WO2007126027A1 - カラーフィルタ検査方法およびカラーフィルタ製造方法並びにカラーフィルタ検査装置 - Google Patents

カラーフィルタ検査方法およびカラーフィルタ製造方法並びにカラーフィルタ検査装置 Download PDF

Info

Publication number
WO2007126027A1
WO2007126027A1 PCT/JP2007/059120 JP2007059120W WO2007126027A1 WO 2007126027 A1 WO2007126027 A1 WO 2007126027A1 JP 2007059120 W JP2007059120 W JP 2007059120W WO 2007126027 A1 WO2007126027 A1 WO 2007126027A1
Authority
WO
WIPO (PCT)
Prior art keywords
color filter
imaging
light
angle
substrate
Prior art date
Application number
PCT/JP2007/059120
Other languages
English (en)
French (fr)
Inventor
Kenji Itoh
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US12/226,681 priority Critical patent/US7889358B2/en
Priority to JP2008513278A priority patent/JP4768014B2/ja
Publication of WO2007126027A1 publication Critical patent/WO2007126027A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography

Definitions

  • Color filter inspection method color filter manufacturing method, and color filter inspection device
  • the present invention relates to a method for detecting unevenness of a color filter of a liquid crystal display used in a color television, a personal computer, etc., a method for manufacturing a color filter with little unevenness, and an apparatus for inspecting unevenness of a color filter.
  • the present invention relates to a method for inspecting a color filter, etc., in which unevenness that occurs in the manufacturing process of the color filter such as a drying process can be found at an early stage by observing the color filter in a macro manner.
  • color filter manufacturing methods include dyeing, pigment dispersion, electrodeposition, and printing, but the same process must be repeated multiple times for coloring each color of red, blue, and green.
  • the large number of processes is a factor in increasing the cost of liquid crystal displays, such as a decrease in yield.
  • an ink jet method has been proposed in which a color filter member is formed on a transparent substrate by discharging a color filter member using an ink jet head.
  • red, blue, and green can be formed in the same process, so that a significant cost-saving effect such as simplification of the manufacturing process can be obtained.
  • the power error filter is used as a detection method for performing various inspections at the time of color filter generation after the drying process and extracting defects.
  • the color filter is irradiated with light from different directions during movement and when moving backward, and the diffusely reflected light is imaged.
  • the step pattern during forward movement and backward movement is converted into binary data, and logical product is calculated.
  • Patent Document 1 A method for detecting a foreign object by recognizing has been proposed (Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 7-20065 (Publication Date: January 24, 1995) Disclosure of Invention
  • Patent Document 1 uses an image obtained by imaging diffusely reflected light.
  • the color filter causes uneven brightness.
  • the present invention has been made in view of the above problems, and its object is to provide a color filter inspection method and power color filter inspection for early detection of unevenness occurring in a color filter manufacturing process such as a drying process.
  • An apparatus and a method for producing a color filter using the method are provided.
  • the color filter inspection method provides each pixel element.
  • the average slope of the color filter end is expressed as ⁇ on the end of the color filter including the boundary between the picture element and the black matrix.
  • the incident angle is 0 ° or more (90 +)) or less from the normal of the main surface of the substrate on which the color filter is formed, or the substrate
  • the reflection angle is 0 degree or more and less than (90 _) degrees
  • the incident angle is more than 0 degree (90-) degrees, it is 0 degree or more (90 + ) Reflected by the end of the color filter with a reflection angle of less than degrees
  • the light irradiation step force is a step of irradiating two or more different color filter ends per pixel from different irradiation directions, and the irradiation step At least one force in the direction
  • the direction may be opposite to the other side of the surface including the normal line of the main surface of the substrate on which the color filter is formed.
  • the end of the color filter may have a different slope on the surface depending on the drying process.
  • two or more different color filter ends per pixel are irradiated with light from different irradiation directions, so that each color filter end has a different shape.
  • a captured image that more reflects the difference in shape can be obtained. Therefore, the accuracy of unevenness detection can be further improved.
  • the imaging step is a step of imaging reflected light reflected in different imaging directions from two or more different power filter end portions per one pixel.
  • at least one of the imaging directions may be on the opposite side of the surface including the normal line of the main surface of the substrate on which the color filter is formed.
  • the inclination angle of the incident angle and the reflection angle is greater than 0 degrees. According to the above method, since the normal direction of the main surface of the substrate on which the color filter having the incident angle and the reflection angle is formed is not normal, the regular reflection light does not enter the imaging system, and a luminance difference is generated in the captured image. Prone to occur. Therefore, the accuracy of unevenness detection can be improved.
  • the incident angle and the reflection angle may be equal to each other from a normal line of a tangent line passing through the inflection point at the end of the color filter. If the light irradiation angle is not appropriate, the reflected light from the center of the pixel of the color filter becomes too strong and the reflected light from the end of the color filter cannot be detected efficiently.
  • the color filter The angle of light irradiation to the light becomes appropriate, and the reflected light from the center of the picture element of the color filter is not incident on the imaging means, so that the reflected light from the end of the color filter can be detected efficiently. Therefore, the accuracy of unevenness detection can be improved.
  • the imaging directions are perpendicular to two opposite sides of the black matrix.
  • the black matrix has four sides. According to the above method, at least two of the imaging directions are perpendicular to the two opposite sides of the black matrix. The reflected light is imaged from at least two directions. That Therefore, at least two captured images with different luminance differences can be acquired. Therefore, highly accurate unevenness inspection can be performed.
  • the imaging direction is perpendicular to the four sides of the black matrix when the substrate on which the color filter is formed is observed from the normal direction of the main surface of the substrate. There are 4 directions.
  • reflected light is imaged from four directions out of the four sides of the black matrix, so that the unevenness of the color filter is macroscopically observed from all directions of the black matrix. Can do. Accordingly, it is possible to inspect the unevenness with higher accuracy.
  • the color filter detection method two sets of light irradiation means for performing the light irradiation step and imaging means for performing the imaging step are used, and the light irradiation means and the imaging means include It is preferable that they are arranged at the same angle from the normal line of the tangent line passing through the inflection point at the end of the color filter.
  • each of the two types of light irradiating means and the imaging means are arranged at opposite positions, so that light irradiation and reflected light are applied to the color filter end portions at the relative positions by one substrate scanning. Can be imaged. Therefore, the inspection tact can be shortened.
  • the color filter inspection apparatus is a color filter inspection apparatus for inspecting unevenness of a color filter in which each of the picture elements is surrounded by a black matrix, and the boundary between the picture element and the black matrix.
  • the angle of inclination from the normal of the main surface of the substrate is more than 3 ⁇ 4 degree
  • a light irradiating means for irradiating light at an incident angle of less than 90 + ⁇ ) degrees or an inclination angle from the normal of the main surface of the substrate force SO degrees and less than (90- ⁇ ) degrees, and the incident angle above
  • the incident angle is 0 degree or more and less than (90 +) degree
  • the reflection angle is 0 degree or more and less than (90-) degree
  • the incident angle is 0 degree or more (90- Reflected light reflected at a reflection angle of 0 degree or more and less than 90 degrees
  • the color filter manufacturing method according to the present invention is characterized in that only the color filter determined to be a non-defective product by the color filter inspection method according to the present invention is used in the steps after the inspection step. According to the above method, unevenness generated at any stage of the color filter manufacturing process (drying process, etc.) is detected, and only non-defective products are used in the process after the inspection process. It ’s not going to go through this process. Therefore, the manufacturing cost can be reduced.
  • the color filter manufacturing method according to the present invention provides information that a defective product has occurred when a color filter determined to be defective by the color filter inspection method according to the present invention occurs. It is characterized in that it is transmitted to a color filter manufacturing apparatus.
  • FIG. 1 is a block diagram showing a configuration of a color filter inspection apparatus 1 according to the present embodiment.
  • 2 A schematic diagram showing an example of the optical system portion of the color filter inspection apparatus 1 according to the present embodiment shown in FIG.
  • FIG. 4 is an enlarged view of the color filter end 23 shown in FIG. 3, where (a) shows an incident angle at which the normal force inclination angle of the main surface of the substrate 100 is 0 degree or more and less than (90 +) degrees. (B) shows a state in which light is irradiated at an incident angle that is greater than or equal to 0 degrees (less than 90 °) and tilted from the normal of the main surface of the substrate. It is a schematic diagram.
  • FIG. 5 A schematic diagram illustrating the determination of the optimum light irradiation angle by the parallel movement of the illumination (light irradiation means) 2.
  • the color filter end when the reflected light from the central part of the color filter 10 (picture element central part 22) is not incident on the camera by translating the illumination (light irradiation means) 2 23 It is a figure showing incidence
  • FIG. 8 is a microscopic view of the color filter 10.
  • FIG. 10 is a layout view when two sensors (two sets each) are mounted on each of the sensor (imaging means) 3, the illumination (light irradiation means) 2, and the illumination drive stage 4.
  • FIG. 11 is a flowchart showing the flow of color filter detection processing in the color filter detection device 1.
  • FIG. 12 is an explanatory diagram for explaining a specific method for determining a defect by obtaining a luminance difference distribution.
  • FIG. 13 (a) is a schematic diagram showing a longitudinal section of an optical system portion of the color filter inspection device la.
  • FIG. 13 (b) is a perspective view of the color filter inspection device la.
  • FIG. 14 (a) is a schematic diagram showing the longitudinal section of the optical system part of the color filter inspection device lb.
  • FIG. 14B is a perspective view of the color filter inspection device lb.
  • FIG. 15 (a) is a schematic diagram showing a longitudinal section of an optical system portion of a color filter inspection device lc.
  • FIG. 15B is a perspective view of the color filter inspection device lc.
  • FIG. 16 is a schematic diagram showing a state in which the image of the color filter 10 in the left-right direction is observed from the normal direction of the main surface of the substrate.
  • ( a ) shows how the A row is imaged
  • (b) shows how the B row is imaged.
  • FIG. 17 A schematic diagram showing a state in which the front-to-depth direction of the color filter 10 is observed from the normal direction of the main surface of the substrate. (A) shows how the first column is imaged, and (b) shows how the second column is imaged.
  • FIG. 1 is a block diagram showing a configuration of a color filter detection device 1 according to the present embodiment.
  • the color filter inspection apparatus 1 includes an illumination (light irradiation means) 2, a sensor (imaging means) 3, a substrate drive stage 4, an illumination drive stage 5, a control device 6, a storage unit 7, and a display monitor 8. Is provided.
  • the control device 6 includes an image processing unit (captured image information analysis unit) 9, a substrate drive control unit 11, an illumination drive control unit 12, and a defect determination unit (unevenness determination unit) 13.
  • the color filter 10 is placed on the substrate driving stage 4.
  • FIG. 2 is a schematic diagram showing an example of the optical system portion of the color filter inspection apparatus 1 according to the present embodiment shown in FIG.
  • FIG. 3 is a vertical cross-sectional view of a color filter 10 formed using a liquid color filter member.
  • the color filter 10 is composed of a black matrix 20, a picture element 21, and a substrate 100. It is configured.
  • the substrate 100 is made of glass, plastic, or the like, and a color filter member (black matrix 20, picture element 21) is formed on the substrate 100 to form the color filter 10.
  • the picture elements are arranged in the direction of the substrate for each color, and the pictures of the respective colors are used.
  • the illumination (light irradiation means) 2 is for irradiating the color filter 10 with light.
  • Light irradiation means 2 is not particularly limited.
  • line illumination, all-around diffused illumination eg, straight tube fluorescent lamp, beam illumination, etc. can be used.
  • the line filter can illuminate the color filter 10 with a certain range, the range in which the color filter end 23 can be illuminated at a predetermined angle can be widened, and the inspection time can be shortened. Can contribute. Therefore, it can be particularly preferably used in the present invention in which the macro unevenness inspection is performed over the entire color filter 10.
  • each color filter end 23 can be predetermined by installing only one unit. It is possible to illuminate at an angle, which can contribute to downsizing of the apparatus.
  • the entire range of the color filter 10 can be obtained by scanning the color filter 10 or the beam illumination itself while irradiating the color filter 10 at a predetermined angle with a force S, which has a narrow range that can be irradiated at one time. Can be irradiated with light.
  • the sensor (imaging means) 3 acquires reflected light obtained by reflecting the irradiation light from the illumination (light irradiation means) 2 on the surface of the color filter 10.
  • the sensor (imaging means) 3 is not particularly limited. For example, a line sensor or an area sensor can be used. However, in order to observe the entire color filter in a macro manner, the illumination (light irradiation means) 2 is used. It is preferable to image the illuminated color filter 10 in a line. Therefore, it is preferable to use a line sensor. As shown in FIGS. 1 and 2, the illumination (light irradiation means) 2 may be composed of a first illumination 2a and a second illumination 2b.
  • the color filter inspection apparatus 1 that is not limited to this is only required to include at least one illumination.
  • the sensor (imaging means) 3 may be composed of a first sensor 3a and a second sensor 3b.
  • the color filter detection device 1 that is not limited to this is only required to include at least one sensor.
  • the substrate drive stage 4 supports the color filter 10 to be inspected and moves it in the direction along the substrate surface (the arrow direction indicated by the solid line in FIG. 2, hereinafter referred to as the substrate scanning direction). To do.
  • the substrate driving stage 4 is equipped with a mechanism that can rotate the color filter 10 every 90 degrees.
  • a method of rotating the color filter 10 every 90 degrees for example, a method of rotating the entire substrate driving stage 4 by a rotation mechanism provided in the substrate driving stage 4 on which the color filter 10 is mounted, or a color filter
  • a rotation mechanism provided in the substrate driving stage 4 on which the color filter 10 is mounted, or a color filter
  • air is exhausted from the stage surface to the color filter 10, the color filter 10 is lifted, only the center of the substrate is sucked and held, and only the color filter 10 is rotated.
  • the illumination driving stage 5 moves the illumination (light irradiation means) 2 to an appropriate position in the substrate scanning direction.
  • the illumination drive stage 5 is provided with a first illumination drive stage 5a for the illumination (light irradiation means) 2a and a second illumination drive stage 5b for the illumination (light irradiation means) 2b.
  • one illumination driving stage may drive a plurality of illuminations (light irradiation means) 2.
  • the storage unit 7 is a reference sample that is the same model as the color filter 10 that is the object to be inspected (one that has the same pixel size, color filter member, amount, etc.) and has no unevenness.
  • the display monitor 8 displays the determination result (defect information) of the defect determination unit 13, and makes the device manager (operator) recognize this.
  • the image processing unit 9 accumulates image information captured by the sensor 3, creates a two-dimensional captured image of the surface of the color filter 10, and performs analysis.
  • the substrate drive control unit 11 scans the color filter 10 at a constant speed via the substrate drive stage 4 based on the model information of the color filter 10 from the storage unit 7.
  • the illumination drive control unit 12 performs illumination (light irradiation means) via the illumination drive stage 5 based on the position data information of the illumination drive stage 5 corresponding to the model information of the color filter 10 from the storage unit 7. Move 2
  • the defect determination unit 13 determines the uneven state of the color filter 10 based on the analysis data of the captured image on the surface of the color filter 10.
  • the irradiation light from the illumination (light irradiation means) 2 is applied to the color filter end 23 including the boundary between the picture element 21 and the black matrix 20.
  • Incident angle where the inclination angle from the normal of the principal surface of the substrate 100 is 0 degree or more and less than (90 + hi) degree when the average inclination of part 23 is taken as hi (0 or more and less than 90 degrees) Irradiated at an incident angle that is more than 0 degree and less than 90 degrees
  • the “color filter end portion” refers to a region including the entire length of one side of the black matrix and the boundary formed by the picture elements. Normally, one picture element of a color filter is a quadrangle surrounded by four sides of black bear tritas. Therefore, when attention is paid to one side, there are four color filter ends for each side.
  • the edge of the color filter is a region including the entire length of one side of the black matrix and the boundary formed by the picture elements, the color filter end portion does not include the entire length of the other side opposite to one side of the black matrix. Les.
  • the area corresponding to the edge of the color filter may change depending on the color filter material, black matrix material, hydrophilicity treatment method, etc. For example, in the case of a picture element with 400 ⁇ on one side, it is in contact with the black matrix. Since the shape changes in an area of 20 zm (about 5%) from the existing position, this area becomes the edge of the color filter.
  • the end of the color filter may consist only of the boundary.
  • the end of the color filter may have a different slope depending on the drying process, etc., and is a portion where unevenness is likely to occur. Therefore, the color filter end is irradiated with light at an angle described later and the reflected light is imaged. Can be detected with high accuracy.
  • the boundary between the black matrix and the picture element is a part where unevenness is particularly likely to occur. Further, it is possible to detect unevenness with higher accuracy.
  • the region to be irradiated with light is not necessarily limited to the above boundary, but may be a region including the above boundary.
  • the main surface of the substrate 100 is a surface on which the color filter 10 is formed. In FIG. 3, it is a surface that forms a boundary between the color filter 10 and the substrate 100.
  • the tilt angle from the normal line of the main surface of the substrate 100 refers to how many degrees the incident angle is inclined from the normal line with respect to the normal line of the main surface of the substrate 100. When the angle of inclination from the normal of the main surface of the substrate 100 is 0 degree, light enters the color filter end 23 from a direction perpendicular to the main surface.
  • the average slope at the end of the color filter refers to the average tilt angle from the substrate at the end of the color filter.
  • the end of the color filter has a surface that is not level with the substrate, and is often inclined, which can be inclined depending on the drying process, etc., resulting in unevenness.
  • Cheap Since this inclination angle differs depending on the color filter region, in this specification, when a tangent line is drawn to the end of the color filter from the intersection of black bear tritus and the end of the color filter, the substrate and the tangent line
  • the average angle formed by is the average slope at the edge of the color filter.
  • the angle of inclination of the edge of the color filter from the substrate can be predicted by the size of the picture element, the material of the color filter, and the method of hydrophilic treatment, but statistically using a database or the like. Therefore, it is possible to measure with a stylus type surface shape measuring instrument in advance.
  • tangent passing through the inflection point of the color filter end portion a tangent line drawn from the intersection of the black matrix, the substrate, and the color filter end portion with respect to the color filter end portion.
  • FIG. 4 is an enlarged view of the color filter end portion 23 shown in FIG. (A) in FIG. 4 is a schematic diagram showing a state in which light is irradiated at an incident angle where the inclination angle from the normal of the main surface of the substrate 100 is 0 degree or more and less than (90 +) degrees.
  • 4 (b) is a schematic diagram showing a state in which light is irradiated at an incident angle of an inclination angle from the normal of the main surface of the substrate of 0 degree or more and less than (90-degree).
  • the light radiated to the color filter end 23 is incident at a reflection angle of 0 degree or more and less than (90-degree) when the incident angle is not less than 0 degree (90 + degree).
  • the angle is 0 degree or more and less than 90 degrees, it is reflected by the color filter end 23 at a reflection angle of 0 degree or more and less than 90+ degrees, and the reflected light is imaged by the sensor (imaging means) 3.
  • the incident angle may be 0 degree or more and less than (90 + ⁇ ) degree, but from the direction illumination (light irradiation means) 2 from the front side of the substrate 100. It is preferable that the incident angle is not less than 0 degrees and less than 90 degrees.
  • FIG. 4A the incident angle may be 0 degree or more and less than (90 + ⁇ ) degree, but from the direction illumination (light irradiation means) 2 from the front side of the substrate 100. It is preferable that the incident angle is not less than 0 degrees and less than 90 degrees.
  • the reflection angle should be greater than or equal to 0 degree and less than (90 +) degrees. However, since the reflected light is received and imaged more easily from the front side of the substrate 100, The reflection angle is preferably 0 ° or more and less than 90 °.
  • the light irradiation to the color filter end portion 23 is performed at an incident angle such that the light is irradiated from the front side of the substrate 100, and the color filter end portion 23 is applied to the color filter end portion 23.
  • the reflection of light is preferably performed at a reflection angle at which light is received and imaged on the front side of the substrate 100.
  • the illumination angle of the light from the illumination (light illuminating means) 2 is not appropriate, the reflected light from the picture element central portion 22 is too strong, and the reflected light from the color filter end portion 23 is efficiently used. It happens that it cannot be detected. In the drying process after discharging the color filter member to the color filter 10, the shape of the pixel center portion 22 does not change, but the shape of the color filter end portion 23 slightly changes, which causes unevenness.
  • the illumination (light irradiation means) 2 is moved in parallel with respect to the substrate scanning direction of the illumination drive stage 5, thereby irradiating light. Adjust the angle.
  • FIG. 5 is a schematic diagram for explaining the determination of the optimal light irradiation angle by the parallel movement of the illumination (light irradiation means) 2.
  • the irradiation center of the illumination (light irradiation means) 2 is incident on the regular reflection position (sensor (imaging means) 3) in FIG. In the position), when viewed microscopically, the illumination (light irradiation means) 2 can reflect the entire surface of the color filter 10. In this case, the center of the color filter 10 (the center of the pixel) The force that the reflected light of 22) enters the sensor (imaging means) 3 As described above, the reflected light at the center of the color filter 10 (pixel center 22) is strong, so the reflected light at the end 23 of the color filter is observed. It becomes difficult to do.
  • the illumination (light irradiation means) 2 is translated from the regular reflection position as shown in FIG. 5, so that the reflected light of the central portion (pixel center portion 22) of the color filter 10 is detected by the sensor (imaging). If the light is not incident on the sensor 3, the sensor (imaging means) 3 can easily detect the reflected light from the color filter end 23. As a result, the accuracy of unevenness detection can be improved.
  • FIG. 6 shows a case where the reflected light of the central portion (pixel center portion 22) of the color filter 10 is not incident on the camera by translating the illumination (light irradiation means) 2.
  • FIG. 5 is a diagram illustrating the incidence and reflection of light on the color filter end portion 23. In this case, as shown in FIG. 6, the incident angle and the reflection angle are equal to each other from the normal line of the tangent line passing through the inflection point of the color filter end 23.
  • the distance that the illumination drive stage 5 is translated in the substrate scanning direction from the specular reflection position of the illumination (light irradiation means) 2 and sensor (imaging means) 3 is the size of the color filter pixel and the width of the black matrix. If the conditions such as the amount of the color filter member and the black matrix and the water repellency effect of the color filter member are the same, it is necessary to experiment in advance to predict the position where the color filter end 23 is efficiently irradiated with light. Is possible.
  • the incident angle is equal to the average inclination of the color filter end 23 (or 0 degrees).
  • the angle of inclination from the normal of the main surface of the substrate 100 is 0 degree or more (90 + ⁇ ) degrees or less, or the angle of inclination from the normal of the main surface of the substrate is 0 degree or more
  • the angle of reflection which should be less than (90-degree) is different from the angle of incidence, and when the angle of incidence is greater than 0 degrees and less than (90+ degrees), it is greater than 0 degrees (90 If the angle of incidence is less than (0) and less than (90-) degrees, the angle of reflection should be between 0 and (90 +) degrees. In order to avoid the situation where the reflected light from the pixel center 22 is too strong and the reflected light from the color filter end 23 cannot be detected efficiently, it is preferable that the tilt angle is not 0 degree. Masle.
  • the incident angle and the reflection angle are preferably inclined from the normal line of the main surface of the substrate 100.
  • the incident angle and the reflection angle are such that the specularly reflected light does not enter the sensor (imaging means) 3 when the normal force of the main surface of the substrate 100 is inclined. Differences in brightness are likely to occur.
  • the imaging direction is the normal direction of the main surface of the substrate 100, that is, when the tilt angle as the reflection angle is 0 degree, the average inclination of the color filter end 23 is 2 to Since it is originally 3 degrees, the housing of the illumination (light irradiation means) 2 and the sensor (imaging means) 3 interfere with each other. From this viewpoint, it is preferable that the reflection angle is inclined with respect to the normal force of the main surface of the substrate 100.
  • the incident angle and the reflection angle are more preferably equal to each other from the normal line of the tangent line passing through the inflection point at the end of the color filter.
  • the reflected light from the picture element central portion 22 of the color filter 10 is not incident on the sensor (imaging means) 3, so that the reflected light from the color filter end portion 23 can be detected efficiently. Therefore, the accuracy of unevenness detection can be improved.
  • the reflection angle needs to be different from the incident angle. That is, the incident angle and the reflection angle are different as the inclination angle of the normal force of the main surface of the substrate 100.
  • the incident angle and the reflection angle are the same angle, that is, in the case of regular reflection, the reflected light of the central portion (color element central portion 22) of the color filter 10 enters the sensor (imaging means) 3 and the end of the color filter This is because the reflected light from part 23 is difficult to observe.
  • the sensor (imaging means) 3 images the reflected light from the color filter end 23, and at least 2 Acquire two captured images.
  • the above “at least two captured images” are not particularly limited, but two or more different color filter end portions 23 per one pixel 21 are irradiated and light is reflected and captured. Is preferred. Rather than illuminating one color filter edge per pixel 21 and imaging the reflected light, one illuminates two different color filter edges 23 per pixel 21 and images the reflected light. However, it is preferable from the viewpoint of more accurate inspection because the material for determining the unevenness inspection of the picture element 21 increases and the possibility of missing the unevenness occurring at other locations is reduced. From this point of view, it is more preferable to illuminate three different color filter ends 23 per pixel 21 and image the reflected light. Four different color filter ends 23 per pixel 21 It is particularly preferable to irradiate light to image reflected light.
  • FIG. 7 is a schematic diagram showing that images obtained by capturing two different color filter end portions per picture element have different luminances.
  • the shape of the color filter end portions 23a and 23b differs mainly due to the drying process, so that the color filter end portion 23a is efficiently formed.
  • the image (10a) captured by irradiating light and the image (10b) captured by efficiently irradiating light to the color filter end portion 23b are different in luminance.
  • the light irradiation to the color filter 10 is performed by irradiating two or more different color filter ends per one pixel from different irradiation directions, and at least one of the irradiation directions applies the color filter. It is preferable to be on the side opposite to the other side with respect to the surface including the normal line of the main surface of the deposited substrate.
  • FIG. 8 is a microscopic view of the color filter 10.
  • FIG. 8 shows picture elements 21a to 21f surrounded by a black matrix 20.
  • the picture element 21a forms a black matrix 20 and color filter end portions 23a to 23d.
  • Fig. 8 shows each picture of color filter 10.
  • the color filter end portions 23a to 23d of the elements 21a to 21f are irradiated with light from four different irradiation directions 24a to 24d, and at least one of the irradiation directions is normal to the main surface of the substrate on which the color filter is formed.
  • the aspect which exists on the opposite side to the other is shown with respect to the surface to contain.
  • the irradiation direction 24a is opposite to the irradiation direction 24b with respect to the surface including the normal of the main surface of the substrate, and the irradiation direction 24c is applied to the surface including the normal of the main surface of the substrate. On the opposite side of direction 24d.
  • the shapes of the color filter end portions 23a to 23d are not necessarily the same because they are mainly affected by the drying process. Since the shape of the color filter end portions 23a to 23d may cause luminance unevenness when a liquid crystal panel is manufactured and cause defective products, it is necessary to detect the unevenness when the color filter 10 is generated.
  • the color filter end portion 23a can be irradiated with light more efficiently by irradiating light from the irradiation direction 24a shown in FIG.
  • light may be emitted from the direction of the irradiation direction 24b, but the direction of 24a is the direction in which the illumination (light irradiation means) 2 is moved away from the sensor (imaging means) 3 side.
  • the direction of 24b moves in a direction to bring the illumination closer to the imaging side, and the amount of movement is limited. Therefore, it is preferable to irradiate light from the direction of 24a.
  • the color filter end 23b is inspected from the irradiation direction 24b
  • the color filter end 23c is inspected from the irradiation direction 24c
  • the color filter end 23d is inspected from the irradiation direction 24d.
  • Light reflected from the color filter end portions 23 a to 23 d is imaged by a sensor (imaging means) 3. That is, in the example shown in FIG. 8, four captured images are acquired.
  • the light irradiation angle is as described above.
  • the number of color filter ends to be imaged may be one for each picture element. If there is one edge for each picture element, it may be difficult to cause unevenness depending on the shape of the color filter edge. 2 is more preferable than 3 is more preferable than 4 is more preferable than 3 is more preferable. This is because, as the number of different color filter ends as the imaging target increases, the determination material increases, so that unevenness can be detected more accurately.
  • the direction in which reflected light is imaged by the sensor (imaging means) 3 is not particularly limited, but at least one of the imaging directions is the normal of the main surface of the substrate on which the color filter is formed. It is preferable that it is on the opposite side to the other side with respect to the containing surface.
  • all of the imaging directions are on the same side of the plane including the normal of the main surface of the substrate, that is, when all of the imaging directions are parallel to the normal of the main surface of the substrate, the specularly reflected light Is incident on the imaging system, it may be difficult to produce a luminance difference between the color filter ends.
  • At least one of the imaging directions is relative to the surface including the normal line of the main surface of the substrate on which the color filter is formed. , Preferably on the opposite side of the other. Furthermore, in order to detect the luminance difference between the edge portions of the color filter more accurately, it is preferable that at least two of the imaging directions are perpendicular to the two sides facing the black matrix. Are more preferably four directions perpendicular to the four sides of the black matrix (hereinafter also simply referred to as “four directions”).
  • the unevenness of the color filter end 23 is difficult to detect because it is a minute change just by looking at it microscopically, so the brightness difference of the entire color filter 10 is calculated from each of the captured images with brightness differences. Then, whether or not the surface shape of the color filter 10 is normal (unevenness) is determined macroscopically over the entire color filter 10.
  • FIG. 8 is a force showing the case where the color filter end portions 23a to 23d are irradiated with light from the irradiation directions 24a to 24d, respectively, as described above.
  • the color filter end portions 23a to 23d In order to accurately detect the difference in brightness, the light emitted from the 24a direction from the 24b direction, the light emitted from the 24b direction from the 24a direction, the light emitted from the 24c direction from the 24d direction, and the 24d direction It is most preferable to image the light emitted from the 24c direction.
  • the imaging direction is on the four sides of the black matrix 20. The four directions are perpendicular to each other.
  • Illumination (light irradiation means) 2 and sensors (imaging means) 3 may be installed in each imaging direction, but are not necessarily limited to one each. May be.
  • Fig. 9 shows a sensor (imaging means) 3 and an illumination (light irradiation means) 2 one by one for the color filter 10
  • the position of the illumination (light irradiating means) 2 is determined in order to irradiate the color filter end portion 23 with light and take an image.
  • the color filter 10 is scanned in the substrate running direction 40 and imaged by the sensor (imaging means) 3.
  • the color filter 10 is rotated 90 degrees 41 and the position of the illumination (light irradiation means) 2 is adjusted.
  • the color filter 10 is scanned in the substrate running direction 40 and the reflected light is imaged by the sensor (imaging means) 3.
  • the color filter 10 is rotated 90 degrees 41 to obtain captured images in all four directions. In this way, even if there are one illumination (light irradiating means) 2 and one sensor (imaging means) 3 each, it is possible to obtain captured images in all four directions.
  • FIG. 9 illustrates the force for rotating the color filter 10.
  • the color filter 10 is scanned only without being rotated, and the sensor (imaging means) 3 is scanned each time scanning in one direction is completed. And the illumination (light irradiation means) 2 may be rotated by 90 degrees.
  • FIG. 10 is a layout view when two sensors (two in each) are mounted on the sensor (imaging means) 3, the illumination (light irradiation means) 2, and the illumination drive stage 4.
  • the color filter 10 and sensor It takes inspection time to rotate (imaging means) 3 and illumination (light illumination means) 2 four times by 90 degrees.
  • the sensors 3a and 3b and the illuminations 2a and 2b are respectively two opposite sides of the color filter 10 (the direction of the black matrix, Install in a position perpendicular to the two sides.
  • the color filter 10 can be rotated 90 degrees, and then moved again in four directions (the four sides of the black matrix). An image taken from four directions perpendicular to the image is obtained. Therefore, the measurement time can be shortened and the initial capital investment can be reduced, which is effective.
  • the sensors 3a and 3b and the illuminations 2a and 2b have two sides facing the color filter 10 as described above ( It is more preferable that the lens is arranged at the same angle from the normal line of the tangent line passing through the inflection point at the end of the color filter if it is installed at a position perpendicular to the two opposite sides of the black matrix. If the incident angle and the reflection angle are equal to each other from the normal of the tangent line passing through the inflection point of the color filter end 23, the reflected light from the pixel central portion 22 of the color filter 10 is a sensor (imaging means).
  • the reflected light from the color filter end 23 can be detected efficiently.
  • the sensor (imaging means) 3 and the illumination (light irradiation means) 2 are positioned at angles equal to each other from the normal of the tangent line passing through the inflection point at the end of the color filter, which is the position corresponding to the incident angle and the reflection angle. By arranging it, the accuracy of unevenness inspection can be improved.
  • each sensor (imaging means) 3 takes images simultaneously.
  • the substrate transport unit moves the color filter 10 into the color filter inspection device 1. It is carried into the substrate drive stage 4 (Sl).
  • the substrate transfer unit transmits the model information of the color filter 10 that has been transferred to the control device 6.
  • the control device 6 takes out the position data information of the illumination drive stage 5 corresponding to the model information of the color filter 10 that has been carried in from the storage unit 7.
  • the illumination drive stage 5 is moved based on the position data information extracted from the storage unit 7 (S2).
  • the illumination drive stage 5 is based on the position data in two directions. To move each.
  • the color filter 10 is irradiated with light by the illumination (light irradiation means) 2 to start the color filter 10 on the substrate drive stage 4 (S3: light irradiation step). Subsequently, when the color filter 10 comes to the imaging start position of the sensor (imaging means) 3 in the substrate driving stage 4, imaging is started by the sensor (imaging means) 3 (S4: imaging step). Since the imaging start position of each sensor (imaging means) 3 is different, imaging starts at the imaging start position corresponding to the sensor (imaging means) 3.
  • the color filter 10 is rotated by 90 degrees (S5).
  • the image captured by the sensor (imaging means) 3 is formed into a two-dimensional image by the image processing section (captured image information analysis means) 9, the luminance difference in the color filter 10 is calculated, and the color filter 10 Is measured (S6: Captured image information analysis step). Further, the position data of the illumination drive stage 5 corresponding to the direction rotated by 90 degrees is taken out from the storage unit 7, and the illumination drive stage 5 is moved based on the information of the position data. Since these processes can be performed in parallel, the inspection time can be shortened.
  • imaging is started by the sensor (imaging means) 3 (S8: imaging step). Since the imaging start position of each sensor (imaging means) 3 is different, imaging is started at the imaging start position corresponding to each sensor (imaging means) 3.
  • the color filter 10 can be divided into picture elements 21 for forming a plurality of panels on a single substrate 100. If the luminance difference is determined for each picture element 21, the captured image is divided into luminance distribution areas 51 for calculating the luminance difference distribution of each picture element 21.
  • the luminance distribution area 51 is the luminance distribution area 51 set in advance in the storage unit 7. It can be set automatically according to information such as size.
  • the defect determination unit (unevenness determination means) 13 can obtain the brightness distribution for each picture element 21 by calculating the average brightness value of each brightness distribution region 51.
  • the defect determination unit (unevenness determination means) 13 has a maximum luminance value and a minimum luminance value in each direction. Is calculated and displayed on monitor 8. The brightness distribution status in each direction is also displayed on the monitor 8 so as to help the equipment administrator (operator).
  • the defect determination unit (unevenness determination means) 13 takes out the threshold value of the luminance difference distribution determined to be a predetermined defect from the storage unit 7, and determines whether the difference in luminance distribution in the four directions is larger than the threshold value. By refusing, it is possible to automatically determine a non-defective product or a defective product.
  • the defect determination unit (unevenness determination means) 13 determines the defect of the entire color filter 10 after determining the defect of each pixel 21. It is also possible to determine the non-defective product as the color filter 10 by setting the non-defective product ratio in pixel units in advance.
  • the color filter is used to adjust the direction of the substrate at the time of loading.
  • the color filter 10 is unloaded from the color filter inspection apparatus 1 (S12). That is, the substrate drive stage 4 makes the color filter 10 ready to be carried out under the control of the substrate drive control unit 11, and the substrate carrying unit carries the color filter 10 to the outside.
  • the color filter inspection device 1 As described above, according to the color filter inspection device 1, a series of color filters 10 are automatically detected, and the non-defective products (existence of defects) of the color filter 10 are detected from four directions of the substrate. It can be easily determined from the captured image. As a result, when defective products occur (particularly frequently), it is possible to immediately notify the manufacturing apparatus that performs the drying process of the abnormality of the apparatus in the drying process at the time of forming the color filter and notify the operator. In addition, by sending defect inspection information on the board to the factory's information system, only good products can be passed to the second half of the process, and the yield at the time of manufacturing the LCD panel can be improved. In addition, if defective products occur frequently at the time of color filter generation, it is possible to provide immediate feedback to the drying process equipment.
  • the color filter manufacturing method according to the present invention uses only the color filters that are determined to be non-defective by the color filter inspection method according to the present invention, the yield of the color filters is increased. Can be improved.
  • FIG. 18 is a flowchart showing a manufacturing process by a pigment dispersion method as a general example of a color filter manufacturing process.
  • the manufacturing process may be performed by a method other than the pigment dispersion method, such as a dyeing method, a printing method, or an electrodeposition method.
  • the color filter manufacturing process to which the color filter manufacturing method according to the present invention can be applied is not limited to the steps shown in FIG. 18, and the color filter manufacturing method according to the present invention is not limited to the color filter manufacturing process. It can be applied to any process.
  • a case where the color filter manufacturing method according to the present invention is applied to the color filter manufacturing process will be described with reference to FIG.
  • the color filter manufacturing process shown in FIG. 18 includes a substrate carrying-in process S201, a black matrix (BM) forming process S202, a colored pattern forming process S203, a protective film forming process S204, a transparent electrode film forming process S205, and an inspection process. It consists of S206 and a color filter carry-out step S207, and the substrate becomes a finished color filter through the above steps.
  • the inspection process S206 As an example, the force S shown to be performed after the completion of the transparent electrode film forming step S205 can be performed in any step in the color filter manufacturing process, which is not necessarily limited to this.
  • the color filter inspection method according to the present invention as the inspection step S206 after resist application in the colored pattern forming step S203, it is possible to detect unevenness that has occurred until the resist application. For example, if there is unevenness in the surface state of the layer in contact with the coating liquid on the substrate, the contact angle of the coating layer differs between the part where the unevenness occurs and the part where the unevenness does not occur. Differences in layer shape occur. Therefore, the difference in shape can be detected as unevenness. In this way, for example, by performing the detection step S206 after applying the resist, it is possible to detect unevenness of the surface state of the layer in contact with the coating solution, so that only non-defective products can be provided for the subsequent steps.
  • the detection step S206 after resist coating by performing the detection step S206 after resist coating, it is possible to detect unevenness that has occurred before resist coating. In other words, if there is unevenness in the BM before resist application, the width of the BM after resist coating can be different between the edge and center of the substrate due to the unevenness. By performing inspection step S206 later, unevenness occurring in the BM can be detected. As a result, only non-defective products can be supplied to the subsequent processes.
  • the temperature of the resist is preferably maintained at a constant temperature from the viewpoint of realizing uniform resist coating.
  • the resist temperature cannot be maintained at a constant temperature for some reason during the resist coating, Changes, causing unevenness.
  • by performing the inspection step S206 after applying the resist it is possible to detect such irregularities due to the temperature change of the resist. As a result, only non-defective products can be provided for the subsequent processes.
  • the color filter inspection method according to the present invention is performed in the inspection step S206, and only the color filters determined to be non-defective are detected. Since it is used for the processes after the cocoon process, the color filter with unevenness may not go through the processes after the inspection process. Therefore, the yield of the color filter can be improved and the manufacturing cost can be reduced.
  • a color filter judged to be present means not only a finished color filter but also an intermediate product.
  • the color filter manufacturing method according to the present invention provides information that a defective product has occurred when a color filter determined to be defective by the color filter inspection method according to the present invention occurs. Since it is transmitted to the color filter manufacturing equipment, if a number of defective products occur at the time of color filter generation, the color filter manufacturing equipment can be immediately fed back and the rate of defective products can be reduced. it can.
  • the color filter detection device la uses illumination (light irradiation means) 2 that can irradiate all-around diffused light, as shown in FIG.
  • the distance from the color filter 10 to the illumination (light irradiation means) 2 is changed by attaching the extendable illumination drive section 101 to the illumination (light irradiation means) 2 and adjusting the length of the illumination drive section 101. It can be configured as possible.
  • FIG. 13 (a) is a schematic diagram showing a longitudinal section of the optical system portion of the color filter inspection apparatus la.
  • the optical system portion of the color filter inspection apparatus la includes an illumination driving unit 101, illumination (light irradiation means) 2, a unit rotating shaft 102, a unit casing 103, and sensors (imaging means) 3a and 3b.
  • the illumination driving unit 101 is for changing the distance from the color filter 10 to the illumination (light irradiation means) 2 by expanding and contracting in the vertical direction. Since the illumination drive unit 101 is equipped with illumination (light irradiation means) 2 capable of illuminating all-around diffused light at its lower end, the illumination drive unit 101 can be expanded and contracted without moving the color filter 10. As a result, it is possible to apply a force S to irradiate all the color filter ends 23 of the color filter 10 with light at a predetermined angle.
  • the imaging direction is a direction in which the inclination angle from the normal line of the main surface of the substrate on which the color filter is formed is 0 degree. That is, the light reflection angle is the normal direction of the main surface of the substrate.
  • the sensor (imaging means) 3 is provided with two 3a and 3b in the left-right direction, and simultaneously images the color filter end portions 23 at different positions in the left-right direction illuminated simultaneously. That power S.
  • the number of sensors (imaging means) 3 is four, so the color filter inspection device 1 is enlarged. Force to perform Since the imaging from four directions can be performed quickly without rotating the unit rotating shaft 102, the inspection time can be shortened.
  • FIG. 13 (b) is a perspective view of the color filter detection apparatus la.
  • the broken line portion indicates the position where the regular reflection portion of the illumination light is irradiated, and the oblique line portion indicates the left-right imaging.
  • Each position is shown, and the area force occupied by the housing 103 corresponds to the area of one picture element 21 of the color filter 10.
  • the color filter inspection apparatus la can rotate as a whole as described above, so if one illumination (light irradiation means) 2 and one sensor (imaging means) 3a, 3b are provided.
  • the color filter end 23 composed of the black matrix 20 and the picture element 21 in the horizontal direction can be imaged from the imaging position shown in FIG.
  • the unit rotating shaft 102 is rotated 90 degrees, the color filter end portion 23 composed of the black matrix 20 in the front direction and the depth direction perpendicular to the black matrix 20 in the left-right direction and the picture element 21 can be imaged.
  • Power S can be.
  • the color filter inspection apparatus lb has a partial range or beam of the color filter 10 as illumination (light irradiation means) 2 as shown in Fig. 14 (a). It is also possible to use illumination (light irradiation means) 2 that irradiates light in a shape. Note that the “partial range” refers to a range in which the line-shaped illumination can be irradiated on the entire surface of the color filter 10.
  • FIG. 14 (a) is a schematic diagram showing a longitudinal section of the optical system portion of the color filter inspection device lb.
  • the light irradiation direction is a direction in which the inclination angle from the normal of the main surface of the substrate is 0 degrees, that is, the normal direction of the main surface of the substrate, and the substrate is positioned at one imaging position.
  • the light emitted from the normal direction and reflected in different directions is imaged by two different sensors (imaging means) 3.
  • the color filter inspection device lb includes illumination (light irradiation means) 2, sensors (imaging means) 3a and 3b, unit housing 103, imaging drive means (guide rail). ) 104a, 104b, imaging drive means (for angle adjustment) 105a, 105b.
  • the unit housing 103 fixes the illumination (light irradiation means) 2 and the imaging drive means (guide rails) 104a, 104b.
  • the imaging drive means (guide rails) 104a and 104b move the sensors (imaging means) 3a and 3b in the horizontal direction via the imaging drive means (for angle adjustment) 105a and 105b.
  • the imaging drive means (guide rails) 104a and 104b are configured to be movable in the vertical direction.
  • the imaging drive means (for angle adjustment) 105a, 105b fix the sensors (imaging means) 3a, 3b to the imaging drive means (guide rails) 104a, 104b and use the imaging drive means (guide rails) 104a, 104b as fulcrums.
  • the angle of sensors (imaging means) 3a and 3b can be adjusted. Adjust the imaging direction to the desired angle according to the light reflection angle by moving the imaging drive means (guide rail) 104a, 104b in the vertical direction and moving the imaging drive means (for angle adjustment) 105a, 105b. Can do.
  • FIG. 14 (b) is a perspective view of the color filter inspection apparatus lb.
  • the broken line portion indicates the position where the regular reflection portion of the illumination light is irradiated, and the shaded portion indicates the imaging position in the left-right direction. Respectively.
  • FIG. 16 is a schematic diagram showing a state in which the image of the color filter 10 in the left-right direction is observed from the normal direction of the main surface of the substrate.
  • FIG. 17 is a schematic diagram showing a state in which the normal direction force of the main surface of the substrate is observed when the color filter 10 is imaged from the front side to the depth direction.
  • the color filter 10 is divided into five rows from the Ath row to the Eth row as shown in FIG. 16, and is divided into the first column to the fourth column as shown in FIG. Think. That is, a case will be described in which a region where the color filter 10 is formed on the substrate is divided and inspection is performed for each divided region in order to macroscopically examine the entire color filter 10.
  • FIG. 16 (a) light is incident on the color filter end portion 23 existing in the A-th row with an inclination angle of 0 degree from the normal line of the main surface of the substrate.
  • Illumination (light irradiation means) 2 (not shown in FIG.
  • the light is incident on the color filter end portion 23 existing in the B-th row with an inclination angle of 0 ° from the normal line of the main surface of the substrate.
  • Illumination (light irradiation means) 2 (not shown in FIG. 16) irradiates light, and the reflected light is imaged by the sensors (imaging means) 3a and 3b, while the color filter detection device lb is moved from right to left. Move. After imaging the B line, the color filter 10 is shifted forward by the substrate driving stage 4 and stopped. Thereafter, in the same way, lighting and imaging are repeated in order from row A to row E.
  • the reflected light is picked up by the two sensors (imaging means) 3a and 3b while moving the color filter inspection device lb to the left and right, so that two or more different per pixel can be obtained. It is possible to capture the reflected light reflected from different color filter ends in different imaging directions.
  • the force described for moving the color filter inspection device lb to the left and right and fixing the color filter 10 is not limited to this.
  • the color filter inspection device 1 is fixed and the color filter is not limited to this. It is good also as a structure which moves 10 right and left.
  • the imaging direction is a force that is horizontal to the color filter 10 and the normal direction force of the main surface of the substrate is also an angle a L as shown in Fig. 14 (a).
  • the direction is perpendicular to the black matrix 20.
  • the color filter inspection device lb is used for illumination (light irradiation) for the color filter end 23 in the horizontal direction.
  • illumination light irradiation
  • imaging means One sensor and one pair of sensors (imaging means), and the front-back color filter end 23
  • illumination light irradiation means
  • imaging means two combinations of one illumination (light irradiation means) and one pair of sensors (imaging means) may be provided.
  • the color filter detection apparatus lc includes two illumination (light irradiating means) 2 and two sensors (imaging means) 3 respectively.
  • the color filter 10 is irradiated with light from different irradiation directions, and reflected light is imaged from different imaging directions.
  • FIG. 15 (a) is a schematic view showing a longitudinal section of the optical system portion of the color filter inspection apparatus lc.
  • the optical system portion of the color filter inspection apparatus lc includes illumination (light irradiation means) 2a and 2b, sensors (imaging means) 3a and 3b, illumination Drive means 1 Ola, 101b, unit casing 103, imaging drive means (for angle adjustment) 105a, 105b.
  • the illumination drive means 101a and 101b can adjust the angles of the illumination (light irradiation means) 2a and 2b, respectively, and the inclination angle from the normal of the main surface of the color filter 10 to the illumination (light (Irradiation means) 2a is adjusted to ⁇ R, and illumination (light irradiation means) 2b is adjusted to ⁇ L.
  • the imaging drive means (for angle adjustment) 105a and 105b can adjust the angles of the sensors (imaging means) 3a and 3b, and the inclination angle from the normal of the main surface of the substrate of the color filter 10 is determined by the sensor.
  • For (imaging means) 3a, for sensor (imaging means) 3b, ⁇
  • FIG. 15 (b) is a perspective view of the color filter inspection apparatus lc.
  • the broken line portion indicates the position where the regular reflection portion of the illumination light is irradiated, and the shaded portion indicates the imaging position in the left-right direction. Respectively.
  • the color filter end 23 existing in the A-th row is ⁇ R from the illumination (light irradiation means) 2a, and ⁇ from the illumination (light irradiation means) 2b. Irradiate light so that L
  • the Illumination (light irradiation means) 2a, 2b (not shown in FIG. 16) irradiates light, and the reflected light with the tilt angle force is imaged by the sensor (imaging means) 3a.
  • the color filter end 23 existing in the B-th row is illuminated by the illumination (light irradiation means) 2a from ⁇ R, and from the illumination (light illumination means) 2b by ⁇ L (light illumination)
  • the color filter inspection device lc is moved from right to left while irradiating light from 2a and 2b (not shown in FIG. 16) and imaging the reflected light with the sensors (imaging means) 3a and 3b. . After imaging the B-th line, the color filter 10 is shifted forward by the substrate driving stage 4 and stopped. Thereafter, illumination and imaging are repeated in the same manner from row A to row E in the same manner.
  • the color filter detection device lc is moved to the left and right to fix the color filter 10.
  • this is not a limitation, and the color filter detection device lc is fixed.
  • the color filter 10 may be moved left and right.
  • a power color filter inspection device lc is used to image the reflected light reflected in different imaging directions from four different color filter edges per pixel. Is the force that rotates the color filter 10 by 90 degrees without rotating, and conversely the color filter detector lc is rotated by 90 degrees without rotating the color filter 10 and the force
  • the color filter 10 is scanned in one direction for each column. For example, as shown in FIG. 17A, when the first column is scanned, the color filter 10 is scanned in the depth direction, and when the second column is scanned, the color filter 10 is scanned forward.
  • Fig. 15 (a) the sensors 3a and 3b and the illuminations 2a and 2b are installed at positions perpendicular to the left and right sides of the color filter 10 facing each other. Irradiation means) 2 and two sensors (imaging means) 3 are added to the front and back sides shown in Fig. 15 (b).
  • the sensor (imaging means) 3 may be used for light irradiation and imaging. In this case, since it is not necessary to rotate the color filter 10 or the color filter detection device lc, the detection time can be shortened.
  • the imaging system in the front-back direction is inactive when imaging in the left-right direction shown in Fig. 16, and the imaging system in the near-side direction shown in Fig. 17 is stopped.
  • the imaging system in the left / right direction is paused.
  • the color filter inspection method according to the present invention is similar to the color filter inspection method for inspecting unevenness of a color filter in which each of the picture elements is surrounded by a black matrix.
  • the main surface of the substrate on which the color filter is formed when the average slope of the color filter edge is ⁇ (more than 0 degrees and less than 90 degrees) at the edge of the color filter including the boundary between the element and the black matrix.
  • Light incident at an incident angle of 0 ° or more (90 +)) degrees from the normal of the substrate, or an incident angle of 0 ° or more (90 ⁇ ) or less from the normal of the main surface of the substrate The light irradiation step to irradiate and the reflection angle different from the incident angle, and when the incident angle force is greater than 3 ⁇ 4 degree and less than (90 +) degree, the reflection angle is greater than 0 degree and less than (90-) degree When the incident angle is greater than or equal to 0 degree (90-degrees), it is greater than or equal to 0 degree (90-degree
  • the color filter inspection device is configured so that each of the picture elements is black.
  • a color filter inspection device that inspects unevenness of a color filter surrounded by Kumatritas, and the average slope of the color filter end is ⁇ (a at the end of the color filter including the boundary between the picture element and the black matrix.
  • Light irradiation means that irradiates light at an incident angle of 0 degree or more and less than 90 degrees, and a reflection angle that is different from the incident angle, and the incident angle is greater than or equal to 0 degree and less than 90 degrees Is reflected at a reflection angle of 0 degree or more (90-degrees), and when the incident angle is more than 0 degree (90_degrees), it is reflected at a reflection angle of 0 degree or more (90 + degrees)
  • the captured image information analyzing means for calculating the luminance difference in the color filter based on the image image and the unevenness determining means for determining the presence or absence of unevenness in the luminance difference color filter.
  • the end of the color filter is irradiated with light at an appropriate angle, and at least two captured images are acquired. Based on this, the presence or absence of unevenness is determined from the luminance difference in the color filter. There is an effect that it is possible to detect the unevenness of the minute surface shape generated in the manufacturing process such as the drying process of the filter with high accuracy. In addition, the color filter unevenness can be inspected macroscopically over a wide range.
  • the present invention can be suitably used for unevenness inspection of a substrate in which undulated shapes formed using the ink jet method are regularly arranged, and can also be used as a management means for a manufacturing process of a color filter.

Abstract

 カラーフィルタ端部(23)に対し所定の入射角度で光を照射する照明(2)と、上記入射角度と異なる反射角度であって、所定の角度で反射角度で反射された反射光を撮像して少なくとも2つの撮像画像を取得するセンサ(3)と、上記撮像画像に基づいて、カラーフィルタ内の輝度差を算出する画像処理部(9)と、上記輝度差からカラーフィルタのムラの有無を判断する欠陥判定部(13)と、を備える。これにより、絵素とブラックマトリクスとの境界を含むカラーフィルタ端部に光を照射し、正反射光ではない反射光を撮像してカラーフィルタ全体をマクロ的に観察することによって、乾燥工程で生じるムラを早期に発見するカラーフィルタの検査方法、カラーフィルタ検査装置、当該方法を用いたカラーフィルタの製造方法を提供する。

Description

明 細 書
カラーフィルタ検査方法およびカラーフィルタ製造方法並びにカラーフィ ルタ検查装置
技術分野
[0001] 本発明は、カラーテレビ、パーソナルコンピュータ等に使用される液晶ディスプレイ のカラーフィルタのムラを検查する方法、ムラの少なレ、カラーフィルタを製造する方法 、カラーフィルタのムラを検査する装置に関し、特に、カラーフィルタをマクロ的に観 察することにより、乾燥工程等のカラーフィルタの製造工程で生じるムラを早期に発 見するカラーフィルタ検査方法等に関する。
背景技術
[0002] 近年、液晶表示装置の大型化が進み、その需要が増加する傾向がある。しかしな がら、さらなる普及のためにはコストダウンが必要であり、コストの比重の高いカラーフ ィルタのコストダウンに対する要求が高まっている。特にコストに直接影響する歩留ま りの向上は重要であり、カラーフィルタの不良を精度よく検出する要求が高まっている
[0003] 従来、カラーフィルタの製造方法には、染色法、顔料分散法、電着法、印刷法など があるが、赤、青、緑の各色の着色に同一工程を複数回繰り返す必要があり、工程 数が多いために歩留まりの低下など、液晶ディスプレイのコストを高くする要因となつ ている。
[0004] そこで、透明基板上にインクジェットヘッドを使用してカラーフィルタ部材を吐出させ カラーフィルタを形成するインクジェット法が提案されている。インクジェット法では、 赤、青、緑を同一工程で形成することができるので、製造工程の簡略化など大幅なコ ストダウン効果を得ることができる。
[0005] ところで、インクジェット法では、インクジェットヘッドを使用するためにカラーフィルタ 部材は液状になっているため、透明基板上にカラーフィルタ部材を吐出後に乾燥を 行う必要がある。カラーフィルタを乾燥させる工程では、カラーフィルタの周辺部分か ら乾燥が進行するため、カラーフィルタの表面形状が基板全体で同一な形状になり にくぐ主にカラーフィルタとブラックマトリクスとの境界付近の形状に変化が生じ、こ れが微弱な輝度ムラとなる。
[0006] そこで、乾燥工程後に、カラーフィルタの生成時点にて各種検査を行レ、、欠陥を抽 出する検查方法として、例えばカラーフィルタ上の微少異物の欠陥検出に関して、力 ラーフィルタの往移動時と復移動時とで異なる方向からカラーフィルタに光を照射し、 乱反射した光を撮像し、往移動時と復移動時の段差パターンを二値化データに変換 し、論理積演算して認識することにより異物を検出する手法が提案されている (特許 文献 1)。
特許文献 1 :特開平 7— 20065号公報 (公開日:平成 7 (1995)年 1月 24日) 発明の開示
[0007] しかしながら、上記従来の特許文献 1の方法は、乱反射光を撮像した画像を利用 するものであるが、上記画像では画像内に濃淡が生じないため、輝度ムラの原因とな るカラーフィルタとブラックマトリクスとの境界付近の形状の変化を検出することができ ないという問題があった。すなわち、乱反射光を撮像した画像には、例えば基板全体 をマクロ的に撮像した場合は、カラーフィルタ部材の端部以外の部分の反射光(特に 中央部分)も撮像系に入射されるが、カラーフィルタ中央部分の反射光は、端部に比 ベ強ぐ輝度差が少ないため、カラーフィルタ部材の端部の輝度差は相殺されてしま う。したがって、画像内に濃淡が生じない。
[0008] また、仮にミクロ的にカラーフィルタ部材を撮像した場合でも、カラーフィルタの端部 と中央部分とを比較すると、中央部分の反射光が強いため、端部の反射光の輝度差 を検出することができるレベルまで光量を上げても、あるいは撮像感度を上げても、 中央部分の反射光の影響で撮像系が飽和してしまう。したがって、画像内に濃淡が 生じない。
[0009] 本発明は、上記課題に鑑みなされたものであって、その目的は、乾燥工程等のカラ 一フィルタの製造工程で生じるムラを早期に発見するカラーフィルタの検査方法、力 ラーフィルタ検査装置、当該方法を用いたカラーフィルタの製造方法を提供すること にある。
[0010] 本発明に係るカラーフィルタ検査方法は、上記課題を解決するために、絵素の各 々がブラックマトリクスで囲まれてレ、るカラーフィルタのムラを検査するカラーフィルタ 検査方法において、絵素とブラックマトリクスとの境界を含むカラーフィルタ端部に、 カラーフィルタ端部の平均斜度を α ( aは 0度以上 90度未満)としたときに、カラーフ ィルタを成膜した基板の主面の法線からの傾き角度が 0度以上(90 + ひ)度未満の 入射角度、または基板の主面の法線からの傾き角度が 0度以上(90—ひ)度未満の 入射角度で光を照射する光照射ステップと、上記入射角度と異なる反射角度であつ て、上記入射角度が 0度以上(90 + ひ)度未満のときは 0度以上(90 _ ひ)度未満の 反射角度で、上記入射角度が 0度以上(90—ひ)度未満のときは 0度以上(90 + ひ) 度未満の反射角度で上記カラーフィルタ端部によって反射された反射光を撮像して 、少なくとも 2つの撮像画像を取得する撮像ステップと、上記撮像画像に基づいて、 カラーフィルタ内の輝度差を算出する撮像画像情報分析ステップと、上記輝度差か らカラーフィルタのムラの有無を判断するムラ判定ステップと、を含むことを特徴として いる。
[0011] 上記方法によれば、乾燥工程等においてムラが生じやすい箇所である絵素とブラッ クマトリタスとの境界を含むカラーフィルタ端部に対し、適切な角度で光が照射され、 正反射光ではない角度で反射された反射光を撮像する。そのため、特許文献 1の乱 反射光を利用する技術のように、カラーフィルタ端部以外の部分の反射光がほとんど 撮像系に入射されることはなぐ撮像画像内に輝度差が生じやすレ、。
[0012] したがって、カラーフィルタの乾燥工程等の製造工程で生じる微小な表面形状の変 ィ匕から生じるムラを高精度に検出することができる。また、散乱光について少なくとも 2 つの撮像画像が取得され、これに基づいてカラーフィルタ内の輝度差からムラの有 無が判定されるので、カラーフィルタのムラを広範囲にわたりマクロ的に検查すること ができる。
[0013] 上記カラーフィルタ検查方法では、上記光照射ステップ力 1つの絵素あたり 2っ以 上の異なるカラーフィルタ端部に、それぞれ異なる照射方向から光を照射するステツ プであって、上記照射方向の少なくとも一方力 カラーフィルタを成膜した基板の主 面の法線を含む面に対して、他方と反対側にあるものであってもよい。
[0014] カラーフィルタ端部は、乾燥工程等によって表面に違う傾斜がつくことがあるため、 それぞれ形状が異なるものとなりやすレ、が、上記方法によれば、 1つの絵素あたり 2 つ以上の異なるカラーフィルタ端部に、それぞれ異なる照射方向から光を照射する ので、カラーフィルタ端部ごとの形状の違いをより反映した撮像画像を得ることができ る。したがって、ムラ検出の精度をより向上させることができる。
[0015] また、上記方法は、上記撮像ステップが、上記 1つの絵素あたり 2つ以上の異なる力 ラーフィルタ端部からそれぞれ異なる撮像方向に反射された反射光を撮像するステ ップであって、上記撮像方向の少なくとも一方が、カラーフィルタを成膜した基板の主 面の法線を含む面に対して、他方と反対側にあってもよい。
[0016] 上記方法によれば、カラーフィルタ端部に照射され、異なる方向に反射された光を 効率よく捉えることができる。したがって、よりムラ検出の精度を上げることができる。
[0017] 上記カラーフィルタ検查方法においては、上記入射角度および上記反射角度の、 上記傾き角度が 0度より大きいことが好ましい。上記方法によれば、入射角度および 上記反射角度のカラーフィルタを成膜した基板の主面の法線方向とはならないため 、正反射光が撮像系に入射せず、撮像画像内において輝度差を生じやすい。したが つて、ムラ検出の精度を向上させることができる。
[0018] 上記カラーフィルタ検査方法においては、上記入射角度および上記反射角度が、 カラーフィルタ端部の変極点を通る接線の法線から互いに等しい角度であってもよい 。光の照射角度が適切でないと、カラーフィルタの絵素中央部からの反射光が強くな りすぎ、カラーフィルタ端部からの反射光を効率よく検出できないが、上記方法によ れば、カラーフィルタへの光の照射角度が適切なものとなり、カラーフィルタの絵素中 央部からの反射光が撮像手段に入射されなくなるので、カラーフィルタ端部からの反 射光を効率よく検出することができる。したがって、ムラ検出の精度を向上させること ができる。
[0019] 上記カラーフィルタ検查方法においては、さらに、上記撮像方向の少なくとも 2つが ブラックマトリクスの向かい合う 2辺に対して垂直であることが好ましい。
[0020] ブラックマトリクスは 4つの辺を持つところ、上記方法によれば、上記撮像方向の少 なくとも 2つがブラックマトリクスの向かい合う 2辺に対して垂直な方向となるので、ブラ ックマトリクスの 4辺のうち少なくとも 2方向から反射光が撮像されることになる。そのた め、輝度差の異なる少なくとも 2つの撮像画像を取得することができる。したがって、 高精度なムラの検査が可能となる。
[0021] 上記カラーフィルタ検査方法においては、上記撮像方向が、カラーフィルタを成膜 した基板を当該基板の主面の法線方向から観察した場合に、ブラックマトリクスの 4つ の辺に対して垂直な 4方向であってもよレ、。
[0022] 上記方法によれば、ブラックマトリクスの 4辺のうち 4方向から反射光が撮像されるこ とになるため、カラーフィルタのムラの検查をブラックマトリクスの全方向からマクロ的 に行うことができる。したがって、より高精度なムラの検査が可能となる。
[0023] 上記カラーフィルタ検查方法においては、上記光照射ステップを行うための光照射 手段と上記撮像ステップを行うための撮像手段を各二式用い、当該光照射手段と撮 像手段とが、カラーフィルタ端部の変極点を通る接線の法線から互いに等しい角度 に配置されることが好ましい。
[0024] 上記方法によれば、各二式の光照射手段と撮像手段とが相対する位置に配置され るため、 1回の基板走査により相対位置のカラーフィルタ端部への光照射と反射光の 撮像を行うことができる。したがって、検査タクトの短縮が可能となる。
[0025] 本発明に係るカラーフィルタ検査装置は、絵素の各々がブラックマトリクスで囲まれ てレ、るカラーフィルタのムラを検査するカラーフィルタ検査装置であって、絵素とブラ ックマトリクスとの境界を含むカラーフィルタ端部に、上記カラーフィルタ端部の平均 斜度を α ( aは 0度以上 90度未満)としたときに、基板の主面の法線からの傾き角度 力 ¾度以上(90 + α )度未満の入射角度、または基板の主面の法線からの傾き角度 力 SO度以上 (90— α )度未満の入射角度で光を照射する光照射手段と、上記入射角 度と異なる反射角度であって、上記入射角度が 0度以上(90 + ひ)度未満のときは 0 度以上(90—ひ)度未満の反射角度で、上記入射角度が 0度以上(90—ひ)度未満 のときは 0度以上(90 + ひ)度未満の反射角度で反射された反射光を撮像して、少な くとも 2つの撮像画像を取得する撮像手段と、上記撮像画像に基づいて、カラーフィ ルタ内の輝度差を算出する撮像画像情報分析手段と、上記輝度差からカラーフィル タのムラの有無を判断するムラ判定手段と、を備えることを特徴としてレ、る。
[0026] 上記装置によれば、乾燥工程等においてムラが生じやすい箇所である絵素とブラッ クマトリタスとの境界を含むカラーフィルタ端部に対し、適切な角度で光が照射され、 正反射光ではない角度で反射された反射光を撮像する。そのため、特許文献 1の乱 反射光を利用する技術のように、カラーフィルタ端部以外の部分の反射光が撮像系 にほとんど入射されることはなぐ画像内に輝度差が生じやすい撮像画像を得ること ができる。
[0027] したがって、カラーフィルタの乾燥工程等の製造工程で生じる微小な表面形状の変 ィ匕から生じるムラを高精度に検出することができる。また、散乱光について少なくとも 2 つの撮像画像が取得され、これに基づいてカラーフィルタ内の輝度差からムラの有 無が判定されるので、カラーフィルタ端部のムラを広範囲にわたりマクロ的に検査す ること力 Sできる。
[0028] 本発明に係るカラーフィルタの製造方法は、本発明に係るカラーフィルタ検查方法 によって良品であると判断されたカラーフィルタのみを検查工程以降の工程に供する ことを特徴としている。上記方法によれば、カラーフィルタ製造工程(乾燥工程等)の 任意の段階で発生したムラが検出され、良品のみが検査工程以降の工程に供される ので、ムラを有するカラーフィルタが検査工程以降の工程を経てしまうことがなレ、。し たがって、製造コストを低減することができる。
[0029] また、本発明に係るカラーフィルタの製造方法は、本発明に係るカラーフィルタ検査 方法によって不良品であると判断されたカラーフィルタが発生した場合に、不良品が 発生したという情報を、カラーフィルタの製造装置に伝達することを特徴としている。
[0030] 上記方法によれば、カラーフィルタ製造工程(乾燥工程等)の任意の段階で発生し たムラを検出し、その情報をカラーフィルタの製造装置へフィードバックするので、不 良品が検查工程以降の工程に混入することを防ぐことができる。したがって、液晶デ イスプレイの歩留まりを向上させることができ、製造コストを低減することができる。
[0031] 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分か るであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白にな るであろう。
図面の簡単な説明
[0032] [図 1]本実施の形態に係るカラーフィルタ検査装置 1の構成を示すブロック図である。 園 2]図 1に示す本実施の形態に係るカラーフィルタ検査装置 1の光学系部分の一例 を示した模式図である。
園 3]液状のカラーフィルタ部材を使用してできるカラーフィルタ 10の縦断面図である
[図 4]図 3に示すカラーフィルタ端部 23の拡大図であり、(a)は上記基板 100の主面 の法線力 の傾き角度が 0度以上(90 + ひ)度未満の入射角度で光を照射した様子 を示す模式図であり、(b)は基板の主面の法線からの傾き角度が 0度以上(90—ひ) 度未満の入射角度で光を照射した様子を示す模式図である。
園 5]照明(光照射手段) 2の平行移動による最適な光の照射角度の決定について説 明した模式図である。
園 6]照明(光照射手段) 2を平行移動させることによりカラーフィルタ 10の中心部分( 絵素中心部 22)の反射光がカメラに入射されなレ、ようにした場合のカラーフィルタ端 部 23への光の入射と反射を表す図である。
園 7] 1つの絵素あたり 2つの異なるカラーフィルタ端部を撮像した画像はそれぞれ輝 度が異なる画像となることを示す模式図である。
[図 8]カラーフィルタ 10をミクロ的に見た図である。
[図 9]センサ (撮像手段) 3と照明(光照射手段) 2を 1台ずつでカラーフィルタ 10を 4方 向(ブラックマトリクスの 4つの辺に対して垂直な 4方向)から撮像する場合の説明図で ある。
[図 10]センサ (撮像手段) 3と照明(光照射手段) 2、照明駆動ステージ 4を 2台ずつ( 各二式)搭載したときの配置図である。
[図 11]カラーフィルタ検查装置 1におけるカラーフィルタ検查処理の流れを示すフロ 一チャートである。
[図 12]輝度差分布を得て、欠陥を判定する具体的な方法について説明する説明図 である。
[図 13]図 13の(a)は、カラーフィルタ検查装置 laの光学系部分の縦断面を示す模式 図である。図 13の(b)は、カラーフィルタ検查装置 laの斜視図である。
園 14]図 14の(a)は、カラーフィルタ検查装置 lbの光学系部分の縦断面を示す模式 図である。図 14の(b)は、カラーフィルタ検査装置 lbの斜視図である。
[図 15]図 15の(a)は、カラーフィルタ検査装置 lcの光学系部分の縦断面を示す模式 図である。図 15の(b)は、カラーフィルタ検査装置 lcの斜視図である。
園 16]カラーフィルタ 10の左右方向を撮像する様子を上記基板の主面の法線方向 から観察した様子を示す模式図である。 (a)は第 A行を撮像する様子を、 (b)は第 B 行を撮像する様子を示すものである。
園 17]カラーフィルタ 10の手前方向—奥行方向を撮像する様子を上記基板の主面 の法線方向から観察した様子を示す模式図である。 (a)は第 1列を撮像する様子を、 (b)は第 2列を撮像する様子を示すものである。
園 18]カラーフィルタ製造工程の一般的な例として、顔料分散法による製造工程を示 したフローチャートである。
符号の説明
1 カラーフィルタ検査装置
la カラーフィルタ検査装置
lb カラーフィルタ検査装置
lc カラーフィルタ検查装置
2 照明(光照射手段)
2a 第 1照明
2b 第 2照明
3 センサ (撮像手段)
3a 第 1センサ
3b 第 2センサ
6 制御装置
7 記憶部
9 画像処理部 (撮像画像情報分析手段)
10 カラーフィノレタ
13 欠陥判定部(ムラ判定手段)
20 ブラックマトリクス 21 來
23 カラーフィルタ端部
23a カラーフィルタ端部
23b カラーフィルタ端部
23c カラーフィルタ端部
23d カラーフィルタ端部
100 基板
S3 光照射ステップ
S4 撮像ステップ
S6 撮像画像情報分析ステップ
S7 光照射ステップ
S8 撮像ステップ
S9 撮像画像情報分析ステップ
S10 ムラ判定ステップ
発明を実施するための最良の形態
[0034] 本発明に係るカラーフィルタ検查方法、カラーフィルタ検查装置、カラーフィルタ製 造方法の実施の各形態について図 1ないし図 17に基づいて説明すると以下の通り である。
[0035] 図 1は、本実施の形態に係るカラーフィルタ検查装置 1の構成を示すブロック図で ある。図 1に示すように、カラーフィルタ検査装置 1は、照明(光照射手段) 2、センサ( 撮像手段) 3、基板駆動ステージ 4、照明駆動ステージ 5、制御装置 6、記憶部 7及び 表示モニタ 8を備える。制御装置 6は、画像処理部 (撮像画像情報分析手段) 9、基 板駆動制御部 11、照明駆動制御部 12、および欠陥判定部 (ムラ判定手段) 13を備 える。カラーフィルタ 10は、基板駆動ステージ 4に載置される。
[0036] また、図 2は、図 1に示す本実施の形態に係るカラーフィルタ検査装置 1の光学系 部分の一例を示した模式図である。
[0037] 図 3は、液状のカラーフィルタ部材を使用してできるカラーフィルタ 10の縦断面図で ある。図 3において、カラーフィルタ 10はブラックマトリクス 20、絵素 21、基板 100から 構成されている。基板 100は、ガラス、プラスチック等からなり、基板 100の上にカラ 一フィルタ部材 (ブラックマトリクス 20、絵素 21)が成膜され、カラーフィルタ 10が構成 される。
[0038] 本実施の各形態では、被検查物であるカラーフィルタ 10としては、各絵素 (R, G, B)が色毎にそれぞれ基板走查方向に並び、かつ、それら各色の絵素が上記基板走 查方向に対し直交する方向に互いに隣り合レ、、順次並んで設けられ、さらに、それら 各色の絵素がブラックマトリクスによって囲まれた、長方形板状のカラーフィルタが挙 げられる。
[0039] 照明(光照射手段) 2は、カラーフィルタ 10に光を照射するためのものである。照明
(光照射手段) 2としては特に限定されるものではない。例えば、ライン照明、全周拡 散照明(例;直管蛍光灯)、ビーム照明等を用レ、ることができる。
[0040] ライン照明は、ある程度の範囲をもってカラーフィルタ 10を照明することができるの で、カラーフィルタ端部 23を所定の角度で一度に照明できる範囲を広く取ることがで き、検査時間の短縮に寄与することができる。そのため、カラーフィルタ 10の全体に わたってマクロ的なムラ検査を行う本発明においては特に好適に用いることができる
[0041] 全周拡散照明は、周囲 360度を照明することができるので、カラーフィルタ 10から の距離を調節可能な構成とすることにより、 1台設置するだけで各カラーフィルタ端部 23を所定の角度で照明することができ、装置の小型化に寄与することができる。
[0042] ビーム照明は、一度に照射できる範囲は狭いものである力 S、所定の角度でカラーフ ィルタ 10に照射しつつ、カラーフィルタ 10あるいはビーム照明自体を走査することに よってカラーフィルタ 10の全体に光を照射することができる。
[0043] センサ(撮像手段) 3は、照明(光照射手段) 2からの照射光がカラーフィルタ 10表 面で反射された反射光を取得するものである。センサ (撮像手段) 3としては特に限定 されるものではなぐ例えばラインセンサやエリアセンサなどを用いることができるが、 カラーフィルタ全体をマクロ的に観察するためには、照明(光照射手段) 2に照らされ たカラーフィルタ 10をライン状に撮像することが好ましい。したがって、ラインセンサを 用いることが好ましい。 [0044] 図 1、 2に示すように、照明(光照射手段) 2は第 1照明 2aと第 2照明 2bとから構成さ れていてもよレ、。ただし、これに限定されるものではなぐカラーフィルタ検査装置 1は 、少なくとも 1以上の照明を備えていればよい。同様に、センサ (撮像手段) 3は第 1セ ンサ 3aと第 2センサ 3bとから構成されていてもよレ、。ただし、これに限定されるもので はなぐカラーフィルタ検查装置 1は、少なくとも 1以上のセンサを備えていればよい。
[0045] 基板駆動ステージ 4は、検查対象たるカラーフィルタ 10を支持するとともにこれを基 板面に沿った方向(図 2中に実線で示した矢印方向、以下、基板走査方向という)に 移動する。また、基板駆動ステージ 4はカラーフィルタ 10を 90度毎に回転することが できる機構を搭載している。
[0046] カラーフィルタ 10を 90度毎に回転する方法としては、例えはカラーフィルタ 10を搭 載している基板駆動ステージ 4が備える回転機構によって基板駆動ステージ 4全体を 回転する方法や、カラーフィルタ 10に対してステージ面からエアーを排出し、カラー フィルタ 10を浮上させ、基板中央部のみを吸着把持し、カラーフィルタ 10だけを回転 させる方法などがある。
[0047] 照明駆動ステージ 5は、照明(光照射手段) 2を基板走査方向の適正な位置に移動 させる。照明駆動ステージ 5は、図 1では、照明(光照射手段) 2aに対して第 1照明駆 動ステージ 5a、照明(光照射手段) 2bに対して第 2照明駆動ステージ 5bが備えられ ているが、これに限られるものではなぐ例えば一つの照明駆動ステージが複数の照 明(光照射手段) 2を駆動するものであってもよい。
[0048] 記憶部 7は、被検査体であるカラーフィルタ 10と同様の機種 (絵素サイズやカラー フィルタ部材、量などが同じ構成で作られたもの)であってムラを有さない基準サンプ ルを使用して、各撮像画像の方向を得るために最適な照明駆動ステージ 5の位置デ ータを実験的に測定した照明駆動ステージ 5の各位置データを機種情報として保存 しておくためのものである。
[0049] 表示モニタ 8は、欠陥判定部 13の判定結果 (欠陥情報)を表示し、これを装置管理 者 (オペレータ)に認識せしめる。
[0050] 画像処理部 9は、センサ 3が撮像した画像情報を蓄積していき、カラーフィルタ 10 表面の 2次元的な撮像画像を作成し、解析を行う。 [0051] 基板駆動制御部 11は、記憶部 7からのカラーフィルタ 10の機種情報に基づいて基 板駆動ステージ 4を介してカラーフィルタ 10を一定速度で走査させる。
[0052] 照明駆動制御部 12は、記憶部 7からのカラーフィルタ 10の機種情報に対応した照 明駆動ステージ 5の位置データの情報に基づいて照明駆動ステージ 5を介して照明 (光照射手段) 2を移動させる。
[0053] 欠陥判定部 13は、カラーフィルタ 10表面の撮像画像の解析データに基づいてカラ 一フィルタ 10のムラ状態を判定する。
[0054] 本発明に係るカラーフィルタ検查方法では、照明(光照射手段) 2からの照射光は、 上記絵素 21とブラックマトリクス 20との境界を含むカラーフィルタ端部 23に、カラーフ ィルタ端部 23の平均斜度をひ (ひは 0度以上 90度未満)としたときに、上記基板 100 の主面の法線からの傾き角度が 0度以上(90 + ひ)度未満の入射角度、または基板 の主面の法線からの傾き角度が 0度以上(90—ひ)度未満の入射角度で照射される
[0055] 本明細書において、「カラーフィルタ端部」とは、ブラックマトリクスの 1辺の全長と、 絵素とが構成する境界を含む領域をいう。通常、カラーフィルタの 1つの絵素はブラッ クマトリタスの 4つの辺に囲まれた四角形であるので、 1辺に着目すると、各辺ごとに 4 つのカラーフィルタ端部があることになる。
[0056] カラーフィルタ端部は、ブラックマトリクスの 1辺の全長と、絵素とが構成する境界を 含む領域であるので、ブラックマトリクスの 1辺と相対する他の 1辺の全長までは含ま なレ、。カラーフィルタ端部に該当する領域は、カラーフィルタの材質、ブラックマトリク スの材質、撥親水性処理方法等によって変化しうるが、例えば 1辺が 400 μ ΐηの絵素 では、ブラックマトリクスに接している位置から 20 z m (5%程度)の領域にて形状が 変化するため、当該領域がカラーフィルタ端部となる。
[0057] また、カラーフィルタ端部は、上記境界のみからなるものであってもよレ、。カラーフィ ルタ端部は、乾燥工程等によって違う傾斜がつくことがあり、ムラが生じやすい部分で あるため、カラーフィルタ端部に後述する角度で光を照射し、反射光を撮像すること により、ムラを精度よく検出することが可能となる。中でも、ブラックマトリクスと絵素との 境界は特にムラが生じやすい部分であるので、当該境界に光を照射することによって 、さらに精度よくムラを検出することができる。ただし、光を照射する部位は必ずしも上 記境界のみでなくてもよぐ上記境界が含まれる領域であればよい。
[0058] 基板 100の主面とは、カラーフィルタ 10が成膜されている面をレ、い、図 3では、カラ 一フィルタ 10と基板 100との境界をなしている面である。基板 100の主面の法線から の傾き角度とは、基板 100の主面の法線を基準として、入射角度が法線から何度傾 いているかをいう。基板 100の主面の法線からの傾き角度が 0度の場合は、主面に垂 直な方向からカラーフィルタ端部 23に光が入射する。
[0059] カラーフィルタ端部の平均斜度とは、カラーフィルタ端部の基板からの傾斜角の平 均をいう。
[0060] カラーフィルタ端部は、図 3に示すように、表面が基板とは水平にならず、傾斜がつ いていることが多ぐ乾燥工程等によって違う傾斜がつくことがあり、ムラが生じやすい 。この傾斜角度は、カラーフィルタの部位によって異なるため、本明細書では、ブラッ クマトリタス、基板とカラーフィルタ端部との交点からカラーフィルタ端部に対して接線 を引いた場合に、基板と当該接線とがなす角度の平均をカラーフィルタ端部の平均 斜度とする。
[0061] なお、カラーフィルタ端部の基板からの傾斜角は、絵素の大きさやカラーフィルタの 部材 ·撥親水性処理の方法により、予想することができるが、統計的にデータベース などを使用して、予め触針式表面形状計測器などで計測し、求めること力 Sできる。
[0062] 以下、ブラックマトリクス、基板とカラーフィルタ端部との交点からカラーフィルタ端部 に対して引いた接線を、「カラーフィルタ端部の変極点を通る接線」という。
[0063] 図 4は、図 3に示すカラーフィルタ端部 23の拡大図である。図 4の(a)は上記基板 1 00の主面の法線からの傾き角度が 0度以上(90 + ひ)度未満の入射角度で光を照 射した様子を示す模式図であり、図 4の(b)は基板の主面の法線からの傾き角度が 0 度以上(90—ひ)度未満の入射角度で光を照射した様子を示す模式図である。
[0064] カラーフィルタ端部 23に照射された光は、上記入射角度が 0度以上(90 + ひ)度未 満のときは 0度以上(90—ひ)度未満の反射角度で、上記入射角度が 0度以上(90 一ひ)度未満のときは 0度以上(90+ ひ)度未満の反射角度で上記カラーフィルタ端 部 23によって反射され、反射光はセンサ (撮像手段) 3によって撮像される。 [0065] なお、図 4の(a)において、上記入射角度は 0度以上(90 + α )度未満であればよ いが、基板 100の表側からの方力 照明(光照射手段) 2からの光をカラーフィルタ端 部 23に対して照射しやすいので、上記入射角度は 0度以上 90度未満であることが 好ましレ、。また、図 4の(b)において、上記反射角度は 0度以上(90 +ひ)度未満であ ればよいが、反射光の受光.撮像は基板 100の表側からの方が行いやすいので、上 記反射角度は 0度以上 90度未満であることが好ましい。
[0066] すなわち、特に限定されるものではなレ、が、カラーフィルタ端部 23への光の照射は 、基板 100の表側から照射されるような入射角度で行われ、カラーフィルタ端部 23に よる光の反射は、基板 100の表側で受光 ·撮像される反射角度で行われることが好ま しい。
[0067] また、照明(光照射手段) 2からの光の照射角度が適切でないと、絵素中央部 22か らの反射光が強すぎて、カラーフィルタ端部 23からの反射光を効率よく検出できない という事態が生じる。カラーフィルタ 10にカラーフィルタ部材を吐出した後の乾燥ェ 程では、絵素中央部 22の形状は変化しないが、カラーフィルタ端部 23の形状が微 少に変化し、これがムラの原因となる。
[0068] したがって、絵素中央部 22からの強い反射光がセンサ (撮像手段) 3に入射すると 、カラーフィルタ端部 23からの反射光が打ち消され、観察しに《なるため、カラーフ ィルタ端部 23からの反射光を効率よく検出するためには、絵素中央部 22からの反射 光がセンサ(撮像手段) 3へ入射することをできるだけ少なくすることが好ましレ、。
[0069] そこで、カラーフィルタ端部 23からの反射光を効率良く検出するために、照明(光 照射手段) 2を照明駆動ステージ 5の基板走査方向に対して平行移動することにより 、光の照射角度を調整する。
[0070] 図 5は、照明(光照射手段) 2の平行移動による最適な光の照射角度の決定につい て説明した模式図である。
[0071] 光の照射角度は、カラーフィルタ端部 23の平均斜度に依存するが、図 5の正反射 位置 (センサ (撮像手段) 3に照明(光照射手段) 2の照射中心が入射する位置)では 、ミクロ的に見た場合、照明(光照射手段) 2の照射がカラーフィルタ 10表面の全体を 反射することが可能になる。この場合は、カラーフィルタ 10の中心部分 (絵素中心部 22)の反射光がセンサ (撮像手段) 3に入射する力 上述のようにカラーフィルタ 10の 中心部分 (絵素中心部 22)の反射光は強いため、カラーフィルタ端部 23の反射光は 観察し難くなる。
[0072] そこで、照明(光照射手段) 2を図 5に示すように正反射位置から平行移動させるこ とにより、カラーフィルタ 10の中心部分 (絵素中心部 22)の反射光がセンサ(撮像手 段) 3に入射されないようにすると、センサ(撮像手段) 3がカラーフィルタ端部 23の反 射光を検出しやすくなる。その結果、ムラ検出の精度を向上させることができる。
[0073] 図 6は、照明(光照射手段) 2を平行移動させることによりカラーフィルタ 10の中心部 分 (絵素中心部 22)の反射光がカメラに入射されなレ、ようにした場合のカラーフィルタ 端部 23への光の入射と反射を表す図である。この場合、図 6に示すように、入射角度 および反射角度がカラーフィルタ端部 23の変極点を通る接線の法線から互いに等し い角度となる。
[0074] 照明(光照射手段) 2とセンサ (撮像手段) 3の正反射位置から照明駆動ステージ 5 を基板走査方向へ平行移動する距離は、カラーフィルタの絵素の大きさ、ブラックマ トリタスの幅、カラーフィルタ部材の量やブラックマトリクスとカラーフィルタ部材の親撥 水効果などの条件が同じであればカラーフィルタ端部 23へ効率良く光を照射する位 置を予測することは事前に実験することで可能である。
[0075] カラーフィルタ端部 23へ効率良く光を照射することができる照明(光照射手段) 2と センサ (撮像手段) 3の位置を予測する方法としては、例えば、事前に形成されたカラ 一フィルタの端部 23の角度を計測し、その角度 ± 0· 1度ずつ、数個の角度で光を入 射して撮像し、各々の角度で良品 ·不良品の限界品を使用して、ムラの検出する定 量化数値を確認し、検出感度が一番良いものを入射角度に設定することにより、入 射角度を設定する方法が挙げられる。
[0076] 事前にカラーフィルタ端部 23へ効率良く光を照射できる位置を実験的に求めてお き、記憶部 7に蓄積しておくことにより、対象機種のカラーフィルタ 10を検查するとき に、記憶部 7から照明駆動ステージ 5の位置データを読み込み、センサ (撮像手段) 3 で撮像する前に照明(光照射手段) 2の位置を設定することができる。
[0077] 上記入射角度は、上述のように、カラーフィルタ端部 23の平均斜度をひ (ひは 0度 以上 90度未満)としたときに、基板 100の主面の法線からの傾き角度が 0度以上(90 + α )度未満、または基板の主面の法線からの傾き角度が 0度以上(90— ひ)度未 満であればよぐ上記反射角度は、上記入射角度と異なる角度であって、上記入射 角度が 0度以上(90+ ひ)度未満のときは 0度以上(90—ひ)度未満の反射角度であ ればよぐ上記入射角度が 0度以上(90—ひ)度未満のときは 0度以上(90 + ひ)度 未満の反射角度であればよいが、絵素中央部 22からの反射光が強すぎて、カラーフ ィルタ端部 23からの反射光を効率よく検出できないという事態を避けるためには、上 記傾き角度は 0度ではなレ、ことが好ましレ、。
[0078] 換言すれば、上記入射角度および反射角度は、基板 100の主面の法線から傾斜 していることが好ましい。上記入射角度および反射角度は、基板 100の主面の法線 力 傾斜している方が、正反射光がセンサ(撮像手段) 3に入射しないため、カラーフ ィルタ端部 23と他の部分との輝度差が出やすくなる。
[0079] また、撮像方向が基板 100の主面の法線方向である場合、すなわち反射角度とし ての上記傾き角度が 0度である場合は、カラーフィルタ端部 23の平均斜度は 2〜3度 と元々小さいため、照明(光照射手段) 2とセンサ (撮像手段) 3の筐体が干渉する。 係る観点からも上記反射角度は基板 100の主面の法線力 傾斜していることが好ま しい。
[0080] 上記入射角度および上記反射角度は、図 6に示すように、カラーフィルタ端部の変 極点を通る接線の法線から互いに等しい角度であることがさらに好ましい。この場合 、カラーフィルタ 10の絵素中央部 22からの反射光がセンサ (撮像手段) 3に入射され なくなるので、カラーフィルタ端部 23からの反射光を効率よく検出することができる。 したがって、ムラ検出の精度を向上させることができる。
[0081] 上記反射角度は、上記入射角度とは異なる角度であることを要する。すなわち、上 記入射角度と反射角度とは、基板 100の主面の法線力 の傾き角度として異なるも のである。入射角度と反射角度とが同じ角度である場合、すなわち正反射の場合は カラーフィルタ 10の中心部分 (絵素中心部 22)の反射光がセンサ(撮像手段) 3に入 射し、カラーフィルタ端部 23の反射光は観察し難くなるからである。
[0082] センサ(撮像手段) 3は、カラーフィルタ端部 23からの反射光を撮像し、少なくとも 2 つの撮像画像を取得する。上記「少なくとも 2つの撮像画像」は、特に限定されるもの ではないが、 1つの絵素 21あたり 2つ以上の異なるカラーフィルタ端部 23に光を照射 し、反射光を撮像したものであることが好ましい。 1つの絵素 21あたり 1つのカラーフィ ルタ端部を照射し、反射光を撮像するよりも、 1つの絵素 21あたり 2つの異なるカラー フィルタ端部 23に光を照射し、反射光を撮像する方が、絵素 21のムラ検査の判定材 料が多くなり、他の箇所で発生しているムラを見逃す可能性が減少するため、より精 度の高い検查をする観点から好ましい。係る観点からは、 1つの絵素 21あたり 3つの 異なるカラーフィルタ端部 23に光を照射し、反射光を撮像することがより好ましぐ 1 つの絵素 21あたり 4つの異なるカラーフィルタ端部 23に光を照射し、反射光を撮像 することが特に好ましい。
[0083] 図 7は、 1つの絵素あたり 2つの異なるカラーフィルタ端部を撮像した画像はそれぞ れ輝度が異なる画像となることを示す模式図である。図 7に示すカラーフィルタ 10の 1 つの絵素 21の縦断面図において、主に乾燥工程によって、カラーフィルタ端部 23a と 23bとは形状が異なるものとなるため、カラーフィルタ端部 23aへ効率良く光を照射 し、撮像した画像(10a)と、カラーフィルタ端部 23bへ効率良く光を照射し、撮像した 画像(10b)とは輝度が異なる画像となる。
[0084] すなわち、 1つの絵素あたり 2つの異なるカラーフィルタ端部 23a、 23bに光を照射 し、撮像した画像はそれぞれ輝度が異なる画像となるので、ムラ検査のための判定材 料が 1つの絵素あたり 2つ得られることになる。したがって、 1つの絵素あたり 1つの力 ラーフィルタ端部に光を照射し、撮像した画像のみに基づいてカラーフィルタのムラ を判断する場合よりもより精度の高い検査ができることになる。
[0085] カラーフィルタ 10への光の照射は、 1つの絵素あたり 2つ以上の異なるカラーフィル タ端部にそれぞれ異なる照射方向から光を照射し、上記照射方向の少なくとも一方 が、カラーフィルタを成膜した基板の主面の法線を含む面に対して、他方と反対側に あることが好ましい。
[0086] 図 8は、カラーフィルタ 10をミクロ的に見た図である。図 8には、ブラックマトリクス 20 に囲まれた絵素 21a〜21fが表されており、例えば絵素 21aはブラックマトリクス 20と カラーフィルタ端部 23a〜23dを形成している。また、図 8はカラーフィルタ 10の各絵 素 21a〜21fのカラーフィルタ端部 23a〜23dに異なる 4つの照射方向 24a〜24dか ら光を照射し、上記照射方向の少なくとも一方が、カラーフィルタを成膜した基板の 主面の法線を含む面に対して、他方と反対側にある態様を表している。例えば、照射 方向 24aは上記基板の主面の法線を含む面に対して、照射方向 24bと反対側にあり 、照射方向 24cは上記基板の主面の法線を含む面に対して、照射方向 24dと反対 側にある。
[0087] なお、図 8においては、便宜上カラーフィルタ端部 23a〜23dを、ブラックマトリクス 2 0との境界付近の斜線で表している力 必ずしもこれに限られるものではない。
[0088] カラーフィルタ端部 23a〜23dの形状は、主として乾燥工程の影響を受けるため、 必ずしも同じにはならない。このカラーフィルタ端部 23a〜23dの形状が液晶パネル を製造したときに輝度ムラとなり、不良品の原因になることがあるため、カラーフィルタ 10の生成時点でムラを検出する必要がある。
[0089] カラーフィルタ端部 23aを検査するには、図 8に示す照射方向 24aから光を照射す る方がカラーフィルタ端部 23aに効率良く光を照射することができる。カラーフィルタ 端部 23aを検査するために、照射方向 24bの方向から光を照射してもよレ、が、 24aの 方向は照明(光照射手段) 2をセンサ (撮像手段) 3側から遠ざける方向へ移動するも のであるのに対し、 24bの方向は照明を撮像側へ近づける方向へ移動するものであ り、移動量が制限されることから、 24aの方向から光を照射する方が好ましい。
[0090] 同様にカラーフィルタ端部 23bを検査するには照射方向 24bから、カラーフィルタ 端部 23cを検査するには照射方向 24cの方向から、カラーフィルタ端部 23dを検査 するには照射方向 24dの方向から光を照射するのが好ましい。すなわち、上記照射 方向の少なくとも一方が、カラーフィルタを成膜した基板の主面の法線を含む面に対 して、他方と反対側にあることが好ましい。カラーフィルタ端部 23a〜23dに照射され 、反射された光は、センサ (撮像手段) 3によって撮像される。すなわち、図 8に示す 例の場合は、 4つの撮像画像が取得されることになる。なお、光の照射角度について は既に説明したとおりである。
[0091] 本発明では、少なくとも 2つの撮像画像が取得されればよいので、撮像の対象とな るカラーフィルタ端部は各絵素あたり 1つでもよいが、撮像の対象となるカラーフィル タ端部が各絵素あたり 1つの場合はカラーフィルタ端部の形によってはムラが生じに くぐ他の箇所で発生しているムラを見逃す可能性があるため、各絵素あたり 1つより も 2つである方が好ましぐ 2つよりも 3つである方がさらに好ましぐ 3つよりも 4つであ る方がより一層好ましい。撮像の対象としての、異なるカラーフィルタ端部の数が多い ほど、判定材料が増えるため、ムラをより精度よく検出することができるからである。
[0092] センサ (撮像手段) 3によって反射光を撮像する方向については、特に限定されるも のではないが、撮像方向の少なくとも一方が、カラーフィルタを成膜した基板の主面 の法線を含む面に対して、他方と反対側にあることが好ましい。撮像方向のすべてが 上記基板の主面の法線を含む面に対して同じ側にある場合、すなわち、撮像方向の すべてが上記基板の主面の法線方向と平行な場合は、正反射光が撮像系に入射す るため、カラーフィルタ端部間の輝度差が出にくい場合がある。
[0093] カラーフィルタ端部間の輝度差 (すなわちムラ)を精度よく検出する観点から、撮像 方向の少なくとも一方が、カラーフィルタを成膜した基板の主面の法線を含む面に対 して、他方と反対側にあることが好ましい。さらに、カラーフィルタ端部間の輝度差をよ り精度よく検出するためは、上記撮像方向の少なくとも 2つがブラックマトリクスの向か い合う 2辺に対して垂直であることが好ましぐ上記撮像方向が、ブラックマトリクスの 4 つの辺に対して垂直な 4方向(以下単に「4方向」とも称する)であることがより好ましい
[0094] カラーフィルタ端部 23のムラは、ミクロ的に見ただけでは微小な変化ゆえに検出困 難であることから、輝度差のある撮像画像のそれぞれからカラーフィルタ 10全体の輝 度差を算出して、カラーフィルタ 10の表面形状に異常がないか (ムラがなレ、か)をカラ 一フィルタ 10全体に渡ってマクロ的に判断する。
[0095] 図 8は、既に説明したように、カラーフィルタ端部 23a〜23dにそれぞれ照射方向 2 4a〜24dから光を照射する場合を示すものである力 この場合、カラーフィルタ端部 23a〜23dの輝度差を精度よく検出するためには、 24a方向から照射された光を 24b 方向から、 24b方向から照射された光を 24a方向から、 24c方向から照射された光を 24d方向から、 24d方向から照射された光を 24c方向から撮像することが最も好まし レ、。この場合、図 8に示すように、上記撮像方向が、ブラックマトリクス 20の 4つの辺に 対して垂直な 4方向となる。
[0096] 照明(光照射手段) 2、センサ (撮像手段) 3は、各撮像方向ごとに設置されるように してもょレ、が、必ずしもこれに限られるものではなぐ 1台ずつであってもよい。
[0097] 図 9はセンサ(撮像手段) 3と照明(光照射手段) 2を 1台ずつでカラーフィルタ 10を
4方向(ブラックマトリクスの 4つの辺に対して垂直な 4方向)から撮像する場合の説明 図である。
[0098] まず、カラーフィルタ端部 23に光を照射し撮像するために照明(光照射手段) 2の 位置を決定する。次にカラーフィルタ 10を基板走查方向 40に走査し、センサ(撮像 手段) 3にて撮像する。続いて、カラーフィルタ 10を 90度回転 41し、照明(光照射手 段) 2の位置を調整する。次に、カラーフィルタ 10を基板走查方向 40に走査し、反射 光をセンサ(撮像手段) 3にて撮像する。同様にカラーフィルタ 10を 90度回転 41し、 4方向すベての撮像画像を得る。このように、照明(光照射手段) 2、センサ (撮像手 段) 3が 1台ずつであっても 4方向すベての撮像画像を得ることができる。
[0099] なお、図 9ではカラーフィルタ 10を回転させる構成について説明した力 カラーフィ ルタ 10は回転させずに走査するだけにしておき、 1方向の走査が終了するごとにセ ンサ (撮像手段) 3と照明(光照射手段) 2とを 90度ずつ回転させる構成としてもよい。
[0100] 図 10は、センサ (撮像手段) 3と照明(光照射手段) 2、照明駆動ステージ 4を 2台ず つ(各二式)搭載したときの配置図である。カラーフィルタ 10を基板 100の主面の法 線方向力 観察した場合に、ブラックマトリクス 20の 4つの辺に対して垂直な 4方向か ら撮像した画像を得るために、カラーフィルタ 10や、センサ (撮像手段) 3と照明(光照 射手段) 2を、 90度ずつ 4回回転させると検査時間がかかる。
[0101] そこで、 1回の基板走査で、 2方向からの撮像画像を取得するために、センサ 3aと 3 b、照明 2aと 2bをそれぞれカラーフィルタ 10の向かい合う 2辺(ブラックマトリクスの向 カ 、合う 2辺)に垂直となる位置に設置する。係る構成とすることで、 1回の基板走查 にて 2方向の撮像画像が得られるため、カラーフィルタ 10を 90度回転させ、再度走 查させるだけで、 4方向(ブラックマトリクスの 4つの辺に対して垂直な 4方向)から撮像 した画像が得られる。そのため、計測時間の短縮が可能になるとともに、初期の設備 投資が軽減できるため、有効である。 [0102] センサ (撮像手段) 3と照明(光照射手段) 2を各二式搭載する場合、センサ 3aと 3b 、照明 2aと 2bとは、上述のように、カラーフィルタ 10の向かい合う 2辺(ブラックマトリク スの向かい合う 2辺)に垂直となる位置に設置すれば良レ、が、カラーフィルタ端部の 変極点を通る接線の法線から互いに等しい角度に配置されることがさらに好ましい。 上記入射角度および上記反射角度が、カラーフィルタ端部 23の変極点を通る接線 の法線から互いに等しい角度であれば、カラーフィルタ 10の絵素中央部 22からの反 射光がセンサ(撮像手段) 3に入射されなくなるので、カラーフィルタ端部 23からの反 射光を効率よく検出することができる。そのため、上記入射角度および反射角度に対 応する位置である、カラーフィルタ端部の変極点を通る接線の法線から互いに等しい 角度にセンサ (撮像手段) 3と照明(光照射手段) 2とを配置することにより、ムラ検査 の精度を向上させることができる。
[0103] 照明(光照射手段) 2を 2台以上用いる場合は、交互点灯ではなぐ全ての照明(光 照射手段) 2を同時点灯することが好ましい。同時点灯することにより、異なるカラーフ ィルタ端部 23を異なる角度から同時に照明できるため、検査効率が向上する。
[0104] また、センサ (撮像手段) 3を 2台以上用いる場合は、本発明では撮像する位置が基 板の走査方向に対して異なるので、各センサ(撮像手段) 3で交互に撮像するのでは なぐ各センサ(撮像手段) 3で同時に撮像する。
[0105] 以下に、上記構成のカラーフィルタ検査装置 1におけるカラーフィルタ検査処理の 流れについて、図 11に示すフローチャートを参照しながら説明する。以下では、セン サ (撮像手段) 3と照明(光照射手段) 2、照明駆動ステージ 4を 2台ずつ (各二式)搭 載したときのカラーフィルタ検査処理の流れを説明する。
[0106] なお、検查処理を実行する前に、予め、被検查体であるカラーフィルタ 10と同様の 機種 (絵素サイズやカラーフィルタ部材、量などが同じ構成で作られたもの)であって ムラを有さない基準サンプルを使用して、各撮像画像の方向の最適な照明駆動ステ ージ 5の位置データを測定しておき、測定した照明駆動ステージ 5の各位置データを 機種情報として記憶部 7に保存しておく。検查対象であるカラーフィルタ 10のムラは、 当該基準サンプノレをバックグラウンドとして測定する。
[0107] まず、基板搬送部(図示せず)が、カラーフィルタ 10をカラーフィルタ検查装置 1内 の基板駆動ステージ 4に搬入する(Sl)。この基板搬送部は搬入したカラーフィルタ 1 0の機種情報を制御装置 6に送信する。制御装置 6は、搬入されたカラーフィルタ 10 の機種情報に対応した照明駆動ステージ 5の位置データの情報を記憶部 7から取り 出す。
[0108] 次に、記憶部 7から取り出された位置データの情報をもとに照明駆動ステージ 5を 移動させる(S2)。一回の走查にて、カラーフィルタ 10の向かい合う 2辺(ブラックマト リクスの向かい合う 2辺)に垂直となる位置から撮像画像を取得するため、 2方向の位 置データに基づいて照明駆動ステージ 5を各々移動させる。
[0109] 次に、照明(光照射手段) 2によりカラーフィルタ 10に光を照射し、基板駆動ステー ジ 4上のカラーフィルタ 10の走查を開始する(S3 :光照射ステップ)。続いて、基板駆 動ステージ 4にてカラーフィルタ 10がセンサ(撮像手段) 3の撮像開始位置に来たとき に、センサ (撮像手段) 3にて撮像を開始する (S4 :撮像ステップ)。各センサ (撮像手 段) 3の撮像開始位置は違うため、センサ (撮像手段) 3に対応した撮像開始位置に て撮像を開始する。
[0110] カラーフィルタ 10の走査が終了した後、カラーフィルタ 10を 90度回転させる(S5)。
同時にセンサ(撮像手段) 3にて撮像した画像は画像処理部(撮像画像情報分析手 段) 9にて、 2次元の画像を形成し、カラーフィルタ 10内の輝度差を算出し、カラーフ ィルタ 10の輝度差分布を測定する(S6 :撮像画像情報分析ステップ)。また、 90度回 転した方向に対応した照明駆動ステージ 5の位置データを記憶部 7から取り出し、位 置データの情報をもとに照明駆動ステージ 5を移動させる。これらの処理は並行して 行うことができるため、検査時間の短縮が可能になる。
[0111] 次にカラーフィルタ 10を 90度回転させた方向の画像を撮像するために、カラーフィ ルタ 10を走查する(S7:光照射ステップ)。
[0112] 次に、基板駆動ステージ 4にてカラーフィルタ 10がラインセンサ撮像開始位置に来 たときに、センサ (撮像手段) 3にて撮像を開始する(S8 :撮像ステップ)。各センサ( 撮像手段) 3の撮像開始位置は違うため、各センサ (撮像手段) 3に対応した撮像開 始位置にて撮像を開始する。
[0113] カラーフィルタ 10の走査が終了し、各センサ (撮像手段) 3による撮像が終了すると 、画像処理部(撮像画像情報分析手段) 9にて、 2次元の画像が形成され、カラーフィ ルタ 10の輝度差分布を形成する(S9:撮像画像情報分析ステップ)。 4方向のカラー フィルタ 10の輝度差分布が得られ、記憶部 7より欠陥となる輝度差閾値を取り出し、 欠陥を判定する(S10 :ムラ判定ステップ)。欠陥となる輝度差閾値は予め、検查値と 液晶パネルの製造したときの不良の関係を調査し、データベースすることで最適な輝 度差閾値を求めることができる。
[0114] 次に、輝度差分布を得て、欠陥を判定する具体的な方法について、図 12を使用し て説明する。図 12に示すように、カラーフィルタ 10は、 1枚の基板 100上に複数のパ ネルを作るための絵素 21に分割することができる。輝度差は絵素 21毎に判断すれ ば良ぐ撮像画像は、各絵素 21の輝度差分布を算出するための輝度分布領域 51に 分割する。
[0115] 輝度分布領域 51は、 S1で得られたカラーフィルタ 10の基板情報から絵素 21の数 、大きさ、位置がわかるため、記憶部 7に事前に設定している輝度分布領域 51の大 きさなどの情報にしたがって、 自動的に設定することができる。欠陥判定部(ムラ判定 手段) 13は、各輝度分布領域 51の平均輝度値を算出することにより、絵素 21毎の輝 度分布を得ることができる。
[0116] また、カラーフィルタ 10の 4方向からの撮像画像より、各絵素 21の輝度分布が得ら れるため、欠陥判定部(ムラ判定手段) 13は各方向の最大輝度値と最小輝度値の差 を算出し、モニタ 8に表示する。各方向の輝度分布状況も装置管理者 (オペレータ) にわ力るようにモニタ 8に表示する。
[0117] さらに、欠陥判定部(ムラ判定手段) 13は記憶部 7から予め決定していた欠陥と判 定する輝度差分布の閾値を取り出し、 4方向の輝度分布の差が閾値より大きいか判 断することにより、自動で良品'不良品を判断することができる。欠陥判定部 (ムラ判 定手段) 13は、各絵素 21の欠陥判定を行ったあと、カラーフィルタ 10全体の欠陥判 定を行う。絵素単位での良品比率などを事前に設定し、カラーフィルタ 10としての良 品'不良品を判断することもできる。
[0118] 次に基板を搬出するために、基板の方向を搬入時に合わせるため、カラーフィルタ
10を S5とは逆方向に 90度回転させる(Sl l)。このとき、 S8の欠陥判定にかかる処 理を平行して行うことが可能であり、検査時間を短縮することが可能である。
[0119] 最後に、カラーフィルタ 10をカラーフィルタ検査装置 1から搬出する(S12)。すなわ ち、基板駆動制御部 11の制御に従って基板駆動ステージ 4がカラーフィルタ 10を搬 出可能状態にし、基板搬送部がカラーフィルタ 10を外部に搬送する。
[0120] 以上のように、カラーフィルタ検查装置 1によれば、一連のカラーフィルタ 10の検查 を自動で行い、カラーフィルタ 10の良品 '不良品(欠陥の有無)を基板の 4方向から の撮像画像から容易に判定することができる。これにより、不良品が発生(特に多発) したときは、カラーフィルタ形成時の乾燥工程における装置の異常を即座に乾燥ェ 程を行う製造装置に伝達し、オペレータに通知することが可能となる。また、工場の 情報系へ基板の欠陥検査情報を送信することで、後半工程へ良品のみを流し、液晶 パネルに製造された時点での歩留まりを向上できる。また、カラーフィルタ生成時に 不良品が多発すれば、乾燥工程の装置に即時にフィードバックをかけることも可能に なる。
[0121] 本発明に係るカラーフィルタの製造方法は、本発明に係るカラーフィルタ検査方法 によって良品であると判断されたカラーフィルタのみを検査工程以降の工程に供する ものであるので、カラーフィルタの歩留まりを向上させることができる。
[0122] 図 18は、カラーフィルタ製造工程の一般的な例として、顔料分散法による製造工程 を示したフローチャートである。もちろん、上記製造工程は、顔料分散法以外の方法 、例えば染色法、印刷法、電着法等によるものであっても構わない。また、本発明に 係るカラーフィルタの製造方法を適用可能なカラーフィルタ製造工程は図 18に示し た各工程に限られるものではなぐ本発明に係るカラーフィルタの製造方法は、カラ 一フィルタ製造工程における任意の工程に対して適用が可能である。以下に、本発 明に係るカラーフィルタの製造方法をカラーフィルタの製造工程に適用する場合に ついて、図 18を参照しながら説明する。
[0123] 図 18に示したカラーフィルタ製造工程は、基板搬入工程 S201、ブラックマトリクス( BM)形成工程 S202,着色パターン形成工程 S203、保護膜形成工程 S204、透明 電極膜形成工程 S205、検查工程 S206、カラーフィルタ搬出工程 S207からなり、基 板は、上記各工程を経て完成品のカラーフィルタとなる。図 18では、検查工程 S206 は、一例として透明電極膜形成工程 S205終了後に行うように示されている力 S、必ず しもこれに限られるものではなぐカラーフィルタ製造工程中の任意の工程において 行うことができる。
[0124] 例えば、着色パターン形成工程 S203においてレジスト塗布後に検查工程 S206と して本発明に係るカラーフィルタ検查方法を実施することにより、レジスド塗布までに 発生したムラを検出することができる。例えば、基板において、塗布液が接する層の 表面状態にムラがあれば、ムラが発生している部分と、ムラが発生していない部分と で、塗布層の接触角が異なってくるため、塗布層の形状に差が生じる。そのため、当 該形状の差をムラとして検出することができる。このように、例えばレジスト塗布後に検 查工程 S206を行うことにより、塗布液が接する層の表面状態のムラを検出できるの で、以降の工程には良品のみを供することができる。
[0125] また、例えば、ブラックマトリクス(BM)形成工程 S202でも、レジスド塗布後に検查ェ 程 S206を行うことにより、レジスト塗布までに発生したムラを検出することができる。す なわち、レジスト塗布までに BMにムラが発生していれば、ムラに起因して、レジスド塗 布後の BMの幅が基板の端部と中央部とで異なるものとなりうるので、レジスト塗布後 に検査工程 S206を行うことにより、 BMに発生したムラを検出できる。その結果、以 降の工程には良品のみを供することができる。
[0126] また、例えばレジストの温度は均一なレジスト塗布を実現する観点から一定温度に 保持されていることが好ましいが、レジスト塗布中に何らかの原因で一定温度に保持 できなかった場合は、塗布量が変化し、ムラが生じてしまう。このような場合でも、レジ スト塗布後に検査工程 S206を行うことにより、このようなレジストの温度変化に伴うム ラを検出することができる。その結果、以降の工程には良品のみを供することができる
[0127] 以上例示したように、本発明に係るカラーフィルタ製造方法では、検查工程 S206 において、本発明に係るカラーフィルタ検查方法を実施し、良品であると判断された カラーフィルタのみを検查工程以降の工程に供するので、ムラを有するカラーフィル タが検查工程以降の工程を経てしまうことがなレ、。したがって、カラーフィルタの歩留 まりを向上させることができ、製造コストを低減することができる。なお、上記「良品で あると判断されたカラーフィルタ」とは、完成品のカラーフィルタのみならず、中間品も 含む意味である。
[0128] また、本発明に係るカラーフィルタの製造方法は、本発明に係るカラーフィルタ検査 方法によって不良品であると判断されたカラーフィルタが発生した場合に、不良品が 発生したという情報を、カラーフィルタの製造装置に伝達するものであるので、カラー フィルタ生成時に不良品が多発すれば、カラーフィルタの製造装置に即時にフィード バックをかけることができ、不良品の発生率を低減させることができる。
[0129] 他の実施形態において、本発明に係るカラーフィルタ検查装置 laは、図 13の(a) に示すように、全周拡散光を照射可能な照明(光照射手段) 2を用い、当該照明(光 照射手段) 2に伸縮可能な照明駆動部 101を装着して、照明駆動部 101の長さを調 節することでカラーフィルタ 10から照明(光照射手段) 2までの距離を変更可能な構 成とすることちできる。
[0130] 図 13の(a)は、カラーフィルタ検査装置 laの光学系部分の縦断面を示す模式図で ある。カラーフィルタ検査装置 laの光学系部分は、照明駆動部 101、照明(光照射 手段) 2、ユニット回転軸 102、ユニット筐体 103、センサ(撮像手段) 3a, 3bから構成 されている。
[0131] 図 13の(a)において、照明駆動部 101は、上下方向に伸縮することにより、カラー フィルタ 10から照明(光照射手段) 2までの距離を変更するためのものである。照明 駆動部 101には、その下端に全周拡散光を照明可能な照明(光照射手段) 2が装着 されているため、カラーフィルタ 10を動かさなくても、照明駆動部 101を伸縮させるこ とにより、カラーフィルタ 10の全てのカラーフィルタ端部 23に光を所定の角度で照射 すること力 Sできる。
[0132] この場合、撮像方向は、カラーフィルタを成膜した基板の主面の法線からの傾き角 度が 0度の方向である。すなわち、光の反射角度は上記基板の主面の法線方向であ る。図 13の(a)においては、センサ(撮像手段) 3は、左右方向に 3a、 3bの 2つを設け ており、同時に照明された左右方向の異なる位置のカラーフィルタ端部 23を同時に 撮像すること力 Sできる。
[0133] 図 13の(a)の場合は、センサ(撮像手段) 3は、 3a、 3bの 2つであるから、例えば左 右方向のブラックマトリクス 20と絵素 21とによって構成されるカラーフィルタ端部 23を 撮像後、左右方向のブラックマトリクス 20と直交する手前方向 奥行方向のブラック マトリクス 20と絵素 21とによって構成されるカラーフィルタ端部 23を撮像するために はユニット回転軸 102を 90度回転させる必要がある力 カラーフィルタ 10は回転させ る必要がない。
[0134] センサ (撮像手段) 3を、左右方向および手前方向—奥行方向(直交する 4方向)に 設ければ、センサ (撮像手段) 3が 4つとなるためカラーフィルタ検查装置 1が大型化 する力 ユニット回転軸 102を回転させることなく 4方向からの撮像を迅速に行うことが できるため、検查時間を短縮することができる。
[0135] 図 13の(b)は、カラーフィルタ検查装置 laの斜視図であり、図中、破線部は照明光 の正反射の部分が照射される位置を、斜線部は左右方向の撮像位置をそれぞれ示 しており、筐体 103が占める領域力 カラーフィルタ 10の 1つの絵素 21の領域に相 当する。
[0136] カラーフィルタ検査装置 laは、上述のように検査装置全体が回転可能であるため、 照明(光照射手段) 2を 1つ、センサ (撮像手段)を 3a, 3bの 1対設ければ、例えば 1 度の撮像で左右方向のブラックマトリクス 20と絵素 21とによって構成されるカラーフィ ルタ端部 23を、図 13の(b)に示した撮像位置から撮像できる。そして、ユニット回転 軸 102を 90度回転させれば、左右方向のブラックマトリクス 20と直交する手前方向一 奥行方向のブラックマトリクス 20と絵素 21とによって構成されるカラーフィルタ端部 23 を撮像すること力 Sできる。
[0137] 他の実施形態において、本発明に係るカラーフィルタ検査装置 lbは、図 14の(a) に示すように、照明(光照射手段) 2として、カラーフィルタ 10の一部範囲またはビー ム状に光を照射する照明(光照射手段) 2を用レ、ることもできる。なお、上記「一部範 囲」とは、カラーフィルタ 10の全面ではなぐライン状照明を照射できる範囲をいう。
[0138] 図 14の(a)は、カラーフィルタ検查装置 lbの光学系部分の縦断面を示す模式図で ある。
[0139] この場合、光の照射方向は、上記基板の主面の法線からの傾き角度が 0度の方向 、すなわち上記基板の主面の法線方向であり、 1つの撮像位置に上記基板の主面の 法線方向から照射された光であって、異なる方向へ反射された光を異なる 2つのセン サ (撮像手段) 3で撮像する。
[0140] 図 14の(a)に示すように、カラーフィルタ検査装置 lbは、照明(光照射手段) 2、セ ンサ(撮像手段) 3a, 3b、ユニット筐体 103、撮像駆動手段(ガイドレール) 104a, 10 4b、撮像駆動手段 (角度調整用) 105a, 105bから構成されている。
[0141] ユニット筐体 103は照明(光照射手段) 2と撮像駆動手段 (ガイドレール) 104a, 10 4bとを固定する。撮像駆動手段(ガイドレール) 104a, 104bは、撮像駆動手段(角 度調整用) 105a, 105bを介してセンサ(撮像手段) 3a, 3bを左右方向に移動させる
[0142] また、撮像駆動手段 (ガイドレール) 104a, 104bは上下方向にも移動可能に構成 されてレ、る。撮像駆動手段 (角度調整用) 105a, 105bは、センサ (撮像手段) 3a, 3b を撮像駆動手段(ガイドレール) 104a, 104bに固定するとともに、撮像駆動手段 (ガ イドレール) 104a, 104bを支点としてセンサ(撮像手段) 3a, 3bの角度を調整可能と する。撮像駆動手段(ガイドレール) 104a, 104bの上下方向の移動と、撮像駆動手 段(角度調整用) 105a, 105bの可動によって、撮像方向を光の反射角度に合わせ た所望の角度に調整することができる。
[0143] 図 14の(b)は、カラーフィルタ検査装置 lbの斜視図であり、図中、破線部は照明光 の正反射の部分が照射される位置を、斜線部は左右方向の撮像位置をそれぞれ示 している。
[0144] 本実施形態のカラーフィルタ検査装置 lbで 1枚のカラーフィルタ 10を撮像する手 順を図 16、図 17を用いて説明する。図 16は、カラーフィルタ 10の左右方向を撮像 する様子を上記基板の主面の法線方向から観察した様子を示す模式図である。また 、図 17はカラーフィルタ 10の手前方向—奥行方向を撮像する様子を上記基板の主 面の法線方向力 観察した様子を示す模式図である。
[0145] ここでは、一例として、カラーフィルタ 10を図 16に示すように第 A行〜第 E行の 5行 に分割し、図 17に示すように第 1列〜第 4列に分割して考える。すなわち、カラーフィ ルタ 10全体をマクロ的に検查するために、基板上のカラーフィルタ 10が形成されて いる領域を分割して、分割した領域ごとに検査を行う場合について説明する。 [0146] まず、図 16 (a)に示すように、第 A行に存在するカラーフィルタ端部 23に上記基板 の主面の法線からの傾き角度が 0度で光が入射するように、照明(光照射手段) 2 (図 16には図示せず)から光を照射し、反射光をセンサ (撮像手段) 3a, 3bによって撮像 しながら、カラーフィルタ検查装置 1を左から右に移動させる。第 A行を撮像後、カラ 一フィルタ 10を基板駆動ステージ 4によって手前にシフトさせて停止させる。
[0147] 次に、図 16 (b)に示すように、第 B行に存在するカラーフィルタ端部 23に上記基板 の主面の法線からの傾き角度が 0度で光が入射するように、照明(光照射手段) 2 (図 16には図示せず)から光を照射し、反射光をセンサ (撮像手段) 3a, 3bによって撮像 しながら、カラーフィルタ検查装置 lbを右から左に移動させる。第 B行を撮像後、カラ 一フィルタ 10を基板駆動ステージ 4によって手前にシフトさせて停止させる。以降、同 様にして A行から E行まで順に照明、撮像を繰り返す。
[0148] このように、カラーフィルタ検查装置 lbを左右に移動させながら、 2つのセンサ(撮 像手段) 3a, 3bによって反射光を撮像することにより、 1つの絵素あたり 2つ以上の異 なるカラーフィルタ端部からそれぞれ異なる撮像方向に反射された反射光を撮像す ること力 Sできる。
[0149] なお、上記説明ではカラーフィルタ検査装置 lbを左右に動かし、カラーフィルタ 10 を固定して検査する場合について説明した力 これに限られるものではなぐカラー フィルタ検査装置 1を固定し、カラーフィルタ 10を左右に動かす構成としてもよい。
[0150] 当該撮像方向は、カラーフィルタ 10と水平な方向力 観察すると、図 14の(a)に示 すように基板の主面の法線方向力も角度 a Lとなる力 これを、カラーフィルタ 10を成 膜した基板の主面の法線方向からカラーフィルタ 10を観察した場合は、ブラックマトリ タス 20に対して垂直な方向となる。
[0151] さらにムラ検査の精度を向上させるために 1つの絵素あたり 4つの異なるカラーフィ ルタ端部からそれぞれ異なる撮像方向に反射された反射光を撮像するためには、力 ラーフィルタ検查装置 lbは回転させずにカラーフィルタ 10を 90度回転させる力、、逆 にカラーフィルタ 10は回転させずにカラーフィルタ検查装置 lbを 90度回転させ、力 ラーフィルタ 10を各列ごとに一方方向に走查する。例えば、図 17 (a)に示すように、 第 1列を走查するときは手前方向へ、図 17 (b)に示すように、第 2列を走查するときは 奥方向にカラーフィルタ 10を走査する。
[0152] なお、カラーフィルタ検査装置 lbやカラーフィルタ 10を回転させずに検査を行いた い場合は、カラーフィルタ検査装置 lbは、左右方向のカラーフィルタ端部 23検査用 として、照明(光照射手段) 1つとセンサ (撮像手段) 1対を備え、手前—奥方向のカラ 一フィルタ端部 23検査用として、照明(光照射手段) 1つとセンサ (撮像手段) 1対を 備える構成とすることもできる。すなわち、照明(光照射手段) 1つとセンサ (撮像手段 ) 1対の組み合わせを 2組備えていてもよい。
[0153] 他の実施形態において、本発明に係るカラーフィルタ検查装置 lcは、図 15の(a) に示すように、照明(光照射手段) 2とセンサ (撮像手段) 3をそれぞれ 2台ずつ備え、 それぞれ異なる照射方向からカラーフィルタ 10に光を照射し、異なる撮像方向から 反射光を撮像する。図 15の(a)は、カラーフィルタ検査装置 lcの光学系部分の縦断 面を示す模式図である。
[0154] 本実施形態において、カラーフィルタ検査装置 lcの光学系部分は、図 15の(a)に 示すように、照明(光照射手段) 2a, 2b、センサ (撮像手段) 3a, 3b、照明駆動手段 1 Ola, 101b,ユニット筐体 103、撮像駆動手段(角度調整用) 105a, 105bから構成 されている。
[0155] 照明駆動手段 101a、 101bは、それぞれ照明(光照射手段) 2a, 2bの角度を調整 することができ、カラーフィルタ 10の基板の主面の法線からの傾き角度を、照明(光 照射手段) 2aについては Θ R、照明(光照射手段) 2bについては Θ Lとなるように調
1 1
整する。撮像駆動手段 (角度調整用) 105a, 105bは、センサ (撮像手段) 3a, 3bの 角度を調整可能とすることができ、カラーフィルタ 10の基板の主面の法線からの傾き 角度を、センサ (撮像手段) 3aについては ,センサ(撮像手段) 3bについては Θ
2
Rとなるように調整する。
2
[0156] ここで、 Θ Lと Θ Rとは同じ角度であり、 Θ Lと Θ Rとは同じ角度である。そのため
2 2 1 1
、異なるカラーフィルタ端部を同じ条件で検查することができる。なお、上記 Θ R、 Θ R、 、 は、カラーフィルタ 10をマクロ的に見たときに、基板の主面の法線か
2 1 2
らの角度として決定される角度である。
[0157] これにより、 1つの絵素あたり 2つ以上の異なるカラーフィルタ端部に、それぞれ異 なる照射方向から光を照射し、 1つの絵素あたり 2つ以上の異なるカラーフィルタ端部 力 それぞれ異なる撮像方向に反射された反射光を撮像することができる。
[0158] 図 15の(b)は、カラーフィルタ検査装置 lcの斜視図であり、図中、破線部は照明光 の正反射の部分が照射される位置を、斜線部は左右方向の撮像位置をそれぞれ示 している。
[0159] 本実施形態のカラーフィルタ検查装置 lcで 1枚のカラーフィルタ 10を撮像する手 順は、カラーフィルタ検查装置 lbと同様に、図 16、図 17を用いて説明することができ る。
[0160] まず、図 16 (a)に示すように、第 A行に存在するカラーフィルタ端部 23に、照明(光 照射手段) 2aからは Θ R、照明(光照射手段) 2bからは Θ Lとなるように光を照射す
1 1
る。照明(光照射手段) 2a、 2b (図 16には図示せず)から光を照射し、上記傾き角度 力 の反射光をセンサ (撮像手段) 3aによって撮像し、上記傾き角度が 6 Rの反
2 2 射光をセンサ(撮像手段) 3bによって撮像しながら、カラーフィルタ検査装置 lcを左 力 右に移動させる。第 A行を撮像後、カラーフィルタ 10を基板駆動ステージ 4によ つて手前にシフトさせて停止させる。
[0161] 次に、図 16 (b)に示すように、第 B行に存在するカラーフィルタ端部 23に照明(光 照射手段) 2aからは Θ R、照明(光照射手段) 2bからは Θ Lとなるように、照明(光照
1 1
射手段) 2a、 2b (図 16には図示せず)から光を照射し、反射光をセンサ(撮像手段) 3 a, 3bによって撮像しながら、カラーフィルタ検査装置 lcを右から左に移動させる。第 B行を撮像後、カラーフィルタ 10を基板駆動ステージ 4によって手前にシフトさせて停 止させる。以降、同様にして A行から E行まで順に照明、撮像を繰り返す。
[0162] なお、上記説明ではカラーフィルタ検查装置 lcを左右に動かし、カラーフィルタ 10 を固定して検查する場合について説明したが、これに限られるものではなぐカラー フィルタ検查装置 lcを固定し、カラーフィルタ 10を左右に動かす構成としてもよい。
[0163] さらにムラ検査の精度を向上させるために 1つの絵素あたり 4つの異なるカラーフィ ルタ端部からそれぞれ異なる撮像方向に反射された反射光を撮像するためには、力 ラーフィルタ検查装置 lcは回転させずにカラーフィルタ 10を 90度回転させる力、、逆 にカラーフィルタ 10は回転させずにカラーフィルタ検查装置 lcを 90度回転させ、力 ラーフィルタ 10を各列ごとに一方方向に走査する。例えば、図 17 (a)に示すように、 第 1列を走査するときは奥行方向へ、第 2列を走査するときは手前にカラーフィルタ 1 0を走査する。
[0164] なお、図 15の(a)では、センサ 3aと 3b、照明 2aと 2bをそれぞれカラーフィルタ 10の 向かい合う左側と右側の 2辺に垂直となる位置に設置しているが、照明(光照射手段 ) 2とセンサ(撮像手段) 3を、図 15の(b)に示す手前側と奥側の 2辺にさらに 2台ずつ 追加し、計各 4台の照明(光照射手段) 2とセンサ (撮像手段) 3とを用いて光照射、撮 像を行う構成としてもよい。この場合は、カラーフィルタ 10またはカラーフィルタ検查 装置 lcを回転させる必要がないので、検查時間を短縮することができる。このように 計各 4台の照明(光照射手段) 2とセンサ (撮像手段) 3とを用いて光照射、撮像を行う 場合は、左右方向と手前方向一奥方向の照明 ·撮像を同時に行うと光が錯綜して正 確な検査ができなレ、ため、図 16に示す左右方向の撮像時は手前方向—奥方向の 撮像系は休止しており、図 17に示す手前方向 奥方向の撮像時は、左右方向の撮 像系は休止している。
[0165] 本発明に係るカラーフィルタ検査方法は、以上のように、絵素の各々がブラックマト リクスで囲まれてレ、るカラーフィルタのムラを検査するカラーフィルタ検査方法にぉレヽ て、絵素とブラックマトリクスとの境界を含むカラーフィルタ端部に、カラーフィルタ端 部の平均斜度を α (ひは 0度以上 90度未満)としたときに、カラーフィルタを成膜した 基板の主面の法線からの傾き角度が 0度以上(90 + ひ)度未満の入射角度、または 基板の主面の法線からの傾き角度が 0度以上(90 α )度未満の入射角度で光を照 射する光照射ステップと、上記入射角度と異なる反射角度であって、上記入射角度 力 ¾度以上(90 + ひ)度未満のときは 0度以上(90—ひ)度未満の反射角度で、上記 入射角度が 0度以上(90—ひ)度未満のときは 0度以上(90 + ひ)度未満の反射角 度で上記カラーフィルタ端部によって反射された反射光を撮像して、少なくとも 2つの 撮像画像を取得する撮像ステップと、上記撮像画像に基づいて、カラーフィルタ内の 輝度差を算出する撮像画像情報分析ステップと、上記輝度差力 カラーフィルタのム ラの有無を判断するムラ判定ステップと、を含む方法である。
[0166] また、本発明に係るカラーフィルタ検查装置は、以上のように、絵素の各々がブラッ クマトリタスで囲まれているカラーフィルタのムラを検査するカラーフィルタ検査装置で あって、絵素とブラックマトリクスとの境界を含むカラーフィルタ端部に、上記カラーフ ィルタ端部の平均斜度を α ( aは 0度以上 90度未満)としたときに、基板の主面の法 線からの傾き角度が 0度以上(90 + ひ)度未満の入射角度、または基板の主面の法 線力 の傾き角度が 0度以上(90—ひ)度未満の入射角度で光を照射する光照射手 段と、上記入射角度と異なる反射角度であって、上記入射角度が 0度以上(90 + ひ) 度未満のときは 0度以上(90—ひ)度未満の反射角度で、上記入射角度が 0度以上 ( 90 _ ひ)度未満のときは 0度以上(90 + ひ)度未満の反射角度で反射された反射光 を撮像して、少なくとも 2つの撮像画像を取得する撮像手段と、上記撮像画像に基づ いて、カラーフィルタ内の輝度差を算出する撮像画像情報分析手段と、上記輝度差 力 カラーフィルタのムラの有無を判断するムラ判定手段と、を備える構成である。
[0167] それゆえ、カラーフィルタ端部に適切な角度で光が照射され、少なくとも 2つの撮像 画像が取得され、これに基づいてカラーフィルタ内の輝度差からムラの有無が判定さ れるので、カラーフィルタの乾燥工程等の製造工程で生じる微小な表面形状の変化 力 生じるムラを高精度に検出することができるという効果を奏する。また、カラーフィ ルタのムラを広範囲にわたりマクロ的に検査することができるという効果を奏する。
[0168] 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あく までも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限 定して狭義に解釈されるべきものではなぐ本発明の精神と次に記載する請求の範 囲内にぉレ、て、 V、ろレ、ろと変更して実施することができるものである。
産業上の利用の可能性
[0169] 以上のように、本発明は、各絵素あたり少なくとも 2つのカラーフィルタ端部に適切 な角度で光が照射され、少なくとも 2つの撮像画像が取得され、これに基づいてカラ 一フィルタ内の輝度差からムラの有無が判定されるので、カラーフィルタの乾燥工程 時に生じる微小な表面形状の変化から生じるムラを高精度に、マクロ的に検出するこ とができる。そのため、本発明は、特にインクジェット法を用いて形成された起伏状の 形状が規則正しく並ぶ基板のムラ検査に好適にもちいることができ、カラーフィルタの 製造工程の管理手段としても利用できる。

Claims

請求の範囲
[1] 絵素の各々がブラックマトリクスで囲まれてレ、るカラーフィルタのムラを検查するカラ 一フィルタ検查方法において、
絵素とブラックマトリクスとの境界を含むカラーフィルタ端部に、
カラーフィルタ端部の平均斜度をひ (ひは 0度以上 90度未満)としたときに、カラー フィルタを成膜した基板の主面の法線からの傾き角度が 0度以上(90+ ひ)度未満の 入射角度、または基板の主面の法線からの傾き角度が 0度以上(90— ひ)度未満の 入射角度で光を照射する光照射ステップと、
上記入射角度と異なる反射角度であって、上記入射角度が 0度以上(90+ α )度 未満のときは 0度以上(90— α )度未満の反射角度で、上記入射角度が 0度以上(9 0— α )度未満のときは 0度以上(90+ α )度未満の反射角度で上記カラーフィルタ 端部によって反射された反射光を撮像して、少なくとも 2つの撮像画像を取得する撮 像ステップと、
上記撮像画像に基づいて、カラーフィルタ内の輝度差を算出する撮像画像情報分 析ステップと、
上記輝度差からカラーフィルタのムラの有無を判断するムラ判定ステップと、を含む ことを特徴とするカラーフィルタ検查方法。
[2] 上記光照射ステップが、 1つの絵素あたり 2つ以上の異なるカラーフィルタ端部に、 それぞれ異なる照射方向から光を照射するステップであって、上記照射方向の少な くとも一方が、カラーフィルタを成膜した基板の主面の法線を含む面に対して、他方と 反対側にあることを特徴とする請求の範囲第 1項に記載のカラーフィルタ検查方法。
[3] 上記撮像ステップが、上記 1つの絵素あたり 2つ以上の異なるカラーフィルタ端部か らそれぞれ異なる撮像方向に反射された反射光を撮像するステップであって、上記 撮像方向の少なくとも一方が、カラーフィルタを成膜した基板の主面の法線を含む面 に対して、他方と反対側にあることを特徴とする請求の範囲第 1項または第 2項に記 載のカラーフィルタ検査方法。
[4] 上記入射角度および上記反射角度の、上記傾き角度が 0度より大きいことを特徴と する請求の範囲第 1項から第 3項のいずれか 1項に記載のカラーフィルタ検査方法。
[5] 上記入射角度および上記反射角度が、カラーフィルタ端部の変極点を通る接線の 法線から互いに等しい角度であることを特徴とする請求の範囲第 1項から第 4項のい ずれか 1項に記載のカラーフィルタ検査方法。
[6] さらに、上記撮像方向の少なくとも 2つがブラックマトリクスの向かい合う 2辺に対して 垂直であることを特徴とする請求の範囲第 1項から第 5項のいずれ力、 1項に記載の力 ラーフィルタ検查方法。
[7] 上記撮像方向が、ブラックマトリクスの 4つの辺に対して垂直な 4方向であることを特 徴とする請求の範囲第 6項に記載のカラーフィルタ検查方法。
[8] 上記光照射ステップを行うための光照射手段と上記撮像ステップを行うための撮像 手段を各二式用い、当該光照射手段と撮像手段とが、カラーフィルタ端部の変極点 を通る接線の法線から互いに等しい角度に配置されることを特徴とする請求の範囲 第 1項から第 7項のいずれ力、 1項に記載のカラーフィルタ検查方法。
[9] 絵素の各々がブラックマトリクスで囲まれてレ、るカラーフィルタのムラを検査するカラ 一フィルタ検査装置であって、
絵素とブラックマトリクスとの境界を含むカラーフィルタ端部に、
上記カラーフィルタ端部の平均斜度を α ( αは 0度以上 90度未満)としたときに、基 板の主面の法線からの傾き角度が 0度以上(90 + ひ)度未満の入射角度、または基 板の主面の法線からの傾き角度が 0度以上(90— α )度未満の入射角度で光を照射 する光照射手段と、
上記入射角度と異なる反射角度であって、上記入射角度が 0度以上(90 + α )度 未満のときは 0度以上(90— α )度未満の反射角度で、上記入射角度が 0度以上(9 0—ひ)度未満のときは 0度以上(90 + ひ)度未満の反射角度で反射された反射光を 撮像して、少なくとも 2つの撮像画像を取得する撮像手段と、
上記撮像画像に基づいて、カラーフィルタ内の輝度差を算出する撮像画像情報分 析手段と、
上記輝度差からカラーフィルタのムラの有無を判断するムラ判定手段と、を備えるこ とを特徴とするカラーフィルタ検查装置。
[10] 請求の範囲第 1項から第 8項のいずれか 1項に記載のカラーフィルタ検查方法によ つて良品であると判断されたカラーフィルタのみを検査工程以降の工程に供すること を特徴とするカラーフィルタの製造方法。
請求の範囲第 1項から第 8項のいずれ力 1項に記載のカラーフィルタ検査方法によ つて不良品であると判断されたカラーフィルタが発生した場合に、不良品が発生した とレ、う情報を、カラーフィルタの製造装置に伝達することを特徴とするカラーフィルタ の製造方法。
PCT/JP2007/059120 2006-04-26 2007-04-26 カラーフィルタ検査方法およびカラーフィルタ製造方法並びにカラーフィルタ検査装置 WO2007126027A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/226,681 US7889358B2 (en) 2006-04-26 2007-04-26 Color filter inspection method, color filter manufacturing method, and color filter inspection apparatus
JP2008513278A JP4768014B2 (ja) 2006-04-26 2007-04-26 カラーフィルタ検査方法およびカラーフィルタ製造方法並びにカラーフィルタ検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-122505 2006-04-26
JP2006122505 2006-04-26

Publications (1)

Publication Number Publication Date
WO2007126027A1 true WO2007126027A1 (ja) 2007-11-08

Family

ID=38655551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059120 WO2007126027A1 (ja) 2006-04-26 2007-04-26 カラーフィルタ検査方法およびカラーフィルタ製造方法並びにカラーフィルタ検査装置

Country Status (4)

Country Link
US (1) US7889358B2 (ja)
JP (1) JP4768014B2 (ja)
CN (1) CN101427127A (ja)
WO (1) WO2007126027A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104860A (ja) * 2011-11-17 2013-05-30 Toray Eng Co Ltd 自動外観検査装置
WO2016031434A1 (ja) * 2014-08-29 2016-03-03 コニカミノルタ株式会社 表面検査装置、表面検査方法およびプログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597946B2 (ja) * 2006-06-12 2010-12-15 シャープ株式会社 端部傾斜角測定方法、起伏を有する被検査物の検査方法および検査装置
FR2959864B1 (fr) * 2010-05-06 2013-01-18 Altatech Semiconductor Dispositif et procede d'inspection de plaquettes semi-conductrices en mouvement.
WO2014136570A1 (ja) * 2013-03-05 2014-09-12 富士フイルム株式会社 撮像装置、画像処理装置、画像処理方法及びプログラム
US9230316B2 (en) * 2013-12-31 2016-01-05 Shenzhen China Star Optoelectronics Technology Co., Ltd Defect inspection device for display panel and method for the same
JP6117398B1 (ja) * 2016-03-30 2017-04-19 日新製鋼株式会社 鋼板の表面欠陥検査装置および表面欠陥検査方法
JP6832650B2 (ja) * 2016-08-18 2021-02-24 株式会社Screenホールディングス 検査装置および検査方法
CN109100365B (zh) * 2018-08-02 2020-12-25 Tcl华星光电技术有限公司 一种基板叠材的检测装置及检测方法
JP7236612B2 (ja) * 2019-09-27 2023-03-10 パナソニックIpマネジメント株式会社 検査方法、プログラム、及び、検査システム
DE102021121962A1 (de) * 2021-08-25 2023-03-02 Bayer Gmbh & Co Kg Verfahren zur außenseitigen Qualitätskontrolle von Bauteilen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289544A (ja) * 1990-04-06 1991-12-19 Oki Electric Ind Co Ltd カラーフィルタの表面検査装置
JP2001228052A (ja) * 2000-02-18 2001-08-24 Canon Inc カラーフィルタ及びその検査方法と製造方法
JP2001356209A (ja) * 2000-06-14 2001-12-26 Toppan Printing Co Ltd カラーフィルタの製造方法
JP2003098036A (ja) * 2001-09-26 2003-04-03 Toppan Printing Co Ltd カラーフィルタの色ムラ検査方法及び色ムラ検査装置
JP2006184125A (ja) * 2004-12-27 2006-07-13 Sharp Corp 膜厚差検出装置、膜厚差検出方法、カラーフィルタ検査装置、カラーフィルタ検査方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786470B2 (ja) * 1988-06-13 1995-09-20 富士写真フイルム株式会社 ディスク表面検査方法及び装置
JP2911619B2 (ja) 1991-03-27 1999-06-23 大日本印刷株式会社 周期性パターンの表面欠陥検査方法および装置
JPH06221838A (ja) 1993-01-27 1994-08-12 Fujitsu Ltd 表面粗さ評価方法
JPH0720065A (ja) 1993-07-06 1995-01-24 Toppan Printing Co Ltd カラーフィルタ上の微小異物外観検査装置
JP3013693B2 (ja) 1993-11-30 2000-02-28 凸版印刷株式会社 欠陥検出方法およびその装置
JPH08122266A (ja) 1994-10-21 1996-05-17 Sony Tektronix Corp 表面検査装置
JPH08128965A (ja) 1994-10-28 1996-05-21 Sony Tektronix Corp 表面検査方法
JP3408879B2 (ja) 1994-12-22 2003-05-19 カシオ計算機株式会社 フラットパネルディスプレイの表示欠陥抽出方法及びそのための装置
JPH0968502A (ja) 1995-08-30 1997-03-11 Dainippon Screen Mfg Co Ltd 透孔板の検査方法および検査装置
JPH0972824A (ja) 1995-09-08 1997-03-18 Sefuto Kenkyusho:Kk フィルタ検査装置
JPH09126891A (ja) 1995-10-31 1997-05-16 Hitachi Ltd 液晶表示素子の製造方法並びに配向特性検査方法及びその装置
JP3756264B2 (ja) 1996-09-04 2006-03-15 大日本印刷株式会社 周期性パターンを有する試料の欠陥検出方法
JPH10300447A (ja) * 1997-04-23 1998-11-13 K L Ee Akurotetsuku:Kk 表面パターンむら検出方法及び装置
JPH11194096A (ja) 1997-10-29 1999-07-21 Toyota Motor Corp 塗装面の評価方法および塗装面の検査装置
JP2000111492A (ja) 1998-10-08 2000-04-21 Dainippon Printing Co Ltd 周期性パターンのムラ検査方法
JP2000121323A (ja) 1998-10-14 2000-04-28 Hitachi Ltd 表面高さ検査方法及びその検査装置並びにカラーフィルタ基板、その検査方法及びその製造方法
US6738505B1 (en) 1999-05-04 2004-05-18 Speedline Technologies, Inc. Method and apparatus for detecting solder paste deposits on substrates
JP2001183306A (ja) 1999-12-22 2001-07-06 Yokogawa Electric Corp 半田接合部の検査装置
JP2002219810A (ja) 2001-01-26 2002-08-06 Seiko Epson Corp インクジェット吐出用の機能性液体の評価装置および評価方法
JP2002286407A (ja) 2001-03-28 2002-10-03 Fuji Photo Optical Co Ltd フーリエ変換縞解析方法および装置
JP4516253B2 (ja) 2001-12-04 2010-08-04 オリンパス株式会社 欠陥分類装置
JP3857161B2 (ja) 2002-03-14 2006-12-13 大日本印刷株式会社 機能性素子の製造方法およびその製造装置
JP2004086539A (ja) 2002-08-27 2004-03-18 Fuji Photo Film Co Ltd 画像分割方法および装置並びにプログラム
JP2004279282A (ja) 2003-03-17 2004-10-07 Oh'tec Electronics Corp ワ−クの外観検査装置
JP2004279367A (ja) 2003-03-19 2004-10-07 Ricoh Co Ltd 表面欠陥検査装置及び制御プログラム記録媒体
JP4507533B2 (ja) 2003-08-29 2010-07-21 凸版印刷株式会社 周期性パターンにおけるスジ状ムラの検査方法
JP2005202268A (ja) 2004-01-19 2005-07-28 Toray Ind Inc 撮像装置のカメラセッティング方法
JP4882204B2 (ja) 2004-03-05 2012-02-22 凸版印刷株式会社 周期性パターンにおけるスジ状ムラの検査方法
JP2006067423A (ja) 2004-08-30 2006-03-09 Fuji Photo Film Co Ltd 画像品質定量評価方法及びその装置
JP4550559B2 (ja) 2004-11-24 2010-09-22 シャープ株式会社 外観検査装置、外観検査方法およびコンピュータを外観検査装置として機能させるためのプログラム
JP2006171453A (ja) 2004-12-16 2006-06-29 Sharp Corp カラーフィルターの検査方法及び修正方法
JP2006319598A (ja) 2005-05-12 2006-11-24 Victor Co Of Japan Ltd 音声通信システム
JP4322890B2 (ja) 2005-06-13 2009-09-02 シャープ株式会社 起伏検査装置、起伏検査方法、起伏検査装置の制御プログラム、記録媒体
JP2007034648A (ja) 2005-07-27 2007-02-08 Fuji Xerox Co Ltd 画像評価方法および画像評価装置並びにプログラム
JP2007171029A (ja) 2005-12-22 2007-07-05 Fujifilm Corp 検査装置、表示デバイスシミュレート装置及び検査方法
JP2007172512A (ja) 2005-12-26 2007-07-05 Fujifilm Corp 画像品質定量評価方法及びその装置並びに画像品質定量評価値を計算するプログラム
JP2007184872A (ja) 2006-01-10 2007-07-19 Fuji Xerox Co Ltd 画像評価装置、画像処理装置、画像評価方法およびプログラム
JP2007199037A (ja) 2006-01-30 2007-08-09 Sharp Corp 欠陥検査方法、欠陥検査装置
WO2007145223A1 (ja) 2006-06-12 2007-12-21 Sharp Kabushiki Kaisha 起伏検査装置、起伏検査方法、起伏検査装置の制御プログラム、記録媒体
JP4597946B2 (ja) 2006-06-12 2010-12-15 シャープ株式会社 端部傾斜角測定方法、起伏を有する被検査物の検査方法および検査装置
JP2008139027A (ja) 2006-11-29 2008-06-19 Sharp Corp 検査装置、検査方法、撮像検査システム、カラーフィルタの製造方法、検査プログラム
JP2008164303A (ja) 2006-12-26 2008-07-17 Sharp Corp 周期性パターンの撮像条件決定方法、欠陥検査方法、および欠陥検査装置
JP2008242191A (ja) 2007-03-28 2008-10-09 Sharp Corp カラーフィルタ基板の検査方法、カラーフィルタ基板の絵素の検査装置、カラーフィルタ基板の製造方法及びカラーフィルタ基板を備えた表示装置
JP4777310B2 (ja) 2007-07-31 2011-09-21 シャープ株式会社 検査装置、検査方法、検査システム、カラーフィルタの製造方法、検査装置制御プログラム、及び該プログラムを記録したコンピュータ読み取り可能な記録媒体
JP4902456B2 (ja) 2007-07-31 2012-03-21 シャープ株式会社 スジムラ評価装置、スジムラ評価方法、スジムラ評価プログラム、記録媒体及びカラーフィルタの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289544A (ja) * 1990-04-06 1991-12-19 Oki Electric Ind Co Ltd カラーフィルタの表面検査装置
JP2001228052A (ja) * 2000-02-18 2001-08-24 Canon Inc カラーフィルタ及びその検査方法と製造方法
JP2001356209A (ja) * 2000-06-14 2001-12-26 Toppan Printing Co Ltd カラーフィルタの製造方法
JP2003098036A (ja) * 2001-09-26 2003-04-03 Toppan Printing Co Ltd カラーフィルタの色ムラ検査方法及び色ムラ検査装置
JP2006184125A (ja) * 2004-12-27 2006-07-13 Sharp Corp 膜厚差検出装置、膜厚差検出方法、カラーフィルタ検査装置、カラーフィルタ検査方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104860A (ja) * 2011-11-17 2013-05-30 Toray Eng Co Ltd 自動外観検査装置
WO2016031434A1 (ja) * 2014-08-29 2016-03-03 コニカミノルタ株式会社 表面検査装置、表面検査方法およびプログラム
JPWO2016031434A1 (ja) * 2014-08-29 2017-06-15 コニカミノルタ株式会社 表面検査装置、表面検査方法およびプログラム

Also Published As

Publication number Publication date
JP4768014B2 (ja) 2011-09-07
US20090091768A1 (en) 2009-04-09
US7889358B2 (en) 2011-02-15
JPWO2007126027A1 (ja) 2009-09-10
CN101427127A (zh) 2009-05-06

Similar Documents

Publication Publication Date Title
JP4768014B2 (ja) カラーフィルタ検査方法およびカラーフィルタ製造方法並びにカラーフィルタ検査装置
US20090303468A1 (en) Undulation Inspection Device, Undulation Inspecting Method, Control Program for Undulation Inspection Device, and Recording Medium
TWI414780B (zh) 檢測系統
JP4322890B2 (ja) 起伏検査装置、起伏検査方法、起伏検査装置の制御プログラム、記録媒体
KR101444474B1 (ko) 검사 장치
US8648905B2 (en) Transparent body inspecting device
US8089636B2 (en) Inspecting system and inspecting method
JP2007256106A (ja) 表示パネル検査装置及びそれを用いた表示パネル検査方法
US7903865B2 (en) Automatic optical inspection system and method
JP2006292412A (ja) 表面検査装置、表面検査方法、及び基板の製造方法
JP4932595B2 (ja) 表面疵検査装置
KR100953203B1 (ko) 기판 품질 검사장치
JP4312706B2 (ja) 膜厚差検出装置、膜厚差検出方法、カラーフィルタ検査装置、カラーフィルタ検査方法
KR20070040183A (ko) 액정표시장치의 보수장치 및 보수방법
US8577119B2 (en) Wafer surface observing method and apparatus
JP2007199037A (ja) 欠陥検査方法、欠陥検査装置
JP4743395B2 (ja) ピッチムラ検査方法およびピッチムラ検査装置
JP4874893B2 (ja) 点灯検査装置、および点灯検査方法
KR100943242B1 (ko) 디스플레이 패널 검사 방법 및 그 장치
JP2008242191A (ja) カラーフィルタ基板の検査方法、カラーフィルタ基板の絵素の検査装置、カラーフィルタ基板の製造方法及びカラーフィルタ基板を備えた表示装置
KR102532902B1 (ko) 액정을 이용한 표면 분석 방법
KR101073330B1 (ko) 액정 패널의 오토 프로브 검사 장치 및 검사 방법
JP2002071576A (ja) 外観検査装置および外観検査方法
KR101343500B1 (ko) 액정패널의 오토 프로브 검사장치 및 검사방법
JP2003185596A (ja) 薄型板状体の撮像処理方法および撮像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742555

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008513278

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12226681

Country of ref document: US

Ref document number: 200780014722.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742555

Country of ref document: EP

Kind code of ref document: A1