JP2006246607A - 車両およびその制御方法 - Google Patents

車両およびその制御方法 Download PDF

Info

Publication number
JP2006246607A
JP2006246607A JP2005058474A JP2005058474A JP2006246607A JP 2006246607 A JP2006246607 A JP 2006246607A JP 2005058474 A JP2005058474 A JP 2005058474A JP 2005058474 A JP2005058474 A JP 2005058474A JP 2006246607 A JP2006246607 A JP 2006246607A
Authority
JP
Japan
Prior art keywords
power
output
input
distribution ratio
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005058474A
Other languages
English (en)
Inventor
Akihiro Kimura
秋広 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005058474A priority Critical patent/JP2006246607A/ja
Publication of JP2006246607A publication Critical patent/JP2006246607A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Abstract

【課題】 電力の入出力を伴って走行用の動力を出力可能な複数の動力源を備える車両において、複数の動力源と電力のやりとりが可能な蓄電装置の入出力制限近傍で複数の動力源を駆動するときに動力源の効率の相違から生じ得る蓄電装置の入出力制限の超過を抑制する。
【解決手段】 前輪に動力を出力するモータMG2と後輪に動力を出力するモータMG3を備えるハイブリッド自動車において、バッテリの充放電電力Pbがバッテリの入出力制限Win,Woutの近傍となるときには、前輪と後輪とに出力するトルクの分配比Dをゆっくり変化させる(S130,S140)。これにより、モータMG2とモータMG3との効率の相違による電力消費の急変を抑止して、一時的にバッテリの入出力制限Win,Woutを超えてしまうのを抑制することができる。
【選択図】 図2

Description

本発明は、車両およびその制御方法に関する。
従来、この種の車両としては、プラネタリギヤを介してエンジンからの動力と前輪用モータからの動力とを前輪に出力する前輪駆動系と後輪用モータからの動力を後輪に出力する後輪駆動系とを備えるハイブリッド車が提案されている(例えば、特許文献1参照)。この車両では、制動時にはバッテリの入出力制限の範囲内で伝達効率の高い後輪用モータの回生トルクを設定し、この回生トルクとバッテリの入出力制限とを用いた制限下で前輪用モータから出力すべき回生トルクを設定する。これにより車両の運動エネルギを効率よく回収している。
特開2002−345105号公報
このように走行用の動力を出力する複数のモータを備える車両では、バッテリの入出力制限の近傍で複数のモータを駆動するときには、モータの駆動配分を自由に変化させるものとすると、モータの効率の相違からバッテリの入出力制限を超える場合が生じる。バッテリの入出力制限を超過したモータの駆動は、バッテリの過充電や過放電を生じ、バッテリの劣化を促進させてしまう。
本発明の車両およびその制御方法は、電力の入出力を伴って走行用の動力を出力可能な複数の動力源を備える車両において、複数の動力源と電力のやりとりが可能な二次電池などの蓄電装置の入出力制限近傍で複数の動力源を駆動するときに動力源の効率の相違から生じ得る蓄電装置の入出力制限の超過を抑制することを目的とする。
本発明の車両およびその制御方法は、上述の目的を達成するために以下の手段を採った。
本発明の車両は、
電力の入出力を伴って走行用の動力を出力可能な複数の動力源と、
走行に要求される要求動力を設定する要求動力設定手段と、
前記複数の動力源から前記設定された要求動力を出力する際の該複数の動力源から出力する動力の配分比の目標値である目標配分比を設定する目標配分比設定手段と、
前記複数の動力源と電力のやりとりが可能な蓄電手段と、
前記蓄電手段の入出力制限を設定する入出力制限設定手段と、
前記蓄電手段に入出力される電力を検出する入出力電力検出手段と、
前記検出された入出力電力が前記設定された入出力制限の範囲内における少なくとも制限値近傍を除く所定範囲内のときには前記設定された目標配分比を実行用配分比として設定し、前記検出された入出力電力が前記設定された入出力制限の範囲内で前記所定範囲外のときには所定の変化速度以下の変化速度をもって前記配分比が前記設定された目標配分比となるよう実行用配分比を設定する実行用配分比設定手段と、
前記複数の動力源から前記設定された実行用配分比で前記設定された要求動力が出力されるよう前記複数の動力源を制御する制御手段と、
を備えることを要旨とする。
この本発明の車両は、蓄電手段に入出力される入出力電力が蓄電手段の入出力制限の範囲内における少なくとも制限値近傍を除く所定範囲内のときには複数の動力源から走行に要求される要求動力を出力する際の複数の動力源から出力する動力の配分比の目標値である目標配分比を実行用配分比として設定し、蓄電手段に入出力される入出力電力が蓄電手段の入出力制限の範囲内で上述の所定範囲外のときには所定の変化速度以下の変化速度をもって配分比が目標配分比となるよう実行用配分比を設定する。そして複数の動力源から設定した実行用配分比で要求動力が出力されるよう複数の動力源を制御する。即ち、蓄電手段に入出力される入出力電力が蓄電手段の入出力制限の範囲内で上述の所定範囲外のときには目標配分比を実行用配分比に設定するのを制限するのである。これにより、電力の入出力に対する効率が異なる複数の動力源の要求動力の分配比を急変することによって生じ得る蓄電手段の入出力制限の超過を抑制することができる。この結果、蓄電手段の劣化を抑制することができる。
こうした本発明の車両において、前記実行用配分比設定手段は、前記検出された入出力電力が前記設定された入出力制限の範囲内で前記所定範囲外のときには前記所定の変化速度をもって前記配分比を前記設定された目標配分比側に変更した仮配分比と前記設定された目標配分比とのうち配分比の変更量が小さい方を実行用配分比として設定する手段であるものとすることもできる。こうすれば、実行用分配比を所定の変化速度以下の変化速度をもって効果的に目標配分比側に設定することができる。
また、本発明の車両において、前記複数の動力源は、第1の車軸に動力を出力可能な第1動力源と前記第1の車軸とは異なる車軸に動力を出力可能な第2動力源とにより構成されてなるものとすることもできる。この場合、前記第1動力源は、内燃機関と、該内燃機関の出力軸と前記第1の車軸に連結された駆動軸とに接続され電力と動力との入出力を伴って前記内燃機関からの動力の少なくとも一部を前記駆動軸に出力可能な電力動力入出力力手段と、前記駆動軸に動力を入出力可能な第1電動機と、を備え、前記第2動力源は、前記第2の車軸に動力を入出力可能な第2電動機であるものとすることもできる。更にこの場合、前記電力動力入出力手段は、前記内燃機関の出力軸と前記駆動軸と回転軸との3軸に接続され該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、前記回転軸に動力を入出力する発電機と、を備える手段であるものとすることもできるし、前記電力動力入出力手段は、前記内燃機関の出力軸に接続された第1の回転子と前記駆動軸に接続された第2の回転子とを有し該第1の回転子と該第2の回転子との相対的な回転により回転する対回転子電動機であるものとすることもできる。
さらに、本発明の車両において、燃料の供給を受けて発電する燃料電池と、該燃料電池からの発電電力を前記複数の動力源および前記蓄電手段に供給可能な電力供給手段と、を備えるものとすることもできる。
本発明の車両の制御方法は、
電力の入出力を伴って走行用の動力を出力可能な複数の動力源と、前記複数の動力源と電力のやりとりが可能な蓄電手段と、を備える車両の制御方法であって、
(a)走行に要求される要求動力を設定し、
(b)前記複数の動力源から前記設定された要求動力を出力する際の該複数の動力源から出力する動力の配分比の目標値である目標配分比を設定し、
(c)前記蓄電手段の入出力制限を設定し、
(d)前記蓄電手段に入出力される電力を検出し、
(e)前記検出した入出力電力が前記設定した入出力制限の範囲内における少なくとも制限値近傍を除く所定範囲内のときには前記設定した目標配分比を実行用配分比として設定し、前記検出した入出力電力が前記設定した入出力制限の範囲内で前記所定範囲外のときには所定の変化速度以下の変化速度をもって前記配分比が前記設定した目標配分比となるよう実行用配分比を設定し、
(f)前記複数の動力源から前記設定した実行用配分比で前記設定した要求動力が出力されるよう前記複数の動力源を制御する
ことを要旨とする。
この本発明の車両の制御方法では、蓄電手段に入出力される入出力電力が蓄電手段の入出力制限の範囲内における少なくとも制限値近傍を除く所定範囲内のときには複数の動力源から走行に要求される要求動力を出力する際の複数の動力源から出力する動力の配分比の目標値である目標配分比を実行用配分比として設定し、蓄電手段に入出力される入出力電力が蓄電手段の入出力制限の範囲内で上述の所定範囲外のときには所定の変化速度以下の変化速度をもって配分比が目標配分比となるよう実行用配分比を設定する。そして複数の動力源から設定した実行用配分比で要求動力が出力されるよう複数の動力源を制御する。即ち、蓄電手段に入出力される入出力電力が蓄電手段の入出力制限の範囲内で上述の所定範囲外のときには目標配分比を実行用配分比に設定するのを制限するのである。これにより、電力の入出力に対する効率が異なる複数の動力源の要求動力の分配比を急変することによって生じ得る蓄電手段の入出力制限の超過を抑制することができる。この結果、蓄電手段の劣化を抑制することができる。
次に、本発明を実施するための最良の形態を実施例を用いて説明する。
図1は、本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、エンジン22の出力軸としてのクランクシャフト26にダンパ28を介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続されると共にギヤ機構60およびデファレンシャルギヤ61を介して前輪62a,62bに接続された駆動軸としてのリングギヤ軸32aに減速ギヤ35を介して接続されたモータMG2と、デファレンシャルギヤ63を介して後輪64a,64bに接続されたモータMG3と、ハイブリッド自動車20全体をコントロールするハイブリッド用電子制御ユニット70とを備える。
エンジン22は、ガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関であり、エンジン22の運転状態を検出する各種センサから信号を入力するエンジン用電子制御ユニット(以下、エンジンECUという)24により燃料噴射制御や点火制御,吸入空気量調節制御などの運転制御を受けている。エンジンECU24は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。
動力分配統合機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31とリングギヤ32とキャリア34とを回転要素として差動作用を行なう遊星歯車機構として構成されている。動力分配統合機構30は、キャリア34にはエンジン22のクランクシャフト26が、サンギヤ31にはモータMG1が、リングギヤ32にはリングギヤ軸32aを介して減速ギヤ35がそれぞれ連結されており、モータMG1が発電機として機能するときにはキャリア34から入力されるエンジン22からの動力をサンギヤ31側とリングギヤ32側にそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア34から入力されるエンジン22からの動力とサンギヤ31から入力されるモータMG1からの動力を統合してリングギヤ32側に出力する。リングギヤ32に出力された動力は、リングギヤ軸32aからギヤ機構60およびデファレンシャルギヤ61を介して、最終的には前輪62a,62bに出力される。
モータMG1,MG2,MG3は、いずれも発電機として駆動することができると共に電動機として駆動できる周知の同期発電電動機として構成されており、インバータ41,42,43を介してバッテリ50と電力のやりとりを行なう。インバータ41,42,43とバッテリ50とを接続する電力ライン54は、各インバータ41,42,43が共用する正極母線および負極母線として構成されており、モータMG1,MG2,MG3のいずれかで発電される電力を他のモータで消費することができるようになっている。したがって、バッテリ50は、モータMG1,MG2,MG3のいずれかから生じた電力や不足する電力により充放電されることになる。なお、モータMG1,MG2,MG3により電力収支のバランスをとるものとすれば、バッテリ50は充放電されない。モータMG1,MG2,MG3は、いずれもモータ用電子制御ユニット(以下、モータECUという)40により駆動制御されている。モータECU40には、モータMG1,MG2,MG3を駆動制御するために必要な信号、例えばモータMG1,MG2,MG3の回転子の回転位置を検出する回転位置検出センサ44,45,46からの信号や図示しない電流センサにより検出されるモータMG1,MG2,MG3に印加される相電流などが入力されており、モータECU40からは、インバータ41,42,43へのスイッチング制御信号が出力されている。モータECU40は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によってモータMG1,MG2,MG3を駆動制御すると共に必要に応じてモータMG1,MG2,MG3の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。
バッテリ50は、バッテリ用電子制御ユニット(以下、バッテリECUという)52によって管理されている。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された電圧センサ51aからのバッテリ電圧Vb,バッテリ50の出力端子に接続された電力ライン54に取り付けられた電流センサ51bからのバッテリ電流Ib,バッテリ50に取り付けられた図示しない温度センサからの電池温度などが入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりハイブリッド用電子制御ユニット70に出力する。なお、バッテリECU52では、バッテリ50を管理するために電流センサ51bにより検出されたバッテリ電流Ibの積算値に基づいて残容量(SOC)も演算している。
ハイブリッド用電子制御ユニット70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74と、データを一時的に記憶するRAM76と、図示しない入出力ポートおよび通信ポートとを備える。ハイブリッド用電子制御ユニット70には、イグニッションスイッチ80からのイグニッション信号,シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速Vなどが入力ポートを介して入力されている。ハイブリッド用電子制御ユニット70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。
こうして構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて車両から出力すべき要求トルクを計算し、この要求トルクに対応する要求動力が出力されるように、エンジン22とモータMG1とモータMG2とモータMG3とが運転制御される。エンジン22とモータMG1とモータMG2とモータMG3の運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1とモータMG2およびモータMG3の一方または両方とによってトルク変換されて出力されるようモータMG1,MG2,MG3を駆動制御するトルク変換運転モードや要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分配統合機構30とモータMG1とモータMG2およびモータMG3の一方または両方とによるトルク変換を伴って要求動力が出力されるようモータMG1,MG2,MG3を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2およびモータMG3の一方または両方から要求動力に見合う動力が出力されるよう運転制御するモータ運転モードなどがある。
次に、こうして構成された実施例のハイブリッド自動車20の動作について説明する。図2は、実施例のハイブリッド自動車20のハイブリッド用電子制御ユニット70により実行される駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば、数msec毎)に繰り返し実行される。
駆動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット70のCPU72は、まず、アクセルペダルポジションセンサ84からのアクセル開度Accや車速センサ88からの車速V,モータMG1,MG2,MG3の各回転数Nm1,Nm2,Nm3,バッテリ50の充放電要求パワーPb*,バッテリ電圧Vb,バッテリ電流Ib,バッテリ50の入出力制限Win,Woutなど制御に必要なデータを入力する(ステップS100)。ここで、回転数Nm1,Nm2,Nm3は、回転位置検出センサ44,45,46からのモータMG1,MG2,MG3の回転子の回転位置に基づいて演算されたものをモータECU40から通信により入力するものとした。充放電要求パワーPb*は、図示しない充放電要求パワー設定処理ルーチンによりバッテリECU52から通信により入力した残容量SOCが所定量よりも大きいときには大きいほど放電用のパワーが大きくなる傾向に設定され、残容量SOCが所定量よりも小さいときには小さいほど充電用のパワーが大きくなる傾向に設定されたものを入力するものとした。バッテリ電圧Vbおよびバッテリ電流Ibは、電圧センサ51aおよび電流センサ51bにより検出されたものをバッテリECU52から通信により入力するものとした。バッテリ50の入出力制限Win,Woutは、温度センサにより検出されたバッテリ50の電池温度Tbとバッテリ50の残容量(SOC)とに基づいて設定されたものをバッテリECU52から通信により入力するものとした。なお、バッテリ50の入出力制限Win,Woutは、電池温度Tbに基づいて入出力制限Win,Woutの基本値を設定し、バッテリ50の残容量(SOC)に基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じて入出力制限Win,Woutを設定することができる。
こうしてデータを入力すると、入力したアクセル開度Accと車速Vとに基づいて車両に要求される要求トルクT*と要求パワーP*とを設定する(ステップS110)。ここで、要求トルクT*は、実施例では、アクセル開度Accと車速Vと要求トルクT*との関係を予め求めて要求トルク設定用マップとしてROM74に記憶しておき、アクセル開度Accと車速Vが与えられると要求トルク設定用マップから対応する要求トルクT*を導出することにより設定するものとした。要求トルク設定用マップの一例を図3に示す。また、要求パワーP*は、設定した要求トルクT*に車速Vを乗じたものと充放電要求パワーPb*と損失Lossとの和により計算したものを設定するものとした。
続いて、要求トルクT*を前輪62a,62bおよび後輪64a,64bに分配するための分配比Dを設定する(ステップS120)。ここで、分配比Dは、要求トルクT*に対する前輪62a,62bに出力するトルクの割合として車両の走行状態に基づいて値1〜値0の範囲で設定されるものである。例えば、通常走行時には前輪62a,62b側だけにトルクが出力されるよう値1.0の分配比Dを設定したり、坂路走行時や発進走行時には前輪62a,62bと後輪64a,64bの両方にトルクが出力されるよう値0.5や値0.6などの分配比Dを設定したり、前輪62a,62bと後輪64a,64bの一方にスリップが発生したスリップ発生時にはスリップが発生した輪に出力されるトルクの割合が小さくなると共にスリップが発生していない輪に出力されるトルクの割合が大きくなるように分配比Dを設定したりすることができる。
分配比Dを設定すると、バッテリ電圧Vbとバッテリ電流Ibとの積であるバッテリ50の充放電電力Pbが入力制限Winに所定電力ΔPを加えた値と出力制限Woutから所定電力ΔPを減じた値とによって設定される良好充放電範囲内にあるか否かを判定し(ステップS130)、バッテリ50の充放電電力Pb(Vb・Ib)が良好充放電範囲外となるときには分配比Dを前回このルーチンが実行されたときに設定された分配比Dから値Drtだけ増減した制限値を用いて制限することにより分配比Dを再設定する(ステップS140)。ここで、値Drtは、分配比Dの変化を比較的ゆっくり行なわせるために用いられるレート処理におけるレート値であり、この駆動制御ルーチンの起動時間間隔やモータMG2やモータMG3から走行用の駆動力を出力する際の効率などにより定めることができる。したがって、バッテリ50の充放電電力Pb(Vb・Ib)が良好充放電範囲外のときには、分配比Dは値Drtを駆動制御ルーチンの起動時間間隔で除した変化速度の範囲内で変化することになる。このように、バッテリ50の充放電電力Pb(Vb・Ib)が良好充放電範囲外となるときに分配比Dの変化速度を制限するのは、次の理由に基づく。モータMG2を駆動したときに走行用の動力として出力される際における効率とモータMG3を駆動したときに走行用の動力として出力される際における効率は通常異なるものとなる。バッテリ50の入出力制限Win,Woutの上下限の近傍で分配比Dを急変させると、こうした効率の相違がモータMG2とモータMG3とによって消費される電力の急変として現われ、一時的にバッテリ50の入出力制限Win,Woutを超えてしまう場合が生じる。バッテリ50は、その入出力制限Win,Woutを超える充放電を行なっても超える程度が小さいときには直ちに破損するものではないが、その頻度が大きいときには劣化が早くなってしまう。実施例では、こうしたバッテリ50の劣化を抑制するために、バッテリ50の充放電電力Pb(Vb・Ib)がその入出力制限Win,Woutの上下限の近傍のときには分配比Dをゆっくり変化させることにより、一時的な入出力制限Win,Woutの超過を抑制しているのである。
こうして分配比Dを設定すると、設定した分配比Dに要求トルクT*を乗じて前輪62a,62b側に出力すべき前輪側トルクTf*を設定すると共に値1から分配比Dを減じたものに要求トルクT*を乗じて後輪64a,64b側に出力すべき後輪側トルクTr*を設定する(ステップS150)。
そして、要求パワーP*が所定パワーPref以上か否かを判定する(ステップS160)。ここで、所定パワーPrefは、エンジン22が効率よく運転できる範囲を定めるものであり、エンジン22などに基づいて定められる。要求パワーP*が所定パワーPref以上でない即ち所定パワーPref未満と判定されると、エンジン22を効率よく運転できないと判断して、エンジン22の運転が停止されるようエンジン22の目標トルクTe*に値0を設定すると共に(ステップS170)、モータMG1からトルクが入出力されないようモータMG1から出力すべきトルク指令Tm1*に値0を設定する(ステップS180)。
一方、要求パワーP*が所定パワーPref以上と判定されると、要求パワーP*に基づいてエンジン22の目標回転数Ne*と目標トルクTe*とを設定する(ステップS190)。この設定は、エンジン22を効率よく動作させる動作ラインと要求パワーP*とに基づいて目標回転数Ne*と目標トルクTe*とを設定することにより行なわれる。エンジン22の動作ラインの一例および目標回転数Ne*と目標トルクTe*とを設定する様子を図4に示す。図示するように、目標回転数Ne*と目標トルクTe*は、動作ラインと要求パワーP*(Ne*×Te*)が一定の曲線との交点により求めることができる。
目標回転数Ne*と目標トルクTe*とを設定すると、設定した目標回転数Ne*とリングギヤ軸32aの回転数Nr(=Nm2/Ga;「Ga」は減速ギヤ35のギヤ比)と動力分配統合機構30のギヤ比ρとに基づいて次式(1)によりモータMG1の目標回転数Nm1*を設定すると共に設定した目標回転数Nm1*と現在の回転数Nm1とに基づいて次式(2)によりモータMG1のトルク指令Tm1*を設定する(ステップS200)。動力分配統合機構30の各回転要素の回転数とトルクの力学的な関係を示す共線図に一例を図5に示す。図中、左のS軸はサンギヤ31の回転数を示し、C軸はキャリア34の回転数を示し、R軸はリングギヤ32(リングギヤ軸32a)の回転数Nrを示す。前述したように、サンギヤ31の回転数はモータMG1の回転数Nm1でもありキャリア34の回転数はエンジン22の回転数Neでもあるから、モータMG1の目標回転数Nm1*はリングギヤ軸32aの回転数Nrとエンジン22の目標回転数Ne*と動力分配統合機構30のギヤ比ρとに基づいて式(1)により計算することができる。したがって、モータMG1が目標回転数Nm1*で回転するようトルク指令Tm1*を設定してモータMG1を駆動制御することにより、エンジン22を目標回転数Ne*で回転させることができる。ここで、式(2)は、モータMG1を目標回転数Nm1*で回転させるためのフィードバック制御における関係式であり、式(2)中、右辺第2項の「KP」は比例項のゲインであり、右辺第3項の「KI」は積分項のゲインである。なお、図5におけるR軸上の2つの上向き太線矢印は、エンジン22を目標回転数Ne*および目標トルクTe*の運転ポイントで定常運転したときにエンジン22から出力されるトルクTe*がリングギヤ軸32aに伝達されるトルクと、モータMG2から出力されるトルクTm2*がリングギヤ軸32aに作用するトルクとを示す。
Nm1*=(Ne*・(1+ρ)-Nm2/Ga)/ρ (1)
Tm1*=前回Tm1*+KP(Nm1*-Nm1)+KI∫(Nm1*-Nm1)dt (2)
モータMG1のトルク指令Tm1*を設定すると、次式(3)に示すように、前輪側トルクTf*を換算係数Gfで除したものからエンジン22からリングギヤ軸32aに直接伝達されるトルク(=−Tm1*/ρ)を減じこれを更に減速ギヤ35のギヤ比Gaで除することによりモータMG2から出力すべきトルク指令Tm2*を設定し(ステップS210)、次式(4)に示すように、後輪側トルクTr*を換算係数Grで除することによりモータMG3から出力すべきトルク指令Tm3*を設定する(ステップS220)。ここで、換算係数Gfは、前輪62a,62bに作用するトルクをリングギヤ軸32aに作用するトルクに換算するための係数であり、換算係数Grは、後輪64a,64bに作用するトルクをモータMG3に作用するトルクに換算するための係数である。
Tm2*=(Tf*/Gf+Tm1*/ρ)/Ga (3)
Tm3*=Tr*/Gr (4)
こうしてモータMG2,MG3のトルク指令Tm2*,Tm3*を設定すると、設定したトルク指令Tm1*,Tm2*,Tm3*をバッテリ50の入出力制限Win,Woutの範囲内となるよう制限する(ステップS230〜S260)。実施例では、トルク指令Tm1*,Tm2*,Tm3*に対応する回転数Nm1,Nm2,Nm3を乗じたものの和としてのモータ電力Pmを計算し(ステップS230)、計算したモータ電力Pmがバッテリ50の入出力制限Win,Woutの範囲にあるか否かを判定し(ステップS240)、モータ電力Pmがバッテリ50の入力制限Win未満のときにはトルク指令Tm1*をレート値Trt1ずつ増加することによりモータ電力Pmがバッテリ50の入出力制限Win,Woutの範囲内となるよう調整し(ステップS250)、モータ電力Pmがバッテリ50の出力制限Woutを超えるときにはトルク指令Tm2*,Tm3*をレート値Trt2,Trt3ずつ減少することによりモータ電力Pmがバッテリ50の入出力制限Win,Woutの範囲内となるよう調整する(ステップS260)、ことにより行なうものとした。このように、トルク指令Tm1*,Tm2*,Tm3*をバッテリ50の入出力制限Win,Woutの範囲内となるよう制限することにより、バッテリ50の過大な電力による充放電を抑制することができ、バッテリ50の劣化を抑制することができる。
こうしてエンジン22の目標回転数Ne*や目標トルクTe*,モータMG1,MG2,MG3のトルク指令Tm1*,Tm2*,Tm3*を設定すると、エンジン22の目標回転数Ne*と目標トルクTe*についてはエンジンECU24に、モータMG1,MG2,MG3のトルク指令Tm1*,Tm2*,Tm3*についてはモータECU40にそれぞれ送信して(ステップS270)、駆動制御ルーチンを終了する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、エンジン22が目標回転数Ne*と目標トルクTe*とによって示される運転ポイントで運転されるようにエンジン22における燃料噴射制御や点火制御などの制御を行なう。また、トルク指令Tm1*,Tm2*,Tm3*を受信したモータECU40は、トルク指令Tm1*でモータMG1が駆動されると共にトルク指令Tm2*でモータMG2が駆動され、トルク指令Tm3*でモータMG3が駆動されるようインバータ41,42,43のスイッチング素子のスイッチング制御を行なう。
以上説明した実施例のハイブリッド自動車20によれば、バッテリ50の充放電電力Pb(Vb・Ib)が良好充放電範囲外となるときには、分配比Dがゆっくり変化するよう変化速度を制限するから、モータMG2とモータMG3との効率の相違による電力消費の急変を抑止して、一時的にバッテリ50の入出力制限Win,Woutを超えてしまうのを抑制することができる。この結果、バッテリ50の劣化を防止することができる。
実施例のハイブリッド自動車20では、同期発電電動機としてのモータMG1,MG2,MG3をインバータ41,42,43により駆動するものとしたが、これに限られず、例えば、モータMG1,MG2,MG3のすべて或いは一部を直流電動機として構成し、直流電動機についてはチョッパ回路などにより駆動するものとしてもよい。
実施例のハイブリッド自動車20では、エンジン22からの動力を前輪62a,62bに出力するものとしたが、エンジン22からの動力を後輪64a,64bに出力するものとしてもよい。
実施例のハイブリッド自動車20では、エンジン22からの動力を動力分配統合機構30を介して前輪62a,62bに接続された駆動軸としてのリングギヤ軸32aに出力するものとしたが、図6の変形例のハイブリッド自動車120に例示するように、エンジン22のクランクシャフト26に接続されたインナーロータ132と前輪62a,62bに動力を出力する駆動軸に接続されたアウターロータ134とを有し、エンジン22の動力の一部を駆動軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機130を備えるものとしてもよい。
実施例では、エンジン22とインバータ41,42,43により駆動されるモータMG1,MG2,MG3とを備えるハイブリッド自動車20に適用して説明したが、ハイブリッド自動車に限られず、図7の変形例の自動車220に例示するように、前輪62a,62bに動力を出力するモータM1と後輪64a,64bに動力を出力するモータM2とを備え、エンジンを備えないものとしてもよい。この場合、図8の変形例の自動車320に例示するように、モータM1,M2やバッテリに電力を供給する発電装置として燃料電池FCを搭載するものとしてもよい。
実施例のハイブリッド自動車20では、前輪62a,62bに動力を出力するモータMG2と後輪64a,64bに動力を出力するモータMG3とを備える構成とし、このモータMG2とモータMG3との効率の相違による電力消費の急変を抑止するために、バッテリ50の充放電電力Pb(Vb・Ib)が良好充放電範囲外となるときには要求トルクT*を前輪62a,62bおよび後輪64a,64bに分配するための分配比Dをゆっくり変化させるものとしたが、モータMG2もモータMG3も前輪62a,62bまたは後輪64a,64bの一方の動力を出力する構成とし、モータMG2とモータMG3との効率の相違による電力消費の急変を抑止するために、バッテリ50の充放電電力Pb(Vb・Ib)が良好充放電範囲外となるときにはモータMG2とモータMG3とのトルク分配における分配比をゆっくり変化させるものとしてもよい。さらに、走行用の動力の出力に用いられる3以上のモータを備える構成とし、3以上のモータにおける効率の相違による電力消費の急変を抑止するために、バッテリ50の充放電電力Pb(Vb・Ib)が良好充放電範囲外となるときには3以上のモータにおけるトルク分配における分配比をゆっくり変化させるものとしてもよい。
実施例では、ハイブリッド自動車20として説明したが、列車などの自動車以外の車両に適用するものとしてもよい。また、車両の制御方法の形態としてもよい。
以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、自動車製造産業などに利用可能である。
本発明の一実施形態としての動力出力装置を搭載するハイブリッド自動車20の構成の概略を示す構成図である。 実施例のハイブリッド自動車20のハイブリッド用電子制御ユニット70により実行される駆動制御ルーチンの一例を示すフローチャートである。 要求トルク設定用マップの一例を示す説明図である。 動作ラインの一例および目標回転数Ne*と目標トルクTe*を設定する様子を示す説明図である。 動力分配統合機構30の各回転要素の回転数とトルクの力学的な関係を示す共線図である。と車両から出力されるトルクの時間変化の様子を示す説明図である。 変形例のハイブリッド自動車120の構成の概略を示す構成図である。 変形例の自動車220の構成の概略を示す構成図である。 変形例の自動車320の構成の概略を示す構成図である。
符号の説明
20,120 ハイブリッド自動車、220,320 自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 動力分配統合機構、31 サンギヤ、32 リングギヤ、32a リングギヤ軸、33 ピニオンギヤ、34 キャリア、35 減速ギヤ、40 モータ用電子制御ユニット(モータECU)、41,42,43 インバータ、44,45,46 回転位置検出センサ、50 バッテリ、51a 電圧センサ、51b 電流センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54 電力ライン、60 ギヤ機構、61,63 デファレンシャルギヤ、62a,62b 前輪、64a,64b 後輪、70 ハイブリッド用電子制御ユニット、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、130 対ロータ電動機、132 インナーロータ 134 アウターロータ、MG1,MG2,MG3,M1,M2 モータ,FC 燃料電池。

Claims (8)

  1. 電力の入出力を伴って走行用の動力を出力可能な複数の動力源と、
    走行に要求される要求動力を設定する要求動力設定手段と、
    前記複数の動力源から前記設定された要求動力を出力する際の該複数の動力源から出力する動力の配分比の目標値である目標配分比を設定する目標配分比設定手段と、
    前記複数の動力源と電力のやりとりが可能な蓄電手段と、
    前記蓄電手段の入出力制限を設定する入出力制限設定手段と、
    前記蓄電手段に入出力される電力を検出する入出力電力検出手段と、
    前記検出された入出力電力が前記設定された入出力制限の範囲内における少なくとも制限値近傍を除く所定範囲内のときには前記設定された目標配分比を実行用配分比として設定し、前記検出された入出力電力が前記設定された入出力制限の範囲内で前記所定範囲外のときには所定の変化速度以下の変化速度をもって前記配分比が前記設定された目標配分比となるよう実行用配分比を設定する実行用配分比設定手段と、
    前記複数の動力源から前記設定された実行用配分比で前記設定された要求動力が出力されるよう前記複数の動力源を制御する制御手段と、
    を備える車両。
  2. 前記実行用配分比設定手段は、前記検出された入出力電力が前記設定された入出力制限の範囲内で前記所定範囲外のときには前記所定の変化速度をもって前記配分比を前記設定された目標配分比側に変更した仮配分比と前記設定された目標配分比とのうち配分比の変更量が小さい方を実行用配分比として設定する手段である請求項1記載の車両。
  3. 前記複数の動力源は、第1の車軸に動力を出力可能な第1動力源と前記第1の車軸とは異なる車軸に動力を出力可能な第2動力源とにより構成されてなる請求項1または2記載の車両。
  4. 請求項3記載の車両であって、
    前記第1動力源は、内燃機関と、該内燃機関の出力軸と前記第1の車軸に連結された駆動軸とに接続され電力と動力との入出力を伴って前記内燃機関からの動力の少なくとも一部を前記駆動軸に出力可能な電力動力入出力力手段と、前記駆動軸に動力を入出力可能な第1電動機と、を備え、
    前記第2動力源は、前記第2の車軸に動力を入出力可能な第2電動機である
    車両。
  5. 前記電力動力入出力手段は、前記内燃機関の出力軸と前記駆動軸と回転軸との3軸に接続され該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、前記回転軸に動力を入出力する発電機と、を備える手段である請求項4記載の車両。
  6. 前記電力動力入出力手段は、前記内燃機関の出力軸に接続された第1の回転子と前記駆動軸に接続された第2の回転子とを有し該第1の回転子と該第2の回転子との相対的な回転により回転する対回転子電動機である請求項4記載の車両。
  7. 請求項1ないし3いずれか記載の車両であって、
    燃料の供給を受けて発電する燃料電池と、
    該燃料電池からの発電電力を前記複数の動力源および前記蓄電手段に供給可能な電力供給手段と、
    を備える車両。
  8. 電力の入出力を伴って走行用の動力を出力可能な複数の動力源と、前記複数の動力源と電力のやりとりが可能な蓄電手段と、を備える車両の制御方法であって、
    (a)走行に要求される要求動力を設定し、
    (b)前記複数の動力源から前記設定された要求動力を出力する際の該複数の動力源から出力する動力の配分比の目標値である目標配分比を設定し、
    (c)前記蓄電手段の入出力制限を設定し、
    (d)前記蓄電手段に入出力される電力を検出し、
    (e)前記検出した入出力電力が前記設定した入出力制限の範囲内における少なくとも制限値近傍を除く所定範囲内のときには前記設定した目標配分比を実行用配分比として設定し、前記検出した入出力電力が前記設定した入出力制限の範囲内で前記所定範囲外のときには所定の変化速度以下の変化速度をもって前記配分比が前記設定した目標配分比となるよう実行用配分比を設定し、
    (f)前記複数の動力源から前記設定した実行用配分比で前記設定した要求動力が出力されるよう前記複数の動力源を制御する
    車両の制御方法。
JP2005058474A 2005-03-03 2005-03-03 車両およびその制御方法 Pending JP2006246607A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058474A JP2006246607A (ja) 2005-03-03 2005-03-03 車両およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058474A JP2006246607A (ja) 2005-03-03 2005-03-03 車両およびその制御方法

Publications (1)

Publication Number Publication Date
JP2006246607A true JP2006246607A (ja) 2006-09-14

Family

ID=37052421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058474A Pending JP2006246607A (ja) 2005-03-03 2005-03-03 車両およびその制御方法

Country Status (1)

Country Link
JP (1) JP2006246607A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085082A1 (ja) * 2020-10-20 2022-04-28 日産自動車株式会社 駆動力制御方法及び駆動力制御装置
US11440403B2 (en) 2016-09-16 2022-09-13 Hitachi Astemo, Ltd. Control apparatus for electric vehicle, control system for electric vehicle, and control method for electric vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11440403B2 (en) 2016-09-16 2022-09-13 Hitachi Astemo, Ltd. Control apparatus for electric vehicle, control system for electric vehicle, and control method for electric vehicle
WO2022085082A1 (ja) * 2020-10-20 2022-04-28 日産自動車株式会社 駆動力制御方法及び駆動力制御装置
JP7359318B2 (ja) 2020-10-20 2023-10-11 日産自動車株式会社 駆動力制御方法及び駆動力制御装置

Similar Documents

Publication Publication Date Title
JP4229105B2 (ja) ハイブリッド車およびその制御方法
JP2009130994A (ja) 動力出力装置およびその制御方法並びに車両
JP2008201351A (ja) 車両およびその制御方法
JP2009227073A (ja) ハイブリッド車およびその制御方法
JP4222332B2 (ja) ハイブリッド車およびその制御方法
JP2006211789A (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP5200924B2 (ja) ハイブリッド車およびその制御方法
JP2009126257A (ja) 車両およびその制御方法
JP2006094626A (ja) ハイブリッド車およびその制御方法
JP2006118359A (ja) 車両およびその制御方法
JP2010163061A (ja) 動力出力装置、それを備えた車両および動力出力装置の制御方法
JP4016897B2 (ja) 蓄電装置の充放電制御装置および自動車
JP2008254677A (ja) 車両及びその制御方法
JP4534586B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP4229125B2 (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP2010195255A (ja) ハイブリッド車およびその制御方法
JP2010064522A (ja) 車両およびその制御方法
JP4345765B2 (ja) 車両およびその制御方法
JP4248553B2 (ja) 車両およびその制御方法
JP5691997B2 (ja) ハイブリッド自動車
JP4992810B2 (ja) ハイブリッド車およびその制御方法
JP2007137231A (ja) 動力出力装置およびその制御方法並びに車両
JP2006246607A (ja) 車両およびその制御方法
JP2009227074A (ja) ハイブリッド車およびその制御方法
JP2010023588A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812