WO2007129769A1 - 作動溶液の再生工程を含む過酸化水素の製造方法 - Google Patents

作動溶液の再生工程を含む過酸化水素の製造方法 Download PDF

Info

Publication number
WO2007129769A1
WO2007129769A1 PCT/JP2007/059813 JP2007059813W WO2007129769A1 WO 2007129769 A1 WO2007129769 A1 WO 2007129769A1 JP 2007059813 W JP2007059813 W JP 2007059813W WO 2007129769 A1 WO2007129769 A1 WO 2007129769A1
Authority
WO
WIPO (PCT)
Prior art keywords
working solution
distillation
hydrogen peroxide
anthraquinones
anthraquinone
Prior art date
Application number
PCT/JP2007/059813
Other languages
English (en)
French (fr)
Inventor
Hisashi Sakaitani
Katsuhiro Iura
Isao Hagiwara
Tsutomu Matsui
Daisuke Kitada
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to JP2008514532A priority Critical patent/JP5233668B2/ja
Priority to KR1020087028986A priority patent/KR101362495B1/ko
Priority to EP07743248.2A priority patent/EP2022757B1/en
Priority to US12/226,280 priority patent/US20090169469A1/en
Priority to CN2007800130959A priority patent/CN101421184B/zh
Publication of WO2007129769A1 publication Critical patent/WO2007129769A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/023Preparation from organic compounds by the alkyl-anthraquinone process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina

Definitions

  • the present invention relates to a method for producing hydrogen peroxide including a regeneration step of a working solution.
  • anthraquinone having an alkyl substituent hereinafter sometimes simply referred to as “anthraquinone”
  • a 5, 6, 7, 8-tetrahydroanthraquinone having an alkyl substituent hereinafter simply “ The present invention relates to a method for producing hydrogen peroxide by repeatedly reducing and oxidizing a working solution containing “tetrahydroanthraquinone”. More specifically, the present invention relates to a method for producing hydrogen peroxide, which can efficiently remove from the working solution inert substances produced as a by-product in the production of hydrogen peroxide.
  • anthraquinone or tetrahydroanthraquinone (hereinafter sometimes referred to as “anthraquinones”) is used after being dissolved in a suitable organic solvent.
  • An organic solvent is used alone or as a mixture, but usually a mixture of two organic solvents is used.
  • a solution prepared by dissolving anthraquinones in an organic solvent is called a working solution.
  • An anthraquinone method is known as an industrial method for producing hydrogen peroxide.
  • anthraquinones are dissolved in an organic solvent to obtain a working solution, and in the hydrogenation step, the anthraquinones are reduced with hydrogen in the presence of a hydrogenation catalyst, and an anthrahydroquinone having an alkyl substituent or an alkyl substituent.
  • anthrahydroquinones 5,6,7,8-Tetrahydroanthrahydroquinone (hereinafter sometimes referred to as “anthrahydroquinones”).
  • anthrahydroquinones are converted back to anthraquinones, and at the same time, hydrogen peroxide is generated.
  • Hydrogen peroxide in the working solution is separated from the working solution by methods such as water extraction.
  • the working solution from which hydrogen peroxide has been extracted is returned to the hydrogenation step again to form a circulation process.
  • the concentration of the solute component which is the sum of the “active substance” and the “inert substance”
  • increases increasing the liquid viscosity and the liquid specific gravity. Bring.
  • An increase in liquid viscosity increases the flow resistance of the filter, making it difficult to secure the liquid flow rate.
  • the increase in liquid specific gravity hinders the formation of the liquid-liquid interface when hydrogen peroxide is extracted from the working solution because the specific gravity difference between the oil layer and the water layer is reduced.
  • the concentration of the active substance is low and the hydrogenation rate is relatively increased, which is an adverse effect of the high hydrogenation rate. It causes some deterioration of hydrogenation selectivity. That is, there is a need for a working solution that suppresses the concentration of the inert substance and maintains the concentration of the active substance at a sufficiently high level.
  • the first type is a method in which the by-product itself is not generated as much as possible
  • the second type is a method in which the by-product is regenerated into anthraquinones
  • the third type is a method in which the by-product is removed.
  • the first type includes: 1) 1) a method in which the circulation system is mild, 1) 2) a method using a highly selective hydrogenation catalyst, 1) 1) 3. a chemically stable reaction medium 1-4. Methods using chemically stable solvents.
  • the second type of method includes a method of regenerating with 2-1. Y-alumina, activated alumina, etc. (Japanese Patent Publication No.
  • a method of regenerating with alkali There are three types of methods: 3-1. Removal by distillation, 3-2. Removal by crystallization or extraction, 3-3. Removal by adsorption with activated alumina, etc.
  • the first type of method cannot prevent the increase of by-products in the working solution over time. In general, the regeneration reaction of by-products is very slow, so irreversible by-products are produced. For this reason, it is difficult even with the second type of method, and it is difficult to prevent the increase of by-products in the working solution over time even if both are combined.
  • the light degradation product is useful as a solubility aid for hydroquinones, so it is not removed and the purpose is to remove only harmful heavy degradation products.
  • 6 8 g of anthraquinones (active substance) is contained in 14 5 g of the distillate described in Example 1 of JP-B-5 5-2 3 7 6 2
  • it contains more than half (53% by weight) of light degradation products (inert substances). That is, this method has a problem that the anthraquinones which are active substances cannot be recovered with high purity.
  • a method of selectively extracting active substances JPB 4 1 2 1 6 0 2
  • a method of selectively extracting inactive substances JPB 5— 1 2 2 8 1
  • the working solution is mixed with an acyclic hydrocarbon and separated into a first layer containing an active substance (acyclic hydrocarbon layer) and a second layer containing a lot of inert substances.
  • a purification operation is performed.
  • it is necessary to distill off and remove the non-cyclic hydrocarbons after the separation, which causes an energy problem because of the large amount.
  • JP 5 _ 1 2 2 8 1 the working solution and liquefied carbon dioxide are brought into contact with each other, and the inert material is extracted and removed from the carbon dioxide layer.
  • the ratio of anthraquinones in the recovered liquid is 85% by weight, and it can be purified to a sufficiently high concentration of the active substance.
  • epoxy derivatives that are inactive substances are also anthraquinones, exactly 85% of them are not active substances. This is presumed to be a computational process performed because an epoxy compound is a substance that can be converted into an active substance by a regeneration reaction.
  • the problem with this method is that it requires a high-pressure reactor in order to use liquid carbon dioxide, and there is a problem with the treatment of liquid carbon dioxide after separation.
  • the present inventors recovered the organic solvent by distillation under atmospheric pressure or lower pressure, and then obtained anthraquinones by distillation at a lower pressure of 20 ° C. or more and a residence time of 1 hour or more. It was discovered that the by-product in the working solution before distillation can be regenerated or converted into a material that can be easily regenerated by recovering and reusing the entire distillate obtained as a working solution. Furthermore, it has been found that by treating the working solution obtained from the entire distillate with a regenerated catalyst, a working solution containing a high concentration of effective anthraquinones that is regenerated into anthraquinones, which are active ingredients, can be obtained.
  • a solution regeneration step i) a first distillation step in which the organic solvent is recovered by distillation at atmospheric pressure or lower, and ii) a residence time of 200 ° C. or higher at a lower pressure.
  • the method further comprises a step of bringing the working solution prepared using the organic solvent, anthraquinone and tetrahydroanthraquinone recovered in the first and second distillation steps into contact with the regenerated catalyst.
  • the main component of the regenerated catalyst is alumina or silica alumina.
  • the pressure in the first distillation step is in the range of 1 kPa to lOOkPa.
  • the pressure in the second distillation step is 1 kPa or less.
  • the temperature in the second distillation step is in the range of 200 ° C. to 300 ° C.
  • the residence time in the second distillation step is in the range of 1 hour to 10 hours.
  • the alkyl substituent is an amyl group.
  • an anthraquinone that is an active substance can be efficiently recovered from a working solution in which an inert substance is accumulated, and a working solution in which a regeneration reaction easily proceeds can be obtained.
  • a working solution having a high concentration of the active substance can be obtained, and the capability of each step of hydrogen peroxide production can be maintained at a high level.
  • a working solution containing an organic solvent, an anthraquinone having an alkyl substituent, and a tetrahydroanthraquinone having an alkyl substituent is acidified after reduction to produce hydrogen peroxide.
  • an inert substance produced as a by-product in the production of hydrogen peroxide is removed from the working solution, and the working solution from which the inert substance has been removed is recycled to the hydrogen peroxide production process.
  • a solution prepared by dissolving anthraquinones in an organic solvent is called a working solution.
  • Examples of the anthraquinone having an alkyl substituent used in the present invention include ethylanthraquinone, t-ptylanthraquinone, and amylanthraquinone. These may be used alone or in combination of two or more.
  • examples of the tetrahydroanthraquinone having an alkyl substituent include ethyltetrahydroanthraquinone, t-butyltetrahydroanthraquinone, and aminolettetrahydroanthraquinone. These may be used alone or in combination of two or more.
  • the organic solvent used for preparing the working solution in the present invention is not particularly limited, but preferred organic solvents include a combination of an aromatic hydrocarbon and a higher alcohol, an aromatic hydrocarbon and a sucrose. Examples include combinations of oral hexanols or alkyl carboxylic esters of oral hexanols, and combinations of aromatic hydrocarbons with tetrasubstituted ureas or cyclic ureas.
  • the working solution regeneration step includes: i) a first distillation step in which the organic solvent is recovered by distillation under a pressure of atmospheric pressure or lower; and ii) a lower pressure then And a second distillation step for recovering the anthraquinone and tetrahydroanthraquinone by distillation at a temperature of 200 ° C. or more and a residence time of 1 hour or more. Furthermore, it is preferable to have a step of bringing the working solution prepared using the organic solvent, anthraquinone and tetrahydroanthraquinone recovered in the first and second distillation steps into contact with the regenerated catalyst.
  • the first distillation step in the working solution regeneration step of the present invention consists of distilling the organic solvent in the working solution at atmospheric pressure or lower.
  • a commonly used distillation facility can be used and there is no particular limitation.
  • batch distillation equipment, ream A secondary distillation apparatus, a thin-film distillation apparatus, and the like can be mentioned.
  • a batch distillation apparatus that can be used in common with the apparatus used in the second distillation step is preferable.
  • the temperature and pressure in the first distillation step are appropriately selected depending on the organic solvent used in the working solution, and thus cannot be specified unconditionally, but the following conditions are preferably selected.
  • the pressure is preferably 1 k Pa to l 0 0 k Pa (atmospheric pressure), more preferably 5 to 30 k Pa.
  • the distillation temperature is determined as the conditions for distillation until the residual solvent amount is 5 wt% or less. Usually, when the temperature rises from about 50 to about L 0 0 ° C from the temperature at which the solvent starts distilling, the end of the first distillation is considered. For example, when the solvent starts to distill at 13 ° C. under a reduced pressure of 13 kPa, it is preferable to end the first distillation when reaching 200 ° C.
  • anthraquinones are distilled at a lower pressure than in the first distillation step.
  • the apparatus a batch distillation apparatus is preferable because a residence time of 1 hour or more is required.
  • the “residence time” means the time from the start to the stop of the distillation or take-out when the kettle temperature reaches 200 ° C., and the production of hydrogen peroxide according to the present invention.
  • the method includes both batch and continuous distillation.
  • the pressure is preferably 1 k Pa or less, more preferably 50 to 50 0 Pa, in order to increase the recovery rate of anthraquinones.
  • the distillation temperature is 200 ° C. or higher, preferably in the range of 200 ° C. to 300 ° C., and more preferably in the range of 230 ° C. to 2800 ° C.
  • the reaction of converting the by-products into anthraquinones or converting them into easily recyclable substances does not proceed sufficiently.
  • the hydrogenation catalyst is contaminated. This is preferable because it causes a reduction in the performance of the circulation process.
  • the residence time in distillation needs to be distilled over 1 hour after reaching 200 ° C, but from the viewpoint of operation, such as the entire process in batch distillation being completed within 24 hours. Usually, a range of 1 to 10 hours is preferable, and a range of 6 to 10 hours is more preferable.
  • the high boiling residue remaining in the distillation kettle increases in viscosity as the temperature decreases and becomes a solid state at room temperature. Therefore, it is preferable to collect it in a low viscosity state at a high temperature after distillation.
  • the product also undergoes various reactions and is recovered at a composition ratio slightly different from the amount in the raw material. Furthermore, during the distillation operation, a partial force of the compound that seems to be an adduct of anthraquinone and solvent proceeds, and the reaction that decomposes into anthraquinones, solvent, and water proceeds, and most of the reaction is completed in 1 hour at 20 ° C. It is. As a result, the recovery rate of anthraquinones gradually increases by distillation, and the recovery rate of the anthraquinones after the regeneration reaction exceeds the material balance. In addition, it can be confirmed that the solvent adduct is decomposed because the solvent and water gradually accumulate in the cold trap of the vacuum pipe, and that it is generated by distillation operation at 200 ° C or higher.
  • a working solution is prepared from the recovered solvent and anthraquinones and treated with a regenerated catalyst to obtain a working solution having a high “active substance”
  • a working solution is prepared by mixing the solvent recovered in the first distillation and the anthraquinones obtained in the second distillation.
  • a working solution is prepared by passing the prepared working solution through a fixed bed or a fluidized bed containing a regenerated catalyst, a part of the light boiling decomposition product is regenerated into active anthraquinones. It is preferable to circulate through the reaction because a single flow may not be sufficient.
  • the regenerated catalyst used here is preferably activated alumina or silica alumina, more preferably activated alumina.
  • the surface area and particle size of the regenerated catalyst are appropriately selected depending on the reaction conditions and equipment, but are not particularly limited.
  • the reaction temperature is preferably in the range of 0 ° C to 200 ° C, more preferably from 50 ° C to 150 ° C.
  • hydroquinones accumulate and the progress of some regeneration reactions slows down, so it is desirable to contact hydroquinones with oxygen or air in the course of circulation. .
  • the peroxidation can be achieved by introducing the working solution obtained by distillation into the hydrogen peroxide production apparatus. It is also possible to carry out a regeneration reaction while producing hydrogen.
  • the first distillation step in the present invention was performed on a small scale.
  • the working solution used for the production of hydrogen peroxide was extracted from the hydrogen peroxide production apparatus and used for the experiment.
  • preload the working solution with about 200 g in a 50 O ml flask equipped in the distillation kettle, and control the degree of vacuum to 13 kPa to control the temperature from room temperature. It was raised.
  • the moving solution was successively added, and the addition was stopped at a total charge of 100 g.
  • the addition of the working solution was stopped, the distillation was continued until the temperature of the distillation kettle reached 200 ° C., and the solvent was collected over about 2 hours.
  • the second distillation step in the present invention was performed on a small scale. Distillation of anthraquinones was performed at a lower pressure than in the first distillation step. A solid containing 300 g of anthraquinones remained in the flask provided in the distillation kettle following Example 1, and distillation was performed using this. Heating was performed by reducing the pressure to 100 Pa using a vacuum pump. At this time, the remaining solvent component is distilled off, which affects the degree of vacuum. The temperature was raised gradually and finally distillation was performed up to 2550 ° C ⁇ 100 Pa for 3 hours. The resulting distillate was 2 3 8 g. Also, the amount of the solvent water trapped in the trap was 2 g, which contradicts the result of Example 1 and indicates that it was produced during distillation. Conversely, when the anthraquinones in the residue left in the distillation kettle were examined by LC, it was 3% or less, indicating that the target compound was almost distilled off.
  • the regenerated catalyst contact step in the present invention was performed on a small scale.
  • a working solution was prepared using the anthraquinones distilled in Example 2 and the solvent recovered in Example 1. The concentration of this working solution was adjusted to the concentration of the original working solution and regenerated using an alumina fixed bed.
  • As activated alumina 2800 g of KH D-12 produced by Sumitomo Chemical Co., Ltd. was used, and the solution was passed through at 80 ° C.
  • Each composition analyzed by LC is shown below.
  • Example 3 Composition of each working solution (in parentheses is% by weight in solid)
  • Example 2 the same operation as in Example 1 was performed to obtain a solid containing 300 g of anthraquinones.
  • anthraquinones were distilled according to Example 2.
  • a thin-film distillation apparatus was used to confirm the difference in short residence time.
  • Anthraquinones were preliminarily heated to 70 ° C to form a molten state, and distilled at a temperature of 25 ° C and 10 O Pa. The drip rate was adjusted so that the residence time was approximately 10 minutes or less.
  • hot water at 80 ° C was used for the condenser to prevent the distillate from consolidating with the condenser.
  • the obtained distillate was 204 g.
  • Example 3 this distillate was circulated and regenerated by adjusting the recovered solvent so that it had the same concentration as the initial working solution.
  • the working solution obtained by reconstitution The amount of catalyst was reduced to 2 40 g for comparison, and the flow rate was set to 2 5 7 m 1 Zh. The ratio of the regeneration amount is also compared with the catalyst contact time.
  • Table 2 Comparative Example 1 Composition of each working solution (in parentheses is% by weight in solid)
  • Example 2 the same operation as in Example 1 was performed to obtain a solid containing 300 g of anthraquinones.
  • anthraquinones were distilled according to Example 2.
  • the distillation was finally performed at a temperature of 190 ° C for 3 hours. Since the distillation temperature was low, there were few decomposition products into water / solvent, and a small amount was trapped in the trap. In addition, the degree of vacuum finally became 5 O Pa or less.
  • the obtained distillate was 2 10 g, and a working solution was prepared according to Example 3 to perform circulation regeneration. However, since the working solution obtained by re-preparation was a small amount of 700 g, the catalyst amount was 2 4 7 for comparison.
  • the flow rate was set to 2 65 m 1. Combine the catalyst contact time and compare the regeneration ratio. Table 3, Comparative Example 2 Composition of each working solution (in parentheses is% by weight in solid)
  • the amount of recovered anthraquinones by distillation is less than that of Example 3 because of the effect of temperature.
  • the regeneration reaction progressed and the effective force was almost the same.
  • Example 3 In order to confirm the effect of the presence or absence of distillation, circulating liquid was passed through the alumina catalyst without distillation, following Example 3.
  • the working solution amount was 793 g according to Example 3.
  • Table 4 Comparative Example 3 Composition of each working solution (in parentheses is% by weight in solid)
  • the solvent component was recovered from 20 L of the working solution in an experimental apparatus having the same equipment configuration as in Example 1 except that the flask scale was scaled up to 10 L.
  • the difference from Example 1 is that a mantle heater is used in place of the oil bath, and the pipe diameter is increased according to the scale-up.
  • 3 L of working solution was charged in the flask in advance, and the temperature was raised from room temperature by controlling the vacuum to 1 3 kPa, and the amount of liquid in the flask decreased when distillation started. Therefore, the working solution was added in succession, and the addition was stopped when the total charged amount was 20 L (18.6 kg).
  • Example 5 Composition of each working solution (in parentheses is% by weight in solid)
  • Example 4 For the initial working solution (without distillation) used in Example 4, continuous circulation operation was similarly performed using the apparatus of Example 5. The changes in the composition of the working solution after 30 days of continuous operation are shown below. Table 6, Comparative Example 4 Composition of each working solution (in parentheses is% by weight in solid)
  • the effective component tended to decrease due to continuous operation. xiii) When only the alumina regeneration process was performed as in the state after continuous operation, the effective content in the working solution showed a decreasing trend, and the hydrogen peroxide production capacity further decreased in proportion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

本発明によれば、有機溶媒と、アルキル置換基を有するアントラキノンと、アルキル置換基を有するテトラヒドロアントラキノンとを含む作動溶液を、還元後に酸化することにより過酸化水素を製造する工程と、前記過酸化水素の製造に伴い副生する不活性物質を前記作動溶液から除去し、該不活性物質が除去された作動溶液を再度過酸化水素製造工程に循環する作動溶液再生工程とを有し、前記作動溶液再生工程が、i)大気圧またはそれ以下の圧力下で蒸留により前記有機溶媒を回収する第1の蒸留工程と、ii)次いでより低い圧力下で、200℃以上、滞留時間が1時間以上の蒸留により前記アントラキノン及びテトラヒドロアントラキノンを回収する第2の蒸留工程とを有することを特徴とする過酸化水素の製造方法が提供される。

Description

明細書 作動溶液の再生工程を含む過酸化水素の製造方法 技術分野
本発明は、 アントラキノン類として、 アルキル置換基を有するアントラキノン (以下、 単に 「アントラキノン」 と称することがある) とアルキル置換基を有す る 5, 6, 7 , 8—テトラヒドロアントラキノン (以下、 単に 「テトラヒドロア ントラキノン」 と称することがある) を含む作動溶液を繰り返し還元、 酸化する ことにより過酸化水素を製造する方法に関する。 更に詳細には、 過酸化水素の製 造に伴い副生する不活性物質を前記作動溶液から効率的に除去することを可能に した過酸化水素の製造方法に関する。 背景技術
<アントラキノン法過酸化水素製造法の概要 >
一般に、 アントラキノンまたはテトラヒドロアントラキノン (以下、 「アントラ キノン類」 と称することがある) は適当な有機溶媒に溶解して使用される。 有機 溶媒は単独または混合物として用いられるが、 通常は 2種類の有機溶媒の混合物 が使用される。 アントラキノン類を有機溶媒に溶かして調製した溶液は作動溶液 と呼ばれる。
工業的過酸化水素の製造方法としてアントラキノン法が知られている。 この方 法では、 アントラキノン類を有機溶媒に溶解して作動溶液を得、 水素化工程にお いてアントラキノン類を水素化触媒の存在下で水素により還元し、 アルキル置換 基を有するアントラヒドロキノンまたはアルキル置換基を有する 5, 6, 7 , 8 ーテトラヒドロアントラヒ ドロキノン (以下、 「アントラヒドロキノン類」 と称す ることがある) を生成させる。 次いで、 酸化工程においてアントラヒドロキノン 類をアントラキノン類に再度転ィ匕し、 同時に過酸化水素を生成させる。 作動溶液 中の過酸化水素は、 水抽出等の方法により、 作動溶液から分離される。 過酸化水 素が抽出された作動溶液は、再び水素化工程に戻され、循環プロセスを形成する。 <循環プロセスで生成する副生成物問題 >
過酸化水素製造のための作動溶液に含まれるアントラキノン類を還元してアン トラヒドロキノン類とし、 更に酸ィ匕してアントラキノン類として過酸化水素を製 造する操作を繰り返すうちに、 過酸ィ匕水素生成に寄与しないテトラヒドロアント ラキノンエポキシド、 テトラオキシアンスロン、 才キシアンスロン、 アントロン などの単量体副生物ゃァントラキノン類の溶剤付加物ゃァントラキノン類の重合 物などを生成する。 また、 溶媒成分の酸化物などの副生成物も生成する。 この様 な過酸ィ匕水素の製造に関与できない成分は 「不活性物質」 として分類される。 こ の不活性物質の増加は、 活性物質であるアントラキノン類 (アントラキノンとテ トラヒドロアントラキノン) の濃度低下の原因となり、 循環系の各工程能力が加 速度的に低下する。
例えば、 作動溶液中の 「活性物質」 の濃度を保とうとする場合、 「活性物質」 と 「不活性物質」 の合計である溶質成分の濃度が大きくなり、 液粘度の上昇や液 比重の上昇をもたらす。 液粘度の上昇は、 フィルターの通液抵抗の増大となり液 流量を確保することが難しくなる。 また、 水添や酸化の反応速度の低下を引き起 こす問題もある。 液比重の上昇は、 油層 '水層の比重差が小さくなるため作動溶 液から過酸化水素を抽出する際に液液界面の生成に支障をきたす。 更に、 単位流 量当りの生産量を確保する為に一定量の水添反応を行った場合、 活性物質の濃度 が低レ、と相対的に水添率が上昇してしまい高水添率の弊害である水添選択率の悪 化を引き起こす。 即ち、 不活性物質の濃度を抑制し活性物質の濃度を十分に高い 状態に維持した作動溶液が必要とされている。
く作動溶液を再生する従来技術とその問題点 >
作動溶液中の不活性物質の濃度を制御する公知方法は、 大きく 3つの類型に分 類される。 第一類は副生成物自体を出来るだけ生成させない方法であり、 第二類 は副生成物からアントラキノン類に再生する方法であり、 第三類は副生成物を除 去する方法である。第一類の方法には、 1一 1 .循環系を穏和な条件とする方法、 1 - 2 . 高選択性を有する水添触媒を用いる方法、 1一 3 . 化学的に安定な反応 媒体を用いる方法、 1— 4 . 化学的に安定な溶剤を用いる方法などがある。 第二 類の方法には、 2 - 1 . y—アルミナ、 活性アルミナ等により再生する方法 (特 開平 9一 2 7 8 4 1 9号)、 2— 2 . アルカリにより再生する方法などがある。第 三類の方法には、 3— 1 . 蒸留により除去する方法、 3— 2 . 晶析または抽出に より除去する方法、 3 - 3 .活性アルミナ等により吸着除去する方法などがある。 第一類の方法では経年的な作動溶液中の副生成物増加を阻止することは出来な い。 また、 一般的に、 副生成物の再生反応は非常に遅いため不可逆な副生成物を 生成する。 そのため第二類の方法でも難しく、 両者を組み合わせても経年的な作 動溶液中の副生成物増加を阻止することは困難である。
また、 副生成物の増加は、 水添触媒を汚染し選択率を悪化させるため第一類の 方法を阻害する。 更に、 第二類の方法である再生反応に使用される触媒も汚染す るため、 相乗的に作動溶液の悪化を引き起こす問題を秘めていた。 第三類の方法である副生成物を除去する方法の一つとして作動溶液の蒸留が挙 げられる。
特公昭 5 5— 2 3 7 6 2号では、 作動溶液中の溶剤を分離する第 1段蒸留、 次 Vヽでァントラキノン類及ぴモノアントラセン系の軽質物質を分離する第 2段蒸留 をする際に、 留出物の結晶化閉塞を防止する為に第 2段蒸留の溜出蒸気を冷溶剤 の液膜上で凝縮させることを特徴とする方法が開示されている (この特許では、 副生成物を分解物と称しているので下記の説明では記載の通り分解物と称する)。 この作動溶液中には、 溶剤、 アントラキノン類、 重質分解物 (ポリアントラセ ン)、軽質分解物及び場合によってヒドロキシ化合物を含有するとしている。 この 方法では、 軽質分解物はハイドロキノン類の溶解性助剤として有用であるので除 去せず、 有害な重質分解物のみを除去することを目的としている。 因みに、 特公 昭 5 5— 2 3 7 6 2号の実施例 1に記載されている留出物 1 4 5 g中にアントラ キノン類 (活性物質) は 6 8 gしカゝ含まれておらず、 軽質分解物 (不活性物質)が 半分以上(5 3重量%)含まれている。 即ち、 この方法では、 活性物質であるアン トラキノン類を高純度で回収することが出来ない問題がある。
第三類の別の方法として、 活性物質を選択的に抽出する方法 (特公平 4一 2 1 6 0 2 )、 不活性物質を選択的に抽出する方法 (特公平 5— 1 2 2 8 1 ) が開示さ れている。
特公平 4一 2 1 6 0 2では、 作動溶液を非環状炭化水素と混合し、 活性物質を 含む第 1層 (非環状炭化水素層) と不活性物質の多い第 2層に分離させることで 精製操作を行っている。 し力 し、 この方法では、 分離後に非環状炭化水素を留去 して除去する必要があり、 その量が多いことからエネルギー問題が生じる。
特公平 5 _ 1 2 2 8 1では、 作動溶液と液化 2酸ィ匕炭素を接触させて、 不活性 物質を 2酸ィヒ炭素層に抽出除去することで精製操作を行っている。 実施例 1の記 載によれば、 回収した液中のアントラキノン類の比率は 8 5重量%であり十分に 高い活性物質の濃度まで精製できていると言える。 伹し、 不活性物質であるェポ キシ誘導体もアントラキノン類としているので、 正確には 8 5 %全てが活性物質 ではない。 これは、 エポキシ化合物が再生反応により活性物質に変化しうる物質 であるために行われた計算上の処理と推察される。 しかし、 この方法での問題点 は、 液ィ匕 2酸ィヒ炭素を使用するために高圧反応器が必要であり、 また、 分離後の 液化 2酸化炭素の処理の問題がある。
以上のように、不活性物質を簡便に効率的に除去する方法は見出されておらず、 作動溶液中の不活性物質を低い濃度で制御する方法の開発が望まれている。 発明の開示
本発明者らは、大気圧またはそれ以下の圧力下で蒸留により有機溶媒を回収し、 次いでより低い圧力下で、 2 0 0 °C以上、 滞留時間が 1時間以上の蒸留によりァ ントラキノン類を回収し、 得られた全留出物を作動溶液として再使用することに より、 蒸留前の作動溶液中の副生成物を再生もしくは容易に再生できる物質に変 換できることを見出した。 更に、 全留出物から得られた作動溶液を再生触媒で処 理することにより、 有効成分であるアントラキノン類に再生され有効ァントラキ ノン類を高濃度に含む作動溶液が得られることを見出した。
即ち、 本発明によれば、 アルキル置換基を有するアントラキノンと、 アルキル 置換基を有するテトラヒドロアントラキノンとを含む作動溶液を、 還元後に酸化 することにより過酸化水素を製造する工程と、 前記過酸化水素の製造に伴い副生 する不活性物質を前記作動溶液から除去し、 該不活性物質が除去された作動溶液 を再度過酸ィ匕水素製造工程に循環する作動溶液再生工程とを有し、 前記作動溶液 再生工程が、 i) 大気圧またはそれ以下の圧力下で蒸留により前記有機溶媒を回収 する第 1の蒸留工程と、 ii)次いでより低い圧力下で、 2 0 0 °C以上、滞留時間が 1時間以上の蒸留により前記アントラキノン及ぴテトラヒドロアントラキノンを 回収する第 2の蒸留工程とを有することを特徴とする過酸化水素の製造方法を提 供することができる。
本発明の好ましい態様では、 更に、 前記第 1および第 2の蒸留工程で回収され た有機溶媒、 アントラキノン及ぴテトラヒドロアントラキノンを用いて調製した 作動溶液を再生触媒に接触させる工程を有する。 本発明の好ましい態様では、 前 記再生触媒の主成分は、 アルミナまたはシリカアルミナである。 また、 本発明の 好ましい態様では、前記第 1の蒸留工程における圧力が、 1 kPaから lOOkPaの範 囲である。 また、 本発明の好ましい態様では、 前記第 2の蒸留工程における圧力 、 l kPa以下である。 また、 本発明の好ましい態様では、 前記第 2の蒸留工程 における温度が、 2 0 0 °Cから 3 0 0 °Cの範囲である。 また、 本発明の好ましい 態様では、 前記第 2の蒸留工程における滞留時間が、 1時間から 1 0時間の範囲 である。 更に、 本発明の好ましい態様では、 前記アルキル置換基がアミル基であ る。
本発明の好ましい態様によれば、 不活性物質の蓄積した作動溶液から活性物質 であるアントラキノン類を効率的に回収でき、 更に再生反応が容易に進行する作 動溶液を得ることができる。この結果、活性物質の濃度が高い作動溶液が得られ、 過酸化水素製造の各工程の能力を高い状態に維持することができる。 発明を実施するための最良の形態
以下に、 本発明を詳細に説明する。 以下の実施の形態は、 本発明を説明するた めの例示であり、 本発明をこの実施の形態にのみ限定する趣旨ではない。 本発明 は、 その要旨を逸脱しない限り、 種々の形態で実施をすることができる。
本発明の過酸化水素の製造方法は、 有機溶媒と、 アルキル置換基を有するアン トラキノンと、 アルキル置換基を有するテトラヒドロアントラキノンとを含む作 動溶液を、 還元後に酸ィ匕することにより過酸化水素を製造する工程と、 前記過酸 化水素の製造に伴 ヽ副生する不活性物質を前記作動溶液から除去し、 該不活性物 質が除去された作動溶液を再度過酸化水素製造工程に循環する作動溶液再生工程 とを有する。
上述したように、 アントラキノン類を有機溶媒に溶かして調製した溶液は作動 溶液と呼ばれる。
本発明で使用するアルキル置換基を有するアントラキノンは、 ェチルアントラ キノン、 t -プチルアントラキノン、 アミルアントラキノンなどが例示される。 こ れらは 1種単独で用いてもよく、 2種以上を混合して用いてもよい。 また、 アル キル置換基を有するテトラヒドロアントラキノンとしては、 ェチルテトラヒドロ アントラキノン、 t -プチルテトラヒドロアントラキノン、 アミノレテトラヒドロア ントラキノンなどが例示される。 これらは 1種単独で用いてもよく、 2種以上を 混合して用いてもよい。
本発明において作動溶液を調製するために用いられる有機溶媒は、 特に限定さ れるものではないが、 好ましい有機溶媒としては、 芳香族炭化水素と高級アルコ ールとの組み合わせ、 芳香族炭化水素とシク口へキサノールもしくはアルキルシ ク口へキサノールのカルボン酸エステルとの組み合わせ、 芳香族炭化水素と四置 換尿素もしくは環状尿素との組み合わせなどが例示される。
本発明の過酸化水素の製造方法は、 前記作動溶液再生工程が、 i)大気圧または それ以下の圧力下で蒸留により前記有機溶媒を回収する第 1の蒸留工程と、 ii) 次いでより低い圧力下で、 2 0 0 °C以上、 滞留時間が 1時間以上の蒸留により前 記アントラキノン及びテトラヒドロアントラキノンを回収する第 2の蒸留工程と を有することを特徴とする。 更に、 前記第 1および第 2の蒸留工程で回収された 有機溶媒、 アントラキノン及びテトラヒドロアントラキノンを用いて調製した作 動溶液を再生触媒に接触させる工程を有することが好ましい。
本発明の作動溶液再生工程における第 1の蒸留工程は、 大気圧またはそれ以下 の圧力で作動溶液中の有機溶媒を蒸留することからなる。 装置としては、 一般的 に用いられる蒸留設備が使用でき特に制限は無い。 例えば、 バッチ蒸留装置、 連 続蒸留装置、 薄膜蒸留装置などが挙げられるが、 第 2の蒸留工程で使用される装 置と共用できるバッチ蒸留装置が好適である。 第 1の蒸留工程における温度と圧 力は、 作動溶液に用いられている有機溶媒により適.宜選択されるので一概には規 定できないが、 以下のような条件が好ましく選択される。 即ち、 圧力としては、 1 k P a〜l 0 0 k P a (大気圧)が好ましく、 5〜 3 0 k P aがより好ましい。 蒸留温度は、残留溶媒量が 5 wt%以下になるまで蒸留する条件として決定される。 通常は、 溶媒の留出開始の温度から 5 0〜: L 0 0 °C程度の温度上昇した時点を第 1の蒸留終了とみなす。例えば、 1 3 k Paの減圧下で 1 3 0 °Cで溶媒が留出開始 した場合には、 2 0 0 °Cに達した時点で第 1の蒸留を終了するのが好ましい。 次に第 2の蒸留工程では、 第 1の蒸留工程よりも低い圧力でアントラキノン類 を蒸留することになる。 装置としては、 1時間以上の滞留時間が必要であること からバッチ蒸留装置が好ましい。 なお、 本願明細書において、 「滞留時間」 とは、 釜温 2 0 0 °Cに達して、 留出又は缶出の開始から停止までの時間を意味し、 本発 明の過酸化水素の製造方法には、 バッチ蒸留および連続蒸留の両方が含まれる。 圧力は、 アントラキノン類の回収率を上げるために 1 k P a以下が好ましく、 5 0〜5 0 0 P aがより好ましい。 蒸留温度は、 2 0 0 °C以上であるが、 2 0 0 °C 〜3 0 0 °Cの範囲が好ましく、 2 3 0 °C〜2 8 0 °Cの範囲がより好ましい。 2 0 0 °c未満では副生成物のアントラキノン類への再生、 もしくは容易に再生できる 物質へ変換される反応が十分に進行しない。 逆に、 3 0 0 °Cを超える温度では、 高沸残渣から酸性不純物の分解物が生成して留出するようになり、 作動溶液を調 製して用いた場合に、 水添触媒を汚染して循環プロセスの性能低下を引き起こす ので好ましくなレ、。 蒸留での滞留時間は、 2 0 0 °Cに達してから 1時間以上かけ て蒸留する必要があるが、 バッチ蒸留での全工程を 2 4時間以内に終了される等 の操作上の観点から通常 1〜 1 0時間の範囲が好ましく、 6〜 1 0時間の範囲が より好ましい。 また、 蒸留釜に残った高沸残渣は、 温度低下に伴い粘性を増し、 室温時には固体状態になるため、 蒸留後の高温で粘度の低い状態のうちに回収す ることが好ましい。
本発明の特徴である 2 0 0 °C以上で 1時間以上の滞留時間をかけて蒸留を行う ことにより、 原料液中のアントラキノンは、 ほぼ全量が留出回収される。 テトラ ヒドロアントラキノンは、 大半が回収されるが、 一部が脱水素反応によってアン トラキノンに変換されて回収される。 また、 テトラヒドロアントラキノンェポキ シドは、 テトラヒドロアントラキノンに変化するかもしくは次の再生反応処理で アントラキノンに容易に変化しうる物質になっていると思われる。 従って、 留出 液中にテトラヒドロアントラキノンエポキシドは、 殆ど回収されない。 他の副生 成物も種々の反応を起こし、原料中の量とは、若干異なった組成比で回収される。 更に、蒸留操作中にアントラキノンと溶媒の付加物と思われる化合物の一部力 アントラキノン類と溶媒、 水に分解する反応が進行し、 2 0 0 °C、 1時間で大半 の反応が終了するようである。 この結果、 蒸留により徐々にアントラキノン類の 回収率が増加し、 再生反応後のアントラキノン類としては物質収支以上の回収率 となる。 なお、 溶媒付加物が分解していることは、 真空配管のコールドトラップ に溶媒と水が徐々に溜まってくることから 2 0 0 °C以上の蒸留操作で発生してい ると確認できる。
次に、 回収した溶媒とアントラキノン類から作動溶液を調製し、 再生触媒で処 理して 「活性物質」 の高い作動溶液にする再生触媒接触工程について説明する。 先ず、 第 1の蒸留で回収した溶媒と第 2の蒸留で得られたアントラキノン類を 混合して作動溶液を調製する。 この調製した作動溶液を再生触媒の入つた固定床 もしくは流動床に通すことにより軽沸の分解物の一部を活性なアントラキノン類 に再生する。 反応は、 1回の通液では不十分な場合があるので循環通液すること が好ましい。
ここで用いられる再生触媒としては、 活性アルミナもしくはシリカアルミナが 好ましく、 活性アルミナがより好ましい。 再生触媒の表面積や粒径は、 反応条件 や装置によって適宜選択されるが、 特に制限は無い。 反応温度は、 0 °Cから 2 0 0 °Cの範囲が好ましく、 5 0 °C〜1 5 0 °Cがより好ましい。 また、 反応の進行に より、 ハイドロキノン類が蓄積し一部の再生反応の進行が遅くなるので、 循環通 液の途中で酸素もしくは空気と接触させてハイドロキノン類を酸ィヒすることが望 ましい。また、このとき生成する過酸化水素を順次取り除きながら行ってもよい。 更に、 過酸ィ匕水素製造装置において、 活性アルミナもしくはシリカアルミナを 再生触媒として使用している場合には、 蒸留で得られた作動溶液を過酸化水素製 造装置に投入することにより、 過酸化水素を製造しつつ再生反応を行うことも出 来る。
以下に実施例により、 本発明をより詳細に説明するが、 本発明はこれらに限定 されるものではない。
(実施例 1 )
本発明における第 1の蒸留工程を小スケールで行った。 過酸化水素製造装置よ り過酸ィ匕水素の製造に使用している作動溶液 1 0 0 p gを抜出、実験に使用した。 第 1段階の溶媒回収は、 蒸留釜に備えられた 5 0 O m lフラスコ内に 2 0 0 gほ ど作動溶液をあらかじめ仕込み、 1 3 k P aに真空度をコントロールして室温か ら温度を上げていった。 留出が始まるとフラスコ内の液量が減少していくので作 動溶液を逐次追加していき仕込み総量 1 0 0 0 gで追加を停止した。 作動溶液の 追加を停止したならば、 蒸留釜の温度が 2 0 0 °Cになるまで蒸留を継続し、 約 2 時間を掛けて溶媒を回収した。 蒸留釜のフラスコに残つたアントラキノン類中の 溶媒成分を G Cにて分析した結果 1 %以下であり、 溶媒を 7 0 0 g回収できた。
(実施例 2 )
本発明における第 2の蒸留工程を小スケールで行った。 第 1の蒸留工程より低 い圧力でアントラキノン類の蒸留を実施した。 実施例 1の続きで蒸留釜に備えら れたフラスコ内には 3 0 0 gのアントラキノン類を含む固体が残っており、 これ を用いて蒸留を行った。真空ポンプにて 1 0 0 P aまで減圧にして加熱を行った。 このときわずかに残つていた溶媒成分が留去され真空度に影響をあたえる。 温度 を緩やかにあげていき最終的に 2 5 0 °C · 1 0 0 P aまで 3時間を掛けて蒸留を 行い、得られた留出物は 2 3 8 gであった。またトラップに捕捉されていた溶媒' 水は 2 gであり、これは実施例 1の結果と矛盾し、蒸留中に生成したことを示す。 逆に蒸留釜に残された残渣中のアントラキノン類を L Cにて調べたところ 3 %以 下であり、 目的化合物をほぼ留去できたことを示す。
(実施例 3 )
本発明における再生触媒接触工程を小スケールで行った。 蒸留の効果を確認す るため、 まず実施例 2において留出したアントラキノン類および実施例 1におい て回収した溶媒を用いて作動溶液を調製した。 この作動溶液の濃度はもとの作動 溶液の濃度に調整し、 アルミナ固定床を用いて再生を行った。 活性アルミナは住 友ィ匕学製 KH D— 1 2を 2 8 0 g使用し、 8 0 °Cにて通液を行った。 調製した作 動溶液は 3 0 0 m l / hの流量(触媒への接触時間 1時間)で 1 2時間循環通液を 行レ\バッファタンクにて酸素吹き込みを行うことにより目的の作動溶液を得た。 L Cにて分析された各組成を以下に示す。
表 1、 実施例 3 各作動溶液の組成 (括弧内は固体中の重量 %)
Figure imgf000010_0001
表 1より明らかのように、不明分を多く含む i)初期の作動溶液に対し蒸留を行 うと、 蒸留後における ii)アルミナ通液前の作動溶液のアントラキノン類 (A) は増加し、 一方、 テトラヒドロキノン類 (B ) は減少している。 これはアントラキノン類 への再生反応が起きているためであるが、 実効分(A+ Bの項)よりそれ以上にァ ントラキノン類は再生されて増加しており、 溶媒付加物等の分解により物質収支 以上に増加していることを示している。 また、 続いて実施したアルミナ通液によ り得られた iii)アルミナ通液後の作動溶液も同様に実効分が 79%から 88%へと、 物質収支以上に増加したことがわかる。 このようにして得られた作動溶液はアン トラキノン類の量が多く、 過酸化水素製造に有効に使用できる。
<比較例 1〉
まず実施例 1と同様の操作を行い、 3 0 0 gのアントラキノン類を含む固体を 得た。 次に実施例 2に準じてアントラキノン類の蒸留を行った。 ただし短い滞留 時間での差を確認すべく薄膜蒸留装置を使用した。 アントラキノン類はあらかじ め 7 0 °Cに加温し溶融状態として、 温度を 2 5 0 °C、 1 0 O Paの条件下で蒸留を 行った。 滞留時間はおよそ 1 0分以下になるように滴下速度を調整して行った。 また留出物がコンデンサで固結するのを防ぐためにコンデンサには 8 0 °Cの温水 を用いた。 得られた留出物は 2 0 4 gであった。
この留出物を実施例 3に準じて、 初期の作動溶液と同じ濃度になるように回収 溶媒で調整して循環再生を行った。 ただし、 再調製して得られた作動溶液が 6 8 0 gと少なくなつたので、 比較のため触媒量を 2 4 0 gと少なくし、 流量を 2 5 7 m 1 Zhとした。 触媒接触時間を合わせて再生量の比を併せて比較する。 表 2、 比較例 1 各作動溶液の組成 (括弧内は固体中の重量 %)
Figure imgf000011_0001
熱履歴の少ない薄膜蒸留装置により得られた留出物は 2 0 4 gと少なく、 同時 に得られた蒸留残查のアントラキノン類を L Cにて分析したところ残查中に 2 4 % ( 2 3 g ) 残っていた。 これは蒸留前後での物質収支通りであり、 薄膜蒸留 でのアントラキノン類の回収率は 9 0 %程度であった。 iv)アルミナ通液前の作動 溶液と V)アルミナ通液後の作動溶液を比較すると、 若干の実効分のわずかな増加 が見られるのみであった。 く比較例 2〉
まず実施例 1と同様の操作を行い、 3 0 0 gのアントラキノン類を含む固体を 得た。 次に実施例 2に準じてアントラキノン類の蒸留を行つた。 ただし蒸留は最 終的に温度を 1 9 0 °Cとして 3時間かけて蒸留を実施した。 蒸留温度が低いため に水 ·溶媒への分解物が少なく、 トラップに捕捉された量もわずかであった。 ま た、 その影響か真空度は最終的に 5 O Pa以下になった。得られた留出物は 2 1 0 gであり、 実施例 3に準じて作動溶液を調製して循環再生を行った。 ただし、 再 調製して得られた作動溶液が 7 0 0 gと少量なので、 比較のため触媒量を 2 4 7 gと少なくし、 流量を 2 6 5 m 1 とした。 触媒接触時間を合わせて再生量の 比を併せて比較する。 表 3、 比較例 2 各作動溶液の組成 (括弧内は固体中の重量 %)
Figure imgf000012_0001
蒸留によるアントラキノン類の回収量が実施例 3に比較して少ないのはやはり 温度の影響である。また、 vi)アルミナ通液前の作動溶液と vii)アルミナ通液後の 作動溶液を比較すると、 再生反応は進んでレ、る力 実効分はほとんど変わらなか つた。
<比較例 3 >
蒸留有無による効果の確認のため、 蒸留なしでアルミナ触媒への循環通液を実 施例 3にならつて実施した。 なお作動溶液量は実施例 3に合わせて 7 9 3 gとし て行った。 表 4、 比較例 3 各作動溶液の組成 (括弧内は固体中の重量 %)
Figure imgf000013_0001
アルミナ触媒を用いた循環通液による作動溶液の再生だけでは、 エポキシ誘導 体の再生反応によってアントラキノン類などの実効分はやや増加するが、 これだ けでは作動溶液を十分には再生できない結果であった。 また、 比較例 1, 2のァ ルミナ触媒を用レ、た循環通液による作動溶液の再生量と本質的には大きく違わな かつた。 (実施例 4 )
フラスコスケールを 1 0 Lまでスケールァップした以外は、 実施例 1と同じ機 器構成を持つ実験装置にて作動溶液 2 0 L より溶媒成分の回収を行った。 実施例 1と異なるのはオイルバスに代わりマントルヒーターを使用し、 配管径をスケー ルアップに合わせて大きくした点である。 実施例 1と同様にあらかじめフラスコ 内に 3 Lの作動溶液を仕込み、 1 3 k P aに真空度をコントロールして室温から 温度を上げていき、 留出が始まるとフラスコ内の液量が減少していくので作動溶 液を逐次追加していき仕込み総量 2 0 L ( 1 8 . 6 k g ) で追加を停止した。 作 動溶液の追加が停止したならば、 蒸留釜の温度が 2 0 0 °Cになるまで蒸留を継続 し、 約 8時間を掛けて溶媒を回収した。 蒸留釜に残ったアントラキノン類中の溶 媒成分を G Cにて分析した結果 1 %以下であり、 溶媒を 1 3 K g回収できた。 続 いて蒸留釜のフラスコのなかに残った 5 . 6 k gのアントラキノン類をもちいて 第 2の蒸留を実施した。 フラスコスケールアップに合わせて、 真空ポンプの能力 を大きくした装置を用いて実施例 2に準じて実施した。 最終的に 2 5 0 °C、 1 0 0 P aの条件になるまで 6時間をかけて蒸留を行い、 4 . 4 k gのアントラキノ ン類を回収した。 受器であるフラスコを湯浴にて加熱して内容物を溶解後に回収 した溶媒を加えて、 使用した作動溶液と同濃度 (3 0 0 g -固体成分/ L-作動溶 液) に調整を行い 1 4 . 7 k gの作動溶液を得た。
上記、 操作を 3回行い、 合わせて約 4 7 Lの作動溶液を得た。
(実施例 5 )
実施例 4において調製した作動溶液 4 5 Lの循環運転を行レヽ、 作動溶液の組成 変化を調べた。 この連続循環式の装置を用いて 3 0日間の連続運転後の組成比較 を以下に示す。 表 5、 実施例 5 各作動溶液の組成 (括弧内は固体中の重量 %)
Figure imgf000014_0001
xi i)連続運転後の状態での過酸化水素の製造能力は、 X)蒸留前の作動溶液を過 酸化水素製造能力の 1 3 0 %まで向上していた。
<比較例 4 >
実施例 4において使用した初期の作動溶液 (蒸留なし) に対し、 実施例 5の装 置を用いて同様に連続循環運転を実施した。 30日間連続運転後の作動溶液の組成 変化を以下に示す。 表 6、 比較例 4 各作動溶液の組成 (括弧内は固体中の重量 %)
Figure imgf000015_0001
連続運転によって実効分が減少傾向になった。 xiii)連続運転後の状態のように 単にアルミナ再生工程のみを行つた場合、作動溶液中の実効分は減少傾向を示し、 それに比例し過酸化水素製造能力もさらに低下した。

Claims

請求の範囲
1 . 有機溶媒と、 アルキル置換基を有するアントラキノンと、 アルキル置換基 を有するテトラヒドロアントラキノンとを含む作動溶液を、 還元後に酸化するこ とにより過酸化水素を製造する工程と、 前記過酸化水素の製造に伴い副生する不 活性物質を前記作動溶液から除去し、 該不活性物質が除去された作動溶液を再度 過酸化水素製造工程に循環する作動溶液再生工程とを有し、
前記作動溶液再生工程が、 i)大気圧またはそれ以下の圧力下で蒸留により前記 有機溶媒を回収する第 1の蒸留工程と、 ii)次いでより低い圧力下で、 2 0 0 °C以 上、 滞留時間が 1時間以上の蒸留により前記アントラキノン及びテトラヒドロア ントラキノンを回収する第 2の蒸留工程とを有することを特徴とする過酸化水素 の製造方法。
2. 前記第 1および第 2の蒸留工程で回収された有機溶媒、 アントラキノン及 びテトラヒドロアントラキノンを用いて調製した作動溶液を再生触媒に接触させ る工程を有する請求項 1に記載の過酸化水素の製造方法。
3 . 前記再生触媒の主成分が、 アルミナまたはシリカアルミナである請求項 2 に記載の過酸化水素の製造方法。
4. 前記第 1の蒸留工程における圧力が、 1 kPaから lOOkPaの範囲である請求 項 1から 3のいずれかに記載の過酸ィ匕水素の製造方法。
5 . 前記第 2の蒸留工程における圧力が、 l kPa以下である請求項 1から 4の いずれかに記載の過酸化水素の製造方法。
6 . 前記第 2の蒸留工程における温度が、 2 0 0 °Cから 3 0 0 °Cの範囲である 請求項 1から 5のいずれかに記載の過酸化水素の製造方法。
7 . 前記第 2の蒸留工程における滞留時間が、 1時間から 1 0時間の範囲であ ' る請求項 1から 6のいずれかに記載の過酸化水素の製造方法。
8 . 前記アルキル置換基がァミル基である請求項 1から 7のいずれかに記載の 過酸化水素の製造方法,
PCT/JP2007/059813 2006-05-09 2007-05-07 作動溶液の再生工程を含む過酸化水素の製造方法 WO2007129769A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008514532A JP5233668B2 (ja) 2006-05-09 2007-05-07 作動溶液の再生工程を含む過酸化水素の製造方法
KR1020087028986A KR101362495B1 (ko) 2006-05-09 2007-05-07 작동용액의 재생공정을 포함하는 과산화수소의 제조방법
EP07743248.2A EP2022757B1 (en) 2006-05-09 2007-05-07 Process for hydrogen peroxide production including step for regeneration of working solution
US12/226,280 US20090169469A1 (en) 2006-05-09 2007-05-07 Process for Hydrogen Peroxide Production Including Step for Regeneration of Working Solution
CN2007800130959A CN101421184B (zh) 2006-05-09 2007-05-07 含工作溶液再生工序的过氧化氢制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-129860 2006-05-09
JP2006129860 2006-05-09

Publications (1)

Publication Number Publication Date
WO2007129769A1 true WO2007129769A1 (ja) 2007-11-15

Family

ID=38667874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059813 WO2007129769A1 (ja) 2006-05-09 2007-05-07 作動溶液の再生工程を含む過酸化水素の製造方法

Country Status (7)

Country Link
US (1) US20090169469A1 (ja)
EP (1) EP2022757B1 (ja)
JP (1) JP5233668B2 (ja)
KR (1) KR101362495B1 (ja)
CN (1) CN101421184B (ja)
TW (1) TWI383951B (ja)
WO (1) WO2007129769A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025735A1 (ja) * 2013-08-23 2015-02-26 三菱瓦斯化学株式会社 過酸化水素製造に使用される作動溶液の再生方法、並びに再生した作動溶液を用いた過酸化水素の製造方法
KR20190028289A (ko) 2017-09-08 2019-03-18 미츠비시 가스 가가쿠 가부시키가이샤 과산화수소의 제조 방법
KR20190028290A (ko) * 2017-09-08 2019-03-18 미츠비시 가스 가가쿠 가부시키가이샤 과산화수소 제조용 작동 용액의 조제 방법
JP2020007201A (ja) * 2018-07-11 2020-01-16 三菱瓦斯化学株式会社 過酸化水素水溶液の製造方法
WO2020105500A1 (ja) * 2018-11-20 2020-05-28 三菱瓦斯化学株式会社 作動溶液の処理方法
JP2022535021A (ja) * 2019-06-21 2022-08-04 ヒソン カタリスツ コーポレイション 過酸化水素合成及び再生触媒、並びにその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103803502B (zh) * 2012-11-07 2015-12-16 中国石油化工股份有限公司 一种蒽醌法生产过氧化氢的工作液再生方法
CN104418307B (zh) * 2013-08-22 2016-06-22 中国石油化工股份有限公司 一种蒽醌法生产双氧水多段氢化工艺
CN108101002B (zh) * 2018-01-25 2021-09-14 江苏理文化工有限公司 一种提高过氧化氢成品品质的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4862699A (ja) * 1971-11-18 1973-09-01
JPS5523762A (en) 1978-08-07 1980-02-20 Meidensha Electric Mfg Co Ltd Detecting spark on brush of rotary electric machine
JPH0421602A (ja) 1990-05-14 1992-01-24 Shin Etsu Chem Co Ltd 徐放性フェロモン製剤
JPH0512281A (ja) 1991-02-25 1993-01-22 Toshiba Corp 文書作成装置
JPH09278419A (ja) 1996-04-12 1997-10-28 Mitsubishi Gas Chem Co Inc 過酸化水素製造に使用される作動溶液の再生方法
JPH09278420A (ja) * 1996-04-12 1997-10-28 Mitsubishi Gas Chem Co Inc 過酸化水素製造に使用される作動溶液の再生方法
JP2000509701A (ja) * 1996-10-25 2000-08-02 プロカタリーズ 過酸化水素の合成工程の際にアントラキノンを再生する方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1224713B (de) * 1962-09-26 1966-09-15 Kali Chemie Ag Verfahren zum Reinigen einer zur Herstellung von Wasserstoffperoxyd nach dem Anthrachinon-verfahren benutzten Kreislaufloesung
US3949063A (en) * 1971-11-18 1976-04-06 Oxysynthese Regeneration of a anthraquinone working solution by continuous multi-stage thin film distillation
USH1787H (en) * 1996-04-12 1999-02-02 Ogasawara; Kazuharu Regeneration method of working solution
CN1166450C (zh) * 2002-12-24 2004-09-15 华南理工大学 纳米孔径硅胶吸附剂材料的制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4862699A (ja) * 1971-11-18 1973-09-01
JPS5523762A (en) 1978-08-07 1980-02-20 Meidensha Electric Mfg Co Ltd Detecting spark on brush of rotary electric machine
JPH0421602A (ja) 1990-05-14 1992-01-24 Shin Etsu Chem Co Ltd 徐放性フェロモン製剤
JPH0512281A (ja) 1991-02-25 1993-01-22 Toshiba Corp 文書作成装置
JPH09278419A (ja) 1996-04-12 1997-10-28 Mitsubishi Gas Chem Co Inc 過酸化水素製造に使用される作動溶液の再生方法
JPH09278420A (ja) * 1996-04-12 1997-10-28 Mitsubishi Gas Chem Co Inc 過酸化水素製造に使用される作動溶液の再生方法
JP2000509701A (ja) * 1996-10-25 2000-08-02 プロカタリーズ 過酸化水素の合成工程の際にアントラキノンを再生する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2022757A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160048077A (ko) 2013-08-23 2016-05-03 미츠비시 가스 가가쿠 가부시키가이샤 과산화수소 제조에 사용되는 작동 용액의 재생 방법, 및 재생한 작동 용액을 사용한 과산화수소의 제조 방법
JPWO2015025735A1 (ja) * 2013-08-23 2017-03-02 三菱瓦斯化学株式会社 過酸化水素製造に使用される作動溶液の再生方法、並びに再生した作動溶液を用いた過酸化水素の製造方法
US10138123B2 (en) 2013-08-23 2018-11-27 Mitsubishi Gas Chemical Company, Inc. Method for regenerating working solution used for production of hydrogen peroxide and method for producing hydrogen peroxide using regenerated working solution
WO2015025735A1 (ja) * 2013-08-23 2015-02-26 三菱瓦斯化学株式会社 過酸化水素製造に使用される作動溶液の再生方法、並びに再生した作動溶液を用いた過酸化水素の製造方法
KR102610949B1 (ko) 2017-09-08 2023-12-06 미츠비시 가스 가가쿠 가부시키가이샤 과산화수소 제조용 작동 용액의 조제 방법
KR20190028289A (ko) 2017-09-08 2019-03-18 미츠비시 가스 가가쿠 가부시키가이샤 과산화수소의 제조 방법
KR20190028290A (ko) * 2017-09-08 2019-03-18 미츠비시 가스 가가쿠 가부시키가이샤 과산화수소 제조용 작동 용액의 조제 방법
JP2019048739A (ja) * 2017-09-08 2019-03-28 三菱瓦斯化学株式会社 過酸化水素製造用作動溶液の調製方法
JP2019048740A (ja) * 2017-09-08 2019-03-28 三菱瓦斯化学株式会社 過酸化水素の製造方法
JP2020007201A (ja) * 2018-07-11 2020-01-16 三菱瓦斯化学株式会社 過酸化水素水溶液の製造方法
JP7322363B2 (ja) 2018-07-11 2023-08-08 三菱瓦斯化学株式会社 過酸化水素水溶液の製造方法
JPWO2020105500A1 (ja) * 2018-11-20 2021-09-30 三菱瓦斯化学株式会社 作動溶液の処理方法
JP7327414B2 (ja) 2018-11-20 2023-08-16 三菱瓦斯化学株式会社 作動溶液の処理方法
WO2020105500A1 (ja) * 2018-11-20 2020-05-28 三菱瓦斯化学株式会社 作動溶液の処理方法
JP2022535021A (ja) * 2019-06-21 2022-08-04 ヒソン カタリスツ コーポレイション 過酸化水素合成及び再生触媒、並びにその製造方法
JP7336539B2 (ja) 2019-06-21 2023-08-31 ヒソン カタリスツ コーポレイション 過酸化水素合成及び再生触媒、並びにその製造方法

Also Published As

Publication number Publication date
JP5233668B2 (ja) 2013-07-10
EP2022757B1 (en) 2015-07-29
CN101421184A (zh) 2009-04-29
KR101362495B1 (ko) 2014-02-13
JPWO2007129769A1 (ja) 2009-09-17
EP2022757A1 (en) 2009-02-11
US20090169469A1 (en) 2009-07-02
TW200744947A (en) 2007-12-16
CN101421184B (zh) 2011-04-13
KR20090016561A (ko) 2009-02-16
TWI383951B (zh) 2013-02-01
EP2022757A4 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
WO2007129769A1 (ja) 作動溶液の再生工程を含む過酸化水素の製造方法
JPH1112222A (ja) アクリル酸の回収方法
JP7082763B2 (ja) ジメチルスルホキシドを蒸留する方法、および、多段式蒸留塔
JP2009515967A (ja) クメンハイドロパーオキサイド分解生成物の蒸留による回収法
JPS62133B2 (ja)
JP2004521923A (ja) 有機溶媒からのカプロラクタムの回収および精製方法
JP4760677B2 (ja) アントラキノン法による過酸化水素の製造方法
WO2015025735A1 (ja) 過酸化水素製造に使用される作動溶液の再生方法、並びに再生した作動溶液を用いた過酸化水素の製造方法
JPH08134011A (ja) メタクリル酸の精製方法
JPH01215704A (ja) 操作化合物精製方法
JPH0345726B2 (ja)
JP2008087992A (ja) アントラキノン法による過酸化水素の製造方法
JP2002193875A (ja) メタクリル酸の回収方法
EP1484310B1 (en) Method for production of acrylic acid
JPS6312458B2 (ja)
JPS6059889B2 (ja) ハイドロキノンの回収方法
JP3957297B2 (ja) アクリル酸の製造方法
CN112209903A (zh) 一种环氧丙烷的纯化方法
JP3971989B2 (ja) 重合禁止剤の回収方法及びアクリル酸の製造方法
JP2005350389A (ja) アニリンの製造方法
JPS60174733A (ja) 1,3−ブタジエンの製造方法
JP2004175797A (ja) テレフタル酸の製造方法
JPH0735408B2 (ja) ヒドロキシル化ポリブタジエンの製造方法
JPH07233104A (ja) テトラフルオロエチレンの製造方法
JPS6136501B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780013095.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12226280

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008514532

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007743248

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087028986

Country of ref document: KR