WO2007108501A1 - 熱可塑性樹脂組成物、その製造方法および成形品 - Google Patents

熱可塑性樹脂組成物、その製造方法および成形品 Download PDF

Info

Publication number
WO2007108501A1
WO2007108501A1 PCT/JP2007/055825 JP2007055825W WO2007108501A1 WO 2007108501 A1 WO2007108501 A1 WO 2007108501A1 JP 2007055825 W JP2007055825 W JP 2007055825W WO 2007108501 A1 WO2007108501 A1 WO 2007108501A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
resin
screw
polyamide
Prior art date
Application number
PCT/JP2007/055825
Other languages
English (en)
French (fr)
Inventor
Sadayuki Kobayashi
Daisuke Sato
Masaru Akita
Koji Jinnai
Takashi Inoue
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006080037A external-priority patent/JP4720567B2/ja
Priority claimed from JP2006080035A external-priority patent/JP2007254567A/ja
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to EP07739268.6A priority Critical patent/EP2017306B1/en
Priority to US12/293,697 priority patent/US7960473B2/en
Priority to CN2007800185665A priority patent/CN101558121B/zh
Publication of WO2007108501A1 publication Critical patent/WO2007108501A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/402Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having intermeshing parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • the present invention provides a thermoplastic resin composition including a resin having a reactive functional group, wherein a three-dimensional connection structure including a continuous phase component is formed in a dispersed phase, and further on the dispersed phase cross section.
  • a thermoplastic resin composition including a resin having a reactive functional group wherein a three-dimensional connection structure including a continuous phase component is formed in a dispersed phase, and further on the dispersed phase cross section.
  • the present invention relates to a thermoplastic resin composition for an absorbent member.
  • Patent Document 3 Disclosed is a method for improving impact resistance without sacrificing weather resistance, transparency, scratch resistance, and rigidity by forming a morphological mouthpiece that is chemically bonded to components.
  • Patent Document 3 a method for improving impact resistance without sacrificing weather resistance, transparency, scratch resistance, and rigidity by forming a morphological mouthpiece that is chemically bonded to components.
  • Typical engineering plastics such as polyamide resins can also be used only if they are used alone, so improvement by alloying with other resins, especially in recent years by controlling morphology. Many improvements have been made.
  • Examples of the improvement in characteristics by controlling the morphology include a continuous phase composed of a polyamide resin, and particles composed of polyolefin dispersed in the continuous phase and modified with 3,3-unsaturated carboxylic acid.
  • a method for improving impact strength and surface peel strength by controlling the number average particle size of the dispersed phase and its distribution (see Patent Document 4).
  • modified polyolefin and unmodified polyolefin there has been disclosed a method for improving low water absorption, dimensional stability, rigidity, toughness, and moldability in a well-balanced manner by allowing in to be present as a dispersed phase having a core-shell type particle structure (Patent Document 5).
  • shock absorbing materials include thermoplastic elastomers such as polyurethane, but in recent years the range of use is often limited due to low heat resistance, and in recent years heat resistance and resistance due to polymer alloys are often limited. Materials with excellent impact properties have been developed.
  • Patent Documents 7 and 8 disclose a thermoplastic composition comprising polyamide and ionomer and having excellent heat resistance and impact resistance. However, when the material is subjected to a heavy load and a high-speed impact, the maximum load applied to the object is high and the material itself is destroyed. Therefore, a material with higher shock absorption is desired. is the current situation.
  • Patent Document 6 in a resin composition containing a thermoplastic resin and a resin having a reactive functional group, one forms a continuous phase and the other forms a dispersed phase, or both are continuous phases (both continuous phases). ), And the presence of fine particles of 300 nm or less in the continuous phase and dispersed phase or both continuous phases, a resin composition excellent in rigidity, impact resistance and appearance after deformation is disclosed.
  • Patent Document 9 the elastic modulus increases as the tensile speed is increased.
  • a resin composition and an impact absorbing member that are lowered and become flexible are disclosed.
  • none of the structures were highly controlled in the dispersed phase, and their absorbency against heavy loads and high-speed impacts was not sufficient.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 08-183887
  • Patent Document 2 JP 2000-319475 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-106844
  • Patent Document 4 Japanese Patent Laid-Open No. 09-31325
  • Patent Document 5 Japanese Patent Application Laid-Open No. 07-166041
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2005-187809
  • Patent Document 7 US Patent No. 3845163
  • Patent Document 8 Japanese Patent Laid-Open No. 51-151797
  • Patent Document 9 Japanese Unexamined Patent Publication No. 2006-89701
  • the second dispersed phase is merely present in the dispersed phase (first dispersed phase) in the continuous phase, and the structure control is advanced.
  • the effect of improving the mechanical properties was insufficient.
  • the method described in Patent Document 4 has a problem that the basic phase structure is a simple sea-island structure and other characteristics deteriorate even if the impact resistance is improved.
  • the dispersed phase in the continuous phase is merely a core-shell structure, and the balance of mechanical properties is not sufficient.
  • the method described in Patent Document 6 only fine particles are present in the continuous phase / dispersed phase, and the balance of mechanical properties is not sufficient.
  • the resin composition described in Patent Documents:! To 5 shows a behavior seen in a general polymer material in which the modulus of elasticity increases, that is, it becomes hard and brittle as it is pulled at a high speed.
  • the resin composition described in Patent Document 6 is pulled at high speed in the tensile test. As the tension is increased, the elastic modulus decreases, that is, it exhibits a unique viscoelastic behavior that it becomes soft and strong.However, since the structure is not highly controlled in the dispersed phase, the specific viscoelastic behavior is manifested. Was not effective enough.
  • the present invention provides a thermoplastic resin composition including a resin having a reactive functional group, wherein a three-dimensional connection structure including a continuous phase component is formed in the dispersed phase, and further on the dispersed phase cross section.
  • Thermoplastic resin with outstanding impact energy absorption performance and vibration energy absorption performance during high-speed deformation, as well as outstanding viscoelastic behavior not found in conventional polymer materials
  • Providing a composition and a method for producing the composition more specifically, it has sufficient heat resistance at room temperature, and can be applied to an object even when subjected to a heavy load and high-speed impact.
  • the present inventors have included a compound having a reactive functional group, and a thermoplastic resin composition having a highly controlled structure in a dispersed phase, or a polyamide resin
  • a thermoplastic resin composition having a highly controlled structure in a dispersed phase or a polyamide resin
  • it is excellent in the balance of conflicting properties such as impact resistance and heat resistance, and was not found in conventional polymer materials.
  • the inventors have found that the unique viscoelastic behavior is remarkably exhibited, and that the impact energy absorption performance and vibration energy absorption performance during high-speed deformation are remarkably excellent, and the present invention has been completed.
  • the present invention relates to
  • thermoplastic resin composition comprising a thermoplastic resin (A) and a resin having a reactive functional group (B), wherein the resin composition is observed by a transmission electron tomography method.
  • one of (A) or (B) forms a continuous phase
  • the other forms a dispersed phase
  • a three-dimensional connection structure Cs containing the continuous phase component is formed in the dispersed phase.
  • the ratio of the area of the said connection structure Cs which occupies for the cross section of the dispersed phase Dp whose average particle diameter is below lOOOnm among the said dispersed phases is 10% or more,
  • the thermoplastic resin composition characterized by the above-mentioned.
  • thermoplastic resin (A) is at least one selected from a polyamide resin, a polyester resin, a polyphenylene sulfide resin, a polyacetal resin, a styrene resin, a polyphenylene oxide resin, and a polycarbonate resin.
  • thermoplastic resin composition according to (1) wherein the thermoplastic resin (A) is a polyamide resin,
  • thermoplastic resin composition comprising a polyamide resin (A1) and a resin (B) having a reactive functional group, and a carbonyl group of the polyamide resin (A1) at a relaxation time T1C of carbon nuclei by solid state NMR measurement.
  • the longer relaxation time T1C1 is 65 seconds or less and the carbon of the hydrocarbon group adjacent to the NH group of the polyamide resin (A1)
  • a thermoplastic resin composition characterized in that the longer relaxation time T1C2 of the two relaxation times in the two-component analysis of the relaxation time corresponding to
  • thermoplastic resin composition according to (4) wherein the polyamide resin (A1) is polyamide 6;
  • thermoplastic resin composition as described in any one of (4) and (5) above, wherein the resin (B) having a reactive functional group is a rubber polymer;
  • Resin having a reactive functional group is at least one selected from an amino group, a carboxyl group, a carboxynole metal salt, an epoxy group, an acid anhydride group, and an oxazoline group.
  • the thermoplastic resin composition according to any one of (1) to (6), characterized in that:
  • JIS-5A dumbbell-shaped test pieces (length 75mm X end width 12.5mm X thickness 2mm) were prepared from the resin composition by injection molding.
  • the thermoplastic resin composition according to any one of (1) to (7),
  • thermoplastic resin composition according to (8), if the tensile elongation at break is ⁇ (VI) and ⁇ (V2) when the tensile speed is VI and V2, ⁇ (VI) ⁇ (V2) when V1 ⁇ V2.
  • a JIS-1 strip test piece (width 10mm x length 80mm x thickness 4mm) was prepared from the resin composition by injection molding, and the deflection temperature under load at 0.445MPa When a cylinder with a mass of 193 kg is dropped freely from a drop height of 0.5 m in a cylindrical molded product with an outer diameter of 50 mm, a thickness of 2 mm, and a height of 150 mm at 50 ° C or higher, The thermoplastic resin composition according to any one of (1) to (9), wherein the maximum point load is less than 20 kilonewtons and no cracks of 5 cm or more occur.
  • thermoplastic resin composition characterized by melting and kneading under the condition of Pkmax ⁇ Pfmin + 0.3 when the minimum resin pressure in the zone is Pfmin (MPa) Method
  • thermoplastic resin composition according to (1 1) or (12), wherein the screw of the twin-screw extruder is a co-rotating fully meshed type
  • thermoplastic resin composition according to any one of (11) to (13), wherein the total length of the kneading zone is 5 to 50% of the screw length Method
  • the twin-screw extruder is provided with a vent vacuum zone, wherein the pressure is reduced to a pressure of 0.07 MPa or less in the vent vacuum zone, and melt-kneaded to produce (11) to (: 15)
  • a method for producing the thermoplastic resin composition according to any one of
  • thermoplastic resin composition according to any one of (11) to (: 16), characterized by being produced by melt-kneading using a raw material having a moisture content of less than 5000 ppm,
  • thermoplastic resin composition according to any one of (11) to (: 17), wherein the production is carried out by melt kneading while controlling the maximum resin temperature at 180 ° C to 330 ° C.
  • thermoplastic resin composition including a resin having a reactive functional group
  • a three-dimensional connection structure including a continuous phase component is formed in a dispersed phase, and the dispersed phase cross section is further formed.
  • thermoplastic resin composition for an absorbent member.
  • FIG. 1 A three-dimensional transmission image at a tilt angle of 0 ° in Example 1 of the present invention (50000 times, 250 nm)
  • FIG. 2 is a schematic diagram (overall view) of a three-dimensional transmission image at an inclination angle of 0 ° according to the present invention.
  • FIG. 3 is a schematic diagram (dispersed phase enlarged view) of a three-dimensional transmission image at an inclination angle of 0 ° according to the present invention.
  • FIG. 4 is an explanatory view showing the shape of a cylindrical molded product used for a free drop impact test with a large load and a high speed.
  • FIG. 5 is a photograph showing the state of a free load impact test at high load and high speed in Example 7 of the present invention.
  • FIG. 6 is a photographic diagram showing a large load, high speed free drop impact test of Comparative Example 16 of the present invention.
  • thermoplastic resin composition of the present invention is a thermoplastic resin composition comprising a thermoplastic resin (A) and a resin (B) having a reactive functional group.
  • the thermoplastic resin (A) used in the present invention is not particularly limited as long as it is a resin that can be molded by heating and melting.
  • a resin that can be molded by heating and melting.
  • a resin can be preferably mentioned.
  • thermoplastic resins shown above polyamide resins, polyester resins, polyphenylene sulfide resins, polyacetal resins, styrene resins, polyphenylene oxide resins, polycarbonate resins, polylactic acid resins are preferably used.
  • polyamide resins, polyester resins, and polyphenylene oxide resins are most preferably used because of the high reactivity of the terminal groups.
  • the polyamide resin is a resin composed of a polymer having an amide bond, and is mainly composed of amino acids, ratatam or diamine and dicarboxylic acid.
  • the raw materials include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and paraaminomethylbenzoic acid, ⁇ -force prolatatam, ⁇ -latatatam and other ratatas, tetramethylenediamine, Hexamethylenediamine, 2-methylpentamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2, 2, 4- / 2, 4, 4 trimethylhexamethylenediamine , 5 Methylnonamethylenediamine, metaxylenediamine, paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1
  • poly-strand proamides examples include poly-strand proamides.
  • Polyamide 6 polyhexamethylene adipamide (polyamide 66), polydecanamide (polyamide 11), polydodecanamide (polyamide 12), polytetramethylene adipamide (polyamide 4 6), poly Xamethylene sebamide (polyamide 610), polyhexamethylene dodecamide (polyamide 612), polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer (polyamide 66 / 6T), polyhexamethylene azide Pamide Z polyhexamethylene isophthalamide copolymer (polyamide 66Z6I), polyhexamethylene adipamide / polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (polyamide 66/6 T / 6I), poly Examples include xylylene adipamide (polyamide XD6) and mixtures or copolymers thereof. It is.
  • the degree of polymerization of these polyamide resins is not particularly limited.
  • the relative viscosity measured at 25 ° C in a 1% concentrated sulfuric acid solution is in the range of 1.5 to 5.0, particularly 2.0 to 4. A range of 0 is preferred
  • the polyester resin is a thermoplastic resin composed of a polymer having an ester bond in the main chain, and is a dicarboxylic acid (or an ester-forming derivative thereof) and a diol (or an ester thereof).
  • Preferable examples include a polymer, a copolymer, or a mixture thereof obtained by a condensation reaction mainly comprising an ester-forming derivative).
  • dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, 2,6_naphthalene dicarboxylic acid, 1,5_naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4, 4 '—Diphenyl ether dicarboxylic acid, 5_sodium Aromatic dicarboxylic acids such as sulfoisophthalic acid, aliphatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, fats such as 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, etc.
  • the diol component includes aliphatic glycols having 2 to 20 carbon atoms, that is, ethylene glycol, propylene glycol, 1,4_butane diol, neopentyl glycol, 1,5_pentanediol, 1,6-hexanediol, deca Methylene glycol, cyclohexane dimethanol, cyclohexane diol, etc. are some long chain glycolenoles with a molecular weight of 400-6000, ie polyethylene glycolol, poly 1,3_propylene glycol, polytetramethylene glycol, etc. and their esters. And forming derivatives.
  • Preferable examples of these polymers or copolymers include polybutylene terephthalate, polybutylene (terephthalate Z isophthalate), polybutylene (terephthalate Z adipate), polybutylene (terephthalate / sebacate), polybutylene (terephthalate / Decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate / isophthalate), polyethylene (terephthalate / adipate), polyethylene (terephthalate / 5-sodium sulfoisophthalate), polybutylene (terephthalate / 5 -Sodium sulfoisophthalate), polyethylene naphthalate, polycyclohexane dimethylene terephthalate, etc.
  • Polybutylene terephthalate polybutylene (terephthalate / adipate), polybutylene (terephthalate / decane dicarboxylate), polybutylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate / adipate), polyethylene naphthalate, polycyclohexanedimethylene terephthalate, etc.
  • the most preferred is polybutylene terephthalate (polybutylene terephthalate).
  • the polybutylene terephthalate resin has an intrinsic viscosity measured at 25 ° C using an o-chlorophenol solvent in the range of 0.36-1.60, particularly 0.52 to 1.25. Is preferred. Further, it is preferable that the intrinsic viscosity that can be used in combination with polybutylene terephthalate resins having different intrinsic viscosities is in the range of 0.36-1.60.
  • polybutylene terephthalate resin is a solution in which an m-taresole solution is charged with an alkaline solution.
  • a COOH end group amount determined by titration titration in the range of 1 to 50 eq / t (end group amount per ton of polymer) can be preferably used from the viewpoint of durability and anisotropy suppressing effect.
  • polyphenylene oxide resin used in the present invention examples include poly (2,6-dimethylolene 1,4-phenyleneoxide), poly (2-methyl-1,6-ethyl-1, 4-Fuyleneoxide), Poly (2,6-Diphenylene-1,4_Phenyleneoxide), Poly (2-Methyl-6_Phenolene1,4_Phenyleneoxide), Poly (2, 6-dichloro mouth_1, 4_phenoloxide), etc., and 2, 6-dimethylphenol and other phenols (eg 2, 3, 6_trimethylphenol) A copolymer such as a polymer may be mentioned.
  • poly (2,6-dimethyl-1,4-phenylene oxide), a copolymer of 2,6-dimethylphenol and 2,3,6_trimethylphenol is particularly preferred.
  • -Dimethyl-1,4-diyleneoxide is preferred.
  • the polyphenylene oxide resin preferably has a reduced viscosity (0.5 gZdl chloroform solution) measured at 30 ° C in the range of 0.15-0.70.
  • the method for producing strong polyphenylene oxide resin is not particularly limited, and those obtained by known methods can be used. For example, it can be easily produced by oxidative polymerization using a cuprous salt-ammine complex by Hay described in USP3306874, Akito Ida, as a catalyst.
  • the resin (B) having a reactive functional group is a resin having a reactive functional group in the molecular chain.
  • the resin serving as the base of the resin (B) having a reactive functional group of the present invention is a thermoplastic resin different from the thermoplastic resin (A) described above, and is not particularly limited, but is preferably a polyamide.
  • Resin Polyester resin, Polyphenylene sulfide resin, Polyphenylene oxide resin, Polycarbonate resin, Polylactic acid resin, Polysulfone resin, Polyacetal resin, Polytetrafluoroethylene resin, Polyetherimide resin, Polyamideimide resin, Polyimide resin, Polyethersulfone Resin, polyetherketone resin, polythioetherketone resin, polyetheretherketone resin, polyethylene resin, polypropylene resin, styrene resin such as polystyrene resin and ABS resin, rubbery polymer, polyalkylene oxide resin, etc.
  • thermoplastic tree At least one selected differently from fat (A) Resin can be used.
  • the resin used as the base of the resin (B) having a reactive functional group is more preferably a polyethylene resin, a polypropylene resin, a styrene resin, or a rubbery polymer because of the easy introduction of the reactive functional group.
  • rubbery polymers are more preferable from the viewpoint of impact resistance properties and toughness improving effect.
  • the rubbery polymer generally contains a polymer having a glass transition temperature lower than room temperature, and some of the intermolecular molecules are covalently bonded 'ion bond' van der Waals force, entanglement, etc. Are polymers that are constrained to each other.
  • rubber polymers include polybutadiene, polyisoprene, random copolymers and block copolymers of styrene monobutadiene, hydrogenated products of the block copolymers, acrylonitrile-butadiene copolymers, butadiene monoisoprene copolymers.
  • Gen-based rubbers such as, ethylene-propylene random copolymers and block copolymers, ethylene-butene random copolymers and block copolymers, ethylene-polyolefin copolymers, ethylene-acrylic Ethylene unsaturated carboxylic acid copolymer such as acid, ethylene-methacrylic acid, ethylene unsaturated carboxylic acid ester copolymer such as ethylene acrylate and ethylene methacrylate, part of unsaturated carboxylic acid is metal A salt, ethylene acrylic acid metal salt of acrylic acid Ethylene-methacrylic acid-methacrylic acid metal salt, etc., unsaturated carboxylic acid, unsaturated carboxylic acid metal salt copolymer, acrylic ester-butadiene copolymer, for example, acrylic elastic polymer such as butyl acrylate, butadiene copolymer, Copolymers of ethylene and fatty acid butyl, such as ethylene acetate butyl, ethylene
  • thermoplastic resin (A) an ethylene-unsaturated carboxylic acid ester copolymer
  • an ethylene-unsaturated carboxylic acid-unsaturated carboxylic acid A metal salt copolymer is preferably used.
  • Unsaturated carboxylic acid ester in ethylene-unsaturated carboxylic acid ester copolymer is (meth) acrylic acid ester, preferably (meth) acrylic acid and alcohol ester. It is le.
  • Specific examples of unsaturated carboxylic acid esters include methyl (meth) acrylate
  • acrylic acid esters such as (meth) acrylic acid ethyl, (meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid stearyl and the like.
  • the weight ratio of the ethylene component to the unsaturated carboxylic acid ester component in the copolymer is not particularly limited, but is preferably in the range of 90Z10 to 10Z90, more preferably 85/15 to 15/85. .
  • the number average molecular weight of the ethylene monounsaturated carboxylic acid ester copolymer is not particularly limited, but is preferably in the range of 1000 to 70000 from the viewpoint of fluidity and mechanical properties.
  • Specific examples of the unsaturated carboxylic acid in the ethylene monounsaturated carboxylic acid monounsaturated carboxylic acid metal salt copolymer include (meth) acrylic acid.
  • Examples of unsaturated carboxylic acid metal salts include (meth) acrylic acid metal salts.
  • the metal of the unsaturated carboxylic acid metal salt is not particularly limited, but preferably, an alkali metal such as sodium, an alkaline earth metal such as magnesium, or zinc is used.
  • Ethylene Unsaturated carboxylic acid Unsaturated power in unsaturated carboxylic acid metal salt copolymer The weight ratio of the rubonic acid component to the unsaturated carboxylic acid metal salt component is not particularly limited, but preferably 95 It is in the range of / 5 to 5/95, more preferably 90/10 to 10/90.
  • the number average molecular weight of the ethylene unsaturated carboxylic acid unsaturated carboxylic acid metal salt copolymer is not particularly limited, but is preferably in the range of 1000 to 70000 from the viewpoint of fluidity and mechanical properties.
  • the reactive functional group contained in the resin ( ⁇ ) having a reactive functional group is not particularly limited as long as it reacts with the terminal group present in the thermoplastic resin ( ⁇ ).
  • Examples include at least one selected from an amino group, a carboxyl group, a carboxyl metal salt, a hydroxyl group, an acid anhydride group, an epoxy group, an isocyanate group, a mercapto group, an oxazoline group, and a sulfonic acid group.
  • an amino group, a carboxyl group, a carboxyl metal salt, an epoxy group, an acid anhydride group, and an oxazoline group are more preferably used because they have high reactivity and have few side reactions such as decomposition and crosslinking.
  • the method can be carried out by a generally known technique, and is not particularly limited.
  • maleic anhydride, itaconic anhydride nothing A method of copolymerizing an acid anhydride such as water-endic acid, citraconic anhydride, 1-butene 3,4-dicarboxylic acid anhydride and a monomer that is a raw material of the rubber polymer, an acid anhydride into the rubber polymer Or the like.
  • the method can be carried out by a generally known technique, and is not particularly limited.
  • glycidyl acrylate, glycidyl methacrylate A method of copolymerizing a bur monomer having an epoxy group, such as a glycidyl ester compound of ⁇ -unsaturated acid such as glycidyl ethacrylate and glycidyl itaconate, with a monomer which is a raw material of the rubber polymer, A method of polymerizing a rubbery polymer using a polymerization initiator having a functional group or a chain transfer agent, a method of grafting an epoxy compound onto a rubbery polymer, or the like can be used.
  • an oxazoline group is introduced into a rubbery polymer
  • the method can be carried out by a generally known technique, and there is no particular limitation.
  • 2_isoprobenyl monooxazoline Of copolymerizing a vinyl monomer having an oxazoline group such as 2-buruoxazoline, 2-acryloyloxazoline, 2-styryloxazoline with a monomer that is a raw material of a rubbery polymer Etc. can be used.
  • the number of functional groups per molecular chain in the resin having a reactive functional group ( ⁇ ) is not particularly limited, but usually 1 to 10 is preferable to reduce side reactions such as crosslinking. Therefore:! ⁇ 5 is preferred.
  • a molecule having no functional group may be contained, but the smaller the ratio, the better.
  • the mixing ratio of the thermoplastic resin ( ⁇ ) and the resin having a reactive functional group ( ⁇ ) in the present invention is not particularly limited, but the weight Aw of the thermoplastic resin ( ⁇ ) and the reactive functional group are not particularly limited.
  • the weight of the resin (B) with the ratio of Bw AwZBw is preferably in the range of 5/95 to 95/5, more preferably in the range of 10/90 to 90/10 of 15/85 to 85/15 The range is most preferred.
  • thermoplastic resin composition of the present invention is observed by transmission electron beam tomography (TEM T).
  • TEMT is a microscopy method that visualizes the internal structure of materials on a nanometer scale in three dimensions by applying computed tomography (CT) to transmission electron microscopy (TEM).
  • CT computed tomography
  • TEM transmission electron microscopy
  • a typical example is given. Similar to the preparation of a sample for observation by a two-dimensional TEM, after making a sliced piece (sample) of a thermoplastic resin composition by a known technique and dyeing it with an appropriate staining agent, Create a sample. The sample is subjected to a three-dimensional electron microscope (for example, JEM-2200FS manufactured by JEOL). For example, the sample is tilted in steps of 1 ° within a tilt angle range of ⁇ 60 ° to + 60 ° and a transmission image is obtained. To obtain 121 tilted transmission images.
  • a three-dimensional electron microscope for example, JEM-2200FS manufactured by JEOL
  • a gold particle with a diameter of about 10 nm is placed on the sample surface, and the movement of the gold particle is tracked to correct the tilt axis of the transmitted image.
  • 3D data is reconstructed from a series of tilted transmission images with respect to the tilt axis, and a 3D transmission image is obtained.
  • thermoplastic resin composition of the present invention one of the thermoplastic resin (A) and the resin (B) having a reactive functional group forms a continuous phase and the other forms a dispersed phase.
  • the resin constituting the continuous phase is either a thermoplastic resin (A) or a resin (B) having a reactive functional group, and is not particularly limited, but mainly requires the characteristics as a thermoplastic resin (A). If so, the continuous phase is preferably composed of the thermoplastic resin (A).
  • thermoplastic resin composition of the present invention a three-dimensional connection structure Cs containing a continuous phase component is formed in the dispersed phase.
  • the three-dimensional connected structure here is a connected structure confirmed by a three-dimensional transmission image obtained by TEMT, and there is no particular limitation as long as the particles are not three-dimensionally connected in a three-dimensional manner.
  • columnar, T-shaped, cross-shaped, network-shaped, etc. can be mentioned.
  • the ratio of the area of the connecting structure Cs in the cross section of the dispersed phase Dp having an average particle diameter of lOOOnm or less in the dispersed phase is 10% or more.
  • the average particle diameter here can be calculated by image analysis of a transmission image at an inclination angle of 0 ° in TEMT. For image analysis, using the image analysis software such as “Scion Image” image analysis software manufactured by Scion ConDoration, the average value of the diameter and the minor axis of the dispersed phase present in the transmission image is calculated, and the diameter and the minor axis are calculated. The average particle diameter is calculated as the average diameter.
  • the three-dimensional connection structure Cs including the continuous phase component in the dispersed phase is formed as follows. That is, when producing the thermoplastic resin composition of the present invention, one of the thermoplastic resin (A) and the resin (B) having a reactive functional group forms a continuous phase and the other forms a dispersed phase. The plastic resin (A) and the resin (B) having a reactive functional group react at the interface between the continuous phase and the dispersed phase. As the reaction at the interface proceeds, the amount of reactant increases and the reactant generated at the interface is drawn into the dispersed phase.
  • the amount of reactants drawn out into the dispersed phase increases, and the reactants are connected to each other to form a three-dimensional connection structure in the dispersed phase.
  • the reaction product generated by the reaction at the interface acts as a surfactant, the dispersed phase becomes finer, and coalescence and coarsening of the dispersed phase are prevented to stabilize the dispersed state.
  • the reaction between the thermoplastic resin (A) and the resin (B) having a reactive functional group proceeds to form a three-dimensional connected structure Cs containing a continuous phase component in the dispersed phase, and the average particle size
  • the ratio of the area of the connected structure Cs to the cross section of the dispersed phase Dp is 10% or more, preferably 15% or more, and most preferably 20% or more
  • the unique effect that is the effect of the present invention The viscoelastic behavior is remarkably exhibited, and the impact energy absorption performance and vibration energy absorption performance during high-speed deformation are remarkably excellent.
  • the ratio of the area of the connected structure Cs in the cross section of the dispersed phase Dp having an average particle diameter of 800 nm or less is preferably 10% or more, preferably 15% or more, and most preferably 20% or more.
  • the ratio force of the area of the connected structure Cs in the cross section of the dispersed phase Dp having a particle diameter of 500 nm or less is 10% or more, preferably 15. / 0 or more, most preferably 20% or more.
  • the cross section of the dispersed phase Dp here refers to the cross section in the transmission image at an inclination angle of 0 ° in TEMT.
  • the method for calculating the ratio of the area of the connected structure Cs occupying the cross section of the dispersed phase Dp is not particularly limited, but an appropriate stain is used as the stain, and either the dispersed phase or the continuous phase is used. By staining one of them and adding color contrast to the dispersed phase and continuous phase in the transmission image, the dispersed phase and continuous phase can be distinguished. For this reason, the connected structure Cs containing the continuous phase component can be similarly given a color contrast with the dispersed phase.
  • the portion of the cross section of Dp in the dispersed phase that is different in color from the dispersed phase Dp can be defined as the cross section of the connected structure Cs containing the continuous phase component, and the cross sectional area of the connected structure Cs containing the continuous phase component is dispersed.
  • the value divided by the cross-sectional area of phase Dp is the harm of the area of connected structure Cs in the cross-section of dispersed phase Dp.
  • the area calculation method is not particularly limited, but can be calculated using image analysis software such as “Scion Image” image analysis software manufactured by Scion Corporation.
  • the polyamide resin (A1) is preferably the polyamide resin described above, and the resin (B) having a reactive functional group is the above-described one.
  • the resin (B) having a reactive functional group is preferably used.
  • thermoplastic resin composition including the polyamide resin of the present invention includes the resin (B) having a reactive functional group
  • the polyamide resin (A1) and the resin having a reactive functional group (B) The ratio between the weight Aw of the polyamide resin (A1) and the weight Bw of the resin (B) having a reactive functional group Aw / Bw is 5/95 to 95.
  • a range force S of / 5 is preferred, a range force S of 10/90 to 90/10 is more preferred, and a range of 15/85 to 85/15 is most preferred.
  • Aw / Bw is lower than 5/95, the reaction between the resins (B) having reactive functional groups becomes prominent, and the molding force tends to be difficult due to an increase in viscosity.
  • thermoplastic resin composition including the polyamide resin of the present invention contains other thermoplastic resin (C) in addition to the polyamide resin (A1) and the resin (B) having a reactive functional group. Can do.
  • thermoplastic resin (C) that can be included in the thermoplastic resin composition of the present invention is not particularly limited, and examples thereof include polyester resins, polyphenylene sulfide resins, polyacetal resins, Polyphenylene oxide resin, polycarbonate resin, poly Lactic acid resin, Polysulfone resin, Polytetrafluoroethylene resin, Polyetherimide resin, Polyamideimide resin, Polyimide resin, Polyethersulfone resin, Polyetherketone resin, Polythioetherketone resin, Polyetheretherketone resin, Polyethylene resin
  • Preferable examples include at least one thermoplastic resin selected from styrene resins such as polypropylene resin, polystyrene resin and ABS resin, rubbery polymers, polyalkylene oxide resins and the like.
  • thermoplastic resins shown above polyester resins, polyphenylene sulfide resins, polyacetal resins, styrene resins, polyphenylene oxide resins, polycarbonate resins, and polylactic acid resins are preferably used.
  • thermoplastic resin including the polyamide resin of the present invention When the other thermoplastic resin (C) is included, the compounding ratio of the polyamide resin (A1) and the other thermoplastic resin (C) is: Although there is no particular limitation, the ratio of the weight Aw of the polyamide resin (A1) to the weight Cw of the other thermoplastic resin (C) Aw / Cw is preferably in the range of 1/99 to 99/1. The range of 3/97 to 9 7/3 is more preferred. The range of 5/95 to 95/5 is most preferred.
  • the longer relaxation time T1 C1 is 65 seconds or less
  • the two relaxation times in the two-component analysis of the relaxation time corresponding to the hydrocarbon group carbon adjacent to the NH group of the polyamide resin (A1) are 15 seconds or less.
  • the carbon of the hydrocarbon group adjacent to the NH group is the carbon of the aliphatic hydrocarbon group, alicyclic hydrocarbon group, or aromatic hydrocarbon group adjacent to the NH group of the polyamide resin, and the terminal amino group.
  • the solid state NMR measurement of the thermoplastic resin composition of the present invention is carried out by the following method.
  • the pellet of the thermoplastic resin composition of the present invention is filled in the center of a solid NMR sample tube and used in a solid NMR measurement apparatus (for example, CMX-300 Infinity manufactured by Chemagnetics).
  • the observation nucleus is 13C, and the observation frequency is 75.
  • Set the 2MHz, no-less width to 4.5 ⁇ s, and measure the relaxation time T1C of carbon nuclei by Torchia method.
  • T1C the relaxation time of carbon nuclei by Torchia method.
  • the peaks corresponding to the carbon of the carbonyl group of the polyamide resin (A1) and the carbon of the hydrocarbon group adjacent to the NH group differ depending on the type of the polyamide resin (A1) .
  • polyamide 6 is used as the polyamide resin (A1).
  • the peak corresponding to the carbon of the carbonyl group is 174 ppm
  • the peak corresponding to the carbon of the hydrocarbon group adjacent to the NH group is 42 ppm.
  • the two relaxation times are the long relaxation time T1C component and the short relaxation time T1C component.
  • the long relaxation time T1C component is a component with low molecular mobility, such as a crystal, and the short relaxation time T1C component is amorphous.
  • the longer relaxation time is the relaxation corresponding to the carbon of the hydrocarbon group adjacent to the T1C1 and NH groups.
  • the longer relaxation time is T1C2.
  • the relaxation time T1C of carbon nuclei as measured by solid-state NMR is a numerical value that reflects the molecular mobility inherent in each carbon. The shorter the relaxation time, the higher the molecular mobility.
  • the thermoplastic resin composition of the present invention among the carbons constituting the polyamide, two carbons constituting the end of the polyamide (the carbon of the carbonyl group and the carbon of the hydrocarbon group adjacent to the NH group) are supported.
  • the longer relaxation time that is, the relaxation time of a component having low molecular mobility such as a crystal is shortened (increasing molecular mobility).
  • the unique viscoelastic behavior, which is the effect of, is remarkably exhibited, and the impact energy absorption performance and vibration energy absorption performance during high-speed deformation are remarkably excellent.
  • the longer relaxation time is about 140 seconds / 90 seconds for each general polyamide resin.
  • a polyamide resin is used. Because the resin with reactive functional group partially reacts, The relaxation time is about 68 seconds to 86 seconds / 19 seconds to 35 seconds, respectively. This is probably because the molecular mobility of the polyamide resin is affected by the resin having a reactive functional group higher than the molecular mobility of the polyamide resin, and the molecular mobility is increased.
  • the thermoplastic resin composition of the present invention has a polyamide resin that has undergone a reaction as compared to a conventional resin composition in which a polyamide resin and a resin having a reactive functional group are kneaded by, for example, a production method described later. Since the structure is such that the polyamide component is incorporated even inside the dispersion structure of the resin having a reactive functional group that passes only at the interface of the resin having a reactive functional group, the NH group of the polyamide resin It is thought that the relaxation time corresponding to the adjacent carbon is very short (the molecular mobility of the polyamide resin is very high).
  • the longer relaxation time T1C1 is a force with 65 seconds or less, preferably 63 seconds or less More preferably, it is 60 seconds or less.
  • the longer relaxation time T1C2 is a force that is 15 seconds or less. Preferably it is 14 seconds or less, more preferably 13 seconds or less.
  • thermoplastic resin composition including the polyamide resin of the present invention
  • the resin (B) having a reactive functional group when the resin (B) having a reactive functional group is included, the polyamide resin (A1) or the resin (B) having a reactive functional group It is preferable that one forms a continuous phase and the other forms a dispersed phase.
  • the resin constituting the continuous phase is either a polyamide resin (A1) or a resin (B) having a reactive functional group, and is not particularly limited, but if the characteristics as the polyamide resin (A1) are mainly required,
  • the continuous phase is preferably composed of a polyamide resin (A1).
  • thermoplastic resin composition including the polyamide resin of the present invention, the thermoplastic resin
  • one of (A1) or the resin (B) having a reactive functional group forms a continuous phase and the other forms a dispersed phase
  • fine particles having an average particle diameter of 300 nm or less are present in the dispersed phase.
  • the thermoplastic resin (A1) and reactive functional groups are used at the interface between the continuous phase and the dispersed phase.
  • compounds formed by reaction with the resin (B) having In this case, the compound is affected by an external field such as a shear field and moves from the interface to the dispersed phase, and a component having a high affinity with the moved phase faces outward, so-called micelle form. To do.
  • Such a dispersed structure can be confirmed by observation with a transmission electron microscope, for example.
  • the magnification that can be confirmed by observation with a transmission electron microscope is the magnification observed by observation with a normal transmission electron microscope, and varies depending on the size of the fine particles. In the present invention, it is used in the range of 5000 to 100000 times. In particular, when the fine particle size is lOOnm or less, it is used in the range of 10,000 to 100,000 times.
  • the average particle size of the disperse phase is not particularly limited as long as the fine particles can be contained, but from the viewpoint of impact resistance and the like, 100 ⁇ LOOOnm force S, preferably 100 to 800, more preferably 100 to 500.
  • the average particle size of the fine particles having an average particle size of 300 nm or less is preferably 1 to 300 nm, more preferably 3 to 100 nm, and even more preferably 5 to 50 nm.
  • the average particle diameter of the fine particles can be calculated by image analysis of a transmission image obtained by observation with a transmission electron microscope. For image analysis, use an image analysis software such as the image analysis software “Scion Image” manufactured by Scion Corporation, and calculate the average value of the diameter and the minor axis of the fine particles present in the transmission image. The average particle diameter is calculated as the average value of.
  • the ratio of the area occupied by the fine particles in the dispersed phase to the dispersed phase is preferably 10% or more because of remarkable manifestation of unique viscoelastic behavior. 15% or more is more preferable 20% or more is more preferable.
  • the ratio of the area occupied by the fine particles in the dispersed phase can be calculated by image analysis of a transmission image obtained by observation with a transmission electron microscope. For image analysis, use the image analysis software such as “Scion Image” image analysis software manufactured by Scion Corporation to calculate the area of the dispersed phase present in the transmission image and the area of the fine particles present in the dispersed phase.
  • the ratio of the area of the fine particles in the dispersed phase to the dispersed phase is calculated by dividing the area of the fine particles present in the dispersed phase by the area of the dispersed phase.
  • thermoplastic resin composition of the present invention has a tensile test where tensile elongation at break VI is V and V2 is ⁇ (VI) and ⁇ (V2).
  • ⁇ (VI) is preferably ⁇ (V2).
  • the tensile elongation at break indicates the elongation at the moment of fracture. It is preferable that the above relational expressions hold for all VI and V2 in the range of 10 mm / min or more and 500 mmZmin or less, and any VI or V2 in the range of ImmZmin or more and 1000 mm / min or less. It is preferable that
  • thermoplastic resin composition of the present invention production in a molten state or production in a solution state can be used, but production in a molten state is preferred from the viewpoint of improving reactivity. Can be used properly.
  • melt kneading with an extruder or melt kneading with a kneader can be used, but from the viewpoint of productivity, melt kneading with an extruder that can be continuously produced is preferably used.
  • one or more extruders such as a single screw extruder, a twin screw extruder, a multi screw extruder such as a four screw extruder, and a twin screw single screw compound extruder can be used.
  • a multi-screw extruder such as a twin-screw extruder or a four-screw extruder can be preferably used, and a method by melt kneading using a twin-screw extruder is most preferable.
  • L / DO is 50 or more from the viewpoint of improving kneadability and reactivity. More preferably, it is 60 to 200, more preferably 80 to 200.
  • Force, kar L / DO is the value obtained by dividing the screw length L by the screw diameter DO.
  • the screw length is the length from the upstream end of the screw segment at the position (feed port) where the screw base material is supplied to the screw tip.
  • the screw of the twin screw extruder has length and shape characteristics such as full flight and needing disk. Different screw segments are combined.
  • the side to which raw materials are supplied may be referred to as upstream, and the side from which molten resin is discharged may be referred to as downstream.
  • the screw length L is "at the position (feed port) where the raw material of the screw root is supplied".
  • the screw diameter equal to the length “from the upstream end of a screw segment to the sampling location” is equal to the screw diameter of an extruder having a sampling valve etc.
  • the sampling location refers to the position on the screw shaft that is closest to the upstream side of the cylinder where the resin is discharged and upstream.
  • the twin-screw extruder when a thermoplastic resin composition is produced in the present invention, when a twin-screw extruder is used, the twin-screw extruder has a full flight with a plurality of screws from the viewpoint of improving kneadability and reactivity. It is preferred to have a zone and a needing zone.
  • a full flight zone consists of one or more full flights, and a needing zone consists of one or more needing disks.
  • thermoplastic resin composition when a twin-screw extruder is used, the needing that becomes the maximum of the resin pressures indicated by the resin pressure gauges installed in a plurality of needing zones Pkmax (MPa) is the resin pressure in the zone, and Pfmin (MPa) is the minimum resin pressure in the full flight zone among the resin pressures indicated by the resin pressure gauges installed in multiple full flight zones. It is preferable to produce the thermoplastic resin composition of the present invention under a condition where the value is (Pfmin + O. 3) or more. (Pfmin + O. 4) or more. 5) It is more preferable to produce under the above conditions.
  • a kneading zone composed of one or more kneading discs is more excellent in kneadability and reactivity of the molten resin than a full flight zone composed of one or more full flights.
  • kneadability and reactivity are dramatically improved.
  • One index indicating the state of filling of the molten resin is the value of the resin pressure, and the larger the resin pressure, the more standard the molten resin is filled. That is, in the production of the thermoplastic resin composition of the present invention, when a twin screw extruder is used, the resin pressure in the needing zone is within a certain range from the resin pressure in the full flight zone.
  • the reaction which promotes the formation of a three-dimensional connected structure Cs containing a continuous phase component in the dispersed phase, and includes a polyamide resin.
  • the relaxation time corresponding to the carbon of the carbonyl group of the polyamide resin or the carbon of the hydrocarbon group adjacent to the NH group is in the above range, and it is possible to remarkably exhibit unique viscoelastic behavior. Become.
  • the method for increasing the resin pressure in the needing zone is not particularly limited, but the reverse screw zone or the molten resin has an effect of pushing the molten resin back to the upstream side between the two zones or on the downstream side of the kneeing zone.
  • a method of introducing a seal ring zone or the like having an effect of accumulating water can be preferably used.
  • the reverse screw zone or seal ring zone consists of one or more reverse screws and one or more seal rings, which can be combined.
  • each length of the reverse screw zones is Lr
  • all reverse screw zones are Lr.
  • / D0 0 .:!
  • the length Lr / DO of each reverse screw zone is more preferably 0.2 to 8, and still more preferably 0.3 to 6.
  • the length Lr of the reverse screw zone is a perpendicular line from the upstream end of the most upstream reverse screw constituting the reverse screw zone to the screw shaft center line, and from the downstream end of the most downstream reverse screw to the screw shaft center. The distance between the perpendicular to the line.
  • the extrusion amount of the thermoplastic resin composition is 0.01 kg / h or more per screw li "pm. Preferably, it is 0.05 kg / h to 1 kg / h, more preferably 0.08 to 0.5 kg, and most preferably 0.:! To 0.3 kgZh. It is the extrusion rate of the thermoplastic resin composition discharged from, and is the weight (kg) extruded per hour.
  • a preferable numerical range related to the extrusion amount in the above-described twin screw extruder is based on the extrusion amount of a twin screw extruder having a screw diameter of 37 mm. If the screw diameter is significantly different, for example, use a twin screw extruder with a diameter of less than 30 mm or a diameter of more than 50 mm.
  • the extrusion rate decreases or increases according to the screw diameter ratio before or after scale-down or scale-up, preferably according to the 2.5th power law or the 3rd power shell IJ, more preferably the 2.5th power law. As a thing, it shall be readable.
  • the extrusion amount of the thermoplastic resin composition is Screw rotation speed per lrpm, preferably 0.002 kgZh or more, more preferably 0.01-0.2 kg / h, more preferably 0.017-0.l lkg / h, most preferably 0.02 to 0.06 kg / h.
  • the extrusion amount of the thermoplastic resin composition is Preferably, it is 0.12 kgZh or more per screw kpm, more preferably 0.6 to 12 kg / h, still more preferably 0.96 to 6 kg / h, and most preferably 1.2 to 3.6 kg / h.
  • the rotational speed of the screw is not particularly limited, but is usually 10 rpm or more, preferably 15 rpm or more, more preferably 20 rpm or more.
  • the extrusion rate is not particularly limited, but is usually 0.1 kg / h or more, preferably 0.15 kg / h or more, more preferably 0.2 kg / h or more.
  • the residence time of the thermoplastic resin composition in the twin screw extruder is 1 to 30 minutes. More preferably, it is 1.5-28 minutes, More preferably, it is 2-25 minutes.
  • the residence time is the average residence time from the supply of the raw material to the twin screw extruder until the discharge, and is a steady melt kneading in which the uncolored thermoplastic resin composition is adjusted to a predetermined extrusion amount.
  • thermoplastic resin composition In the state, from the position of the screw base to which the raw material is supplied, usually about lg of colorant is added together with the raw material, and the thermoplastic resin composition is discharged from the discharge port of the extruder from the time when the colorant and the like are added. The time until the point at which the degree of coloring of the extrudate by the coloring agent is maximized is taken.
  • the screw of the twin-screw extruder is not particularly limited, and is a complete tangling type or incomplete stagnation. Together From the viewpoints of force S, kneadability, and reactivity, which can be used with a screw such as a mold or a non-mixed type, a fully mixed type screw is preferred. Further, the screw may be rotated in the same direction or in a different direction, but from the viewpoint of kneadability and reactivity, the same direction is preferable. When a twin screw extruder is used in the present invention, the screw is most preferably a co-rotating fully meshed type.
  • the screw configuration of the twin screw extruder is a force that uses a combination of full flight and / or a needing disk.
  • a screw configuration that effectively applies a shear field is preferred. Therefore, as mentioned above, it is preferable that the screw of the twin-screw extruder has a plurality of kneeling zones composed of one or more needing disks in the longitudinal direction. Is preferably 5 to 50%, more preferably 10 to 40%, still more preferably 15 to 30% of the total length of the screw.
  • each length of the need zone in the screw of the twin screw extruder is Lk
  • all knee zone forces Lk / D0 0.2 ⁇ : Having a length of 10 is preferable from the viewpoints of kneadability and reactivity.
  • the length Lk / DO of each needing zone is more preferably 0.3 to 9, and still more preferably 0.5 to 8.
  • the length Lk of the needing zone is determined from the vertical line from the upstream end of the most upstream needing disk constituting the needing zone to the screw shaft center line and the downstream end of the most downstream needing disk. The distance from the perpendicular to the screw shaft center line.
  • the needing zone of the twin screw extruder is arranged over the entire region without being unevenly distributed at a specific position in the screw. ,.
  • a vent vacuum zone is provided and the pressure is reduced to a gauge pressure-0.0MPa or lower and melt-kneaded. It is more preferable to reduce the pressure to a pressure of 0.08 MPa or less, which is preferable to melt and knead.
  • the gauge pressure indicates the pressure when the atmospheric pressure is zero, and the lower the pressure, the higher the degree of vacuum and the higher the ability to remove volatile components.
  • a twin screw extruder it is preferable to melt knead using a raw material having a water content of less than 5000 ppm. It is preferable to melt knead using a raw material having a water content of less than lOOOppm. More preferred.
  • the moisture content here is measured according to IS015512. If a raw material with a water content exceeding 5000 ppm is used, the reaction in the extruder is suppressed by the water contained in the raw material, and the kneadability is impaired, so that the impact-absorbing property of the produced thermoplastic resin composition is reduced. Since it falls, it is not preferable. Further, when the thermoplastic resin (A) is a polyester resin, hydrolysis further proceeds in the extruder, which is not preferable because the impact absorbability of the produced thermoplastic resin composition is greatly reduced.
  • the maximum resin temperature here refers to the highest temperature measured by resin thermometers installed evenly at multiple locations in the extruder.
  • the maximum resin temperature is less than 180 ° C, the reactivity between the polymers is low.
  • the temperature exceeds 330 ° C, the thermal absorption of the polymer proceeds and the shock absorption is reduced, so the maximum
  • the resin temperature is preferably controlled to 180 ° C to 330 ° C for melt kneading.
  • a twin-screw extruder When a twin-screw extruder is used in the present invention, it is preferable to introduce an inert gas from a raw material charging part and melt knead to suppress thermal deterioration. Nitrogen gas is preferred as the inert gas.
  • thermoplastic resin composition of the present invention the above (A) and (B), if necessary, Other components other than may be added. Examples of other components include fillers, thermoplastic resins, rubbers, and various additives.
  • a filler may be used as necessary to improve strength and dimensional stability.
  • the filler may be fibrous or non-fibrous, and may be a combination of a fibrous filler and a non-fibrous filler.
  • Examples of the strength and vulcanizing filler include glass fiber, glass milled fiber, carbon fiber, titanate power, lithium whisker power, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos Fibrous fillers such as fibers, stone fiber, metal fibers, wollastonite, zeolite, sericite, kaolin, my strength, clay, pie-fillite, bentonite, asbestos, talc, alumina silicate and other silicates, alumina, Metal compounds such as silicon oxide, magnesium oxide, zirconium oxide, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, magnesium hydroxide, calcium hydroxide, Hydroxide Noreminium Non-fibrous fillers such as hydroxides, glass beads, ceramic beads, boron nitride and silicon carbide, which may be hollow or two or
  • these fibrous and / or non-fibrous fillers may be pre-treated with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, or an epoxy compound. It is preferable in terms of obtaining superior mechanical strength.
  • a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, or an epoxy compound. It is preferable in terms of obtaining superior mechanical strength.
  • the amount of the filler is not particularly limited, but it is 30 to 400 weight to 100 weight parts of the thermoplastic resin composition. It is preferable to blend partly.
  • thermoplastic resin composition of the present invention other rubbers and various additives can be blended as required within the range not impairing the characteristics.
  • Forces and rubbers include, for example, random copolymers and block copolymers of polybutadiene, polyisoprene, styrene monobutadiene, hydrogenated products of the block copolymers, allyronitrile monobutadiene copolymers, Genomic rubber such as butadiene monoisoprene copolymer, random copolymer and block copolymer of ethylene monopropylene, ethylene monopropylene Random and block copolymers of ethylene, copolymers of ethylene and ⁇ -olefin, ethylene unsaturated carboxylic acid copolymers such as ethylene acrylic acid, ethylene-methacrylic acid, ethylene acrylate, ethylene Ethylene-unsaturated carboxylic acid ester copolymers such as methacrylic acid esters, ethylene monoacrylic acid monoacrylic acid metal salts, ethylene monomethacrylic acid monomethacrylic acid metal salts, in which some of the unsaturated
  • thermoplastic elastomers and modified products thereof. Two or more of these rubbers can be used in combination. When strong rubbers are used, the amount is not particularly limited, but it is preferably 1 to 400 parts by weight per 100 parts by weight of the thermoplastic resin composition.
  • the various additives that can be added to the thermoplastic resin composition of the present invention are preferably crystal nucleating agents, anti-coloring agents, antioxidants such as hindered phenols and hindered amines, and ethylene bisstearyl amide.
  • examples include mold release agents such as higher fatty acid esters, plasticizers, heat stabilizers, lubricants, UV inhibitors, colorants, flame retardants, and foaming agents.
  • thermoplastic resin of the present invention is produced by a twin screw extruder.
  • a method of adding the resin at the same time a method of adding the resin by a side feed method during melt kneading, a method of adding the resin after melt kneading in advance, A method of adding the remaining resin to one resin constituting the thermoplastic resin composition, melt-kneading, and the like.
  • thermoplastic resin composition of the present invention is produced by a twin screw extruder
  • a supercritical fluid can be introduced from the viewpoint of improving the reactivity when melt kneading with the twin screw extruder.
  • a supercritical fluid is in a state beyond the critical point (critical point) where gas and liquid can coexist.
  • it is a fluid that has both gas properties (diffusibility) and liquid properties (solubility).
  • examples of such a supercritical fluid include supercritical carbon dioxide, supercritical nitrogen, supercritical water, and the like.
  • supercritical carbon dioxide and supercritical nitrogen can be used, and most preferably supercritical carbon dioxide.
  • the molding method of the thermoplastic resin composition of the present invention can be any method, and the molding shape can be any shape.
  • the molding method include extrusion molding, injection molding, hollow molding, calendar molding, compression molding, vacuum molding, foam molding, etc., pellets, plates, fibers, strands, films or sheets, pipes It can be formed into a shape such as a shape, a hollow shape or a box shape.
  • the molded product of the present invention thus obtained is excellent in heat resistance and impact resistance. However, particularly in the case of thin molded products, elongated molded products, fibers and films, unique viscoelastic properties. It has a special effect that expresses it clearly.
  • thermoplastic resin composition of the present invention exhibit unique viscoelastic properties that the tensile modulus decreases as the tensile speed increases, and the tensile elongation increases. It is recognized that it exhibits a completely opposite characteristic that the increase in the thickness of the resin, so that it is useful as a molded article, fiber or film having a unique shock absorbing characteristic. Such peculiar viscoelastic properties are particularly useful in thin molded articles, elongated molded articles, drawn fibers and drawn films.
  • Drawing / spinning techniques include, for example, a method in which melt-spun yarns and strands discharged from an extruder are drawn once and the force is drawn, or melt-spun yarns and strands discharged from an extruder are used once. A method of continuously stretching without scraping is used.
  • a film is produced from the thermoplastic resin composition of the present invention
  • a known film forming technique can be used.
  • a T-die is placed in an extruder to extrude a flat film, or the film is stretched in a uniaxial or biaxial direction to draw a stretched film.
  • a method of obtaining a film or an inflation method in which a circular film is inflated by arranging a circular die in an extruder is used.
  • thermoplastic resin composition of the present invention when produced by a twin screw extruder, the above-described yarn forming process or film forming process may be carried out directly from the twin screw extruder. .
  • a molded article made of the thermoplastic resin composition of the present invention has a characteristic that it has a characteristic that it has an excellent vibration energy absorption performance when the peak value of loss tangent (tan ⁇ ) increases. Demonstrate. For this reason, it is particularly useful for applications that require sound absorption, heat absorption, vibration control and seismic isolation.
  • thermoplastic resin composition of the present invention is a cylindrical molded product having a deflection temperature under load of 0.45 MPa at 45 ° C or more, an outermost diameter of 50 mm, a thickness of 2 mm, and a height of 150 mm.
  • the maximum point load applied to the weight body is less than 20 kilonewtons, and there is a feature that cracks of 5 cm or more do not occur.
  • Deflection temperature under load of 45MPa was obtained by injection molding, and the IS-1 No. 1 strip specimen was conditioned at 23 ° C and 50% RH for 48 hours.
  • a cylindrical molded product with an outermost diameter of 50 mm, a thickness of 2 mm, and a height of 150 mm is manufactured as follows. First, the dried thermoplastic resin composition is put into a single screw extruder, and a round bar having a diameter of 50 mm is produced by extrusion molding. Next, the round bar is cut into a length of 150 mm, and finally, the lathe is used to cut out the thermoplastic resin composition to a thickness of 2 mm.
  • the outer diameter mentioned here is 7 in Fig. 4, the thickness is 8 in Fig. 4, and the height is 9 in Fig. 4.
  • a weight (weight) having a mass of 193 kg is dropped so as to be in parallel with the circle of the cylindrical molded product in a state where the cylindrical molded product circle is placed on the horizontal base.
  • the test is conducted by free-falling from a height of 0.5m.
  • the speed immediately before coming into contact with the cylindrical molded product is as high as 11.3 km / h.
  • the thermoplastic resin composition of the present invention has a remarkable non-viscoelastic property that it becomes more flexible as it is deformed at high speed.
  • the point load is less than 20 kilonewtons, and the molded product itself does not crack more than 5 cm, so it is excellent for shock absorbing parts that do not break down significantly. ing.
  • Applications of the molded product of the thermoplastic resin composition of the present invention include connectors, coils, sensors, LED lamps, sockets, resistors, relay cases, small switches, coil bobbins, capacitors, variable capacitor cases, optical pickups, Oscillator, various terminal boards, transformer, plug, printed circuit board, tuner, speaker, microphone, headphones, small motor, magnetic head base, power module, semiconductor, liquid crystal, FDD carriage, FDD chassis, motor brush holder, Besides being suitable for electronic components such as parabolic antennas and computer-related parts, generators, motors, transformers, current transformers, voltage regulators, rectifiers, inverters, relays, power contacts, switches, Circuit breaker, knife switch, other pole rod, electrical component cabinet Applications of electrical equipment parts, VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio 'Laser Disc (Registered Trademark) ⁇ Non-Comparator Disc, DVD, etc.
  • Optical instruments such as watches, precision machinery-related parts; alternator terminals, on-line generator connectors, IC regulators, light meter potentiometer bases, various valves such as exhaust gas valves, fuel related cooling systems 'Brake system' Wiper system 'Exhaust system' Intake system pipes 'Hose' tube, Air intake nozzle Snorkel, Intake manifold hold, Fuel pump, Engine coolant joint, Carburetor main body, Carburetor spacer, Exhaust gas Sensor, cooling water sensor, oil temperature sensor 1, brake pad wear sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake pad wear sensor, battery peripheral parts, thermostat base for air conditioner, warm Hot air flow control valve for baffle, brush honorder for radiator motor, water pump impeller, turbine vane
  • Wiper motor related parts such as Nolesitch substrate, coil for fuel related electromagnetic valve, wire harness connector, SMJ connector, PCB connector, door grommet connector, fuse connector, horn terminal, electrical component insulation plate, step motor rotor, lamp socket, Lamp refractor, lamp housing, brake piston, solenoid bobbin, engine oil filter, ignition device case, torque control lever, safety belt parts, register blade, washer lever, wind regulator hand knob, wind regulator hand knob, knob Nosink, Light Reno, Sun Visor Bracket, Instrument Panel, Airbag Peripheral Parts, Door Pad, Pillar, Console Box, Various Motors Over housing, Norre one Furenore, fender, garnish, in C.
  • Various connectors such as Nolesitch substrate, coil for fuel related electromagnetic valve, wire harness connector, SMJ connector, PCB connector, door grommet connector, fuse connector, horn terminal, electrical component insulation plate, step motor rotor, lamp socket, Lamp refractor, lamp housing, brake piston, solenoid bobbin, engine oil filter, ignition device
  • thermoplastic resin composition of the present invention is suitable for film and sheet applications.
  • Films and sheets for packaging, films and sheets for automobile parts, films and sheets for industrial use, agricultural films and sheets for civil engineering, and medical use It is suitably used for films and sheets, films and sheets for electrical and electronic equipment members, films and sheets for household goods.
  • thermoplastic resin composition of the present invention is also suitable as a fiber, and can be used in any form such as a long fiber, a short fiber, a monofilament, a crimped yarn, and the like.
  • General materials such as T-shirts, clothing, nets, ropes, spunbonds, polishing brushes, industrial brushes, filters, papermaking nets, etc.'Industrial materials 'for industrial materials, blankets, duvet side, curtains, etc.' It is suitably used for shock absorbers for interior goods, toothbrushes, body brushes, eyeglass frames, umbrellas, covers, shopping bags, household goods such as furoshiki.
  • thermoplastic resin composition of the present invention is suitably used for impact absorbing members such as automobile interior and exterior parts and automobile outer plates.
  • thermoplastic resin composition of the present invention is also suitable as a building material. It is suitably used for impact absorbing members such as roots, ceiling-related parts, window-related parts, heat-insulating-related parts, flooring-related parts, seismic isolation / vibration-related parts, and lifeline-related parts.
  • thermoplastic resin composition of the present invention is also suitable as sports equipment, golf-related equipment such as golf clubs, shafts, grips, and golf balls, and sports racquet-related equipment such as tennis rackets, badminton rackets, and guts thereof.
  • golf-related equipment such as golf clubs, shafts, grips, and golf balls
  • sports racquet-related equipment such as tennis rackets, badminton rackets, and guts thereof.
  • PA6 resin Polyamide 6 resin
  • CM1017 Toray Industries, Inc.
  • GMA modified PE copolymer Glycidyl metatalylate modified polyethylene copolymer (hereinafter abbreviated as GMA modified PE copolymer), “Bond First BF — 7L” (manufactured by Sumitomo Chemical Co., Ltd.)
  • A-1 Polyamide 6 resin with a melting point of 225 ° C, a relative viscosity of 2. Olg / ml in 98% sulfuric acid at 2.75, and a moisture content of 500 ppm.
  • A-2) Polyamide 6 resin with a melting point of 225 ° C, 98% sulfuric acid in 0. Olg / ml, a relative viscosity of 2.75, and a moisture content of 7000 ppm.
  • A-3) Polyamide 66 resin having a melting point of 265 ° C, a relative viscosity of 2.75 Olg / ml in 98% sulfuric acid, 2.75, and a moisture content of 500 ppm.
  • A-4) Polyamide 610 resin having a melting point of 225 ° C., a relative viscosity of 2.70 Olg / ml in 98% sulfuric acid, 2.70, and a moisture content of 500 ppm.
  • A-5) Polyamide 11 resin having a melting point of 190 ° C, 98% sulfuric acid in 0. Olg / ml, a relative viscosity of 2.55, and a moisture content of 500 ⁇ pm.
  • A-6 Polybutylene with a melting point of 225 ° C, an intrinsic viscosity of 0.70, a carboxyl end group content of 35 eqZt, and a moisture content of lOOppm measured in a 0.5% solution in o-clonal phenol.
  • B—1 Glycidyl metatalylate-modified polyethylene copolymer with a moisture content of 200 ppm (hereinafter abbreviated as GMA-modified PE copolymer) “Bond First BF-7L” (manufactured by Sumitomo Chemical Co., Ltd.)
  • C-1 Unmodified polyethylene copolymer with a moisture content of 200 ppm (hereinafter abbreviated as unmodified PE copolymer) “L ⁇ TRYL29MA03” (manufactured by Arkema)
  • NP7-1F injection molding machine manufactured by Nissei Plastic Industry Co., Ltd. under the conditions of molding temperature: 260 ° C, mold temperature: 80 ° C, injection pressure: lower limit pressure + 5kgf / cm2.
  • Mold test pieces length 75 mm X end width 12.5 mm X thickness 2 mm
  • JIS-1 strip test pieces width 10 mm X length 80 mm X thickness 4 mm
  • FcJIS _ 5A dumbbell-shaped specimens obtained by injection molding are cut into: ⁇ 2 mm square, dyed with ruthenium tetroxide, and then an ultrathin section with a thickness of 80 nm is _ 196 with an ultramicrotome manufactured by Leica. Cut out at a temperature of ° C (liquid nitrogen temperature). A few drops of gold particles with a diameter of about 10 nm dispersed in ethanol were dropped on the surface of the ultrathin slice to uniformly disperse the gold particles on the sample surface.
  • the ratio of the area of the connected structure Cs that occupies the cross section of the dispersed phase Dp with an average particle diameter of lOOOnm or less was calculated using the Scion Corporation image analysis software “Scion Image”. Calculated.
  • the IS-5A dumbbell-shaped specimen obtained by injection molding is subjected to an autograph AGlOOkNG (manufactured by Shimadzu Corporation), the distance between chucks is 50 mm, and a tensile test is performed at a speed of 100 mm / min, 500 mm / min, and 1000 mm / min.
  • the tensile modulus at each speed and the tensile elongation at break were evaluated.
  • the tensile elongation at break was determined based on the distance between chucks of 50 mm.
  • the IS-5A dumbbell-type specimen obtained by injection molding is used in a servo pulser EHF-U2H-20L type high-speed impact tester manufactured by Shimadzu Corporation.
  • the distance between chucks is 50 mm, and 3.6 km / h (60000 mm / High-speed tensile tests were conducted at 20 ° C. and 20 ° C. at a rate of min), and yield strength, tensile rupture elongation, and impact absorption energy were evaluated.
  • the tensile elongation at break was determined based on the distance between chucks of 50 mm.
  • the IS-1 strip specimen obtained by injection molding was subjected to a Charpy impact tester 611 manufactured by Toyo Seiki Co., Ltd., according to IS0179. A Charpy impact test was conducted at C and 50% RH.
  • Samples prepared by injection molding using fcJIS No. 1 strip test specimens were subjected to HDT tester S 3— MH manufactured by Toyo Seiki Co., Ltd., and conditioned for 48 hours under conditions of 23 ° C and 50% RH. ISO 75-1 2 and 2, the load stagnation temperature (load 0.45 MPa) was measured.
  • the pellet of the thermoplastic resin composition of the present invention is filled in the center of a solid NMR sample tube and used in a solid NMR measurement apparatus (CMX-300 Infinity manufactured by Chemagnetics).
  • CMX-300 Infinity manufactured by Chemagnetics At room temperature, the observation nucleus is 13C and the observation frequency is 75.
  • the relaxation time T1C of carbon nuclei was measured by the Torchia method with 2 MHz and a no-less width of 4.5 ⁇ s.
  • the peak corresponding to the carbon of the carbonyl group was 174 ppm, and the peak corresponding to the carbon of the hydrocarbon group adjacent to the NH group was 42 ppm. After the measurement, a two-component analysis was performed.
  • the longer relaxation time is set to Tl C 1 and the relaxation time of 2 corresponding to the carbon of the hydrocarbon group adjacent to the NH group.
  • the longer relaxation time is Tl C2.
  • the IS-5A dumbbell-shaped specimen obtained by injection molding is dyed with ruthenium tetroxide, and then an ultrathin section is cut out and borrowed 35,000 with a transmission electron microscope (H-7100 transmission electron microscope manufactured by Hitachi, Ltd.). Enlarged, observed morphology, and identified continuous phase components. Furthermore, the magnification was increased 50000 times to confirm the presence or absence of fine particles in the dispersion, and the ratio of the area occupied by these fine particles in the dispersed phase using the image analysis software “Scion Image” manufactured by Scion Corporation. Was calculated.
  • Measurement was performed according to IS015512 using a CA-100 Moisturemeter manufactured by Mitsubishi Chemical Corporation. A specific measurement method is described below. About 10 g of sample is weighed into a clear conical stoppered Erlenmeyer flask and add 20 ml of methanol with a dispenser. Attach a reflux condenser with a silica gel tube to the flask and boil at 150 ° C for 3 hours. After that, it was left to cool at room temperature for 45 minutes, and 0.5 ml of the methanol extract was collected with a syringe. Pour into a CA-100 Moisturemeter (Ryochemical Co., Ltd.) and read the display (a). Perform the same experiment using methanol alone as a reference, read the display (b), and calculate the moisture content using the following formula.
  • V2 Amount of methanol used for extraction (20 ml)
  • a cylindrical molded product with an outermost diameter of 50 mm, a thickness of 2 mm, and a height of 150 mm was produced as follows. First, a thermoplastic resin composition vacuum-dried at 80 ° C for 12 hours or more is
  • the coloring agent was added together with the raw materials, and the time when the coloring of the extrudate was maximized was measured as the residence time.
  • the residence time is shown in Table 1.
  • the ratio of the total length of the above-mentioned needing zone to the total length of the screw (%) is calculated by (total length of the needing zone) ⁇ (total length of the screw) X 100 Was 16%.
  • the maximum resin pressure Pkmax (MPa) in the knee zones is used to determine the resin pressure installed in the multiple flight zones. Table 1 shows the values obtained by subtracting the minimum resin pressure Pfmin (MPa) in the full flight zone from the resin pressure indicated by the meter.
  • FIG. 1 shows a three-dimensional transmission image (50000 times, 250 nm ⁇ 250 nm ⁇ 75 nm) at an inclination angle of 0 ° in Example 1 of the present invention. In this measurement, the sample was tilted and the transmission image was taken in steps of 1 ° in the range of 1 ° to 60 °, and 12 :! tilted transmission images were obtained.
  • Table 2 shows the results of confirming the presence or absence of the formation of the three-dimensional connected structure Cs containing the continuous phase component in the dispersed phase by rotating the three-dimensional transmission image. Furthermore, a schematic diagram (overall view) of a three-dimensional transmission image of the present invention at an inclination angle of 0 ° is shown in FIG. 2, and a schematic diagram of a three-dimensional transmission image of the present invention at an inclination angle of 0 ° (dispersed phase enlarged view) is shown in FIG. Show.
  • melt kneading was performed in the same manner as in Examples 1 and 2 except that the reverse screw zone was not provided, and a thermoplastic resin composition was obtained. Table 1 shows the kneading conditions, and Table 2 and Table 3 show the evaluation results of the obtained thermoplastic resin composition.
  • thermoplastic resin composition Except for using the unmodified polyethylene copolymer, melt-kneading was carried out in the same manner as in Examples 1 and 2 to obtain a thermoplastic resin composition.
  • Table 1 shows the kneading conditions
  • Table 2 and Table 3 show the evaluation results of the obtained thermoplastic resin composition.
  • Table 1 shows the kneading conditions
  • Table 2 and Table 3 show the evaluation results of the obtained thermoplastic resin composition.
  • thermoplastic resin composition was obtained by melt-kneading in the same manner as in Example 3 except that the screw configuration was changed to B.
  • Table 1 shows the kneading conditions
  • Table 2 and Table 3 show the evaluation results of the obtained thermoplastic resin composition.
  • Table 1 shows the kneading conditions
  • Table 2 and Table 3 show the evaluation results of the obtained thermoplastic resin composition.
  • thermoplastic resin composition of the present invention a three-dimensional connected structure Cs containing a continuous phase component is formed in the dispersed phase, and the average particle size is lOOOnm or less. Since the proportion of the area of the connected structure Cs in the cross section of the dispersed phase Dp is large, the tensile modulus decreases markedly and the tensile elongation at break increases greatly as the tensile speed is increased in the tensile test. . Furthermore, in the high-speed tensile test, the impact absorption energy at 20 ° C and 20 ° C is large, and the balance between impact resistance and heat resistance is excellent.
  • the conventional thermoplastic resin composition has a three-dimensional connected structure Cs containing a continuous phase component in the dispersed phase, but the average particle size is less than lOOOnm. Since the proportion of the area of the connected structure Cs in the cross section of the dispersed phase Dp is small, the tensile modulus decreases and the tensile elongation at break increases as the tensile speed is increased in the tensile test. Is not big.
  • the impact absorption energy in the high-speed tensile test is small, and the balance between impact resistance and heat resistance is small, and ta ⁇ ⁇ is small. Therefore, the vibration energy absorption performance is also inferior.
  • thermoplastic resin composition including the resin having a reactive functional group
  • a three-dimensional connected structure including a continuous phase component is formed in the dispersed phase, and the dispersion is further performed.
  • the ratio of the area of the connecting structure in the phase cross section By controlling the ratio of the area of the connecting structure in the phase cross section, the balance of conflicting properties such as impact resistance and heat resistance is excellent, and unique viscoelastic behavior not seen in conventional polymer materials is achieved. It can be seen that the impact energy absorption performance and vibration energy absorption performance at the time of high-speed deformation are remarkably excellent.
  • thermoplastic resin (A1) GM as resin ( ⁇ ) with reactive functional group
  • a coloring agent was added together with the raw materials, and the time when the coloration to the extrudate was maximized was measured as the residence time.
  • the residence time is shown in Table 4.
  • the length of each knee zone is LkZDO.
  • Lk / D0 1.8, 1.8, 2.3, 2.3, 2.3, 3.0.
  • the ratio of the total length of the above-mentioned needing zone to the total length of the screw is calculated by (total length of the needing zone) ⁇ (total length of the screw) X 100, the ratio of the total length of the needing zone was 16%.
  • the maximum resin pressure Pkmax (MPa) in the knee zones is used to determine the resin pressure installed in multiple full flight zones. Table 1 shows the values obtained by subtracting the resin pressure Pfmin (MPa) of the full flight zone, which is the minimum, from the resin pressure indicated by the meter.
  • the discharged strand-shaped molten resin was cooled by passing through a cooling bath and cut while being taken up by a pelletizer, thereby obtaining a pellet-shaped sampnore of the thermoplastic resin composition.
  • test specimens for evaluation were prepared by injection molding, and various characteristics were evaluated. The results are shown in Table 5.
  • melt kneading was performed in the same manner as in Examples 4 and 5 except that the reverse screw zone was not provided to obtain a thermoplastic resin composition. Table 4 shows the kneading conditions, and the obtained thermoplastic resin composition Table 5 and Table 6 show the evaluation results.
  • thermoplastic resin composition Except for using the unmodified polyethylene copolymer, melt-kneading was carried out in the same manner as in Examples 4 and 5 to obtain a thermoplastic resin composition.
  • Table 4 shows the kneading conditions
  • Table 5 and Table 6 show the evaluation results of the obtained thermoplastic resin composition.
  • Table 4 shows the kneading conditions
  • Table 5 and Table 6 show the evaluation results of the obtained thermoplastic resin composition.
  • thermoplastic resin composition was obtained by melt-kneading in the same manner as in Example 6 except that the screw configuration was changed to B.
  • Table 4 shows the kneading conditions
  • Table 5 and Table 6 show the evaluation results of the obtained thermoplastic resin composition.
  • Table 4 shows the kneading conditions
  • Table 5 and Table 6 show the evaluation results of the obtained thermoplastic resin composition.
  • the thermoplastic resin composition of the present invention has the longer relaxation time T1 of the two relaxation times in the two-component analysis of the relaxation time corresponding to carbon of the carbonyl group.
  • the longer relaxation time T1C2 is short, so the tensile speed is increased in the tensile test.
  • the tensile modulus decreases significantly, and the tensile elongation at break increases greatly.
  • the impact absorption energy at 20 ° C and 20 ° C is large, and the balance between impact resistance and heat resistance is excellent.
  • the conventional thermoplastic resin composition has T1C1 and T1C2 much larger than those of Examples 4 to 6, so in the tensile test, the tensile speed is increased. The tensile modulus increases and the tensile elongation at break also decreases. Furthermore, compared with the thermoplastic resin composition of the present invention in Example 4, the impact absorption energy in the high-speed tensile test is greatly reduced, the balance between impact resistance and heat resistance is greatly inferior, and tan ⁇ is further reduced. Therefore, the vibration energy absorption performance is greatly inferior.
  • thermoplastic resin composition including the polyamide resin
  • the balance of conflicting characteristics such as impact resistance and heat resistance is excellent. It can be seen that the unique viscoelastic behavior not seen in conventional polymer materials is remarkably exhibited, and the impact energy absorption performance and vibration energy absorption performance during high-speed deformation are remarkably excellent.
  • the screw diameter is 37mm
  • co-rotating fully intertwined twin screw extruder Toshiba Machine Co., Ltd., TEM-37BS-26 / 2V
  • melt kneading with a cylinder temperature of 260 ° C
  • a coloring agent was added together with the raw materials, and the time when the coloration to the extrudate was maximized was measured as the residence time.
  • the residence time is shown in Table 7.
  • the length of each knee zone is LkZDO.
  • Lk / D0 1.8, 1.8, 2.3, 2.3, 2.3, 3.0.
  • the ratio of the total length of the above-mentioned needing zone to the total length of the screw (%) is calculated by (total length of the needing zone) ⁇ (total length of the screw) X 100 Was 16%.
  • the maximum resin pressure Pkmax (MPa) in the knee zones is used to determine the resin pressure installed in the multiple flight zones. Table 1 shows the values obtained by subtracting the minimum resin pressure Pfmin (MPa) in the full flight zone from the resin pressure indicated by the meter.
  • Table 7 shows the highest resin temperature as measured by resin thermometers installed evenly at multiple locations in the extruder.
  • the discharged strand-shaped molten resin was cooled by passing through a cooling bath, and was cut while being taken out by a pelletizer to obtain a pellet-shaped sample of the thermoplastic resin composition.
  • the sample was vacuum-dried at 80 ° C. for 12 hours or longer, and then subjected to the above-described injection molding and extrusion molding for various evaluations. Table 7 shows the kneading conditions and various evaluation results.
  • Fig. 5 shows a photograph showing the state of the free load impact test of Example 7 of the present invention under a large load and high speed. According to this figure, it can be seen that the molded product itself does not crack more than 5 cm even in the free load impact test at high load and high speed.
  • the volatile components were removed with IMPa.
  • melt kneading was carried out in the same manner as in Example 7 to obtain a thermoplastic resin composition. Table 7 shows the kneading conditions and various evaluation results.
  • the ratio of the total length of the above-mentioned needing zone to the total length of the screw is calculated by (total length of the needing zone) ⁇ (total length of the screw) X 100, the ratio of the total length of the needing zone is 15%.
  • thermoplastic resin composition was obtained by melt-kneading in the same manner as in Example 7 except that the gauge pressure in the vent vacuum zone was 0.05 MPa. Table 7 shows the kneading conditions and various evaluation results.
  • thermoplastic resin composition was obtained by melt-kneading in the same manner as in Example 7 except that nylon 6 resin (A-2) having a water content of 7000 ppm was used as the thermoplastic resin (A).
  • Table 7 shows the kneading conditions and various evaluation results.
  • thermoplastic resin composition was obtained by performing melt kneading in the same manner as in Example 7 except that the temperature was set to 330 ° C. and melt kneading was performed. Table 7 shows the kneading conditions and various evaluation results.
  • Example 7 Melt-kneading was carried out in the same manner as in Example 7 except that maleic anhydride-modified ethylene 1-1-butene copolymer (B-2) was used as the resin (B) having a reactive functional group, and thermoplasticity was obtained. A resin composition was obtained. Table 7 shows the kneading conditions and various evaluation results.
  • thermoplastic resin composition was obtained by melt-kneading in the same manner as in Example 9 except that the screw configuration was B and the gauge pressure in the vent vacuum zone was 0.05 MPa. Table 7 shows the kneading conditions and various evaluation results.
  • a thermoplastic resin composition was obtained by carrying out melt kneading in the same manner as in Comparative Example 11 except that the volatile components were removed in step 1 and discharging was performed at an extrusion rate of 20 kg / h.
  • Table 7 shows the kneading conditions and various evaluation results. If the ratio of the total length of the above knee zone to the total length of the screw is calculated by (total length of the knee zone) ⁇ (total length of the screw) X 100, the ratio of the total length of the knee zone
  • thermoplastic resin composition was obtained by carrying out melt kneading in the same manner as in Example 10 except that the unmodified PE copolymer (C 1) was used instead of the resin (B) having a reactive functional group.
  • Table 7 shows the kneading conditions and various evaluation results.
  • Table 7 shows the results of various evaluations of thermoplastic polyurethane (D-1), which is a typical shock absorbing material.
  • the molded product itself which has a maximum point load of less than 20 kilonewtons and is low, is large because cracks of 5 cm or more do not occur. It is excellent for use in impact absorbing members that do not break.
  • the dispersed phase includes a three-dimensional component containing a continuous phase component.
  • the connected structure Cs is formed, and the proportion of the area of the connected structure Cs in the cross section of the dispersed phase Dp having an average particle diameter of lOOOnm or less increases. Also in tensile tests using test specimens, the tensile modulus decreases significantly as the tensile speed increases, and the tensile elongation at break increases significantly.
  • thermoplastic polyurethane which is a typical shock absorbing material shown in Comparative Example 17, the maximum point load applied to the object in the large load, high speed free drop impact test described above is less than 20 kilonewtons.
  • the molded product itself does not crack more than 5 cm, but it can be seen that the range of use is likely to be limited because the deflection temperature under load is as low as less than 20 ° C.
  • Example 14 Melt-kneading was carried out in the same manner as in Example 7 except that nylon 66 resin (A-3) having a moisture content of 500 ppm was used as the thermoplastic resin (A), and the cylinder temperature was set to 280 ° C. And a thermoplastic resin composition was obtained. Table 8 shows the kneading conditions and various evaluation results.
  • thermoplastic resin composition was obtained by melt-kneading in the same manner as in Example 7 except that nylon 610 resin (A-4) having a moisture content of 500 ppm was used as the thermoplastic resin (A).
  • Table 8 shows the kneading conditions and various evaluation results.
  • Example 7 Melt-kneading was carried out in the same manner as in Example 7 except that nylon 11 resin (A-5) having a moisture content of 500 ppm was used as the thermoplastic resin (A) and the cylinder temperature was set at 220 ° C. And a thermoplastic resin composition was obtained.
  • Table 8 shows the kneading conditions and various evaluation results.
  • thermoplastic resin composition was obtained by melt-kneading in the same manner as in Example 7 except that the polybutylene terephthalate resin (A-6) having a moisture content of lOOppm was used as the thermoplastic resin (A).
  • Table 8 shows the kneading conditions and various evaluation results.
  • thermoplastic resin composition was obtained by performing melt-kneading in the same manner as in Comparative Example 11 except that nylon 610 resin (A-4) having a moisture content of 500 ppm was used as the thermoplastic resin (A).
  • Table 8 shows the kneading conditions and various evaluation results.
  • thermoplastic resin (A) Use nylon 11 resin (A-5) with a moisture content of 500 ppm as the thermoplastic resin (A).
  • a thermoplastic resin composition was obtained by carrying out melt-kneading in the same manner as in Comparative Example 11, except that the kneading was carried out with the kneader temperature set at 220 ° C. Table 8 shows the kneading conditions and various evaluation results.
  • thermoplastic resin composition was obtained by melt-kneading in the same manner as in Comparative Example 11 except that the polybutylene terephthalate resin (A-6) having a water content of lOOppm was used as the thermoplastic resin (A).
  • Table 8 shows the kneading conditions and various evaluation results.
  • thermoplastic resin (A) Even when the thermoplastic resin (A) is changed, by controlling the resin pressure, vent vacuum pressure, moisture content, and resin temperature during melt-kneading, the melt-kneading can be performed. As a result, the proportion of the area of the connected structure Cs in the cross section of the dispersed phase Dp having an average particle diameter of lOOOnm or less can be increased. In the large load and high speed free drop impact test described above, the molded product itself, which has a maximum point load of less than 20 km2 Yuton, has a crack of 5 cm or more. It is possible to obtain a thermoplastic resin composition excellent in use for impact absorbing members that does not occur.
  • the ratio LZDO of the screw length L to the screw diameter DO is 50 or more.
  • the structure in the dispersed phase can be controlled to a high degree and heat resistance is sufficient at room temperature.
  • a thermoplastic resin composition that is excellent for impact-absorbing members that do not cause large damage due to the low maximum load applied to the object even when subjected to impacts at high loads and high speeds. I can see that Industrial applicability
  • the resin composition of the present invention can be molded into molded products, films, fibers, etc., and these molded products can be used in electrical / electronic fields, automotive fields, building materials, various films, sheets, clothing, sports-related products. Is available as

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 この発明は、熱可塑性樹脂(A)および反応性官能基を有する樹脂(B)を含む熱可塑性樹脂組成物において、透過型電子線トモグラフィー法により観察された該樹脂組成物のモルフォロジーで、特定構造を有し、またポリアミド樹脂を包含する熱可塑性樹脂組成物の固体NMR測定による炭素核の緩和時間T1Cにおいて、特定範囲とする熱可塑性樹脂組成物であり、この組成物は衝撃性と耐熱性等、相反する特性のバランスに優れるとともに、従来の高分子材料には見られなかった特異な粘弾性挙動を顕著に発現し、かつ高速変形時における衝撃エネルギー吸収性能および振動エネルギー吸収性能が顕著に優れる。

Description

明 細 書
熱可塑性樹脂組成物、その製造方法および成形品
技術分野
[0001] 本発明は、反応性官能基を有する樹脂を包含する熱可塑性樹脂組成物において 、分散相中に連続相成分を含む 3次元的な連結構造を形成し、さらにその分散相断 面に占める連結構造の面積の割合を制御することにより、またポリアミド樹脂を包含 する熱可塑性樹脂組成物において、ポリアミド樹脂の緩和時間を制御することにより 、耐衝撃性と耐熱性等、相反する特性のバランスに優れるとともに、従来の高分子材 料には見られなかった特異な粘弾性挙動を顕著に発現し、かつ高速変形時におけ る衝撃エネルギー吸収性能および振動エネルギー吸収性能が顕著に優れる熱可塑 性樹脂組成物およびその製造方法に関するものである。更に詳しくは、常温におい て十分な耐熱性を有し、かつ大荷重、高速度の衝撃を受けた際にも、対象物に与え る最大荷重が低く破壊を起こさずに大きなエネルギーを吸収する衝撃吸収部材用熱 可塑性樹脂組成物に関するものである。
背景技術
[0002] 近年、高分子材料の性能 *機能に関する要求が日増しに高まっており、特に相反 する特性の高度なバランスが求められている。例えば、 自動車用材料に要求される 耐衝撃性と剛性の両立、軽量化と強度の両立、電気'電子機器用材料の小型化に 伴う耐衝撃性と耐熱性の両立など、枚挙に暇がない。また、高分子材料を製品として 実用化する場合、近年では、 自動車部品用途やスポーツ用品用途、建材用途ゃ電 気-電子機器部品用途等への展開が活発化しているが、それら用途の中には、衝撃 吸収能力や振動吸収能力等のエネルギー吸収能力が必要とされる用途が増えてき ている。
[0003] 例えば、自動車部品用途では、人体を衝突時の衝撃から保護するため、内装材と 車体パネルとの間に衝撃エネルギー吸収部材と呼ばれるものが構造 ·材料の両面で 提案されているが、こと材料面に関しては、耐熱性や剛性を損なうことなぐいざ衝突 が発生した場合には脆性破壊せず、低い応力で自ずから変形する柔軟性を有する ことが必要である。しかも、近年では、これら要求特性について、ますます高度化'多 様化しており、単独の高分子で対応することはほとんど困難な状況である。そこで近 年、複数のポリマーによるポリマーァロイの手法が高分子材料開発における主流とな つている。特に現在では、モルフォロジ一の高度な制御により、飛躍的な特性の向上 を達成しようとレ、う試みが活発化してレ、る。
[0004] 例えば、ポリプロピレン樹脂からなる連続相中に、ゴム成分からなる分散相を形成し 、さらに変性ポリプロピレン樹脂と、該変性ポリプロピレン樹脂と反応可能な化合物を 上記分散相中に存在させることにより、耐衝撃性と曲げ弾性率を両立させる方法が 開示されている(特許文献 1参照)。また、(メタ)アクリル系重合体成分の一部を複合 包括したミクロ相分離構造を有しており、少なくとも一部の(メタ)アクリル系重合体成 分と、少なくとも一部の変性ウレタンエラストマ一成分とが化学結合しているモルフォ 口ジーを形成させることにより、耐候性、透明性、耐擦傷性、剛性を犠牲にすることな ぐ耐衝撃性を改良する方法が開示されている (特許文献 2参照)。また、ポリプロピレ ン系樹脂からなる連続相およびゴム状重合体からなる分散相中に、水素添加ブロッ ク共重合体をそれぞれ分散させることにより、耐衝撃性、脆化温度、剛性、表面硬度 、弓 [張破断伸度をバランス良く向上させる方法が開示されてレ、る (特許文献 3参照)。
[0005] また、高分子材料の中でも特にエンジニアリングプラスチックは、優れた耐熱性、機 械特性、耐衝撃性を有することから、構造材料や機能材料など各種の工業分野にお いて広く使用されている。
[0006] ポリアミド樹脂等の代表的なエンジニアリングプラスチックについても、単独で用い るだけでは、使用可能な用途が限られることから、他の樹脂とのァロイによる改良、特 に近年ではモルフォロジ一の制御による改良が多く行われている。
[0007] モルフォロジ一の制御による特性の向上の例としては、ポリアミド樹脂からなる連続 相と、該連続相に分散された、 ひ, /3—不飽和カルボン酸で変性されたポリオレフィ ンからなる粒子状の分散相とからなり、該分散相の数平均粒子径と、その分布を制御 することにより、衝撃強度と表面剥離強度を向上させる方法が開示されている (特許 文献 4参照)。
また、ポリアミド樹脂からなる連続相中に、変性ポリオレフインおよび未変性ポリオレフ インをコア シェル型粒子構造の分散相として存在させることにより、低吸水性、寸法 安定性、剛性、靭性および成形性をバランス良く向上させる方法が開示されている( 特許文献 5)。
[0008] また、熱可塑性樹脂と反応性官能基を有する樹脂を含む樹脂組成物において、一 方が連続相、もう一方が分散相を形成するか、あるいはともに連続相(両連続相)を 形成し、その連続相および分散相あるいは両連続相中に 300nm以下の微粒子が存 在することにより、剛性、耐衝撃性、変形後の外観に優れた樹脂組成物が開示され ている(特許文献 6)。
[0009] また、近年、高分子の不均一構造を 3次元的に実空間直接観察することで、材料の 評価 ·解析を行う新しレ、実験手法(3次元イメージングまたは 3次元顕微鏡法)が注目 を浴びている。高分子材料の 3次元観察に有効な手法として、共焦点レーザースキヤ ン顕微鏡、 X線 CT、 3次元 NMR顕微鏡、透過型電子線トモグラフィー法 (TEMT) などがある。中でも、昨今のナノテクノロジーブームもあり、ナノメータースケールの分 解能を有する TEMTが注目を集めている。例えば、 Macromolecules, 36、 6962 — 6966 (2003)の文献には、 TEMTを用いたブロック共重合体の 3次元観察'解析 が開示されている。
[0010] また衝撃吸収材料として代表的なものにポリウレタンを代表とする熱可塑性エラスト マーがあるが、耐熱性が低いため使用範囲が制限されることが多ぐ近年はポリマー ァロイによる耐熱性と耐衝撃性に優れる材料の開発がなされている。特許文献 7、 8 にはポリアミドとアイオノマーからなる耐熱性、耐衝撃性に優れる熱可塑性組成物が 開示されている。しかし該材料は、大荷重かつ高速度の衝撃を受けると、対象物に与 える最大荷重が高くまた材料自身が破壊してしまうため、より衝撃吸収性に優れる材 料が望まれてレ、るのが現状である。
[0011] 特許文献 6には、熱可塑性樹脂と反応性官能基を有する樹脂を含む樹脂組成物 において、一方が連続相、もう一方が分散相を形成するか、あるいはともに連続相( 両連続相)を形成し、その連続相および分散相あるいは両連続相中に 300nm以下 の微粒子が存在することにより、剛性、耐衝撃性、変形後の外観に優れた樹脂組成 物が開示されている。また、特許文献 9には引張速度を速くするにつれて弾性率が 低下し柔軟になるという樹脂組成物および衝撃吸収部材が開示されている。しかしい ずれも分散相中での高度な構造制御はなされておらず、大荷重かつ高速度の衝撃 に対する吸収性は充分ではなかった。
特許文献 1 :特開平 08— 183887号公報
特許文献 2:特開 2000— 319475号公報
特許文献 3:特開 2001— 106844号公報
特許文献 4 :特開平 09— 31325号公報
特許文献 5 :特開平 07— 166041号公報
特許文献 6 :特開 2005— 187809号公報
特許文献 7:米国特許 3845163号公報
特許文献 8 :特開昭 51— 151797号公報
特許文献 9 :特開 2006— 89701号公報
発明の開示
発明が解決しょうとする課題
し力、しながら、特許文献 1および 2に記載の方法では、単に連続相中の分散相(第 一分散相)中に第二の分散相が存在しているだけであり、高度な構造制御がなされ ておらず、機械特性向上の効果は不十分であった。また、特許文献 3に記載の方法 では、第二の分散相が、(1)連続相と第一分散相の界面に存在する、および Zまた は(2)第一分散相中に深く入り込むか、湖状 (サラミ状)に存在するだけであり、特に 高度な構造制御がなされておらず、機械特性向上効果は不十分であった。また、特 許文献 4に記載の方法では、基本的な相構造は単純な海一島構造であり、耐衝撃 性が向上しても、その他の特性が低下するという問題があった。また、特許文献 5記 載の方法では、連続相中の分散相が単にコア シェル型構造であるだけで、機械特 性のバランスは充分ではなかった。また、特許文献 6記載の方法では、単に連続相 /分散相中に微粒子が存在するだけであり、機械特性のバランスは充分ではなかつ た。さらに、特許文献:!〜 5記載の樹脂組成物は、引張試験において、高速で引っ張 るほど、弾性率が高くなる、すなわち硬くもろくなる、一般的な高分子材料に見られる 挙動を示す。一方、特許文献 6記載の樹脂組成物は、引張試験において、高速で引 つ張るほど、弾性率が低下する、すなわち軟ら力べなるという特異な粘弾性挙動を示 すものの、分散相中での高度な構造制御がなされていないため、その特異な粘弾性 挙動の発現は充分効果的ではなかった。
[0013] また、これまで TEMTの活用例として、ブロック共重合体のミクロ相分離構造等の 3 次元観察 ·解析はなされているものの、熱可塑性樹脂組成物において、分散相中に 連続相成分を含む 3次元的な連結構造を確認した例は、これまで無かった。
[0014] 本発明は、反応性官能基を有する樹脂を包含する熱可塑性樹脂組成物において 、分散相中に連続相成分を含む 3次元的な連結構造を形成し、さらにその分散相断 面に占める連結構造の面積の割合を制御することにより、またポリアミド樹脂を包含 する熱可塑性樹脂組成物において、ポリアミド樹脂の緩和時間を制御することにより 、耐衝撃性と耐熱性等、相反する特性のバランスに優れるとともに、従来の高分子材 料には見られなかった特異な粘弾性挙動を顕著に発現し、かつ高速変形時におけ る衝撃エネルギー吸収性能および振動エネルギー吸収性能が顕著に優れる熱可塑 性樹脂組成物およびその製造方法を提供すること、更に詳しくは、常温において十 分な耐熱性を有し、かつ大荷重、高速度の衝撃を受けた際にも、対象物に与える最 大荷重が低く破壊を起こさずに大きなエネルギーを吸収する衝撃吸収部材用熱可 塑性樹脂組成物を提供することを課題とする。
課題を解決するための手段
[0015] 本発明者らは、上記課題を解決すべく鋭意検討した結果、反応性官能基を有する 化合物を包含し、かつ分散相における構造を高度に制御した熱可塑性樹脂組成物 、若しくはポリアミド樹脂を包含する熱可塑性樹脂組成物において、ポリアミド樹脂の 緩和時間を制御することにより、耐衝撃性と耐熱性等、相反する特性のバランスに優 れるとともに、従来の高分子材料には見られなかった特異な粘弾性挙動を顕著に発 現し、かつ高速変形時における衝撃エネルギー吸収性能および振動エネルギー吸 収性能が顕著に優れることを見出し、本発明を完成させるに至った。
[0016] すなわち本発明は、
(1)熱可塑性樹脂 (A)および反応性官能基を有する樹脂 (B)を含む熱可塑性樹脂 組成物であって、透過型電子線トモグラフィー法により観察された該樹脂組成物のモ ルフォロジ一において、(A)または(B)の一方が連続相、もう一方が分散相を形成し 、かつ前記分散相中に、前記連続相成分を含む 3次元的な連結構造 Csが形成され 、かつ前記分散相のうち、平均粒子径が lOOOnm以下の分散相 Dpの断面に占める 前記連結構造 Csの面積の割合が、 10%以上であることを特徴とする熱可塑性樹脂 組成物、
(2)前記熱可塑性樹脂 (A)が、ポリアミド樹脂、ポリエステル樹脂、ポリフエ二レンスル フイド樹脂、ポリアセタール樹脂、スチレン系樹脂、ポリフエ二レンォキシド樹脂および ポリカーボネート樹脂から選ばれる少なくとも 1種であることを特徴とする(1)に記載の 熱可塑性樹脂組成物、
(3)前記熱可塑性樹脂 (A)がポリアミド樹脂であることを特徴とする(1)に記載の熱 可塑性樹脂組成物、
(4)ポリアミド樹脂 (A1)および反応性官能基を有する樹脂 (B)を含む熱可塑性樹脂 組成物であり、固体 NMR測定による炭素核の緩和時間 T1Cにおいて、ポリアミド榭 脂 (A1)のカルボニル基の炭素に対応した緩和時間の 2成分解析における 2つの緩 和時間の内、長い方の緩和時間 T1C1が 65秒以下であり、かつポリアミド樹脂 (A1) の NH基に隣接した炭化水素基の炭素に対応した緩和時間の 2成分解析における 2 つの緩和時間の内、長い方の緩和時間 T1C2が 15秒以下であることを特徴とする熱 可塑性樹脂組成物、
(5)ポリアミド樹脂 (A1) 、ポリアミド 6であることを特徴とする(4)に記載の熱可塑性 樹脂組成物、
(6)反応性官能基を有する樹脂 (B)が、ゴム質重合体であることを特徴とする(1)カゝ ら(5)のいずれ力 4項に記載の熱可塑性樹脂組成物、
(7)反応性官能基を有する樹脂 (B)の反応性官能基が、アミノ基、カルボキシル基、 カルボキシノレ金属塩、エポキシ基、酸無水物基およびォキサゾリン基から選ばれる少 なくとも 1種であることを特徴とする(1)から (6)のいずれか 1項に記載の熱可塑性樹 脂組成物、
(8)樹脂組成物から射出成形により、 JIS— 5Aダンベル型試験片(長さ 75mm X端 部幅 12. 5mm X厚さ 2mm)の成形品を作製し、その成形品の引張試験において、 弓 [張速度 VI、 V2のときの引張弾性率を E (VI ) , E (V2)とすると、 VI < V2のとき、 E (VI ) > E (V2)となるような特性を有することを特徴とする(1 )〜(7)のいずれか 1 項記載の熱可塑性樹脂組成物、
(9)成形品の引張試験において、引張速度 VI、 V2のときの引張破断伸度を ε (VI )、 ε (V2)とすると、 V1 < V2のとき、 ε (VI )く ε (V2)であることを特徴とする(8) 記載の熱可塑性樹脂組成物、
( 10)樹脂組成物から射出成形により、 JIS— 1号短冊型試験片(幅 10mm X長さ 80 mm X厚さ 4mm)の成形品を作製し、その成形品の 0. 45MPaにおける荷重たわみ 温度が 50°C以上で、かつ最外直径 50mm、厚さ 2mm、高さ 150mmの円筒状成形 品において、質量 193kgの錘体を落下高さ 0. 5mから自由落下させた際、錘体にか 力、る最大点荷重が 20キロニュートン未満であり、 5cm以上の亀裂が発生しないことを 特徴とする(1 )〜(9)のいずれか 1項記載の熱可塑性樹脂組成物であり、また
( 1 1 )熱可塑性樹脂 (A)および反応性官能基を有する樹脂 (B)を、スクリュー長さしと スクリュー直径 DOの比 L/D0が 50以上である二軸押出機により溶融混練する際に 、前記二軸押出機のスクリューが複数箇所のフルフライトゾーンおよびニーデイングゾ ーンを有し、スクリュー中のニーデイングゾーンの樹脂圧力のうち最大の樹脂圧力を Pkmax (MPa)、スクリュー中のフルフライトゾーンの樹脂圧力のうち最小の樹脂圧力 を Pfmin (MPa)としたときに Pkmax≥Pfmin+ 0. 3となる条件で溶融混練すること を特徴とする(1 )に記載の熱可塑性樹脂組成物の製造方法、
( 12)前記二軸押出機に原料を供給してから押し出すまでの滞留時間を 1分から 30 分、押出量をスクリュー回転 lrpm当たり 0. 01kg/h以上の条件で溶融混練すること を特徴とする(1 1 )に記載の熱可塑性樹脂組成物の製造方法、
( 13)前記二軸押出機のスクリューが、同方向回転完全嚙み合い型であることを特徴 とする(1 1 )または(12)に記載の熱可塑性樹脂組成物の製造方法、
( 14)前記ニーデイングゾーンの合計長さが、前記スクリュー長さの 5〜50%であるこ とを特徴とする(1 1 )〜(13)のいずれかに記載の熱可塑性樹脂組成物の製造方法、
( 15)前記ニーデイングゾーンのそれぞれの長さ Lk力 Lk/D0 = 0. 2〜10を満た すことを特徴とする(1 1 )〜(: 14)のいずれかに記載の熱可塑性樹脂組成物の製造 方法、
(16)前記二軸押出機にベント真空ゾーンを設け、ベント真空ゾーンにおいてゲージ 圧力 0. 07MPa以下の圧力まで減圧して溶融混練して製造することを特徴とする( 11)〜(: 15)のいずれかに記載の熱可塑性樹脂組成物の製造方法、
(17)水分率 5000ppm未満の原料を使用して溶融混練して製造することを特徴とす る(11)〜(: 16)のいずれかに記載の熱可塑性樹脂組成物の製造方法、
(18)最高樹脂温度を 180°C〜330°Cに制御して溶融混練して製造することを特徴と する(11)〜(: 17)のいずれかに記載の熱可塑性樹脂組成物の製造方法であり、また
(19) (1)〜(: 10)のレ、ずれかに記載の熱可塑性樹脂組成物または(11)〜(: 18)のい ずれかに記載の製造方法で得られた熱可塑性樹脂組成物を成形した成形品、
(20)成形品が、フイノレム、シートおよび繊維から選ばれる少なくとも 1種である(19) の成形品、
(21)成形品が自動車用部品、建材、スポーツ用品および電気 ·電子部品から選ば れる少なくとも 1種である(19)または(20)記載の成形品、
(22)成形品が衝撃吸収部材部材であることを特徴とする(19)〜(21)のいずれか 1 項記載の成形品である。
発明の効果
本発明によれば、反応性官能基を有する樹脂を包含する熱可塑性樹脂組成物に おいて、分散相中に連続相成分を含む 3次元的な連結構造を形成し、さらにその分 散相断面に占める連結構造の面積の割合を制御することにより、またポリアミド樹脂 を包含する熱可塑性樹脂組成物にぉレ、て、ポリアミド樹脂の緩和時間を制御すること により、耐衝撃性と耐熱性等、相反する特性のバランスに優れるとともに、従来の高 分子材料には見られなかった特異な粘弾性挙動を顕著に発現し、かつ高速変形時 における衝撃エネルギー吸収性能および振動エネルギー吸収性能が顕著に優れる 熱可塑性樹脂組成物を提供することが可能となる。さらに詳しくは、常温において十 分な耐熱性を有し、かつ大荷重、高速度の衝撃を受けた際にも、対象物に与える最 大荷重が低く破壊を起こさずに大きなエネルギーを吸収する衝撃吸収部材用熱可 塑性樹脂組成物を提供することが可能となる。 図面の簡単な説明
[0018] [図 1]本発明の実施例 1の傾斜角 0° における 3次元透過画像(50000倍、 250nm
X 250nm X 75nm)を示す写真図である。
[図 2]本発明の傾斜角 0° における 3次元透過画像の模式図(全体図)である。
[図 3]本発明の傾斜角 0° における 3次元透過画像の模式図(分散相拡大図)である
[図 4]大荷重、高速度の自由落下衝撃試験に使用する円筒状成形品の形状を示す 説明図である。
[図 5]本発明の実施例 7の大荷重、高速度の自由落下衝撃試験の様子を示す写真 図である。
[図 6]本発明の比較例 16の大荷重、高速度の自由落下衝撃試験の様子を示す写真 図である。
符号の説明
[0019] 1 連続相
2 分散相
3 連結構造
4 連続相
5 分散相
6 連結構造
7 円筒状成形品の最外直径
8 円筒状成形品の厚さ
9 円筒状成形品の高さ
発明を実施するための最良の形態
[0020] 以下、本発明をさらに詳細に説明する。
[0021] 本発明の熱可塑性樹脂組成物は、熱可塑性樹脂 (A)および反応性官能基を有す る樹脂(B)からなる熱可塑性樹脂組成物である。
[0022] 本発明で用いる熱可塑性樹脂 (A)とは、加熱溶融により成形可能な樹脂であれば 特に制限されるものではないが、例えばポリアミド樹脂、ポリエステル樹脂、ポリフエ二 レンスルフイド樹脂、ポリアセタール樹脂、ポリフエ二レンォキシド樹脂、ポリカーボネ ート樹脂、ポリ乳酸樹脂、ポリスルホン樹脂、四フッ化ポリエチレン樹脂、ポリエーテル イミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリエー テルケトン樹脂、ポリチォエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリ エチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂や ABS樹脂等のスチレン系樹 脂、ゴム質重合体、ポリアルキレンオキサイド樹脂等から選ばれる少なくとも 1種の熱 可塑性樹脂を好ましく挙げることができる。
[0023] 上記に示した熱可塑性樹脂の中で好ましく用いられるのは、ポリアミド樹脂、ポリエ ステル樹脂、ポリフエ二レンスルフイド樹脂、ポリアセタール樹脂、スチレン系樹脂、ポ リフエ二レンォキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂であり、とりわけポリア ミド樹脂、ポリエステル樹脂、ポリフエ二レンォキシド樹脂は末端基の反応性が高いた め、最も好ましく用レ、られる。
[0024] 本発明において、ポリアミド樹脂は、アミド結合を有する高分子からなる樹脂のこと であり、アミノ酸、ラタタムあるいはジァミンとジカルボン酸を主たる原料とするものであ る。その原料の代表例としては、 6 アミノカプロン酸、 11—アミノウンデカン酸、 12 アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、 ε—力プロラタタム、 ω ラウ口ラタタムなどのラタタム、テトラメチレンジァミン、へキサメチレンジァミン、 2—メ チルペンタメチレンジァミン、ゥンデカメチレンジァミン、ドデカメチレンジァミン、 2, 2 , 4-/2, 4, 4 トリメチルへキサメチレンジァミン、 5 メチルノナメチレンジァミン、 メタキシレンジァミン、パラキシリレンジァミン、 1, 3—ビス(アミノメチル)シクロへキサ ン、 1 , 4—ビス(アミノメチル)シクロへキサン、 1 アミノー 3—アミノメチルー 3, 5, 5 —トリメチルシクロへキサン、ビス(4—アミノシクロへキシル)メタン、ビス(3—メチル一 4 アミノシクロへキシル)メタン、 2, 2 ビス(4 アミノシクロへキシル)プロパン、ビ ス(ァミノプロピル)ピぺラジン、アミノエチルピペラジンなどの脂肪族、脂環族、芳香 族のジァミン、およびアジピン酸、スペリン酸、ァゼライン酸、セバシン酸、ドデカン二 酸、テレフタル酸、イソフタル酸、 2_クロロテレフタル酸、 2 メチルテレフタル酸、 5 —メチルイソフタル酸、 5 _ナトリウムスルホイソフタル酸、へキサヒドロテレフタル酸、 へキサヒドロイソフタル酸などの脂肪族、脂環族、芳香族のジカルボン酸が挙げられ 、本発明においては、これらの原料力も誘導されるポリアミドホモポリマーまたはコポリ マーを各々単独または混合物の形で用いることができる。
[0025] 本発明において、特に有用なポリアミド樹脂の具体的な例としては、ポリ力プロアミド
(ポリアミド 6)、ポリへキサメチレンアジパミド(ポリアミド 66)、ポリゥンデカンアミド(ポリ アミド 11)、ポリドデカンアミド(ポリアミド 12)、ポリテトラメチレンアジパミド(ポリアミド 4 6)、ポリへキサメチレンセバカミド(ポリアミド 610)、ポリへキサメチレンドデカミド(ポリ アミド 612)、ポリへキサメチレンアジパミド /ポリへキサメチレンテレフタルアミドコポリ マー(ポリアミド 66/6T)、ポリへキサメチレンアジパミド Zポリへキサメチレンイソフタ ルアミドコポリマー(ポリアミド 66Z6I)、ポリへキサメチレンアジパミド /ポリへキサメチ レンテレフタルアミド/ポリへキサメチレンイソフタルアミドコポリマー(ポリアミド 66/6 T/6I)、ポリキシリレンアジパミド(ポリアミド XD6)およびこれらの混合物ないし共重 合体などが挙げられる。
[0026] とりわけ好ましいものとしては、ポリアミド 6、ポリアミド 66、ポリアミド 11、ポリアミド 12 、ポジアミド、610、ポジアミド、6/66 ポジマー、ポジアミド、6/12 ポジマーなどの ^を げること力 Sでき、更にこれらのポリアミド樹脂を成形性、耐熱性、靭性、表面性などの 必要特性に応じて混合物として用いることも実用上好適である力 これらの中でポリ アミド 6、ポリアミド 66、ポリアミド 11、ポリアミド 12力 S最も好ましレヽ。
[0027] これらポリアミド樹脂の重合度には特に制限がなぐ 1%の濃硫酸溶液中、 25°Cで 測定した相対粘度が、 1. 5〜5. 0の範囲、特に 2. 0〜4. 0の範囲のものが好ましい
[0028] また、本発明において、ポリエステル樹脂とは、主鎖にエステル結合を有する高分 子からなる熱可塑性樹脂のことであり、ジカルボン酸(あるいは、そのエステル形成性 誘導体)とジオール (あるいはそのエステル形成性誘導体)とを主成分とする縮合反 応により得られる重合体なレ、しは共重合体、あるいはこれらの混合物が好ましく挙げ られる。
[0029] 上記ジカルボン酸としてはテレフタル酸、イソフタル酸、フタル酸、 2, 6 _ナフタレン ジカルボン酸、 1, 5 _ナフタレンジカルボン酸、ビス(p—カルボキシフエニル)メタン、 アントラセンジカルボン酸、 4, 4 '—ジフエニルエーテルジカルボン酸、 5_ナトリウム スルホイソフタル酸などの芳香族ジカルボン酸、アジピン酸、セバシン酸、ァゼライン 酸、ドデカンジオン酸などの脂肪族ジカルボン酸、 1 , 3—シクロへキサンジカルボン 酸、 1 , 4ーシクロへキサンジカルボン酸などの脂環式ジカルボン酸およびこれらのェ ステル形成性誘導体などが挙げられる。またジオール成分としては炭素数 2〜20の 脂肪族グリコールすなわち、エチレングリコール、プロピレングリコール、 1 , 4_ブタン ジオール、ネオペンチルグリコール、 1 , 5 _ペンタンジオール、 1 , 6—へキサンジォ ール、デカメチレングリコール、シクロへキサンジメタノール、シクロへキサンジオール など、あるレヽは分子量 400〜6000の長鎖グリコーノレ、すなわちポリエチレングリコー ノレ、ポリ一 1, 3 _プロピレングリコール、ポリテトラメチレングリコールなどおよびこれら のエステル形成性誘導体などが挙げられる。
[0030] これらの重合体ないしは共重合体の好ましい例としては、ポリブチレンテレフタレー ト、ポリブチレン(テレフタレート Zイソフタレート)、ポリブチレン(テレフタレート Zアジ ペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/ デカンジカルボキシレート)、ポリブチレンナフタレート、ポリエチレンテレフタレート、 ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジぺ ート)、ポリエチレン(テレフタレート /5—ナトリウムスルホイソフタレート)、ポリブチレ ン(テレフタレート /5—ナトリウムスルホイソフタレート)、ポリエチレンナフタレ一ト、ポ リシクロへキサンジメチレンテレフタレートなどが挙げられ、ポリエステル組成物の成 形性からポリブチレンテレフタレート、ポリブチレン(テレフタレート/アジペート)、ポリ ブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレート、ポ リエチレンテレフタレート、ポリエチレン(テレフタレート/アジペート)、ポリエチレンナ フタレート、ポリシクロへキサンジメチレンテレフタレートなどが特に好ましぐポリブチ レンテレフタレート(ポリブチレンテレフタレート樹旨)が最も好ましレ、。
[0031] また、ポリブチレンテレフタレート樹脂は、 o—クロロフヱノール溶媒を用いて 25°Cで 測定した固有粘度が 0. 36-1. 60、特に 0. 52〜: 1. 25の範囲にあるものが好適で ある。また、固有粘度の異なるポリブチレンテレフタレート樹脂を併用しても良ぐ固有 粘度が 0. 36-1. 60の範囲にあることが好ましい。
[0032] 更に、ポリブチレンテレフタレート樹脂は、 m—タレゾール溶液をアルカリ溶液で電 位差滴定して求めた COOH末端基量が l〜50eq/t (ポリマー 1トン当りの末端基量 )の範囲にあるものが耐久性、異方性抑制効果の点から好ましく使用できる。
[0033] また、本発明で用いるポリフエ二レンォキシド榭脂の具体例としては、ポリ(2, 6—ジ メチノレ一 1 , 4—フエ二レンォキシド)、ポリ(2—メチル一6—ェチル一1, 4—フエユレ ンォキシド)、ポリ(2, 6—ジフエ二ノレ一1 , 4_フエ二レンォキシド)、ポリ(2—メチル一 6 _フエ二ノレ一1 , 4_フエ二レンォキシド)、ポリ(2, 6—ジクロ口 _ 1, 4_フエ二レン ォキシド)などを挙げることができ、さらに 2, 6—ジメチルフエノールと他のフエノール 類 (例えば、 2, 3, 6 _トリメチルフヱノール)との共重合体のごとき共重合体が挙げら れる。中でも、ポリ(2, 6—ジメチル一1 , 4—フエ二レンォキシド)、 2, 6—ジメチルフ エノーノレと 2, 3, 6 _トリメチルフエノールとの共重合体が好ましぐ特に、ポリ(2, 6 - ジメチル一 1 , 4—フエ二レンォキシド)が好ましレ、。
[0034] また、ポリフエ二レンォキシド樹脂は、 30°Cで測定した還元粘度(0. 5gZdlクロロホ ルム溶液)が、 0. 15-0. 70の範囲にあるものが好適である。
[0035] 力かるポリフエ二レンォキシド榭脂の製造方法は、特に限定されるものではなぐ公 知の方法で得られるものを用いることができる。例えば、 USP3306874号明糸田書記 載の Hayによる第一銅塩とァミンのコンプレックスを触媒として、酸化重合することに より容易に製造できる。
[0036] 本発明において、反応性官能基を有する樹脂(B)は、反応性官能基を分子鎖中に 有する樹脂のことである。
[0037] 本発明の反応性官能基を有する樹脂(B)のベースとなる樹脂としては、前述の熱 可塑性樹脂 (A)とは異なる熱可塑性樹脂であり、特に制限されないが、好ましくはポ リアミド樹脂、ポリエステル樹脂、ポリフエ二レンスルフイド樹脂、ポリフエ二レンォキシ ド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、ポリスルホン樹脂、ポリアセタール樹脂 、四フッ化ポリエチレン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド 樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリチォエーテルケトン 樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ スチレン樹脂や ABS樹脂等のスチレン系樹脂、ゴム質重合体、ポリアルキレンォキサ イド樹脂等から、前述の熱可塑性樹脂 (A)とは異なるように選ばれる少なくとも 1種の 樹脂を用いることができる。中でも反応性官能基を有する樹脂 (B)のベースとなる樹 脂は、反応性官能基の導入の容易さから、ポリエチレン樹脂、ポリプロピレン樹脂、ス チレン系樹脂、ゴム質重合体がより好ましぐさらに耐衝撃特性 '靭性改良効果の観 点から、ゴム質重合体がさらに好ましい。
[0038] 本発明において、ゴム質重合体は、一般的にガラス転移温度が室温より低い重合 体を含有し、分子間の一部が共有結合 'イオン結合'ファンデルワールス力 ·絡み合 い等により、互いに拘束されている重合体である。ゴム質重合体は、例えばポリブタ ジェン、ポリイソプレン、スチレン一ブタジエンのランダム共重合体およびブロック共 重合体、該ブロック共重合体の水素添加物、アクリロニトリル—ブタジエン共重合体、 ブタジエン一イソプレン共重合体などのジェン系ゴム、エチレン一プロピレンのランダ ム共重合体およびブロック共重合体、エチレン—ブテンのランダム共重合体およびブ ロック共重合体、エチレンとひ一ォレフィンとの共重合体、エチレン一アクリル酸、ェ チレンーメタクリル酸などのエチレン 不飽和カルボン酸共重合体、エチレン アタリ ノレ酸エステル、エチレンーメタクリル酸エステルなどのエチレン 不飽和カルボン酸 エステル共重合体、不飽和カルボン酸の一部が金属塩である、エチレン アクリル酸 アクリル酸金属塩、エチレンーメタクリル酸ーメタクリル酸金属塩などのエチレン 不飽和カルボン酸 不飽和カルボン酸金属塩共重合体、アクリル酸エステルーブタ ジェン共重合体、例えばブチルアタリレート ブタジエン共重合体などのアクリル系 弾性重合体、エチレン 酢酸ビュルなどのエチレンと脂肪酸ビュルとの共重合体、 エチレン プロピレンーェチリデンノルボルネン共重合体、エチレン プロピレン へキサジェン共重合体などのエチレン プロピレン非共役ジェン 3元共重合体、ブ チレン一イソプレン共重合体、塩素化ポリエチレン、ポリアミドエラストマ一、ポリエステ ルエラストマーなどの熱可塑性エラストマ一などが好ましい例として挙げられる。
[0039] 熱可塑性樹脂 (A)としてポリアミド樹脂を用いる場合には、これらの中でも相溶性の 観点から、エチレン—不飽和カルボン酸エステル共重合体、エチレン—不飽和カル ボン酸—不飽和カルボン酸金属塩共重合体が好ましく用いられる。
[0040] エチレン—不飽和カルボン酸エステル共重合体における不飽和カルボン酸エステ ノレとは、(メタ)アクリル酸エステル好ましくは(メタ)アクリル酸とアルコールとのエステ ルである。不飽和カルボン酸エステルの具体的な例としては、(メタ)アクリル酸メチル
、 (メタ)アクリル酸ェチル、 (メタ)アクリル酸 2—ェチルへキシル、 (メタ)アクリル酸 ステアリル等の(メタ)アクリル酸エステルが挙げられる。
[0041] 共重合体中のエチレン成分と不飽和カルボン酸エステル成分の重量比は特に制 限は無いが、好ましくは 90Z10〜: 10Z90、より好ましくは 85/15〜: 15/85の範囲 である。
[0042] エチレン一不飽和カルボン酸エステル共重合体の数平均分子量は特に制限され ないが、流動性、機械的特性の観点から 1000〜70000の範囲が好ましい。
[0043] エチレン一不飽和カルボン酸一不飽和カルボン酸金属塩共重合体における不飽 和カルボン酸の具体的な例としては、(メタ)アクリル酸などが挙げられる。不飽和カル ボン酸金属塩としては、 (メタ)アクリル酸金属塩などが挙げられる。不飽和カルボン 酸金属塩の金属は、特に限定されないが、好ましくは、ナトリウムなどのアルカリ金属 やマグネシウムなどのアルカリ土類金属、亜鉛などが挙げられる。
[0044] エチレン 不飽和カルボン酸 不飽和カルボン酸金属塩共重合体中の不飽和力 ルボン酸成分と不飽和カルボン酸金属塩成分の重量比は特に制限されなレ、が、好 ましくは 95/5〜5/95、より好ましくは 90/10〜10/90の範囲である。
[0045] エチレン 不飽和カルボン酸 不飽和カルボン酸金属塩共重合体の数平均分子 量は特に制限されないが、流動性、機械的特性の観点から 1000〜70000の範囲が 好ましい。
[0046] 反応性官能基を有する樹脂 (Β)が含有する反応性官能基は、熱可塑性樹脂 (Α) 中に存在する末端基と互いに反応するものであれば特に制限されないが、好ましく は、アミノ基、カルボキシル基、カルボキシル金属塩,水酸基、酸無水物基、エポキシ 基、イソシァネート基、メルカプト基、ォキサゾリン基、スルホン酸基等から選ばれる少 なくとも 1種が挙げられる。この中でもァミノ基、カルボキシル基、カルボキシル金属塩 、エポキシ基、酸無水物基、ォキサゾリン基は反応性が高ぐしかも分解、架橋などの 副反応が少ないため、より好ましく用いられる。
[0047] 酸無水物基をゴム質重合体に導入する場合、その方法としては、通常公知の技術 で行うことができ、特に制限はなレ、が、例えば、無水マレイン酸、無水ィタコン酸、無 水エンデイツク酸、無水シトラコン酸、 1ーブテン 3,4—ジカルボン酸無水物等の酸 無水物とゴム質重合体の原料である単量体とを共重合する方法、酸無水物をゴム質 重合体にグラフトさせる方法などを用いることが出来る。
[0048] また、エポキシ基をゴム質重合体に導入する場合、その方法としては、通常公知の 技術で行うことができ、特に制限はなレ、が、例えば、アクリル酸グリシジル、メタクリノレ 酸グリシジル、ェタクリル酸グリシジル、ィタコン酸グリシジルなどのひ, β—不飽和酸 のグリシジルエステル化合物等のエポキシ基を有するビュル系単量体を、ゴム質重 合体の原料である単量体と共重合する方法、上記官能基を有する重合開始剤また は連鎖移動剤を用いてゴム質重合体を重合する方法、エポキシ化合物をゴム質重合 体にグラフトさせる方法などを用いることができる。
[0049] また、ォキサゾリン基をゴム質重合体に導入する場合、その方法としては、通常公 知の技術で行うことができ、特に制限はなレ、が、例えば 2_イソプロべニル一ォキサ ゾリン、 2—ビュルーォキサゾリン、 2—ァクロイルーォキサゾリン、 2—スチリルーォキ サゾリンなどのォキサゾリン基を有するビニル系単量体をゴム質重合体の原料である 単量体と共重合する方法などを用いることができる。
[0050] 反応性官能基を有する樹脂(Β)における、一分子鎖当りの官能基の数については 、特に制限はないが通常 1〜: 10個が好ましぐ架橋等の副反応を少なくする為に:!〜 5個が好ましい。また、官能基を全く有さない分子が含まれていても構わないが、その 割合は少ない程好ましい。
[0051] 本発明における熱可塑性樹脂 (Α)と反応性官能基を有する樹脂 (Β)との配合比に ついて、特に制限はないが、熱可塑性樹脂 (Α)の重量 Awと反応性官能基を有する 樹脂(B)の重量 Bwとの比 AwZBwは、 5/95〜95/5の範囲が好ましぐ 10/90 〜90/10の範囲がより好ましぐ 15/85〜85/15の範囲が最も好ましレ、。 Aw/B wが、 5Z95より低いと反応性官能基を有する樹脂(B)同士の反応が顕著となり、粘 度の増大により成形加工が困難となる傾向があり、 AwZBw力 95/5を越えると、 熱可塑性樹脂 (A)と反応する官能基の量が少なくなり、熱可塑性樹脂組成物の機械 特性の向上効果および特異な粘弾性挙動の発現効果が小さくなる傾向があり、好ま しくない。 [0052] 本発明の熱可塑性樹脂組成物においては、透過型電子線トモグラフィー法 (TEM T)により構造観察がなされる。 TEMTとは、透過型電子顕微鏡法 (TEM)に計算機 トモグラフィー法(CT法)を応用することで、材料内部の構造をナノメートルスケール で 3次元可視化する顕微鏡法である。 TEMが、電子線に対する試料の透過像を得 る技術であることを利用し、試料を電子線に対して傾斜させ多数の透過像を撮影し、 これら一連の傾斜透過像を CT法により再構成することで 3次元画像を得る手法であ る。
[0053] TEMTにより 3次元画像を得る実験手法として、特に制限はないが、代表的な一例 を挙げる。 2次元の TEMによる観察用試料の作成と同様、公知の技術により、熱可 塑性樹脂組成物の薄切品(試料)を作成し、それを適当な染色剤で染色するあるい は染色した後、試料を作成する。その試料を、 3次元電子顕微鏡 (例えば JEOL社製 JEM— 2200FS)に供し、例えば— 60° 〜+ 60° の傾斜角度の範囲で、 1° ずつ のステップで、試料を傾斜させるとともに、透過像を撮影し、 121枚の傾斜透過像を 得る。画像撮影前に、試料表面に直径 10nm程度の金粒子を蒔いておき、この金粒 子の傾斜に伴う動きを追跡することで、透過像の傾斜軸補正を行う。傾斜軸に対する 一連の傾斜透過像から、 3次元データを再構成し、 3次元透過画像を得る。
[0054] 本発明の熱可塑性樹脂組成物にぉレ、ては、熱可塑性樹脂 (A)または反応性官能 基を有する樹脂(B)の一方が連続相、もう一方が分散相を形成する。連続相を構成 する樹脂は、熱可塑性樹脂 (A)または反応性官能基を有する樹脂 (B)のどちらかで あり、特に限定されないが、熱可塑性樹脂 (A)としての特性を主に要求するならば、 連続相は熱可塑性樹脂 (A)で構成されてレ、る方が好ましレ、。
[0055] 本発明の熱可塑性樹脂組成物においては、分散相中に、連続相成分を含む 3次 元的な連結構造 Csが形成される。ここでいう 3次元的な連結構造とは、 TEMTにより 得られた 3次元透過画像により確認される連結構造であり、粒子状ではなぐ粒子が 3次元的につながった構造であれば特に制限はないが、柱状、 T字状、十字状、ネッ トワーク状などが挙げられる。
[0056] 本発明の熱可塑性樹脂組成物において、分散相のうち、平均粒子径が lOOOnm 以下の分散相 Dpの断面に占める前記連結構造 Csの面積の割合が、 10%以上であ る。ここでいう平均粒子径とは、 TEMTにおける傾斜角 0° における透過画像の画像 解析により算出することができる。画像解析としては、 Scion ConDoration社製画像 解析ソフト「Scion Image」等の画像解析ソフトを使用して、前記透過画像中に存在 する分散相の直径および短径の平均値を算出し、直径と短径の平均値として平均粒 子径を算出する。
本発明の熱可塑性樹脂組成物において、分散相中の連続相成分を含む 3次元的 な連結構造 Csは下記のようにして形成される。すなわち、本発明の熱可塑性樹脂組 成物を製造する際、熱可塑性樹脂 (A)と反応性官能基を有する樹脂 (B)の一方が 連続相、もう一方が分散相を形成するが、熱可塑性樹脂 (A)と反応性官能基を有す る樹脂(B)は、連続相と分散相の界面で反応する。その界面での反応が進行するこ とにより、反応物量は増大し、界面で生成したその反応物が分散相中に引き抜かれ る。さらに反応が進行することにより、分散相中に引き抜かれる反応物量が増大し、そ の反応物同士が連結することにより、分散相中に 3次元的な連結構造が形成される。 また、界面での反応により生成した反応物は、界面活性剤として働くため、分散相が 微細化し、その分散相の合体 ·粗大化を阻止して分散状態を安定させる。このように 、熱可塑性樹脂 (A)と反応性官能基を有する樹脂 (B)の反応が進行し、分散相中に 連続相成分を含む 3次元的な連結構造 Csが形成され、平均粒子径が lOOOnm以下 の分散相 Dpの断面に占める連結構造 Csの面積の割合が、 10%以上、好ましくは 1 5%以上、最も好ましくは 20%以上となるときに、本発明の効果である特異な粘弾性 挙動が顕著に発現し、高速変形時における衝撃エネルギー吸収性能および振動ェ ネルギー吸収性能が顕著に優れるという効果を発現する。さらに平均粒子径 800nm 以下の分散相 Dpの断面に占める連結構造 Csの面積の割合が、 10%以上、好ましく は 15%以上、最も好ましくは 20%以上となることが望ましぐより望ましくは平均粒子 径 500nm以下の分散相 Dpの断面に占める連結構造 Csの面積の割合力 10%以 上、好ましくは 15。/0以上、最も好ましくは 20%以上となるときである。ここでいう分散 相 Dpの断面とは、 TEMTにおける傾斜角 0° における透過画像における断面を表 す。分散相 Dpの断面に占める連結構造 Csの面積の割合の算出方法は、特に制限 されないが、染色剤として、適当な染色剤を使用し、分散相および連続相のどちらか 一方を染色し、透過画像において分散相および連続相に色のコントラストを付けるこ とにより、分散相および連続相を区別することができる。そのため、連続相成分を含 む連結構造 Csについても、同様に、分散相との色のコントラストを付けることができる 。分散相中 Dpの断面の、分散相 Dpとは色の異なる部分を、連続相成分を含む連結 構造 Csの断面と定義することができ、連続相成分を含む連結構造 Csの断面積を、 分散相 Dpの断面積で除した値が、分散相 Dpの断面に占める連結構造 Csの面積の 害 |J合となる。面積の算出方法に特に制限はないが、例えば、前記 Scion Corporati on社製画像解析ソフト「Scion Image」等の画像解析ソフトを使用して、算出するこ とができる。
[0058] また本発明のポリアミド樹脂を包含する熱可塑性樹脂組成物において、ポリアミド樹 脂 (A1)は、上述のポリアミド樹脂が好適に用いられ、反応性官能基を有する樹脂 (B )は、上述の反応性官能基を有する樹脂(B)が好適に用レ、られる。
[0059] 本発明のポリアミド樹脂を包含する熱可塑性樹脂組成物が、反応性官能基を有す る樹脂 (B)を含む場合、ポリアミド樹脂 (A1)と反応性官能基を有する樹脂 (B)との配 合比について、特に制限はなレ、が、ポリアミド樹脂 (A1)の重量 Awと反応性官能基 を有する樹脂(B)の重量 Bwとの比 Aw/Bwは、 5/95〜95/5の範囲力 S好ましく、 10/90〜90/10の範囲力 Sより好ましく、 15/85〜85/15の範囲が最も好ましい 。 Aw/Bwが、 5/95より低いと反応性官能基を有する樹脂(B)同士の反応が顕著 となり、粘度の増大により成形力卩ェが困難となる傾向があり、 Aw/Bw力 95/5を 越えると、ポリアミド樹脂 (A1)と反応する官能基の量が少なくなり、熱可塑性樹脂組 成物の機械特性の向上効果および特異な粘弾性挙動の発現効果が小さくなる傾向 があり、好ましくない。
[0060] また、本発明のポリアミド樹脂を包含する熱可塑性樹脂組成物は、ポリアミド樹脂( A1)および反応性官能基を有する樹脂 (B)以外に、その他の熱可塑性樹脂(C)を 含むことができる。
[0061] 本発明の熱可塑性樹脂組成物が含むことができるその他の熱可塑性樹脂(C)とは 、特に制限されるものではなレ、が、例えばポリエステル樹脂、ポリフエ二レンスルフイド 樹脂、ポリアセタール樹脂、ポリフエ二レンォキシド樹脂、ポリカーボネート樹脂、ポリ 乳酸樹脂、ポリスルホン樹脂、四フッ化ポリエチレン樹脂、ポリエーテルイミド樹脂、ポ リアミドイミド樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン榭 脂、ポリチォエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレン榭 脂、ポリプロピレン樹脂、ポリスチレン樹脂や ABS樹脂等のスチレン系樹脂、ゴム質 重合体、ポリアルキレンオキサイド樹脂等から選ばれる少なくとも 1種の熱可塑性樹 脂を好ましく挙げることができる。
[0062] 上記に示した熱可塑性樹脂の中で好ましく用いられるのは、ポリエステル樹脂、ポリ フエ二レンスルフイド樹脂、ポリアセタール樹脂、スチレン系樹脂、ポリフエ二レンォキ シド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂である。
[0063] 本発明のポリアミド樹脂を包含する熱可塑性樹脂組成物力 その他の熱可塑性樹 脂 (C)を含む場合、ポリアミド樹脂 (A1)とその他の熱可塑性樹脂 (C)との配合比に ついて、特に制限はなレ、が、ポリアミド樹脂 (A1)の重量 Awとその他の熱可塑性樹 脂(C)の重量 Cwとの比 Aw/Cwは、 1/99〜99/1の範囲が好ましぐ 3/97〜9 7/3の範囲がより好ましぐ 5/95〜95/5の範囲が最も好ましい。
[0064] 本発明のポリアミド樹脂を包含する熱可塑性樹脂組成物の固体 NMR測定による 炭素核の緩和時間 T1Cにおいて、ポリアミド樹脂(A1)のカルボニル基の炭素に対 応した緩和時間の 2成分解析における 2つの緩和時間の内、長い方の緩和時間 T1 C1が 65秒以下、かつポリアミド樹脂 (A1)の NH基に隣接した炭化水素基の炭素に 対応した緩和時間の 2成分解析における 2つの緩和時間の内、長レ、方の緩和時間 T 1C2が 15秒以下である。ここで、 NH基に隣接した炭化水素基の炭素とは、ポリアミド 樹脂の NH基に隣接した脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素 基の炭素であり、末端アミノ基を構成する NH基に隣接する炭素およびアミド基を構 成する NH基のカルボニル基と反対側に隣接する炭素である。本発明の熱可塑性樹 脂組成物の固体 NMR測定は、下記の手法により実施する。本発明の熱可塑性樹脂 組成物のペレットを、固体 NMRサンプル管の中央に充填し、固体 NMR測定装置( 例えば Chemagnetics社製 CMX— 300 Infinity)に供し、室温で、観測核を 13C 、観測周波数を 75. 2MHz、ノ^レス幅 4. 5 μ sとし、 Torchia法により、炭素核の緩 和時間 T1Cを測定する。 [0065] 本発明のポリアミド樹脂を包含する熱可塑性樹脂組成物の固体 NMR測定にぉレ、 ては、ポリアミド樹脂 (A1)のカルボニル基の炭素および NH基に隣接した炭化水素 基の炭素に対応した緩和時間の 2成分解析における 2つの緩和時間の内、長い方の 緩和時間を求める。ポリアミド樹脂 (A1)のカルボニル基の炭素および NH基に隣接 した炭化水素基の炭素に対応したピークは、ポリアミド樹脂 (A1)の種類により異なる が、例えば、ポリアミド樹脂 (A1)として、ポリアミド 6を使用する場合は、カルボニル基 の炭素に対応したピークは 174ppm、 NH基に隣接した炭化水素基の炭素に対応し たピークは 42ppmとなる。 2成分解析における 2つの緩和時間とは、長い緩和時間 T 1C成分と短い緩和時間 T1C成分であり、長い緩和時間 T1C成分は結晶など分子 運動性の低い成分を、短い緩和時間 T1C成分は非晶など分子運動性の高い成分を 反映している。本発明においては、カルボニル基の炭素に対応した緩和時間の 2成 分解析における 2つの緩和時間の内、長い方の緩和時間を T1C1、 NH基に隣接し た炭化水素基の炭素に対応した緩和時間の 2成分解析における 2つの緩和時間の 内、長い方の緩和時間を T1C2とする。
[0066] 固体 NMR測定による炭素核の緩和時間 T1Cは、各炭素固有の分子運動性を反 映した数値であり、緩和時間が短いほど、分子運動性が高い。本発明の熱可塑性樹 脂組成物においては、ポリアミドを構成する炭素の中でも、ポリアミドの末端を構成す る 2つの炭素(カルボニル基の炭素および NH基に隣接した炭化水素基の炭素)に 対応した緩和時間の 2成分解析における 2つの緩和時間の内、長レ、方の緩和時間、 すなわち結晶など分子運動性の低い成分の緩和時間を短くする(分子運動性を高め る)ことにより、本発明の効果である特異な粘弾性挙動が顕著に発現し、高速変形時 における衝撃エネルギー吸収性能および振動エネルギー吸収性能が顕著に優れる という効果を発現する。
[0067] また、カルボニル基の炭素に対応した緩和時間の 2成分解析における長レ、方の緩 和時間と、 NH基に隣接した炭化水素基の炭素に対応した緩和時間の 2成分解析に おける長い方の緩和時間は、一般的なポリアミド樹脂では、それぞれ 140秒 /90秒 程度の値であり、従来のポリアミド樹脂と反応性官能基を有する樹脂を混練した樹脂 組成物の場合は、ポリアミド樹脂と反応性官能基を有する樹脂が一部反応するため、 前記緩和時間はやや短くなる傾向がある力 それぞれ 68秒〜 86秒 /19秒〜 35秒 程度である。これは、ポリアミド樹脂の分子運動性が、ポリアミド樹脂の分子運動性よ りも高い反応性官能基を有する樹脂の影響を受け、分子運動性が高まるためと考え られる。
[0068] 本発明の熱可塑性樹脂組成物はたとえば後述する製造方法などにより、従来のポ リアミド樹脂と反応性官能基を有する樹脂を混練した樹脂組成物に比べて、反応が 進行してポリアミド樹脂と反応性官能基を有する樹脂の界面だけでなぐ反応性官能 基を有する樹脂の分散構造の内部においてもポリアミド成分が取り込まれるような構 造ができあがつているため、ポリアミド樹脂の NH基に隣接する炭素に対応した緩和 時間が非常に短くなる(ポリアミド樹脂の分子運動性が非常に高くなる)という現象が 起きていると考えられる。
[0069] ポリアミド樹脂 (A1)のカルボニル基の炭素に対応した緩和時間の 2成分解析にお ける 2つの緩和時間の内、長い方の緩和時間 T1C1は 65秒以下である力 好ましく は 63秒以下、より好ましくは 60秒以下である。また、ポリアミド樹脂 (A)の NH基に隣 接した炭化水素基の炭素に対応した緩和時間の 2成分解析における 2つの緩和時 間の内、長い方の緩和時間 T1C2は 15秒以下である力 好ましくは 14秒以下、より 好ましくは 13秒以下である。
[0070] 本発明のポリアミド樹脂を包含する熱可塑性樹脂組成物において、反応性官能基 を有する樹脂 (B)を含む場合、ポリアミド樹脂 (A1)または反応性官能基を有する榭 脂(B)の一方が連続相、もう一方が分散相を形成することが好ましい。連続相を構成 する樹脂は、ポリアミド樹脂 (A1)または反応性官能基を有する樹脂 (B)のどちらか であり、特に限定されないが、ポリアミド樹脂 (A1)としての特性を主に要求するなら ば、連続相はポリアミド樹脂 (A1)で構成されている方が好ましい。
[0071] 本発明のポリアミド樹脂を包含する熱可塑性樹脂組成物において、熱可塑性樹脂
(A1)または反応性官能基を有する樹脂 (B)の一方が連続相、もう一方が分散相を 形成する場合、分散相中に、平均粒子径 300nm以下の微粒子が存在していること が好ましい。この微粒子を構成する成分について、特に制限はないが、好ましい一例 として、連続相および分散相の界面において、熱可塑性樹脂 (A1)と反応性官能基 を有する樹脂(B)との反応により生成した化合物が挙げられる。この場合、該化合物 は、剪断場等の外場の影響を受けて、界面から分散相に移動し、移動した相との親 和性の高い成分が外側に向いた、いわゆるミセルの形態として存在する。
[0072] このような分散構造は、例えば透過型電子顕微鏡観察等により確認することができ る。透過型電子顕微鏡観察により確認が可能な倍率は、通常の透過型電子顕微鏡 観察で観察される倍率であり、微粒子の大きさにより異なるが、本発明の場合、 5000 倍〜 100000倍の範囲で使用され、特に微粒子の大きさが lOOnm以下の場合は、 10000倍〜 100000倍の範囲で使用される。
[0073] 分散相中に該微粒子が存在する場合、分散相の平均粒子径は、微粒子を含有す ることが可能な大きさであれば特に制限されないが、耐衝撃性等の観点から、 100〜 lOOOnm力 S好ましく、より好ましくは 100〜800應であり、 100〜500應であればさ らに好ましい。
[0074] 平均粒子径が 300nm以下の微粒子の平均粒子径は、好ましくは l〜300nmであ るが、 3〜100nmの範囲がより好ましぐ 5〜50nmの範囲であればさらに好ましい。 ここでいう微粒子の平均粒子径とは、透過型電子顕微鏡観察により得られる透過画 像の画像解析により算出することができる。画像解析としては、 Scion Corporation 社製画像解析ソフト「Scion Image」等の画像解析ソフトを使用して、前記透過画像 中に存在する微粒子の直径および短径の平均値を算出し、直径と短径の平均値とし て平均粒子径を算出する。
[0075] また、分散相中に微粒子が存在する場合、分散相中の微粒子が分散相に占める 面積の割合は、特異な粘弾性挙動の顕著な発現のために、 10%以上が好ましぐ 1 5%以上がより好ましぐ 20%以上であればさらに好ましい。ここでレ、う微粒子が分散 相に占める面積の割合は、透過型電子顕微鏡観察により得られる透過画像の画像 解析により算出することができる。画像解析としては、 Scion Corporation社製画像 解析ソフト「Scion Image」等の画像解析ソフトを使用して、前記透過画像中に存在 する分散相の面積およびその分散相中に存在する微粒子の面積を算出し、分散相 中に存在する微粒子の面積を分散相の面積で除した値として、分散相中の微粒子 が分散相に占める面積の割合を算出する。 [0076] 本発明の熱可塑性樹脂組成物から射出成形により、 JIS— 5Aダンベル型試験片( 長さ 75mm X端部幅 12. 5mm X厚さ 2mm)の成形品を作製し、その成形品引張試 験にぉレ、て、弓 I張速度 VI、 V2のときの弓 [張弾性率を E (VI) , E (V2)とすると、 VI く V2のとき、 E (V1) >E (V2)であることが好ましい。この場合の引張試験とは、規格 に明記された方法に従って行われる。引張弾性率とは、応力一歪み曲線の初期直 線部分の勾配を示す。
[0077] また、本発明の熱可塑性樹脂組成物は、引張試験において、引張速度 VI、 V2の ときの引張破断伸度を ε (VI)、 ε (V2)とすると、 V1 <V2のとき、 ε (VI)く ε (V2 )であることが好ましい。引張破断伸度とは、破壊の瞬間における伸びを示す。上記 関係式は、引張速度 10mm/min以上 500mmZmin以下の範囲内における、あら ゆる VI、 V2に対して成立することが好ましぐさらには ImmZmin以上 1000mm/ min以下の範囲内における、あらゆる VI、 V2に対して成立することが好ましい。
[0078] 本発明の熱可塑性樹脂組成物を製造する方法としては、溶融状態での製造や溶 液状態での製造等が使用できるが、反応性向上の点から、溶融状態での製造が好 ましく使用できる。溶融状態での製造については、押出機による溶融混練やニーダ 一による溶融混練等が使用できるが、生産性の点から、連続的に製造可能な押出機 による溶融混練が好ましく使用できる。押出機による溶融混練については、単軸押出 機、二軸押出機、四軸押出機等の多軸押出機、二軸単軸複合押出機等の押出機を 1台以上で使用できるが、混練性、反応性、生産性の向上の点から、二軸押出機、 四軸押出機等の多軸押出機が好ましく使用でき、二軸押出機を用いた溶融混練に よる方法が最も好ましい。
[0079] 本発明で熱可塑性樹脂組成物を製造する際、二軸押出機を使用する場合、特に 制限はないが、混練性、反応性の向上の点から、 L/DOの値が 50以上であることが 好ましぐより好ましくは 60〜200、中でも 80〜200の範囲であればさらに好ましい。 力、かる L/DOとは、スクリュー長さ Lを、スクリュー直径 DOで割った値のことである。ス クリュー長さとは、スクリュー根元の原料が供給される位置 (フィード口)にあるスクリュ 一セグメントの上流側の端部から、スクリュー先端部までの長さである。ここで、二軸 押出機のスクリューは、フルフライト、ニーデイングディスクなどの長さや形状的特徴が 異なるスクリューセグメントが組み合わされて構成されている。また、押出機において 、原材料が供給される側を上流、溶融樹脂が吐出される側を下流ということがある。
[0080] なお、サンプリングバルブ等を有する押出機を使用して、押出機の途中部分からサ ンプリングする場合、スクリュー長さ Lが"スクリュー根元の原料が供給される位置 (フィ ード口)にあるスクリューセグメントの上流側の端部から該サンプリング箇所までの長さ "に等しぐスクリュー直径 DOがサンプリングバルブ等を有する押出機のスクリュー直 径に等しい通常の押出機で混練したものと同様であるとみなすことができる。ここでい うサンプリング箇所とは、シリンダー内の樹脂が吐出される口に最も近ぐかつ上流側 のスクリュー軸上の位置を指すものとする。
[0081] また、本発明で熱可塑性樹脂組成物を製造する際、二軸押出機を使用する場合、 混練性、反応性の向上の点から、二軸押出機のスクリューが複数ケ所のフルフライト ゾーンおよびニーデイングゾーンを有していることが好ましレ、。フルフライトゾーンは 1 個以上のフルフライトより構成され、ニーデイングゾーンは 1個以上のニーデイングデ イスクより構成される。
[0082] 本発明で熱可塑性樹脂組成物を製造する際、二軸押出機を使用する場合、複数 ケ所のニーデイングゾーンに設置された樹脂圧力計が示す樹脂圧力のうち、最大と なるニーデイングゾーンの樹脂圧力を Pkmax (MPa)、複数ケ所のフルフライトゾーン に設置された樹脂圧力計が示す樹脂圧力のうち、最小となるフルフライトゾーンの樹 脂圧力を Pfmin (MPa)とすると、 Pkmaxの値が、(Pfmin + O. 3)以上の条件で、本 発明の熱可塑性樹脂組成物を製造することが好ましぐ (Pfmin+ O. 4)以上の条件 力はり好ましぐ (Pfmin + O. 5)以上の条件で製造することがさらに好ましい。
[0083] 1個以上のニーデイングディスクから構成されるニーデイングゾーンは、 1個以上の フルフライトから構成されるフルフライトゾーンより、溶融樹脂の混練性および反応性 に優れる。ニーデイングゾーンに溶融樹脂を充満することにより、混練性および反応 性が飛躍的に向上する。溶融樹脂の充満状態を示す一つの指標として、樹脂圧力 の値があり、樹脂圧力が大きいほど、溶融樹脂が充満している一つの目安となる。す なわち、本発明の熱可塑性樹脂組成物の製造において、二軸押出機を使用する場 合、ニーデイングゾーンの樹脂圧力を、フルフライトゾーンの樹脂圧力より、ある範囲 で高めることにより、反応を効果的に促進させることが可能となり、それにより分散相 中における、連続相成分を含む 3次元的な連結構造 Csの形成が促進され、またポリ アミド樹脂を包含する熱可塑性樹脂組成物においては、ポリアミド樹脂のカルボニル 基の炭素または NH基に隣接する炭化水素基の炭素に対応した緩和時間が前記の 範囲となり、特異な粘弾性挙動を顕著に発現させることが可能となる。
[0084] ニーデイングゾーンにおける樹脂圧力を高める方法として、特に制限はないが、二 ーデイングゾーンの間やニーデイングゾーンの下流側に、溶融樹脂を上流側に押し 戻す効果のある逆スクリューゾーンや溶融樹脂を溜める効果のあるシールリングゾー ン等を導入する方法など好ましく使用できる。逆スクリューゾーンやシールリングゾー ンは、 1個以上の逆スクリューや 1個以上のシールリングからなり、それらを組み合わ せることも可能である。
[0085] 例えば、ニーデイングゾーンの間やニーデイングゾーンの下流側に逆スクリューゾ ーンを導入する場合、逆スクリューゾーンのそれぞれの長さを Lrとすると、全ての逆ス クリューゾーンが、 Lr/D0 = 0.:!〜 10の長さを有していること力 混練性、反応性の 観点から好ましい。各逆スクリューゾーンの長さ Lr/DOは、より好ましくは 0. 2〜8、 さらに好ましくは 0. 3〜6である。なお、逆スクリューゾーンの長さ Lrは、その逆スクリ ユーゾーンを構成する最も上流の逆スクリューの上流端部からスクリュー軸中心線へ の垂線と、最も下流の逆スクリューの下流端部からスクリュー軸中心線への垂線との 間の距離とする。
[0086] また、本発明で熱可塑性樹脂組成物を製造する際、二軸押出機を使用する場合、 熱可塑性樹脂組成物の押出量が、スクリュー li"pm当たり 0. 01kg/h以上であること 力好ましく、より好ましくは 0. 05kg/h〜lkg/h、さらに好ましくは 0. 08〜0. 5kg 最も好ましくは、 0.:!〜 0. 3kgZhである。かかる押出量とは、押出機から吐出 される熱可塑性樹脂組成物の押出速度のことであり、 1時間当たりに押出される重量 (kg)のことである。
[0087] なお、上記二軸押出機における押出量に関わる好ましい数値範囲は、スクリュー直 径 37mmの二軸押出機の押出量を基準とするものである。スクリュー直径が大幅に 異なる場合、例えば直径 30mm未満、または直径が 50mmを超える二軸押出機を使 用する場合、押出量は、スケールダウンあるいはスケールアップ前後のスクリュー直 径比に対して、好ましくは 2. 5乗則あるいは 3乗貝 IJ、より好ましくは 2. 5乗則に従って 、低下'増大するものとして、読み替えることができるものとする。
[0088] 例えば、スクリュー直径が 20mmの二軸押出機を使用する場合、押出量力 Sスケー ルダウン前後のスクリュー直径比の 2. 5乗則に従うものとすると、熱可塑性樹脂組成 物の押出量は、スクリュー回転数 lrpm当たり、好ましくは 0. 002kgZh以上、より好 ましくは 0. 01-0. 2kg/h、さらに好ましくは 0. 017-0. l lkg/h,最も好ましくは 、 0. 02〜0. 06kg/hである。
[0089] また、スクリュー直径が 100mmの二軸押出機を使用する場合、押出量がスケール アップ前後のスクリュー直径比の 2. 5乗則に従うものとすると、熱可塑性樹脂組成物 の押出量は、スクリュー kpm当たり、好ましくは 0. 12kgZh以上、より好ましくは 0. 6 〜12kg/h、さらに好ましくは 0. 96〜6kg/h、最も好ましくは 1. 2〜3. 6kg/hで ある。
[0090] また、スクリューの回転速度としては、特に制限はなレ、が、通常 lOrpm以上、好まし くは 15rpm以上、さらに好ましくは 20rpm以上である。また、押出量としては、特に制 限はないが、通常 0. lkg/h以上、好ましくは 0. 15kg/h以上、さらに好ましくは 0. 2kg/h以上である。
[0091] また、本発明で熱可塑性樹脂組成物を製造する際、二軸押出機を使用する場合、 熱可塑性樹脂組成物の二軸押出機中での滞留時間が 1〜30分であることが好ましく 、より好ましくは 1. 5〜28分、さらに好ましくは 2〜25分である。かかる滞留時間とは、 二軸押出機に原材料を供給してから吐出するまでの滞留時間の平均であり、無着色 の熱可塑性樹脂組成物が所定の押出量に調節された定常的な溶融混練状態にお いて、原料が供給されるスクリュー根本の位置から、原料と共に、着色剤を通常 lg程 度投入し、着色剤等を投入した時点から、熱可塑性樹脂組成物が押出機の吐出口 より押出され、その押出物への着色剤による着色度が最大となる時点までの時間とす る。
[0092] また、本発明で熱可塑性樹脂組成物を製造する際、二軸押出機を使用する場合、 二軸押出機のスクリューとしては、特に制限はなぐ完全嚙み合い型、不完全嚙み合 い型、非嚙み合い型等のスクリューが使用できる力 S、混練性、反応性の観点から、完 全嚙み合い型スクリューが好ましい。また、スクリューの回転方向としては、同方向、 異方向どちらでも良いが、混練性、反応性の観点から、同方向回転が好ましい。本発 明で二軸押出機を使用する場合、スクリューとしては、同方向回転完全嚙み合い型 が最も好ましい。
[0093] また、本発明で二軸押出機を使用する場合、二軸押出機のスクリュー構成としては 、フルフライトおよび/またはニーデイングディスクを組み合わせて使用する力 溶融 状態の熱可塑性樹脂組成物へ効果的に剪断場を付与するスクリュー構成が好まし レ、。そのため、前記の通り、二軸押出機のスクリューが、 1個以上のニーデイングディ スクから構成されるニーデイングゾーンを、長手方向に複数箇所所有していることが 好ましぐこれらのニーデイングゾーンの合計長さが、スクリューの全長の好ましくは 5 〜50%、より好ましくは 10〜40%、さらに好ましくは、 15〜30%の範囲である。
[0094] また、本発明で二軸押出機を使用する場合、二軸押出機のスクリューにおけるニー デイングゾーンのそれぞれの長さを Lkとすると、全てのニーデイングゾーン力 Lk/ D0 = 0. 2〜: 10の長さを有していること力 混練性、反応性の観点から好ましい。各 ニーデイングゾーンの長さ Lk/DOは、より好ましくは 0· 3〜9、さらに好ましくは 0. 5 〜8である。なお、ニーデイングゾーンの長さ Lkは、そのニーデイングゾーンを構成す る最も上流のニーデイングディスクの上流端部からスクリュー軸中心線への垂線と、 最も下流のニーデイングディスクの下流端部からスクリュー軸中心線への垂線との間 の距離とする。
[0095] また、本発明で二軸押出機を使用する場合、二軸押出機のニーデイングゾーンは、 スクリュー内の特定の位置に偏在することなぐ全域に渡って配置されることが好まし レ、。
[0096] 本発明で二軸押出機を使用する場合、反応副生成物または熱劣化物質等を除去 するため、ベント真空ゾーンを設けてゲージ圧力— 0. 07MPa以下の圧力まで減圧 して溶融混練することが好ましぐゲージ圧力一 0. 08MPa以下の圧力まで減圧して 溶融混練することがより好ましい。ここでゲージ圧力とは、大気圧をゼロとした際の圧 力を示し、低いほど真空度が高く揮発成分を除去する能力が高いことを表す。ベント 真空ゾーンにおけるゲージ圧力が 0· 07MPaを超えるすなわち真空度が低い場 合、上記揮発成分を十分に除去することができず、熱可塑性樹脂組成物中に不純 物が残存し、衝撃吸収性が低下するため好ましくない。ベント真空ゾーンにおいて揮 発成分を十分に除去することにより、熱可塑性樹脂組成物中の不純物量を低減する ことが可能となり、衝撃吸収性が顕著に付与される。ベント真空ゾーンの個数には特 に制限はなぐ 1〜複数個設置することが好ましい。またベント真空ゾーンの位置に 関しても特に制限はないが、サンプリングする位置から LZD0 = 0〜: 10手前の位置 に少なくとも 1つ設置することは、上記揮発成分を効果的に除去することが可能となる ため好ましい。
[0097] 本発明で二軸押出機を使用する場合、水分率 5000ppm未満の原料を使用して溶 融混練することが好ましぐ水分率 lOOOppm未満の原料を使用して溶融混練するこ とがより好ましい。ここでいう水分率は、 IS〇15512に準じて測定したものである。水 分率 5000ppmを超える原料を使用すると、原料に含有される水により押出機中の反 応が抑制され、また混練性も損なわれて、製造された熱可塑性樹脂組成物の衝撃吸 収性が低下するため好ましくない。また熱可塑性樹脂 (A)がポリエステル樹脂の場 合には、更に押出機中で加水分解が進行し、製造された熱可塑性樹脂組成物の衝 撃吸収性が大きく低下するため好ましくない。
[0098] 本発明で二軸押出機を使用する場合、最高樹脂温度は 180°C〜330°Cに制御し て溶融混練することが好ましぐ 200°C〜310°Cで溶融混練することがより好ましい。 ここでいう最高樹脂温度とは、押出機の複数ケ所に均等に設置された樹脂温度計に より測定した中で最も高い温度を示す。最高樹脂温度が 180°C未満の場合には、ポ リマー間の反応性が低ぐ 330°Cを超える場合には、ポリマーの熱分解が進行するこ とにより衝撃吸収性が低下するため、最高樹脂温度は 180°C〜330°Cに制御して溶 融混練することが好ましい。
[0099] 本発明で二軸押出機を使用する場合、熱劣化を抑制するために原料投入部から 不活性ガスを導入して溶融混練することが好ましレ、。不活性ガスとしては窒素ガスが 好ましい。
[0100] 本発明の熱可塑性樹脂組成物中においては、必要に応じて、前記 (A)および (B) 以外のその他の成分を添加しても構わない。その他の成分として、充填剤、熱可塑 性樹脂類、ゴム類、各種添加剤類を挙げることができる。
[0101] 例えば、充填剤は、強度及び寸法安定性等を向上させるため、必要に応じて用い てもよレ、。充填材の形状としては繊維状であっても非繊維状であってもよぐ繊維状 の充填材と非繊維状充填材を組み合わせて用いてもょレ、。
[0102] 力、かる充填材としては、ガラス繊維、ガラスミルドファイバー、炭素繊維、チタン酸力 リウムゥイス力、酸化亜鉛ウイスカ、硼酸アルミニウムウイスカ、ァラミド繊維、アルミナ繊 維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コゥ繊維、金属繊維などの繊 維状充填剤、ワラステナイト、ゼォライト、セリサイト、カオリン、マイ力、クレー、パイ口 フィライト、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、アルミナ 、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属 化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシゥ ム、硫酸バリウムなどの硫酸塩、水酸化マグネシウム、水酸化カルシウム、水酸化ァ ノレミニゥムなどの水酸化物、ガラスビーズ、セラミックビーズ、窒化ホウ素および炭化 珪素などの非繊維状充填剤が挙げられ、これらは中空であってもよぐさらにはこれら 充填剤を 2種類以上併用することも可能である。また、これら繊維状および/または 非繊維状充填材をイソシァネート系化合物、有機シラン系化合物、有機チタネート系 化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤で予備処理して 使用することは、より優れた機械的強度を得る意味において好ましい。
[0103] 強度および寸法安定性等を向上させるため、力かる充填剤を用いる場合、その配 合量は特に制限はなレ、が、熱可塑性樹脂組成物 100重量部に対して 30〜400重量 部配合することが好ましい。
[0104] さらに本発明の熱可塑性樹脂組成物中においては、その特性を損なわない範囲で 、必要に応じて、他のゴム類、各種添加剤類を配合することができる。
[0105] 力、かるゴム類とは、例えばポリブタジエン、ポリイソプレン、スチレン一ブタジエンのラ ンダム共重合体およびブロック共重合体、該ブロック共重合体の水素添加物、アタリ ロニトリル一ブタジエン共重合体、ブタジエン一イソプレン共重合体などのジェン系ゴ ム、エチレン一プロピレンのランダム共重合体およびブロック共重合体、エチレン一ブ テンのランダム共重合体およびブロック共重合体、エチレンと α—ォレフインとの共重 合体、エチレン アクリル酸、エチレンーメタクリル酸などのエチレン 不飽和カルボ ン酸共重合体、エチレン アクリル酸エステル、エチレンーメタクリル酸エステルなど のエチレン—不飽和カルボン酸エステル共重合体、不飽和カルボン酸の一部が金 属塩である、エチレン一アクリル酸一アクリル酸金属塩、エチレン一メタクリル酸一メタ クリル酸金属塩などのエチレン一不飽和カルボン酸一不飽和カルボン酸金属塩共重 合体、アクリル酸エステル—ブタジエン共重合体、例えばブチルアタリレート—ブタジ ェン共重合体などのアクリル系弾性重合体、エチレン—酢酸ビュルなどのエチレンと 脂肪酸ビュルとの共重合体、エチレン—プロピレン—ェチリデンノルボルネン共重合 体、エチレン一プロピレン一へキサジェン共重合体などのエチレン一プロピレン非共 役ジェン 3元共重合体、ブチレン—イソプレン共重合体、塩素化ポリエチレン、ポリア ミドエラストマー、ポリエステルエラストマ一などの熱可塑性エラストマ一およびそれら の変性物などが好ましい例として挙げられる。かかるゴム類は 2種類以上併用するこ とも可能である。力かるゴム類を用いる場合、その配合量は、特に制限はないが、熱 可塑性樹脂組成物 100重量部に対して、 1〜400重量部配合されることが好ましレ、。
[0106] 本発明の熱可塑性樹脂組成物に添加することが可能な各種添加剤類は、好ましく は、結晶核剤、着色防止剤、ヒンダードフエノール、ヒンダードァミンなどの酸化防止 剤、エチレンビスステアリルアミドゃ高級脂肪酸エステルなどの離型剤、可塑剤、熱 安定剤、滑剤、紫外線防止剤、着色剤、難燃剤、発泡剤などが挙げられる。
[0107] これらのゴム類、各種添加剤類は、本発明の熱可塑性樹脂組成物を製造する任意 の段階で配合することが可能であり、例えば、二軸押出機により本発明の熱可塑性 樹脂組成物を製造する場合、樹脂を配合する際に同時に添加する方法や、樹脂を 溶融混練中にサイドフィード等の手法により添加する方法や、予め樹脂を溶融混練 した後に添加する方法や、始めに、熱可塑性樹脂組成物を構成する片方の樹脂に 添加し溶融混練後、残りの樹脂を配合する方法が挙げられる。
[0108] 本発明の熱可塑性樹脂組成物を二軸押出機により製造する場合、二軸押出機で 溶融混練する際に、反応性の向上の観点から、超臨界流体を導入することもできる。 かかる超臨界流体とは、気体と液体が共存できる限界点(臨界点)を越えた状態にあ り、気体としての性質 (拡散性)と液体としての性質 (溶解性)を併せ持った流体のこと である。かかる超臨界流体としては、超臨界二酸化炭素、超臨界窒素、超臨界水等 が挙げられるが、好ましくは、超臨界二酸化炭素および超臨界窒素が使用でき、最も 好ましくは超臨界二酸化炭素である。
[0109] 本発明の熱可塑性樹脂組成物の成形方法は、任意の方法が可能であり、成形形 状は、任意の形状が可能である。成形方法としては例えば、押出成形、射出成形、 中空成形、カレンダ成形、圧縮成形、真空成形、発泡成形等が可能であり、ペレット 状、板状、繊維状、ストランド状、フィルム又はシート状、パイプ状、中空状、箱状等の 形状に成形することができる。
[0110] このようにして得られた本発明の成形品は、耐熱性および耐衝撃性に優れるが、特 に薄厚の成形品や細長の成形品、繊維やフィルムの場合、特異な粘弾性特性を顕 著に発現する格別の効果を有するものである。
[0111] 一般に、熱可塑性樹脂からなる成形品、繊維やフィルムは、引張速度を変化させて 引張特性を評価すると、引張速度が速いほど、引張弾性率が高くなり、引張伸度が 低下する挙動を示す。これに対して、本発明の熱可塑性樹脂組成物から成形した成 形品、繊維やフィルムは、引張速度が速いほど、引張弾性率が低くなるという特異な 粘弾性特性を示し、さらに引張伸度が増大するという全く逆の特性を示すことが認め られるので、特異な衝撃吸収特性を備える成形品、繊維やフィルムとして有用である 。特にこのような特異な粘弾性特性は、薄厚の成形品や細長の成形品、延伸繊維や 延伸フィルムにおいて認められ、特に有用である。
[0112] 本発明の熱可塑性樹脂組成物から繊維を製造する場合には、公知の紡糸'延伸 技術を使用することができる。延伸 ·紡糸技術としては、例えば、溶融紡糸した糸や 押出機から吐出されたストランドを、一且卷き取って力も延伸する方法や、溶融紡糸 した糸や押出機から吐出されたストランドを一且卷き取ることなく連続して延伸する方 法等が利用される。
[0113] 本発明の熱可塑性樹脂組成物からフィルムを製造する場合には、公知のフィルム 成形技術を使用することができる。例えば、押出機に Tダイを配置してフラットフィル ムを押し出す方法や、さらにこのフィルムを一軸または二軸方向に延伸して延伸フィ ルムを得る方法や、押出機にサーキユラ一ダイを配置して円筒状フィルムをインフレ ートするインフレーション法などの方法が利用される。
[0114] また、二軸押出機で、本発明の熱可塑性樹脂組成物を製造する場合には、その二 軸押出機から直接、上記の製糸工程または製膜工程を実施するようにしても良い。
[0115] さらに、本発明の熱可塑性樹脂組成物からなる成形品は、損失正接 (tan δ )のピ ーク値が大きくなるとレ、う特徴を有し、振動エネルギー吸収性能に優れた特性を発揮 する。このため、吸音性、吸熱性や制振性'免震性等が必要な用途に特に有用であ る。
[0116] さらに本発明の熱可塑性樹脂組成物は、 0. 45MPaにおける荷重たわみ温度が 4 5°C以上で、かつ最外直径 50mm、厚さ 2mm、高さ 150mmの円筒状成形品におい て、質量 193kgの錘体を落下高さ 0. 5mから自由落下させた際、錘体に与える最大 点荷重が 20キロニュートン未満であり、 5cm以上の亀裂が発生しない特徴を有す。
[0117] 0. 45MPaにおける荷重たわみ温度は、射出成形により得られ IS— 1号短冊型 試験片を 23°C、 50%RHの条件で 48時間調湿したサンプルにて、例えば、東洋精 機社製 HDTテスター S3— MHを使用して、 0· 45MPaの荷重を力けて IS075— 1 , 2に従い測定する。
[0118] 最外直径 50mm、厚さ 2mm、高さ 150mmの円筒状成形品は、下記の要領にて作 製する。まず乾燥した熱可塑性樹脂組成物を単軸押出機に投入し、直径 50mmの 丸棒を押出成形により作製する。次に前記丸棒を長さ 150mmに切断加工し、最後 に旋盤を使用して中の熱可塑性樹脂組成物をくり抜き厚さ 2mmとする。ここで言う最 外直径とは図 4の 7を、厚さとは図 4の 8を、高さとは図 4の 9を示す。
[0119] 本発明では、水平な土台に上記円筒状成形品の円を底にして立てた状態で、質量 193kgの錘体 (重り)を円筒状成形品の円に並行に接触するように落下高さ 0. 5mか ら自由落下させて試験を行う。その際、円筒状成形品に接触する直前の速度は 11. 3km/hと高速となる。本発明の熱可塑性樹脂組成物は、高速変形ほど柔軟になる という非粘弾性特性を顕著に有しているため、前記試験を行った際、従来材料と比 較して、錘体に与える最大点荷重が 20キロニュートン未満と低ぐかつ成形品自体は 5cm以上の亀裂を発生させないため大きな破壊がなぐ衝撃吸収部材用途に優れ ている。
本発明の熱可塑性樹脂組成物の成形体の用途は、コネクター、コイルをはじめとし て、センサー、 LEDランプ、ソケット、抵抗器、リレーケース、小型スィッチ、コイルボビ ン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プ ラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モー ター、磁気ヘッドベース、パワーモジュール、半導体、液晶、 FDDキャリッジ、 FDDシ ヤーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品等 に代表される電子部品用途に適している他、発電機、電動機、変圧器、変流器、電 圧調整器、整流器、インバーター、継電器、電力用接点、開閉器、遮断機、ナイフス イッチ、他極ロッド、電気部品キャビネットなどの電気機器部品用途、 VTR部品、テレ ビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、ォー ディォ 'レーザーディスク (登録商標) ·コンパ外ディスク、 DVD等の音声 ·映像機器 部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサ 一部品等に代表される家庭、事務電気製品部品;オフィスコンピューター関連部品、 電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部 品、ライター、タイプライターなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ
、時計等に代表される光学機器、精密機械関連部品;オルタネーターターミナル、ォ ノレタネ一ターコネクター、 ICレギュレーター、ライトディヤー用ポテンシォメーターべ ース、排気ガスバルブ等の各種バルブ、燃料関係'冷却系'ブレーキ系'ワイパー系' 排気系'吸気系各種パイプ 'ホース'チューブ、エアーインテークノズルスノーケル、ィ ンテークマ二ホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボ ディー、キャブレタースぺーサ一、排気ガスセンサー、冷却水センサー、油温センサ 一、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフト ポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、電池周辺 部品、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジェ 一ターモーター用ブラッシュホノレダー、ウォーターポンプインペラ一、タービンベイン
、ワイパーモーター関係部品、デュストリビューター、スタータースィッチ、スターターリ レー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズノレ、エアコンパネ ノレスィッチ基板、燃料関係電磁気弁用コイル、ワイヤーハーネスコネクター、 SMJコ ネクター、 PCBコネクター、ドアグロメットコネクター、ヒューズ用コネクタ一等の各種コ ネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソ ケット、ランプリフレタター、ランプハウジング、ブレーキピストン、ソレノィドボビン、ェン ジンオイルフィルター、点火装置ケース、トルクコントロールレバー、安全ベルト部品、 レジスターブレード、ウォッシャーレバー、ウィンドレギュレーターハンドノレ、ウィンドレ ギュレーターハンドノレのノブ、ノ ノシンク、、ライトレノ一、サンバイザーブラケット、インス トルメントパネル、エアバッグ周辺部品、ドアパッド、ピラー、コンソールボックス、各種 モーターハウジング、ノレ一フレーノレ、フェンダー、ガーニッシュ、バンハ。一、ドアノ ネ ノレ、ノレーフパネノレ、フードパネノレ、トランクリツド、 ドアミラーステー、スポイラ一、フード ノレ一バー、ホイ一ノレカバー、ホイ一ノレキャップ、グリノレエプロンカバーフレーム、ラン プべゼル、ドアハンドル、ドアモール、リアフィニッシヤー、ワイパー等の自動車'車両 関連部品等々に適用できる。
[0121] 本発明の熱可塑性樹脂組成物はフィルムおよびシート用途として好適であり、包装 用フィルムおよびシート、 自動車部材用フィルムおよびシート、工業用フィルムおよび シート、農業'土木用フィルムおよびシート、医療用フィルムおよびシート、電気'電子 機器部材用フィルムおよびシート、生活雑貨用フィルムおよびシート等に好適に使用 される。
[0122] 本発明の熱可塑性樹脂組成物は、繊維としても好適であり、長繊維、短繊維、モノ フィラメント、捲縮加工糸等のいずれでも良ぐ用途としても、ユニフォーム、ヮーキン グウェア、スポーツウエア、 Tシャツ等の衣料用、ネット、ロープ、スパンボンド、研磨ブ ラシ、工業ブラシ、フィルター、抄紙網等の一般資材'産業資材'工業資材用、毛布、 布団側地、カーテン等の寝装'インテリア用品用、歯ブラシ、ボディブラシ、眼鏡フレ ーム、傘、カバー、買い物袋、風呂敷等の生活雑貨用等の衝撃吸収部材に好適に 使用される。
[0123] 本発明の熱可塑性樹脂組成物は、自動車内外装部品、 自動車外板等の衝撃吸収 部材に好適に使用される。
[0124] 本発明の熱可塑性樹脂組成物は、建材としても好適であり、土木建築物の壁、屋 根、天井材関連部品、窓材関連部品、断熱材関連部品、床材関連部品、免震 ·制振 部材関連部品、ライフライン関連部品等の衝撃吸収部材に好適に使用される。
[0125] 本発明の熱可塑性樹脂組成物は、スポーツ用品としても好適であり、ゴルフクラブ やシャフト、グリップ、ゴルフボール等のゴルフ関連用品、テニスラケットゃバトミントン ラケットおよびそのガット等のスポーツラケット関連用品、アメリカンフットボールや野 球、ソフトボール等のマスク、ヘルメット、胸当て、肘当て、膝当て等のスポーツ用身 体保護用品、スポーツウエア等のウェア関連用品、スポーツシューズの底材等のシュ ーズ関連用品、釣り竿、釣り糸等の釣り具関連用品、サーフィン等のサマースポーツ 関連用品、スキー'スノーボード等のウィンタースポーツ関連用品、その他インドアお よびアウトドアスポーツ関連用品等の衝撃吸収部材に好適に使用される。
実施例
[0126] 以下、実施例を挙げて本発明の効果をさらに具体的に説明する。なお、本発明は、 下記実施例に限定されるものではない。
実施例:!〜 6、比較例 1〜: 10では、原料は下記に記したものを使用した。
(A):ポリアミド 6樹脂(以下 PA6樹脂と略称する)、「CM1017」(東レ社製)
(B):グリシジルメタタリレート変性ポリエチレン共重合体(以下 GMA変性 PE共重合 体と略称する)、「ボンドファースト BF_ 7L」(住友化学社製)
(C):未変性ポリエチレン共重合体(以下未変性 PE共重合体と略称する)、「LOTR YL29MA03」(アルケマ社製)
[0127] 実施例 7〜: 18、比較例:!:!〜 23では、原料は下記に記したものを使用した。
(A- 1):融点 225°C、 98%硫酸中 0. Olg/mlでの相対粘度 2. 75、水分率 500p pmのポリアミド 6樹脂。
(A- 2):融点 225°C、 98%硫酸中 0. Olg/mlでの相対粘度 2. 75、水分率 7000 ppmのポリアミド 6樹脂。
(A- 3):融点 265°C、 98%硫酸中 0. Olg/mlでの相対粘度 2. 75、水分率 500p pmのポリアミド 66樹脂。
(A-4):融点 225°C、 98%硫酸中 0. Olg/mlでの相対粘度 2. 70、水分率 500p pmのポリアミド 610樹脂。 (A- 5):融点 190°C、 98%硫酸中 0. Olg/mlでの相対粘度 2· 55、水分率 500ρ pmのポリアミド 11樹脂。
(A— 6):融点 225°C、 o—クロ口フエノール中 0. 5%溶液で測定した固有粘度 0. 70 、カルボキシル末端基量 35eqZt、水分率 lOOppmのポリブチレンテ
レフタレート樹脂。
(B— 1) :水分率 200ppmのグリシジルメタタリレート変性ポリエチレン共重合体 (以下 GMA変性 PE共重合体と略称する)「ボンドファースト BF— 7L」(住友化学社 製)
(B- 2):水分率 200ppmの無水マレイン酸変性エチレン— 1―ブテン共重合体「タ フマー MH7020」(三井化学社製)
(B- 3):水分率 200ppmのエチレン—メタクリル酸—メタクリル酸亜鉛塩共重合体「 ハイミラン 1706」(三井 ·デュポンポリケミカル社製)
(C- 1):水分率 200ppmの未変性ポリエチレン共重合体 (以下未変性 PE共重合体 と略称する)「L〇TRYL29MA03」(アルケマ社製)
(D- 1):熱可塑性ポリウレタン「エラストラン NY97A」(BASF社製)
[0128] (1)試験片の射出成形
日精樹脂工業社製射出成形機 (NP7— 1F)を用いて、成形温度:260°C、金型温 度: 80°C、射出圧力:下限圧 + 5kgf/cm2の条件により、 JIS— 5Aダンベル型試験 片(長さ 75mm X端部幅 12. 5mm X厚さ 2mm)および JIS— 1号短冊型試験片(幅 10mm X長さ 80mm X厚さ 4mm)を作成した。
[0129] (2) 3次元電子顕微鏡によるモルフォロジ一観察
射出成形により得られ fcJIS _ 5Aダンベル型試験片を、:!〜 2mm角に切削後、四 酸化ルテニウムにより染色した後、 80nmの厚さの超薄切片を、 Leica社製ウルトラミ クロトームにより、 _ 196°Cの温度 (液体窒素温度)で切り出した。その超薄切片表面 に、エタノールに分散させた直径 10nm程度の金粒子を数滴滴下し、試料表面に金 粒子を均一に分散させた。その後、 3次元電子顕微銜EM_ 2200FS (JE〇L社製) に供し、 50000倍の観察倍率とし、カロ速分圧を 200kVとし、一 60。 〜+ 60。 の {頃 斜角度の範囲で、 1° ずつのステップにおいて、試料を傾斜させるとともに、透過像 を撮影し、 121枚の傾斜透過像を得た。これら傾斜透過像から、 3次元データを再構 成し、 3次元透過画像を得た。その 3次元透過画像を回転させることにより、分散相中 の、連続相成分を含む 3次元的な連結構造 Csの形成有無を確認した。また、傾斜角 0° における透過画像から、平均粒子径が lOOOnm以下の分散相 Dpの断面に占め る連結構造 Csの面積の割合を、 Scion Corporation社製画像解析ソフト「Scion I mage」を使用し算出した。
[0130] (3)引張試験による引張弾性率および引張破断伸度の評価
射出成形により得られ IS— 5Aダンベル型試験片を、オートグラフ AGlOOkNG (島津製作所製)に供し、チャック間距離を 50mmとし、 100mm/min、 500mm/ min、 1000mm/minの速度で、引張試験を実施し、各速度における引張弾性率 および引張破断伸度を評価した。なお、引張破断伸度は、チャック間距離 50mmを 基準とした破断伸度とした。
[0131] (4)高速引張試験による降伏強度、引張破断伸度および衝撃吸収エネルギーの評 価
射出成形により得られ IS— 5Aダンベル型試験片を、島津製作所社製サーボパ ルサー EHF— U2H— 20L型高速面衝撃試験器に供し、チャック間距離を 50mmと し、 3. 6km/h (60000mm/min)の速度で、 20oCおよび 20oCにおける高速引 張試験を実施し、降伏強度、引張破断伸度および衝撃吸収エネルギーを評価した。 なお、引張破断伸度は、チャック間距離 50mmを基準とした破断伸度とした。
[0132] (5)衝撃強度の評価
射出成形により得られ IS— 1号短冊型試験片を、東洋精機社製シャルピー衝撃 試験機 611に供し、 IS0179に従レヽ、 23。C、 50%RHにおけるシャルピー衝撃試験 を実施した。
[0133] (6)荷重橈み温度の評価
射出成形により得られ fcJIS— 1号短冊型試験片を、東洋精機社製 HDTテスター S 3— MHに供し、 23°C、 50%RHの条件で 48時間調湿したサンプルについて、 ISO 75- 1 , 2に従い荷重橈み温度(荷重 0. 45MPa)を測定した。
[0134] (7)損失正接 (tan δ )の評価 射出成形により得られ IS— 5Aダンベル型試験片より、長さ 30mm X幅 3. 5mm X厚さ 2mmの短冊形試験片を切り出し、その短冊形試験片を、エー ·アンド 'ディー 社製動的粘弾性自動測定器 (RHEOVIBRON DDV— 25FP)に供し、昇温速度: 5°C/min、歪み振幅: 0. 4%、周波数: 1Ηζ、試験温度:一 150〜: 150°Cの条件に より、損失正接 (tan δ )の測定を実施した。
[0135] (8)固体 NMRによる炭素核緩和時間測定
本発明の熱可塑性樹脂組成物のペレットを、固体 NMRサンプル管の中央に充填 し、固体 NMR測定装置(Chemagnetics社製 CMX—300 Infinity)に供し、室温 で、観測核を 13C、観測周波数を 75. 2MHz、ノ^レス幅 4. 5 μ sとし、 Torchia法に より、炭素核の緩和時間 T1Cを測定した。ポリアミド樹脂 (A1)のカルボニル基の炭 素に対応したピークは 174ppm、 NH基に隣接した炭化水素基の炭素に対応したピ ークは 42ppmとし、測定後、 2成分解析を実施した。カルボニル基の炭素に対応した 緩和時間の 2成分解析における 2つの緩和時間の内、長レ、方の緩和時間を Tl C 1、 NH基に隣接した炭化水素基の炭素に対応した緩和時間の 2成分解析における 2つ の緩和時間の内、長レ、方の緩和時間を Tl C 2とした。
[0136] (9)モルフォロジ一観察
射出成形により得られ IS— 5Aダンベル型試験片を、四酸化ルテニウムにより染 色後、超薄切片を切り出し、透過型電子顕微鏡(日立製作所製 H— 7100型透過型 電子顕微鏡)にて 35000借に拡大し、モルフォロジ一観察を行レ、、連続相成分の同 定を行った。さらに、 50000倍に拡大し、分散柚中の微粒子の存在の有無を確認す るとともに、 Scion Corporation社製画像解析ソフト「Scion Image」を使用し、そ れら微粒子が分散相に占める面積の割合を算出した。
[0137] (10)原料の水分率測定
三菱化学社製 CA— 100 Moisturemeterを使用し、 IS015512に従って測定し た。具体的測定方法を下記する。透明のすり合わせ共栓付三角フラスコに試料約 10 gを秤量し、メタノールを分注器で 20mlカ卩える。フラスコにシリカゲル管付環流冷却 器を取り付け、 150°Cで 3時間煮沸する。その後、 45分間室温に放置して冷却し、メ タノール抽出液のうち、 0. 5mlをシリンジで採取し、デジタル微量水分測定装置(三 菱化学社製 CA— 100 Moisturemeter)に注入し、表示を読み取る(a)。リファレン スとしてメタノールのみでも同様の実験を行って表示を読みとり (b)、水分率を下記式 により算出する。
水分率(¾)111) = (&_1)) ÷ ( 17 2) X 106
a :抽出メタノーノレ 0. 5ml中の水分量(g)
b :リファレンス抽出メタノール 0. 5ml中の水分量(g)
W:試料重量 (約 10g)
VI:シリンジ採取量(0. 5ml)
V2:抽出に使用したメタノール量(20ml)
[0138] (11)円筒状成形品の作製
最外直径 50mm、厚さ 2mm、高さ 150mmの円筒状成形品を、下記の要領にて作 製した。まず 80°Cで 12時間以上真空乾燥した熱可塑性樹脂組成物をスクリュー径 3
5mm、 L/D0 = 25の単軸押出機(陸亜製)に投入し、押出温度 260°C、スクリュー 回転数 12rpm、引取速度 0. 4m/hの条件で、直径 50mmの丸棒を押出成形により 作製した。次に前記丸棒を長さ 150mmに切断加工し、最後に旋盤を使用して中の 熱可塑性樹脂組成物をくり抜き厚さ 2mmとした。ここで言う最外直径とは図 4の 7を、 厚さとは図 4の 8を、高さとは図 4の 9を示す。
[0139] (12)大荷重、高速度の自由落下衝撃試験による最大点荷重および破壊有無の評 価
日本自動車研究所所有 GSE社製落錘試験機を使用して以下の要領で実施した。 水平な土台に上記円筒状成形品の円を底にして立てた状態で、質量 193kgの錘体 (重り)を円筒状成形品の円に並行に接触するように落下高さ 0. 5mから自由落下さ せて試験を行った。円筒状成形品に接触する直前の速度は 11. 3kmZhとなる。試 験ではレーザー変位計 (キーエンス社製 LBP300特注)、荷重計 (東京測器社製 CL P— 30BS)、動ひずみ計(共和電業社製 DPM—13A)、データレコーダ(SONY社 製 SIR1000W)、ローパスフィルタ(NF社製 P— 84)および A/D変換データ収録装 置 (共和電業社製 M03— 6358)を使用して、錘体に与える荷重と変位の関係を解 析し、錘体に与える最大点荷重を求めた。また試験終了後の成形品を観察し、 5cm 以上の亀裂の有無を目視で調べた。
実施例 1、 2
熱可塑性樹脂 (A)として PA6樹脂を、反応性官能基を有する樹脂 (B)として GMA 変性 PE共重合体を使用し、表 1に示す配合組成で混合し、真空ポンプによる揮発分 の除去および窒素フローを行いながら、スクリュー径 37mm、スクリューは 2条ネジの 2本のスクリューの L/D0 = 100の同方向回転完全嚙み合い型二軸押出機 (東芝機 械社製、 TEM- 37BS - 26/2V)を使用し、シリンダー温度を 260°C、表 1に示す スクリュー回転数、押出量で溶融混練を行い、吐出口(L/D = 100)よりストランド状 の溶融樹脂を吐出した。その際、原料と共に着色剤を投入し、押出物への着色が最 大となる時間を滞留時間として測定し、その滞留時間を表 1に示した。また、スクリュ 一構成: Aとして、 L/D0 = 22、 28、 43、 55、 69、 77、 93の位置力、ら女合まる 7筒所 のニーデイングゾーンを設け、各ニーデイングゾーンの長さ LkZDOは、順番に Lk/ D0 = 1. 8、 1. 8、 2. 3、 2. 3、 2. 3、 2. 3、 3. 0とした。さらに各ニーデイングゾーン の下流側に、逆スクリューゾーンを設け、各逆スクリューゾーンの長さ Lr/D0は、順 番に Lr/D0 = 0. 4、 0. 4、 0. 8、 0. 8、 0. 4、 0. 8、 0. 4とした。また、スクリュー全 長に対する上記ニーデイングゾーンの合計長さの割合(%)を、(ニーデイングゾーン の合計長さ) ÷ (スクリュー全長) X 100により算出すると、ニーデイングゾーンの合計 長さの割合は 16%であった。また、複数ケ所のニーデイングゾーンに設置した樹脂圧 力計が示した樹脂圧力のうち、最大となったニーデイングゾーンの樹脂圧力 Pkmax ( MPa)から、複数ケ所のフルフライトゾーンに設置した樹脂圧力計が示した樹脂圧力 のうち、最小となったフルフライトゾーンの樹脂圧力 Pfmin (MPa)を引いた値を表 1 に示した。また、吐出されたストランド状の溶融樹脂を、冷却バスを通過させて冷却し 、ペレタイザ一により引取りながら裁断することにより、熱可塑性樹脂組成物のペレツ ト状のサンプノレを得た。該サンプルを乾燥後、射出成形により評価用試験片を作成、 各種特性を評価した。その結果を表 2に示す。また本発明の実施例 1の傾斜角 0° における 3次元透過画像(50000倍、 250nm X 250nm X 75nm)を図 1に示す。本 測定では、さらに一 60° 〜+ 60° の傾斜角度の範囲で、 1° ずつのステップにおい て、試料を傾斜させるとともに、透過像を撮影し、 12:!枚の傾斜透過像を得、これら傾 斜透過像から、 3次元データを再構成し、 3次元透過画像を得た。かかる 3次元透過 画像を回転させることにより、分散相中の、連続相成分を含む 3次元的な連結構造 C sの形成有無を確認した結果を表 2に示した。さらに本発明の傾斜角 0° における 3 次元透過画像の模式図(全体図)を図 2に、本発明の傾斜角 0° における 3次元透過 画像の模式図(分散相拡大図)を図 3に示す。力かる傾斜角 0° における透過画像か ら、平均粒子径が lOOOnm以下の分散相 Dpの断面に占める連結構造 Csの面積の 割合(図 2の 3)を、 Scion Corporation社製画像解析ソフト「Scion Image」を使 用し算出し結果を表 2に示した。
[0141] 比較例 1、 2
スクリュー構成: Bとして、 L/D0 = 22, 28、 43、 55、 69、 77、 93の位置力、ら女合まる 7箇所のニーデイングゾーンを設け、各ニーデイングゾーンの長さ LkZDOは、順番 に Lk/D0 = l . 8、 1. 8、 2. 3、 2. 3、 2. 3、 2. 3、 3. 0とした。スクリュー構成として 、逆スクリューゾーンを設けなかった以外は、実施例 1、 2と同様にして溶融混練を実 施し、熱可塑性樹脂組成物を得た。混練条件を表 1に、得られた熱可塑性樹脂組成 物評価結果を表 2および表 3に示す。
[0142] 比較例 3
未変性ポリエチレン共重合体を使用した以外は、実施例 1、 2と同様にして溶融混 練を実施し、熱可塑性樹脂組成物を得た。混練条件を表 1に、得られた熱可塑性榭 脂組成物評価結果を表 2および表 3に示す。
[0143] 実施例 3
スクリュー径 37mm、スクリューは 2条ネジの 2本のスクリューの L/D0 = 100の同 方向回転完全嚙み合レ、型二軸押出機 (東芝機械社製、 TEM - 37BS - 26/2V) に設置されている LZD0 = 72のサンプリングバルブより熱可塑性樹脂組成物を吐出 した以外は、実施例 1と同様にして溶融混練を実施し、熱可塑性樹脂組成物を得た 。混練条件を表 1に、得られた熱可塑性樹脂組成物評価結果を表 2および表 3に示 す。なお、スクリュー全長に対する上記ニーデイングゾーンの合計長さの割合(o/o)を 、(ニーデイングゾーンの合計長さ) ÷ (スクリュー全長) X 100により算出すると、ニー デイングゾーンの合計長さの割合は 15 %であつた。 [0144] 比較例 4
スクリュー構成を Bとした以外は、実施例 3と同様にして溶融混練を実施し、熱可塑 性樹脂組成物を得た。混練条件を表 1に、得られた熱可塑性樹脂組成物評価結果 を表 2および表 3に示す。
[0145] 比較例 5
スクリュー径 37mm、スクリューは 2条ネジの 2本のスクリューの L/D0 = 100の同 方向回転完全嚙み合レ、型二軸押出機 (東芝機械社製、 TEM - 37BS - 26/2V) に設置されている LZD0 = 40のサンプリングバルブより熱可塑性樹脂組成物を吐出 した以外は、比較例 4と同様にして溶融混練を実施し、熱可塑性樹脂組成物を得た 。混練条件を表 1に、得られた熱可塑性樹脂組成物評価結果を表 2および表 3に示 す。なお、スクリュー全長に対する上記ニーデイングゾーンの合計長さの割合(o/o)を 、(ニーデイングゾーンの合計長さ) ÷ (スクリュー全長) X 100により算出すると、ニー デイングゾーンの合計長さの割合は 9%であった。
[0146] [表 1]
表 1
Figure imgf000045_0001
SZ8SS0/.00Zdf/X3d T0S801/.00Z OAV 表 2
Figure imgf000047_0001
[ε挲] [8 το]
SZ8SSO/.OOZdf/X3d IP T0S801/.00Z OAV 表 3
Figure imgf000049_0001
[0149] 実施例 1、 2、 3より、本発明の熱可塑性樹脂組成物は、分散相中に、連続相成分 を含む 3次元的な連結構造 Csが形成され、さらに平均粒子径が lOOOnm以下の分 散相 Dpの断面に占める連結構造 Csの面積の割合が大きいため、引張試験におい て、引張速度を大きくするに従い、引張弾性率が顕著に低下し、さらに引張破断伸 度も大きく増大する。さらに、高速引張試験において、 20°Cおよび一 20°Cにおける 衝撃吸収エネルギーが大きぐ耐衝撃性と耐熱性のバランスに優れ、 tan δが大きく なることから、振動エネルギー吸収性能にも優れる。一方、比較例 1、 2、 4より、従来 の熱可塑性樹脂組成物は、分散相中に、連続相成分を含む 3次元的な連結構造 Cs が形成されるものの、平均粒子径が lOOOnm以下の分散相 Dpの断面に占める連結 構造 Csの面積の割合が小さいため、引張試験において、引張速度を大きくするに従 レ、、引張弾性率が低下し、引張破断伸度も増大するものの、その程度は大きくはな レ、。さらに、実施例 1、 2、 3の本発明の熱可塑性樹脂組成物と比較すると、高速引張 試験における衝撃吸収エネルギーは小さぐ耐衝撃性と耐熱性のバランスに劣り、 ta η δが小さくなることから、振動エネルギー吸収性能にも劣る。
[0150] また、比較例 3、 5より、分散相中に、連続相成分を含む 3次元的な連結構造 Csは 形成されない場合、引張試験において、引張速度を大きくするに従い、引張弾性率 は増大し、さらに引張破断伸度も低下する。さらに、実施例 1の本発明の熱可塑性樹 脂組成物と比較すると、高速引張試験における衝撃吸収エネルギーは大きく低下し 、耐衝撃性と耐熱性のバランスに大きく劣り、さらに tan 5が小さくなることから、振動 エネルギー吸収性能にも劣る。
[0151] これらの結果より、反応性官能基を有する樹脂を包含する熱可塑性樹脂組成物に おいて、分散相中に連続相成分を含む 3次元的な連結構造を形成し、さらにその分 散相断面に占める連結構造の面積の割合を制御することにより、耐衝撃性と耐熱性 等、相反する特性のバランスに優れるとともに、従来の高分子材料には見られなかつ た特異な粘弾性挙動を顕著に発現し、かつ高速変形時における衝撃エネルギー吸 収性能および振動エネルギー吸収性能が顕著に優れることが分かる。
[0152] 実施例 4、 5
熱可塑性樹脂 (A1)として ΡΑ6樹脂を、反応性官能基を有する樹脂 (Β)として GM A変性 PE共重合体を使用し、表 4に示す配合組成で混合し、真空ポンプによる揮発 分の除去および窒素フローを行いながら、スクリュー径 37mm、スクリューは 2条ネジ の 2本のスクリューの L/D0 = 100の同方向回転完全嚙み合い型二軸押出機(東芝 機械社製、 TEM- 37BS - 26/2V)を使用し、シリンダー温度を 260°C、表 4に示 すスクリュー回転数、押出量で溶融混練を行い、吐出口(L/D = 100)よりストランド 状の溶融樹脂を吐出した。その際、原料と共に着色剤を投入し、押出物への着色が 最大となる時間を滞留時間として測定し、その滞留時間を表 4に示した。また、スクリ ユー構成: Aとして、 L/D0 = 22、 28、 43、 55、 69、 77、 93の位置力ら合まる 7箇所 のニーデイングゾーンを設け、各ニーデイングゾーンの長さ LkZDOは、順番に Lk/ D0 = 1. 8、 1. 8、 2. 3、 2. 3、 2. 3、 2. 3、 3. 0とした。さらに各ニーデイングゾーン の下流側に、逆スクリューゾーンを設け、各逆スクリューゾーンの長さ LrZDOは、順 番に Lr/D0 = 0. 4、 0. 4、 0. 8、 0. 8、 0. 4、 0. 8、 0. 4とした。また、スクリュー全 長に対する上記ニーデイングゾーンの合計長さの割合(%)を、(ニーデイングゾーン の合計長さ) ÷ (スクリュー全長) X 100により算出すると、ニーデイングゾーンの合計 長さの割合は 16%であった。また、複数ケ所のニーデイングゾーンに設置した樹脂圧 力計が示した樹脂圧力のうち、最大となったニーデイングゾーンの樹脂圧力 Pkmax ( MPa)から、複数ケ所のフルフライトゾーンに設置した樹脂圧力計が示した樹脂圧力 のうち、最小となったフルフライトゾーンの樹脂圧力 Pfmin (MPa)を引いた値を表 1 に示した。また、吐出されたストランド状の溶融樹脂を、冷却バスを通過させて冷却し 、ペレタイザ一により引取りながら裁断することにより、熱可塑性樹脂組成物のペレツ ト状のサンプノレを得た。該サンプルを乾燥後、射出成形により評価用試験片を作成 し、各種特性を評価した。その結果を表 5に示す。
比較例 6、 7
スクリュー構成: Bとして、 L/D0 = 22, 28、 43、 55、 69、 77、 93の位置力、ら女合まる 7箇所のニーデイングゾーンを設け、各ニーデイングゾーンの長さ LkZDOは、順番 に Lk/D0 = l . 8、 1. 8、 2. 3、 2. 3、 2. 3、 2. 3、 3. 0とした。スクリュー構成として 、逆スクリューゾーンを設けなかった以外は、実施例 4、 5と同様にして溶融混練を実 施し、熱可塑性樹脂組成物を得た。混練条件を表 4に、得られた熱可塑性樹脂組成 物評価結果を表 5および表 6に示す。
[0154] 比較例 8
未変性ポリエチレン共重合体を使用した以外は、実施例 4、 5と同様にして溶融混 練を実施し、熱可塑性樹脂組成物を得た。混練条件を表 4に、得られた熱可塑性樹 脂組成物評価結果を表 5および表 6に示す。
[0155] 実施例 6
スクリュー径 37mm、スクリューは 2条ネジの 2本のスクリューの L/D0 = 100の同 方向回転完全嚙み合レ、型二軸押出機 (東芝機械社製、 TEM - 37BS - 26/2V) に設置されている LZD0 = 72のサンプリングバルブより熱可塑性樹脂組成物を吐出 した以外は、実施例 1と同様にして溶融混練を実施し、熱可塑性樹脂組成物を得た 。混練条件を表 4に、得られた熱可塑性樹脂組成物評価結果を表 5および表 6に示 す。なお、スクリュー全長に対する上記ニーデイングゾーンの合計長さの割合(o/o)を 、(ニーデイングゾーンの合計長さ) ÷ (スクリュー全長) X 100により算出すると、ニー デイングゾーンの合計長さの割合は 15 %であつた。
[0156] 比較例 9
スクリュー構成を Bとした以外は、実施例 6と同様にして溶融混練を実施し、熱可塑 性樹脂組成物を得た。混練条件を表 4に、得られた熱可塑性樹脂組成物評価結果 を表 5および表 6に示す。
[0157] 比較例 10
スクリュー径 37mm、スクリューは 2条ネジの 2本のスクリューの L/D0 = 100の同 方向回転完全嚙み合レ、型二軸押出機 (東芝機械社製、 TEM - 37BS - 26/2V) に設置されている LZD0 = 40のサンプリングバルブより熱可塑性樹脂組成物を吐出 した以外は、比較例 9と同様にして溶融混練を実施し、熱可塑性樹脂組成物を得た 。混練条件を表 4に、得られた熱可塑性樹脂組成物評価結果を表 5および表 6に示 す。なお、スクリュー全長に対する上記ニーデイングゾーンの合計長さの割合(o/o)を 、(ニーデイングゾーンの合計長さ) ÷ (スクリュー全長) X 100により算出すると、ニー デイングゾーンの合計長さの割合は 9%であった。
[0158] [表 4] 表 4
Figure imgf000053_0001
[9¾ [69 το]
SZ8SSO/.OOZdf/X3d S9 T0S801/.00Z OAV 表 5
Figure imgf000055_0001
[9挲] [0910]
SZ8SSO/.OOZdf/X3d 99 T0S801/.00Z OAV
Figure imgf000057_0001
[0161] 実施例 4、 5、 6より、本発明の熱可塑性樹脂組成物は、カルボニル基の炭素に対 応した緩和時間の 2成分解析における 2つの緩和時間の内、長い方の緩和時間 T1 C1および NH基に隣接した炭化水素基の炭素に対応した緩和時間の 2成分解析に おける 2つの緩和時間の内、長い方の緩和時間 T1C2が短いため、引張試験におい て、引張速度を大きくするに従い、引張弾性率が顕著に低下し、さらに引張破断伸 度も大きく増大する。さらに、高速引張試験において、 20°Cおよび一 20°Cにおける 衝撃吸収エネルギーが大きぐ耐衝撃性と耐熱性のバランスに優れ、 tan δが大きく なることから、振動エネルギー吸収性能にも優れる。一方、比較例 6、 7、 9より、従来 の熱可塑性樹脂組成物は、 T1C1および T1C2が実施例 4〜6より大きいため、引張 試験において、引張速度を大きくするに従い、引張弾性率が低下し、引張破断伸度 も増大するものの、その程度は大きくはない。さらに、実施例 4〜6の本発明の熱可塑 性樹脂組成物と比較すると、高速引張試験における衝撃吸収エネルギーは小さく、 耐衝撃性と耐熱性のバランスに劣り、 tan δが小さくなることから、振動エネルギー吸 収性能にも劣る。
[0162] また、比較例 8、 10より、従来の熱可塑性樹脂組成物は、 T1C1および T1C2が実 施例 4〜6より極めて大きいため、引張試験において、引張速度を大きくするに従レ、、 引張弾性率は増大し、さらに引張破断伸度も低下する。さらに、実施例 4の本発明の 熱可塑性樹脂組成物と比較すると、高速引張試験における衝撃吸収エネルギーは 大きく低下し、耐衝撃性と耐熱性のバランスに大きく劣り、さらに tan δが小さくなるこ とから、振動エネルギー吸収性能にも大きく劣る。
[0163] これらの結果より、ポリアミド樹脂を包含する熱可塑性樹脂組成物において、ポリア ミド樹脂の緩和時間を制御することにより、耐衝撃性と耐熱性等、相反する特性のバ ランスに優れるとともに、従来の高分子材料には見られなかった特異な粘弾性挙動を 顕著に発現し、かつ高速変形時における衝撃エネルギー吸収性能および振動エネ ルギー吸収性能が顕著に優れることが分かる。
[0164] 実施例 7、 8
熱可塑性樹脂 (Α)として水分率 500ppmのナイロン 6樹脂 (A_ 1)を、反応性官能 基を有する樹脂 (B)として GMA変性 PE共重合体 (B_ 1)を使用し、表 7に示す配合 組成で混合し、窒素フローを行いながら、スクリュー径 37mm、スクリューは 2条ネジ の 2本のスクリューの L/D0 = 100の同方向回転完全嚙み合い型二軸押出機(東芝 機械社製、 TEM- 37BS - 26/2V)を使用し、シリンダー温度を 260°C、表 1に示 すスクリュー回転数、押出量で溶融混練を行い、吐出口(L/D = 100)よりストランド 状の溶融樹脂を吐出した。その際、原料と共に着色剤を投入し、押出物への着色が 最大となる時間を滞留時間として測定し、その滞留時間を表 7に示した。また、スクリ ユー構成: Aとして、 L/D0 = 22、 28、 43、 55、 69、 77、 93の位置力ら合まる 7箇所 のニーデイングゾーンを設け、各ニーデイングゾーンの長さ LkZDOは、順番に Lk/ D0 = 1. 8、 1. 8、 2. 3、 2. 3、 2. 3、 2. 3、 3. 0とした。さらに各ニーデイングゾーン の下流側に、逆スクリューゾーンを設け、各逆スクリューゾーンの長さ LrZDOは、順 番に Lr/D0 = 0. 4、 0. 4、 0. 8、 0. 8、 0. 4、 0. 8、 0. 4とした。また、スクリュー全 長に対する上記ニーデイングゾーンの合計長さの割合(%)を、(ニーデイングゾーン の合計長さ) ÷ (スクリュー全長) X 100により算出すると、ニーデイングゾーンの合計 長さの割合は 16%であった。また、複数ケ所のニーデイングゾーンに設置した樹脂圧 力計が示した樹脂圧力のうち、最大となったニーデイングゾーンの樹脂圧力 Pkmax ( MPa)から、複数ケ所のフルフライトゾーンに設置した樹脂圧力計が示した樹脂圧力 のうち、最小となったフルフライトゾーンの樹脂圧力 Pfmin (MPa)を引いた値を表 1 に示した。押出機の複数ケ所に均等に設置された樹脂温度計により測定した中で最 も高い樹脂温度を最高樹脂温度とし表 7に示した。またベント真空ゾーンは L/D0 = 96に位置に設け、ゲージ圧力— 0. IMPaで揮発成分の除去を行った。吐出された ストランド状の溶融樹脂を、冷却バスを通過させて冷却し、ペレタイザ一により引取り ながら裁断することにより、熱可塑性樹脂組成物のペレット状のサンプルを得た。該 サンプノレを 80°Cで 12時間以上真空乾燥後、前記した射出成形および押出成形を 実施し、各種評価を行った。混練条件および各種評価結果を表 7に示す。
[0165] 本発明の実施例 7の大荷重、高速度の自由落下衝撃試験の様子を示す写真図を 図 5に示す。この図によれば、大荷重、高速度の自由落下衝撃試験においても、成 形品自体は 5cm以上の亀裂を発生しなレ、ことがわかる。
[0166] 実施例 9 スクリュー径 37mm、スクリューは 2条ネジの 2本のスクリューの L/D0 = 100の同 方向回転完全嚙み合レ、型二軸押出機 (東芝機械社製、 TEM - 37BS - 26/2V) に設置されている L/D0 = 72のサンプリングバルブより熱可塑性樹脂組成物を吐出 し、ベント真空ゾーンを L/D0 = 68に位置に設けてゲージ圧力— 0. IMPaで揮発 成分の除去を行った以外は、実施例 7と同様にして溶融混練を実施し、熱可塑性樹 脂組成物を得た。混練条件および各種評価結果を表 7に示す。なお、スクリュー全長 に対する上記ニーデイングゾーンの合計長さの割合(%)を、(ニーデイングゾーンの 合計長さ) ÷ (スクリュー全長) X 100により算出すると、ニーデイングゾーンの合計長 さの割合は 15 %であつた。
[0167] 実施例 10
ベント真空ゾーンにおけるゲージ圧力を一0. 05MPaとした以外は、実施例 7と同 様にして溶融混練を実施し、熱可塑性樹脂組成物を得た。混練条件および各種評 価結果を表 7に示す。
[0168] 実施例 11
熱可塑性樹脂 (A)として水分率 7000ppmのナイロン 6樹脂 (A— 2)を使用した以 外は、実施例 7と同様にして溶融混練を実施し、熱可塑性樹脂組成物を得た。混練 条件および各種評価結果を表 7に示す。
[0169] 実施例 12
シリンダー温度を 330°Cに設定して溶融混練した以外は、実施例 7と同様にして溶 融混練を実施し、熱可塑性樹脂組成物を得た。混練条件および各種評価結果を表 7に示す。
[0170] 実施例 13
反応性官能基を有する樹脂 (B)として無水マレイン酸変性エチレン一 1 -ブテン共 重合体 (B— 2)を使用した以外は、実施例 7と同様にして溶融混練を実施し、熱可塑 性樹脂組成物を得た。混練条件および各種評価結果を表 7に示す。
[0171] 比較例 11、 12
スクリュー構成: Bとして、 L/D0 = 22, 28、 43、 55、 69、 77、 93の位置力、ら女合まる 7箇所のニーデイングゾーンを設け、各ニーデイングゾーンの長さ LkZDOは、順番 に Lk/D0 = l . 8、 1. 8、 2. 3、 2. 3、 2. 3、 2. 3、 3. 0とし、逆スクリューゾーンを設 けなかった。またベント真空ゾーンにおけるゲージ圧力を 0· 05MPaとした以外は 、実施例 7、 8と同様にして溶融混練を実施し、熱可塑性樹脂組成物を得た。混練条 件および各種評価結果を表 7に示す。
[0172] 比較例 13
スクリュー構成を Bとし、またベント真空ゾーンにおけるゲージ圧力を一0. 05MPa とした以外は、実施例 9と同様にして溶融混練を実施し、熱可塑性樹脂組成物を得 た。混練条件および各種評価結果を表 7に示す。
[0173] 比較例 14
スクリュー構成を Bとし、スクリュー径 37mm、スクリューは 2条ネジの 2本のスクリュー の L/D0 = 100の同方向回転完全嚙み合レ、型二軸押出機 (東芝機械社製、 TEM — 37BS— 26/2V)に設置されている L/D0 = 40のサンプリングバルブより熱可塑 性樹脂組成物を吐出し、ベント真空ゾーンを L/D0 = 36に位置に設けてゲージ圧 力— 0. 05MPaで揮発成分の除去を行い、押出量 20kg/hで吐出した以外は、比 較例 11と同様にして溶融混練を実施し、熱可塑性樹脂組成物を得た。混練条件お よび各種評価結果を表 7に示す。なお、スクリュー全長に対する上記ニーデイングゾ ーンの合計長さの割合(%)を、(ニーデイングゾーンの合計長さ) ÷ (スクリュー全長) X 100により算出すると、ニーデイングゾーンの合計長さの割合は 9%であった。
[0174] 比較例 15
反応性官能基を有する樹脂 (B)の代わりに未変性 PE共重合体 (C 1)を使用した 以外は、実施例 10と同様にして溶融混練を実施し、熱可塑性樹脂組成物を得た。混 練条件および各種評価結果を表 7に示す。
[0175] 比較例 16
反応性官能基を有する樹脂(B)としてエチレンーメタクリル酸ーメタクリル酸亜鉛塩 共重合体 (B— 3)を使用し、組成を変化させた以外は、比較例 14と同様にして溶融 混練を実施し、熱可塑性樹脂組成物を得た。混練条件および各種評価結果を表 7に 示す。
[0176] 本発明の比較例 16の大荷重、高速度の自由落下衝撃試験の様子を示す写真図 を図 6に示す。この図によれば、大荷重、高速度の自由落下衝撃試験において、成 形品自体で 5cm以上の亀裂が発生していることがわかる。
[0177] 比較例 17
代表的な衝撃吸収材料である熱可塑性ポリウレタン (D— 1)の各種評価結果を表 7 に示す。
[0178] [表 7]
Figure imgf000063_0001
〔〕
8
Figure imgf000064_0002
Figure imgf000064_0001
〔〕 を有し、かつ前記した大荷重、高速度の自由落下衝撃試験においても、対象物に与 える最大点荷重が 20キロニュートン未満と低ぐ成形品自体は 5cm以上の亀裂を発 生しないため大きな破壊がなぐ衝撃吸収部材用途に優れている。本発明では、溶 融混練中の樹脂圧力、ベント真空圧力、水分量、樹脂温度を制御して溶融混練する ことが重要であり、その結果、分散相中に連続相成分を含む 3次元的な連結構造 Cs が形成され、さらに平均粒子径が lOOOnm以下の分散相 Dpの断面に占める連結構 造 Csの面積の割合が大きくなる。また試験片を使用した引張試験においても、引張 速度を大きくするに従い、引張弾性率が顕著に低下し、さらに引張破断伸度も大きく 増大する。
[0181] 一方、比較例 11〜: 13に示す従来の熱可塑性樹脂組成物では、溶融混練条件を 高度に制御していないため、分散相中に連続相成分を含む 3次元的な連結構造 Cs が形成されるものの、平均粒子径が lOOOnm以下の分散相 Dpの断面に占める連結 構造 Csの面積の割合が小さぐ試験片としての衝撃強度は高くても、前記した大荷 重、高速度の自由落下衝撃試験においては、対象物に与える最大点荷重が高ぐ成 形品自体は 5cm以上の亀裂を発生させる。また試験片を使用した引張試験におい ても、引張速度を大きくするに従い、引張弾性率が低下し、引張破断伸度も増大する ものの、その程度は大きくはない。
[0182] また、比較例 14〜: 16に示す従来の熱可塑性樹脂組成物でも、溶融混練条件を高 度に制御していないため、分散相中に連続相成分を含む 3次元的な連結構造 は 形成されず、前記した大荷重、高速度の自由落下衝撃試験においては、対象物に 与える最大点荷重がより高ぐ成形品自体は 5cm以上の亀裂を発生させる。また試 験片を使用した引張試験においては、引張速度を大きくするに従い、引張弾性率は 増大し、さらに引張破断伸度も低下する。
[0183] 比較例 17に示した、代表的な衝撃吸収材料である熱可塑性ポリウレタンでは、前 記した大荷重、高速度の自由落下衝撃試験において、対象物に与える最大点荷重 が 20キロニュートン未満と低ぐ成形品自体は 5cm以上の亀裂を発生しなレ、が、荷 重たわみ温度が 20°C未満と低いため使用範囲が制限されやすいことが分かる。
[0184] 実施例 14 熱可塑性樹脂 (A)として水分率 500ppmのナイロン 66樹脂 (A—3)を使用し、シリ ンダー温度を 280°Cに設定して溶融混練した以外は、実施例 7と同様にして溶融混 練を実施し、熱可塑性樹脂組成物を得た。混練条件および各種評価結果を表 8に示 す。
[0185] 実施例 15
熱可塑性樹脂 (A)として水分率 500ppmのナイロン 610樹脂 (A—4)を使用した以 外は、実施例 7と同様にして溶融混練を実施し、熱可塑性樹脂組成物を得た。混練 条件および各種評価結果を表 8に示す。
[0186] 実施例 16
熱可塑性樹脂 (A)として水分率 500ppmのナイロン 11樹脂 (A— 5)を使用し、シリ ンダー温度を 220°Cに設定して溶融混練した以外は、実施例 7と同様にして溶融混 練を実施し、熱可塑性樹脂組成物を得た。混練条件および各種評価結果を表 8に示 す。
[0187] 実施例 17
熱可塑性樹脂 (A)として水分率 lOOppmのポリブチレンテレフタレート樹脂 (A— 6 )を使用した以外は、実施例 7と同様にして溶融混練を実施し、熱可塑性樹脂組成物 を得た。混練条件および各種評価結果を表 8に示す。
[0188] 比較例 18
熱可塑性樹脂 (A)として水分率 500ppmのナイロン 66樹脂 (A—3)を使用し、シリ ンダー温度を 280°Cに設定して溶融混練した以外は、比較例 11と同様にして溶融 混練を実施し、熱可塑性樹脂組成物を得た。混練条件および各種評価結果を表 8に 示す。
[0189] 比較例 19
熱可塑性樹脂 (A)として水分率 500ppmのナイロン 610樹脂 (A—4)を使用した以 外は、比較例 11と同様にして溶融混練を実施し、熱可塑性樹脂組成物を得た。混練 条件および各種評価結果を表 8に示す。
[0190] 比較例 20
熱可塑性樹脂 (A)として水分率 500ppmのナイロン 11樹脂 (A— 5)を使用し、シリ ンダー温度を 220°Cに設定して溶融混練した以外は、比較例 11と同様にして溶融 混練を実施し、熱可塑性樹脂組成物を得た。混練条件および各種評価結果を表 8に 示す。
[0191] 比較例 21
熱可塑性樹脂 (A)として水分率 lOOppmのポリブチレンテレフタレート樹脂 (A—6 )を使用した以外は、比較例 11と同様にして溶融混練を実施し、熱可塑性樹脂組成 物を得た。混練条件および各種評価結果を表 8に示す。
実施例 14〜: 17より、熱可塑性樹脂 (A)を変更した場合においても、溶融混練中の 樹脂圧力、ベント真空圧力、水分量、樹脂温度を制御して溶融混練することにより、 分散相中に連続相成分を含む 3次元的な連結構造 Csが形成され、さらに平均粒子 径が lOOOnm以下の分散相 Dpの断面に占める連結構造 Csの面積の割合が大きく することができ、その結果、常温において十分な耐熱性を有し、かつ前記した大荷重 、高速度の自由落下衝撃試験においても、対象物に与える最大点荷重が 20キロ二 ユートン未満と低ぐ成形品自体は 5cm以上の亀裂を発生しない衝撃吸収部材用途 に優れた熱可塑性樹脂組成物を得ることができる。
[0192] 一方、比較例 18〜21に示す従来の熱可塑性樹脂組成物では、溶融混練条件を 高度に制御していないため、分散相中に連続相成分を含む 3次元的な連結構造 Cs が形成されるものの、平均粒子径が lOOOnm以下の分散相 Dpの断面に占める連結 構造 Csの面積の割合が小さぐ試験片としての衝撃強度は高くても、前記した大荷 重、高速度の自由落下衝撃試験においては、対象物に与える最大点荷重が高ぐ成 形品自体は 5cm以上の亀裂を発生させる。
[0193] これらの結果より、熱可塑性樹脂 (A)および反応性官能基を有する樹脂 (B)を含 む熱可塑性樹脂組成物において、スクリュー長さ Lとスクリュー直径 DOの比 LZDO が 50以上である二軸押出機を使用し、樹脂圧力、ベント真空圧力、水分量、樹脂温 度を制御して溶融混練することにより分散相内の構造を高度に制御することができ、 常温において十分な耐熱性を有しながら、かつ大荷重、高速度の衝撃を受けた際に も、対象物に与える最大荷重が低ぐ大きな破壊を起こさない衝撃吸収部材用に優 れた熱可塑性樹脂組成物を得ることができることが分かる。 産業上の利用可能性
本発明の樹脂組成物は、成型品、フィルム、繊維等への成形が可能であり、これら の成形品は電気'電子分野、 自動車分野の部品、建材、各種フィルム、シート、衣料 、スポーツ関連用品として利用可能である。

Claims

請求の範囲
[1] 熱可塑性樹脂 (A)および反応性官能基を有する樹脂 (B)を含む熱可塑性樹脂組成 物であって、透過型電子線トモグラフィー法により観察された該樹脂組成物のモルフ ォロジ一において、(A)または(B)の一方が連続相、もう一方が分散相を形成し、か つ前記分散相中に、前記連続相成分を含む 3次元的な連結構造 Csが形成され、か つ前記分散相のうち、平均粒子径が lOOOnm以下の分散相 Dpの断面に占める前 記連結構造 Csの面積の割合が、 10%以上であることを特徴とする熱可塑性樹脂組 成物。
[2] 前記熱可塑性樹脂 (A)が、ポリアミド樹脂、ポリエステル樹脂、ポリフエ二レンスルフィ ド樹脂、ポリアセタール樹脂、スチレン系樹脂、ポリフエ二レンォキシド樹脂およびポリ カーボネート樹脂から選ばれる少なくとも 1種であることを特徴とする請求項 1に記載 の熱可塑性樹脂組成物。
[3] 前記熱可塑性樹脂 (A)がポリアミド樹脂であることを特徴とする請求項 1に記載の熱 可塑性樹脂組成物。
[4] ポリアミド樹脂 (A1)および反応性官能基を有する樹脂 (B)を含む熱可塑性樹脂組 成物であり、固体 NMR測定による炭素核の緩和時間 T1Cにおいて、ポリアミド樹脂 (A1)のカルボニル基の炭素に対応した緩和時間の 2成分解析における 2つの緩和 時間の内、長い方の緩和時間 T1C1が 65秒以下であり、かつポリアミド樹脂 (A1)の NH基に隣接した炭化水素基の炭素に対応した緩和時間の 2成分解析における 2つ の緩和時間の内、長い方の緩和時間 T1C2が 15秒以下であることを特徴とする熱可 塑性樹脂組成物。
[5] ポリアミド樹脂 (A1)が、ポリアミド 6であることを特徴とする請求項 4に記載の熱可塑 性樹脂組成物。
[6] 反応性官能基を有する樹脂 (B)が、ゴム質重合体であることを特徴とする請求項 1か ら 5のいずれか 1項に記載の熱可塑性樹脂組成物。
[7] 反応性官能基を有する樹脂(B)の反応性官能基が、アミノ基、カルボキシル基、カル ボキシル金属塩、エポキシ基、酸無水物基およびォキサゾリン基から選ばれる少なく とも 1種であることを特徴とする請求項 1から 6のいずれ力 1項に記載の熱可塑性樹脂 組成物。
[8] 樹脂組成物から射出成形により、 JIS 5Aダンベル型試験片(長さ 75mm X端部幅 12. 5mm X厚さ 2mm)の成形品を作製し、その成形品の引張試験において、引張 速度 VI、 V2のときの引張弾性率を E (V1)、 E (V2)とすると、 V1 < V2のとき、 E (V1 ) > E (V2)となるような特性を有することを特徴とする請求項 1〜7のいずれ力 4項記 載の熱可塑性樹脂組成物。
[9] 成形品の引張試験において、引張速度 VI、 V2のときの引張破断伸度を ε (VI )、 ε (V2)とすると、 V1 < V2のとき、 ε (VI )く ε (V2)であることを特徴とする請求項 8記載の熱可塑性樹脂組成物。
[10] 樹脂組成物から射出成形により、 JIS— 1号短冊型試験片(幅 l Omm X長さ 80mm
X厚さ 4mm)の成形品を作製し、その成形品の 0. 45MPaにおける荷重たわみ温度 力 0°C以上で、かつ最外直径 50mm、厚さ 2mm、高さ 150mmの円筒状成形品に おいて、質量 193kgの錘体を落下高さ 0. 5mから自由落下させた際、錘体にかかる 最大点荷重が 20キロニュートン未満であり、 5cm以上の亀裂が発生しないことを特 徴とする請求項 1〜9のいずれ力 1項記載の熱可塑性樹脂組成物。
[11] 熱可塑性樹脂 (A)および反応性官能基を有する樹脂 (B)を、スクリュー長さ Lとスクリ ユー直径 DOの比 L/DOが 50以上である二軸押出機により溶融混練する際に、前記 二軸押出機のスクリューが複数箇所のフルフライトゾーンおよびニーデイングゾーン を有し、スクリュー中のニーデイングゾーンの樹脂圧力のうち最大の樹脂圧力を Pkm ax (MPa)、スクリュー中のフルフライトゾーンの樹脂圧力のうち最小の樹脂圧力を Pf min (MPa)としたときに Pkmax≥Pfmin+ 0. 3となる条件で溶融混練することを特 徴とする請求項 1に記載の熱可塑性樹脂組成物の製造方法。
[12] 前記二軸押出機に原料を供給してから押し出すまでの滞留時間を 1分力 30分、押 出量をスクリュー回転 lrpm当たり 0. O lkg/h以上の条件で溶融混練することを特 徴とする請求項 1 1に記載の熱可塑性樹脂組成物の製造方法。
[13] 前記二軸押出機のスクリューが、同方向回転完全嚙み合い型であることを特徴とする 請求項 1 1または 12に記載の熱可塑性樹脂組成物の製造方法。
[14] 前記ニーデイングゾーンの合計長さが、前記スクリュー長さの 5〜50%であることを特 徴とする請求項 11〜: 13のいずれかに記載の熱可塑性樹脂組成物の製造方法。
[15] 前記ニーデイングゾーンのそれぞれの長さ Lk力 Lk/D0 = 0. 2〜10を満たすこと を特徴とする請求項 11〜: 14のいずれかに記載の熱可塑性樹脂組成物の製造方法
[16] 前記二軸押出機にベント真空ゾーンを設け、ベント真空ゾーンにおいてゲージ圧力 -0. 07MPa以下の圧力まで減圧して溶融混練して製造することを特徴とする請求 項 11〜: 15のいずれかに記載の熱可塑性樹脂組成物の製造方法。
[17] 水分率 5000ppm未満の原料を使用して溶融混練して製造することを特徴とする請 求項 11〜: 16のいずれかに記載の熱可塑性樹脂組成物の製造方法。
[18] 最高樹脂温度を 180°C〜330°Cに制御して溶融混練して製造することを特徴とする 請求項 11〜: 17のいずれかに記載の熱可塑性樹脂組成物の製造方法。
[19] 請求項 1〜: 10のいずれかに記載の熱可塑性樹脂組成物または請求項 11〜: 18のい ずれかに記載の製造方法で得られた熱可塑性樹脂組成物を成形した成形品。
[20] 成形品が、フィルム、シートおよび繊維から選ばれる少なくとも 1種である請求項 19記 載の成形品。
[21] 成形品が自動車用部品、建材、スポーツ用品および電気 ·電子部品から選ばれる少 なくとも 1種である請求項 19または 20記載の成形品。
[22] 成形品が衝撃吸収部材部材であることを特徴とする請求項 19〜21のいずれ力 1項 記載の成形品。
PCT/JP2007/055825 2006-03-23 2007-03-22 熱可塑性樹脂組成物、その製造方法および成形品 WO2007108501A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07739268.6A EP2017306B1 (en) 2006-03-23 2007-03-22 Thermoplastic resin composition, process for producing the same and molding
US12/293,697 US7960473B2 (en) 2006-03-23 2007-03-22 Thermoplastic resin composition, production method thereof, and molded article
CN2007800185665A CN101558121B (zh) 2006-03-23 2007-03-22 热塑性树脂组合物、其制造方法以及成形品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006080037A JP4720567B2 (ja) 2006-03-23 2006-03-23 熱可塑性樹脂組成物およびその製造方法
JP2006-080037 2006-03-23
JP2006-080035 2006-03-23
JP2006080035A JP2007254567A (ja) 2006-03-23 2006-03-23 熱可塑性樹脂組成物およびその製造方法

Publications (1)

Publication Number Publication Date
WO2007108501A1 true WO2007108501A1 (ja) 2007-09-27

Family

ID=38522527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055825 WO2007108501A1 (ja) 2006-03-23 2007-03-22 熱可塑性樹脂組成物、その製造方法および成形品

Country Status (6)

Country Link
US (1) US7960473B2 (ja)
EP (1) EP2017306B1 (ja)
KR (1) KR101376640B1 (ja)
CN (1) CN102585494B (ja)
MY (1) MY146826A (ja)
WO (1) WO2007108501A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254568A (ja) * 2006-03-23 2007-10-04 Toray Ind Inc スポーツ用品
JP2009203410A (ja) * 2008-02-29 2009-09-10 Toray Ind Inc 熱可塑性樹脂組成物およびその製造方法
WO2009119624A1 (ja) * 2008-03-27 2009-10-01 東レ株式会社 熱可塑性樹脂組成物の製造方法
JP2010195853A (ja) * 2009-02-23 2010-09-09 Toray Ind Inc 熱可塑性樹脂組成物およびその製造方法
US20120003427A1 (en) * 2010-05-31 2012-01-05 Nissan Motor Co., Ltd. Water repellent film and component for vehicle including the film
WO2013015111A1 (ja) * 2011-07-25 2013-01-31 東レ株式会社 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
JP2015163692A (ja) * 2014-02-03 2015-09-10 東レ株式会社 熱可塑性樹脂組成物
JP2021080344A (ja) * 2019-11-18 2021-05-27 宇部興産株式会社 ポリアミド樹脂組成物

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009141863A1 (ja) * 2008-05-19 2011-09-22 関東自動車工業株式会社 自動車のエアバッグドア及びその製造方法
JP5188425B2 (ja) * 2009-03-09 2013-04-24 日本碍子株式会社 坏土の評価方法、及び坏土の製造方法
WO2010107022A1 (ja) 2009-03-16 2010-09-23 東レ株式会社 繊維強化樹脂組成物、成形材料および繊維強化樹脂組成物の製造方法
EP2305447B1 (de) * 2009-10-05 2014-11-12 Basf Se Verfahren zur Herstellung von Bauteilen aus einer thermoplastischen Formmasse, sowie Bauteile aus einer thermoplastischen Formmasse
US8375475B2 (en) * 2009-11-20 2013-02-19 Flight Suits Method and device for making a heat exchanging garment
EP2381503B1 (en) * 2010-04-23 2013-04-17 Polyphotonix Limited Method for manufacturing material for use in manufacturing electroluminescent organic semiconductor devices
US8726424B2 (en) 2010-06-03 2014-05-20 Intellectual Property Holdings, Llc Energy management structure
FR2969528B1 (fr) 2010-12-27 2016-12-30 Arkema France Procede d'extrusion d'un polymere en presence d'eau
US9516910B2 (en) 2011-07-01 2016-12-13 Intellectual Property Holdings, Llc Helmet impact liner system
JP5918855B2 (ja) 2011-09-20 2016-05-18 ティコナ・エルエルシー ポリアリーレンスルフィド/液晶ポリマーアロイ及び、それを含む組成物
JP6276692B2 (ja) 2011-09-20 2018-02-07 ティコナ・エルエルシー ポータブル電子機器用のハウジング
JP6504817B2 (ja) 2011-09-20 2019-04-24 ティコナ・エルエルシー 低ハロゲン含量のジスルフィド洗浄ポリアリーレンスルフィド
US8663764B2 (en) 2011-09-20 2014-03-04 Ticona Llc Overmolded composite structure for an electronic device
CN108102370A (zh) 2011-09-20 2018-06-01 提克纳有限责任公司 低氯填充的熔融加工的聚芳硫醚组合物
WO2013055743A1 (en) * 2011-10-10 2013-04-18 Intellectual Property Holdings, Llc Helmet impact liner system
EP2584624A1 (en) * 2011-10-18 2013-04-24 Polyphotonix Limited Method of manufacturing precursor material for forming light emitting region of electroluminescent device
US9494260B2 (en) 2012-04-13 2016-11-15 Ticona Llc Dynamically vulcanized polyarylene sulfide composition
US9394430B2 (en) 2012-04-13 2016-07-19 Ticona Llc Continuous fiber reinforced polyarylene sulfide
US9765219B2 (en) 2012-04-13 2017-09-19 Ticona Llc Polyarylene sulfide components for heavy duty trucks
US9494262B2 (en) 2012-04-13 2016-11-15 Ticona Llc Automotive fuel lines including a polyarylene sulfide
US9758674B2 (en) 2012-04-13 2017-09-12 Ticona Llc Polyarylene sulfide for oil and gas flowlines
US9493646B2 (en) 2012-04-13 2016-11-15 Ticona Llc Blow molded thermoplastic composition
US9320311B2 (en) 2012-05-02 2016-04-26 Intellectual Property Holdings, Llc Helmet impact liner system
US9894953B2 (en) 2012-10-04 2018-02-20 Intellectual Property Holdings, Llc Helmet retention system
US20140121034A1 (en) * 2012-10-26 2014-05-01 Mikhail Lewis Novak Semitransparent grips for use with athletic equipment
US9963566B2 (en) * 2013-08-02 2018-05-08 Nike, Inc. Low density foamed articles and methods for making
JP6626444B2 (ja) 2013-08-27 2019-12-25 ティコナ・エルエルシー 射出成形用の耐熱性強化熱可塑性組成物
WO2015031232A1 (en) 2013-08-27 2015-03-05 Ticona Llc Thermoplastic composition with low hydrocarbon uptake
US9328224B2 (en) * 2013-09-17 2016-05-03 Nike, Inc. Dynamically crosslinked thermoplastic material process
US9743701B2 (en) 2013-10-28 2017-08-29 Intellectual Property Holdings, Llc Helmet retention system
WO2016094381A1 (en) 2014-12-11 2016-06-16 Ticona Llc Stabilized flexible thermoplastic composition and products formed therefrom
JP6140134B2 (ja) * 2014-12-12 2017-05-31 ファナック株式会社 射出成形機の突出し制御装置
US9850380B2 (en) * 2015-02-27 2017-12-26 Toray Industries, Inc. Polyamide resin composition for molded article exposed to high-pressure hydrogen and molded article made of the same
CN104894992B (zh) * 2015-05-27 2017-05-17 明光泰源安防科技有限公司 无线报警路锥
EP3294519B1 (de) * 2015-07-20 2019-12-25 KraussMaffei Technologies GmbH Verfahren zum betreiben einer spritzgiessmaschine
US9862809B2 (en) 2015-07-31 2018-01-09 Ticona Llc Camera module
US10407605B2 (en) 2015-07-31 2019-09-10 Ticona Llc Thermally conductive polymer composition
TWI708806B (zh) 2015-08-17 2020-11-01 美商堤康那責任有限公司 用於相機模組之液晶聚合物組合物
EP3292172B1 (en) 2015-12-11 2023-05-24 Ticona LLC Crosslinkable polyarylene sulfide composition
EP3387070A4 (en) 2015-12-11 2019-08-14 Ticona LLC POLYARYLENE SULFIDE COMPOSITION
WO2017161534A1 (en) 2016-03-24 2017-09-28 Ticona Llc Composite structure
BR112019002526B1 (pt) 2016-08-08 2022-09-27 Ticona Llc Composição polimérica termicamente condutora para um dissipador de calor
US10633535B2 (en) 2017-02-06 2020-04-28 Ticona Llc Polyester polymer compositions
WO2019112847A1 (en) 2017-12-05 2019-06-13 Ticona Llc Aromatic polymer composition for use in a camera module
EP3501333B1 (en) 2017-12-20 2020-06-24 The Gillette Company LLC Oral care implement
EP3749710A1 (en) 2018-02-08 2020-12-16 Celanese Sales Germany GmbH Polymer composite containing recycled carbon fibers
USD960581S1 (en) 2018-02-09 2022-08-16 The Gillette Company Llc Toothbrush head
WO2019164723A1 (en) 2018-02-20 2019-08-29 Ticona Llc Thermally conductive polymer composition
US11086200B2 (en) 2019-03-20 2021-08-10 Ticona Llc Polymer composition for use in a camera module
JP7461959B2 (ja) 2019-03-20 2024-04-04 ティコナ・エルエルシー カメラモジュールのためのアクチュエータアセンブリ
JP2020201081A (ja) * 2019-06-07 2020-12-17 本田技研工業株式会社 リチウムイオン二次電池の微小短絡判定方法
USD957135S1 (en) 2020-07-02 2022-07-12 The Gillette Company Llc Toothbrush head
CA218833S (en) 2020-11-06 2023-11-08 Gillette Co Llc Toothbrush head
KR102618102B1 (ko) * 2021-12-09 2023-12-27 서울대학교산학협력단 기계적 물성, 차단성 및 가공성이 향상된 생분해성 고분자 블렌드 및 그 제조방법
CN115301004B (zh) * 2022-06-10 2024-04-19 江苏金牛星电子科技有限公司 一种智慧城市的智能公交电子站牌

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
US3845163A (en) 1966-01-24 1974-10-29 Du Pont Blends of polyamides and ionic copolymer
JPS51151797A (en) 1975-06-20 1976-12-27 Asahi Chem Ind Co Ltd Impact resistant polyamide composition
JPH07166041A (ja) 1993-12-15 1995-06-27 Polyplastics Co 高耐衝撃性ポリアルキレンテレフタレート系樹脂組成物及びその成形品
JPH08183887A (ja) 1994-12-28 1996-07-16 Showa Denko Kk ポリプロピレン系樹脂組成物及びその製造方法
JPH0931325A (ja) 1995-07-18 1997-02-04 Mitsubishi Eng Plast Kk ポリアミド系樹脂組成物
JP2000319475A (ja) 1999-03-08 2000-11-21 Mitsubishi Rayon Co Ltd 耐衝撃性樹脂組成物、その製造方法、および、その成形品
JP2001106844A (ja) 1999-10-13 2001-04-17 Asahi Kasei Corp プロピレン系樹脂組成物
JP2005187809A (ja) 2003-12-02 2005-07-14 Toray Ind Inc 樹脂組成物およびその製造方法
JP2006089701A (ja) 2004-08-27 2006-04-06 Toray Ind Inc 熱可塑性樹脂組成物およびその製造方法
JP2006176676A (ja) * 2004-12-22 2006-07-06 Sumitomo Chemical Co Ltd 樹脂組成物およびその成形体
JP2006347151A (ja) * 2005-03-29 2006-12-28 Toray Ind Inc 熱可塑性樹脂組成物の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003003A (en) * 1988-04-22 1991-03-26 Copolymer Rubber & Chemical Corporation Polyamide thermoplastic elastomer obtained by blending
ZA899630B (en) 1988-12-22 1990-11-28 Ferro Corp Toughened polyamide compositions
CA2029032A1 (en) * 1989-11-01 1991-05-02 Yoshihisa Tajima Thermoplastic interpenetrating network structure and method of forming the same
US6062283A (en) * 1996-05-29 2000-05-16 The Yokohama Rubber Co., Ltd. Pneumatic tire made by using lowly permeable thermoplastic elastomer composition in gas-barrier layer and thermoplastic elastomer composition for use therein
JP4627908B2 (ja) 2001-03-14 2011-02-09 住友化学株式会社 スクリュー混練装置及びこれを用いた樹脂組成物の製造方法
JP4562980B2 (ja) 2001-11-16 2010-10-13 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂厚肉成形品

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
US3845163A (en) 1966-01-24 1974-10-29 Du Pont Blends of polyamides and ionic copolymer
JPS51151797A (en) 1975-06-20 1976-12-27 Asahi Chem Ind Co Ltd Impact resistant polyamide composition
JPH07166041A (ja) 1993-12-15 1995-06-27 Polyplastics Co 高耐衝撃性ポリアルキレンテレフタレート系樹脂組成物及びその成形品
JPH08183887A (ja) 1994-12-28 1996-07-16 Showa Denko Kk ポリプロピレン系樹脂組成物及びその製造方法
JPH0931325A (ja) 1995-07-18 1997-02-04 Mitsubishi Eng Plast Kk ポリアミド系樹脂組成物
JP2000319475A (ja) 1999-03-08 2000-11-21 Mitsubishi Rayon Co Ltd 耐衝撃性樹脂組成物、その製造方法、および、その成形品
JP2001106844A (ja) 1999-10-13 2001-04-17 Asahi Kasei Corp プロピレン系樹脂組成物
JP2005187809A (ja) 2003-12-02 2005-07-14 Toray Ind Inc 樹脂組成物およびその製造方法
JP2006089701A (ja) 2004-08-27 2006-04-06 Toray Ind Inc 熱可塑性樹脂組成物およびその製造方法
JP2006176676A (ja) * 2004-12-22 2006-07-06 Sumitomo Chemical Co Ltd 樹脂組成物およびその成形体
JP2006347151A (ja) * 2005-03-29 2006-12-28 Toray Ind Inc 熱可塑性樹脂組成物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULES, vol. 36, 2003, pages 6962 - 6966
See also references of EP2017306A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254568A (ja) * 2006-03-23 2007-10-04 Toray Ind Inc スポーツ用品
JP2009203410A (ja) * 2008-02-29 2009-09-10 Toray Ind Inc 熱可塑性樹脂組成物およびその製造方法
US8188188B2 (en) 2008-03-27 2012-05-29 Toray Industries, Inc. Process for producing thermoplastic resin composition
TWI448498B (zh) * 2008-03-27 2014-08-11 Toray Industries 熱可塑性樹脂組成物的製造方法
CN102046704A (zh) * 2008-03-27 2011-05-04 东丽株式会社 热塑性树脂组合物的制备方法
JP4788824B2 (ja) * 2008-03-27 2011-10-05 東レ株式会社 熱可塑性樹脂組成物の製造方法
KR101097137B1 (ko) 2008-03-27 2011-12-22 도레이 카부시키가이샤 열가소성 수지 조성물의 제조 방법
CN102046704B (zh) * 2008-03-27 2013-11-20 东丽株式会社 热塑性树脂组合物的制备方法
WO2009119624A1 (ja) * 2008-03-27 2009-10-01 東レ株式会社 熱可塑性樹脂組成物の製造方法
JP2010195853A (ja) * 2009-02-23 2010-09-09 Toray Ind Inc 熱可塑性樹脂組成物およびその製造方法
US20120003427A1 (en) * 2010-05-31 2012-01-05 Nissan Motor Co., Ltd. Water repellent film and component for vehicle including the film
US9724892B2 (en) * 2010-05-31 2017-08-08 Nissan Motor Co., Ltd. Water repellent film and component for vehicle including the film
WO2013015111A1 (ja) * 2011-07-25 2013-01-31 東レ株式会社 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
JP5278621B1 (ja) * 2011-07-25 2013-09-04 東レ株式会社 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
US9334482B2 (en) 2011-07-25 2016-05-10 Toray Industries, Inc. Thermoplastic resin composition for impact absorbing member and method for producing same
JP2015163692A (ja) * 2014-02-03 2015-09-10 東レ株式会社 熱可塑性樹脂組成物
JP2021080344A (ja) * 2019-11-18 2021-05-27 宇部興産株式会社 ポリアミド樹脂組成物
JP7380116B2 (ja) 2019-11-18 2023-11-15 Ube株式会社 ポリアミド樹脂組成物

Also Published As

Publication number Publication date
EP2017306A1 (en) 2009-01-21
KR20080111018A (ko) 2008-12-22
US20100273944A1 (en) 2010-10-28
KR101376640B1 (ko) 2014-03-20
US7960473B2 (en) 2011-06-14
EP2017306B1 (en) 2013-08-21
MY146826A (en) 2012-09-28
CN102585494A (zh) 2012-07-18
EP2017306A4 (en) 2012-02-01
CN102585494B (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2007108501A1 (ja) 熱可塑性樹脂組成物、その製造方法および成形品
JP5292854B2 (ja) 熱可塑性樹脂組成物およびその製造方法
KR101097137B1 (ko) 열가소성 수지 조성물의 제조 방법
JP5200989B2 (ja) 熱可塑性樹脂組成物およびその製造方法
JP5505304B2 (ja) 繊維強化樹脂組成物、成形材料および繊維強化樹脂組成物の製造方法
KR101675654B1 (ko) 열가소성 수지 조성물 및 그의 제조 방법, 및 성형체
JP5278621B1 (ja) 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
JP2007254567A (ja) 熱可塑性樹脂組成物およびその製造方法
JP5124932B2 (ja) 熱可塑性樹脂組成物の製造方法
CN107531995B (zh) 树脂组合物及其成型品
JP5625588B2 (ja) 熱可塑性樹脂組成物の製造方法
JP4720567B2 (ja) 熱可塑性樹脂組成物およびその製造方法
JP2008156604A (ja) 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
JP2009155366A (ja) 発泡成形品
JP4821393B2 (ja) スポーツ用品
JP5391548B2 (ja) 衝撃吸収部材
JP7388132B2 (ja) 樹脂組成物およびその成形品
JP2012072221A (ja) 熱可塑性樹脂組成物およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018566.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739268

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087023262

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007739268

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12293697

Country of ref document: US