WO2007138956A1 - 高強度、高導電率および曲げ加工性に優れた銅合金 - Google Patents

高強度、高導電率および曲げ加工性に優れた銅合金 Download PDF

Info

Publication number
WO2007138956A1
WO2007138956A1 PCT/JP2007/060526 JP2007060526W WO2007138956A1 WO 2007138956 A1 WO2007138956 A1 WO 2007138956A1 JP 2007060526 W JP2007060526 W JP 2007060526W WO 2007138956 A1 WO2007138956 A1 WO 2007138956A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
precipitates
average
crystal grain
grain size
Prior art date
Application number
PCT/JP2007/060526
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Aruga
Akira Fugono
Takeshi Kudo
Katsura Kajihara
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006147088A external-priority patent/JP4006460B1/ja
Priority claimed from JP2006257535A external-priority patent/JP4006468B1/ja
Priority claimed from JP2006257534A external-priority patent/JP4006467B1/ja
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to KR1020087026720A priority Critical patent/KR101049655B1/ko
Priority to EP07743960A priority patent/EP2048251B1/en
Priority to US12/297,069 priority patent/US8268098B2/en
Priority to CN2007800165290A priority patent/CN101437969B/zh
Priority to AT07743960T priority patent/ATE542926T1/de
Publication of WO2007138956A1 publication Critical patent/WO2007138956A1/ja
Priority to US13/491,942 priority patent/US9177686B2/en
Priority to US13/491,911 priority patent/US8357248B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/025Composite material having copper as the basic material

Definitions

  • the present invention relates to a Corson-based copper alloy having high strength, high electrical conductivity, and excellent bending workability.
  • the present invention relates to electrical components such as home appliances, semiconductor components such as lead frames for semiconductor devices, and printed wiring boards.
  • the present invention relates to a copper alloy suitable as a copper alloy sheet used for mechanical parts such as “electronic parts materials, switch parts, bus bars, terminals” connectors, and industrial equipment.
  • the copper alloy materials used for these electric / electronic parts are required to have higher strength.
  • high strength copper alloy plates of 800 MPa or more are required.
  • the copper alloy plates used for these connectors, terminals, switches, relays, lead frames, etc. have not only the above-mentioned high strength and high conductivity, but also a severe bending case such as 90 ° bending after notching. There are many things that require sex.
  • 42 alloy Fe-42 mass% Ni alloy
  • This 42 alloy has a tensile strength of about 580 MPa, little anisotropy, and good bending workability.
  • this 42 alloy cannot meet the demand for higher strength of 800 MPa or more.
  • 42 alloy is expensive because it contains a large amount of Ni. There is also a problem.
  • Precipitation hardening type alloy that hardens by tempering, has good heat resistance and high temperature strength, and has been widely used for various types of conductive panels and high tensile strength wires.
  • the wear resistance is determined by defining the shape of the crystal grains of the copper plate surface texture. 'Improving sex.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-209061
  • Patent Document 2 JP-A-8-225869
  • Patent Document 7 JP-A-5-279825
  • Patent Document 1 only defines the content of each component of the Corson alloy, and a sufficient strength cannot be obtained by controlling only the component composition. In fact, sufficient strength is not obtained. .
  • Patent Document 3 the electrical conductivity is low and the requirement is not reached (29 to 33% IACS in the examples). Further, there is a concern about an increase in manufacturing cost due to the reduction of S to a specified amount. No.
  • Patent Document 5 pays attention to the structure of the Corson alloy and regulates the size and number of inclusions present, but does not go into the structure any more, and the solution process is not performed. Control is insufficient and sufficient strength is not obtained.
  • Patent Document 6 pays attention to the structure of the Corson alloy, and the average particle diameter of nickel silicide precipitates (Ni Si) observed by a transmission electron microscope at a magnification of 1 million is set to 3 to: LOnm. As well as
  • the spacing is controlled to 25 nm or less to control the dispersion state of the precipitates.
  • basically the conductivity is not sufficiently high because the Ni and Si contents are too high.
  • the present invention relates to the following (1) to (9).
  • the atomic ratio MZSi of elements M and Si contained in precipitates of 50 to 200 nm in size was measured by a field emission transmission electron microscope with a magnification of 30000 times and an energy dispersion analyzer of this copper alloy structure.
  • 0.01- A copper alloy with high strength, high electrical conductivity and excellent bending workability, characterized by being LO.
  • the copper alloy further contains 0.01% to 3.0% in total of one or more of Cr, Ti, Fe, Mg, Co, and Zr by mass%.
  • the described copper alloy is 0.01% to 3.0% in total of one or more of Cr, Ti, Fe, Mg, Co, and Zr by mass%.
  • the field emission transmission electron microscope and the energy dispersive analysis device of the copper alloy structure was determined by the location, a 0. 2-20 Z m 2 precipitation the number density of the size of 50 ⁇ 200nm on average, the average atom concentration is 0.5 1 of Cr contained in the precipitate size in this range
  • the number of crystal grains measured by a crystal orientation analysis method using a backscattered electron diffraction image system mounted on a field emission scanning electron microscope is n
  • the measured crystal grain size is X.
  • ⁇ X The copper alloy according to (1), wherein the average crystal grain size represented by Zn is 30 ⁇ m or less.
  • the copper alloy further contains 0.01% to 3.0% in total of one or more of Ti, Fe, Mg, Co, and Zr by mass%. Copper alloy.
  • the present inventors have found that the pinning effect of suppressing the crystal grain growth of the P-containing precipitate contains P. However, it was found that it was significantly larger than the pinning effect of ordinary Ni S-related precipitates.
  • the actual pinning effect of suppressing grain growth depends on the amount of P-containing precipitates in the copper alloy structure. In other words, in order to refine the average grain size of the copper alloy structure to 10 m or less, it is necessary that a certain amount or more of P-containing precipitates exist in the copper alloy structure.
  • the amount of the P-containing precipitates present in the copper alloy structure is not directly defined, but in the total precipitates of the specific size (50 to 200 nm) present in the copper alloy structure.
  • the amount of P-containing precipitates is controlled by the atomic concentration of P. Picking up only the P-containing precipitates from the P-containing precipitates mixed in the copper alloy structure and other precipitates that do not contain P, and analyzing and measuring them is inefficient. It is inaccurate.
  • the atomic concentration of P is measured for all precipitates of these specific sizes (all precipitates irrespective of whether or not they contain P), and the precipitates in these precipitates are measured.
  • the average atomic concentration of P controls the amount of P-containing precipitates in the copper alloy structure.
  • the number density of all precipitates (compounds) of the specific size is guaranteed (specified).
  • the average crystal grain size in the Corson-based copper alloy structure is refined to 10 m or less, thereby bending the copper alloy. Improve strength.
  • the guarantee of the number density of precipitates (compounds) of these specific sizes and the control of the average atomic concentration of P in the precipitates are based on the control of the content within the scope of the present invention such as P and the solution. This can be achieved by controlling the heating rate during the crystallization treatment and the cooling rate after the solution treatment. It is difficult to refine the average crystal grain size in the Corson copper alloy structure to 10 m or less without controlling the average atomic concentration of P contained in the precipitate (controlling the amount of P-containing precipitate). .
  • the contents of Ni and Si as basic alloy components are controlled to be relatively low. And included the above-mentioned P-containing precipitates and Ni Si
  • the Cr-containing precipitate contained in the Corson-based copper alloy structure does not completely dissolve even when the solution treatment temperature is increased, and exists as a precipitate in the structure. (Remaining) and utilizing a unique property that exhibits a pinning effect of suppressing crystal grain growth.
  • the Corson-based copper alloy structure contains Cr-containing precipitates such as Ni—Si—Cr and Si—Cr (also referred to as “Cr precipitate” or “Cr composite”). ) Is formed.
  • Cr-containing precipitates exist (residual) as precipitates in the structure without being completely dissolved even when the solution treatment temperature reaches a high temperature of about 900 ° C. It has a unique property that exerts a stopping effect.
  • the pinning effect of suppressing the crystal grain growth of this Cr-containing precipitate is the pinning effect of only ordinary (conventional) Ni Si-based precipitates that do not contain Cr or Cr-containing precipitates.
  • the actual pinning effect of suppressing grain growth depends on the amount of Cr-containing precipitates in the copper alloy structure.
  • a copper pin alloy has a large pinning effect for suppressing crystal grain growth, and the average crystal grain size in the Corson-based copper alloy structure is refined to 30 m or less. Improves the bending force resistance.
  • the guarantee of the number density of precipitates (compounds) of these specific sizes and the control of the average atomic concentration of Cr in the precipitates are based on the control of the content of Cr and the like within the scope of the present invention. This can be achieved by controlling the heating rate during the solution treatment and the cooling rate after the solution treatment. If the average atomic concentration of Cr contained in this precipitate is not controlled (control of the amount of Cr-containing precipitate), the average crystal grain size in the Corson-based copper alloy structure is 30 m or less, particularly 10 m or less. It is difficult to make it finer.
  • the contents of Ni and Si as basic alloy components are controlled to be relatively low. And including the aforementioned Cr-containing precipitates and Ni Si
  • Ti-containing precipitate also referred to as a Ti compound or Ti compound
  • Ni—Si—Ti is formed in the Corson copper alloy structure.
  • Ti-containing precipitates do not completely dissolve even when the solution treatment temperature reaches a high temperature of about 900 ° C, for example, and remain (residual) as precipitates in the structure. It has a unique property that exerts a stopping effect.
  • the pinning effect of the Ti-containing precipitates on suppressing the grain growth is that of the ordinary (conventional) Ni Si-based precipitates containing no Ti-to-Ti-containing precipitates.
  • the magnitude of the pinning effect of this Ti-containing precipitate is the content of Ti in the Ti-containing precipitate.
  • Ti-containing precipitates that have a large pinning effect for suppressing grain growth and other Ni S-related precipitates that do not contain Ti and that have a small pinning effect for suppressing grain growth.
  • the actual pinning effect of suppressing grain growth depends on the amount of Ti-containing precipitates in the copper alloy structure. In other words, in order to refine the average grain size of the copper alloy structure to 20 m or less, it is necessary that a certain amount of Ti-containing precipitates exist in the copper alloy structure.
  • the amount of Ti-containing precipitates present in the copper alloy structure is not directly defined, but in the total precipitates of the specific size (50 to 200 nm) present in the copper alloy structure.
  • the amount of Ti-containing precipitates is controlled by the atomic concentration of Ti. Picking up only Ti-containing precipitates from Ti-containing precipitates mixed in the copper alloy structure and other precipitates that do not contain Ti for analysis and measurement is inefficient and inefficient. This is because it becomes accurate.
  • the atomic concentration of Ti is measured for all precipitates of these specific sizes (total precipitates regardless of whether or not Ti is contained), and the precipitates in these precipitates are measured.
  • the amount of Ti-containing precipitates in the copper alloy structure is controlled by the average atomic concentration of Ti.
  • the number density of all the precipitates (compounds) of the specific size is guaranteed (defined).
  • the guarantee of the number density of precipitates (compounds) of these specific sizes and the control of the average atomic concentration of Ti in the precipitates are based on the control of the content in the scope of the present invention such as Ti, and the solution. This can be achieved by controlling the heating rate during the crystallization treatment and the cooling rate after the solution treatment. If the average atomic concentration of Ti contained in this precipitate is not controlled (control of the amount of Ti-containing precipitate), the average grain size in the Corson copper alloy structure is refined to 20 m or less, particularly 10 m or less. It ’s hard to let U.
  • the present invention provides a copper alloy having a high balance of high strength, high electrical conductivity, and excellent bending workability.
  • FIG. 1 is a drawing-substituting TEM photograph showing the structure of the copper alloy sheet of the present invention.
  • FIG. 2 is a drawing-substituting TEM photograph showing the structure of a comparative example copper alloy sheet.
  • FIG. 3 is a drawing-substituting TEM photograph showing the structure of the copper alloy sheet of the present invention.
  • FIG. 4 is a drawing-substituting TEM photograph showing the structure of a comparative example copper alloy sheet.
  • the present invention contains, by mass%, Ni: 0.4-4.0%, Si: 0.05-: L 0%, and further, as element M,
  • a copper alloy comprising the balance copper and inevitable impurities
  • M represents one element selected from P, Cr and Ti.
  • the size of 50 to 200 nm measured by the field emission transmission electron microscope and the energy dispersive analyzer of the copper alloy structure with a magnification of 30000 times It is preferable that the atomic ratio MZSi of M and Si contained in the precipitate is 0.01 to 10 on average.
  • the atomic ratio MZSi of M and Si contained in the precipitate is smaller than 0.01 on average, the crystal grains become coarse and the possibility that the bending workability is lowered increases.
  • the atomic ratio MZSi between M and Si contained in the precipitate is larger than 10 on average, the amount of dissolved Si becomes too large, and the possibility of a decrease in conductivity increases. Therefore, the atomic ratio MZSi between M and Si contained in the precipitate is, on average, preferably 0.01 to 10, more preferably 0.1 to 5.0.
  • the chemical component composition in the Corson alloy of the first aspect of the present invention for satisfying required strength and electrical conductivity, and further high bending workability and stress relaxation characteristics, This will be described below.
  • the mass 0/0, Ni:.. 0 4 ⁇ 4 0%, Si The basic composition is made of a copper alloy containing 0.05 to 1.0% and P: 0.005 to 0.5%, respectively, and the balance copper and inevitable impurities. This composition refines the crystal grains of the copper alloy structure and reduces the P content in the precipitate (Ni Si).
  • one or more of Cr, Ti, Fe, Mg, Co, and Zr may be contained in a total amount of 0.01 to 3.0%. Further, Zn: 0.005 to 3.0% may be contained. Further, Sn: 0.01-5. 0% may be contained.
  • the Ni content should be in the range of 0.4 to 4.0%.
  • these elements form phosphides to improve strength and electrical conductivity, and are effective in refining crystal grains.
  • the total content (total amount) of these elements exceeds 3.0%, the precipitates become coarse and the bending workability is impaired, and the atomic concentration of P contained in the precipitates becomes too low. Therefore, the content of Cr, Ti, Fe, Mg, Co, and Zr in the case of selective inclusion should be in the range of 0.01 to 3.0% in total (total amount).
  • Sn dissolves in the copper alloy and contributes to strength improvement.
  • the content is selectively 0.01% or more.
  • the content is selectively contained in consideration of the strength improving effect and the conductivity lowering effect, and the Sn content in that case is in the range of 0.01-5. 0%, preferably 0.01. -1.
  • the range is 0%.
  • the other elements are basically impurities and are preferably as small as possible.
  • impurity elements such as Al, Be, V, Nb, Mo, and W are liable to generate coarse crystal precipitates, which not only deteriorates the bending workability but also easily lowers the conductivity. . Therefore, the total content of these elements is preferably as low as 0.5% or less.
  • elements such as B, C, Na, S, Ca, As, Se, Cd, In, Sb, Bi, and MM (Mischmetal) contained in trace amounts in the copper alloy are likely to cause a decrease in conductivity. Therefore, it is desirable to keep the total amount of these components as small as 0.1% or less as much as possible.
  • the manufacturing cost of using bullion tends to increase, and in order to suppress the increase in manufacturing costs, the total amount of these elements must reach the upper limit mentioned above. The inclusion of is acceptable.
  • the structure of this copper alloy is designed and the average crystal grain size is refined to 10 m or less, so that the bending workability of the copper alloy is improved. Improve.
  • This structure design is achieved by controlling the average atomic concentration of P contained in the precipitates present in the copper alloy structure (controlling the amount of P-containing precipitates). Unless the average atomic concentration of P contained in this precipitate is controlled, an appropriate amount of P-containing precipitate having a large pinning effect for suppressing grain growth cannot be secured in the copper alloy structure. As a result, it is difficult to reduce the average grain size in the copper alloy structure to 10 m or less.
  • the number density of precipitates present in the copper alloy structure is set within a certain range in order to guarantee the effect of refining the crystal grain size due to the precipitates.
  • the number density of precipitates having a size of 50 to 200 nm measured by the field emission transmission electron microscope and an energy dispersive analyzer of the copper alloy structure is 0.2 to 7.0 pieces Z m 2
  • the size (maximum diameter) of each precipitate regardless of whether or not it contains P is used as a selection criterion.
  • the present invention guarantees the number density of precipitates, and the field emission transmission electron microscope and energy dispersion of the copper alloy structure have a magnification of 30000 times.
  • the average atomic concentration of P contained in precipitates such as nickel kaide having a size of 50 to 200 nm measured by a type analyzer is controlled in the range of 0.1 to 50 at%.
  • the total analysis of the specific size (50 to 200 nm) present in the copper alloy structure does not directly specify the amount of P-containing precipitates present in the copper alloy structure.
  • the amount of P-containing precipitates is controlled by the average atomic concentration of P in the output. Therefore, in the present invention, the atomic concentration of P is measured for all precipitates of these specific sizes (precipitates regardless of whether or not they contain P), and the average atomic concentration of P in these precipitates is measured. Therefore, the amount of P-containing precipitates in the copper alloy structure is controlled.
  • the average atomic concentration of P contained in the precipitates is too low and less than 0.3 lat%, the crystal grains of the copper alloy structure become coarse and bending workability deteriorates. On the other hand, it is contained in the precipitate. If the average atomic concentration of P is too high and exceeds 50at%, the amount of solid solution elements other than P in the copper alloy structure will increase and the conductivity will decrease. Therefore, the average atomic concentration of P contained in the precipitate is in the range of 0.1 to 50 at%, preferably in the range of 0.5 to 40 at%.
  • the crystal grain size of the copper alloy structure refined by controlling the precipitates of these copper alloy structures defines the average crystal grain size of the copper alloy structure as a measure for substantially improving the bending workability. To do. That is, the number of crystal grains measured by a crystal orientation analysis method in which a backscattered electron diffraction image system is mounted on a field emission scanning electron microscope with a magnification of 350 times is n, and the measured crystal grain diameter is X.
  • the average crystal grain size represented by ( ⁇ X) Zn is 10 ⁇ m or less.
  • the average crystal grain size is 10 m or less, preferably 7 m or less.
  • the chemical composition of the Corson-based alloy according to the second aspect of the present invention for satisfying the required strength and electrical conductivity, as well as high bending workability and stress relaxation resistance is as follows. explain.
  • the mass 0/0, Ni:. 0. 4 ⁇ 4 0%, Si: It contains 0.05 to 1.0% and Cr: 0.005 to 1.0%, respectively, and has a basic composition consisting of the remaining copper and a copper alloy force which is an inevitable impurity force. This composition refines the crystal grains of the copper alloy structure and is contained in precipitates (Ni Si).
  • Zn 0.005 to 3.0% may be further contained in the basic composition.
  • Sn 0.
  • Ti, Fe, Mg, Co, and Zr may be contained in a total amount of 0.01 to 3.0%.
  • Ni 0.4-4.0%
  • Ni is the strength of copper alloys by crystallizing or precipitating a compound with Si (such as Ni Si).
  • the Ni content should be in the range of 0.4 to 4.0%.
  • Ni such as Ni Si
  • the Si content should be in the range of 0.05-1.0.0%.
  • Cr is an important element for generating Cr-containing precipitates and controlling the atomic concentration of Cr in the Cr-containing precipitates within the specific range described above.
  • the strength and conductivity are improved, and the formation of the Cr-containing precipitate makes the crystal grains finer and the bending cacheability is improved.
  • the effect of improving the bending cache property is particularly exerted by controlling the Cr atomic concentration in the Cr-containing precipitates within the specific range described above.
  • the Cr-containing precipitate referred to in the present invention is a Cr-containing precipitate such as Ni—Si—Cr in the basic composition of Ni—Si—Cr. If Fe or Mg is added to this, it will be (Fe, Mg) -Si-Cr, Ni-Si- (Fe, Mg) -Cr with or instead of Cr-containing precipitates such as Ni-Si-Cr. Cr-containing precipitates such as In addition, when Ti, Co, Zr, etc. are contained, Cr-containing precipitates in which these partial forces such as Fe and Mg are partially or completely substituted are formed.
  • these elements improve the strength and conductivity by forming a Cr-containing precipitate, and are effective in refining crystal grains.
  • the content of Ti, Fe, Mg, Co, and Zr in the case of selective inclusion should be in the range of 0.01 to 3.0% in total (total amount).
  • Zn is an element effective in improving the heat-resistant peelability of Sn plating and solder used for joining electronic components and suppressing thermal delamination. In order to exert such an effect effectively, it is selectively contained in an amount of 0.005% or more. However, if the content exceeds 3.0% excessively, the wet-spreading property of molten Sn or solder is deteriorated, and if the content is increased, the conductivity is greatly reduced. Therefore, Zn is selectively contained in consideration of the heat-resistant peelability improving effect and the conductivity lowering effect, and the Zn content in this case is in the range of 0.005 to 3.0%, preferably The range is 0.005 to 1.5%.
  • Sn dissolves in the copper alloy and contributes to strength improvement.
  • the content is selectively 0.01% or more.
  • the content is selectively contained in consideration of the strength improving effect and the conductivity lowering effect, and the Sn content in that case is in the range of 0.01-5. 0%, preferably 0.01. -Ten% The range.
  • the other elements are basically impurities and are preferably as small as possible.
  • impurity elements such as Mn, Ca, Ag, Cd, Be, Au, Pt, S, Pb, and P are liable to generate coarse crystal precipitates, which not only deteriorates the bending workability but also conducts electricity. It also causes a drop in rate. Therefore, it is preferable that the total content of these elements is as low as 0.5% or less.
  • Elements such as B, C, and misch metal are likely to cause a decrease in electrical conductivity, so it is desirable to keep the total content of these elements as small as 0.1% or less.
  • the manufacturing cost of using bullion tends to increase, and in order to suppress the increase in manufacturing costs, the total amount of these elements up to the upper limit mentioned above respectively. Inclusion is allowed.
  • the structure of this copper alloy is designed and the average crystal grain size is reduced to 30 m or less, preferably 10 m or less. Improves the bending workability of copper alloys.
  • this structure design is achieved by controlling the amount of Cr-containing precipitates. More specifically, this is achieved by controlling the number density of precipitates of a certain size in the copper alloy structure to a certain amount or more, and ensuring a certain amount of the average atomic concentration of Cr contained in the precipitates of this size.
  • the Cr-containing precipitate in the present invention does not completely dissolve but the Cr-containing precipitate exists (remains) as a precipitate in the structure even when the solution treatment temperature becomes high. Demonstrates a large pinning effect that suppresses growth.
  • the pinning effect of this Cr-containing precipitate is greatly influenced by the average atomic concentration of Cr contained in the precipitate having a size of 50 to 200 nm and the number density of precipitates having this size.
  • the copper alloy structure said measured by a field emission transmission electron microscope and energy dispersive analyzer, precipitation the number density of the size of 50 ⁇ 200nm is a 0.2 to 20 pieces Z m 2 I will do it.
  • the precipitates of a specific size specified here only the size (maximum diameter) of each precipitate irrespective of whether or not it contains Cr is used as a selection criterion.
  • the number density of precipitates having a size of 50 to 200 nm is preferably 0.2 to 20 m 2 . 5 to 15 pieces in the range of 7 ⁇ m 2 .
  • the present invention guarantees the number density of precipitates, and the field emission transmission electron microscope and energy dispersion of the copper alloy structure have a magnification of 30000 times.
  • the average atomic concentration of Cr contained in precipitates such as Ni—Si—Cr having a size of 50 to 200 nm, measured with a type analyzer, is controlled in the range of 0.1 to 80 at%.
  • the crystal grain size of the copper alloy structure refined by controlling the precipitates of these copper alloy structures defines the average crystal grain size of the copper alloy structure as a measure for substantially improving the bending workability.
  • the number of crystal grains measured by a crystal orientation analysis method in which a backscattered electron diffraction image system is mounted on a field emission scanning electron microscope with a magnification of 10000 times is x, and the measured crystal grain size is X.
  • the average crystal grain size represented by ( ⁇ X) Zn is 30 ⁇ m or less, preferably 10 ⁇ m or less.
  • the average crystal grain size is larger than 30 m, the bending workability to be obtained by the present invention cannot be obtained. Therefore, the average crystal grain size is 30 m or less, preferably 10 m or less, so that the average crystal grain size is reduced and the crystal grain size is refined.
  • This composition refines the crystal grains of the copper alloy structure and is contained in precipitates (Ni Si). It is an important precondition from the component composition side to control the average atomic concentration of Ti. In the following description of each element, all the% indications described are mass%.
  • Zn 0.005 to 3.0% may be further contained in the basic composition.
  • Sn 0.
  • Fe, Mg, Co, and Zr may be contained in a total of 0.01 to 3.0%.
  • the Ni content should be in the range of 0.4 to 4.0%.
  • Si 0.05 .: L 0%
  • Ni such as Ni Si
  • the Si content should be in the range of 0.05-10.0%.
  • Ti is an important element for generating Ti-containing precipitates and controlling the atomic concentration of Ti in the Ti-containing precipitates within the specific range described above.
  • strength and electrical conductivity are improved, and by forming Ti-containing precipitates, crystal grains are refined and bending cacheability is improved.
  • the effect of improving bending cache property is Demonstrated by controlling the Ti atomic concentration of the contained precipitates to the specific range described above
  • the Ti-containing precipitate referred to in the present invention is a Ti-containing precipitate such as Ni-Si-Ti in the basic composition of Ni-Si-Ti. If it contains Fe or Mg, Ti-containing precipitates such as Ni-Si- (Fe, Mg) -Ti are produced together with or instead of Ti-containing precipitates such as Ni-Si-Ti. To do. In addition, when Co, Zr, etc. are contained, Ti-containing precipitates with partial or partial substitution of Fe, Mg, etc. are formed.
  • these elements form Ti-containing precipitates to improve strength and electrical conductivity, and are effective in refining crystal grains.
  • one or more of Fe, Mg, Co, and Zr are selectively contained in a total of 0.01% or more.
  • the total content (total amount) of these elements exceeds 3.0%, the precipitate becomes coarse, which deteriorates the bending workability, and the atomic concentration of Ti contained in the precipitate becomes too low. Therefore, the content of Fe, Mg, Co, and Zr in the case of selective inclusion should be in the range of 0.01 to 3.0% in total (total amount).
  • Sn dissolves in the copper alloy and contributes to strength improvement.
  • the content is selectively 0.01% or more.
  • the content is selectively contained in consideration of the strength improving effect and the conductivity lowering effect, and the Sn content in that case is in the range of 0.01-5. 0%, preferably 0.01. -1.
  • the range is 0%.
  • Elements such as B, C, and misch metal are likely to cause a decrease in electrical conductivity, so it is desirable to keep the total content of these elements as small as 0.1% or less.
  • the manufacturing cost of using bullion tends to increase, and in order to suppress the increase in manufacturing costs, the total amount of these elements up to the upper limit mentioned above respectively. Inclusion is allowed.
  • the structure of this copper alloy is designed and the average crystal grain size is refined to 20 m or less, preferably 10 m or less. Improves the bending workability of copper alloys.
  • this structure design is achieved by controlling the amount of Ti-containing precipitates. More specifically, this is achieved by controlling the number density of precipitates of a certain size in the copper alloy structure to a certain amount or more and securing a certain amount of the average atomic concentration of Ti contained in the precipitates of this size.
  • the Ti-containing precipitate in the present invention does not completely dissolve, even though the solution treatment temperature is high, and remains (residual) as a precipitate in the structure, so Demonstrates a pinning effect that greatly suppresses the length.
  • the magnitude of the pinning effect of this Ti-containing precipitate is greatly influenced by the average atomic concentration of Ti contained in the precipitate having a size of 50 to 200 nm and the number density of precipitates of this size.
  • the number density of precipitates present in the copper alloy structure is set within a certain range in order to guarantee the effect of refining the crystal grain size due to the precipitates.
  • the number density of precipitates having a size of 50 to 200 nm as measured by the field emission transmission electron microscope and an energy dispersive analyzer of the copper alloy structure is 0.2 to 20 Z m 2 . I will do it.
  • the size (maximum diameter) of each precipitate regardless of whether or not it contains Ti is used as a selection criterion.
  • the field emission transmission electron microscope and the energy dispersion of the copper alloy structure have a magnification of 30000 times. 50-200nm measured with a mold analyzer
  • the average atomic concentration of Ti in precipitates such as Ni—Si—Ti of the size is controlled in the range of 0.1 to 50 at%.
  • the average atomic concentration of Ti contained in the precipitate is in the range of 0.1 to 50 at%, preferably in the range of 0.5 to 40 at%.
  • the method for measuring the number density of precipitates is the first stage of measuring the average atomic concentration of M contained in the precipitates, which will be described later. Specifically, a sample of the final copper alloy (such as a plate) manufactured is collected and a thin film sample for TEM observation is prepared by electrolytic polishing. And this sample For example, Hitachi: HF-2200 Field Emission Transmission Electron Microscope (FE-TEM) obtains a bright-field image at a magnification of 30000 times. This bright-field image is printed and developed, and the diameter and number of precipitates are measured from the photograph, and the precipitate having a size in which the maximum diameter of each precipitate is in the range of 50 to 200 nm is specified. From this measurement, the number density (number / zm 2 ) of precipitates having a size in the range of 50 to 200 nm can be calculated.
  • FE-TEM Field Emission Transmission Electron Microscope
  • the number density of the precipitates was measured. Quantitative analysis of each precipitate is carried out using an apparatus (EDX). The beam diameter for this analysis should be 5nm or less. This analysis is performed only for each precipitate (total precipitate) having a size with the maximum diameter of 50 to 200 nm (not performed for precipitates of other sizes), and each analysis within the field of view is performed. Measure the atomic concentration (at%) of M and Si in the precipitate (total precipitate). Then, the average atomic concentration of M and Si contained in the precipitate in the bright field image is calculated.
  • the number of measurement samples collected from the copper alloy was 10 from any 10 locations, and the average sources of M and Si contained in the precipitates were measured. Each value such as the atomic concentration, M / Si atomic number ratio MZSi, and the number density of precipitates is the average of these 10 pieces.
  • a field emission scanning electron microscope FESEM
  • EBSP Electron Back Scattering (Scattered) Pattern
  • the crystal orientation analysis method is specified because this measurement method is highly accurate because of its high resolution.
  • the EBSP method has an average crystal grain size larger than several hundreds of crystal grains with a wider observation field than the X-ray diffraction method or the electron diffraction method using a transmission electron microscope.
  • information on diameter, standard deviation of average crystal grain size, or orientation analysis can be obtained within a few hours.
  • the measurement is performed by scanning a specified region at an arbitrary constant interval in the measurement for each crystal grain, there is also an advantage that each of the above-mentioned information on the above-mentioned many measurement points covering the entire measurement region can be obtained. is there. Details of the crystal orientation analysis method in which the EBSP system is installed in these FESEMs are described in detail in Kobe Steel Technical Report / Vol.52 No.2 (Sep.2002) P66-70.
  • the number of crystal grains measured by the above crystal orientation analysis method is measured by irradiating the measurement area 300X300 ⁇ m with electron beams at a pitch of 0.5 ⁇ m.
  • the average crystal grain size is calculated as ( ⁇ X) Zn.
  • the copper alloy of the present invention is basically a copper alloy plate, and a strip formed by slitting the strip in the width direction includes those obtained by coiling these strips.
  • the end temperature of hot rolling is preferably 550 to 850 ° C.
  • hot rolling is performed at a temperature lower than 550 ° C, recrystallization is incomplete, resulting in a non-uniform structure and bending workability deteriorates.
  • the end temperature of hot rolling is higher than 850 ° C, the crystal grains become coarse and bending workability deteriorates. It is preferable to perform water cooling after this hot rolling.
  • the cold rolling ratio in the cold rolling after the hot rolling and before the solution treatment (recrystallization annealing) be 70 to 98%.
  • the cold rolling rate is lower than 70%, there are too few sites to be recrystallized nuclei, which inevitably becomes larger than the average crystal grain size to be obtained by the present invention, and bending workability may deteriorate. There is. On the other hand, if the cold rolling rate is higher than 98%, the dispersion of the amount of strain increases, so the crystal grain size after subsequent recrystallization becomes non-uniform, and the bending workability that the present invention is intended to obtain is not good. There is a possibility of deterioration.
  • the average temperature increase rate up to 400 ° C in the solution treatment is in the range of 5 to 100 ° C Zh, and the 400 ° C force is also averaged up to the solution treatment temperature.
  • the heating rate is 100 ° CZs or more
  • the solution treatment temperature is 700 ° C or more and less than 900 ° C
  • the average cooling rate after solution treatment is 50 ° CZs or more.
  • Ni Si nickel silicide precipitates
  • the average rate of temperature rise from the start of solution heat-up to 400 ° C is relatively low, and is set to 5 to 100 ° CZh. However, if the average heating rate is less than 5 ° CZh, the deposited precipitates become coarse, the average crystal grain size increases, and the bending workability decreases. On the other hand, when the average heating rate is higher than 100 ° CZh, the amount of precipitates generated is reduced. For this reason, the number density of precipitates is insufficient, the average crystal grain size is increased, and bending workability is lowered.
  • the average rate of temperature rise from the above 400 ° C to the solution temperature is made relatively large, and is 100 ° C Zs or more. If the heating rate is less than 100 ° CZs or less than 100 ° CZs, the growth of recrystallized grains is promoted, the average crystal grain size is increased, and bending workability is lowered.
  • the solution treatment temperature is 700 ° C or higher and lower than 900 ° C. When the solution treatment temperature is lower than 700 ° C., the solution is insufficient and not only the high strength desired by the present invention is obtained but also the bendability is lowered.
  • the average temperature increase rate up to 400 ° C in the solution treatment is in the range of 5 to 100 ° C Zh, and the average temperature increase up to the solution treatment temperature is 400 ° C.
  • the speed is 100 ° C Zs or more
  • the solution treatment temperature is 700 ° C or more and less than 950 ° C
  • the average cooling rate after solution treatment is 50 ° C Zs or more.
  • the recrystallization temperature range of the copper alloy of the present invention is about 500 to 700 ° C., and the crystal grain size of the copper alloy is greatly influenced by the dispersion state of precipitates during the recrystallization.
  • the average rate of temperature rise from the start of solution heat-up to 400 ° C is relatively small, and it is set to 5 to 100 ° CZh. However, if the average heating rate is less than 5 ° CZh, the deposited precipitates become coarse, the average crystal grain size increases, and the bending workability decreases. On the other hand, when the average heating rate is higher than 100 ° CZh, the amount of precipitates generated is reduced. For this reason, the number density of precipitates is insufficient, the average crystal grain size is increased, and bending workability is lowered.
  • the solution treatment temperature is set to the above-described relatively high temperature. As described above, even when the solution treatment temperature becomes high, the Cr-containing precipitate does not completely dissolve, but remains (remains) as a precipitate in the structure, and exhibits a large pinning effect for suppressing grain growth. To do. Moreover, as described above, the solution amount of Ni and Si can be significantly increased by increasing the solution temperature, and the amount of fine precipitates of Ni-Si is greatly increased in the subsequent aging hardening treatment. Can be increased. As a result, it becomes possible to increase the strength of the copper alloy without reducing the bending workability and the like by increasing the average crystal grain size.
  • the average cooling rate after solution treatment should be at least 50 ° CZs.
  • this cooling rate is lower than 50 ° CZs, the growth of crystal grains is promoted regardless of the precipitates defined in the present invention, and becomes larger than the average crystal grain size to be obtained by the present invention. Bending workability is reduced.
  • the average temperature rise rate up to 400 ° C in the solution treatment is in the range of 5 to 100 ° C Zh, and the average temperature rise up to the solution treatment temperature is also 400 ° C.
  • the speed is 100 ° C Zs or more
  • the solution treatment temperature is 700 ° C or more and less than 950 ° C
  • the average cooling rate after solution treatment is 50 ° C Zs or more.
  • Ni Si and the like are precipitated in a relatively low temperature region where the room temperature force is about 600 ° C or less, and about 600
  • the recrystallization temperature range of the copper alloy of the present invention is about 500 to 700 ° C., and the crystal grain size of the copper alloy is greatly influenced by the dispersion state of precipitates during the recrystallization.
  • the average rate of temperature rise from the start of solution heat-up to 400 ° C is relatively small, and is set to 5 to 100 ° CZh. However, if the average heating rate is less than 5 ° CZh, the deposited precipitates become coarse, the average crystal grain size increases, and the bending workability decreases. Meanwhile When the heating rate is higher than 100 ° CZh, the amount of precipitates generated is reduced. For this reason, the number density of precipitates is insufficient, the average crystal grain size is increased, and bending workability is lowered.
  • the average rate of temperature increase from the above 400 ° C to the solution temperature is made relatively large, and is 100 ° C Zs or more.
  • the rate of temperature increase is less than 100 ° CZs, the growth of recrystallized grains is promoted regardless of the precipitates defined in the present invention, the average crystal grain size is increased, and the bending workability is lowered. .
  • the solution treatment temperature is a relatively high temperature of 700 ° C or higher and lower than 950 ° C.
  • the solution treatment temperature is lower than 700 ° C.
  • the solution is insufficient and not only the high strength desired by the present invention is obtained but also the bendability is lowered.
  • the solution treatment temperature is 950 ° C or higher
  • most of the Ti-containing precipitates are dissolved, the number density of the precipitates becomes too small, and the atomic concentration of Ti contained in the precipitates becomes too low. .
  • the pinning effect of suppressing crystal grain growth by the Ti-containing precipitates is not exerted, and the crystal grains become coarse. For this reason, it is not possible to obtain the high-strength bending workability and high electrical conductivity that the present invention seeks to obtain.
  • the solution treatment temperature is set to the above-described relatively high temperature. As described above, even when the solution treatment temperature becomes high, the Ti-containing precipitate does not completely dissolve but remains (remains) as a precipitate in the structure, and exhibits a large pinning effect for suppressing grain growth. To do. Moreover, as described above, the solution amount of Ni and Si can be significantly increased by increasing the solution temperature, and the amount of fine precipitates of Ni-Si is greatly increased in the subsequent aging hardening treatment. Can be increased. As a result, it becomes possible to increase the strength of the copper alloy without reducing the bending workability and the like by increasing the average crystal grain size.
  • the average cooling rate after solution treatment should be 50 ° CZs or more. When this cooling rate is lower than 50 ° CZs, the growth of crystal grains is promoted regardless of the precipitates defined in the present invention, and becomes larger than the average crystal grain size to be obtained by the present invention. Bending workability is reduced.
  • precipitation annealing (intermediate annealing, secondary annealing) is performed at a temperature in the range of about 300 to 450 ° C to form fine precipitates, and the strength of the copper alloy sheet The conductivity may be improved (recovered). Also, between the solution treatment and precipitation annealing, 10-50% The final cold rolling may be performed within the range.
  • Example 1 of the present invention will be described.
  • Properties such as strength, conductivity and bendability were evaluated.
  • the average crystal grain size (/ zm) represented by ( ⁇ ⁇ ) ⁇ is The measurement was performed by the crystal orientation analysis method in which the above-mentioned field emission scanning electron microscope was equipped with a backscattered electron diffraction image system. Specifically, the surface of the rolled surface of the product copper alloy was mechanically polished and further subjected to electrolytic polishing after puff polishing to prepare a sample whose surface was adjusted. Thereafter, using JES FESEM0EO L JSM 5410), the crystal orientation and crystal grain size were measured by EBSP. The measurement area is 300 m x 300 m, and the measurement step interval is 0.5 m. As the EBSP measurement / analysis system, EBSP: manufactured by TSL (OIM) was used.
  • the electrical conductivity was measured by measuring the electrical resistance with a double-bridge resistance measuring device by processing a strip-shaped test piece with a width of 10 mm x length of 300 mm by milling with the longitudinal direction of the test piece as the rolling direction. Calculated by the area method. Three specimens under the same conditions were tested and the average value was adopted.
  • the organization of the invention Examples 1 to 18, said by each measuring method a range of 0.2 to 7.0 or Z m 2 precipitation the number density of the average size of 50 to 200 nm, the The average atomic concentration of P contained in the precipitate of the range size is in the range of 0.1 to 50 at%, and the average crystal grain size is 10 / zm or less.
  • the atomic ratio PZSi of P and Si contained in the precipitate having a size of 50 to 200 nm is 0.01 to 10 on average.
  • Invention Examples 1 to 18 have 0.2% proof stress of 800 MPa or more, conductivity of 40% IACS or more, high strength and high conductivity, and excellent bending caulability. ing.
  • the copper alloy of Comparative Example 19 does not contain P. For this reason, the average atomic concentration of P contained in the precipitate is 0, and the average crystal grain size is larger than 10 / zm. For this reason, strength is low with bending workability.
  • the average atomic concentration of P contained in the precipitate having a size of 50 to 200 nm is too small, and the Cr and Co contents deviate from the upper limit of 3.0%. ing. For this reason, the average crystal grain size becomes coarser than 10 / zm. As a result, the strength and electrical conductivity are remarkably low as well as the bending strength.
  • the solution treatment temperature is too low. For this reason, the solution is insufficient and the strength Low bendability.
  • Comparative Example 32 the average cooling rate after the solution treatment is too small. For this reason, although the number density of precipitates with a size of 50 to 200 nm and the average atomic concentration of P contained therein are within the range, the growth of crystal grains is promoted, and bending workability with a large average crystal grain size is achieved. Low. Also, the strength is low.
  • the copper alloys of Comparative Examples 33 and 35 do not contain P. Also, the Cr and Co contents are far from the upper limit of 3.0%. Furthermore, the solution treatment temperature is too high, and the number density of precipitates with a size of 50 to 200 nm is too low. For this reason, the average crystal grain size becomes larger than 10 m and the bending workability is low. Also, the conductivity is remarkably low.
  • Comparative Example 34 the number density of precipitates having a size of 50 to 200 nm is too small, and the average crystal grain size is 10 even though the average atomic concentration of P contained in the precipitate of this size is within the range. Grows beyond m. As a result, the bending strength and strength are low.
  • Example 2 of the present invention will be described.
  • the average crystal grain size of the obtained Cu alloy sheet was changed.
  • the properties such as strength, conductivity and bendability were evaluated.
  • the copper alloys having the chemical composition shown in Table 5 below were each melted under a charcoal coating in the atmosphere in a kryptor furnace, and cast into a pig iron book mold having a thickness of 50 mm. A lump with a width of 75 mm and a length of 180 mm was obtained. Then, after chamfering the surface of the ingot, it was hot-rolled at a temperature of 950 ° C until the thickness reached 20 mm, and the hot rolling end temperature force of 750 ° C or higher was also rapidly cooled in water. Next, after removing the oxide scale, primary cold rolling was performed to obtain a plate having a thickness of 0.25 mm.
  • the balance composition excluding the amount of element described is Cu, and other elements other than those described in Table 5 are Mn, Ca, Ag, Cd, Be, Au
  • the total amount of impurity elements such as Pt, S, Pb, and P was 0.5% or less.
  • the total amount of these elements was also less than 0.1%.
  • the structure of the copper alloy plate sample was determined to be the average atomic concentration (at%) of precipitates of 50 to 200 nm in size, and the average atoms of Cr and Si contained in precipitates of 50 to 200 nm in size.
  • the number ratio CrZSi and the average number density (pieces Z m 2) of precipitates having a size of 50 to 200 nm were measured by the methods described above.
  • the electrical conductivity was measured by measuring the electrical resistance with a double-bridge resistance measuring device by processing a strip-shaped test piece with a width of 10 mm x length of 300 mm by milling with the longitudinal direction of the test piece as the rolling direction. Calculated by the area method. Three specimens under the same conditions were tested and the average value was adopted.
  • the bending test of the copper alloy sheet sample was performed according to the Japan Copper and Brass Association technical standard. Cut the plate material with a width of 1 Omm and a length of 30 mm, apply a load of lOOOkgf, bend the Good Way (bending axis perpendicular to the rolling direction) with a bending radius of 0.15 mm, and check for cracks in the bent part. Visual observation was performed with a double optical microscope. At this time, the case where there was no crack was evaluated as ⁇ , and the case where a crack occurred was evaluated as X. If this bending test is excellent, it can be said that it is excellent in severe bending bending properties such as close contact bending or 90 ° bending after notching.
  • Invention Examples 36 to 47 which are copper alloys within the composition of the present invention, are subjected to solution treatment within a preferable range of conditions to obtain product copper alloy sheets.
  • Inventive Examples 36 to 47 have 0.2% proof stress of 800 MPa or more, conductivity strength of 0% IACS or more, high strength and high conductivity, and excellent bending caulability. Yes.
  • the copper alloys of Comparative Examples 48 to 55 have a component composition outside the scope of the present invention as shown in Table 5. For this reason, although the solution treatment (manufacturing method) is performed within a preferable range of conditions, the bending cacheability is inferior, and the strength and conductivity are low.
  • the copper alloy of Comparative Example 48 does not contain Cr. For this reason, the average crystal grain size with a small number of precipitates (number density) of 50 to 200 nm is coarsened exceeding 30 / zm. For this reason, strength is low with bending workability.
  • the Ni content is outside the upper limit. For this reason, the conductivity is remarkably low as well as bending calorie.
  • the copper alloy of Comparative Example 54 has too much Zr content. Therefore, the average grain size is 30 ⁇ m It has become coarser beyond. As a result, the electrical conductivity is remarkably low as well as bending workability.
  • the copper alloy of Comparative Example 55 has too much total amount of Fe and Mg contents. For this reason, the average crystal grain size becomes coarser than 30 / zm. As a result, the conductivity is remarkably low as well as the bending cache.
  • Comparative Example 56 the average heating rate up to 400 ° C in the solution solution treatment is too small. For this reason, the growth of crystal grains is promoted, and the average crystal grain size has become larger than 30 m. As a result, the strength is extremely low along with the bending workability.
  • Comparative Example 60 the solution treatment temperature is too high. For this reason, the number density of precipitates having a size of 50 to 200 nm is too small, and the average crystal grain size is coarsened exceeding 30 / zm. As a result, bending workability and strength are low.
  • Comparative Example 61 the average cooling rate after the solution treatment is too small. For this reason, the growth of crystal grains is promoted, the average crystal grain size is large, and the bending workability is low. Also, the strength is low.
  • Example 3 of the present invention will be described.
  • the average crystal grain size of the obtained Cu alloy sheet was changed.
  • the properties such as strength, conductivity and bendability were evaluated.
  • the solution solution treatment was performed by changing the temperature raising and cooling conditions in various ways.
  • the plate holding time at the solution temperature was commonly 30 seconds.
  • cold rolled sheets each having a thickness of 0.20 mm were formed by finish cold rolling. This cold rolled sheet was subjected to artificial age hardening at 450 ° C. for 4 hours to obtain a final copper alloy sheet.
  • the amount of element described is excluded, and the balance composition is Cu.
  • Other elements than those listed in Table 7 include Mn, Ca, Ag, Cd, and Be.
  • the total amount of impurity elements such as Au, Pt, S, Pb, and P was 0.5% or less.
  • the total amount of these elements was also less than 0.1%.
  • the structure of the copper alloy sheet sample was determined by examining the average atomic concentration of Ti (at%) in precipitates of 50 to 200 nm in size and the average number of atoms of Ti and Si in precipitates of 50 to 200 nm in size.
  • the ratio TiZSi, and the average number density (pieces Z wm 2) of precipitates having a size of 50 to 200 nm were measured by the methods described above.
  • the average crystal grain size (/ zm) represented by ( ⁇ ) ⁇ is The measurement was performed by the crystal orientation analysis method in which the above-mentioned field emission scanning electron microscope was equipped with a backscattered electron diffraction image system. Specifically, the surface of the rolled surface of the product copper alloy was mechanically polished and further subjected to electrolytic polishing after puff polishing to prepare a sample whose surface was adjusted. Thereafter, using JES FESEM0EO L JSM 5410), the crystal orientation and crystal grain size were measured by EBSP. The measurement area was 300 m x 300 m, and the measurement step interval was 0.5 ⁇ m.
  • EB The SP measurement 'analysis system used was EBSP: TSL (OIM).
  • the electrical conductivity was measured by measuring the electrical resistance with a double-bridge resistance measuring device by processing a strip-shaped test piece with a width of 10 mm x length of 300 mm by milling with the longitudinal direction of the test piece as the rolling direction. Calculated by the area method. Three specimens under the same conditions were tested and the average value was adopted.
  • the bending test of the copper alloy sheet sample was performed according to the Japan Copper and Brass Association technical standard. Cut the plate material with a width of 1 Omm and a length of 30 mm, apply a load of lOOOkgf, bend the Good Way (bending axis perpendicular to the rolling direction) with a bending radius of 0.15 mm, and check for cracks in the bent part. Visual observation was performed with a double optical microscope. At this time, the case where there was no crack was evaluated as ⁇ , and the case where a crack occurred was evaluated as X. If this bending test is excellent, it can be said that it is excellent in severe bending bending properties such as close contact bending or 90 ° bending after notching.
  • the organization of the inventive example 62 to 72 said by each measuring method, a range of 0.2 to 20 pieces Z wm 2 precipitation the number density of the average size of 50 to 200 nm, the range The average atomic concentration of Ti contained in precipitates of the size is in the range of 0.1 to 50 at%, and the average crystal grain size is 20 m or less.
  • the atomic ratio TiZSi of Ti and Si contained in precipitates of 50 to 200 nm in size is 0.01 to 10 on average.
  • Invention Examples 62 to 72 have 0.2% proof stress of 800 MPa or more, conductivity strength of 0% IACS or more, high strength and high conductivity, and excellent bending caulability. Yes.
  • the copper alloys of Comparative Examples 73 to 80 have a component composition within the scope of the present invention as shown in Table 7. It is off. For this reason, although the solution treatment (manufacturing method) is performed within a preferable range of conditions, the bending cacheability is inferior, and the strength and conductivity are low.
  • the copper alloy of Comparative Example 73 does not contain Ti. For this reason, the average crystal grain size with less precipitates (number density) of 50 to 200 nm is coarsened exceeding 20 / z m. For this reason
  • the strength is low with bending workability.
  • the average crystal grain size is less than 20 m and coarsens with few OOnm size precipitates (number density). As a result, the strength is remarkably low as well as the bending cache.
  • TiZSi contained in OOnm size precipitates is too low and the average crystal grain size is larger than 20 ⁇ m. As a result, the electrical conductivity is remarkably low as well as bending workability.
  • Si is too high, and the average crystal grain size is over 20 m. As a result, the strength is low with bending workability.
  • the copper alloy of Comparative Example 79 has too much Zr content. For this reason, the average crystal grain size is larger than 20 ⁇ m. As a result, the electrical conductivity is remarkably low as well as bending workability.
  • the copper alloy of Comparative Example 80 has too much total amount of Fe and Co contents. For this reason, the average crystal grain size becomes coarser than 20 / zm. As a result, the conductivity is remarkably low as well as the bending cache.
  • Comparative Example 82 the average heating rate up to 400 ° C in the solution treatment is too large. For this reason, the number density of precipitates is insufficient, the average crystal grain size becomes large, and the bending workability is low.
  • Comparative Example 84 the solution treatment temperature is too low. For this reason, solutionization becomes insufficient, strength is low, and bendability is low.
  • Comparative Example 85 the solution treatment temperature is too high. For this reason, the number density of precipitates having a size of 50 to 200 nm is too small, and the average crystal grain size becomes larger than 20 / zm. As a result, bending workability and strength are low.
  • FIG. 3 shows the copper alloy plates of Invention Example 62 and Fig. 4 of Comparative Example 73, and shows the structure of the plate after each of the 900 ° C solution treatments and before each finish cold rolling.
  • a TEM (scanning electron microscope) photograph of 50000 times is shown.
  • Invention Example 62 in FIG. 3 there are black dots identified (identified) as Ti-containing precipitates by the EDX.
  • Comparative Example 73 in FIG. 4 containing no Ti does not have such precipitates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明は、質量%で、Ni:0.4~4.0%、Si:0.05~1.0%を含有し、更に、元素Mとして、 P:0.005~0.5%、 Cr:0.005~1.0%、 Ti:0.005~1.0%、 から選択される1種の元素を含有し、 残部銅および不可避的不純物からなる銅合金であって、 この銅合金組織の、倍率30000倍の電界放出型透過電子顕微鏡とエネルギー分散型分析装置とにより測定した、50~200nmのサイズの析出物に含まれる元素MとSiとの原子数比M/Siが平均で0.01~10であることを特徴とする高強度、高導電率および曲げ加工性に優れた銅合金に関する。本発明によれば、高強度化、高導電率化とともに、優れた曲げ加工性を兼備した銅合金を提供することができる。

Description

明 細 書
高強度、高導電率および曲げ加工性に優れた銅合金
技術分野
[0001] 本発明は、高強度、高導電率であり、かつ曲げ加工性に優れた、コルソン系銅合金 に関し、例えば、家電、半導体装置用リードフレーム等の半導体部品、プリント配線 板等の電気'電子部品材料、開閉器部品、ブスバー、端子'コネクタ等の機構部品や 産業用機器などに用いられる銅合金板条として好適な銅合金に関する。
背景技術
[0002] 電子機器の小型化及び軽量化の要請に伴い、電気'電子部品の小型化及び軽量 化が進んでいる。そして、この電気'電子部品の小型化及び軽量ィ匕が端子部品の小 型化及び軽量化のために、これらに使用される銅合金材料も板厚及び幅が小さくな り、 ICにおいては、板厚が 0.1〜0.15mmと薄い銅合金板も使用されるようになってき ている。
[0003] その結果、これらの電気 ·電子部品に使用される銅合金材料には、より一層高い強 度が求められるようになつている。例えば、自動車用コネクタなどでは、 800MPa以上 の高強度銅合金板が求められるようになって 、る。
[0004] また、電気'電子部品の前記薄板化及び幅狭化の傾向は、銅合金材料の導電性 部分の断面積を減少させる。この断面積の減少による導電性の低下を補うためには 、銅合金材料自体に、導電率が 40%IACS以上の良好な導電率が求められるようにな つている。
[0005] さらに、これらコネクタ、端子、スィッチ、リレー、リードフレームなどに用いられる銅 合金板は、前記高強度および高導電率はもちろんのこと、ノッチング後の 90° 曲げ など、厳しい曲げカ卩ェ性が要求されることが多くなつてきて 、る。
[0006] 従来から、高強度な銅合金材料としては、 42ァロイ (Fe-42質量 %Ni合金)が知られ ている。この 42ァロイは約 580MPa程度の引張強さを有し、異方性も少なぐまた曲げ 加工性も良好である。しかしながら、この 42ァロイは 800MPa以上の高強度化の要求 には応えられない。また、 42ァロイは Niを多量に含有するため、価格が高い という問題点もある。
[0007] このため、前記種々の特性に優れ、且つ安価なコルソン合金(Cu— Ni— Si系合金 )が電気'電子部品用に使用されるようになった。このコルソン合金は、ケィ化-ッケ ル化合物 (Ni Si)の銅に対する固溶限が温度によって著しく変化する合金で、焼入
2
•焼戻によって硬化する析出硬化型合金であり、耐熱性や高温強度も良好で、これま でも、導電用各種パネゃ高抗張力用電線などに広く使用されている。
[0008] しかし、このコルソン合金においても、銅合金材料の強度を向上させると、導電性や 曲げ加工性は低下する。即ち、高強度のコルソン合金において、良好な導電率及び 曲げ加工性とすることは非常に困難な課題であり、更なる強度、導電性及び曲げカロ ェ性の向上が求められている。
[0009] このコルソン合金の強度、導電性及び曲げ加工性の向上の方策は従来カゝら提案さ れている。 ί列えば、特許文献 1によれば、 Ni, Siにカロえて、 Sn、 Zn、 Feゝ Pゝ Mgゝ Pb 量などを規定し、導電性に加え、曲げ部の耐はんだ剥離性、耐熱クリープ特性、耐マ ィグレーシヨン特性、熱間加工性を維持しつつ強度及び打抜き加工性を向上させて いる。
[0010] 特許文献 2によれば、 Ni、 Siに加えて Mg量と合金中に存在する析出物及び介在 物のうち粒径が 10 m以上のものの単位面積あたりの個数を規定し、導電率、強度 及び高温強度を向上させている。
[0011] 特許文献 3によれば、 Ni、 Siにカ卩えて Mgを含有し、同時に Sの含有量を制限して 好適な強度、導電性、曲げ加工性、応力緩和特性、メツキ密着性を向上させている。
[0012] 特許文献 4によれば、 Fe量を 0. 1%以下に制限し、強度、導電率、曲げ加工性及 びを向上させている。
[0013] 特許文献 5によれば、介在物の大きさが 10 μ m以下であり、かつ、 5〜10 μ mの大 きさの介在物個数を制限し、強度、導電率、曲げ加工性、エッチング性、メツキ性を向 上させている。
[0014] 特許文献 6によれば、 Ni Si析出物の分散状態を制御し、強度、導電率、曲げ加工
2
'性を向上させている。
[0015] 特許文献 7によれば、銅板表面組織の結晶粒の延伸形状を規定する事で、耐磨耗 '性を向上させている。
特許文献 1:特開平 9 - 209061号公報
特許文献 2:特開平 8 - 225869号公報
特許文献 3:特開 2002— 180161号公報
特許文献 4:特開 2001— 207229号公報
特許文献 5:特開 2001—49369号公報
特許文献 6:特開 2005— 89843号公報
特許文献 7:特開平 5 - 279825号公報
発明の開示
[0016] しかし、特許文献 1はコルソン合金の各成分含有量を規定したのみであり、成分組 成のみの制御では十分な強度が得られないし、実際にも、十分な強度が得られてい ない。
[0017] 特許文献 2は、コルソン合金の組織に注目し、存在する析出物及び介在物の大きさ
、個数を規定しているものの、それ以上に組織には踏み込んでおらず、また、溶体ィ匕 工程も規定して 、な 、ために、十分な強度が得られて 、な 、。
[0018] 特許文献 3は、導電率が低く要求に達せず (実施例では 29〜33%IACS)また、規 定される量まで Sを減らすことによる製造コストの増大が懸念され、実用的では無い。
[0019] 特許文献 4のように Fe量を 0. 1%以下に制限するだけでは、十分な導電率、強度 及び曲げ性は得られない。
[0020] 特許文献 5は、コルソン合金の組織に注目し、存在する介在物の大きさ、個数を規 定しているものの、それ以上に組織には踏み込んでおらず、また、溶体化工程の制 御も不十分であり、十分な強度が得られていない。
[0021] 特許文献 6は、コルソン合金の組織に注目し、 100万倍の透過型電子顕微鏡で組 織観察される、ケィ化ニッケル析出物 (Ni Si)の平均粒径を 3〜: LOnmにするとともに
2
、間隔を 25nm以下として、析出物の分散状態を制御している。しかし、基本的に、 N i、 Siの含有量が多すぎるため、導電率が十分高くない。
[0022] 特許文献 7は、銅板表面組織の結晶粒の延伸形状を規定して!/、るものの、結晶粒 の形状だけでは十分な強度が得られず、溶体化工程の制御も不十分であり、導電率 が十分高くない。
[0023] 本発明はこのような課題を解決するためになされたものであって、高強度、高導電 率であり、かつ優れた曲げ加工性を兼備したコルソン系銅合金を提供することである
[0024] すなわち、本発明は以下の(1)〜(9)に関する。
(1) 質量0 /0で、 Ni: 0. 4〜4. 0%、 Si: 0. 05〜: L 0%を含有し、更に、元素 Mとし て、
P : 0. 005〜0. 5%、
Cr: 0. 005〜1. 0%、
Ti: 0. 005〜1. 0%、
から選択される 1種の元素を含有し、
残部銅および不可避的不純物からなる銅合金であって、
この銅合金組織の、倍率 30000倍の電界放出型透過電子顕微鏡とエネルギー分散 型分析装置とにより測定した、 50〜200nmのサイズの析出物に含まれる元素 Mと Si との原子数比 MZSiが平均で 0. 01〜: LOであることを特徴とする高強度、高導電率 および曲げ加工性に優れた銅合金。
(2) 前記元素 Mが Pであって、
前記銅合金組織の、前記電界放出型透過電子顕微鏡とエネルギー分散型分析装 置とにより測定した、 50〜200nmのサイズの析出物の数密度が平均で 0. 2〜7. 0 個/ / z m2であり、この範囲のサイズの析出物に含まれる Pの平均原子濃度が 0. 1〜 50at%であるとともに、電界放出型走査電子顕微鏡に後方散乱電子回折像システ ムを搭載した結晶方位解析法により測定した、結晶粒の数を n、それぞれの測定した 結晶粒径を Xとした時、(Σ χ) Ζηで表される平均結晶粒径が 10 m以下であることを 特徴とする(1)に記載の銅合金。(以下、本発明の第 1の態様ともいう。 )
(3) 前記銅合金が、更に、質量%で、 Cr、 Ti、 Fe、 Mg、 Co、 Zrのうち一種または 二種以上を合計で 0. 01〜3. 0%を含有する(2)に記載の銅合金。
(4) 前記元素 Mが Crであって、
前記銅合金組織の、前記電界放出型透過電子顕微鏡とエネルギー分散型分析装 置とにより測定した、 50〜200nmのサイズの析出物の数密度が平均で 0. 2〜20個 Z m2であり、この範囲のサイズの析出物に含まれる Crの平均原子濃度が 0. 1〜8 0^%であるとともに、電界放出型走査電子顕微鏡に後方散乱電子回折像システム を搭載した結晶方位解析法により測定した、結晶粒の数を n、それぞれの測定した結 晶粒径を Xとした時、(∑ X) Znで表される平均結晶粒径が 30 μ m以下であることを特 徴とする(1)に記載の銅合金。(以下、本発明の第 2の態様ともいう。 )
(5) 前記銅合金が、更に、質量%で、 Ti、 Fe、 Mg、 Co、 Zrのうち一種または二種 以上を合計で 0. 01〜3. 0%を含有する (4)に記載の銅合金。
(6) 前記元素 Mが Tiであって、
前記銅合金組織の、前記電界放出型透過電子顕微鏡とエネルギー分散型分析装 置とにより測定した、 50〜200nmのサイズの析出物の数密度が平均で 0. 2〜20個 Z m2であり、この範囲のサイズの析出物に含まれる Tiの平均原子濃度が 0. 1〜5 0^%であるとともに、電界放出型走査電子顕微鏡に後方散乱電子回折像システム を搭載した結晶方位解析法により測定した、結晶粒の数を n、それぞれの測定した結 晶粒径を Xとした時、(∑ X) Znで表される平均結晶粒径が 20 μ m以下であることを 特徴とする(1)に記載の銅合金。(以下、本発明の第 3の態様ともいう。 )
(7) 前記銅合金が、更に、質量%で、 Fe、 Mg、 Co、 Zrのうち一種または二種以 上を合計で 0. 01〜3. 0%を含有する(6)に記載の銅合金。
(8) 前記銅合金が、更に、質量%で、 Zn: 0. 005〜3. 0%を含有する(1)〜(7) のいずれか 1つに記載の銅合金。
(9) 前記銅合金が、更に、質量%で、 Sn: 0. 01〜5. 0%を含有する(1)〜(8)の V、ずれか 1つに記載の銅合金。
[0025] 本発明の第 1の態様では、コルソン系銅合金組織における平均結晶粒径を 10 μ m 以下に微細化させて、銅合金の曲げ力卩ェ性を向上させる。そして、組織におけるこの 結晶粒微細化を、 Ni— Si— P、 Fe— P、 Fe— Ni— P、 Ni— Si— Fe— P等の P含有析 出物(以下、リン化物、リンィ匕合物とも言う)の結晶粒成長抑制のピン止め効果によつ て達成することを特徴とする。
[0026] 本発明者らは、上記 P含有析出物の結晶粒成長抑制のピン止め効果は、 Pを含有 しな 、通常の Ni S係析出物のピン止め効果に比して著しく大き 、ことを知見した。
2
そして、同時に、このピン止め効果の大きさは、 P含有析出物における Pの含有量 (原 子濃度)によって左右されることも知見した。
[0027] 言い換えると、従来のコルソン系銅合金組織において、平均結晶粒径を 10 μ m以 下に微細化させることが、実質的に困難であった理由は、 Pを含有しない通常の Ni
2
S係析出物だけでは、ピン止め効果には大きな限界があつたためと推考される。
[0028] ここで、合金成分として Pを含有しても、銅合金組織にお!ヽて存在する析出物全て 力 SP含有析出物となる訳ではない。即ち、実際の銅合金組織においては、 P含有析 出物の他に、他の Pを含有しない Ni Si系などの析出物が混在する。言い換えると、
2
結晶粒成長抑制のピン止め効果が大きい P含有析出物と、結晶粒成長抑制のピン 止め効果が小さい、 Pを含有しない他の Ni Si系などの析出物が混在することとなる。
2
[0029] このため、実際の結晶粒成長抑制のピン止め効果は、銅合金組織における P含有 析出物の量に依存する。言い換えると、銅合金組織の平均結晶粒径を 10 m以下 に微細化させるためには、銅合金組織中に一定量以上の P含有析出物を存在させる ことが必要である。
[0030] この点、本発明では、銅合金組織中に存在する P含有析出物の量を直接規定する のではなぐ銅合金組織中に存在する上記特定サイズ (50〜200nm)の全析出物 中の Pの原子濃度によって、 P含有析出物の量を制御する。銅合金組織中に混在す る P含有析出物と Pを含有しな 、他の析出物の中から、 P含有析出物だけをピックアツ プして分析、測定することは非効率で、かつ測定が不正確となるからである。
[0031] したがって、本発明では、これら特定サイズの全析出物(Pを含有する力否かにかか わらない全析出物)を対象として、 Pの原子濃度を測定し、この析出物中の Pの平均 原子濃度によって、銅合金組織中における P含有析出物の量を制御する。また、この 前提として、本発明では、上記特定サイズの全析出物 (化合物)の数密度を保証 (規 定)する。
[0032] これによつて、本発明では、結晶粒成長抑制の大きなピン止め効果を発揮させ、コ ルソン系銅合金組織における平均結晶粒径を 10 m以下に微細化させて、銅合金 の曲げ力卩ェ性を向上させる。 [0033] これら特定サイズの析出物 (化合物)の数密度の保証と、析出物中の Pの平均原子 濃度の制御は、前提として、 Pなどの本発明範囲での含有量の制御と、溶体化処理 時における昇温速度と溶体ィ匕処理後の冷却速度の制御によって可能となる。そして 、この析出物に含まれる Pの平均原子濃度の制御(P含有析出物量の制御)によらな ければ、コルソン系銅合金組織における平均結晶粒径を 10 m以下に微細化させる ことは難しい。
[0034] この他、本発明では、導電率を高めに維持するために、基本合金成分である Ni、 S iの含有量を比較的低く制御する。そして、前記した P含有析出物や Ni Siを含めた
2
他の析出物を微細に析出させて強度を向上させ、 Ni、 Siの含有量を比較的低く制御 しても高強度とする。
[0035] 本発明の第 2の態様は、コルソン系銅合金組織中に含有させる Cr含有析出物が、 溶体化処理温度が高温化しても、固溶しきらずに、組織中に析出物として存在 (残存 )し、結晶粒成長抑制のピン止め効果を発揮する特異な性質を利用することを特徴と する。
[0036] 即ち、 Crを含有させた場合に、コルソン系銅合金組織中には、 Ni—Si—Cr、 Si— Cr等の Cr含有析出物(Crィ匕物、 Crィ匕合物とも言う)が形成される。これらの Cr含有 析出物は、溶体ィ匕処理温度が例えば 900°C程度の高温になっても、固溶しきらずに 、組織中に析出物として存在 (残存)し、結晶粒成長抑制のピン止め効果を発揮する 特異な性質を有する。しかも、この Cr含有析出物の結晶粒成長抑制のピン止め効果 は、 Cr乃至 Cr含有析出物を含有しない、通常の(従来の) Ni Si系析出物のみのピ
2
ン止め効果に比して著しく大き!/、。
[0037] 勿論、溶体化処理温度の高温化により、 Cr含有析出物もある程度は固溶し、結晶 粒の成長自体も避けられない。し力しながら、 Cr乃至 Cr含有析出物を含有しない通 常 (従来)に比べれば、その結晶粒成長の程度は、平均結晶粒径で上記 30 m以下 程度に、力なり抑制される。このため、溶体ィ匕処理温度のかなりの高温ィ匕が可能とな つて、 Ni、 Siの固溶量を大幅に増すことができ、後の時効硬化処理において、 Ni- Siの微細な析出物量を大幅に増すことができる。この結果、平均結晶粒径の粗大化 によって曲げ加工性などを低下させることなぐ銅合金のより高強度化を図ることが可 能となる。
[0038] この Cr含有析出物のピン止め効果の大きさは、 Cr含有析出物における Crの含有 量 (原子濃度)によっても大きく左右される。言い換えると、従来のコルソン系銅合金 組織において、平均結晶粒径を微細化させることが、実質的に困難であった理由は 、 Crを含有しない通常の Ni Si系析出物だけでは、ピン止め効果には大きな限界が
2
あつたためと推考される。
[0039] ここで、合金成分として Crを含有しても、銅合金組織にお!ヽて存在する析出物全て が Cr含有析出物となる訳ではない。即ち、実際の銅合金組織においては、 Cr含有 析出物の他に、他の Crを含有しない Ni Si系などの析出物が混在する。言い換える
2
と、結晶粒成長抑制のピン止め効果が大きい Cr含有析出物と、結晶粒成長抑制の ピン止め効果が小さい、 Crを含有しない他の Ni Si系などの析出物が混在することと
2
なる。
[0040] このため、実際の結晶粒成長抑制のピン止め効果は、銅合金組織における Cr含有 析出物の量に依存する。言い換えると、銅合金組織の平均結晶粒径を 30 m以下 に微細化させるためには、銅合金組織中に一定量以上の Cr含有析出物を存在させ ることが必要である。
[0041] この点、本発明では、銅合金組織中に存在する Cr含有析出物の量を直接規定す るのではなぐ銅合金組織中に存在する上記特定サイズ (50〜200nm)の全析出物 中の Crの原子濃度によって、 Cr含有析出物の量を制御する。銅合金組織中に混在 する Cr含有析出物と Crを含有しない他の析出物の中から、 Cr含有析出物だけをピ ックアップして分析、測定することは非効率で、かつ測定が不正確となるからである。
[0042] したがって、本発明では、これら特定サイズの全析出物(Crを含有する力否かにか かわらない全析出物)を対象として、 Crの原子濃度を測定し、この析出物中の Crの 平均原子濃度によって、銅合金組織中における Cr含有析出物の量を制御する。ま た、この前提として、本発明では、上記特定サイズの全析出物 (化合物)の数密度を 保証 (規定)する。
[0043] これによつて、本発明では、結晶粒成長抑制の大きなピン止め効果を発揮させ、コ ルソン系銅合金組織における平均結晶粒径を 30 m以下に微細化させて、銅合金 の曲げ力卩ェ性を向上させる。
[0044] これら特定サイズの析出物 (化合物)の数密度の保証と、析出物中の Crの平均原 子濃度の制御は、前提として、 Crなどの本発明範囲での含有量の制御と、溶体化処 理時における昇温速度と溶体ィ匕処理後の冷却速度の制御によって可能となる。そし て、この析出物に含まれる Crの平均原子濃度の制御(Cr含有析出物量の制御)によ らなければ、コルソン系銅合金組織における平均結晶粒径を 30 m以下、特に 10 m以下に微細化させることは難 、。
[0045] この他、本発明では、導電率を高めに維持するために、基本合金成分である Ni、 S iの含有量を比較的低く制御する。そして、前記した Cr含有析出物や Ni Siを含めた
2 他の析出物を微細に析出させて強度を向上させ、 Ni、 Siの含有量を比較的低く制御 しても高強度とする。
[0046] 本発明の第 3の態様は、コルソン系銅合金組織中に含有させる Ti含有析出物が、 溶体化処理温度が高温化しても、固溶しきらずに、組織中に析出物として存在 (残存 )し、結晶粒成長抑制のピン止め効果を発揮する特異な性質を利用することを特徴と する。
[0047] 即ち、 Tiを含有させた場合に、コルソン系銅合金組織中には、 Ni— Si— Ti等の Ti 含有析出物 (Ti化物、 Ti化合物とも言う)が形成される。これらの Ti含有析出物は、 溶体ィ匕処理温度が例えば 900°C程度の高温になっても、固溶しきらずに、組織中に 析出物として存在 (残存)し、結晶粒成長抑制のピン止め効果を発揮する特異な性 質を有する。し力も、この Ti含有析出物の結晶粒成長抑制のピン止め効果は、 Ti乃 至 Ti含有析出物を含有しない、通常の(従来の) Ni Si系析出物のみのピン止め効
2
果に比して著しく大きい。
[0048] 勿論、溶体化処理温度の高温化により、 Ti含有析出物もある程度は固溶し、結晶 粒の成長自体も避けられない。しカゝしながら、 Ti乃至 Ti含有析出物を含有しない通 常 (従来)に比べれば、その結晶粒成長の程度は、平均結晶粒径で上記 20 m以下 程度に、力なり抑制される。このため、溶体ィ匕処理温度のかなりの高温ィ匕が可能とな つて、 Ni、 Siの固溶量を大幅に増すことができ、後の時効硬化処理において、 Ni- Siの微細な析出物量を大幅に増すことができる。この結果、平均結晶粒径の粗大化 によって曲げ加工性などを低下させることなぐ銅合金のより高強度化を図ることが可 能となる。
[0049] この Ti含有析出物のピン止め効果の大きさは、 Ti含有析出物における Tiの含有量
(原子濃度)によっても大きく左右される。言い換えると、従来のコルソン系銅合金組 織において、平均結晶粒径を微細化させることが、実質的に困難であった理由は、 T iを含有しない通常の Ni Si系析出物だけでは、ピン止め効果には大きな限界があつ
2
たためと推考される。
[0050] ここで、合金成分として Tiを含有しても、銅合金組織にお!ヽて存在する析出物全て が Ti含有析出物となる訳ではない。即ち、実際の銅合金組織においては、 Ti含有析 出物の他に、他の Tiを含有しない Ni Si系などの析出物が混在する。言い換えると、
2
結晶粒成長抑制のピン止め効果が大きい Ti含有析出物と、結晶粒成長抑制のピン 止め効果が小さい、 Tiを含有しない他の Ni S係などの析出物が混在することとなる
2
[0051] このため、実際の結晶粒成長抑制のピン止め効果は、銅合金組織における Ti含有 析出物の量に依存する。言い換えると、銅合金組織の平均結晶粒径を 20 m以下 に微細化させるためには、銅合金組織中に一定量以上の Ti含有析出物を存在させ ることが必要である。
[0052] この点、本発明では、銅合金組織中に存在する Ti含有析出物の量を直接規定する のではなぐ銅合金組織中に存在する上記特定サイズ (50〜200nm)の全析出物 中の Tiの原子濃度によって、 Ti含有析出物の量を制御する。銅合金組織中に混在 する Ti含有析出物と Tiを含有しな ヽ他の析出物の中から、 Ti含有析出物だけをピッ クアップして分析、測定することは非効率で、かつ測定が不正確となるからである。
[0053] したがって、本発明では、これら特定サイズの全析出物 (Tiを含有するか否かにか 力わらない全析出物)を対象として、 Tiの原子濃度を測定し、この析出物中の Tiの平 均原子濃度によって、銅合金組織中における Ti含有析出物の量を制御する。また、 この前提として、本発明では、上記特定サイズの全析出物 (ィ匕合物)の数密度を保証 (規定)する。
[0054] これによつて、本発明では、結晶粒成長抑制の大きなピン止め効果を発揮させ、コ ルソン系銅合金組織における平均結晶粒径を 20 m以下に微細化させて、銅合金 の曲げ力卩ェ性を向上させる。
[0055] これら特定サイズの析出物 (化合物)の数密度の保証と、析出物中の Tiの平均原子 濃度の制御は、前提として、 Tiなどの本発明範囲での含有量の制御と、溶体化処理 時における昇温速度と溶体ィ匕処理後の冷却速度の制御によって可能となる。そして 、この析出物に含まれる Tiの平均原子濃度の制御 (Ti含有析出物量の制御)によら なければ、コルソン系銅合金組織における平均結晶粒径を 20 m以下、特に 10 m 以下に微細化させることは難 U、。
[0056] この他、本発明では、導電率を高めに維持するために、基本合金成分である Ni、 S iの含有量を比較的低く制御する。そして、前記した Ti含有析出物や Ni Siを含めた
2
他の析出物を微細に析出させて強度を向上させ、 Ni、 Siの含有量を比較的低く制御 しても高強度とする。
[0057] これによつて、本発明は、高強度、高導電率および優れた曲げ加工性をバランスよ く備えた銅合金を得る。
図面の簡単な説明
[0058] [図 1]本発明銅合金板の組織を示す図面代用 TEM写真である。
[図 2]比較例銅合金板の組織を示す図面代用 TEM写真である。
[図 3]本発明銅合金板の組織を示す図面代用 TEM写真である。
[図 4]比較例銅合金板の組織を示す図面代用 TEM写真である。
発明を実施するための最良の形態
[0059] 本発明は、質量%で、 Ni: 0. 4〜4. 0%、 Si: 0. 05〜: L 0%を含有し、更に、元素 Mとして、
P : 0. 005〜0. 5%、
Cr: 0. 005〜1. 0%、
Ti: 0. 005〜1. 0%、
から選択される 1種の元素を含有し、
残部銅および不可避的不純物からなる銅合金であって、
この銅合金組織の、倍率 30000倍の電界放出型透過電子顕微鏡とエネルギー分散 型分析装置とにより測定した、 50〜200nmのサイズの析出物に含まれる元素 Mと Si との原子数比 MZSiが平均で 0. 01〜: LOであることを特徴とする高強度、高導電率 および曲げカ卩ェ性に優れた銅合金を提供するものである。
以下、本明細書において、 Mは P、 Cr及び Tiから選択される一つの元素を表すこと とする。
[0060] (析出物に含まれる Mと Siとの原子数比)
本発明では、銅合金の結晶粒径の微細化を保証するために、倍率 30000倍の銅 合金組織の前記電界放出型透過電子顕微鏡とエネルギー分散型分析装置とにより 測定した、 50〜200nmのサイズの析出物に含まれる Mと Siとの原子数比 MZSiが 平均で 0. 01〜10であることが好ましい。
[0061] 析出物に含まれる Mと Siとの原子数比 MZSiが平均で 0. 01よりも小さいと、結晶 粒が粗大化し、曲げ加工性が低下する可能性が高くなる。一方、析出物に含まれる Mと Siとの原子数比 MZSiが平均で 10より大きいと、固溶 Si量が多くなりすぎ、導電 率が低下する可能性が高くなる。したがって、析出物に含まれる Mと Siとの原子数比 MZSiは平均で、好ましくは 0. 01〜10、より好ましくは 0. 10〜5. 0とする。
[0062] 以下、本発明の好ましい態様について、詳細に説明する。
まず、本発明の好ましい態様の一つである、本発明の第 1の態様について説明す る。
[0063] (銅合金の成分組成)
先ず、前記各種用途用として、必要強度や導電率、更には、高い曲げ加工性ゃ耐応 力緩和特性を満たすための、本発明の第 1の態様のコルソン系合金における化学成 分組成を、以下に説明する。
[0064] 本発明の第 1の態様では、高強度、高導電率、また、高い曲げ加工性を達成する ために、質量0 /0で、 Ni:0. 4〜4. 0%、 Si:0. 05~1. 0%、 P:0. 005〜0. 5%を各 々含有し、残部銅および不可避的不純物からなる銅合金からなる基本組成とする。こ の組成は、銅合金組織の結晶粒を微細化するとともに、析出物 (Ni Si)に含まれる P
2
の平均原子濃度を制御するための、成分組成側からの重要な前提条件となる。なお 、以下の各元素の説明にお 、て記載する%表示は全て質量%である。 [0065] この基本組成に対し、更に、 Cr、 Ti、 Fe、 Mg、 Co、 Zrのうち一種または二種以上 を合計で 0. 01-3. 0%を含有しても良い。また、 Zn: 0. 005-3. 0%を含有しても 良い。また、 Sn: 0. 01-5. 0%を含有しても良い。
[0066] Ni: 0. 4〜4. 0%
Niは、 Siとの化合物 (Ni Siなど)を晶出または析出させることにより、銅合金の強度
2
および導電率を確保する作用がある。また、 Pとの化合物も形成する。 Niの含有量が 0. 4%未満と少な過ぎると、晶*析出物の生成量が不十分であるため所望の強度が 得られないばかりか、銅合金組織の結晶粒が粗大化する。また、偏析しゃすい晶出 物の割合が高くなつて最終製品の特性のばらつきが大きくなる。一方、 Niの含有量 が 4. 0%を越えて多過ぎると、導電率が低下するのに加えて、析出物数密度が大き くなりすぎ、曲げカ卩工性が低下する。したがって、 Ni量は 0. 4〜4. 0%の範囲とする
[0067] Si: 0. 05〜: L 0%
Siは、 Niとの化合物 (Ni Si)を晶*析出させて銅合金の強度および導電率を向上
2
させる。また、 Pとの化合物も形成する。 Siの含有量が 0. 05%未満と少な過ぎる場合 は、晶'析出物の生成が不十分であるため所望の強度が得られないばかりか、結晶 粒が粗大化する。また、偏析しゃすい晶出物の割合が高くなつて、最終製品の特性 のばらつきが大きくなる。一方、 Siの含有量が 1. 0%を越えて多過ぎると、析出物の 数が多くなりすぎ、曲げ加工性が低下すると同時に、析出物に含まれる Pと Siの原子 数比 PZSiが低くなりすぎる。したがって、 Si含有量は 0. 05〜: L 0%の範囲とする。
[0068] P : 0. 005〜0. 5%
Pは、 P含有析出物を生成させるとともに、 P含有析出物中の Pの原子濃度を上記し た特定範囲に制御するための重要元素である。 P含有析出物(リン化物、リン化合物 )を形成することで、強度、導電率が向上するとともに、リン化物の形成により結晶粒 が微細化し、曲げカ卩ェ性が向上する。但し、これらの効果の内、特に曲げカ卩ェ性向 上効果は、 P含有析出物の Pの原子濃度を上記した特定範囲に制御することによつ て発揮される。
[0069] Pの含有量が 0. 005%未満と少な過ぎる場合には、これらの作用、効果が有効に 発揮されない。一方、 Pの含有量が 0. 5%を超えて多過ぎると、析出物が粗大になり 、曲げ加工性を損なうとともに、析出物に含まれる Pの原子濃度が高くなりすぎる。し たがって、 Pの含有量は 0. 005-0. 5%の範囲とする。
[0070] ここで本発明で言う P含有析出物とは、 Ni— Si— Pの基本組成では、 Ni— Si— Pの P含有析出物である。これに Feや Mgなどを含有すると、 Ni— Si— Pの P含有析出物 とともに、あるいはこれに代わって、(Fe、 Mg)— P、(Fe、 Mg)— Ni— P、 Ni— Si— ( Fe、 Mg)—P等の P含有析出物が生成する。また、 Cr、 Ti、 Co、 Zrなどを含有すると 、これら Feや Mgなどの部分力 一部乃至全部置換した P含有析出物が生成する。
[0071] Crゝ Ti、 Feゝ Mgゝ Co、 Zr:合計で 0. 01〜3. 0%
これらの元素は、上記した通り、リン化物を形成することで、強度、導電率を向上さ せるとともに、結晶粒微細化にも効果がある。これらの効果を発揮させる場合には、 選択的に、 Cr、 Ti、 Fe、 Mg、 Co、 Zrのうち一種または二種以上を合計で 0. 01%以 上含有させる。しかし、これらの元素の合計含有量 (総量)が 3. 0%を超えると、析出 物が粗大になり、曲げ加工性を損なうとともに、析出物に含まれる Pの原子濃度が低く なりすぎる。したがって、選択的に含有させる場合の Cr、 Ti、 Fe、 Mg、 Co、 Zrの含 有量は、合計で (総量で) 0. 01〜3. 0%の範囲とする。
[0072] Zn: 0. 005〜3. 0%
Znは電子部品の接合に用いる Snめっきやはんだの耐熱剥離性を改善し、熱剥離 を抑制するのに有効な元素である。このような効果を有効に発揮させる場合には、選 択的に 0. 005%以上含有させる。しかし、 3. 0%を越えて過剰に含有すると、却って 溶融 Snやはんだの濡れ広がり性を劣化させ、また、含有量が多くなると、導電率も大 きく低下させる。したがって、 Znは、耐熱剥離性向上効果と導電率低下作用とを考慮 した上で、選択的に含有させ、その場合の Zn含有量は 0. 005-3. 0%の範囲、好 ましくは 0. 005〜1. 5%の範囲とする。
[0073] Sn: 0. 01〜5. 0%
Snは、銅合金中に固溶して強度向上に寄与する。このような効果を有効に発揮さ せる場合には、選択的に 0. 01%以上含有させる。しかし、 5. 0%を越えて過剰に含 有すると、その効果が飽和し、また、含有量が多くなると導電率を大きく低下させる。 したがって、 Snは、強度向上効果と導電率低下作用とを考慮した上で、選択的に含 有させ、その場合の Sn含有量は 0. 01-5. 0%の範囲、好ましくは 0. 01-1. 0% の範囲とする。
[0074] その他の元素含有量:
その他の元素は、基本的に不純物であって、できるだけ少ないほうが好ましい。例 えば、 Al、 Be、 V、 Nb、 Mo、 Wなどの不純物元素は、粗大な晶 '析出物を生成しやす くなり、曲げ加工性が劣化するばかりか、導電率の低下も引き起こしやすくなる。した がって、これらの元素は総量で 0. 5%以下の極力少ない含有量にすることが好まし い。この他、銅合金中に微量に含まれる B、 C、 Na、 S、 Ca、 As、 Se、 Cd、 In、 Sb、 Bi、 MM (ミシュメタル)等の元素も、導電率の低下を引き起こしやすくなるので、これらの 総量で 0. 1%以下の極力少ない含有量に抑えることが望ましい。但し、これらの元素 を低減するためには、地金使用ゃ精鍊などの製造コストが上昇しがちであり、製造コ ストの上昇を抑制するためには、これら元素の総量の各々上記した上限までの含有 は許容する。
[0075] (銅合金組織)
本発明では、以上の Cu— Ni— Si— P系合金組成を前提に、この銅合金の組織を 設計して、平均結晶粒径を 10 m以下に微細化させて、銅合金の曲げ加工性を向 上させる。
[0076] そして、この組織設計を、銅合金組織中に存在する析出物に含まれる Pの平均原 子濃度の制御(P含有析出物量の制御)によって達成する。この析出物に含まれる P の平均原子濃度の制御によらなければ、結晶粒成長抑制のピン止め効果が大きい P 含有析出物を銅合金組織中に適正量確保できない。この結果、銅合金組織におけ る平均結晶粒径を 10 m以下に微細化させることは難しい。
[0077] (析出物の数密度)
但し、この前提として、銅合金組織に存在する析出物の数密度を保証することが必 要である。銅合金組織に存在する析出物の数密度が少な過ぎる、あるいは多過ぎる と、これら析出物に含まれる Pの平均原子濃度、あるいは Pと Siとの平均原子濃度を 制御したとしても、曲げ性の向上効果が十分に発揮できない場合も当然起こり得る。 したがって、本発明では、析出物による結晶粒径微細化効果を保証するために、特 定サイズの析出物の数密度を一定範囲とする。
[0078] 即ち、前記銅合金組織の、前記電界放出型透過電子顕微鏡とエネルギー分散型 分析装置とにより測定した、 50〜200nmのサイズの析出物の数密度が 0. 2〜7. 0 個 Z m2であることとする。ここで規定する特定サイズの析出物は、 Pを含有するか 否かにかかわりなぐ各析出物のサイズ (最大径)のみを選別基準としている。
[0079] この析出物の数密度が 0. 2個 Z μ mより小さ 、と、析出物が少な過ぎる。このため 、この析出物に含まれる Pあるいは Pと Siとの平均原子濃度を制御しても、結晶粒径 微細化効果が十分に発揮できず、結晶粒が粗大化し、曲げ加工性が低下する可能 '性がある。
[0080] 一方、この析出物の数密度が 7. 0個 Z m2よりも大きいと、析出物が多過ぎ、曲げ 加工時に、せん断帯の形成が促進され、却って曲げ加工性が低下する。したがって 、 50〜200nmのサイズの析出物の数密度は、 0. 2〜7. 0個 m2、好ましくは。. 5〜5. 0個 Z w m2の範囲とする。
[0081] (析出物に含まれる Pの平均原子濃度)
析出物の数密度を保証した上で、本発明では、銅合金組織における平均結晶粒 径を 10 m以下に微細化させるために、銅合金組織の、倍率 30000倍の電界放出 型透過電子顕微鏡とエネルギー分散型分析装置とにより測定した、 50〜200nmの サイズのケィ化ニッケルなどの析出物に含まれる Pの平均原子濃度を 0. l〜50at% の範囲に制御する。
[0082] 前記した通り、本発明では、銅合金組織中に存在する P含有析出物の量を直接規 定するのではなぐ銅合金組織中に存在する上記特定サイズ (50〜200nm)の全析 出物中の Pの平均原子濃度によって、 P含有析出物の量を制御する。したがって、本 発明では、これら特定サイズの全析出物 (Pを含有する力否かにかかわらな 、析出物 )を対象として Pの原子濃度を測定し、これらの析出物中の Pの平均原子濃度によつ て、銅合金組織中における P含有析出物の量を制御する。
[0083] 前記析出物内に含まれる Pの平均原子濃度が低過ぎて、 0. lat%未満となると、銅 合金組織の結晶粒が粗大化し、曲げ加工性が低下する。一方、前記析出物内に含 まれる Pの平均原子濃度が高過ぎて、 50at%を越えると、銅合金組織への P以外の 固溶元素が多くなりすぎて、導電率が低下する。したがって、析出物に含まれる Pの 平均原子濃度は 0. l〜50at%の範囲、好ましくは 0. 5〜40at%の範囲とする。
[0084] (平均結晶粒径)
本発明では、これら銅合金組織の析出物制御によって微細化させた、銅合金組織 の結晶粒径が、曲げ加工性を実質的に向上させる目安として、銅合金組織の平均結 晶粒径を規定する。即ち、倍率 350倍の電界放出型走査電子顕微鏡に後方散乱電 子回折像システムを搭載した結晶方位解析法により測定した、結晶粒の数を n、それ ぞれの測定した結晶粒径を Xとした時、(∑ X) Znで表される平均結晶粒径が 10 μ m 以下であることとする。
[0085] 平均結晶粒径が 10 mを越えて大きくなると、本発明が得ようとする曲げ加工性が 得られない。したがって、平均結晶粒径は 10 m以下、好ましくは 7 m以下とする。
[0086] つづいて、本発明の別の好ましい態様の一つである、本発明の第 2の態様につい て説明する。
[0087] (銅合金の成分組成)
先ず、前記各種用途用として、必要強度や導電率、更には、高い曲げ加工性ゃ耐 応力緩和特性を満たすための、本発明の第 2の態様のコルソン系合金における化学 成分組成を、以下に説明する。
[0088] 本発明の第 2の態様では、高強度、高導電率、また、高い曲げ加工性を達成する ために、質量0 /0で、 Ni: 0. 4〜4. 0%、 Si: 0. 05~1. 0%、 Cr: 0. 005〜1. 0%を 各々含有し、残部銅および不可避的不純物力 なる銅合金力 なる基本組成とする 。この組成は、銅合金組織の結晶粒を微細化するとともに、析出物 (Ni Si)に含まれ
2
る Crの平均原子濃度を制御するための、成分組成側からの重要な前提条件となる。 なお、以下の各元素の説明にお 、て記載する%表示は全て質量%である。
[0089] この基本組成に対し、更に、 Zn: 0. 005〜3. 0%を含有しても良い。また、 Sn: 0.
01〜5. 0%を含有しても良い。また、更に、 Ti、 Fe、 Mg、 Co、 Zrのうち一種または 二種以上を合計で 0. 01〜3. 0%を含有しても良い。
[0090] Ni: 0. 4〜4. 0% Niは、 Siとの化合物 (Ni Siなど)を晶出または析出させることにより、銅合金の強度
2
および導電率を確保する作用がある。また、 Crとの化合物も形成する。 Niの含有量 が 0. 4%未満と少な過ぎると、析出物の生成量が不十分であるため、所望の強度が 得られないばかりか、銅合金組織の結晶粒が粗大化する。また、偏析しゃすい晶出 物の割合が高くなつて最終製品の特性のばらつきが大きくなる。一方、 Niの含有量 が 4. 0%を越えて多過ぎると、導電率が低下するのに加えて、粗大な析出物の数が 多くなりすぎ、曲げカ卩工性が低下する。したがって、 Ni量は 0. 4〜4. 0%の範囲とす る。
[0091] Si: 0. 05〜: L 0%
Siは、 Niとの化合物 (Ni Siなど)を晶'析出させて銅合金の強度および導電率を
2
向上させる。また、 Crとの化合物も形成する。 Siの含有量が 0. 05%未満と少な過ぎ る場合は、析出物の生成が不十分であるため、所望の強度が得られないばかりか、 結晶粒が粗大化する。また、偏析しゃすい晶出物の割合が高くなつて、最終製品の 特性のばらつきが大きくなる。一方、 Siの含有量が 1. 0%を越えて多過ぎると、粗大 な析出物の数が多くなりすぎ、曲げ加工性が低下すると同時に、析出物に含まれる C rと Siの原子数比 CrZSiが低くなりすぎる。したがって、 Si含有量は 0. 05-1. 0% の範囲とする。
[0092] Cr: 0. 005〜1. 0%
Crは、 Cr含有析出物を生成させるとともに、 Cr含有析出物中の Crの原子濃度を上 記した特定範囲に制御するための重要元素である。 Cr含有析出物を形成することで 、強度、導電率が向上するとともに、 Cr含有析出物の形成により結晶粒が微細化し、 曲げカ卩ェ性が向上する。但し、これらの効果の内、特に曲げカ卩ェ性向上効果は、 Cr 含有析出物の Crの原子濃度を上記した特定範囲に制御することによって発揮される
[0093] Crの含有量が 0. 005%未満と少な過ぎる場合には、これらの作用、効果が有効に 発揮されない。一方、 Crの含有量が 1. 0%、より厳しくは 0. 6%を超えて多過ぎると 、析出物が粗大になり、曲げ加工性を損なうとともに、析出物に含まれる Crの原子濃 度力 S高くなりすぎる。した力つて、 Crの含有量 ίま 0. 005-1. 00/0、好ましく ίま 0. 005 〜0. 6%の範囲とする。
[0094] ここで本発明で言う Cr含有析出物とは、 Ni—Si—Crの基本組成では、 Ni—Si—C r等の Cr含有析出物である。これに Feや Mgなどを含有すると、 Ni— Si— Cr等の Cr 含有析出物とともに、あるいはこれに代わって、(Fe、 Mg)—Si— Cr、 Ni—Si— (Fe 、 Mg)—Cr等の Cr含有析出物が生成する。また、 Ti、 Co、 Zrなどを含有すると、こ れら Feや Mgなどの部分力 一部乃至全部置換した Cr含有析出物が生成する。
[0095] Ti、 Fe、 Mg、 Co、 Zr:合計で 0. 01〜3. 0%
これらの元素は、上記した通り、 Cr含有析出物を形成することで、強度、導電率を 向上させるとともに、結晶粒微細化にも効果がある。これらの効果を発揮させる場合 には、選択的に、 Ti、 Fe、 Mg、 Co、 Zrのうち一種または二種以上を合計で 0. 01% 以上含有させる。しかし、これらの元素の合計含有量 (総量)が 3. 0%を超えると、析 出物が粗大になり、曲げ加工性を損なうとともに、析出物に含まれる Crの原子濃度が 低くなりすぎる。したがって、選択的に含有させる場合の Ti、 Fe、 Mg、 Co、 Zrの含有 量は、合計で (総量で) 0. 01〜3. 0%の範囲とする。
[0096] Zn: 0. 005〜3. 0%
Znは電子部品の接合に用いる Snめっきやはんだの耐熱剥離性を改善し、熱剥離 を抑制するのに有効な元素である。このような効果を有効に発揮させる場合には、選 択的に 0. 005%以上含有させる。しかし、 3. 0%を越えて過剰に含有すると、却って 溶融 Snやはんだの濡れ広がり性を劣化させ、また、含有量が多くなると、導電率も大 きく低下させる。したがって、 Znは、耐熱剥離性向上効果と導電率低下作用とを考慮 した上で、選択的に含有させ、その場合の Zn含有量は 0. 005-3. 0%の範囲、好 ましくは 0. 005〜1. 5%の範囲とする。
[0097] Sn: 0. 01〜5. 0%
Snは、銅合金中に固溶して強度向上に寄与する。このような効果を有効に発揮さ せる場合には、選択的に 0. 01%以上含有させる。しかし、 5. 0%を越えて過剰に含 有すると、その効果が飽和し、また、含有量が多くなると導電率を大きく低下させる。 したがって、 Snは、強度向上効果と導電率低下作用とを考慮した上で、選択的に含 有させ、その場合の Sn含有量は 0. 01-5. 0%の範囲、好ましくは 0. 01-1. 0% の範囲とする。
[0098] その他の元素含有量:
その他の元素は、基本的に不純物であって、できるだけ少ないほうが好ましい。例 えば、 Mn、 Ca、 Ag、 Cd、 Be、 Au、 Pt、 S、 Pb、 Pなどの不純物元素は、粗大な晶' 析出物を生成しやすくなり、曲げ加工性が劣化するばかりか、導電率の低下も引き起 こしゃすくなる。したがって、これらの元素は総量で 0. 5%以下の極力少ない含有量 にすることが好ましい。この他、銅合金中に微量に含まれる Hf、 Th、 Li、 Na、 K、 Sr 、 Pd、 W、 Nb、 Al、 V、 Y、 Mo、 In、 Ga、 Ge、 As、 Sb、 Bi、 Te、 B、 C、ミッシュメタル 等の元素も、導電率の低下を引き起こしやすくなるので、これらの総量で 0. 1%以下 の極力少ない含有量に抑えることが望ましい。但し、これらの元素を低減するために は、地金使用ゃ精鍊などの製造コストが上昇しがちであり、製造コストの上昇を抑制 するためには、これら元素の総量の各々上記した上限までの含有は許容する。
[0099] (銅合金組織)
本発明では、以上の Cu— Ni— Si— Cr系合金組成を前提に、この銅合金の組織を 設計して、平均結晶粒径を 30 m以下、好ましくは 10 m以下に微細化させて、銅 合金の曲げ加工性を向上させる。本発明では、この組織設計を Cr含有析出物量の 制御によって達成する。より具体的には、銅合金組織中に一定サイズの析出物の数 密度を一定量以上確保するとともに、このサイズの析出物に含まれる Crの平均原子 濃度を一定量確保する、制御によって達成する。
[0100] このような制御によらなければ、結晶粒成長抑制のピン止め効果が大きい Cr含有 析出物を銅合金組織中に適正量確保できない。この結果、銅合金組織における平 均結晶粒径を 30 m以下、好ましくは 10 m以下に微細化させることが困難となる 。本発明における Cr含有析出物は、前記した通り、溶体化処理温度が高温になって も、 Cr含有析出物は、固溶しきらずに、組織中に析出物として存在 (残存)し、結晶粒 成長抑制の大きなピン止め効果を発揮する。しかし、この Cr含有析出物のピン止め 効果の大きさは、前記した通り、 50〜200nmのサイズの析出物に含まれる Crの平均 原子濃度や、このサイズの析出物の数密度によって大きく左右される。
[0101] (析出物の数密度) 但し、この前提として、銅合金組織に存在する析出物の数密度を保証することが必 要である。銅合金組織に存在する析出物の数密度が少な過ぎる、あるいは多過ぎる と、これら析出物に含まれる Crの平均原子濃度、あるいは Crと Siとの平均原子濃度 を制御したとしても、曲げ性の向上効果が十分に発揮できない場合も当然起こり得る 。したがって、本発明では、析出物による結晶粒径微細化効果を保証するために、特 定サイズの析出物の数密度を一定範囲とする。
[0102] 即ち、前記銅合金組織の、前記電界放出型透過電子顕微鏡とエネルギー分散型 分析装置とにより測定した、 50〜200nmのサイズの析出物の数密度が 0. 2〜20個 Z m2であることとする。ここで規定する特定サイズの析出物は、 Crを含有するか否 かにかかわりなぐ各析出物のサイズ (最大径)のみを選別基準としている。
[0103] この析出物の数密度が 0. 2個 Z μ mより小さ 、と、析出物が少な過ぎる。このため 、この析出物に含まれる Crあるいは Crと Siとの平均原子濃度を制御しても、結晶粒 径微細化効果が十分に発揮できず、結晶粒が粗大化し、曲げ加工性が低下する可 能性がある。
[0104] 一方、この析出物の数密度が 20個 Z m2よりも大きいと、析出物が多過ぎ、曲げ 加工時に、せん断帯の形成が促進され、却って曲げ加工性が低下する。したがって 、 50〜200nmのサイズの析出物の数密度は、 0. 2〜20個 m2、好ましくは。. 5 〜15個7 μ m2の範囲とする。
[0105] (析出物に含まれる Crの平均原子濃度)
析出物の数密度を保証した上で、本発明では、銅合金組織における平均結晶粒 径を 30 m以下に微細化させるために、銅合金組織の、倍率 30000倍の電界放出 型透過電子顕微鏡とエネルギー分散型分析装置とにより測定した、 50〜200nmの サイズの Ni— Si— Crなどの析出物に含まれる Crの平均原子濃度を 0. l〜80at% の範囲に制御する。
[0106] 前記した通り、本発明では、銅合金組織中に存在する Cr含有析出物の量を直接規 定するのではなぐ銅合金組織中に存在する上記特定サイズ (50〜200nm)の全析 出物中の Crの平均原子濃度によって、 Cr含有析出物の量を制御する。したがって、 本発明では、これら特定サイズの全析出物(Crを含有するカゝ否かにかかわらない析 出物)を対象として Crの原子濃度を測定し、これらの析出物中の Crの平均原子濃度 によって、銅合金組織中における Cr含有析出物の量を制御する。
[0107] 前記析出物内に含まれる Crの平均原子濃度が低過ぎて、 0. lat%未満となると、 銅合金組織の結晶粒が粗大化し、曲げ加工性が低下する。一方、前記析出物内に 含まれる Crの平均原子濃度が高過ぎて、 80at%を越えると、銅合金組織への Cr以 外の固溶元素が多くなりすぎて、導電率が低下する。したがって、析出物に含まれる Crの平均原子濃度は 0. l〜80at%の範囲、好ましくは 0. 5〜50at%の範囲とする
[0108] (平均結晶粒径)
本発明では、これら銅合金組織の析出物制御によって微細化させた、銅合金組織 の結晶粒径が、曲げ加工性を実質的に向上させる目安として、銅合金組織の平均結 晶粒径を規定する。即ち、倍率 10000倍の電界放出型走査電子顕微鏡に後方散乱 電子回折像システムを搭載した結晶方位解析法により測定した、結晶粒の数を n、そ れぞれの測定した結晶粒径を Xとした時、(∑ X) Znで表される平均結晶粒径が 30 μ m以下、好ましくは 10 μ m以下であることとする。
[0109] 平均結晶粒径が 30 mを越えて大きくなると、本発明が得ようとする曲げ加工性が 得られない。したがって、平均結晶粒径は 30 m以下、好ましくは 10 m以下と、平 均結晶粒径を小さくし、結晶粒径を微細化させる。
[0110] つづいて、本発明のさらに別の好ましい態様の一つである、本発明の第 3の態様に ついて説明する。
[0111] (銅合金の成分組成)
先ず、前記各種用途用として、必要強度や導電率、更には、高い曲げ加工性ゃ耐 応力緩和特性を満たすための、本発明の第 3の態様のコルソン系合金における化学 成分組成を、以下に説明する。
[0112] 本発明の第 3の態様では、高強度、高導電率、また、高い曲げ加工性を達成する ために、質量0 /0で、 Ni: 0. 4〜4. 0%、 Si: 0. 05~1. 0%、 Ti: 0. 005〜1. 0%を 各々含有し、残部銅および不可避的不純物力 なる銅合金力 なる基本組成とする 。この組成は、銅合金組織の結晶粒を微細化するとともに、析出物 (Ni Si)に含まれ る Tiの平均原子濃度を制御するための、成分組成側からの重要な前提条件となる。 なお、以下の各元素の説明にお 、て記載する%表示は全て質量%である。
[0113] この基本組成に対し、更に、 Zn: 0. 005〜3. 0%を含有しても良い。また、 Sn: 0.
01〜5. 0%を含有しても良い。また、更に、 Fe、 Mg、 Co、 Zrのうち一種または二種 以上を合計で 0. 01〜3. 0%を含有しても良い。
[0114] Ni: 0. 4〜4. 0%
Niは、 Siとの化合物 (Ni Siなど)を晶出または析出させることにより、銅合金の強度
2
および導電率を確保する作用がある。また、 Tiとの化合物も形成する。 Niの含有量 が 0. 4%未満と少な過ぎると、析出物の生成量が不十分であるため、所望の強度が 得られないばかりか、銅合金組織の結晶粒が粗大化する。また、偏析しゃすい晶出 物の割合が高くなつて最終製品の特性のばらつきが大きくなる。一方、 Niの含有量 が 4. 0%を越えて多過ぎると、導電率が低下するのに加えて、粗大な析出物の数が 多くなりすぎ、曲げカ卩工性が低下する。したがって、 Ni量は 0. 4〜4. 0%の範囲とす る。
[0115] Si: 0. 05〜: L 0%
Siは、 Niとの化合物 (Ni Siなど)を晶'析出させて銅合金の強度および導電率を
2
向上させる。また、 Tiとの化合物も形成する。 Siの含有量が 0. 05%未満と少な過ぎ る場合は、析出物の生成が不十分であるため、所望の強度が得られないばかりか、 結晶粒が粗大化する。また、偏析しゃすい晶出物の割合が高くなつて、最終製品の 特性のばらつきが大きくなる。一方、 Siの含有量が 1. 0%を越えて多過ぎると、粗大 な析出物の数が多くなりすぎ、曲げ加工性が低下すると同時に、析出物に含まれる T iと Siの原子数比 TiZSiが低くなりすぎる。したがって、 Si含有量は 0. 05-1. 0%の 範囲とする。
[0116] Ti: 0. 005〜1. 0%
Tiは、 Ti含有析出物を生成させるとともに、 Ti含有析出物中の Tiの原子濃度を上 記した特定範囲に制御するための重要元素である。 Ti含有析出物を形成することで 、強度、導電率が向上するとともに、 Ti含有析出物の形成により結晶粒が微細化し、 曲げカ卩ェ性が向上する。但し、これらの効果の内、特に曲げカ卩ェ性向上効果は、 Ti 含有析出物の Tiの原子濃度を上記した特定範囲に制御することによって発揮される
[0117] Tiの含有量が 0. 005%未満と少な過ぎる場合には、これらの作用、効果が有効に 発揮されない。一方、 Tiの含有量が 1. 0%、より厳しくは 0. 6%を超えて多過ぎると、 析出物が粗大になり、曲げ加工性を損なうとともに、析出物に含まれる Tiの原子濃度 力 s高くなりすぎる。した力つて、 Tiの含有量 ίま 0. 005-1. 00/0、好ましく ίま 0. 005〜 0. 6%の範囲とする。
[0118] ここで本発明で言う Ti含有析出物とは、 Ni—Si—Tiの基本組成では、 Ni—Si—Ti 等の Ti含有析出物である。これに Feや Mgなどを含有すると、 Ni— Si—Ti等の Ti含 有析出物とともに、あるいはこれに代わって、 Ni— Si— (Fe、 Mg)— Ti等の Ti含有析 出物が生成する。また、 Co、 Zrなどを含有すると、これら Feや Mgなどの部分力 一 部乃至全部置換した Ti含有析出物が生成する。
[0119] Fe、 Mg、 Co、 Zr:合計で 0. 01〜3. 0%
これらの元素は、上記した通り、 Ti含有析出物を形成することで、強度、導電率を 向上させるとともに、結晶粒微細化にも効果がある。これらの効果を発揮させる場合 には、選択的に、 Fe、 Mg、 Co、 Zrのうち一種または二種以上を合計で 0. 01%以上 含有させる。しかし、これらの元素の合計含有量 (総量)が 3. 0%を超えると、析出物 が粗大になり、曲げ加工性を損なうとともに、析出物に含まれる Tiの原子濃度が低く なりすぎる。したがって、選択的に含有させる場合の Fe、 Mg、 Co、 Zrの含有量は、 合計で(総量で) 0. 01〜3. 0%の範囲とする。
[0120] Zn: 0. 005〜3. 0%
Znは電子部品の接合に用いる Snめっきやはんだの耐熱剥離性を改善し、熱剥離 を抑制するのに有効な元素である。このような効果を有効に発揮させる場合には、選 択的に 0. 005%以上含有させる。しかし、 3. 0%を越えて過剰に含有すると、却って 溶融 Snやはんだの濡れ広がり性を劣化させ、また、含有量が多くなると、導電率も大 きく低下させる。したがって、 Znは、耐熱剥離性向上効果と導電率低下作用とを考慮 した上で、選択的に含有させ、その場合の Zn含有量は 0. 005-3. 0%の範囲、好 ましくは 0. 005〜1. 5%の範囲とする。 [0121] Sn: 0. 01〜5. 0%
Snは、銅合金中に固溶して強度向上に寄与する。このような効果を有効に発揮さ せる場合には、選択的に 0. 01%以上含有させる。しかし、 5. 0%を越えて過剰に含 有すると、その効果が飽和し、また、含有量が多くなると導電率を大きく低下させる。 したがって、 Snは、強度向上効果と導電率低下作用とを考慮した上で、選択的に含 有させ、その場合の Sn含有量は 0. 01-5. 0%の範囲、好ましくは 0. 01-1. 0% の範囲とする。
[0122] その他の元素含有量:
その他の元素は、基本的に不純物であって、できるだけ少ないほうが好ましい。例 えば、 Mn、 Ca、 Ag、 Cd、 Be、 Au、 Pt、 S、 Pb、 Pなどの不純物元素は、粗大な晶' 析出物を生成しやすくなり、曲げ加工性が劣化するばかりか、導電率の低下も引き起 こしゃすくなる。したがって、これらの元素は総量で 0. 5%以下の極力少ない含有量 にすることが好ましい。この他、銅合金中に微量に含まれる Hf、 Th、 Li、 Na、 K、 Sr 、 Pd、 W、 Nb、 Al、 V、 Y、 Mo、 In、 Ga、 Ge、 As、 Sb、 Bi、 Te、 B、 C、ミッシュメタル 等の元素も、導電率の低下を引き起こしやすくなるので、これらの総量で 0. 1%以下 の極力少ない含有量に抑えることが望ましい。但し、これらの元素を低減するために は、地金使用ゃ精鍊などの製造コストが上昇しがちであり、製造コストの上昇を抑制 するためには、これら元素の総量の各々上記した上限までの含有は許容する。
[0123] (銅合金組織)
本発明では、以上の Cu— Ni— Si— Ti系合金組成を前提に、この銅合金の組織を 設計して、平均結晶粒径を 20 m以下、好ましくは 10 m以下に微細化させて、銅 合金の曲げ加工性を向上させる。本発明では、この組織設計を Ti含有析出物量の 制御によって達成する。より具体的には、銅合金組織中に一定サイズの析出物の数 密度を一定量以上確保するとともに、このサイズの析出物に含まれる Tiの平均原子 濃度を一定量確保する、制御によって達成する。
[0124] このような制御によらなければ、結晶粒成長抑制のピン止め効果が大きい Ti含有析 出物を銅合金組織中に適正量確保できない。この結果、銅合金組織における平均 結晶粒径を 20 m以下、好ましくは 10 m以下に微細化させることが困難となる。本 発明における Ti含有析出物は、前記した通り、溶体化処理温度が高温になっても、 Ti含有析出物は、固溶しきらずに、組織中に析出物として存在 (残存)し、結晶粒成 長抑制の大きなピン止め効果を発揮する。しかし、この Ti含有析出物のピン止め効 果の大きさは、前記した通り、 50〜200nmのサイズの析出物に含まれる Tiの平均原 子濃度や、このサイズの析出物の数密度によって大きく左右される。
[0125] (析出物の数密度)
但し、この前提として、銅合金組織に存在する析出物の数密度を保証することが必 要である。銅合金組織に存在する析出物の数密度が少な過ぎる、あるいは多過ぎる と、これら析出物に含まれる Tiの平均原子濃度、あるいは Tiと Siとの平均原子濃度を 制御したとしても、曲げ性の向上効果が十分に発揮できない場合も当然起こり得る。 したがって、本発明では、析出物による結晶粒径微細化効果を保証するために、特 定サイズの析出物の数密度を一定範囲とする。
[0126] 即ち、前記銅合金組織の、前記電界放出型透過電子顕微鏡とエネルギー分散型 分析装置とにより測定した、 50〜200nmのサイズの析出物の数密度が 0. 2〜20個 Z m2であることとする。ここで規定する特定サイズの析出物は、 Tiを含有するか否 かにかかわりなぐ各析出物のサイズ (最大径)のみを選別基準としている。
[0127] この析出物の数密度が 0. 2個 Z μ mより小さ 、と、析出物が少な過ぎる。このため 、この析出物に含まれる Tiあるいは Tiと Siとの平均原子濃度を制御しても、結晶粒径 微細化効果が十分に発揮できず、結晶粒が粗大化し、曲げ加工性が低下する可能 '性がある。
[0128] 一方、この析出物の数密度が 20個 Z m2よりも大きいと、析出物が多過ぎ、曲げ 加工時に、せん断帯の形成が促進され、却って曲げ加工性が低下する。したがって 、 50〜200nmのサイズの析出物の数密度は、 0. 2〜20個 m2、好ましくは。. 5 〜15個7 μ m2の範囲とする。
[0129] (析出物に含まれる Tiの平均原子濃度)
析出物の数密度を保証した上で、本発明では、銅合金組織における平均結晶粒 径を 20 m以下に微細化させるために、銅合金組織の、倍率 30000倍の電界放出 型透過電子顕微鏡とエネルギー分散型分析装置とにより測定した、 50〜200nmの サイズの Ni— Si— Tiなどの析出物に含まれる Tiの平均原子濃度を 0. l〜50at%の 範囲に制御する。
[0130] 前記した通り、本発明では、銅合金組織中に存在する Ti含有析出物の量を直接規 定するのではなぐ銅合金組織中に存在する上記特定サイズ (50〜200nm)の全析 出物中の Tiの平均原子濃度によって、 Ti含有析出物の量を制御する。したがって、 本発明では、これら特定サイズの全析出物 (Tiを含有するか否かにかかわらない析 出物)を対象として Tiの原子濃度を測定し、これらの析出物中の Tiの平均原子濃度 によって、銅合金組織中における Ti含有析出物の量を制御する。
[0131] 前記析出物内に含まれる Tiの平均原子濃度が低過ぎて、 0. lat%未満となると、 銅合金組織の結晶粒が粗大化し、曲げ加工性が低下する。一方、前記析出物内に 含まれる Tiの平均原子濃度が高過ぎて、 50at%を越えると、銅合金組織への Ti以 外の固溶元素が多くなりすぎて、導電率が低下する。したがって、析出物に含まれる Tiの平均原子濃度は 0. l〜50at%の範囲、好ましくは 0. 5〜40at%の範囲とする
[0132] (平均結晶粒径)
本発明では、これら銅合金組織の析出物制御によって微細化させた、銅合金組織 の結晶粒径が、曲げ加工性を実質的に向上させる目安として、銅合金組織の平均結 晶粒径を規定する。即ち、倍率 10000倍の電界放出型走査電子顕微鏡に後方散乱 電子回折像システムを搭載した結晶方位解析法により測定した、結晶粒の数を n、そ れぞれの測定した結晶粒径を Xとした時、(∑ X) Znで表される平均結晶粒径が 20 μ m以下、好ましくは 10 μ m以下であることとする。
[0133] 平均結晶粒径が 20 mを越えて大きくなると、本発明が得ようとする曲げ加工性が 得られない。したがって、平均結晶粒径は 20 /z m以下、好ましくは 10 /z m以下と、平 均結晶粒径を小さくし、結晶粒径を微細化させる。
[0134] (析出物の数密度測定方法)
析出物の数密度測定方法は、後述する、析出物に含まれる Mの平均原子濃度測 定の前段となる。具体的には、製造された最終の銅合金 (板など)カゝら試料を採取し て、電解研磨により TEM観察用薄膜サンプルを作製する。そして、このサンプルを例 えば日立製作所製: HF— 2200電界放出型透過電子顕微鏡 (FE-TEM)により、倍率 X 30000倍で明視野像を得る。この明視野像を焼付、現像し、その写真より析出物 の直径及び数を測定し、各析出物の最大の径が 50〜200nmの範囲にあるサイズの 析出物を特定する。この測定から 50〜200nmの範囲にあるサイズの析出物の数密 度 (個/; z m2 )を算出できる。
[0135] (析出物内に含まれる Mの平均原子濃度測定方法)
前記析出物の数密度を測定した、倍率 30000倍の電界放出型透過電子顕微鏡に よる、同一の明視野像(同一の観察像)の各析出物に対して、例えば Nomn社製 NS Sエネルギー分散型分析装置 (EDX)により、各析出物の成分定量分析を実施する 。この分析の際のビーム径は 5nm以下で実施する。この分析を、前記最大の径が 50 〜200nmのサイズの各析出物(全析出物)に対してのみ実施し (これ以外のサイズ の析出物に対しては実施せず)、視野内の各析出物(全析出物)内の M及び Siの原 子濃度 (at%)をそれぞれ測定する。そして、明視野像内の、析出物内に含まれる M 及び Siの平均原子濃度を算出する。
[0136] (析出物内に含まれる Mと Siとの原子数比測定方法)
この析出物内(析出物中)に含まれる M及び Siの平均原子濃度の測定から、 50〜 200nmの範囲にあるサイズの析出物に含まれる Mと Siとの原子数比 MZSiの平均 も算出できる。
[0137] これらの測定乃至算出の再現性と精度向上のために、銅合金から採取する測定用 試料は任意の 10箇所からの 10個とし、上記析出物内に含まれる M及び Siの平均原 子濃度、 Mと Siとの原子数比 MZSi、析出物の数密度などの各数値は、これら 10個 の平均とする。
[0138] (平均結晶粒径測定方法)
本発明で、これら平均結晶粒径の測定方法を、電界放出型走査電子顕微鏡 (Field Emission Scanning Electron Microscope:FESEM )に、後方散乱電子回折像 [EBSP: Electron Back Scattering (Scattered) Pattern]システムを搭載した結晶方位解析法と 規定するのは、この測定方法が、高分解能ゆえに高精度であるためである。
[0139] EBSP法は、 FESEMの鏡筒内にセットした試料に電子線を照射してスクリーン上に E BSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。 コンピュータでは、この画像を解析して、既知の結晶系を用いたシミュレーションによ るパターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は 3 次元オイラー角として、位置座標 (x、 y)などとともに記録される。このプロセスが全測 定点に対して自動的に行なわれるので、測定終了時には数万〜数十万点の結晶方 位データが得られる。
[0140] このように、 EBSP法には、 X線回折法や透過電子顕微鏡を用いた電子線回折法よ りも、観察視野が広ぐ数百個以上の多数の結晶粒に対する、平均結晶粒径、平均 結晶粒径の標準偏差、あるいは方位解析の情報を、数時間以内で得られる利点が ある。また、結晶粒毎の測定ではなぐ指定した領域を任意の一定間隔で走査して測 定するために、測定領域全体を網羅した上記多数の測定ポイントに関する、上記各 情報を得ることができる利点もある。なお、これら FESEMに EBSPシステムを搭載した 結晶方位解析法の詳細は、神戸製鋼技報/ Vol.52 No.2(Sep.2002)P66-70などに詳 細に記載されている。
[0141] これら FESEMに EBSPシステムを搭載した結晶方位解析法を用いて、本発明では、 製品銅合金の板厚方向の表面部の集合組織を測定し、平均結晶粒径の測定を行な
[0142] ここで、通常の銅合金板の場合、主に、以下に示す如き Cube方位、 Goss方位、 Bra ss方位 (以下、 B方位ともいう)、 Copper方位 (以下、 Cu方位ともいう)、 S方位等と呼 ばれる多くの方位因子カゝらなる集合組織を形成し、それらに応じた結晶面が存在す る。これらの事実は、例えば、長島晋ー編著、「集合組織」(丸善株式会社刊)や軽金 属学会「軽金属」解説 Vol.43、 1993、 P285-293などの記載されている。
[0143] これらの集合組織の形成は同じ結晶系の場合でも加工、熱処理方法によって異な る。圧延による板材の集合組織の場合は、圧延面と圧延方向で表されており、圧延 面は {ABC }で表現され、圧延方向はく DEF >で表現される(ABCDEFは整数を 示す)。力かる表現に基づき、各方位は下記の如く表現される。
[0144] Cube方位 {001 }く 100 >
Goss方位 {011 } < 100 > Rotated- Goss方位 {011}く 011>
Brass方位(B方位) {011}<211>
Copper方位(Cu方位) {112}<111>
(若しくは D方位 {4411} < 11118 >
S方位 {123}<634>
BZG方位 {011}く 511 >
BZS方位 { 168}く 211 >
P方位 {011}<111>
[0145] 本発明においては、基本的に、これらの結晶面から ±15° 以内の方位のずれのも のは同一の結晶面 (方位因子)に属するものとする。また、隣り合う結晶粒の方位差 が 5° 以上の結晶粒の境界を結晶粒界と定義する。
[0146] その上で、本発明においては、測定エリア 300X300 μ mに対して 0.5 μ mのピッチで 電子線を照射し、上記結晶方位解析法により測定した結晶粒の数を n、それぞれの 測定した結晶粒径を Xとした時、上記平均結晶粒径を(∑ X) Znで算出する。
[0147] (製造条件)
次に、銅合金の組織を上記本発明規定の組織とするための、好ましい製造条件に ついて以下に説明する。本発明銅合金は基本的に銅合金板であり、これを幅方向に スリットした条ゃ、これら板条をコイルィ匕したものが本発明銅合金の範囲に含まれる。
[0148] 本発明でも、一般的な製造工程と同様に、特定成分組成に調整した銅合金溶湯の 铸造、铸塊面削、均熱、熱間圧延、そして冷間圧延と、溶体化処理 (再結晶焼鈍)、 時効硬化処理 (析出焼鈍)、歪取り焼鈍などを含む工程により最終 (製品)板が得ら れる。但し、上記製造工程の内でも、以下に説明する好ましい各製造条件を組み合 わせて実施することで、本発明規定の組織、強度 '高導電率及び曲げ加工性を得る ことが可能となる。
[0149] 先ず、熱間圧延の終了温度は 550〜850°Cとすることが好ましい。この温度が 550 °Cより低い温度域で熱間圧延を行うと、再結晶が不完全なため不均一組織となり、曲 げ加工性が劣化する。熱間圧延の終了温度が 850°Cより高いと、結晶粒が粗大化し 、曲げ加工性が劣化する。この熱間圧延後は水冷することが好ましい。 [0150] 次に、この熱間圧延後で、溶体化処理 (再結晶焼鈍)前の、冷間圧延における冷延 率を 70〜98%とすることが好ましい。冷延率が 70%より低いと、再結晶核となるサイ トが少なすぎる為に、本発明が得ようとする平均結晶粒径よりも必然的に大きくなり、 曲げ加工性が劣化する可能性がある。一方、冷延率が 98%より高いと、歪み量の分 布ばらつきが大きくなるために、その後の再結晶後の結晶粒径が不均一となり、本発 明が得ようとする曲げ加工性が劣化する可能性がある。
[0151] (溶体化処理)
溶体化処理は、本発明における銅合金組織の析出物制御によって、結晶粒径を微 細化させ、銅合金の曲げ力卩ェ性を向上させるために重要な工程である。特に、溶体 化処理開始時における昇温速度と、溶体化処理後の溶体化処理温度からの冷却速 度との制御は、銅合金組織の析出物制御のために重要となる。
[0152] この点、本発明の第 1の態様では、溶体ィ匕処理における 400°Cまでの平均昇温速 度を 5〜100°CZhの範囲、 400°C力も溶体化処理温度までの平均昇温速度を 100 °CZs以上、溶体化処理温度を 700°C以上、 900°C未満とし、溶体化処理後の平均 冷却速度を 50°CZs以上と各々する。
[0153] 溶体化処理工程における昇温、冷却過程では、まず、室温力 約 600°C以下の比 較的低温の領域では、ケィ化ニッケル析出物 (Ni Si)などの析出が起こり、約 600
2 °C 以上の高温の領域では、これら析出物が再固溶する。また、本発明銅合金の再結晶 温度範囲は約 500〜700°Cであり、銅合金の結晶粒径はこの再結晶時の析出物の 分散状態に大きく影響を受ける。
[0154] 溶体化昇温開始時より 400°C到達までの平均昇温速度は、比較的小さくし、 5〜1 00°CZhとする。但し、平均昇温速度がこの 5°CZhより小さいと、析出した析出物が 粗大化してしまい、平均結晶粒径が大きくなり、曲げ加工性が低下する。一方、平均 昇温速度が 100°CZhより大きいと、析出物の生成量が少なくなる。このため、析出 物の数密度が不足して、平均結晶粒径が大きくなり、曲げ加工性が低下する。
[0155] 次に、上記 400°Cから溶体化温度までの平均昇温速度は、比較的大きくし、 100°C Zs以上とする。昇温速度が 100°CZs未満と、 100°CZsより小さいと、再結晶粒の 成長が促進され、平均結晶粒径が大きくなり、曲げ加工性が低下する。 [0156] 溶体化処理温度は 700°C以上、 900°C未満とする。溶体化処理温度は 700°Cより 低いと、溶体ィ匕が不十分となり、本発明が得ようとする高強度が得られないばかりか、 曲げ性が低下する。一方、溶体化処理温度が 900°C以上と、 900°Cよりも高いと、析 出物の数密度が小さくなりすぎるとともに、析出物に含まれる Pの原子濃度が低くなり すぎ、本発明が得ようとする曲げ加工性及び高導電率が得られな ヽ。
[0157] 溶体化処理後の平均冷却速度は 50°CZs以上とする。冷却速度が 50°CZsより小 さいと、結晶粒の成長が促進され、本発明が得ようとする平均結晶粒径より大きくなる ととも〖こ、曲げ加工性が低下する。
[0158] また、本発明の第 2の態様では、溶体ィ匕処理における 400°Cまでの平均昇温速度 を 5〜100°CZhの範囲、 400°C力も溶体化処理温度までの平均昇温速度を 100°C Zs以上、溶体化処理温度を 700°C以上、 950°C未満とし、溶体化処理後の平均冷 却速度を 50°CZs以上と各々する。
[0159] 溶体化処理工程における昇温、冷却過程では、まず、室温力 約 600°C以下の比 較的低温の領域では、 Ni Siなどの析出が起こり、約
2 600°C以上の高温の領域では
、これら析出物が再固溶する。また、本発明銅合金の再結晶温度範囲は約 500〜7 00°Cであり、銅合金の結晶粒径はこの再結晶時の析出物の分散状態に大きく影響 を受ける。
[0160] 溶体化昇温開始時より 400°C到達までの平均昇温速度は、比較的小さくし、 5〜1 00°CZhとする。但し、平均昇温速度がこの 5°CZhより小さいと、析出した析出物が 粗大化してしまい、平均結晶粒径が大きくなり、曲げ加工性が低下する。一方、平均 昇温速度が 100°CZhより大きいと、析出物の生成量が少なくなる。このため、析出 物の数密度が不足して、平均結晶粒径が大きくなり、曲げ加工性が低下する。
[0161] 次に、上記 400°Cから溶体化温度までの平均昇温速度は、比較的大きくし、 100°C Zs以上とする。この昇温速度が 100°CZs未満であると、本発明で規定する析出物 の如何にかかわらず、再結晶粒の成長が促進され、平均結晶粒径が大きくなり、曲 げ加工性が低下する。
[0162] 溶体化処理温度は 700°C以上、 950°C未満の比較的高温とする。溶体化処理温 度は 700°Cより低いと、溶体ィ匕が不十分となり、本発明が得ようとする高強度が得ら れないばかりか、曲げ性が低下する。一方、溶体化処理温度が 950°C以上となると、 Cr含有析出物の多くが固溶してしまい、析出物の数密度が小さくなりすぎるとともに、 析出物に含まれる Crの原子濃度が低くなりすぎる。このため、 Cr含有析出物による 結晶粒成長抑制のピン止め効果が発揮されず、結晶粒が粗大化する。このため、本 発明が得ようとする高強度で曲げ加工性及び高導電率が得られない。
[0163] 溶体化処理温度は上記比較的高温とする。前記した通り、溶体化処理温度が高温 になっても、 Cr含有析出物は、固溶しきらずに、組織中に析出物として存在 (残存)し 、結晶粒成長抑制の大きなピン止め効果を発揮する。しかも、前記した通り、溶体ィ匕 処理温度の高温化によって、 Ni、 Siの固溶量を大幅に増すことができ、後の時効硬 化処理において、 Ni— Siの微細な析出物量を大幅に増すことができる。この結果、 平均結晶粒径の粗大化によって曲げ加工性などを低下させることなぐ銅合金のより 高強度化を図ることが可能となる。
[0164] 溶体化処理後の平均冷却速度は 50°CZs以上とする。この冷却速度が 50°CZsよ り小さいと、本発明で規定する析出物の如何にかかわらず、結晶粒の成長が促進さ れ、本発明が得ようとする平均結晶粒径より大きくなるとともに、曲げ加工性が低下す る。
[0165] また、本発明の第 3の態様では、溶体ィ匕処理における 400°Cまでの平均昇温速度 を 5〜100°CZhの範囲、 400°C力も溶体化処理温度までの平均昇温速度を 100°C Zs以上、溶体化処理温度を 700°C以上、 950°C未満とし、溶体化処理後の平均冷 却速度を 50°CZs以上と各々する。
[0166] 溶体化処理工程における昇温、冷却過程では、まず、室温力 約 600°C以下の比 較的低温の領域では、 Ni Siなどの析出が起こり、約 600
2 °C以上の高温の領域では
、これら析出物が再固溶する。また、本発明銅合金の再結晶温度範囲は約 500〜7 00°Cであり、銅合金の結晶粒径はこの再結晶時の析出物の分散状態に大きく影響 を受ける。
[0167] 溶体化昇温開始時より 400°C到達までの平均昇温速度は、比較的小さくし、 5〜1 00°CZhとする。但し、平均昇温速度がこの 5°CZhより小さいと、析出した析出物が 粗大化してしまい、平均結晶粒径が大きくなり、曲げ加工性が低下する。一方、平均 昇温速度が 100°CZhより大きいと、析出物の生成量が少なくなる。このため、析出 物の数密度が不足して、平均結晶粒径が大きくなり、曲げ加工性が低下する。
[0168] 次に、上記 400°Cから溶体化温度までの平均昇温速度は、比較的大きくし、 100°C Zs以上とする。この昇温速度が 100°CZs未満であると、本発明で規定する析出物 の如何にかかわらず、再結晶粒の成長が促進され、平均結晶粒径が大きくなり、曲 げ加工性が低下する。
[0169] 溶体化処理温度は 700°C以上、 950°C未満の比較的高温とする。溶体化処理温 度は 700°Cより低いと、溶体ィ匕が不十分となり、本発明が得ようとする高強度が得ら れないばかりか、曲げ性が低下する。一方、溶体ィ匕処理温度が 950°C以上となると、 Ti含有析出物の多くが固溶してしまい、析出物の数密度が小さくなりすぎるとともに、 析出物に含まれる Tiの原子濃度が低くなりすぎる。このため、 Ti含有析出物による結 晶粒成長抑制のピン止め効果が発揮されず、結晶粒が粗大化する。このため、本発 明が得ようとする高強度で曲げ加工性及び高導電率が得られない。
[0170] 溶体化処理温度は上記比較的高温とする。前記した通り、溶体化処理温度が高温 になっても、 Ti含有析出物は、固溶しきらずに、組織中に析出物として存在 (残存)し 、結晶粒成長抑制の大きなピン止め効果を発揮する。しかも、前記した通り、溶体ィ匕 処理温度の高温化によって、 Ni、 Siの固溶量を大幅に増すことができ、後の時効硬 化処理において、 Ni— Siの微細な析出物量を大幅に増すことができる。この結果、 平均結晶粒径の粗大化によって曲げ加工性などを低下させることなぐ銅合金のより 高強度化を図ることが可能となる。
[0171] 溶体化処理後の平均冷却速度は 50°CZs以上とする。この冷却速度が 50°CZsよ り小さいと、本発明で規定する析出物の如何にかかわらず、結晶粒の成長が促進さ れ、本発明が得ようとする平均結晶粒径より大きくなるとともに、曲げ加工性が低下す る。
[0172] (溶体化処理後の処理)
この溶体化処理後(再結晶焼鈍後)に、約 300〜450°Cの範囲の温度で析出焼鈍 (中間焼鈍、二次焼鈍)を行ない、微細な析出物を形成させ、銅合金板の強度と導電 率を向上(回復)させても良い。また、溶体化処理と析出焼鈍の間に、 10〜50%の 範囲で最終の冷間圧延を行なっても良 、。
[0173] 以上説明した、これらの製造条件を適切に組み合わせて実施することで、本発明の 前記要件を満たす高強度 ·高導電率及び曲げ加工性に優れた銅合金を得ることが 可能となる。力べして得られる本発明の銅合金は高強度 '高導電率及び曲げ加工性 が優れているので、家電、半導体部品、産業用機器並びに、自動車用電機電子部 品に幅広く有効に活用できる。
[0174] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例によって制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に 変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範 囲に包含される。
実施例
[0175] 以下に、本発明の実施例 1を説明する。 Cu合金組成と製造方法、特に溶体化処理 条件を変えて、 Cu合金組織中の析出物内の P平均原子濃度などを種々変えて、得 られた Cu合金薄板の平均結晶粒径を変化させ、強度、導電率、曲げ性などの特性 を各々評価した。
[0176] 具体的には、下記表 1、 2に示す化学成分組成の銅合金を、それぞれクリプトル炉 において大気中で木炭被覆下で溶解し、铸鉄製ブックモールドに铸造し、厚さが 50 mm、幅が 75mm、長さ力 l80mmの铸塊を得た。そして、铸塊の表面を面削した後、 95 0°Cの温度で厚さが 20mmになるまで熱間圧延し、 750°C以上の熱間圧延終了温度か ら水中に急冷した。次に、酸化スケールを除去した後、一次冷間圧延を行い、厚さが 0.25mmの板を得た。
[0177] 続いて、塩浴炉を使用し、表 2、 3に示すように、昇温、冷却条件を種々変えて溶体 化処理を行なった。なお、溶体ィ匕温度における板の保持時間は共通して 3 0秒間とし た。次に、仕上げ冷間圧延により、各々厚さが 0.20mmの冷延板にした。この冷延板を 450 °C X 4hの人工時効硬化処理して最終の銅合金板を得た。
[0178] このようにして製造した銅合金板に対して、各例とも、上記最終銅合金板から切り出 した試料を使用して、組織調査と、引張試験による強度 (0. 2%耐カ)測定、導電率 測定、曲げ試験及び評価を実施した。これらの結果を表 3、 4に示す。 [0179] ここで、表 1、 2に示す各銅合金とも、記載元素量を除いた残部組成は Cuであり、表 1、 2に記載以外の他の元素として、 Al、 Be、 V、 Nb、 Mo、 Wなどの不純物元素は総 量で 0. 5%以下であった。この他、 B、 C、 Na、 S、 Ca、 As、 Se、 Cd、 In、 Sb、 Biゝ MM ( ミシュメタル)等の元素もこれらの総量で 0. 1 %以下であった。なお、表 1、 2の各元素 含有量にぉ 、て示す「 」は検出限界以下であることを示す。
[0180] これら銅合金試料組織の調査は、 50〜200nmのサイズの析出物に含まれる Pの 平均原子濃度(at%)、同じく 50〜200nmのサイズの析出物に含まれる Pと Siとの平 均原子数比 PZSi、同じく 50〜200nmのサイズの析出物の平均数密度(個 Zw m2) を、各々前記した方法により測定した。
[0181] また、銅合金試料組織の、結晶粒の数を n、それぞれの測定した結晶粒径を Xとし た時に、(Σ χ) Ζηで表される平均結晶粒径(/z m)を、前記した電界放出型走査電 子顕微鏡に後方散乱電子回折像システムを搭載した結晶方位解析法により測定し た。具体的には、製品銅合金の圧延面表面を機械研磨し、更に、パフ研磨に次いで 電解研磨して、表面を調整した試料を用意した。その後、日本電子社製 FESEM0EO L JSM 5410)を用いて、 EBSPによる結晶方位測定並びに結晶粒径測定を行った。測 定領域は 300 m X 300 mの領域であり、測定ステップ間隔 0.5 mとした。 EBSP 測定'解析システムは、 EBSP : TSL社製(OIM)を用いた。
[0182] (引張試験)
引張試験は、試験片の長手方向を圧延方向とし^ JIS 13号 B試験片を用いて、 58 82型インストロン社製万能試験機により、室温、試験速度 10. Omm/min, GL = 5 Ommの条件で、 0. 2%耐カ (MPa)を測定した。同一条件の試験片を 3本試験し、そ れらの平均値を採用した。
[0183] (導電率測定)
導電率は、試験片の長手方向を圧延方向として、ミーリングにより、幅 10mm X長さ 3 00mmの短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗 を測定して、平均断面積法により算出した。同一条件の試験片を 3本試験し、それら の平均値を採用した。
[0184] (曲げ加工性の評価試験) 銅合金板試料の曲げ試験は、日本伸銅協会技術標準に従って行った。板材を幅 1 Omm、長さ 30mm〖こ切出し、 lOOOkgfの荷重をかけて曲げ半径 0. 15mmで Good Way (曲げ軸が圧延方向に直角)の曲げを行 、、曲げ部における割れの有無を 50倍 の光学顕微鏡で目視観察した。この際に、割れの無いものを〇、割れが生じたものを Xと評価した。この曲げ試験に優れていれば、前記密着曲げあるいはノッチング後の 90° 曲げなどの厳し ヽ曲げカ卩ェ性にも優れて 、ると言える。
[0185] 表 1、 3から明らかな通り、本発明組成内の銅合金である発明例 1〜18は、溶体ィ匕 処理が好ましい条件範囲内で行なわれて、製品銅合金板を得ている。
[0186] このため、発明例 1〜18の組織は、前記各測定方法による、 50〜200nmのサイズ の析出物の数密度が平均で 0. 2〜7. 0個 Z m2の範囲であり、この範囲のサイズ の析出物に含まれる Pの平均原子濃度が 0. l〜50at%の範囲であり、平均結晶粒 径が 10 /z m以下である。また、 50〜200nmのサイズの析出物に含まれる Pと Siとの 原子数比 PZSiが平均で 0. 01〜10である。
[0187] この結果、発明例 1〜18は、 0. 2%耐力が 800MPa以上、導電率が 40%IACS以 上の高強度、高導電率であって、かつ、曲げカ卩工性に優れている。
[0188] これに対して、比較例 19〜27、 33〜35の銅合金は成分組成が本発明範囲力 外 れている。このため、溶体化処理 (製造方法)は好ましい条件範囲内で行なわれてい るにもかかわらず、曲げ加工性が共通して劣り、強度や導電率も低くなつている。
[0189] 比較例 19の銅合金は Pを含有していない。このため、析出物に含まれる Pの平均原 子濃度が 0であり、平均結晶粒径が 10 /z mを越えて粗大化している。このため、曲げ 加工性とともに、強度が低い。
[0190] 比較例 20の銅合金は、 Niの含有量が上限を高めに外れている。このため、曲げカロ ェ性とともに、導電率が著しく低い。
[0191] 比較例 21の銅合金は、 Niの含有量が下限を低めに外れている。このため、 50〜2 OOnmのサイズの析出物に含まれる Pの平均原子濃度力 at%であるにもかかわらず 、平均結晶粒径が 10 /z mを越えて粗大化している。この結果、曲げカ卩ェ性とともに、 強度が著しく低い。
[0192] 比較例 22の銅合金は、 Siの含有量が上限を高めに外れている。このため、 50〜2 OOnmのサイズの析出物に含まれる Pの平均原子濃度が 1. 5at%であるにもかかわ らず、平均結晶粒径が 10 mを越えて粗大化している。この結果、曲げカ卩ェ性ととも に、導電率が著しく低い。
[0193] 比較例 23の銅合金は、 Siの含有量が下限を低めに外れている。このため、 50〜2 OOnmのサイズの析出物の数密度が少な過ぎ、このサイズの析出物に含まれる Pの 平均原子濃度が 20at%であるにもかかわらず、平均結晶粒径が 10 mを越えて粗 大化している。この結果、曲げ加工性とともに、強度、導電率が著しく低い。
[0194] 比較例 24の銅合金は、 Pの含有量が上限を高めに外れている。このため、曲げカロ ェ性とともに、導電率が著しく低い。
[0195] 比較例 25の銅合金は、 50〜200nmのサイズの析出物に含まれる Pの平均原子濃 度が少な過ぎ、また、 Feの含有量が上限 3. 0%を高めに外れている。このため、平 均結晶粒径が 10 mを越えて粗大化している。この結果、曲げカ卩ェ性とともに、導 電率が著しく低い。
[0196] 比較例 26の銅合金は、 50〜200nmのサイズの析出物に含まれる Pの平均原子濃 度が少な過ぎ、また、 Cr、 Coの含有量が上限 3. 0%を高めに外れている。このため 、平均結晶粒径が 10 /z mを越えて粗大化している。この結果、曲げカ卩ェ性とともに、 強度、導電率が著しく低い。
[0197] また、比較例 27〜35の銅合金は成分組成は本発明範囲内であるにもかかわらず 、溶体化処理条件 (製造方法)が好ましい条件範囲から外れている。この結果、曲げ 加工性が共通して劣り、強度や導電率も低くなつている。
[0198] 比較例 27は溶体化処理における 400°Cまでの平均昇温速度が小さ過ぎる。このた め、 50〜200nmのサイズの析出物に含まれる Pの平均原子濃度が 3. 7at%で、平 均結晶粒径が 6 mであるにもかかわらず、曲げ加工性とともに、強度が著しく低い。
[0199] 比較例 28は溶体ィ匕処理における 400°Cまでの平均昇温速度が大き過ぎる。このた め、析出物の数密度が不足して、平均結晶粒径が大きくなり、曲げ加工性が低い。
[0200] 比較例 29は 400°Cから溶体化温度までの平均昇温速度が小さ過ぎる。このため、 平均結晶粒径が大きくなり、曲げ加工性が低い。
[0201] 比較例 30は、溶体化処理温度が低過ぎる。このため、溶体ィ匕が不十分となり、強度 が低ぐ曲げ性が低い。
[0202] 比較例 31は、溶体化処理温度が高過ぎる。このため、 50〜200nmのサイズの析 出物の数密度が少な過ぎ、このサイズの析出物に含まれる Pの平均原子濃度も 0. 2 at%と小さく、平均結晶粒径が 10 /z mを越えて粗大化している。この結果、曲げカロ ェ性及び導電率が低い。
[0203] 比較例 32は、溶体化処理後の平均冷却速度が小さ過ぎる。このため、 50〜200n mのサイズの析出物の数密度や、これに含まれる Pの平均原子濃度は範囲内である ものの、結晶粒の成長が促進され、平均結晶粒径が大きぐ曲げ加工性が低い。また 、強度も低い。
[0204] 比較例 33、 35の銅合金は Pを含有していない。また、 Cr、 Coの含有量が上限 3. 0 %を高めに外れている。更に、溶体化処理温度が高過ぎ、 50〜200nmのサイズの 析出物の数密度が少な過ぎる。このため、平均結晶粒径が 10 mを越えて粗大化 し、曲げ加工性が低い。また導電率も著しく低い。
[0205] 比較例 34は、 50〜200nmのサイズの析出物の数密度が少な過ぎ、このサイズの 析出物に含まれる Pの平均原子濃度が範囲内であるにもかかわらず、平均結晶粒径 が 10 mを越えて粗大化している。この結果、曲げ力卩ェ性及び強度が低い。
[0206] 以上の結果から、高強度、高導電率化させた上で、曲げ加工性にも優れさせるため の、本発明銅合金板の成分組成、組織、更には、組織を得るための好ましい製造条 件の意義が裏付けられる。
[0207] [表 1]
Figure imgf000041_0001
一は検出限界以下を示す。
Figure imgf000042_0001
区 銅合金板の化学成分組成 (残部 Cuおよび不純物) 考 号
N S P C T i F e g C o Z Z n S n
19 3. 2 0. 7
20 4. 3 0. 8 0. 05
21 0. 3 0. 5 0. 05
比 22 3. 5 1. 2 0. 05
23 3. 2 0. 01 0. 05
24 3. 2 0. 8 0. 8
25 3. 2 0. 7 0. 1 4
較 26 3. 2 0. 7 0. 1
27 3. 2 0. 7 0. 05 0. 1
28 3. 2 0. 7 0. 05
29 3. 2 0. 7 0. 05
例 30 3. 2 0. 7 0. 05
31 3. 2 0. 7 0. 05
32 3. 2 0. 7 0. 05 0. 05 0. 05 0. 05
33 4 0. 9
34 2. 5 0. 5 0. 03
35 3. 7 0. 96
* 一は検出限界以下を示す。
^範範範範範範範NN P PSPF PS
3無 ,無無囲囲囲囲囲囲囲 e iー i1. 過過過過過過過内内内內内内内ししし 少少多多多多多
Figure imgf000043_0001
Figure imgf000045_0001
[0211] つづいて、本発明の実施例 2を説明する。 Cu合金組成と製造方法、特に溶体化処 理条件を変えて、 Cu合金組織中の析出物内の Cr平均原子濃度などを種々変えて、 得られた Cu合金薄板の平均結晶粒径を変化させ、強度、導電率、曲げ性などの特 性を各々評価した。
[0212] 具体的には、下記表 5に示す化学成分組成の銅合金を、それぞれクリプトル炉にお いて大気中で木炭被覆下で溶解し、铸鉄製ブックモールドに铸造し、厚さが 50mm 、幅が 75mm、長さが 180mmの铸塊を得た。そして、铸塊の表面を面削した後、 95 0°Cの温度で厚さが 20mmになるまで熱間圧延し、 750°C以上の熱間圧延終了温度 力も水中に急冷した。次に、酸化スケールを除去した後、一次冷間圧延を行い、厚さ が 0. 25mmの板を得た。
[0213] 続いて、塩浴炉を使用し、表 6に示すように、昇温、冷却条件を種々変えて溶体ィ匕 処理を行なった。なお、溶体ィ匕温度における板の保持時間は共通して 30秒間とした 。次に、仕上げ冷間圧延により、各々厚さが 0. 20mmの冷延板にした。この冷延板 を 450°C X 4hの人工時効硬化処理して最終の銅合金板を得た。
[0214] このようにして製造した銅合金板に対して、各例とも、上記最終銅合金板から切り出 した試料を使用して、組織調査と、引張試験による強度 (0. 2%耐カ)測定、導電率 測定、曲げ性試験及び評価を実施した。これらの結果を表 6に示す。
[0215] ここで、表 5に示す各銅合金とも、記載元素量を除いた残部組成は Cuであり、表 5 に記載以外の他の元素として、 Mn、 Ca、 Ag、 Cd、 Be、 Au、 Pt、 S、 Pb、 Pなどの不 純物元素は総量で 0. 5%以下であった。この他、 Hf、 Th、 Li、 Na、 K、 Sr、 Pd、 W、 Nb、 Al、 V、 Y、 Mo、 In、 Ga、 Ge、 As、 Sb、 Biゝ Te、 B、 C、ミッシュメタル等の元素 もこれらの総量で 0. 1%以下であった。
[0216] (組織調査)
銅合金板試料の組織調査は、 50〜 200nmのサイズの析出物に含まれる の平 均原子濃度(at%)、同じく 50〜200nmのサイズの析出物に含まれる Crと Siとの平 均原子数比 CrZSi、同じく 50〜200nmのサイズの析出物の平均数密度(個 Z m 2)を、各々前記した方法により測定した。
[0217] また、銅合金試料組織の、結晶粒の数を n、それぞれの測定した結晶粒径を Xとし た時に、(Σ χ) Ζηで表される平均結晶粒径(/z m)を、前記した電界放出型走査電 子顕微鏡に後方散乱電子回折像システムを搭載した結晶方位解析法により測定し た。具体的には、製品銅合金の圧延面表面を機械研磨し、更に、パフ研磨に次いで 電解研磨して、表面を調整した試料を用意した。その後、日本電子社製 FESEM0EO L JSM 5410)を用いて、 EBSPによる結晶方位測定並びに結晶粒径測定を行った。 測定領域は 300 m X 300 mの領域であり、測定ステップ間隔 0.5 μ mとした。 EB SP測定'解析システムは、 EBSP :TSL社製(OIM)を用いた。
[0218] (引張試験)
引張試験は、試験片の長手方向を圧延方向とし^ JIS13号 B試験片を用いて、 58 82型インストロン社製万能試験機により、室温、試験速度 10. Omm/min, GL = 5 Ommの条件で、 0. 2%耐カ (MPa)を測定した。同一条件の試験片を 3本試験し、そ れらの平均値を採用した。
[0219] (導電率測定)
導電率は、試験片の長手方向を圧延方向として、ミーリングにより、幅 10mm X長さ 3 00mmの短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗 を測定して、平均断面積法により算出した。同一条件の試験片を 3本試験し、それら の平均値を採用した。
[0220] (曲げ加工性の評価試験)
銅合金板試料の曲げ試験は、日本伸銅協会技術標準に従って行った。板材を幅 1 Omm、長さ 30mm〖こ切出し、 lOOOkgfの荷重をかけて曲げ半径 0. 15mmで Good Way (曲げ軸が圧延方向に直角)の曲げを行 、、曲げ部における割れの有無を 50倍 の光学顕微鏡で目視観察した。この際に、割れの無いものを〇、割れが生じたものを Xと評価した。この曲げ試験に優れていれば、前記密着曲げあるいはノッチング後の 90° 曲げなどの厳し ヽ曲げカ卩ェ性にも優れて 、ると言える。
[0221] 表 6から明らかな通り、本発明組成内の銅合金である発明例 36〜47は、溶体化処 理が好ましい条件範囲内で行なわれて、製品銅合金板を得ている。
[0222] このため、発明例 36〜47の組織は、前記各測定方法による、 50〜200nmのサイ ズの析出物の数密度が平均で 0. 2〜20個 Z w m2の範囲であり、この範囲のサイズ の析出物に含まれる Crの平均原子濃度が 0. l〜80at%の範囲であり、平均結晶粒 径が 30 m以下である。また、 50〜200nmのサイズの析出物に含まれる Crと Siと の原子数比 CrZSiが平均で 0. 01〜10である。
[0223] この結果、発明例 36〜47は、 0. 2%耐力が 800MPa以上、導電率力 0%IACS 以上の高強度、高導電率であって、かつ、曲げカ卩工性に優れている。
[0224] これに対して、比較例 48〜55の銅合金は、表 5の通り、成分組成が本発明範囲か ら外れている。このため、溶体化処理 (製造方法)は好ましい条件範囲内で行なわれ ているにもかかわらず、曲げカ卩ェ性が共通して劣り、強度や導電率も低くなつている
[0225] 比較例 48の銅合金は Crを含有していない。このため、 50〜200nmのサイズの析 出物 (数密度)が少なぐ平均結晶粒径が 30 /z mを越えて粗大化している。このため 、曲げ加工性とともに、強度が低い。
[0226] 比較例 49の銅合金は、 Crの含有量が上限を高めに外れている。このため、析出物 が粗大になり、曲げ加工性が劣るとともに、析出物に含まれる Crの原子濃度や CrZ Siが高くなりすぎ、導電率が低い。
[0227] 比較例 50の銅合金は、 Niの含有量が上限を高めに外れている。このため、曲げカロ ェ性とともに、導電率が著しく低い。
[0228] 比較例 51の銅合金は、 Niの含有量が下限を低めに外れている。このため、 50〜2 OOnmのサイズの析出物 (数密度)が少なぐ平均結晶粒径が 30 mを越えて粗大 化している。この結果、曲げカ卩ェ性とともに、強度が著しく低い。
[0229] 比較例 52の銅合金は、 Siの含有量が上限を高めに外れている。このため、 50〜2 OOnmのサイズの析出物に含まれる CrZSiが低くなりすぎ、平均結晶粒径が 30 μ m を越えて粗大化している。この結果、曲げ加工性とともに、導電率が著しく低い。
[0230] 比較例 53の銅合金は、 Siの含有量が下限を低めに外れている。このため、 50〜2 OOnmのサイズの析出物の数密度が少な過ぎ、このサイズの析出物に含まれる CrZ Siが高くなりすぎ、平均結晶粒径が 30 mを越えて粗大化している。この結果、曲げ 加工性とともに、強度が低い。
[0231] 比較例 54の銅合金は、 Zr含有量が多すぎる。このため、平均結晶粒径が 30 μ m を越えて粗大化している。この結果、曲げ加工性とともに、導電率が著しく低い。
[0232] 比較例 55の銅合金は、 Fe、 Mg含有量の合計量が多すぎる。このため、平均結晶 粒径が 30 /z mを越えて粗大化している。この結果、曲げカ卩ェ性とともに、導電率が 著しく低い。
[0233] 比較例 56〜61の銅合金は、表 5の例 56〜61の通り、成分組成は本発明範囲内で ある。にもかかわらず、溶体化処理条件 (製造方法)が好ましい条件範囲から外れて いる。この結果、曲げ加工性が共通して劣り、強度や導電率も低くなつている。
[0234] 比較例 56は溶体ィ匕処理における 400°Cまでの平均昇温速度が小さ過ぎる。このた め、結晶粒の成長が促進され、平均結晶粒径が 30 mを越えて粗大化している。こ の結果、曲げ加工性とともに、強度が著しく低い。
[0235] 比較例 57は溶体ィ匕処理における 400°Cまでの平均昇温速度が大き過ぎる。このた め、析出物の数密度が不足して、平均結晶粒径が大きくなり、曲げ加工性が低い。
[0236] 比較例 58は 400°Cから溶体化温度までの平均昇温速度が小さ過ぎる。このため、 平均結晶粒径が大きくなり、曲げ加工性が低い。
[0237] 比較例 59は溶体化処理温度が低過ぎる。このため、溶体化が不十分となり、強度 が低ぐ曲げ性が低い。
[0238] 比較例 60は溶体化処理温度が高過ぎる。このため、 50〜200nmのサイズの析出 物の数密度が少な過ぎ、平均結晶粒径が 30 /z mを越えて粗大化している。この結 果、曲げ加工性及び強度が低い。
[0239] 比較例 61は、溶体化処理後の平均冷却速度が小さ過ぎる。このため、結晶粒の成 長が促進され、平均結晶粒径が大きぐ曲げ加工性が低い。また、強度も低い。
[0240] 図 1に発明例 36、図 2に比較例 48の各銅合金板であって、前記各 900°Cの溶体ィ匕 処理後で、前記各仕上げ冷間圧延前の板の組織の 50000倍の TEM (走査型電子 顕微鏡)写真を示す。図 1の発明例 36には、前記 EDXにより、 Cr含有析出物と特定 された(同定された)、 1の矢印で示す黒い点々が存在する。一方、 Crを含まない図 2 の比較例 48には、このような析出物が一切存在して ヽな 、。
[0241] これらの事実から、前記した、本発明における、 Cr含有析出物の作用、効果が裏付 けられる。即ち、溶体化処理温度が高温になっても、 Cr含有析出物は、固溶しきらず に、組織中に析出物として存在 (残存)し、結晶粒成長抑制のピン止め効果を発揮す る特異な性質を有する。し力も、この Cr含有析出物の結晶粒成長抑制のピン止め効 果は、 Cr乃至 Cr含有析出物を含有しない、通常の(従来の) Ni Si系析出物のみの
2
ピン止め効果に比して著しく大き!/、。
[0242] また、この Cr含有析出物のピン止め効果の大きさ力 50〜200nmのサイズの析出 物に含まれる Crの平均原子濃度や、このサイズの析出物の数密度によって大きく左 右されることも裏付けられる。
[0243] したがって、以上の結果から、高強度、高導電率化させた上で、曲げ加工性にも優 れさせるための、本発明銅合金板の成分組成、組織、更には、組織を得るための好 ま 、製造条件の意義が裏付けられる。
[0244] [表 5]
Figure imgf000051_0001
〔0245
Figure imgf000051_0002
Figure imgf000052_0001
[0246] つづ ヽて、本発明の実施例 3を説明する。 Cu合金組成と製造方法、特に溶体化処 理条件を変えて、 Cu合金組織中の析出物内の Ti平均原子濃度などを種々変えて、 得られた Cu合金薄板の平均結晶粒径を変化させ、強度、導電率、曲げ性などの特 性を各々評価した。
[0247] 具体的には、下記表 7に示す化学成分組成の銅合金を、それぞれクリプトル炉にお いて大気中で木炭被覆下で溶解し、铸鉄製ブックモールドに铸造し、厚さが 50mm 、幅が 75mm、長さが 180mmの铸塊を得た。そして、铸塊の表面を面削した後、 95 0°Cの温度で厚さが 20mmになるまで熱間圧延し、 750°C以上の熱間圧延終了温度 力も水中に急冷した。次に、酸化スケールを除去した後、一次冷間圧延を行い、厚さ が 0. 25mmの板を得た。
[0248] 続いて、塩浴炉を使用し、表 8に示すように、昇温、冷却条件を種々変えて溶体ィ匕 処理を行なった。なお、溶体ィ匕温度における板の保持時間は共通して 30秒間とした 。次に、仕上げ冷間圧延により、各々厚さが 0. 20mmの冷延板にした。この冷延板 を 450°C X 4hの人工時効硬化処理して最終の銅合金板を得た。
[0249] このようにして製造した銅合金板に対して、各例とも、上記最終銅合金板から切り出 した試料を使用して、組織調査と、引張試験による強度 (0. 2%耐カ)測定、導電率 測定、曲げ性試験及び評価を実施した。これらの結果を表 8に示す。
[0250] ここで、表 7に示す各銅合金とも、記載元素量を除!、た残部組成は Cuであり、表 7 に記載以外の他の元素として、 Mn、 Ca、 Ag、 Cd、 Be、 Au、 Pt、 S、 Pb、 Pなどの不 純物元素は総量で 0. 5%以下であった。この他、 Hf、 Th、 Li、 Na、 K、 Sr、 Pd、 W、 Nb、 Al、 V、 Y、 Mo、 In、 Ga、 Ge、 As、 Sb、 Biゝ Te、 B、 C、ミッシュメタル等の元素 もこれらの総量で 0. 1%以下であった。
[0251] (組織調査)
銅合金板試料の組織調査は、 50〜 200nmのサイズの析出物に含まれる Tiの平均 原子濃度(at%)、同じく 50〜200nmのサイズの析出物に含まれる Tiと Siとの平均 原子数比 TiZSi、同じく 50〜200nmのサイズの析出物の平均数密度(個 Z w m2)を 、各々前記した方法により測定した。
[0252] また、銅合金試料組織の、結晶粒の数を n、それぞれの測定した結晶粒径を Xとし た時に、(Σ χ) Ζηで表される平均結晶粒径(/z m)を、前記した電界放出型走査電 子顕微鏡に後方散乱電子回折像システムを搭載した結晶方位解析法により測定し た。具体的には、製品銅合金の圧延面表面を機械研磨し、更に、パフ研磨に次いで 電解研磨して、表面を調整した試料を用意した。その後、日本電子社製 FESEM0EO L JSM 5410)を用いて、 EBSPによる結晶方位測定並びに結晶粒径測定を行った。 測定領域は 300 m X 300 mの領域であり、測定ステップ間隔 0.5 μ mとした。 EB SP測定'解析システムは、 EBSP :TSL社製(OIM)を用いた。
[0253] (引張試験)
引張試験は、試験片の長手方向を圧延方向とし^ JIS13号 B試験片を用いて、 58 82型インストロン社製万能試験機により、室温、試験速度 10. Omm/min, GL = 5 Ommの条件で、 0. 2%耐カ (MPa)を測定した。同一条件の試験片を 3本試験し、そ れらの平均値を採用した。
[0254] (導電率測定)
導電率は、試験片の長手方向を圧延方向として、ミーリングにより、幅 10mm X長さ 3 00mmの短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗 を測定して、平均断面積法により算出した。同一条件の試験片を 3本試験し、それら の平均値を採用した。
[0255] (曲げ加工性の評価試験)
銅合金板試料の曲げ試験は、日本伸銅協会技術標準に従って行った。板材を幅 1 Omm、長さ 30mm〖こ切出し、 lOOOkgfの荷重をかけて曲げ半径 0. 15mmで Good Way (曲げ軸が圧延方向に直角)の曲げを行 、、曲げ部における割れの有無を 50倍 の光学顕微鏡で目視観察した。この際に、割れの無いものを〇、割れが生じたものを Xと評価した。この曲げ試験に優れていれば、前記密着曲げあるいはノッチング後の 90° 曲げなどの厳し ヽ曲げカ卩ェ性にも優れて 、ると言える。
[0256] 表 8から明らかな通り、本発明組成内の銅合金である発明例 62〜72は、溶体化処理 が好まし!/、条件範囲内で行なわれて、製品銅合金板を得て ヽる。
[0257] このため、発明例 62〜72の組織は、前記各測定方法による、 50〜200nmのサイ ズの析出物の数密度が平均で 0. 2〜20個 Z w m2の範囲であり、この範囲のサイズ の析出物に含まれる Tiの平均原子濃度が 0. l〜50at%の範囲であり、平均結晶粒 径が 20 m以下である。また、 50〜200nmのサイズの析出物に含まれる Tiと Siとの 原子数比 TiZSiが平均で 0. 01〜10である。
[0258] この結果、発明例 62〜72は、 0. 2%耐力が 800MPa以上、導電率力 0%IACS 以上の高強度、高導電率であって、かつ、曲げカ卩工性に優れている。
[0259] これに対して、比較例 73〜80の銅合金は、表 7の通り、成分組成が本発明範囲か ら外れている。このため、溶体化処理 (製造方法)は好ましい条件範囲内で行なわれ ているにもかかわらず、曲げカ卩ェ性が共通して劣り、強度や導電率も低くなつている
[0260] 比較例 73の銅合金は Tiを含有していない。このため、 50〜200nmのサイズの析 出物 (数密度)が少なぐ平均結晶粒径が 20 /z mを越えて粗大化している。このため
、曲げ加工性とともに、強度が低い。
[0261] 比較例 74の銅合金は、 Tiの含有量が上限を高めに外れている。このため、析出物 が粗大になり、曲げ加工性が劣るとともに、析出物に含まれる Tiの原子濃度や TiZS iが高くなりすぎ、導電率が低い。
[0262] 比較例 75の銅合金は、 Niの含有量が上限を高めに外れている。このため、曲げカロ ェ性とともに、導電率が著しく低い。
[0263] 比較例 76の銅合金は、 Niの含有量が下限を低めに外れている。このため、 50〜2
OOnmのサイズの析出物 (数密度)が少なぐ平均結晶粒径が 20 mを越えて粗大 化している。この結果、曲げカ卩ェ性とともに、強度が著しく低い。
[0264] 比較例 77の銅合金は、 Siの含有量が上限を高めに外れている。このため、 50〜2
OOnmのサイズの析出物に含まれる TiZSiが低くなりすぎ、平均結晶粒径が 20 μ m を越えて粗大化している。この結果、曲げ加工性とともに、導電率が著しく低い。
[0265] 比較例 78の銅合金は、 Siの含有量が下限を低めに外れている。このため、 50〜2
OOnmのサイズの析出物の数密度が少な過ぎ、このサイズの析出物に含まれる TiZ
Siが高くなりすぎ、平均結晶粒径が 20 mを越えて粗大化している。この結果、曲げ 加工性とともに、強度が低い。
[0266] 比較例 79の銅合金は、 Zr含有量が多すぎる。このため、平均結晶粒径が 20 μ m を越えて粗大化している。この結果、曲げ加工性とともに、導電率が著しく低い。
[0267] 比較例 80の銅合金は、 Fe、 Co含有量の合計量が多すぎる。このため、平均結晶 粒径が 20 /z mを越えて粗大化している。この結果、曲げカ卩ェ性とともに、導電率が 著しく低い。
[0268] 比較例 81〜86の銅合金は、表 7の例 81〜86の通り、成分組成は本発明範囲内で ある。にもかかわらず、溶体化処理条件 (製造方法)が好ましい条件範囲から外れて いる。この結果、曲げ加工性が共通して劣り、強度や導電率も低くなつている。
[0269] 比較例 81は溶体化処理における 400°Cまでの平均昇温速度が小さ過ぎる。このた め、結晶粒の成長が促進され、平均結晶粒径が 20 mを越えて粗大化している。こ の結果、曲げ加工性とともに、強度が著しく低い。
[0270] 比較例 82は溶体ィ匕処理における 400°Cまでの平均昇温速度が大き過ぎる。このた め、析出物の数密度が不足して、平均結晶粒径が大きくなり、曲げ加工性が低い。
[0271] 比較例 83は 400°Cから溶体ィ匕温度までの平均昇温速度が小さ過ぎる。このため、 平均結晶粒径が大きくなり、曲げ加工性が低い。
[0272] 比較例 84は溶体化処理温度が低過ぎる。このため、溶体化が不十分となり、強度 が低ぐ曲げ性が低い。
[0273] 比較例 85は溶体化処理温度が高過ぎる。このため、 50〜200nmのサイズの析出 物の数密度が少な過ぎ、平均結晶粒径が 20 /z mを越えて粗大化している。この結 果、曲げ加工性及び強度が低い。
[0274] 比較例 86は、溶体化処理後の平均冷却速度が小さ過ぎる。このため、結晶粒の成 長が促進され、平均結晶粒径が大きぐ曲げ加工性が低い。また、強度も低い。
[0275] 図 3に発明例 62、図 4に比較例 73の各銅合金板であって、前記各 900°Cの溶体ィ匕 処理後で、前記各仕上げ冷間圧延前の板の組織の 50000倍の TEM (走査型電子 顕微鏡)写真を示す。図 3の発明例 62には、前記 EDXにより、 Ti含有析出物と特定 された(同定された)黒い点々が存在する。一方、 Tiを含まない図 4の比較例 73には 、このような析出物が一切存在していない。
[0276] これらの事実から、前記した、本発明における、 Ti含有析出物の作用、効果が裏付 けられる。即ち、溶体化処理温度が高温になっても、 Ti含有析出物は、固溶しきらず に、組織中に析出物として存在 (残存)し、結晶粒成長抑制のピン止め効果を発揮す る特異な性質を有する。し力も、この Ti含有析出物の結晶粒成長抑制のピン止め効 果は、 Ti乃至 Ti含有析出物を含有しない、通常の(従来の) Ni Si系析出物のみの
2
ピン止め効果に比して著しく大き!/、。
[0277] また、この Ti含有析出物のピン止め効果の大きさ力 50〜200nmのサイズの析出 物に含まれる Tiの平均原子濃度や、このサイズの析出物の数密度によって大きく左 右されることも裏付けられる。
[0278] したがって、以上の結果から、高強度、高導電率ィ匕させた上で、曲げ加工性にも優 れさせるための、本発明銅合金板の成分組成、組織、更には、組織を得るための好 まし 、製造条件の意義が裏付けられる。
[0279] [表 7]
Figure imgf000057_0001
[0280] [表 8]
Figure imgf000058_0001
本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れる ことなく様々な変更および修正が可能であることは、当業者にとって明らかである。 なお、本出顔は、 2006年 5月 26曰付けで出願された日本特許出願 (特願 2006— 147088) 2006年 9月 22曰付けで出願された曰本特許出願(特願 2006— 25753 4)及び 2006年 9月 22日付けで出願された日本特許出願 (特願 2006— 257535) に基づいており、その全体が引用により援用される。
また、ここに引用されるすべての参照は全体として取り込まれる。
産業上の利用可能性
以上説明したように、本発明によれば、高強度化、高導電率化とともに、優れた曲 げ加工性を兼備した銅合金を提供することができる。この結果、小型化及び軽量化し た電気電子部品用として、半導体装置用リードフレーム以外にも、リードフレーム、コ ネクタ、端子、スィッチ、リレーなどの、高強度高導電率化と、厳しい曲げ加工性が要 求される用途に適用することができる。

Claims

請求の範囲
[1] 質量0 /0で、 Ni : 0. 4〜4. 0%、 Si : 0. 05〜: L 0%を含有し、更に、元素 Mとして、 P : 0. 005〜0. 5%、
Cr : 0. 005〜1. 0%、
Ti : 0. 005〜1. 0%、
から選択される 1種の元素を含有し、
残部銅および不可避的不純物からなる銅合金であって、
この銅合金組織の、倍率 30000倍の電界放出型透過電子顕微鏡とエネルギー分散 型分析装置とにより測定した、 50〜200nmのサイズの析出物に含まれる元素 Mと Si との原子数比 MZSiが平均で 0. 01〜: L0であることを特徴とする高強度、高導電率 および曲げ加工性に優れた銅合金。
[2] 前記元素 Mが Pであって、
前記銅合金組織の、前記電界放出型透過電子顕微鏡とエネルギー分散型分析装 置とにより測定した、 50〜200nmのサイズの析出物の数密度が平均で 0. 2〜7. 0 個 Z w m2であり、この範囲のサイズの析出物に含まれる Pの平均原子濃度が 0. 1〜 50at%であるとともに、電界放出型走査電子顕微鏡に後方散乱電子回折像システ ムを搭載した結晶方位解析法により測定した、結晶粒の数を n、それぞれの測定した 結晶粒径を Xとした時、(Σ χ) Ζηで表される平均結晶粒径が 10 m以下であること を特徴とする請求項 1に記載の銅合金。
[3] 前記銅合金が、更に、質量%で、 Cr、 Ti、 Fe、 Mg、 Co、 Zrのうち一種または二種以 上を合計で 0. 01〜3. 0%を含有する請求項 2に記載の銅合金。
[4] 前記元素 Mが Crであって、
前記銅合金組織の、前記電界放出型透過電子顕微鏡とエネルギー分散型分析装 置とにより測定した、 50〜200nmのサイズの析出物の数密度が平均で 0. 2〜20個 / μ να であり、この範囲のサイズの析出物に含まれる Crの平均原子濃度が 0. 1〜 80at%であるとともに、電界放出型走査電子顕微鏡に後方散乱電子回折像システ ムを搭載した結晶方位解析法により測定した、結晶粒の数を n、それぞれの測定した 結晶粒径を Xとした時、(∑ X) Znで表される平均結晶粒径が 30 μ m以下であること を特徴とする請求項 1に記載の銅合金。
[5] 前記銅合金が、更に、質量%で、 Ti、 Fe、 Mg、 Co、 Zrのうち一種または二種以上を 合計で 0. 01〜3. 0%を含有する請求項 4に記載の銅合金。
[6] 前記元素 Mが Tiであって、
前記銅合金組織の、前記電界放出型透過電子顕微鏡とエネルギー分散型分析装 置とにより測定した、 50〜200nmのサイズの析出物の数密度が平均で 0. 2〜20個 / μ να であり、この範囲のサイズの析出物に含まれる Tiの平均原子濃度が 0. 1〜5 0^%であるとともに、電界放出型走査電子顕微鏡に後方散乱電子回折像システム を搭載した結晶方位解析法により測定した、結晶粒の数を n、それぞれの測定した結 晶粒径を Xとした時、(∑ X) Znで表される平均結晶粒径が 20 μ m以下であることを 特徴とする請求項 1に記載の銅合金。
[7] 前記銅合金が、更に、質量%で、 Fe、 Mg、 Co、 Zrのうち一種または二種以上を合 計で 0. 01〜3. 0%を含有する請求項 6に記載の銅合金。
[8] 前記銅合金が、更に、質量%で、 Zn : 0. 005〜3. 0%を含有する請求項 1〜7のい ずれか 1項に記載の銅合金。
[9] 前記銅合金が、更に、質量%で、 Sn : 0. 01〜5. 0%を含有する請求項 1〜8のいず れか 1項に記載の銅合金。
PCT/JP2007/060526 2006-05-26 2007-05-23 高強度、高導電率および曲げ加工性に優れた銅合金 WO2007138956A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020087026720A KR101049655B1 (ko) 2006-05-26 2007-05-23 고강도, 고도전율 및 굽힘 가공성이 뛰어난 구리 합금
EP07743960A EP2048251B1 (en) 2006-05-26 2007-05-23 Copper alloy having high strength, high electric conductivity and excellent bending workability
US12/297,069 US8268098B2 (en) 2006-05-26 2007-05-23 Copper alloy having high strength, high electric conductivity and excellent bending workability
CN2007800165290A CN101437969B (zh) 2006-05-26 2007-05-23 高强度、高导电率及弯曲加工性优良的铜合金
AT07743960T ATE542926T1 (de) 2006-05-26 2007-05-23 Kupferlegierung mit hoher festigkeit, hoher elektrischer leitfähigkeit und hervorragender biegebearbeitbarkeit
US13/491,942 US9177686B2 (en) 2006-05-26 2012-06-08 Copper alloy having high strength, high electric conductivity and excellent bending workability
US13/491,911 US8357248B2 (en) 2006-05-26 2012-06-08 Copper alloy having high strength, high electric conductivity and excellent bending workability

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-147088 2006-05-26
JP2006147088A JP4006460B1 (ja) 2006-05-26 2006-05-26 高強度、高導電率および曲げ加工性に優れた銅合金およびその製造方法
JP2006257535A JP4006468B1 (ja) 2006-09-22 2006-09-22 高強度、高導電率および曲げ加工性に優れた銅合金
JP2006257534A JP4006467B1 (ja) 2006-09-22 2006-09-22 高強度、高導電率および曲げ加工性に優れた銅合金
JP2006-257535 2006-09-22
JP2006-257534 2006-09-22

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/297,069 A-371-Of-International US8268098B2 (en) 2006-05-26 2007-05-23 Copper alloy having high strength, high electric conductivity and excellent bending workability
US13/491,942 Division US9177686B2 (en) 2006-05-26 2012-06-08 Copper alloy having high strength, high electric conductivity and excellent bending workability
US13/491,911 Division US8357248B2 (en) 2006-05-26 2012-06-08 Copper alloy having high strength, high electric conductivity and excellent bending workability

Publications (1)

Publication Number Publication Date
WO2007138956A1 true WO2007138956A1 (ja) 2007-12-06

Family

ID=38778476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060526 WO2007138956A1 (ja) 2006-05-26 2007-05-23 高強度、高導電率および曲げ加工性に優れた銅合金

Country Status (5)

Country Link
US (3) US8268098B2 (ja)
EP (3) EP2426225B1 (ja)
KR (1) KR101049655B1 (ja)
AT (1) ATE542926T1 (ja)
WO (1) WO2007138956A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2243847A1 (en) * 2008-02-08 2010-10-27 The Furukawa Electric Co., Ltd. Copper alloy material for electric and electronic components
EP2248921A1 (en) * 2008-01-31 2010-11-10 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
US20110038753A1 (en) * 2007-11-05 2011-02-17 Hiroshi Kaneko Copper alloy sheet material
JP2012177152A (ja) * 2011-02-25 2012-09-13 Kobe Steel Ltd 銅合金
JP2012177153A (ja) * 2011-02-25 2012-09-13 Kobe Steel Ltd 銅合金
US20130224070A1 (en) * 2012-02-24 2013-08-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy
JP5676053B1 (ja) * 2014-02-05 2015-02-25 古河電気工業株式会社 電気接点材料及びその製造方法
WO2016027867A1 (ja) * 2014-08-22 2016-02-25 住友電気工業株式会社 コイル用線材

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4357536B2 (ja) * 2007-02-16 2009-11-04 株式会社神戸製鋼所 強度と成形性に優れる電気電子部品用銅合金板
JP2009179864A (ja) * 2008-01-31 2009-08-13 Kobe Steel Ltd 耐応力緩和特性に優れた銅合金板
JP4440313B2 (ja) * 2008-03-31 2010-03-24 日鉱金属株式会社 電子材料用Cu−Ni−Si−Co−Cr系合金
WO2010038641A1 (ja) 2008-09-30 2010-04-08 日鉱金属株式会社 高純度銅及び電解による高純度銅の製造方法
CN102165093B (zh) * 2008-09-30 2013-09-25 Jx日矿日石金属株式会社 高纯度铜或高纯度铜合金溅射靶、该溅射靶的制造方法及高纯度铜或高纯度铜合金溅射膜
JP5261161B2 (ja) * 2008-12-12 2013-08-14 Jx日鉱日石金属株式会社 Ni−Si−Co系銅合金及びその製造方法
JP5626956B2 (ja) * 2009-10-22 2014-11-19 日本碍子株式会社 析出硬化型合金薄帯の製造装置、冷却ロール及び析出硬化型合金薄帯の製造方法
JP5654571B2 (ja) * 2010-04-02 2015-01-14 Jx日鉱日石金属株式会社 電子材料用Cu−Ni−Si系合金
JP5714863B2 (ja) * 2010-10-14 2015-05-07 矢崎総業株式会社 雌端子および雌端子の製造方法
US9845521B2 (en) * 2010-12-13 2017-12-19 Kobe Steel, Ltd. Copper alloy
JP5522692B2 (ja) * 2011-02-16 2014-06-18 株式会社日本製鋼所 高強度銅合金鍛造材
JP5730089B2 (ja) * 2011-03-23 2015-06-03 日本発條株式会社 導電材料、積層体および導電材料の製造方法
JP5432201B2 (ja) 2011-03-30 2014-03-05 Jx日鉱日石金属株式会社 放熱性及び繰り返し曲げ加工性に優れた銅合金板
JP2013083574A (ja) * 2011-10-11 2013-05-09 Hitachi-Ge Nuclear Energy Ltd 塑性ひずみの評価システムおよび評価方法
JP5303678B1 (ja) * 2012-01-06 2013-10-02 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子
JP5773929B2 (ja) 2012-03-28 2015-09-02 株式会社神戸製鋼所 曲げ加工性及び耐応力緩和特性に優れる電気電子部品用銅合金板
JP6039999B2 (ja) * 2012-10-31 2016-12-07 Dowaメタルテック株式会社 Cu−Ni−Co−Si系銅合金板材およびその製造法
JP5417523B1 (ja) * 2012-12-28 2014-02-19 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP5572754B2 (ja) 2012-12-28 2014-08-13 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP5417539B1 (ja) * 2013-01-28 2014-02-19 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP5501495B1 (ja) * 2013-03-18 2014-05-21 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP5604549B2 (ja) * 2013-03-18 2014-10-08 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6263333B2 (ja) * 2013-03-25 2018-01-17 Dowaメタルテック株式会社 Cu−Ti系銅合金板材およびその製造方法並びに通電部品
DE102015226087A1 (de) 2015-12-18 2017-06-22 Robert Bosch Gmbh Handwerkzeugmaschine mit einstellbarer Drehrichtung
CN112458334A (zh) * 2020-11-27 2021-03-09 台州正兴阀门有限公司 水龙头本体铸造用低铅易切削铜合金及其制造方法
CN113584344B (zh) * 2021-07-28 2022-05-24 烟台万隆真空冶金股份有限公司 一种铜合金退火导电环及其制备方法
CN114453418A (zh) * 2022-01-05 2022-05-10 广东中发摩丹科技有限公司 一种高强高导Cu-Ni-Co-Si-Li合金高精窄带的短流程制备方法
CN114657409A (zh) * 2022-03-24 2022-06-24 浙江惟精新材料股份有限公司 一种高强高弹钛铜系合金及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279825A (ja) 1992-03-30 1993-10-26 Mitsubishi Shindoh Co Ltd スタンピング金型を摩耗させることの少ない銅合金条材
JPH08225869A (ja) 1995-02-21 1996-09-03 Mitsubishi Shindoh Co Ltd 強度および打抜き加工性に優れた電気電子部品用Cu合金
JPH09209061A (ja) 1996-02-05 1997-08-12 Mitsubishi Shindoh Co Ltd メッキ密着性に優れた銅合金
JP2001049369A (ja) 1999-08-05 2001-02-20 Nippon Mining & Metals Co Ltd 電子材料用銅合金及びその製造方法
JP2001207229A (ja) 2000-01-27 2001-07-31 Nippon Mining & Metals Co Ltd 電子材料用銅合金
JP2002180161A (ja) 2000-12-15 2002-06-26 Furukawa Electric Co Ltd:The 高強度銅合金
JP2002266042A (ja) * 2001-03-09 2002-09-18 Kobe Steel Ltd 曲げ加工性が優れた銅合金板
JP2005089843A (ja) 2003-09-18 2005-04-07 Kobe Steel Ltd 高強度銅合金板および高強度銅合金板の製造方法
JP2006016629A (ja) * 2004-06-30 2006-01-19 Nikko Metal Manufacturing Co Ltd BadWayの曲げ加工性が優れたCu−Ni−Si系銅合金条
JP2006089763A (ja) * 2004-09-21 2006-04-06 Dowa Mining Co Ltd 銅合金およびその製造法
JP2006147088A (ja) 2004-11-22 2006-06-08 Funai Electric Co Ltd ディスク再生装置
JP2006257534A (ja) 2005-03-18 2006-09-28 Jfe Steel Kk 磁気特性の均一性に優れた超低鉄損方向性電磁鋼板
JP2006257535A (ja) 2005-03-18 2006-09-28 Mitsubishi Materials Corp 粉末成形体の成形方法とその製造装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260435A (en) * 1979-07-02 1981-04-07 Ampco-Pittsburgh Corporation Copper-nickel-silicon-chromium alloy having improved electrical conductivity
US4612167A (en) * 1984-03-02 1986-09-16 Hitachi Metals, Ltd. Copper-base alloys for leadframes
US4594221A (en) 1985-04-26 1986-06-10 Olin Corporation Multipurpose copper alloys with moderate conductivity and high strength
US4749548A (en) 1985-09-13 1988-06-07 Mitsubishi Kinzoku Kabushiki Kaisha Copper alloy lead material for use in semiconductor device
WO1999005331A1 (en) 1997-07-22 1999-02-04 Olin Corporation Copper alloy having magnesium addition
AU9108398A (en) 1997-09-05 1999-03-29 Miller Company, The Copper based alloy featuring precipitation hardening and solid-solution hardening
US7182823B2 (en) 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
JP4255330B2 (ja) 2003-07-31 2009-04-15 日鉱金属株式会社 疲労特性に優れたCu−Ni−Si系合金部材
JP4041452B2 (ja) 2003-11-05 2008-01-30 株式会社神戸製鋼所 耐熱性に優れた銅合金の製法
JP4041803B2 (ja) 2004-01-23 2008-02-06 株式会社神戸製鋼所 高強度高導電率銅合金
US20050236074A1 (en) * 2004-02-27 2005-10-27 Kuniteru Mihara Copper alloy
JP2005290543A (ja) 2004-03-12 2005-10-20 Sumitomo Metal Ind Ltd 銅合金およびその製造方法
JP4809602B2 (ja) * 2004-05-27 2011-11-09 古河電気工業株式会社 銅合金
JP4646192B2 (ja) * 2004-06-02 2011-03-09 古河電気工業株式会社 電気電子機器用銅合金材料およびその製造方法
WO2005118896A1 (ja) * 2004-06-02 2005-12-15 The Furukawa Electric Co., Ltd. 電気電子機器用銅合金
JP3856018B2 (ja) 2004-06-03 2006-12-13 日立電線株式会社 高強度・高導電性銅合金の製造方法
JP4441467B2 (ja) 2004-12-24 2010-03-31 株式会社神戸製鋼所 曲げ加工性及び耐応力緩和特性を備えた銅合金
JP4680765B2 (ja) 2005-12-22 2011-05-11 株式会社神戸製鋼所 耐応力緩和特性に優れた銅合金
JP4950584B2 (ja) 2006-07-28 2012-06-13 株式会社神戸製鋼所 高強度および耐熱性を備えた銅合金
JP4630323B2 (ja) 2007-10-23 2011-02-09 株式会社コベルコ マテリアル銅管 破壊強度に優れた熱交換器用銅合金管

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279825A (ja) 1992-03-30 1993-10-26 Mitsubishi Shindoh Co Ltd スタンピング金型を摩耗させることの少ない銅合金条材
JPH08225869A (ja) 1995-02-21 1996-09-03 Mitsubishi Shindoh Co Ltd 強度および打抜き加工性に優れた電気電子部品用Cu合金
JPH09209061A (ja) 1996-02-05 1997-08-12 Mitsubishi Shindoh Co Ltd メッキ密着性に優れた銅合金
JP2001049369A (ja) 1999-08-05 2001-02-20 Nippon Mining & Metals Co Ltd 電子材料用銅合金及びその製造方法
JP2001207229A (ja) 2000-01-27 2001-07-31 Nippon Mining & Metals Co Ltd 電子材料用銅合金
JP2002180161A (ja) 2000-12-15 2002-06-26 Furukawa Electric Co Ltd:The 高強度銅合金
JP2002266042A (ja) * 2001-03-09 2002-09-18 Kobe Steel Ltd 曲げ加工性が優れた銅合金板
JP2005089843A (ja) 2003-09-18 2005-04-07 Kobe Steel Ltd 高強度銅合金板および高強度銅合金板の製造方法
JP2006016629A (ja) * 2004-06-30 2006-01-19 Nikko Metal Manufacturing Co Ltd BadWayの曲げ加工性が優れたCu−Ni−Si系銅合金条
JP2006089763A (ja) * 2004-09-21 2006-04-06 Dowa Mining Co Ltd 銅合金およびその製造法
JP2006147088A (ja) 2004-11-22 2006-06-08 Funai Electric Co Ltd ディスク再生装置
JP2006257534A (ja) 2005-03-18 2006-09-28 Jfe Steel Kk 磁気特性の均一性に優れた超低鉄損方向性電磁鋼板
JP2006257535A (ja) 2005-03-18 2006-09-28 Mitsubishi Materials Corp 粉末成形体の成形方法とその製造装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Light Metal", vol. 43, 1993, JAPAN INSTITUTE OF LIGHT METALS, AND THE LIKE, pages: 285 - 293
KOBE, STEEL ENGINEERING REPORTS NOL.52, no. 2, September 2002 (2002-09-01), pages 66 - 70
SHINICHI NAGASHIMA: "Texture", MARUZEN CO., LTD

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110038753A1 (en) * 2007-11-05 2011-02-17 Hiroshi Kaneko Copper alloy sheet material
EP2248921A1 (en) * 2008-01-31 2010-11-10 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
EP2248921A4 (en) * 2008-01-31 2011-03-16 Furukawa Electric Co Ltd COPPER ALLOY MATERIAL FOR ELECTRICAL / ELECTRONIC COMPONENT AND METHOD FOR MANUFACTURING COPPER ALLOY MATERIAL
EP2243847A1 (en) * 2008-02-08 2010-10-27 The Furukawa Electric Co., Ltd. Copper alloy material for electric and electronic components
EP2243847A4 (en) * 2008-02-08 2012-06-27 Furukawa Electric Co Ltd COPPER ALLOY MATERIAL FOR ELECTRICAL AND ELECTRONIC COMPONENTS
JP2012177153A (ja) * 2011-02-25 2012-09-13 Kobe Steel Ltd 銅合金
JP2012177152A (ja) * 2011-02-25 2012-09-13 Kobe Steel Ltd 銅合金
US20130224070A1 (en) * 2012-02-24 2013-08-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy
US9121084B2 (en) * 2012-02-24 2015-09-01 Kobe Steel, Ltd. Copper alloy
JP5676053B1 (ja) * 2014-02-05 2015-02-25 古河電気工業株式会社 電気接点材料及びその製造方法
WO2015118627A1 (ja) * 2014-02-05 2015-08-13 古河電気工業株式会社 電気接点材料及びその製造方法
CN105940463A (zh) * 2014-02-05 2016-09-14 古河电气工业株式会社 电接点材料及其制造方法
WO2016027867A1 (ja) * 2014-08-22 2016-02-25 住友電気工業株式会社 コイル用線材

Also Published As

Publication number Publication date
US8357248B2 (en) 2013-01-22
EP2426224A2 (en) 2012-03-07
EP2426225A3 (en) 2013-10-02
KR20080106986A (ko) 2008-12-09
EP2426225A2 (en) 2012-03-07
US8268098B2 (en) 2012-09-18
EP2426225B1 (en) 2015-12-02
US20120288402A1 (en) 2012-11-15
ATE542926T1 (de) 2012-02-15
EP2048251A4 (en) 2009-10-14
US20130045130A1 (en) 2013-02-21
EP2048251A1 (en) 2009-04-15
KR101049655B1 (ko) 2011-07-14
US20090101243A1 (en) 2009-04-23
EP2426224B1 (en) 2015-09-16
EP2426224A3 (en) 2013-10-02
US9177686B2 (en) 2015-11-03
EP2048251B1 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
WO2007138956A1 (ja) 高強度、高導電率および曲げ加工性に優れた銅合金
JP4006460B1 (ja) 高強度、高導電率および曲げ加工性に優れた銅合金およびその製造方法
JP4596493B2 (ja) 導電性ばね材に用いられるCu−Ni−Si系合金
TWI381398B (zh) Cu-Ni-Si alloy for electronic materials
JP3838521B1 (ja) 高強度および優れた曲げ加工性を備えた銅合金およびその製造方法
JP5261500B2 (ja) 導電性と曲げ性を改善したCu−Ni−Si−Mg系合金
TWI447239B (zh) Copper alloy sheet and method of manufacturing the same
JP5525247B2 (ja) 高強度で曲げ加工性に優れた銅合金
JP5503791B2 (ja) 銅合金板材およびその製造方法
JP4959141B2 (ja) 高強度銅合金
JP3962751B2 (ja) 曲げ加工性を備えた電気電子部品用銅合金板
JP4006467B1 (ja) 高強度、高導電率および曲げ加工性に優れた銅合金
WO2011068124A1 (ja) 銅合金板材
JP2009242895A (ja) 曲げ加工性に優れた高強度銅合金
JPWO2010013790A1 (ja) 電気電子部品用銅合金材料とその製造方法
KR20130130663A (ko) 동합금
JP4006468B1 (ja) 高強度、高導電率および曲げ加工性に優れた銅合金
WO2017047368A1 (ja) 銅合金板材およびその製造方法
JP2006291356A (ja) Ni−Sn−P系銅合金
TW201428113A (zh) 電子/電氣機器用銅合金、電子/電氣機器用銅合金薄板、電子/電氣機器用銅合金之製造方法、電子/電氣機器用導電零件及端子
JP2018159103A (ja) プレス加工後の寸法精度を改善した銅合金条
JP2009242871A (ja) 高強度高導電性二相銅合金箔
TW201714185A (zh) 電子零件用Cu-Co-Ni-Si合金
JP5867859B2 (ja) 銅合金
JP6762453B1 (ja) 銅合金板材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743960

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007743960

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12297069

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087026720

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780016529.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE