unit that instructs increase / decrease in drive request torque, and an engine output request value that exceeds a start threshold value. And a controller for starting the engine. The control unit reduces the starting threshold value at least according to an increase in the drive request torque.
  • control device for the hybrid vehicle further includes a vehicle speed detection unit that detects the vehicle speed.
  • the control unit further reduces the activation threshold according to the reduction in the vehicle speed detected by the vehicle speed detection unit.
  • control unit changes the starting threshold value further according to the remaining power storage amount of the power storage device mounted on the hybrid vehicle.
  • control unit calculates a drive request output based on the vehicle speed and the drive request torque, and calculates an engine output request value based on the drive request output and a remaining power storage amount of the power storage device mounted on the hybrid vehicle.
  • control unit determines a reference value for the start threshold value based on the vehicle speed, and based on the vehicle speed and the required drive torque to an increment value determined according to the remaining power storage amount of the power storage device mounted on the hybrid vehicle.
  • the starting threshold value is calculated by adding the value obtained by multiplying the reduction rate determined by
  • the HV mode that controls charging / discharging of the power storage device so that the remaining power storage amount of the power storage device does not greatly deviate from the target value, and the power storage device mainly discharges without setting the target value of the power storage amount.
  • the EV mode to be performed is the operation mode.
  • the control unit determines the operation mode based on the remaining power storage amount of the power storage device. In the HV mode, the control unit applies the reference value as the start threshold, and E
  • V mode a value that decreases with an increase in the required drive torque is added to the reference value as the start threshold.
  • control unit controls charging / discharging of the power storage device such that the remaining power storage amount falls within a predetermined maximum value and minimum value.
  • the control unit switches the operation mode from the EV mode to the HV mode when the remaining power storage amount falls below a predetermined value.
  • the present invention provides a hybrid vehicle that is used for driving a vehicle.
  • a motor to be used an engine used in combination with the motor, an instruction unit for instructing increase / decrease in drive request torque, and a control unit for starting the engine when the engine output request value exceeds a start threshold value.
  • the control unit reduces the starting threshold value according to at least an increase in the drive request torque.
  • the hybrid vehicle further includes a power storage device that supplies power to the motor, and a charging port that allows the power storage device to be charged from outside the vehicle.
  • the hybrid vehicle further includes a vehicle speed detection unit that detects the vehicle speed.
  • the control unit further reduces the activation threshold according to the reduction in the vehicle speed detected by the vehicle speed detection unit.
  • control unit changes the starting threshold value further according to the remaining power storage amount of the power storage device mounted on the hybrid vehicle.
  • control unit calculates a drive request output based on the vehicle speed and the drive request torque, and calculates an engine output request value based on the drive request output and a remaining power storage amount of the power storage device mounted on the hybrid vehicle.
  • control unit determines a reference value for the start threshold value based on the vehicle speed, and based on the vehicle speed and the required drive torque to an increment value determined according to the remaining power storage amount of the power storage device mounted on the hybrid vehicle.
  • the starting threshold value is calculated by adding the value obtained by multiplying the reduction rate determined by
  • the HV mode that controls charging / discharging of the power storage device so that the remaining power storage amount of the power storage device does not greatly deviate from the target value, and the power storage device mainly discharges without setting the target value of the power storage amount.
  • the EV mode to be performed is the operation mode.
  • the control unit determines the operation mode based on the remaining power storage amount of the power storage device. In the HV mode, the control unit applies the reference value as the start threshold value. In the V mode, the control unit adds a value that decreases as the drive request torque increases to the start value as the start threshold value.
  • the control unit controls charging / discharging of the power storage device such that the remaining power storage amount falls within a predetermined maximum value and minimum value.
  • the control unit switches the operation mode from the EV mode to the HV mode when the remaining power storage amount falls below a predetermined value.
  • FIG. 1 is a block diagram showing a configuration of a hybrid vehicle 1 according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a control structure of a program executed when control device 30 in FIG. 1 determines whether to start the engine.
  • FIG. 3 is a diagram showing an example of the relationship between the required drive torque, the vehicle speed, and the accelerator opening.
  • FIG. 4 is a map used for calculating the drive request output in step S2 of FIG.
  • FIG. 5 is a map used to calculate the reference value of the engine start threshold value in step S2 of FIG.
  • FIG. 6 is a map used for calculating the increment value of the engine start threshold value in step S3 of FIG.
  • FIG. 7 is a map used to calculate the engine start threshold reduction rate K in step S 4 of FIG.
  • FIG. 8 is a first waveform diagram for explaining the engine start timing when the control of the flowchart shown in FIG. 2 is applied.
  • FIG. 9 is a second waveform diagram for illustrating the engine start timing when the control of the flowchart of FIG. 2 is applied.
  • FIG. 10 is a third waveform diagram for explaining the engine start timing when the flow chart control of FIG. 2 is applied.
  • FIG. 11 is a flowchart for explaining the determination of the operation mode in the second embodiment.
  • FIG. 12 is a flowchart for illustrating determination of the engine start threshold value in the second embodiment.
  • FIG. 13 is a diagram for explaining a change in SOC and switching of operation modes in the second embodiment.
  • Fig. 14 is a waveform diagram for explaining an example in which the acceleration response deteriorates.
  • FIG. 1 is a block diagram showing a configuration of a hybrid vehicle 1 according to an embodiment of the present invention.
  • hybrid vehicle 1 includes front wheels 20 R, 20 L, rear wheels 2 2 R, 2 2 L, engine 40, planetary gear PG, differential gear / legear DG, and gear 4 , 6 and so on.
  • Hybrid vehicle 1 further includes a Patteri B, a boost Yunitto 2 0 for boosting DC power output from battery B, inverter Ichita 1 4 you exchanging DC power between the booster Yunitto 2 0, 1 4 A Including.
  • Hybrid vehicle 1 further includes a motor generator MG1 that generates power by receiving the power of engine 40 via planetary gear PG, and a motor generator MG2 whose rotating shaft is connected to planetary gear PG.
  • Inverters 14 and 14 A are connected to motor generators MG 1 and MG 2 to convert between AC power and DC power from the booster circuit.
  • Planetary gear PG includes a sun gear, a ring gear, a pinion gear that meshes with both the sun gear and the ring gear, and a planetary carrier that rotatably supports the pinion gear around the sun gear.
  • the planetary gear PG has first to third rotating shafts.
  • the first rotating shaft is a rotating shaft of a planetary carrier connected to the engine 40.
  • the second rotating shaft is the rotating shaft of the sun gear connected to motor generator MG1.
  • the third rotating shaft is a rotating shaft of a ring gear connected to motor generator MG2.
  • a gear 4 is attached to the third rotating shaft, and the gear 4 drives the gear 6.
  • the mechanical power is transmitted to the differential gear DG.
  • the differential gear DG transmits the mechanical power received from the gear 6 to the front wheels 20 R and 2 OL, and transmits the rotational force of the front wheels 20 R and 20 L through the gears 6 and 4 to the planetary gear PG. 3 is transmitted to the rotating shaft.
  • Planetary gear PG plays a role of dividing power between engine 40 and motor generators MG 1 and MG 2. That is, the planetary gear PG determines the rotation of the remaining one rotating shaft in accordance with the rotation of two of the three rotating shafts. Therefore, the vehicle speed is controlled by controlling the power generation amount of the motor generator MG 1 and driving the motor generator MG 2 while operating the engine 40 in the most efficient region, and the overall energy efficiency is improved. Realizing a good car.
  • Battery B which is a direct current power source, is composed of, for example, a secondary battery such as an Eckenole hydrogen storage battery, a lithium ion storage battery, or a lead storage battery. Charged.
  • Boost unit 20 boosts the DC voltage received from battery B and supplies the boosted DC voltage to inverters 14 and 14 A.
  • Inverter 14 converts the supplied DC voltage into AC voltage, and drives and controls motor generator MG 1 when the engine is started. Also, AC power generated by motor generator MG 1 after engine startup is converted to DC by an inverter 14 and converted to a voltage suitable for charging battery B by booster unit 20 to charge battery B.
  • Inverter 1 4 A drives motor generator MG 2.
  • the motor generator MG 2 drives the front wheels 2 O R, 20 L alone or with the assistance of the engine 40. During braking, the motor generator MG 2 performs regenerative operation and converts the rotational energy of the wheels into electric energy. The obtained electric energy is returned to the battery B via the inverter 14 A and the booster unit 20.
  • the battery B is an assembled battery, and includes a plurality of battery units B0 to Bn connected in series.
  • System main relays S R 1 and S R 2 are provided between the boost unit 20 and the battery B, and the high voltage is cut off when the vehicle is not in operation.
  • the hybrid vehicle 1 further includes a vehicle speed sensor 8 that detects the vehicle speed, and an accelerator that detects the position of the accelerator pedal as an input unit that receives an acceleration request instruction from the driver.
  • Sensor 9 voltage sensor 10 attached to battery B, accelerator opening A cc from accelerator sensor 9 and voltage VB from voltage sensor 10 0 Engine 40, inverter 14, 14 A And a control device 30 for controlling the booster mute 20.
  • the voltage sensor 10 detects the voltage VB of the battery B and transmits it to the control device 30.
  • the hybrid vehicle 1 further includes a socket 16 for connecting a plug 10 0 4 provided at the end of a charging cable 10 2 extending from an external charging device 100 0, and a bracket 1 0 provided in the socket 16. 4 confirmation sensor 1 0 6 to detect plug 1 0 4 connected to socket 1 6 and confirmation sensor 1 8 and external charging device 1 0 via socket 1 6 And a charging inverter 12 that receives AC power from zero.
  • Charging inverter 1 2 is connected to battery B and supplies charging DC power to battery B.
  • the coupling confirmation sensor 1 8 may be of any type, for example, a sensor that detects a magnet on the plug side, a push button type that is pushed in when the plug is inserted, or a connection resistance in the current path. Can be used.
  • FIG. 2 is a flowchart showing a control structure of a program executed when control device 30 in FIG. 1 determines whether to start the engine. This flowchart processing is called and executed from a predetermined main routine every predetermined time or whenever a predetermined condition is satisfied.
  • step S1 the control device 30 acquires the vehicle speed from the vehicle speed sensor 8, and acquires the accelerator opening Acc from the accelerator sensor 9. .
  • vehicle speed sensors can be used as the vehicle speed sensor 8, but a resonance lever that detects the number of rotations of the motor generator MG2 that rotates in conjunction with the wheels may be used.
  • control device 30 calculates a drive request output and calculates a reference value for an engine start threshold value of the engine output request value.
  • FIG. 3 is a diagram showing an example of the relationship between the required drive torque, the vehicle speed, and the accelerator opening.
  • the required drive torque is a numerical value calculated from the shift position, accelerator opening, and vehicle speed, and is the torque on the axle requested by the user.
  • the required drive torque is calculated in the region where the vehicle speed is low according to the maximum output characteristics of the motor.
  • the drive request torque can be set so that the drive request torque gradually decreases as the vehicle speed increases as the vehicle speed increases beyond that range.
  • the required drive torque can be set to decrease as shown by the respective curves in FIG.
  • the drive demand output is the output at the axle calculated from the drive demand torque, and is obtained from (drive demand torque x axle speed).
  • FIG. 4 is a map used for calculating the drive request output in step S2 of FIG. As shown in Fig. 4, the required drive output is determined based on Vxel opening and vehicle speed. Accelerator positions of 100%, 80%, 60%, 40%, and 20% are shown as representative examples of accelerator position, and the required power (drive request output) on the axle against the vehicle speed is shown. ing.
  • the required drive output is the value obtained by multiplying the required drive torque by the number of axle rotations proportional to the vehicle speed. Therefore, if the vehicle speed is the opening, the required drive output is zero.
  • FIG. 5 is a map used for calculating the reference value of the engine start threshold value of the engine output request value in step S2 of FIG.
  • the reference value of the engine start threshold value of the engine output request value is flat until the vehicle speed reaches a certain level, but is set low when the vehicle speed reaches a certain level. This is because the energy efficiency of the engine is improved when the vehicle speed is high, so that even if the EV driving is forcibly executed, the energy efficiency is deteriorated. In addition, because the required drive output required for driving the vehicle increases when the vehicle speed is high, this drive required output may not be able to be achieved with the motor alone.
  • step S2 when the calculation of the drive request output and the calculation of the reference value of the engine start threshold value are completed, the process proceeds to step S3.
  • step S 3 control device 30 obtains the engine start-up and the increment value from the remaining battery capacity of battery B.
  • FIG. 6 is a map used for calculating the increment value of the engine start threshold value in step S3 of FIG.
  • the horizontal axis in Fig. 6 shows the battery remaining capacity (kWh), which is an absolute amount. This value is different from the storage state of the storage battery expressed as a relative percentage, and whether or not the storage capacity that can drive the vehicle to some extent remains regardless of the capacity of the storage battery. It is for seeing.
  • Fig. 6 shows the increment value of the engine start threshold.
  • the increment value ⁇ P t h is an increment with respect to the reference value of the engine start threshold value determined in FIG. 5, but this increment value is not added as it is, but a reduction rate described later is taken into consideration.
  • the reference value of the engine start threshold determined in Fig. 5 corresponds to the engine start threshold (the lower threshold in Fig. 14) for a normal hybrid vehicle that does not perform external charging. is there.
  • the value obtained by adding the increment value directly to this value corresponds to the threshold value (upper start threshold value in Fig. 14) intended to be applied to externally chargeable hybrid vehicles.
  • step S3 the control device 30 obtains the engine activation threshold reduction rate K from the vehicle speed and the accelerator opening.
  • FIG. 7 is a map used to calculate the engine start threshold reduction rate K in step S 4 of FIG.
  • Figure 7 is calculated, and in the region where the accelerator opening is large and the vehicle speed is low, the engine start threshold reduction rate K is regulated to 0.2.
  • This reduction rate K is a value that is multiplied by the increment obtained in step S3. Therefore, the smaller the reduction rate K is, the smaller the engine start threshold value approaches the reference value. In other words, a small engine start threshold indicates that the engine is likely to start when the drive request output increases.
  • step S4 when the calculation of the reduction rate K is completed in step S4, the process proceeds to step S5.
  • step S5 the control device 30 calculates the engine start threshold based on the following equation (1).
  • P th indicates the engine start threshold
  • P th (min) indicates the reference value of the engine start threshold
  • ⁇ P th indicates the increment value of the engine start threshold
  • K indicates engine start. Indicates the threshold reduction rate.
  • the battery charge requirement value is negative if the battery charge state is close to the control upper limit value, and is positive if the battery charge state is close to the control lower limit value.
  • step S6 the magnitude of the engine output request value is compared with the engine start threshold value. If the engine output request value is larger than the engine start threshold value P th, the process proceeds to step S7, and the engine is started. on the other hand, If the engine output request value is equal to or less than the engine start threshold value Pth, the process proceeds to step S8, and EV travel is performed with the engine stopped.
  • step S7 or step S8 When step S7 or step S8 is completed, control is transferred to the main routine in step S9.
  • FIG. 8 is a first waveform diagram for explaining the engine start timing when the control of the flowchart of FIG. 2 is applied.
  • the engine start threshold reduction rate K in Fig. 7 is set to 1.0, for example. Therefore, at time t 1, a value P th (max) obtained by directly adding the increment value calculated in step S 3 to the reference value calculated in step S 2 in FIG. 2 is set as the engine start threshold value P th. It has been.
  • the accelerator opening A cc rapidly increases when the driver depresses the accelerator pedal greatly. Accordingly, the drive request output PD rises stepwise at time t2, and then gradually increases as the vehicle speed increases.
  • the reduction rate of the engine start threshold shown in FIG. 7 is determined to be, for example, a value of 0.2 because the vehicle speed is low and the accelerator opening is large, and the engine start threshold P th is a reference value. It approaches P th (min).
  • the drive request output PD immediately exceeds the threshold value P t h.
  • the engine start timing is advanced from time t 3 to t 2 compared to the case where the threshold value is fixedly increased to apply to externally chargeable hybrid vehicles. Therefore, the engine can be started quickly and the vehicle can be accelerated with good response to the user's sudden acceleration request.
  • FIG. 9 is a second waveform diagram for explaining the engine start timing when the flow chart control of FIG. 2 is applied. Also in FIG. Zero battery charge requirement to keep range charged The case where the engine output request value and the drive request output PD are equal will be described.
  • the engine start threshold reduction rate in FIG. 7 is set to 1.0, for example. Therefore, at time til, a value P th (max) obtained by adding the increment value calculated in step S 3 to the reference value calculated in step S 2 in FIG. 2 is set as the engine start threshold value P th. ing.
  • the accelerator pedal opening A c c slightly increases as the driver depresses the accelerator pedal slightly. Accordingly, the drive request output PD rises stepwise, and then gradually increases as the vehicle speed increases.
  • the reduction rate of the engine start threshold value shown in FIG. 7 is determined to be, for example, a value of 0.8 because the vehicle speed is low and the accelerator opening is not so large. The value is a little lower than max).
  • the drive request output PD exceeds the threshold value P th at time t 1 3. If the threshold is fixedly increased to apply to externally chargeable hybrid vehicles, the engine start timing will be at time t1 4; for hybrid vehicles without external charging, the engine start timing will be at time t1 2 It becomes.
  • the time t 13 when the engine is started in the externally chargeable hybrid vehicle of the present embodiment is an intermediate value between them.
  • the engine start timing is delayed, so that battery power is consumed, fuel consumption is reduced, and carbon dioxide emissions are reduced.
  • FIG. 10 is a third waveform diagram for explaining the engine start timing when the control of the flowchart of FIG. 2 is applied.
  • the hybrid vehicle 1 in FIG. 1 includes a motor generator MG 2 used for driving a vehicle, an engine 40 used in combination with the motor generator MG 2, It includes an accelerator sensor 9 provided in an instruction unit for instructing increase / decrease of drive request torque, and a control device 30 for starting the engine when the engine output request value exceeds the start threshold value.
  • the control device 30 reduces the starting threshold value at least in accordance with the increase in the drive request torque, as indicated by the reduction rate K that changes according to the accelerator opening.
  • the hybrid vehicle further includes a battery B for supplying electric power to motor generator MG 2 and a socket 16 for charging battery B from the outside of the vehicle.
  • the hybrid vehicle 1 includes a vehicle speed sensor 8 for detecting the vehicle speed.
  • the control device 30 further reduces the activation threshold according to the reduction in the vehicle speed detected by the vehicle speed sensor 8, as indicated by the reduction rate K that changes according to the vehicle speed in FIG.
  • control device 30 changes the starting threshold value further in accordance with the remaining power storage amount of battery B mounted on hybrid vehicle 1.
  • control device 30 calculates a drive request output PD based on the vehicle speed and the drive request torque, as shown in the map of FIG. Then, as indicated by the increment value ⁇ th in FIG. 6, the engine output request value is calculated based on the drive request output PD and the remaining power storage amount of the power storage device mounted on the hybrid vehicle.
  • the control device 30 determines the reference value P th (min) of the start threshold based on the vehicle speed, and the remaining storage amount of the battery B mounted on the hybrid vehicle As shown in Fig. 7, it is determined based on the required drive torque and vehicle speed given by the accelerator opening etc. Multiply by the reduction rate K and add to the reference value to calculate the starting threshold value Pth.
  • EV mode the battery is mainly discharged, and the battery is charged when recovering regenerative power during braking or when the engine starts to compensate for the lack of torque during sudden acceleration. This is only done when recovering energy from the plant.
  • the battery charge / discharge control is performed so that the charge state of the battery becomes a predetermined target state as in a normal hybrid vehicle. That is, motor generator MG 1 is driven by engine 4 to generate electric power, and motor generator MG 2 is driven by the generated electric power.
  • the battery acts as a buffer for power that temporarily becomes excessive or insufficient.
  • FIG. 11 is a flowchart for explaining the determination of the operation mode in the second embodiment. The process of this flowchart is called and executed from a predetermined main routine every predetermined time or every predetermined condition is established. Since the configuration of the vehicle in the second embodiment is the same as that described in FIG. 1 for the first embodiment, the description thereof will not be repeated.
  • step S 11 it is determined whether or not it is detected that the battery has been charged from the outside and terminated. For example, if the connection confirmation sensor 18 provided in the socket 16 detects that the bragg 10 04 has changed from the state connected to the socket 16 to the disconnected state, the end of charging is detected. Also good. It also detects the absence of power from the external charging device 100 for the charging inverter, and detects the end of charging.
  • the connection confirmation sensor 18 provided in the socket 16 detects that the bragg 10 04 has changed from the state connected to the socket 16 to the disconnected state, the end of charging is detected. Also good. It also detects the absence of power from the external charging device 100 for the charging inverter, and detects the end of charging.
  • step S 11 If the end of charging is detected in step S 11, the process proceeds to step S 12, and the control device 30 sets a charge completion flag held in an internal memory or the like. On the other hand, if the end of charging is not detected in step S 11, the process proceeds to step S 13, and control device 30 determines whether or not the charge completion flag is currently set. If the charge completion flag is not set in step S 13, the process proceeds to step S 18 and control is transferred to the main routine.
  • step S14 the charge state S OC of battery B is calculated.
  • the state of charge S O C indicates the remaining amount of electricity stored in the battery and is often expressed as a percentage (%).
  • the calculation of S O C is performed by measuring the voltage of battery B or integrating the charge / discharge current. Then, it is determined whether or not the state of charge S OC is greater than a predetermined value F (%). If the state of charge SOC is greater than the predetermined value F (%), the battery may still be discharged, so the process proceeds to step S15, and the controller 30 switches the operation mode to the EV mode. Set.
  • step S 14 If the state of charge SOC is not greater than the predetermined value F (%) in step S 14, it is necessary to charge the battery. Therefore, the process proceeds to step S 16 and the control device 30 is Set the operation mode to HV mode. Then, control device 30 further resets the charge completion flag in step S 17.
  • step S15 or step S17 When the process of step S15 or step S17 is completed, the process proceeds to step S18 and control is transferred to the main routine.
  • FIG. 12 is a flowchart for explaining determination of the engine start threshold value in the second embodiment.
  • the flowchart of FIG. 12 is obtained by adding the processing of steps S 2 1 and S 2 2 to the flowchart of FIG. 2 already described in the first embodiment.
  • the other steps S 1 to S 9 are performed in the same manner as in the first embodiment, and therefore description thereof will not be repeated.
  • the engine start threshold reference value in Step S2 is calculated.
  • step S21 it is determined whether the vehicle operation mode is EV mode or HV mode.
  • This operation mode is determined by the process described in the flowchart of FIG. To put it simply, if the battery is fully charged or close to the charge level immediately after external charging, the operation mode is set to EV mode, and then the battery power consumption continues and the charge state is set to the specified level. If the value falls below F, the operation mode is changed from EV mode to HV mode. After switching to HV mode, it will not return to EV mode until the next external charging is completed.
  • step S 21 if the operation mode is the EV mode, the engine start threshold value is set by step 3 of steps S 3 to S 5 as in the first embodiment. If the operation mode is the HV mode at step S 21, steps S 3 to S 5 are not performed. In this case, in step S 22, the reference value calculated in step S 2 is used as it is as the engine start threshold value.
  • FIG. 13 is a diagram for explaining the state of S OC change and operation mode switching in the second embodiment.
  • Times of Day! When driving starts at 1, vehicles set to EV mode will actively use battery power. Charging the battery in EV mode is limited in cases such as regenerative power recovery during downhill braking. Therefore, between time t 1 and t 2, the state of charge S O C of the battery gradually decreases.
  • the engine start threshold value is set by the processing of steps S3 to S5 as described in FIG. Therefore, if the accelerator opening is large, the starting threshold value is set small and the engine is easy to start and the responsiveness is improved. In addition, when the vehicle speed is reduced, the start threshold is set to a small value, making it easier to start the engine and improving responsiveness.
  • control device 30 switches the operation mode from the EV mode to the HV mode.
  • the control device 30 controls charging / discharging of the battery so that the remaining charged amount of the battery does not greatly deviate from the target value.
  • the power generation amount of motor generator MG 1 and the power consumption of motor generator MG 2 are adjusted so that the SOC of the battery fits between the maximum value MAX and the minimum value MIN, centering on the target SOC.
  • the threshold value F is set to be the same as the SOC target value, but is not limited to this. However, considering the situation immediately after switching to the HV mode, the threshold F is preferably a value between the maximum value MAX and the minimum value MIN.
  • the control device 30 applies the reference value determined in step S2 as the engine start threshold value in step S22 as it is in the HV mode. Then, in steps S3 to S5, the value (increment value X reduction rate) that decreases according to the increase in the drive request torque is added to the reference value as the engine start threshold value.
  • the present invention is applied to a series / parallel type hybrid system in which the power of an engine can be divided and transmitted to an axle and a generator by a power split mechanism.
  • the present invention can also be applied to a series type hybrid vehicle in which an engine is used only to drive a generator, and an axle driving force is generated only by a motor that uses electric power generated by the generator.
  • the present invention can be applied because the remaining battery capacity needs to start the engine at a high load and generate power with a generator.

Abstract

 ハイブリッド車両(1)は、車両駆動に用いられるモータジェネレータ(MG2)と、モータジェネレータ(MG2)と併用されるエンジン(40)と、駆動要求トルクの増減を指示する指示部に設けられたアクセルセンサ(9)と、エンジン出力要求値が起動しきい値を超えたときにエンジンを起動させる制御装置(30)とを備える。制御装置(30)は、少なくとも駆動要求トルクの増加に応じて起動しきい値を低減させ、好ましくは、車速センサ(8)で検知された車速の低減にさらに応じて起動しきい値を低減させる。

Description

明細書 ハイプリッド車両の制御装置およびハイプリッド車両 技術分野
この発明は、 ハイブリッド車両の制御装置およびハイブリッド車両に関し、 特 にエンジンの起動制御に関する。 背景技術
近年、 エンジンとモータとを走行に併用するハイブリッド車両が注目されてい る。 ハイブリッド車両は、 バッテリの充電状態が十分であれば、 エンジンを使用 せずにモータのみを使用する走行すなわち E V走行が可能である。
特開 2 0 0 3— 3 4 3 3 0 4号公報は、 E V走行時において、 アクセル開度の 変化量が大きいときにエンジンを起動するハイプリッド車両を開示する。 これに より加速応答性が高められる。
ハイブリッド車両としては、 バッテリ容量を大きくして外部から充電を可能と する構成を採用し、 エンジン稼動率を下げ燃料補給をあまりしなくても済むよう な車両も検討されている。 このような車両を外部充電可能型ハイブリッド車両と 称することとする。
外部充電可能型ハイプリッド車両では、 燃料のみを補給する通常のハイプリッ ド車両と比べてバッテリを高出力高容量なものとし、 E V走行領域を拡大するこ とで、 バッテリの蓄電量が残存するうちは積極的に E V走行を行ない、 燃費の向 上および二酸化炭素の排出量低減を狙うものである。
たとえば、 比較的近距離の通勤に外部充電可能型ハイプリッド車両を使用する 場合には、 夜間家庭で毎日充電を行なっておれば、 エンジンが起動するのは、 週 末の長距離ドライブ時のようにバッテリの蓄電量がゼ口に近くなつたときや、 ァ クセルペダルを踏込んで車両の負荷が軽負荷でなくなつたときに限られる。 外部充電可能型ハイプリッド車両において、 二酸化炭素の排出量低減の効果を 高めるには、 通常のハイブリッド車両に比べさらにバッテリ電力を燃料に優先し て使用する必要がある。 しカゝし、 バッテリ電力の使用の優先度合いを高めると加 速応答性が悪くなる場合も考えられる。 以下、 加速応答性の悪化を招く場合につ いて検討する。
図 1 4は、 加速応答性が悪化してしまう例について説明するための波形図であ る。
図 1 4に示すように、 駆動要求出力 P D (車両駆動に必要となるパワー) に対 してエンジン起動のしきい値を設定する。 つまり、 しきい値を超えるほどの高負 荷まで駆動要求出力 P Dが増加すればエンジンが起動する。
通常のハイブリッド車両に比べて燃料に優先してバッテリ電力を使用するため には、 車両負荷が増大した際にエンジン起動させる駆動要求出力の起動しきい値 を図 1 4に示すように設定することが考えられる。 つまり、 通常 HV (ハイプリ ッド車両) の起動させる駆動要求出力の起動しきい値に比べて外部充電可能型 H Vの起動しきい値を增加させ、 エンジンを起動しにくくすることが考えられる。 しかし、 このようにしきい値を変更すると、 速度ゼロからの全開加速のように、 低速から急激に高負荷要求がなされた場合、 エンジン起動タイミングが時刻 t 3 1から t 3 2まで遅延してしまう。
アクセル開度 A c cが全開となっても、 駆動要求出力 P Dは、 直ぐにしきい値 を超える程には増加しない。 駆動要求出力 P Dは、 主としてアクセル開度 A c c に基づいて定まる駆動要求トルクと、 車速との積で決まるからである。 したがつ て、 アクセル開度 A c cが全開であっても車速が低い場合には、 駆動要求出力 P Dはしきいイ直を超えないので、 車速が増加するまでエンジン起動タイミングが遅 れることになる。
この現象は、 ユーザの加速要求に対する応答を鈍らせる結果となる。 しかし、 外部充電可能型ハイプリッド車両が通常のハイプリッド車両に比べて著しく加速 応答性が悪化するのは好ましくなレ、。 発明の開示
この発明の目的は、 加速応答性の維持と燃料消費量の低減とを両立させたハイ プリッド車両の制御装置およびハイプリッド車両を提供することである。 この発明は、 要約すると、 エンジンとモータとを走行に併用するハイブリッド 車両の制御装置であって、 駆動要求トルクの増減を指示する指示部と、 エンジン 出力要求値が起動しきい値を超えたときにエンジンを起動させる制御部とを備え る。 制御部は、 少なくとも駆動要求トルクの増加に応じて起動しきい値を低減さ せる。
好ましくは、 ハイブリッド車両の制御装置は、 車速を検知する車速検知部をさ らに備える。 制御部は、 車速検知部で検知された車速の低減にさらに応じて起動 しきい値を低減させる。
好ましくは、 制御部は、 ハイブリッド車両に搭載された蓄電装置の残存蓄電量 にさらに応じて起動しきい値を変更する。
好ましくは、 制御部は、 車速および駆動要求トルクに基づき駆動要求出力を算 出し、 駆動要求出力とハイプリッド車両に搭載された蓄電装置の残存蓄電量とに 基づきエンジン出力要求値を算出する。
好ましくは、 制御部は、 車速に基づき起動しきい値の基準値を決定し、 ハイブ リッド車両に搭載された蓄電装置の残存蓄電量に応じて定まる増分値に、 車速お よび駆動要求トルクに基づいて定まる低減率を乗じた値を基準値に加算して起動 しきい値を算出する。
好ましくは、 ハイブリッド車両は、 蓄電装置の残存蓄電量が目標値を大きく逸 脱しないように蓄電装置に対する充放電を制御する HVモードと、 蓄電量の目標 値を設けずに蓄電装置に主として放電を行なわせる E Vモードとを動作モードと して有する。 制御部は、 蓄電装置の残存蓄電量に基づいて、 動作モードを決定す る。 制御部は、 HVモードにおいては、 基準値を起動しきい値として適用し、 E
Vモードにおいては、 駆動要求トルクの増加に応じて低減する値を基準値に加え て起動しきい値とする。
より好ましくは、 制御部は、 HVモードにおいて、 所定の最大値と最小値の間 に残存蓄電量が収まるように蓄電装置に対する充放電を制御する。 制御部は、 残 存蓄電量が所定値を下回ったときに動作モードを E Vモードから HVモードに切 り換える。
この発明は、 他の局面に従うと、 ハイブリッド車両であって、 車両駆動に用い られるモータと、 モータと併用されるエンジンと、 駆動要求トルクの増減を指示 する指示部と、 エンジン出力要求値が起動しきい値を超えたときにエンジンを起 動させる制御部とを備える。 制御部は、 少なくとも駆動要求トルクの増加に応じ て起動しきい値を低減させる。
好ましくは、 ハイプリッド車両は、 モータに電力を供給する蓄電装置と、 蓄電 装置に対して車両外部から充電を亍なう充電口とをさらに備える。
好ましくは、 ハイブリッド車両は、 車速を検知する車速検知部をさらに備える。 制御部は、 車速検知部で検知された車速の低減にさらに応じて起動しきい値を低 減させる。
好ましくは、 制御部は、 ハイブリッド車両に搭載された蓄電装置の残存蓄電量 にさらに応じて起動しきい値を変更する。
好ましくは、 制御部は、 車速および駆動要求トルクに基づき駆動要求出力を算 出し、 駆動要求出力とハイプリッド車両に搭載された蓄電装置の残存蓄電量に基 づきエンジン出力要求値を算出する。
好ましくは、 制御部は、 車速に基づき起動しきい値の基準値を決定し、 ハイブ リッド車両に搭載された蓄電装置の残存蓄電量に応じて定まる増分値に、 車速お よび駆動要求トルクに基づいて定まる低減率を乗じた値を基準値に加算して起動 しきい値を算出する。
好ましくは、 ハイブリッド車両は、 蓄電装置の残存蓄電量が目標値を大きく逸 脱しないように蓄電装置に対する充放電を制御する HVモードと、 蓄電量の目標 値を設けずに蓄電装置に主として放電を行なわせる E Vモードとを動作モードと して有する。 制御部は、 蓄電装置の残存蓄電量に基づいて、 動作モードを決定す る。 制御部は、 HVモードにおいては、 基準値を起動しきい値として適用し、 Ε Vモードにおいては、 駆動要求トルクの增加に応じて低減する値を基準値に加え て起動しきい値とする。
より好ましくは、 制御部は、 HVモードにおいて、 所定の最大値と最小値の間 に残存蓄電量が収まるように蓄電装置に対する充放電を制御する。 制御部は、 残 存蓄電量が所定値を下回ったときに動作モードを E Vモードから HVモードに切 り換える。 この発明によれば、 ハイプリッド車両において加速応答性を損なうことなくバ ッテリの電力をなるベく使用し燃料消費が低減される。 図面の簡単な説明
図 1は、 本発明の実施の形態に係るハイブリッド車両 1の構成を示すプロック 図である。
図 2は、 図 1における制御装置 3 0がエンジン起動の判定を行なう際に実行す るプログラムの制御構造を示したフローチャートである。
図 3は、 駆動要求トルクと車速とアクセル開度との関係の一例を示した図であ る。
図 4は、 図 2のステップ S 2で駆動要求出力の算出に用いられるマップである。 図 5は、 図 2のステップ S 2でエンジン起動しきい値の基準値を算出するのに 用いられるマップである。
図 6は、 図 2のステップ S 3でエンジン起動しきい値の増分値の算出に用いら れるマップである。
図 7は、 図 2のステップ S 4でエンジン起動しきい値の低減率 Kの算出に用い られるマップである。
図 8は、 図 2のフローチヤ一トの制御が適用された場合のエンジン起動タイミ ングについて説明するための第 1の波形図である。
図 9は、 図 2のフローチャートの制御が適用された場合のエンジン起動タイミ ングについて説明するための第' 2の波形図である。
図 1 0は、 図 2のフローチヤ一トの制御が適用された場合のエンジン起動タイ ミングについて説明するための第 3の波形図である。
図 1 1は、 実施の形態 2における動作モードの決定について説明するためのフ ローチャートである。
図 1 2は、 実施の形態 2におけるエンジン起動しきい値の決定を説明するため のフローチャートである。
図 1 3は、 実施の形態 2における S O Cの変化と動作モードの切換の様子を説 明するための図である。 図 1 4は、 加速応答性の悪化してしまう例について説明するための波形図であ る。 発明を実施するための最良の形態
以下、 本努明の実施の形態について図面を参照して詳しく説明する。 なお、 図 中同一または相当部分には同一の符号を付してそれらについての説明は繰返さな い。
[実施の形態 1 ]
図 1は、 本発明の実施の形態に係るハイプリッド車両 1の構成を示すプロック 図である。
図 1を参照して、 ハイブリッド車両 1は、 前輪 2 0 R, 2 0 Lと、 後輪 2 2 R , 2 2 Lと、 エンジン 4 0と、 プラネタリギヤ P Gと、 デフアレンシャ /レギヤ D G と、 ギヤ 4 , 6とを含む。
ハイブリッド車両 1は、 さらに、 パッテリ Bと、 バッテリ Bの出力する直流電 力を昇圧する昇圧ュニット 2 0と、 昇圧ュニット 2 0との間で直流電力を授受す るインバ一タ 1 4 , 1 4 Aとを含む。
ハイブリッド車両 1は、 さらに、 ブラネタリギヤ P Gを介してエンジン 4 0の 動力を受けて発電を行なうモータジェネレータ MG 1と、 回転軸がプラネタリギ ャ P Gに接続されるモータジェネレータ MG 2とを含む。 インバータ 1 4 , 1 4 Aはモータジェネレータ MG 1, MG 2に接続され交流電力と昇圧回路からの直 流電力との変換を行なう。
プラネタリギヤ P Gは、 サンギヤと、 リングギヤと、 サンギヤおよびリングギ ャの両方に嚙み合うピニオンギヤと、 ピニオンギヤをサンギヤの周りに回転可能 に支持するブラネタリキヤリャとを含む。 ブラネタリギヤ P Gは第 1〜第 3の回 転軸を有する。 第 1の回転軸はエンジン 4 0に接続されるプラネタリキヤリャの 回転軸である。 第 2の回転軸はモータジェネレータ MG 1に接続されるサンギヤ の回転軸である。 第 3の回転軸はモータジェネレータ MG 2に接続されるリング ギヤの回転軸である。
この第 3の回転軸にはギヤ 4が取付けられ、 このギヤ 4はギヤ 6を駆動するこ とによりデフアレンシャルギヤ D Gに機械的動力を伝達する。 デフアレンシャル ギヤ D Gはギヤ 6から受ける機械的動力を前輪 2 0 R, 2 O Lに伝達するととも に、 ギヤ 6 , 4を介して前輪 2 0 R, 2 0 Lの回転力をプラネタリギヤ P Gの第 3の回転軸に伝達する。
プラネタリギヤ P Gはエンジン 4 0 , モータジェネレータ MG 1 , MG 2の間 で動力を分割する役割を果たす。 すなわちプラネタリギヤ P Gは、 3つの回転軸 のうち 2つの回転軸の回転に応じて、 残る 1つの回転軸の回転を決定する。 した がって、 エンジン 4 0を最も効率のよい領域で動作させつつ、 モータジエネレー タ MG 1の発電量を制御してモータジェネレータ MG 2を駆動させることにより 車速の制御を行ない、 全体としてエネルギ効率のよい自動車を実現している。 直流電源であるバッテリ Bは、 たとえば、 エッケノレ水素蓄電池、 リチウムィォ ン蓄電池、 鉛蓄電池などの二次電池からなり、 直流電力を昇圧ュニット 2 0に供 給するとともに、 昇圧ュニット 2 0からの直流電力によって充電される。
昇圧ュニット 2 0はバッテリ Bから受ける直流電圧を昇圧し、 その昇圧された 直流電圧をインバータ 1 4, 1 4 Aに供給する。 インバータ 1 4は、 供給された 直流電圧を交流電圧に変換してエンジン起動時にはモータジェネレータ MG 1を 駆動制御する。 また、 エンジン起動後にはモータジェネレータ MG 1が発電した 交流電力は、 インパータ 1 4によって直流に変換されて、 昇圧ユニット 2 0によ つてパッテリ Bの充電に適切な電圧に変換されバッテリ Bが充電される。
また、 インバータ 1 4 Aはモータジェネレータ MG 2を駆動する。 モータジェ ネレータ MG 2は単独で、 またはエンジン 4 0を補助して、 前輪 2 O R , 2 0 L を駆動する。 制動時には、 モータジェネレータ MG 2は回生運転を行ない、 車輪 の回転エネルギを電気工ネルギに変換する。 得られた電気工ネルギは、 インバー タ 1 4 Aおよび昇圧ュニット 2 0を経由してバッテリ Bに戻される。
パッテリ Bは、 組電池であり、 直列に接続された複数の電池ュニット B 0〜; B nを含む。 昇圧ュニット 2 0とバッテリ Bとの間にはシステムメインリレー S R 1 , S R 2が設けられ車両非運転時には高電圧が遮断される。
ハイブリッド車両 1は、 さらに、 車速を検知する車速センサ 8と、 運転者から の加速要求指示を受ける入力部でありァクセルペダルの位置を検知するァクセル センサ 9と、 バッテリ Bに取付けられる電圧センサ 1 0と、 アクセルセンサ 9か らのアクセル開度 A c cおよび電圧センサ 1 0からの電圧 V Bに応じてエンジン 4 0、 ィンバータ 1 4 , 1 4 Aおよび昇圧ュュット 2 0を制御する制御装置 3 0 とを含む。 電圧センサ 1 0は、 ノ ッテリ Bの電圧 V Bを検知して制御装置 3 0に 送信する。
ハイプリッド車両 1は、 さらに、 外部充電装置 1 0 0から延びる充電ケーブル 1 0 2の先に設けられたプラグ 1 0 4を接続するためのソケット 1 6と、 ソケッ ト 1 6に設けられブラグ 1 0 4の結合確認素子 1 0 6を検知してプラグ 1 0 4が ソケット 1 6に接続されたことを認識するための結合確認センサ 1 8と、 ソケッ ト 1 6を経由して外部充電装置 1 0 0から交流電力を受ける充電用インバータ 1 2とをさらに含む。
充電用インバータ 1 2は、 バッテリ Bに接続されており、 充電用の直流電力を バッテリ Bに対して供給する。 なお、 結合確認センサ 1 8は、 どのような形式の ものでも良いが、 たとえばプラグ側の磁石を検知するものや、 プラグ挿入時に押 し込まれる押しボタン式のもの、 通電経路の接続抵抗を検知するもの等を用いる ことができる。
図 2は、 図 1における制御装置 3 0がエンジン起動の判定を行なう際に実行す るプログラムの制御構造を示したフローチャートである。 このフローチヤ一トの 処理は、 所定のメインルーチンから一定時間ごとまたは所定の条件が成立するご とに呼び出されて実行される。
図 1、 図 2を参照して、 まず処理が開始されると、 ステップ S 1において、 制 御装置 3 0は、 車速センサ 8から車速を取得し、 ァクセルセンサ 9からァクセル 開度 A c cを取得する。 車速センサ 8としては、 各種の車速センサを用いること ができるが、 車輪と連動して回転するモータジェネレータ MG 2の回転数を検出 するレゾノレバを用いても良い。
続いて制御装置 3 0は、 ステップ S 2において駆動要求出力の算出とエンジン 出力要求値のエンジン起動しきい値の基準値の算出を行なう。
ここで、 駆動要求出力とァクセ /レ開度との関連について順を追って説明してお <。 図 3は、 駆動要求トルクと車速とアクセル開度との関係の一例を示した図であ る。
駆動要求トルクは、 シフト位置、 アクセル開度、 車速から算出される数値であ つて、 ユーザが要求する車軸でのトルクをいう。
図 3に示すように、 アクセル開度が 1 0 0 %の場合 (たとえばアクセルペダル を 1 0 0 %踏込んだ場合) には、 モータの最大出力特性に従い、 車速が低い領域 ■では駆動要求トルクが大きい一定値になっており、 その領域よりも車速が増加す ると車速の増加に従い駆動要求トルクが次第に小さくなるように駆動要求トルク を設定することができる。
そして、 アクセル開度が 8 0 %、 6 0 %、 4 0 %、 2 0 %と低下するに従い、 駆動要求トルクは図 3のそれぞれの曲線に示すように小さくなるように設定する ことができる。
次に、 駆動要求出力について述べる。 駆動要求出力は、 駆動要求トルクから算 出される車軸での出力であり、 (駆動要求トルク X車軸回転数) で求められる。 図 4は、 図 2のステップ S 2で駆動要求出力の算出に用いられるマップである。 図 4に示すように、 ァクセル開度と車速とに基づ V、て駆動要求出力が決定され る。 1 0 0 %、 8 0 %、 6 0 %、 4 0 %、 2 0 %のアクセル開度がアクセル開度 の代表例として示され、 車速に対する車軸での要求パワー (駆動要求出力) が示 されている。
図 3のように駆動要求トルクを定める場合には、 車速の増加に応じて駆動要求 トルクが減少する領域がある。 し力、し、 駆動要求出力は、 車速に比例する車軸回 転数を駆動要求トルクに乗じた値であるので、 車速がゼ口であれば駆動要求出力 もゼロとなる。
各アクセル開度において、 車速が増加すると駆動要求出力も増加している。 ま た各車速においてはアクセル開度が大であるほど駆動要求出力も大きくなる。 な お、 定速走行を行なうォ一トクルーズ等のアクセルペダルを操作しない運転モー ドの場合は、 ァクセルペダルではなく車両を制御するために電子制御装置によつ て決定されるァクセル開度または履区動要求トルクが図 4のァクセル開度の代わり に用いられる。 図 5は、 図 2のステップ S 2でエンジン出力要求値のエンジン起動しきい値の 基準値を算出するのに用いられるマップである。
図 5を参照して、 エンジン出力要求値のエンジン起動しきい値の基準値は、 車 速がある程度に達するまでは横ばいであるが、 車速がある程度に達すると低く設 定される。 これは、 車速が高いときにはエンジンのエネルギ効率が良くなるので、 無理やり E V走行を実行してもエネルギ効率がかえって悪化してしまうからであ る。 また、 車速が高いと車両駆動に必要な駆動要求出力も増加するので、 モータ のみではこの駆動要求出力がまかなえなくなる場合があるからである。
再び、 図 1、 図 2を参照して、 ステップ S 2において、 駆動要求出力の算出と' エンジン起動しきい値の基準値の算出が終了すると、 処理はステップ S 3に進む。 ステップ S 3では、 制御装置 3 0は、 バッテリ Bの電池残存容量からエンジン 起動しきレ、値の増分値を求める。
図 6は、 図 2のステップ S 3でエンジン起動しきい値の増分値の算出に用いら れるマップである。
図 6の横軸には絶対量である電池残存容量 (k W h ) が記載される。 この値は、 相対的なパーセンテージで表わされる蓄電池の蓄電状態 (state of charge) と は異なるものであり、 蓄電池の容量の大小に関わらず、 車両をある程度駆動でき る蓄電量が残存しているか否かを見るためのものである。
また、 図 6の縦軸にはエンジン起動しきい値の増分値が記載されている。 増分 値 Δ P t hは、 図 5で決定されるエンジン起動しきい値の基準値に対しての増分 であるが、 この増分値をそのまま加えるのではなく後に説明する低減率を考慮す る。
なお、 図 5で決定されるエンジン起動しきい値の基準値は、 外部充電を行なわ ない通常のハイブリッド車両のエンジン起動しきい値 (図 1 4の下側のしきい 値) に相当するものである。 この値にそのまま増分値を加算したものが、 外部充 電可能型ハイプリッド車両に適用が意図されたしきい値 (図 1 4の上側の起動し きい値) に相当するものである。
再び、 図 1、 図 2を参照して、 ステップ S 3において、 増分値の算出が終了す ると、 処理はステップ S 4に進む。 ステップ S 4では、 制御装置 3 0は、 車速およびアクセル開度からエンジン起 動しきい値の低減率 Kを求める。
図 7は、 図 2のステップ S 4でエンジン起動しきい値の低減率 Kの算出に用い られるマップである。
図 7を算出して、 アクセル開度が大きくかつ車速が低い領域においては、 ェン ジン起動しきい値の低減率 Kは 0 . 2に規定されている。 この低減率 Kはステツ プ S 3で求めた増分値に掛ける値である。 したがって低減率 Kが小さい値である ほどエンジン起動しきい値は小さくなり、 基準値に近づく。 つまりエンジン起動 しきい値が小さくなるということは、 駆動要求出力が増加したときにエンジンの 起動が起こりやす 、ことを示す。
図 7では、 アクセル開度が大きくなるか、 または車速が増加すると、 エンジン 起動しきい値の低減率 Kが 0 . 4、 0 . 6 , 0 . 8、 1 . 0と次第に 1に近づい ていく。
再び、 図 1、 図 2を参照して、 ステップ S 4において、 低減率 Kの算出が終了 すると、 処理はステップ S 5に進む。
ステップ S 5では、 制御装置 3 0は、 次式 (1 ) に基づきエンジン起動しきい 値を算出する。 ただし、 P t hはエンジン起動しきい値を示し、 P t h (m i n ) はエンジン起動しきい値の基準値を示し、 Δ P t hはエンジン起動しきい値 の増分値を示し、 Kはエンジン起動しきい値の低減率を示す。
P t h = P t h (ra i n ) + (厶 P t h X K) ·■· ( 1 )
そして、 ステップ S 6において、 制御装置 3 0は、 ステップ S 2で求めた駆動 要求出力に対してバッテリを所定範囲の充電状態に保っためのバッテリ充電要求 値を加算してエンジン出力要求値を求める。 すなわち、 (エンジン出力要求値 = 駆動要求出力 +バッテリ充電要求値) である。 なお、 バッテリ充電要求値はバッ テリの充電状態が管理上限値に近ければ負の値をとり、 バッテリの充電状態が管 理下限値に近ければ正の値となる。
さらに、 ステップ S 6では、 エンジン出力要求値とエンジン起動しきい値との 大きさの比較が行なわれる。 エンジン出力要求値がエンジン起動しきい値 P t h よりも大きい場合は処理がステップ S 7に進み、 エンジンが起動される。 一方、 エンジン出力要求値がエンジン起動しきい値 P t h以下である場合は処理がステ ップ S 8に進み、 エンジン停止状態で E V走行が行なわれる。
ステップ S 7またはステップ S 8の処理が終了するとステップ S 9において制 御はメインルーチンに移される。
図 8は、 図 2のフローチャートの制御が適用された場合のエンジン起動タイミ ングについて説明するための第 1の波形図である。
図 8を参照して、 低車速でアクセル開度大の場合について説明する。 以下、 説 明の簡単のため、 バッテリを所定範囲の充電状態に保っためのバッテリ充電要求 値がゼロで、 エンジン出力要求値と駆動要求出力 P Dとが等しい場合について説 明することにする。
時亥 1以前にはアクセル開度が小さいので、 図 7のエンジン起動しきい値の 低減率 Kは、 たとえば 1 . 0に設定されている。 したがって、 時刻 t 1において は、 図 2のステップ S 2で算出された基準値にステップ S 3で算出された増分値 をそのまま加えた値 P t h (m a x ) がエンジン起動しきい値 P t hに設定され ている。
時刻 t 1において、 ドライバーがアクセルペダルを大きく踏込むことによりァ クセル開度 A c cが急増する。 応じて時刻 t 2において駆動要求出力 P Dがステ ップ的に上昇し、 その後車速の増加に応じて次第にさらに増加する。 このとき図 7に示すエンジン起動しきい値の低減率は、 車速が低くアクセル開度が大きいの で、 たとえば 0 . 2の値に決定されエンジン起動しきい値 P t hは、 基準値であ る P t h (m i n ) に近くなる。
すると時刻 t 2において駆動要求出力 P Dは直ちにしきい値 P t hを超える。 これは、 しきい値を外部充電可能型ハイプリッド車両に適用するために固定的に 増加させた場合とくらベてエンジン起動タイミングが時刻 t 3から t 2に早まる ことを意味する。 したがって、 エンジンが速やかに起動しユーザの急激な加速要 求に対して応答良く車両を加速することが可能となる。
図 9は、 図 2のフローチャ^"トの制御が適用された場合のエンジン起動タイミ ングについて説明するための第 2の波形図である。 図 9においても、 説明の簡単 のため、 バッテリを所定範囲の充電状態に保っためのバッテリ充電要求値がゼロ で、 エンジン出力要求値と駆動要求出力 P Dとが等しい場合について説明するこ とにする。
図 9を参照して、 低車速だがアクセル開度がさほど大きくない場合について説 明する。 時刻 t 1 1以前にはアクセル開度が小さいので、 図 7のエンジン起動し きい値の低減率は、 たとえば 1 . 0に設定されている。 したがって、 時刻 t i l においては、 図 2のステップ S 2で算出された基準値にステップ S 3で算出され た増分値をそのまま加えた値 P t h (m a x ) がエンジン起動しきい値 P t hに 設定されている。
時刻 t 1 1において、 ドライバーがアクセルペダルをやや踏込むことによりァ クセル開度 A c cが微増する。 応じて駆動要求出力 P Dがステップ的に上昇し、 その後さらに車速の増加に応じて次第に増加する。 このとき図 7に示すエンジン 起動しきい値の低減率は、 車速が低くかつアクセル開度があまり大きくないので、 たとえば 0 . 8の値に決定されエンジン起動しきい値 P t hは、 P t h (m a x ) から少し下がった値になる。
その結果、 時刻 t 1 3において駆動要求出力 P Dがしきい値 P t hを超える。 しきい値を外部充電可能型ハイプリッド車両に適用するために固定的に増加させ た場合にはエンジン起動タイミングが時刻 t 1 4となり、 外部充電を行なわない ハイプリッド車両ではエンジン起動タイミングが時刻 t 1 2となる。 本実施の形 態の外部充電可能型ハイプリッド車両においてエンジン起動される時刻 t 1 3は、 それらの中間的な値になる。
つまり、 加速要求が緩やかな場合にはエンジン起動タイミングが遅れるので、 その分バッテリのパワーが消費され、 燃料消費が少なくなり、 二酸化炭素排出の 削減に効果がある。
図 1 0は、 図 2のフローチャートの制御が適用された場合のエンジン起動タイ ミングについて説明するための第 3の波形図である。
図 1 0の波形図は、 時刻 t 2 2でアクセル開度 A c cが減少している。 時刻 t 2 2までは、 波形の変化は図 9の波形図と同じであるので説明は繰返さない。 図 1 0では、 時刻 t 2 2においてアクセル開度 A c cが減少することにより、 駆動 要求出力 P Dの増加が時刻 t 2 2で減少に転じる。 したがって、 駆動要求出力 P Dはしきい ^t P t hに到達しないためエンジン起動は起こらない。
このように、 加速要求が緩やかで、 かつ途中で加速要求が低減した場合にはェ ンジン起動そのものが行なわれない。 このため、 市街地走行等ではいつそうバッ テリのパワーが消費され、 燃料消費が少なくなり、 二酸化炭素排出の削減に効果 がある。
以上の説明に基づき、 本実施の形態について総括的に述べると、 図 1のハイブ リツド車両 1は、 車両駆動に用いられるモータジェネレータ MG 2と、 モータジ エネレータ MG 2と併用されるエンジン 4 0と、 駆動要求トルクの増減を指示す る指示部に設けられたアクセルセンサ 9と、 エンジン出力要求値が起動しきい値 を超えたときにエンジンを起動させる制御装置 3 0とを備える。 制御装置 3 0は、 図 7ではアクセル開度に応じて変化する低減率 Kに示されるように、 少なくとも 駆動要求トルクの増加に応じて起動しきい値を低減させる。
好ましくは、 ハイブリッド車両は、 モータジェネレータ MG 2に電力を供給す るバッテリ Bと、 パッテリ Bに対して車両外部から充電を行なうソケット 1 6と をさらに備える。
好ましくは、 ハイプリッド車両 1は、 車速を検知する車速センサ 8をざらに備 える。 制御装置 3 0は、 図 7では車速に応じて変化する低減率 Kに示されるよう に、 車速センサ 8で検知された車速の低減にさらに応じて起動しきい値を低減さ せる。
好ましくは、 制御装置 3 0は、 ハイブリッド車両 1に搭載されたバッテリ Bの 残存蓄電量にさらに応じて起動しきい値を変更する。
好ましくは、 制御装置 3 0は、 図 4のマップで示されるように、 車速および駆 動要求トルクに基づき駆動要求出力 P Dを算出する。 そして、 図 6の増分値 Δ Ρ t hに示したように、 駆動要求出力 P Dとハイプリッド車両に搭載された蓄電装 置の残存蓄電量に基づきエンジン出力要求値を算出する。
好ましくは、 制御装置 3 0は、 図 2のフローチャートに示されるように、 車速 に基づき起動しきい値の基準値 P t h (m i n ) を決定し、 ハイブリッド車両に 搭載されたバッテリ Bの残存蓄電量に応じて定まる増分値 Δ P t hにアクセル開 度等により与えられる駆動要求トルクおよび車速に基づいて定まる図 7で示され る低減率 Kを乗じた後に基準値に加算し起動しきい値 P t hを算出する。
このようにエンジン起動制御が行なわれる結果、 ドライバーが急加速を要求し た場合にはエンジンが速やかに起動し加速要求に応え、 ドライバーの加速要求が 緩やかであればその程度に応じてェンジン起動が抑制されるので燃料消費が低減 され二酸化炭素排出量削減に効果がある。
〔実施の形態 2 ]
■ 外部充電可能型ハイプリッド車両は、 充電が完了してバッテリの蓄電量が多く 残存するうちは、 積極的に E V走行を行なわせる。 このような動作をさせる動作 モードを E Vモードと呼ぶことにする。 E Vモードでは、 バッテリの放電が主と して行なわれ、 バッテリに対する充電は、 制動時の回生電力の回収時や、 急加速 時にトルク不足を補うためにエンジンが起動し、 その後余剰となったエンジンか らのエネルギ回収時くらいしか行なわれない。
そしてバッテリの放電が進んで蓄電量が少なくなつてくると、 通常のハイプリ ッド車両のようにバッテリの充電状態が所定の目標状態になるようにバッテリの 充放電制御を行なう。 つまり、 エンジン 4によってモータジェネレータ MG 1が 駆動され発電が行なわれ、 発電された電力でモータジェネレータ MG 2が駆動さ れる。 バッテリは、 一時的に過剰となったり不足したりする電力のバッファとし ての役割を果たす。
図 1 1は、 実施の形態 2における動作モードの決定について説明するためのフ ローチャートである。 このフローチャートの処理は所定のメインノレ一チンから一 定時間ごとまたは所定の条件成立ごとに呼び出されて実行される。 なお、 実施の 形態 2の車両の構成については、 実施の形態 1について図 1で説明した場合と同 様であるので説明は繰返さない。
図 1, 図 1 1を参照して、 まず、 処理が開始されるとステップ S 1 1において 外部からバッテリに対して充電が行なわれて終了したことを検出したか否かが判 断される。 たとえば、 ソケット 1 6に設けられた結合確認センサ 1 8が、 ブラグ 1 0 4がソケット 1 6に接続されている状態から外された状態に変化したことを 検出すると充電終了を検出したことにしてもよい。 また充電用インバータに対す る外部充電装置 1 0 0からの通電がなくなつたことを検出し、 充電終了を検出し たことにしてもよ 、。
ステップ S 1 1で充電終了が検出された場合にはステップ S 1 2に処理が進み、 制御装置 3 0は、 内部のメモリ等に保持している充電完了フラグをセットする。 一方、 ステップ S 1 1で充電終了が検出されない場合には、 ステップ S 1 3に処 理が進み、 制御装置 3 0は、 現在、 充電完了フラグがセットされているか否かを 判断する。 ステップ S 1 3において、 充電完了フラグがセットされていない場合 には、 処理はステップ S 1 8に進み制御はメインルーチンに移される。
ステップ S 1 2で充電完了フラグがセットされた力 またはステップ S 1 3で 充電完了フラグがセットされていることが検出されたら、 処理はステップ S 1 4 に進む。 ステップ S 1 4では、 まず、 バッテリ Bの充電状態 S O Cの算出が行な われる。 充電状態 S O Cは、 バッテリの残存蓄電量を示すものであり百分率 (%) であらわされることが多い。 S O Cの算出は、 バッテリ Bの電圧測定ゃ充 放電電流の積算等によって行なわれる。 そして、 充電状態 S O Cが所定値 F (%) より大きいか否かが判断される。 充電状態 S O Cが所定値 F (%) より大 きい場合には、 まだバッテリの放電を行なってもよいので、 ステップ S 1 5に処 理が進み、 制御装置 3 0は、 動作モードを E Vモードに設定する。
ステップ S 1 4において、 充電状態 S O Cが所定値 F (%) より大きくない場 合には、 バッテリに対して充電を行なう必要があるので、 ステップ S 1 6に処理 が進み、 制御装置 3 0は、 動作モードを HVモードに設定する。 そして、 制御装 置 3 0は、 さらにステップ S 1 7において充電完了フラグをリセットする。
ステップ S 1 5またはステップ S 1 7の処理が終了すると、 ステップ S 1 8に 処理が進み制御はメインルーチンに移される。
図 1 2は、 実施の形態 2におけるエンジン起動しきい値の決定を説明するため のフローチヤ一トである。
図 1 2のフローチャートは、 すでに実施の形態 1で説明した'図 2のフローチヤ ートに加えてステップ S 2 1 , S 2 2の処理が加えられたものである。 他のステ ップ S 1〜 S 9については、 実施の形態 1と同様な処理が行なわれるので説明は 繰返さない。
実施の形態 2においては、 ステップ S 2のエンジン起動しきい値の基準値が算 出された後に、 ステップ S 2 1において車両の動作モードが E Vモードなのか H Vモードなのかが判断される。
この動作モードは、 すでに説明した図 1 1のフローチヤ一トで説明した処理に よって決定されたものである。 ごく簡潔に言えば、 外部充電直後に満充電あるい はそれに近いくらいの充電量になっていれば、 動作モードは E Vモードに設定さ れ、 その後、 バッテリ電力の消費がすすみ、 充電状態が所定値 F以下になれば、 動作モードは E Vモードから HVモードに変更される。 そして HVモードに変更 された後は次の外部充電が完了するまで E Vモードに戻ることはない。
ステップ S 2 1において、 動作モードが E Vモードであれば、 実施の形態 1と 同様ステップ S 3〜S 5の処 3によって、 エンジン起動しきい値が設定される。 ステップ S 2 1において、 動作モードが HVモードであった場合には、 ステツ プ S 3〜S 5の処理は行なわれない。 この場合には、 ステップ S 2 2において、 エンジン起動しきい値にステップ S 2で算出された基準値がそのまま使用される。 図 1 3は、 実施の形態 2における S O Cの変化と動作モードの切換の様子を説 明するための図である。
図 1 3を参照して、 Bき刻 t 0において自宅等における外部充電装置 1 0 0から のバッテリ Bに対する充電が終了する。 たとえば、 このとき充電状態 S O Cは、 満充電近くになっている。
時刻!; 1において走行が開始されると、 E Vモードに設定されている車両は, バッテリの電力を積極的に使用する。 E Vモードにおけるバッテリに対する充電 は、 下り坂での制動時などの回生電力の回収などの限られた場合である。 したが つて、 時刻 t 1〜 t 2の間はバッテリの充電状態 S O Cは次第に低下していく。
E Vモードにおいては、 図 1 2で説明したようにステップ S 3〜S 5の処理に よってエンジン起動しきい値が設定される。 したがって、 アクセル開度が大きい と起動しきい値が小さく設定されエンジンが起動しやすくなり、 応答性がよくな る。 また、 車速が低減すると起動しきい値が小さく設定されエンジンが起動しや すくなり、 応答性がよくなる。
E Vモードの間は、 バッテリの蓄電量の目標値を設けずに前記蓄電装置に主と して放電を行なわせる。 そして、 時刻 t 2において S O Cが所定のしきい値 Fに到達すると、 制御装置 3 0は、 動作モードを E Vモードから HVモードに切り換える。 時亥 Ij t 2〜t 3 で設定される HVモードでは、 制御装置 3 0は、 バッテリの残存蓄電量が目標値 を大きく逸脱しないようにバッテリに対する充放電を制御する。
具体的には、 目標 S O Cを中心として、 最大値 MA Xと最小値 M I Nの間にバ ッテリの S O Cが納まるように、 モータジェネレータ MG 1の発電量とモータジ エネレータ MG 2の電力消費とが調整される。
なお、 図 1 3では、 しきい値 Fは S O C目標値と同じに設定されているがこれ に限定されるものではない。 ただし、 HVモードに切換えた直後のことを考慮す るとしきい値 Fは最大値 MA Xと最小値 M I Nの間の値であることが望ましい。 以上説明したように、 制御装置 3 0は、 実施の形態 2においては、 HVモード では、 ステップ S 2で定められた基準値をステップ S 2 2でエンジン起動しきい 値としてそのまま適用し、 E Vモードでは、 ステップ S 3〜S 5で駆動要求トル クの増加に応じて低減する値 (増分値 X低減率) を基準値に加えてエンジン起動 しきい値とする。
このようにすることにより、 動作モードがバッテリを積極的に使用する E Vモ ードであるときには、 応答性を早めるためステップ S 3〜S 5の処理が実行され るが、 一旦 HVモードに変わってしまえばより簡単な制御に変更され、 制御装置 3 0の負担が軽減される。
なお、 本実施の形態では動力分割機構によりエンジンの動力を車軸と発電機と に分割して伝達可能なシリーズ /パラレル型ハイブリッドシステムに適用した例 を示した。 しかし本発明は、 発電機を駆動するためにのみエンジンを用い、 発電 機により発電された電力を使うモータでのみ車軸の駆動力を発生させるシリーズ 型ハイプリッド自動車にも適用できる。 シリーズ型ハイブリッド自動車において もバッテリ残容量によつては高負荷時にエンジンを起動して発電機で発電を行な う必要が生じるため本発明が適用可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示され、 請求の範囲と均等の意味およぴ範囲内でのすべての変更が含まれ ることが意図される。 .

Claims

請求の範囲
1 . エンジンとモータとを走行に併用するハイプリッド車両の制御装置であつ て、
駆動要求トルクの増減を指示する指示部と、 ,
エンジン出力要求値が起動しきい値を超えたときに前記エンジンを起動させる 制御部とを備え、
前記制御部は、 少なくとも前記駆動要求トルクの増加に応じて前記起動しきい 値を低減させる、 ハイプリッド車両の制御装置。
2. 車速を検知する車速検知部をさらに備え、
前記制御部は、 前記車速検知部で検知された車速の低減にさらに応じて前記起 動しきい値を低減させる、 請求の範囲第 1項に記載のハイプリッド車両の制御装 置。
3 . 前記制御部は、 前記ハイブリッド車両に搭載された蓄電装置の残存蓄電量 にさらに応じて前記起動しきい値を変更する、 請求の範囲第 1項に記載のハイブ リッド車両の制御装置。
4. 前記制御部は、 車速および前記駆動要求トルクに基づき駆動要求出力を算 —出し、 前記駆動要求出力と前記ハイプリッド車両に搭載された蓄電装置の残存蓄 電量とに基づき前記エンジン出力要求値を算出する、 請求の範囲第 1項に記載の ハイブリッド車両の制御装置。
5 . 前記制御部は、 車速に基づき前記起動しきい値の基準値を決定し、 前記ハ イブリッド車両に搭載された蓄電装置の残存蓄電量に応じて定まる増分値に、 車 速および前記駆動要求トルクに基づいて定まる低減率を乗じた値を前記基準値に 加算して前記起動しきい値を算出する、 請求の範囲第 1項に記載のハイプリッド 車両の制御装置。
6 . 前記ハイブリッド車両は、 蓄電装置の残存蓄電量が目標値を大きく逸脱し ないように前記蓄電装置に対する充放電を制御する HVモードと、 蓄電量の目標 値を設けずに前記蓄電装置に主として放電を行なわせる E Vモードとを動作モー ド'として有し、 前記制御部は、 前記蓄電装置の残存蓄電量に基づいて、 前記動作モードを決定 し、
前記制御部は、 前記 HVモードにおいては、 基準値を前記起動しきい値として 適用し、 前記 E Vモードにおいては、 前記駆動要求トルクの増加に応じて低減す る値を前記基準値に加えて前記起動しきい値とする、 請求の範囲第 1項に記載の ハイプリッド車両の制御装置。
7 . 前記制御部は、 前記 HVモードにおいて、 所定の最大値と最小値の間に前 記残存蓄電量が収まるように前記蓄電装置に対する充放電を制御し、
前記制御部は、 残存蓄電量が所定値を下回ったときに前記動作モードを前記 E Vモードから前記 HVモードに切り換える、 請求の範囲第 6項に記載のハイプリ ッド車両の制御装置。
8 . 車両駆動に用いられるモータと、
前記モータと併用されるエンジンと、
駆動要求トルクの増減を指示する指示部と、
エンジン出力要求値が起動しきい値を超えたときに前記エンジンを起動させる 制御部とを備え、
前記制御部は、 少なくとも前記駆動要求トルクの増加に応じて前記起動しきい 値を低減させる、 ハイブリッド車両。
9 . 前記モータに電力を供給する蓄電装置と、
前記蓄電装置に対して車両外部から充電を行なう充電口とをさらに備える、 請 求の範囲第 8項に記載のハイブリッド車両。
1 0 . 車速を検知する車速検知部をさらに備え、
前記制御部は、 前記車速検知部で検知された車速の低減にさらに応じて前記起 動しきい値を低減させる、 請求の範囲第 8項に記載のハイブリッド車両。
1 1 . 前記制御部は、 前記ハイプリッド車両に搭載された蓄電装置の残存蓄電 量にさらに応じて前記起動しきい値を変更する、 請求の範囲第 8項に記載のハイ ブリッド、車両。
1 2 . 前記制御部は、 車速および前記駆動要求トルクに基づき駆動要求出力を 算出し、 前記駆動要求出力と前記ハイプリッド車両に搭載された蓄電装置の残存 蓄電量とに基づき前記エンジン出力要求値を算出する、 請求の範囲第 8項に記載 のハイプリッド車両。
1 3 . 前記制御部は、 車速に基づき前記起動しきい値の基準値を決定し、 前記 ハイプリッド車両に搭載された蓄電装置の残存蓄電量に応じて定まる増分値に、 車速および前記駆動要求トルクに基づいて定まる低減率を乗じた値を前記基準ィ直 に加算して前記起動しきい値を算出する、 請求の範囲第 8項に記載のハイプリッ ド車両。
1 4 . 前記ハイブリッド車両は、 蓄電装置の残存蓄電量が目標値を大きく逸脱 しないように前記蓄電装置に対する充放電を制御する HVモードと、 蓄電量の目 標値を設けずに前記蓄電装置に主として放電を行なわせる E Vモードとを動作モ ードとして有し、
前記制御部は、 前記蓄電装置の残存蓄電量に基づいて、 前記動作モードを決定 し、
前記制御部は、 前記 HVモードにおいては、 基準値を前記起動しきい値として 適用し、 前記 E Vモードにおいては、 前記駆動要求トルクの増加に応じて低減す る値を前記基準値に加えて前記起動しきい値とする、 請求の範囲第 8項に記載の ハイブリッド車両。
1 5 . 前記制御部は、 前記 HVモードにおいて、 所定の最大値と最小値の間に 前記残存蓄電量が収まるように前記蓄電装置に対する充放電を制御し、
前記制御部は、 残存蓄電量が所定値を下回ったときに前記動作モードを前記 E Vモードから前記 HVモードに切り換える、 請求の範囲第 1 4項に記載のハイブ yッド、車両。
PCT/JP2007/059561 2006-06-07 2007-04-27 ハイブリッド車両の制御装置およびハイブリッド車両 WO2007141984A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008520465A JP4434302B2 (ja) 2006-06-07 2007-04-27 ハイブリッド車両の制御装置およびハイブリッド車両
US12/227,375 US8660725B2 (en) 2006-06-07 2007-04-27 Control device of hybrid vehicle and hybrid vehicle
EP07742996.7A EP2025904B1 (en) 2006-06-07 2007-04-27 Hybrid vehicle
KR1020097000180A KR101085506B1 (ko) 2006-06-07 2007-04-27 하이브리드 차량의 제어 장치 및 하이브리드 차량
CN2007800208563A CN101460726B (zh) 2006-06-07 2007-04-27 混合动力车辆的控制装置以及混合动力车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006158655 2006-06-07
JP2006-158655 2006-06-07

Publications (1)

Publication Number Publication Date
WO2007141984A1 true WO2007141984A1 (ja) 2007-12-13

Family

ID=38801249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059561 WO2007141984A1 (ja) 2006-06-07 2007-04-27 ハイブリッド車両の制御装置およびハイブリッド車両

Country Status (6)

Country Link
US (1) US8660725B2 (ja)
EP (1) EP2025904B1 (ja)
JP (1) JP4434302B2 (ja)
KR (1) KR101085506B1 (ja)
CN (1) CN101460726B (ja)
WO (1) WO2007141984A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161134A (ja) * 2008-01-10 2009-07-23 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2010111188A (ja) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP2011057117A (ja) * 2009-09-11 2011-03-24 Toyota Motor Corp ハイブリッド車
JP2013035336A (ja) * 2011-08-04 2013-02-21 Toyota Motor Corp 車両および車両の制御方法
JP2014076743A (ja) * 2012-10-11 2014-05-01 Toyota Motor Corp ハイブリッド車両
JP2014125068A (ja) * 2012-12-26 2014-07-07 Toyota Motor Corp 車両の制御装置
JP2014184910A (ja) * 2013-03-25 2014-10-02 Toyota Motor Corp 車両の制御装置
RU2558655C2 (ru) * 2009-12-14 2015-08-10 Джи Эм Глоубал Текнолоджи Оперейшнз, Инк. Система зарядки аккумуляторной батареи для гибридных транспортных средств
EP2247481A4 (en) * 2008-03-03 2016-08-10 Nissan Motor HYBRID VEHICLE DRIVE CONTROL APPARATUS
JP2016210210A (ja) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 ハイブリッド車の制御装置
JP2016215660A (ja) * 2015-05-14 2016-12-22 トヨタ自動車株式会社 内燃機関の制御装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274257B2 (ja) * 2007-02-20 2009-06-03 トヨタ自動車株式会社 ハイブリッド車両
JP4372818B2 (ja) * 2007-10-19 2009-11-25 トヨタ自動車株式会社 外部充電ev/hv自動車
EP2386440B1 (en) * 2009-01-09 2019-06-19 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
JP4726966B2 (ja) * 2009-01-30 2011-07-20 エンパイア テクノロジー ディベロップメント エルエルシー ハイブリッド車両用駆動装置、ハイブリッド車両及び駆動方法
DE102009002466A1 (de) * 2009-04-17 2010-10-21 Robert Bosch Gmbh Erweiterte Batteriediagnose bei Traktionsbatterien
JP5056869B2 (ja) 2010-02-25 2012-10-24 アイシン精機株式会社 エンジン始動方法及び装置
US9162664B2 (en) 2010-05-05 2015-10-20 Ford Global Technologies, Inc. Vehicle and method for controlling an electric machine and/or engine therein
DE102010017374A1 (de) * 2010-06-15 2011-12-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Starten des Verbrennungsmotors eines Hybridfahrzeugs
US9352739B2 (en) * 2011-02-15 2016-05-31 GM Global Technology Operations LLC Method for operating a hybrid vehicle
CN103476654B (zh) * 2011-04-14 2016-05-25 丰田自动车株式会社 混合动力车辆及蓄电装置的输出控制方法
WO2012164644A1 (ja) * 2011-05-27 2012-12-06 トヨタ自動車株式会社 車両
US8612078B2 (en) * 2011-08-08 2013-12-17 Bae Systems Controls Inc. Parallel hybrid electric vehicle power management system and adaptive power management method and program therefor
KR101713708B1 (ko) 2011-12-12 2017-03-09 현대자동차주식회사 하이브리드 차량의 제어방법
CN103249624B (zh) * 2011-12-13 2015-06-24 丰田自动车株式会社 混合动力系统控制装置
KR101361384B1 (ko) * 2011-12-26 2014-02-21 현대자동차주식회사 하이브리드 차량의 ev/hev모드 천이 제어방법
JP5903311B2 (ja) * 2012-03-30 2016-04-13 本田技研工業株式会社 ハイブリッド車両
US9573586B2 (en) * 2013-04-04 2017-02-21 Nissan Motor Co., Ltd. Hybrid vehicle control device
US9162674B2 (en) * 2013-10-24 2015-10-20 Ford Global Technologies, Llc Dynamic mapping of pedal position to wheel output demand in a hybrid vehicle
JP2015104988A (ja) * 2013-11-29 2015-06-08 スズキ株式会社 車両用制御装置
CN103600742B (zh) * 2013-12-03 2016-06-15 北京交通大学 一种混合动力汽车能量管理控制装置及能量管理控制方法
JP6319113B2 (ja) * 2015-01-19 2018-05-09 株式会社デンソー 電力制御装置
US9932914B2 (en) * 2015-04-14 2018-04-03 Ford Global Technologies, Llc Method for increasing electric operation in hybrid electric vehicles
KR101684543B1 (ko) * 2015-06-19 2016-12-20 현대자동차 주식회사 하이브리드 차량의 운전 모드 제어 시스템 및 그 방법
KR101776723B1 (ko) * 2015-09-03 2017-09-08 현대자동차 주식회사 하이브리드 차량의 주행 모드 변환 제어 방법 및 그 제어 장치
KR101734701B1 (ko) 2015-11-02 2017-05-11 현대자동차주식회사 Lpg 연료 차량의 충전 장치 및 방법
EP3445602A4 (en) * 2016-04-19 2020-06-10 Magtec Products, Inc. THROTTLE VALVE CONTROL SYSTEM AND METHOD
DE102018212925B4 (de) * 2018-08-02 2021-05-27 Audi Ag Verfahren zum Betreiben einer Hybridantriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Hybridantriebseinrichtung
US10946852B2 (en) 2018-09-26 2021-03-16 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for determining engine start time during predicted acceleration events

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559973A (ja) * 1991-06-21 1993-03-09 Rootasu Res Kk 自動車用複合原動装置
US5713814A (en) 1995-08-02 1998-02-03 Aisin Aw Co., Ltd. Control system for vehicular drive unit
JPH11205907A (ja) * 1998-01-16 1999-07-30 Toyota Motor Corp ハイブリッド車の駆動制御装置
JP2000303873A (ja) * 1999-04-19 2000-10-31 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
US6553287B1 (en) 2001-10-19 2003-04-22 Ford Global Technologies, Inc. Hybrid electric vehicle control strategy to achieve maximum wide open throttle acceleration performance
JP2003343304A (ja) 2002-05-29 2003-12-03 Honda Motor Co Ltd ハイブリッド車両
US20050211479A1 (en) 2000-10-11 2005-09-29 Ford Global Technologies, Llc Control system for a hybrid electric vehicle to anticipate the need for a mode change

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341659B2 (ja) 1997-12-05 2002-11-05 日産自動車株式会社 ハイブリッド車の制御装置
JP3541875B2 (ja) 1999-01-19 2004-07-14 三菱自動車工業株式会社 ハイブリッド車のエンジン始動装置
GB2370130B (en) * 2000-10-11 2004-10-06 Ford Motor Co A control system for a hybrid electric vehicle
JP3956810B2 (ja) 2002-09-10 2007-08-08 日産自動車株式会社 アイドルストップ車両のエンジン始動制御装置
US6876098B1 (en) * 2003-09-25 2005-04-05 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Methods of operating a series hybrid vehicle
JP3941775B2 (ja) 2003-11-28 2007-07-04 トヨタ自動車株式会社 動力出力装置およびその制御方法並びにこれを搭載する自動車
TWI302501B (en) * 2005-02-15 2008-11-01 Honda Motor Co Ltd Power control unit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559973A (ja) * 1991-06-21 1993-03-09 Rootasu Res Kk 自動車用複合原動装置
US5713814A (en) 1995-08-02 1998-02-03 Aisin Aw Co., Ltd. Control system for vehicular drive unit
JPH11205907A (ja) * 1998-01-16 1999-07-30 Toyota Motor Corp ハイブリッド車の駆動制御装置
US6336889B1 (en) 1998-01-16 2002-01-08 Toyota Jidosha Kabushiki Kaisha Drive control system for hybrid vehicles
JP2000303873A (ja) * 1999-04-19 2000-10-31 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
US20050211479A1 (en) 2000-10-11 2005-09-29 Ford Global Technologies, Llc Control system for a hybrid electric vehicle to anticipate the need for a mode change
US6553287B1 (en) 2001-10-19 2003-04-22 Ford Global Technologies, Inc. Hybrid electric vehicle control strategy to achieve maximum wide open throttle acceleration performance
JP2003343304A (ja) 2002-05-29 2003-12-03 Honda Motor Co Ltd ハイブリッド車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2025904A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161134A (ja) * 2008-01-10 2009-07-23 Toyota Motor Corp ハイブリッド車およびその制御方法
EP2247481A4 (en) * 2008-03-03 2016-08-10 Nissan Motor HYBRID VEHICLE DRIVE CONTROL APPARATUS
JP2010111188A (ja) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP2011057117A (ja) * 2009-09-11 2011-03-24 Toyota Motor Corp ハイブリッド車
RU2558655C2 (ru) * 2009-12-14 2015-08-10 Джи Эм Глоубал Текнолоджи Оперейшнз, Инк. Система зарядки аккумуляторной батареи для гибридных транспортных средств
JP2013035336A (ja) * 2011-08-04 2013-02-21 Toyota Motor Corp 車両および車両の制御方法
JP2014076743A (ja) * 2012-10-11 2014-05-01 Toyota Motor Corp ハイブリッド車両
US9644557B2 (en) 2012-10-11 2017-05-09 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method of controlling hybrid vehicle
JP2014125068A (ja) * 2012-12-26 2014-07-07 Toyota Motor Corp 車両の制御装置
JP2014184910A (ja) * 2013-03-25 2014-10-02 Toyota Motor Corp 車両の制御装置
US9145125B2 (en) 2013-03-25 2015-09-29 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
JP2016210210A (ja) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 ハイブリッド車の制御装置
JP2016215660A (ja) * 2015-05-14 2016-12-22 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JPWO2007141984A1 (ja) 2009-10-15
EP2025904B1 (en) 2016-06-01
EP2025904A4 (en) 2011-06-08
CN101460726A (zh) 2009-06-17
JP4434302B2 (ja) 2010-03-17
EP2025904A1 (en) 2009-02-18
US8660725B2 (en) 2014-02-25
US20090240387A1 (en) 2009-09-24
KR20090016034A (ko) 2009-02-12
CN101460726B (zh) 2012-11-14
KR101085506B1 (ko) 2011-11-23

Similar Documents

Publication Publication Date Title
WO2007141984A1 (ja) ハイブリッド車両の制御装置およびハイブリッド車両
US7108088B2 (en) Hybrid vehicle and control method of hybrid vehicle
JP4992728B2 (ja) 電源装置およびその放電制御方法
US8428803B2 (en) Hybrid vehicle and method for controlling hybrid vehicle
JP6881210B2 (ja) ハイブリッド車両の制御装置
US7923950B2 (en) Vehicle drive device and method of controlling vehicle drive device
US8307928B2 (en) System and method for operating an electric motor by limiting performance
US8892286B2 (en) Hybrid vehicle
CN102883934A (zh) 混合动力车辆的控制装置及具有该控制装置的混合动力车辆
US20100155162A1 (en) Cooling system, vehicle equipped with the cooling system, and method for controlling the cooling system
US20100250042A1 (en) Vehicle and method of controlling the vehicle
JP5664769B2 (ja) 車両および車両用制御方法
JP2006312352A (ja) 駆動システムの制御装置
JP2011093335A (ja) ハイブリッド車両の制御装置
US9252630B2 (en) Battery charge control apparatus
JP5729475B2 (ja) 車両および車両の制御方法
JP2010163061A (ja) 動力出力装置、それを備えた車両および動力出力装置の制御方法
WO2012101798A1 (ja) 車両および車両の制御方法
JP5243571B2 (ja) ハイブリッド車両の制御装置
JP2008001301A (ja) ハイブリッド車両の制御装置
JP2012045996A (ja) ハイブリッド車両の発電制御装置
JP5479628B2 (ja) ハイブリッド車両の制御装置
JP2012106672A (ja) ハイブリッド自動車
JP2014083853A (ja) ハイブリッド車
JP2006246607A (ja) 車両およびその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780020856.3

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12227375

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008520465

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007742996

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020097000180

Country of ref document: KR