JP2009227074A - ハイブリッド車およびその制御方法 - Google Patents

ハイブリッド車およびその制御方法 Download PDF

Info

Publication number
JP2009227074A
JP2009227074A JP2008074131A JP2008074131A JP2009227074A JP 2009227074 A JP2009227074 A JP 2009227074A JP 2008074131 A JP2008074131 A JP 2008074131A JP 2008074131 A JP2008074131 A JP 2008074131A JP 2009227074 A JP2009227074 A JP 2009227074A
Authority
JP
Japan
Prior art keywords
power
output
atmospheric pressure
target
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008074131A
Other languages
English (en)
Inventor
Yoshiteru Kikuchi
義晃 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008074131A priority Critical patent/JP2009227074A/ja
Publication of JP2009227074A publication Critical patent/JP2009227074A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】高地などの大気圧が低い地域を走行するときでも二次電池などの蓄電装置の蓄電量が低下するのを抑制することを主目的とする。
【解決手段】大気圧Paが閾値Paref未満のときには、大気圧Paが閾値Paref以上のときに比してバッテリに充電される電力が大きくなる傾向に充放電要求電力Pb*を設定すると共に(S110,S200)、運転者によって要求される要求トルクTr*と設定された充放電要求電力Pb*とに基づいてエンジンに要求される要求パワーPe*を設定し(S130)、エンジンから要求パワーPe*が出力されると共に要求トルクTr*により走行するようエンジンと2つのモータとを制御する(S140〜S190)。これにより、高地などの大気圧が低い地域を走行するときでもバッテリの蓄電量SOCが低下するのを抑制することができる。
【選択図】図2

Description

本発明は、ハイブリッド車およびその制御方法に関する。
従来、この種のハイブリッド車としては、エンジンと、エンジンからの動力を用いて発電すると共にエンジンの駆動力をアシストするモータジェネレータと、モータジェネレータと電力をやりとりする蓄電装置と、を備えるものが提案されている(例えば、特許文献1参照)。このハイブリッド車では、高地などのエンジンへの吸気密度が小さい地域を走行するときには、蓄電装置の目標蓄電量を大きい値に変更することにより、エンジンからの出力が小さくなることに伴って蓄電装置が過放電となることを防止している。
特開2005−180255号公報
エンジンからの動力を二つの電動機と遊星歯車機構とを用いてトルク変換して車軸側に出力することにより走行するハイブリッド車では、高地などの気圧が低い地域を走行すると、空気密度が小さくなるためにエンジンからの出力が小さくなる結果、バッテリからの放電が多くなり、バッテリの蓄電量が低下する場合が生じる。この場合、上述のハイブリッド車のように、バッテリの目標蓄電量を大きな値にすることも考えられるが、バッテリの蓄電量が大きな目標蓄電量となったときには、運転者がブレーキペダルを踏み込んだときに回生ブレーキにより車両の運動エネルギを回収する際の電力量が減少し、エネルギ効率が低下してしまう。
本発明のハイブリッド車およびその制御方法は、高地などの大気圧が低い地域を走行するときでも二次電池などの蓄電装置の蓄電量が低下するのを抑制することを主目的とする。
本発明のハイブリッド車およびその制御方法は、上述の主目的を達成するために以下の手段を採った。
本発明のハイブリッド車は、
内燃機関と、
車軸に連結された駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記駆動軸と前記出力軸に動力を入出力する電力動力入出力手段と、
前記駆動軸に動力を出力する電動機と、
前記電力動力入出力手段および前記電動機と電力をやりとりする蓄電手段と、
大気圧を検出する大気圧検出手段と、
前記検出された大気圧が所定気圧以上のときには前記蓄電手段の状態に基づいて第1の関係を用いて前記蓄電手段を充放電すべき目標充放電電力を設定し、前記検出された大気圧が前記所定気圧未満のときには前記蓄電手段の状態に基づいて前記第1の関係より充電電力が大きい第2の関係を用いて前記蓄電手段を充放電すべき目標充放電電力を設定する目標充放電電力設定手段と、
駆動軸に要求される要求駆動力を設定する要求駆動力設定手段と、
前記設定された要求駆動力と前記設定された目標充放電電力とに基づいて前記内燃機関から出力すべき目標パワーを設定する目標パワー設定手段と、
前記設定された目標パワーが前記内燃機関から出力されると共に前記設定された要求駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御する制御手段と、
を備えることを要旨とする。
この本発明のハイブリッド車では、大気圧が所定気圧以上のときには蓄電手段の状態に基づいて第1の関係を用いて蓄電手段を充放電すべき目標充放電電力を設定すると共に走行に要求される要求駆動力と設定した目標充放電電力とに基づいて内燃機関から出力すべき目標パワーを設定し、この目標パワーが内燃機関から出力されると共に要求駆動力により走行するよう内燃機関と電力動力入出力手段と電動機とを制御する。これにより、蓄電手段の充放電を行ないながら要求駆動力により走行することができる。また、大気圧が所定気圧未満のときには蓄電手段の状態に基づいて第1の関係より充電電力が大きい第2の関係を用いて蓄電手段を充放電すべき目標充放電電力を設定すると共に要求駆動力と設定した目標充放電電力とに基づいて内燃機関から出力すべき目標パワーを設定し、この目標パワーが内燃機関から出力されると共に要求駆動力により走行するよう内燃機関と電力動力入出力手段と電動機とを制御する。即ち、大気圧が所定気圧未満のときには蓄電手段を充電すべき充電電力が大きく設定されて内燃機関から出力すべき目標パワーが設定されるのである。これにより、高地などの大気圧が低い地域を走行するときでも蓄電手段の蓄電量が低下するのを抑制することができる。
こうした本発明のハイブリッド車において、前記第2の関係は、前記検出された大気圧が小さいほど充電電力が大きくなる関係であるものとすることもできる。こうすれば、大気圧に応じてより適正に蓄電手段の蓄電量が低下するのを抑制することができる。
また、本発明のハイブリッド車において、前記第2の関係は、前記第1の関係より放電電力が小さい関係であるであるものとすることもできる。こうすれば、高地などの大気圧が低い地域を走行するときでも蓄電手段の蓄電量が低下するのをより抑制することができる。
さらに、本発明のハイブリッド車において、前記電力動力入出力手段は、動力を入出力する発電機と、前記駆動軸と前記出力軸と前記発電機の回転軸との3軸に接続され該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、を備える手段であるものとすることもできる。
本発明のハイブリッド車の制御方法は、
内燃機関と、車軸に連結された駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続されて電力と動力の入出力を伴って前記駆動軸と前記出力軸に動力を入出力する電力動力入出力手段と、前記駆動軸に動力を出力する電動機と、前記電力動力入出力手段および前記電動機と電力をやりとりする蓄電手段と、を備えるハイブリッド車の制御方法であって、
(a)大気圧が所定気圧以上のときには前記蓄電手段の状態に基づいて第1の関係を用いて前記蓄電手段を充放電すべき目標充放電電力を設定すると共に走行に要求される要求駆動力と前記設定した目標充放電電力とに基づいて前記内燃機関から出力すべき目標パワーを設定し、前記設定した目標パワーが前記内燃機関から出力されると共に前記要求駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御し、
(b)大気圧が前記所定気圧未満のときには前記蓄電手段の状態に基づいて前記第1の関係より充電電力が大きい第2の関係を用いて前記蓄電手段を充放電すべき目標充放電電力を設定すると共に前記要求駆動力と前記設定した目標充放電電力とに基づいて前記内燃機関から出力すべき目標パワーを設定し、前記設定した目標パワーが前記内燃機関から出力されると共に前記要求駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御する、
ことを特徴とする。
この本発明のハイブリッド車の制御方法では、大気圧が所定気圧以上のときには蓄電手段の状態に基づいて第1の関係を用いて蓄電手段を充放電すべき目標充放電電力を設定すると共に走行に要求される要求駆動力と設定した目標充放電電力とに基づいて内燃機関から出力すべき目標パワーを設定し、この目標パワーが内燃機関から出力されると共に要求駆動力により走行するよう内燃機関と電力動力入出力手段と電動機とを制御する。これにより、蓄電手段の充放電を行ないながら要求駆動力により走行することができる。また、大気圧が所定気圧未満のときには蓄電手段の状態に基づいて第1の関係より充電電力が大きい第2の関係を用いて蓄電手段を充放電すべき目標充放電電力を設定すると共に要求駆動力と設定した目標充放電電力とに基づいて内燃機関から出力すべき目標パワーを設定し、この目標パワーが内燃機関から出力されると共に要求駆動力により走行するよう内燃機関と電力動力入出力手段と電動機とを制御する。即ち、大気圧が所定気圧未満のときには蓄電手段を充電すべき充電電力が大きく設定されて内燃機関から出力すべき目標パワーが設定されるから、高地などの大気圧が低い地域を走行するときでも蓄電手段の蓄電量が低下するのを抑制することができる。
次に、本発明を実施するための最良の形態を実施例を用いて説明する。
図1は、本発明の一実施例であるハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、エンジン22の出力軸としてのクランクシャフト26にダンパ28を介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続された駆動軸としてのリングギヤ軸32aに取り付けられた減速ギヤ35と、この減速ギヤ35に接続されたモータMG2と、車両全体をコントロールするハイブリッド用電子制御ユニット70とを備える。
エンジン22は、例えばガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関であり、エンジン用電子制御ユニット(以下、エンジンECUという)24により燃料噴射制御や点火制御,吸入空気量調節制御などの運転制御を受けている。エンジンECU24には、エンジン22の運転状態を検出する各種センサからの信号、例えば、エンジン22のクランクシャフト26のクランク角を検出する図示しないクランクポジションセンサからのクランクポジションなどが入力されている。エンジンECU24は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、エンジンECU24は、図示しないクランクポジションセンサからのクランクポジションに基づいてクランクシャフト26の回転数、即ちエンジン22の回転数Neも演算している。
動力分配統合機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31とリングギヤ32とキャリア34とを回転要素として差動作用を行なう遊星歯車機構として構成されている。動力分配統合機構30は、キャリア34にはエンジン22のクランクシャフト26が、サンギヤ31にはモータMG1が、リングギヤ32にはリングギヤ軸32aを介して減速ギヤ35がそれぞれ連結されており、モータMG1が発電機として機能するときにはキャリア34から入力されるエンジン22からの動力をサンギヤ31側とリングギヤ32側にそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア34から入力されるエンジン22からの動力とサンギヤ31から入力されるモータMG1からの動力を統合してリングギヤ32側に出力する。リングギヤ32に出力された動力は、リングギヤ軸32aからギヤ機構60およびデファレンシャルギヤ62を介して、最終的には車両の駆動輪63a,63bに出力される。
モータMG1およびモータMG2は、いずれも発電機として駆動することができると共に電動機として駆動できる周知の同期発電電動機として構成されており、インバータ41,42を介してバッテリ50と電力のやりとりを行なう。インバータ41,42とバッテリ50とを接続する電力ライン54は、各インバータ41,42が共用する正極母線および負極母線として構成されており、モータMG1,MG2のいずれかで発電される電力を他のモータで消費することができるようになっている。したがって、バッテリ50は、モータMG1,MG2のいずれかから生じた電力や不足する電力により充放電されることになる。なお、モータMG1,MG2により電力収支のバランスをとるものとすれば、バッテリ50は充放電されない。モータMG1,MG2は、いずれもモータ用電子制御ユニット(以下、モータECUという)40により駆動制御されている。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの信号や図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流などが入力されており、モータECU40からは、インバータ41,42へのスイッチング制御信号が出力されている。モータECU40は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、モータECU40は、回転位置検出センサ43,44からの信号に基づいてモータMG1,MG2の回転数Nm1,Nm2も演算している。
バッテリ50は、バッテリ用電子制御ユニット(以下、バッテリECUという)52によって管理されている。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧,バッテリ50の出力端子に接続された電力ライン54に取り付けられた図示しない電流センサからの充放電電流,バッテリ50に取り付けられた温度センサ51からの電池温度Tbなどが入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりハイブリッド用電子制御ユニット70に出力する。また、バッテリECU52は、バッテリ50を管理するために電流センサにより検出された充放電電流の積算値に基づいて蓄電量SOCを演算したり、演算した蓄電量SOCと電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算している。なお、バッテリ50の入出力制限Win,Woutは、電池温度Tbに基づいて入出力制限Win,Woutの基本値を設定し、バッテリ50の蓄電量SOCに基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定することができる。
ハイブリッド用電子制御ユニット70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74と、データを一時的に記憶するRAM76と、図示しない入出力ポートおよび通信ポートとを備える。ハイブリッド用電子制御ユニット70には、イグニッションスイッチ80からのイグニッション信号,シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速V,大気圧センサ89からの大気圧Paなどが入力ポートを介して入力されている。ハイブリッド用電子制御ユニット70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。
こうして構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸としてのリングギヤ軸32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求動力がリングギヤ軸32aに出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2の運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1とモータMG2とによってトルク変換されてリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分配統合機構30とモータMG1とモータMG2とによるトルク変換を伴って要求動力がリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2からの要求動力に見合う動力をリングギヤ軸32aに出力するよう運転制御するモータ運転モードなどがある。
次に、こうして構成された実施例のハイブリッド自動車20の動作について説明する。図2はハイブリッド用電子制御ユニット70により実行される駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば数msec毎)に繰り返し実行される。
駆動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット70のCPU72は、まず、アクセルペダルポジションセンサ84からのアクセル開度Accや車速センサ88からの車速V,モータMG1,MG2の回転数Nm1,Nm2,バッテリ50の蓄電量SOC,バッテリ50の入出力制限Win,Wout,大気圧センサ89からの大気圧Paなど制御に必要なデータを入力する処理を実行する(ステップS100)。ここで、モータMG1,MG2の回転数Nm1,Nm2は、回転位置検出センサ43,44により検出されたモータMG1,MG2の回転子の回転位置に基づいて演算されたものをモータECU40から通信により入力するものとした。また、バッテリ50の蓄電量SOCは、図示しない電流センサにより検出された充放電電流の積算値に基づいて計算されたものをバッテリECU52から通信により入力するものとした。さらに、バッテリ50の入出力制限Win,Woutは、バッテリ50の電池温度Tbとバッテリ50の蓄電量SOCとに基づいて設定されたものをバッテリECU52から通信により入力するものとした。
こうしてデータを入力すると、入力した大気圧Paを閾値Parefと比較する(ステップS110)。ここで、閾値Parefは、エンジン22から出力される動力が目標とする動力より小さくなると想定されるか否かを判定するために用いられるものであり、標準圧(例えば1気圧)やそれよりも若干低い気圧などを用いることができる。大気圧Paが標準圧のときにエンジン22から出力されるパワー(以下、エンジンパワーという)Peがエンジン22に要求される要求パワーPe*となるようにエンジン22の吸入空気量制御や燃料噴射制御などを行なう車両では、大気圧Paが比較的小さいときには、エンジン22に吸入される空気密度が小さくなることによって燃焼室内に吸入される酸素量が減少するため、エンジンパワーPeは要求パワーPe*に対して小さくなると考えられる。ステップS110の大気圧Paと閾値Parefとの比較は、エンジンパワーPeが要求パワーPe*に対して小さくなると想定される状態(出力低下想定状態)であるか否かを判定する処理である。大気圧Paが閾値Paref以上のときには、出力低下想定状態ではないと判断し、バッテリ50の蓄電量SOCに基づいてバッテリ50を充放電すべき充放電要求電力Pb*を設定する(ステップS120)。充放電要求電力Pb*は、実施例では、バッテリ50の蓄電量SOCと充放電要求電力Pb*との関係を予め定めて通常時充放電電力設定用マップとしてROM74に記憶しておき、バッテリ50の蓄電量SOCが与えられると記憶したマップから対応する充放電要求電力Pb*を導出して設定するものとした。通常時充放電電力設定用マップの一例を図3に示す。充放電要求電力Pb*は、図示するように、バッテリ50の蓄電量SOCが目標蓄電量SOC*未満の領域では充電用の電力が設定され、目標蓄電量SOC*以上の領域では放電用の電力が設定される。なお、目標蓄電量SOC*としては例えば50%や60%などを用いることができる。
こうして充放電要求電力Pb*を設定すると、アクセル開度Accと車速Vとに基づいて車両に要求されるトルクとして駆動輪63a,63bに連結された駆動軸としてのリングギヤ軸32aに出力すべき要求トルクTr*とエンジン22に要求される要求パワーPe*とを設定する(ステップS130)。要求トルクTr*は、実施例では、アクセル開度Accと車速Vと要求トルクTr*との関係を予め定めて要求トルク設定用マップとしてROM74に記憶しておき、アクセル開度Accと車速Vとが与えられると記憶したマップから対応する要求トルクTr*を導出して設定するものとした。図4に要求トルク設定用マップの一例を示す。要求パワーPe*は、設定した要求トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものから充放電要求電力Pb*を減じてロスLossを加えたものとして計算することができる。なお、リングギヤ軸32aの回転数Nrは、車速Vに換算係数kを乗じることによって求めたり、モータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで割ることによって求めることができる。
続いて、設定した要求パワーPe*に基づいてエンジン22を運転すべき運転ポイントとしての目標回転数Ne*と目標トルクTe*とを設定する(ステップS140)。この設定は、エンジン22を効率よく動作させる動作ラインと要求パワーPe*とに基づいて行なわれる。エンジン22の動作ラインの一例と目標回転数Ne*と目標トルクTe*とを設定する様子を図5に示す。図示するように、目標回転数Ne*と目標トルクTe*は、動作ラインと要求パワーPe*(Ne*×Te*)が一定の曲線との交点により求めることができる。
次に、エンジン22の目標回転数Ne*とモータMG2の回転数Nm2と動力分配統合機構30のギヤ比ρと減速ギヤ35のギヤ比Grとを用いて次式(1)によりモータMG1の目標回転数Nm1*を計算すると共に計算した目標回転数Nm1*と入力したモータMG1の回転数Nm1とエンジン22の目標トルクTe*と動力分配統合機構30のギヤ比ρとに基づいて式(2)によりモータMG1のトルク指令Tm1*を計算する(ステップS150)。ここで、式(1)は、動力分配統合機構30の回転要素に対する力学的な関係式である。エンジン22からパワーを出力している状態で走行しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図を図6に示す。図中、左のS軸はモータMG1の回転数Nm1であるサンギヤ31の回転数を示し、C軸はエンジン22の回転数Neであるキャリア34の回転数を示し、R軸はモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除したリングギヤ32の回転数Nrを示す。式(1)は、この共線図を用いれば容易に導くことができる。なお、R軸上の2つの太線矢印は、モータMG1から出力されたトルクTm1がリングギヤ32aに作用するトルクと、モータMG2から出力したトルクが減速ギヤ35を介してリングギヤ軸32aに作用するトルクとを示す。また、式(2)は、モータMG1を目標回転数Nm1*で回転させるためのフィードバック制御における関係式であり、式(2)中、右辺第2項の「k1」は比例項のゲインであり、右辺第3項の「k2」は積分項のゲインである。
Nm1*=Ne*・(1+ρ)/ρ-Nm2/(Gr・ρ) (1)
Tm1*=-ρ・Te*/(1+ρ)+k1(Nm1*-Nm1)+k2∫(Nm1*-Nm1)dt (2)
そして、要求トルクTr*に設定したトルク指令Tm1*を動力分配統合機構30のギヤ比ρで除したものを加えて更に減速ギヤ35のギヤ比Grで除してモータMG2から出力すべきトルクの仮の値である仮トルクTm2tmpを次式(3)により計算すると共に(ステップS160)、バッテリ50の入出力制限Win,Woutと設定したトルク指令Tm1*に現在のモータMG1の回転数Nm1を乗じて得られるモータMG1の消費電力(発電電力)との偏差をモータMG2の回転数Nm2で割ることによりモータMG2から出力してもよいトルクの上下限としてのトルク制限Tm2min,Tm2maxを次式(4)および式(5)により計算し(ステップS170)、設定した仮トルクTm2tmpをトルク制限Tm2min,Tm2maxで制限してモータMG2のトルク指令Tm2*を設定する(ステップS180)。ここで、式(3)は、図6の共線図から容易に導くことができる。
Tm2tmp=(Tr*+Tm1*/ρ)/Gr (3)
Tm2min=(Win-Tm1*・Nm1)/Nm2 (4)
Tm2max=(Wout-Tm1*・Nm1)/Nm2 (5)
こうしてエンジン22の目標回転数Ne*や目標トルクTe*,モータMG1,MG2のトルク指令Tm1*,Tm2*を設定すると、エンジン22の目標回転数Ne*と目標トルクTe*についてはエンジンECU24に、モータMG1,MG2のトルク指令Tm1*,Tm2*についてはモータECU40にそれぞれ送信し(ステップS190)、駆動制御ルーチンを終了する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、エンジン22が目標回転数Ne*と目標トルクTe*とによって示される運転ポイントで運転されるようにエンジン22における吸入空気量制御や燃料噴射制御,点火制御などの制御を行なう。また、トルク指令Tm1*,Tm2*を受信したモータECU40は、トルク指令Tm1*でモータMG1が駆動されると共にトルク指令Tm2*でモータMG2が駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。こうした制御により、バッテリ50の入出力制限Win,Woutの範囲内でエンジン22を効率よく運転して駆動軸としてのリングギヤ軸32aに要求トルクTr*を出力して走行することができる。
ステップS110で大気圧Paが閾値Paref未満のときには、エンジンパワーPeが要求パワーPe*に対して小さくなると想定される出力低下想定状態であると判断し、大気圧Paとバッテリ50の蓄電量SOCとに基づいてバッテリ50を充放電すべき充放電要求電力Pb*を設定すると共に(ステップS200)、ステップS130〜S190の処理を実行して駆動制御ルーチンを終了する。この場合の充放電要求電力Pb*は、実施例では、大気圧Paとバッテリ50の蓄電量SOCと充放電要求電力Pb*との関係を予め定めて低圧時充放電電力設定用マップとしてROM74に記憶しておき、大気圧Paとバッテリ50の蓄電量SOCとが与えられると記憶したマップから対応する充放電要求電力Pb*を導出して設定するものとした。低圧時充放電電力設定用マップの一例を図7に示す。なお、図7には、参考のために、大気圧Paが閾値Paref以上のときに用いられる通常時充放電電力設定用マップについても一点鎖線で併せて示している。低圧時充放電電力設定用マップでは、図示するように、充放電要求電力Pb*は、バッテリ50の蓄電量SOCが目標蓄電量SOC*以上の領域では通常時充放電電力設定用マップと同一の値が設定され、蓄電量SOCが目標蓄電量SOC*未満の領域では大気圧Paが小さいほど小さな値(充電電力として大きな値)が設定される。いま、大気圧Paが標準圧(例えば1気圧)に比して比較的小さいときを考えている。このときには、前述したように、要求パワーPe*よりも小さいパワーがエンジン22から出力されると考えられるため、大気圧Paが標準圧近傍のときに比してエンジン22から出力されるトルクが小さくなる。このため、大気圧Paが標準圧近傍のときに比して、モータMG1を目標回転数Nm1*で回転させるよう計算されるモータMG1のトルク指令Tm1*が大きくなる(発電用トルクとしては小さくなる)と共にこのトルク指令Tm1*を用いて式(3)により計算されるモータMG2の仮トルクTm2tmpが大きくなる。したがって、大気圧Paが標準圧近傍のときに比して、モータMG1により発電される電力が小さくなると共にモータMG2により消費される電力が大きくなり、バッテリ50に入出力される電力が充放電要求電力Pb*より放電側になると想定される。このことを考慮して、実施例では、バッテリ50に充電される電力が大きくなる傾向に充放電要求電力Pb*を設定するものとした。これにより、高地などの大気圧が低い地域を走行するときでもバッテリ50の蓄電量SOCが低下するのを抑制することができる。しかも、大気圧Paが閾値Paref未満のときには、大気圧Paが小さいほどバッテリ50に充電される電力が大きくなる傾向に充放電要求電力Pb*を設定するから、大気圧Paに応じてより適正にバッテリ50の蓄電量SOCが低下するのを抑制することができる。
以上説明した実施例のハイブリッド自動車20によれば、大気圧Paが閾値Paref未満のときには、バッテリ50の蓄電量SOCと大気圧Paとに基づいて大気圧Paが閾値Paref以上のときに比して充電電力が大きく設定される傾向の低圧時充電電力設定用マップを用いてバッテリ50に充放電すべき充放電要求電力Pb*を設定し、要求トルクTr*と設定された充放電要求電力Pb*とに基づいてエンジン22に要求される要求パワーPe*を設定してエンジン22とモータMG1,MG2とを制御するから、高地などの大気圧が低い地域を走行するときでもバッテリ50の蓄電量SOCが低下するのを抑制することができる。しかも、大気圧Paが閾値Paref未満のときには、大気圧Paが小さいほど充電電力が大きくなる傾向に充放電要求電力Pb*を設定するから、大気圧Paに応じてより適正にバッテリ50の蓄電量SOCが低下するのを抑制することができる。
実施例のハイブリッド自動車20では、大気圧Paが閾値Paref未満のときには、大気圧Paが小さいほどバッテリ50に充電される電力が大きくなる傾向に充放電要求電力Pb*を設定するものとしたが、大気圧Paが閾値Paref以上のときに比して充電電力が大きくなる傾向に充放電要求電力Pb*を設定すればよく、例えば、大気圧Paに拘わらず図7におけるPa=Pa1のマップを用いて充放電要求電力Pb*を設定するものとしてもよい。
実施例のハイブリッド自動車20では、大気圧Paが閾値Paref未満のときには低圧時充放電電力設定用マップを用いて充放電要求電力Pb*を設定するものとしたが、大気圧Paが閾値Paref未満で蓄電量SOCが目標蓄電量SOC*未満のときに、通常時充放電電力設定用マップを用いて設定された目標充放電電力に値1より大きい補正係数kを乗じるものとしてもよいし、通常時充放電電力設定用マップを用いて設定された目標充放電電力に負の所定電力P1を加えるものとしても構わない。この場合、補正係数kや所定電力P1は、蓄電量SOCや大気圧Paに基づいて定められるものとしても構わない。
実施例のハイブリッド自動車20では、大気圧Paが閾値Paref未満でバッテリ50の蓄電量SOCが目標蓄電量SOC*以上のときには、通常時充放電電力設定用マップと同一の値を充放電要求電力Pb*に設定するものとしたが、バッテリ50から放電される電力が小さくなる傾向に充放電要求電力Pb*を設定するものとしてもよい。この場合、大気圧Paが閾値Paref未満のときには、大気圧Paが小さいほどバッテリ50から放電される電力が小さくなる傾向に充放電要求電力を設定するものとしても構わない。こうすれば、バッテリ50の蓄電量SOCが低下するのをより抑制することができる。
実施例のハイブリッド自動車20では、バッテリ50の蓄電量SOCや大気圧Paに基づいて充放電要求電力Pb*を設定するものとしたが、これらに代えてまたは加えてバッテリ50の端子間電圧や電池温度Tbなどに基づいて充放電要求電力Pb*を設定するものとしてもよい。
実施例のハイブリッド自動車20では、減速ギヤ35を介して駆動軸としてのリングギヤ軸32aにモータMG2を取り付けるものとしたが、リングギヤ軸32aにモータMG2を直接取り付けるものとしてもよいし、減速ギヤ35に代えて2段変速や3段変速,4段変速などの変速機を介してリングギヤ軸32aにモータMG2を取り付けるものとしても構わない。
実施例のハイブリッド自動車20では、モータMG2の動力を減速ギヤ35により変速してリングギヤ軸32aに出力するものとしたが、図8の変形例のハイブリッド自動車120に例示するように、モータMG2の動力をリングギヤ軸32aが接続された車軸(駆動輪63a,63bが接続された車軸)とは異なる車軸(図8における車輪64a,64bに接続された車軸)に出力するものとしてもよい。
実施例のハイブリッド自動車20では、エンジン22の動力を動力分配統合機構30を介して駆動輪63a,63bに接続された駆動軸としてのリングギヤ軸32aに出力するものとしたが、図9の変形例のハイブリッド自動車220に例示するように、エンジン22のクランクシャフト26に接続されたインナーロータ232と駆動輪63a,63bに動力を出力する駆動軸に接続されたアウターロータ234とを有し、エンジン22の動力の一部を駆動軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機230を備えるものとしてもよい。
また、本実施例では、本発明の内容をハイブリッド自動車20として説明したが、こうしたハイブリッド車の制御方法の形態としてもよい。
ここで、実施例や変形例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン22が「内燃機関」に相当し、動力分配統合機構30とモータMG1とが「電力動力入出力手段」に相当し、モータMG2が「電動機」に相当し、バッテリ50が「蓄電手段」に相当し、大気圧Paを検出する大気圧センサ89が「大気圧検出手段」に相当し、大気圧Paが閾値Paref以上のときにはバッテリ50の蓄電量SOCに基づいて通常時充放電電力設定用マップを用いて充放電要求電力Pb*を設定し、大気圧Paが閾値Paref未満のときにはバッテリ50の蓄電量SOCと大気圧Paとに基づいて大気圧Paが小さいほどバッテリ50に充電される電力が大きくなる傾向の低圧時充放電電力設定用マップを用いて充放電要求電力Pb*を設定する図2の駆動制御ルーチンのステップS110,S120,S200の処理を実行するハイブリッド用電子制御ユニット70が「目標充放電電力設定手段」に相当し、アクセル開度Accと車速Vとに基づいて要求トルクTr*を設定する図2の駆動制御ルーチンのステップS130の処理を実行するハイブリッド用電子制御ユニット70が「要求駆動力設定手段」に相当し、要求トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものから充放電要求電力Pb*を減じてロスLossを加えたものとして要求パワーPe*を設定する図2の駆動制御ルーチンのステップS130の処理を実行するハイブリッド用電子制御ユニット70が「目標パワー設定手段」に相当し、エンジン22から要求パワーPe*が出力されてバッテリ50の入出力制限Win,Woutの範囲内で駆動軸としてのリングギヤ軸32aに要求トルクTr*を出力して走行するようエンジン22の目標回転数Ne*と目標トルクTe*とを設定すると共にモータMG1,MG2のトルク指令Tm1*,Tm2*を設定してエンジンECU24やモータECU40に送信する図2の駆動制御ルーチンのステップS140〜S190の処理を実行するハイブリッド用電子制御ユニット70と目標回転数Ne*と目標トルクTe*とに基づいてエンジン22を制御するエンジンECU24とトルク指令Tm1*,Tm2*に基づいてモータMG1,MG2を制御するモータECU40とが「制御手段」に相当する。モータMG1が「発電機」に相当し、動力分配統合機構30が「3軸式動力入出力手段」に相当する。また、対ロータ電動機230も「電力動力入出力手段」に相当する。
ここで、「内燃機関」としては、ガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関に限定されるものではなく、水素エンジンなど如何なるタイプの内燃機関であっても構わない。「電力動力入出力手段」としては、動力分配統合機構30とモータMG1とを組み合わせたものや対ロータ電動機230に限定されるされるものではなく、車軸に連結された駆動軸に接続されると共に駆動軸とは独立に回転可能に内燃機関の出力軸に接続され、電力と動力の入出力を伴って駆動軸と出力軸とに動力を入出力可能なものであれば如何なるものとしても構わない。「電動機」としては、同期発電電動機として構成されたモータMG2に限定されるものではなく、誘導電動機など、駆動軸に動力を入出力可能なものであれば如何なるタイプの電動機であっても構わない。「蓄電手段」としては、二次電池としてのバッテリ50に限定されるものではなく、キャパシタなど、電力動力入出力手段や電動機と電力のやりとりが可能であれば如何なるものとしても構わない。「大気圧検出手段」としては、大気圧Paを検出する大気圧センサ89に限定されるものではなく、大気圧を検出するものであれば如何なるものとしても構わない。「目標充放電電力設定手段」としては、大気圧Paが閾値Paref以上のときにはバッテリ50の蓄電量SOCに基づいて通常時充放電電力設定用マップを用いて充放電要求電力Pb*を設定し、大気圧Paが閾値Paref未満のときにはバッテリ50の蓄電量SOCと大気圧Paとに基づいて大気圧Paが小さいほどバッテリ50に充電される電力が大きくなる傾向の低圧時充放電電力設定用マップを用いて充放電要求電力Pb*を設定するものに限定されるものではなく、検出された大気圧が所定気圧以上のときには蓄電手段の状態に基づいて第1の関係を用いて蓄電手段を充放電すべき目標充放電電力を設定し、検出された大気圧が所定気圧未満のときには蓄電手段の状態に基づいて第1の関係より充電電力が大きい第2の関係を用いて蓄電手段を充放電すべき目標充放電電力を設定するものであれば如何なるものとしても構わない。「要求駆動力設定手段」としては、アクセル開度Accと車速Vとに基づいて要求トルクTr*を設定するものに限定されるものではなく、アクセル開度Accだけに基づいて要求トルクを設定するものや走行経路が予め設定されているものにあっては走行経路における走行位置に基づいて要求トルクを設定するものなど、駆動軸に要求される要求駆動力を設定するものであれば如何なるものとしても構わない。「目標パワー設定手段」としては、要求トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものから充放電要求電力Pb*を減じてロスLossを加えたものとして要求パワーPe*を設定するものに限定されるものではなく、設定された要求駆動力と設定された目標充放電電力とに基づいて内燃機関から出力すべき目標パワーを設定するものであれば如何なるものとしても構わない。「制御手段」としては、ハイブリッド用電子制御ユニット70とエンジンECU24とモータECU40とからなる組み合わせに限定されるものではなく単一の電子制御ユニットにより構成されるなどとしてもよい。また、「制御手段」としては、要求パワーPe*でエンジン22が効率よく運転されてバッテリ50の入出力制限Win,Woutの範囲内で駆動軸としてのリングギヤ軸32aに要求トルクTr*を出力して走行するようエンジン22の目標回転数Ne*と目標トルクTe*とを設定すると共にモータMG1,MG2のトルク指令Tm1*,Tm2*を設定してエンジン22やモータMG1,MG2を制御するものに限定されるものではなく、設定された目標パワーが内燃機関から出力されると共に設定された要求駆動力により走行するよう内燃機関と電力動力入出力手段と電動機とを制御するものであれば如何なるものとしても構わない。また、「発電機」としては、同期発電電動機として構成されたモータMG1に限定されるものではなく、誘導電動機など、動力を入出力可能なものであれば如何なるタイプの発電機としても構わない。「3軸式動力入出力手段」としては、上述の動力分配統合機構30に限定されるものではなく、ダブルピニオン式の遊星歯車機構を用いるものや複数の遊星歯車機構を組み合わせて4以上の軸に接続されるものやデファレンシャルギヤのように遊星歯車とは異なる作動作用を有するものなど、駆動軸と出力軸と発電機の回転軸との3軸に接続されて3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力するものであれば如何なるものとしても構わない。なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、車両の製造産業などに利用可能である。
本発明の一実施例であるハイブリッド自動車20の構成の概略を示す構成図である。 ハイブリッド用電子制御ユニット70により実行される駆動制御ルーチンの一例を示すフローチャートである。 通常時充放電電力設定用マップの一例を示す説明図である。 要求トルク設定用マップの一例を示す説明図である。 エンジン22の動作ラインの一例と目標回転数Ne*と目標トルクTe*とを設定する様子を示す説明図である。 エンジン22からパワーを出力している状態で走行しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を示す説明図である。 低圧時充放電電力設定用マップの一例を示す説明図である。 変形例のハイブリッド自動車120の構成の概略を示す構成図である。 変形例のハイブリッド自動車220の構成の概略を示す構成図である。
符号の説明
20,120,220 ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 動力分配統合機構、31 サンギヤ、32 リングギヤ、32a リングギヤ軸、33 ピニオンギヤ、34 キャリア、35 減速ギヤ、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、50 バッテリ、51 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54 電力ライン、60 ギヤ機構、62 デファレンシャルギヤ、63a,63b 駆動輪、64a,64b 車輪、70 ハイブリッド用電子制御ユニット、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、89 大気圧センサ、230 対ロータ電動機、232 インナーロータ、234 アウターロータ、MG1,MG2 モータ。

Claims (5)

  1. 内燃機関と、
    車軸に連結された駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記駆動軸と前記出力軸に動力を入出力する電力動力入出力手段と、
    前記駆動軸に動力を出力する電動機と、
    前記電力動力入出力手段および前記電動機と電力をやりとりする蓄電手段と、
    大気圧を検出する大気圧検出手段と、
    前記検出された大気圧が所定気圧以上のときには前記蓄電手段の状態に基づいて第1の関係を用いて前記蓄電手段を充放電すべき目標充放電電力を設定し、前記検出された大気圧が前記所定気圧未満のときには前記蓄電手段の状態に基づいて前記第1の関係より充電電力が大きい第2の関係を用いて前記蓄電手段を充放電すべき目標充放電電力を設定する目標充放電電力設定手段と、
    駆動軸に要求される要求駆動力を設定する要求駆動力設定手段と、
    前記設定された要求駆動力と前記設定された目標充放電電力とに基づいて前記内燃機関から出力すべき目標パワーを設定する目標パワー設定手段と、
    前記設定された目標パワーが前記内燃機関から出力されると共に前記設定された要求駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御する制御手段と、
    を備えるハイブリッド車。
  2. 前記第2の関係は、前記検出された大気圧が小さいほど充電電力が大きくなる関係である請求項1記載のハイブリッド車。
  3. 前記第2の関係は、前記第1の関係より放電電力が小さい関係である請求項1または2記載のハイブリッド車。
  4. 前記電力動力入出力手段は、動力を入出力する発電機と、前記駆動軸と前記出力軸と前記発電機の回転軸との3軸に接続され該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、を備える手段である請求項1ないし3のいずれか1つの請求項に記載のハイブリッド車。
  5. 内燃機関と、車軸に連結された駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続されて電力と動力の入出力を伴って前記駆動軸と前記出力軸に動力を入出力する電力動力入出力手段と、前記駆動軸に動力を出力する電動機と、前記電力動力入出力手段および前記電動機と電力をやりとりする蓄電手段と、を備えるハイブリッド車の制御方法であって、
    (a)大気圧が所定気圧以上のときには前記蓄電手段の状態に基づいて第1の関係を用いて前記蓄電手段を充放電すべき目標充放電電力を設定すると共に走行に要求される要求駆動力と前記設定した目標充放電電力とに基づいて前記内燃機関から出力すべき目標パワーを設定し、前記設定した目標パワーが前記内燃機関から出力されると共に前記要求駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御し、
    (b)大気圧が前記所定気圧未満のときには前記蓄電手段の状態に基づいて前記第1の関係より充電電力が大きい第2の関係を用いて前記蓄電手段を充放電すべき目標充放電電力を設定すると共に前記要求駆動力と前記設定した目標充放電電力とに基づいて前記内燃機関から出力すべき目標パワーを設定し、前記設定した目標パワーが前記内燃機関から出力されると共に前記要求駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御する、
    ことを特徴とするハイブリッド車の制御方法。
JP2008074131A 2008-03-21 2008-03-21 ハイブリッド車およびその制御方法 Pending JP2009227074A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074131A JP2009227074A (ja) 2008-03-21 2008-03-21 ハイブリッド車およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074131A JP2009227074A (ja) 2008-03-21 2008-03-21 ハイブリッド車およびその制御方法

Publications (1)

Publication Number Publication Date
JP2009227074A true JP2009227074A (ja) 2009-10-08

Family

ID=41243000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074131A Pending JP2009227074A (ja) 2008-03-21 2008-03-21 ハイブリッド車およびその制御方法

Country Status (1)

Country Link
JP (1) JP2009227074A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168017A1 (ja) * 2013-04-11 2014-10-16 日産自動車株式会社 車両の制御装置および車両の制御方法
US9956953B2 (en) 2015-06-30 2018-05-01 Hyundai Motor Company Apparatus and method for controlling engine of hybrid vehicle
JP2019123309A (ja) * 2018-01-15 2019-07-25 本田技研工業株式会社 車両制御システム、車両制御方法、およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183523A (ja) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP2007216841A (ja) * 2006-02-16 2007-08-30 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
JP2007223403A (ja) * 2006-02-22 2007-09-06 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183523A (ja) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP2007216841A (ja) * 2006-02-16 2007-08-30 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
JP2007223403A (ja) * 2006-02-22 2007-09-06 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168017A1 (ja) * 2013-04-11 2014-10-16 日産自動車株式会社 車両の制御装置および車両の制御方法
US9956953B2 (en) 2015-06-30 2018-05-01 Hyundai Motor Company Apparatus and method for controlling engine of hybrid vehicle
JP2019123309A (ja) * 2018-01-15 2019-07-25 本田技研工業株式会社 車両制御システム、車両制御方法、およびプログラム
JP7053279B2 (ja) 2018-01-15 2022-04-12 本田技研工業株式会社 車両制御システム、車両制御方法、およびプログラム

Similar Documents

Publication Publication Date Title
JP4513882B2 (ja) ハイブリッド車およびその制御方法
JP4345824B2 (ja) 車両およびその制御方法
JP4888154B2 (ja) 車両およびその制御方法
JP4407741B2 (ja) 車両およびその制御方法
JP5199652B2 (ja) ハイブリッド車およびその制御方法
JP2009126257A (ja) 車両およびその制御方法
JP5200924B2 (ja) ハイブリッド車およびその制御方法
JP4466635B2 (ja) 動力出力装置およびその制御方法並びに車両
JP2006094626A (ja) ハイブリッド車およびその制御方法
JP4365354B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2010195255A (ja) ハイブリッド車およびその制御方法
JP2010064522A (ja) 車両およびその制御方法
JP4345765B2 (ja) 車両およびその制御方法
JP2007191034A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP5691997B2 (ja) ハイブリッド自動車
JP4992810B2 (ja) ハイブリッド車およびその制御方法
JP2011188569A (ja) 車両およびその制御方法
JP2009227074A (ja) ハイブリッド車およびその制御方法
JP2011235694A (ja) ハイブリッド自動車およびその制御方法
JP2010023588A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP2009137369A (ja) 車両および駆動装置並びに車両の制御方法
JP4492605B2 (ja) 動力出力装置およびその制御方法並びに車両
JP2008162346A (ja) 動力出力装置およびその制御方法並びに車両
JP2009262866A (ja) ハイブリッド車およびその制御方法
JP2009184387A (ja) ハイブリッド車およびその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918