WO2007099867A1 - 有機酸生産菌及び有機酸の製造法 - Google Patents

有機酸生産菌及び有機酸の製造法 Download PDF

Info

Publication number
WO2007099867A1
WO2007099867A1 PCT/JP2007/053360 JP2007053360W WO2007099867A1 WO 2007099867 A1 WO2007099867 A1 WO 2007099867A1 JP 2007053360 W JP2007053360 W JP 2007053360W WO 2007099867 A1 WO2007099867 A1 WO 2007099867A1
Authority
WO
WIPO (PCT)
Prior art keywords
activity
bacteria
organic acid
bacterium
acid
Prior art date
Application number
PCT/JP2007/053360
Other languages
English (en)
French (fr)
Inventor
Makoto Murase
Ryusuke Aoyama
Akiko Sakamoto
Sanae Sato
Madoka Yonekura
Shuichi Yunomura
Kenji Yamagishi
Keita Fukui
Chie Koseki
Jun Nakamura
Hiroyuki Kojima
Original Assignee
Mitsubishi Chemical Corporation
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation, Ajinomoto Co., Inc. filed Critical Mitsubishi Chemical Corporation
Priority to JP2008502748A priority Critical patent/JP5180060B2/ja
Priority to US12/280,426 priority patent/US7993888B2/en
Priority to BRPI0707674-6A priority patent/BRPI0707674A2/pt
Priority to EP07714831.0A priority patent/EP1995308B1/en
Priority to CN200780006557.4A priority patent/CN101389752B/zh
Publication of WO2007099867A1 publication Critical patent/WO2007099867A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid

Definitions

  • Organic acid producing bacteria and method for producing organic acid are organic acid producing bacteria and method for producing organic acid
  • the present invention relates to organic acid-producing bacteria such as coryneform bacteria and production of organic acids such as succinic acid using the same.
  • Non-Patent Document 1 When an organic acid such as succinic acid is produced by fermentation, anaerobic bacteria such as Anaerobiospirillum genus and Actinobacillus genus are usually used (Patent Documents 1 and 2, Non-Patent Document 1).
  • anaerobic bacteria When anaerobic bacteria are used, the yield of the product is high, but on the other hand, a large amount of organics such as CSL (corn steep liquor) in the medium because it requires more nutrients to grow. It is necessary to add a nitrogen source. Adding a large amount of these organic nitrogen sources not only increases the cost of the medium, but also increases the purification cost when extracting the product, which is economical!
  • Patent Document 2 With regard to 2-oxoglutarate dehydrogenase (also called at-ketoglutarate dehydrogenase), reports have shown that its activity has been confirmed in coryneform bacteria (Non-patent Document 2), and reports that genes have been cloned (non-patent) There is Patent Document 3). In addition, a method for producing an amino acid using a microorganism having a reduced 2-oxodaltalate dehydrogenase activity is disclosed (Patent Document 6).
  • Patent Document 1 U.S. Pat.No. 5,143,834
  • Patent Document 2 U.S. Pat.No. 5,504,004
  • Patent Document 3 Japanese Patent Laid-Open No. 11-113588
  • Patent Document 4 Japanese Patent Laid-Open No. 11 196888
  • Patent Document 5 Japanese Patent Laid-Open No. 11-196887
  • Patent Document 6 International Publication No. 95Z34672 Pamphlet
  • Non-patent literature 1 International Journal of Systematic Bacteriology (1999), 49,207-216
  • Non-patent literature 2 Shiio I, Ujigawa- Takeda K. 1980. Presence and regulation of -keto glutarate dehydrogenase complex in a glutamate— producing bacterium, Brevibacterium flavum. Agric. Biol. Chem. 44: 1897—1904.
  • Non-Patent Document 3 Usuda Y. Tujimoto N, Abe CAsakura Y. Kimura E. Kawahara Y, O, Mat sui H. 1996. Molecular cloning of the Corynebacterium glutamicum ('Brevibacteriu m lactofermentum' AJ12036) odhA gene encoding a novel type of 2-oxoglutaratedeh ydrogenase. Microbiology. 142: 3347-54.
  • An object of the present invention is to provide a method for producing an organic acid such as succinic acid with higher production efficiency.
  • a bacterium having an ability to produce an organic acid and modified so that 2-oxodaltalate dehydrogenase activity is enhanced as compared to an unmodified strain of the enzyme.
  • An organic acid is produced by allowing the bacterium of any one of (1) to (9) or a treated product thereof to act on an organic raw material in a reaction solution containing carbonate ion, bicarbonate ion or carbon dioxide gas. And producing the organic acid, and collecting the organic acid.
  • a method for producing an organic acid-containing polymer comprising a step of producing an organic acid by the method of any one of (10) to (13), and a step of carrying out a polymerization reaction using the organic acid obtained in the step as a raw material .
  • FIG. 1 shows the procedure for constructing plasmid pC3.14.
  • FIG. 2 shows the procedure for constructing plasmid pODH3.2.
  • the bacterium of the present invention is a bacterium having an organic acid-producing ability and modified so that 2-oxodaltalate dehydrogenase (hereinafter also referred to as ODH) activity is enhanced as compared with an unmodified strain.
  • Organic acid-producing ability refers to the ability to accumulate organic acid in the medium when the bacterium of the present invention is cultured.
  • Organic acids include organic acids that are metabolic intermediates of the TCA cycle, and include, for example, succinic acid, malic acid, fumaric acid, citrate, isocitrate, and cis-aconitic acid. Succinic acid, malic acid and fumaric acid are preferred, and succinic acid is more preferred.
  • Such a bacterium may be a bacterium that originally has organic acid-producing ability or a bacterium that has been imparted with organic acid-producing ability by breeding and has been modified to enhance ODH activity. It may be modified so as to have an organic acid-producing ability by performing a modification that enhances. Examples of means for imparting an organic acid-producing ability by breeding include, for example, mutation treatment, gene recombination treatment, and the like. More specifically, modification or pyrubin that reduces ratate dehydrogenase activity as described later is used. Modifications that enhance the acid carboxylase activity are included.
  • the bacterium used in the present invention may have the ability to produce two or more kinds of organic acids.
  • Bacteria that can be used in the production method of the present invention is not particularly limited as long as it has an organic acid-producing ability, but coryneform bacteria, Bacillus bacteria, Escherichia bacteria, Lactobacillus bacteria, Among the succinobacteria and lysobium bacteria, coryneform bacteria are preferred.
  • Escherichia bacteria include Escherichia coli
  • Lactobacillus bacteria include Lactobacillus helveticus (J Appl Microbiol, 2001, 91, p846-852)
  • Bacillus bacteria include Bacillus. Subtilis, Bacillus 'Amiloli cefaciens, Bacillus pumilus, Bacillus' steer mouth thermophilus, etc.
  • the genus Rhizobium include Rhizobium etli.
  • the coryneform bacterium is not particularly limited as long as it is classified as such, and examples thereof include bacteria belonging to the genus Corynebacterium, bacteria belonging to the genus Brevibaterum, and bacteria belonging to the genus Arthrobacter. Examples include those belonging to the genus Corynebataterum or Brevibaterium, more preferably ⁇ Bacteria classified as Brembacterium ammoniagenes or Brevibacterium ⁇ Breatbacterium lactofermentum.
  • bacterial parent strain used in the present invention include Brevibaterium 'flavum MJ-233 (FERM BP-1497), MJ-233 AB-41 (FERM BP-1498), Brevibaterium 'Ammonia Genes ATCC6872, Corynebatarum' Glutamicum ATCC31831, Brevibaterumum 'Ratatomentumum ATCC13869, etc.
  • Brevibaterium flavum is currently classified as Corynebacterium glutamicum (Lielbl, W., Ehrmann, M., Ludwig, W. and Sch leifer, KH, International Journal). of Systematic Bacteriology, 1991, vol.
  • Brevibaterium 'flavum MJ-233 strain and its mutant MJ-233 AB-41 strain are each a corynebacterium.
  • the above-mentioned bacteria used as parent strains are mutant strains obtained by ordinary mutation treatments such as UV irradiation and NTG treatment, and combinations induced by genetic techniques such as cell fusion or gene recombination. It may be a misplaced stock, such as a replacement stock.
  • the bacterium of the present invention can be obtained by subjecting a bacterium having an organic acid-producing ability as described above to modification so that ODH activity is enhanced. However, the modification for enhancing the ODH activity may be performed after the modification for imparting the productive ability.
  • ODH activity refers to the activity that catalyzes the reaction that oxidatively decarboxylates 2-oxodaltalic acid ( ⁇ -ketoglutaric acid) to produce succinylo CoA (succiny ⁇ CoA).
  • the activity is enhanced means that the ODH activity is enhanced as compared with the non-modified ODH strain.
  • the ODH activity is preferably enhanced 1.5 times or more per unit cell weight, more preferably 2 times or more, compared to the non-modified ODH strain.
  • the ODH 7 tongue 'property can be measured according to the method of Shuo et al. (Isamu Shno and Kyoko Ujigawa-Takeda, Agnc. Biol. L ⁇ hem., 44 (8), 1897-1904, 1980).
  • Modifications to enhance ODH activity using the ODH gene include, for example, transformation using a plasmid, integration of the ODH gene onto the chromosome by homologous recombination, modification of the ODH gene expression regulatory sequence, etc. Can be done by.
  • the ODH gene that can be used when introducing an ODH gene into a host cell by transformation using a plasmid or homologous recombination is a gene that increases ODH activity when introduced into a host cell, that is,
  • the gene is not particularly limited as long as it is a gene encoding a protein having ODH activity, and examples thereof include an ODH gene (odhA) derived from a coryneform bacterium having the base sequence shown in SEQ ID NO: 3.
  • ODH gene encodes a protein having ODH activity, it is 90% or more, preferably 95% or more, more preferably more than the DNA having the above-mentioned base sequence and DNA that is stringent and hybridized under stringent conditions. May be a homologue gene such as DNA having a homology of 99% or more.
  • stringent conditions are those for washing ordinary Southern hybridization60.
  • ODH genes derived from bacteria other than coryneform bacteria, or from other microorganisms or plants and animals can also be used.
  • ODH genes derived from microorganisms or plants and animals have already been sequenced, and have ODH activity based on genes, homology, etc.
  • a gene coding for can be isolated from a chromosome of a microorganism, animal or plant, etc., and its nucleotide sequence determined.
  • a gene synthesized according to the sequence can be used. These can be obtained by, for example, amplifying the region containing the promoter and ORF portion by a hybridization method or a PCR method.
  • the ODH gene in the coryneform bacterium is introduced.
  • a highly replaceable string-replaceable plasmid can be obtained.
  • the promoter for expressing the ODH gene may be the promoter of the ODH gene itself, or may be replaced with another strong promoter that can function in the host bacteria.
  • promoters derived from E. coli such as tac promoter and trc promoter can be mentioned.
  • a plasmid vector that can be used is not particularly limited as long as it contains at least a gene that controls a replication function in the coryneform bacterium.
  • Specific examples thereof include, for example, plasmid PCRY30 described in JP-A-3-210184; plasmids pCRY21, pCRY2KE, pCRY2KX, pCRY31 described in JP-A-2-72876 and US Pat. No. 5,185,262.
  • PCRY3KE and PCRY3KX plasmids pCRY2 and pCRY3 described in JP-A-1 191686; JP-A-58-67679 [described in pAM330; JP-A-58-77895 described in PHM1519; PAJ655, pAJ611 and pAJ1844 described in JP-A-58-192900; pCGl described in JP-A-57-134500; PCG2 described in JP-A-58-35197; JP-A-57-183799 PCG4 and pCGll described in the publication No., pPK4 described in the pamphlet of International Publication No. 95Z34672, and the like.
  • plasmid vectors used in the coryneform bacterium host vector system have a gene that controls the replication function of the plasmid in the coryneform bacterium and a gene that controls the stabilization function of the plasmid in the coryneform bacterium.
  • plasmids pCRY30, pCRY21, pCRY2KE, pCRY2KX, pCRY31, pCRY3KE and pCRY3KX are preferably used.
  • Enhancement of ODH activity can also be achieved by replacing a promoter on the host chromosome.
  • the sequence information of the promoter region can be obtained from, for example, GenBank Database Accession No. AP005276.
  • the type of promoter to be replaced is not particularly limited as long as it can function in the host bacterium, but a promoter that does not suppress transcriptional activity under anaerobic conditions is preferred.
  • the tac promoter used in Escherichia coli the trc promoter Etc.
  • an organic acid-producing bacterium modified so as to reduce acetic acid production may be modified to enhance ODH activity.
  • 2-oxodaltalic acid may be a by-product.
  • ODH catalyzes a reaction that acidally decarboxylates 2-oxoglutaric acid to produce succinyl-CoA, and by enhancing ODH activity, the by-product of 2-oxodaltalic acid is reduced. The production amount of the target organic acid is increased.
  • modifications that reduce acetic acid production include, for example, acetate kinase (hereinafter also referred to as ACK), phosphotransacetylase (hereinafter also referred to as PTA), acetyl-CoA neuronase (hereinafter also referred to as ACH), Modifications that reduce the activity of pyruvate oxidase (hereinafter also referred to as POXB) can be mentioned.
  • ACK acetate kinase
  • PTA phosphotransacetylase
  • ACH acetyl-CoA neuronase
  • POXB pyruvate oxidase
  • Acetic acid is an intermediate in the biosynthetic pathway of oxamouth acetic acid and oxamouth acetic acid derivatives. Since a Co-A force is also generated, it is preferable to reduce the activity of any one or all of the above enzymes in order to block the acetic acid synthesis pathway and reduce acetic acid by-products.
  • PTA activity refers to an activity that catalyzes a reaction in which phosphoric acid is transferred to acetyl-CoA to form acetyl phosphonic acid. “Modified so that the PTA activity is decreased” means that the PTA activity has become lower than the specific activity of an unmodified strain, for example, a wild strain. It is more preferable that the PTA activity is decreased to 10% or less per microbial cell, which is preferably decreased to 30% or less per microbial cell as compared with the unmodified strain. Moreover, PTA activity may be completely lost. The decrease in PTA activity can be confirmed by measuring PTA activity by the method of Klotzsch et al. (Klotzsch, HR, Meth Enzymol. 12, 3 81-386 (1969)).
  • ACK activity refers to the activity of catalyzing the reaction of producing acetic acid from acetylyl phosphate and ADP. “Modified so that the ACK activity decreases” means that the ACK activity has become lower than the specific activity of an unmodified strain, for example, a wild strain. It is more preferable that the ACK activity is reduced to 10% or less per microbial cell, which is preferably 30% or less per microbial cell, compared to the unmodified strain. Further, ACK activity may be completely lost. The decrease in ACK activity can be confirmed by measuring the ACK activity by the method of Ramponi et al. (Ramponi G., Meth. Enzymol. 42, 409-426 (1975)).
  • the pta gene is disrupted according to a known method, for example, a method using homologous recombination or a method using the sacB gene (Schafer, A. et al. Gene 145 (1994) 69-73). be able to.
  • Examples of the pta gene include DNA containing a base sequence consisting of base numbers 1-1383 of SEQ ID NO: 7.
  • the homologous gene of the sequence should also be used. Can do.
  • the homology that causes homologous recombination is preferably 70% or more, more preferably 80% or more. More preferably, it means homology of 90% or more, particularly preferably 95% or more.
  • homologous recombination can occur if the DNAs can be hybridized with each other under stringent conditions.
  • the activity when decreased by ACK alone, it may be modified using the ack gene.
  • a gene having a nucleotide sequence of nucleotide numbers 1386 to 2579 of SEQ ID NO: 7 can be mentioned.
  • a gene having homology to the sequence can be used to such an extent that homologous recombination with the ack gene on the chromosome occurs.
  • the homology to the extent that homologous recombination occurs preferably means 70% or more, more preferably 80% or more, still more preferably 90% or more, particularly preferably 95% or more.
  • homologous recombination can occur if the DNAs can be hybridized with each other under stringent conditions.
  • the bacterium used in the present invention may be a bacterium obtained by combining two or more of the above modifications in addition to the modification that enhances the ODH activity.
  • the number of one jet is not limited.
  • ACH activity refers to an activity that catalyzes a reaction in which acetyl-CoA and hydropower also produce acetic acid.
  • Modified to reduce ACH activity means that the ACH activity has become lower than the specific activity of an unmodified strain such as a wild strain. It is preferable that the ACH activity is reduced to 50% or less, preferably 30% or less, more desirably 10% or less per microbial cell as compared with the unmodified strain. The “decrease” includes the case where the activity is completely lost. ACH activity was decreased by measuring ACH activity with reference to Gergely J., et al. (Gergely J., Hele. P. & Ramkrishnan, CV (1952) J. Biol.
  • Chem. 198 p323_334) As an example of a gene encoding ACH of coryneform bacteria, the sequence of Corynebaterum 'glutamicum registered in GenBank (NCgl2480 of GenBank Accession No.NC_003450 (complementary strand of 2729376..2730884 of NC_003450)) is (WO200 5/113744). The sequence of the ach gene of Corynebatatum glutamicum is shown in SEQ ID NO: 14 1037-2545. In addition, a gene having homology to the sequence to such an extent that homologous recombination with the ach gene on the chromosome can be used.
  • the degree of homology that causes homologous recombination is preferably 70% or more, more preferably 80% or more, and even more preferably. Or 90% or more, particularly preferably 95% or more homology.
  • homologous recombination can occur if the DNAs can be hybridized with each other under stringent conditions.
  • POXB activity refers to the activity of catalyzing the reaction of generating acetic acid from pyruvic acid and water!
  • “Modified so that the acupuncture activity is reduced” means that the specific activity of the acupuncture activity non-modified strain, for example, a wild strain is lowered.
  • the sputum activity is preferably reduced to 50% or less per cell compared to the unmodified strain, more preferably 30% or less, and more preferably 10% or less. It is particularly preferred.
  • “Decrease” includes the complete loss of activity. It is confirmed by measuring the POXB activity from Chang et al. (Chang Y. and Cronan JE JR, J. Bacteriol. 151, 1279-1289 (1982)) Can do.
  • coryneform bacterium poxB gene is a sequence registered in GenBank (a complementary strand of 2776766-2778505 of GenBank Accession No. NC_003450) (WO2005 / 113745).
  • GenBank a complementary strand of 2776766-2778505 of GenBank Accession No. NC_003450
  • the sequence of the pox B gene of Corynebaterum 'glutamicum is shown in SEQ ID NO: 16 at 996-2735.
  • a gene having homology to the sequence to such an extent that homologous recombination with the poxB gene on the chromosome can be used.
  • the homology that causes homologous recombination preferably means 70% or more, more preferably 80% or more, still more preferably 90% or more, and particularly preferably 95% or more.
  • homologous recombination can occur as long as the DNAs can hybridize with each other under stringent conditions.
  • the ach gene and poxB gene can be disrupted by a publicly known method, similar to the above-described disruption of the pta gene.
  • the bacterium of the present invention may be a bacterium modified so as to reduce the activity of latate dehydrogenase (hereinafter also referred to as LDH) in addition to the enhancement of ODH activity.
  • LDH latate dehydrogenase
  • Such bacteria are particularly effective when the organic acid is succinic acid.
  • Such a bacterium can be obtained, for example, by preparing a bacterium in which the LDH gene is disrupted and further modifying the bacterium with the ODH gene. However, either modification for reducing LDH activity or modification for enhancing ODH activity may be performed first.
  • LDH activity is reduced means that LDH activity is reduced compared to an LDH gene-unmodified strain. It means that The LDH activity is preferably reduced to 10% or less per cell as compared with the unmodified strain. LDH activity may be completely lost.
  • the reduction in LDH activity can be confirmed by measuring LDH activity by a known method (L. Kanarek and R ⁇ Hill, J. Biol. Chem. 239, 4202 (1964)).
  • a specific method for producing a strain having a reduced LDH activity of a coryneform bacterium a method by homologous recombination to a chromosome described in JP-A-11-206385 or a method using a sacB gene (Schafer , A. et al. Gene 145 (1994) 69-73).
  • the bacterium used in the present invention may be a bacterium modified so that the activity of pyruvate carboxylase (hereinafter also referred to as PC) is enhanced in addition to the enhancement of ODH activity.
  • PC pyruvate carboxylase
  • the ⁇ C activity is enhanced means that the PC activity is preferably increased by 100% or more, more preferably by 300% or more, compared to a non-modified strain such as a wild strain or a parent strain.
  • the PC activity can be measured, for example, by a method for measuring a decrease in NADH (WO2005Z021770).
  • Such a bacterium can be obtained, for example, by introducing a PC gene into a coryneform bacterium with enhanced expression of the ODH gene.
  • the modification operation for the introduction of the PC gene and the enhancement of the ODH activity may be performed in advance.
  • PC gene can be performed, for example, by highly expressing the pyruvate carboxylase (PC) gene in coryneform bacteria in the same manner as described in JP-A-11-196888.
  • PC pyruvate carboxylase
  • a PC gene derived from Corynebacterium dartamicam (Peters- Wendisch, PG et al. Microbiology, vol. 14 4 (1998) p915-927 (SEQ ID NO: 5)) should be used. Can do.
  • the DNA having a nucleotide sequence of SEQ ID NO: 5 is hybridized under stringent conditions, or the nucleotide sequence of SEQ ID NO: 5 is 90% or more, preferably 95% or more, more preferably 99% or more.
  • a DNA encoding a protein having a PC activity can also be suitably used.
  • Bacteria other than Corynebataterum dartamicum, or other bacteria or PC genes derived from animals and plants can also be used.
  • the following PC genes derived from bacteria or animals and plants are known in sequence (documents are shown below), and the ORF part is amplified by hybridization genease or PCR method as described above. Can be obtained.
  • Notillus' stearothermophilus (Bacillus stearothermophilus)
  • the PC activity can be enhanced by the same method as the ODH activity enhancement described above.
  • the bacterium or a processed product thereof is allowed to act on an organic raw material in a reaction solution containing carbonate ion, bicarbonate ion or carbon dioxide gas, thereby generating an organic acid. It is a method for producing an organic acid characterized by collecting.
  • the organic acid to be produced is more preferably succinic acid, preferably succinic acid, fumaric acid, malic acid or pyruvic acid, which are the organic acids described above.
  • a cultivated slant culture in a solid medium such as an agar medium for direct reaction, but the bacterium is cultured in advance in a liquid medium (seed culture). It is preferable to use the above.
  • a medium used for seed culture a normal medium used for bacterial culture can be used.
  • ammonium sulfate, potassium phosphate, sulfuric acid A general medium in which a natural nutrient source such as meat extract, yeast extract or peptone is added to the composition of inorganic salt such as magnesium can be used.
  • the bacterial cells after seed culture are preferably collected by centrifugation, membrane separation, etc., and then used for organic acid production reaction.
  • the organic acid may be produced by reacting the seed-cultured bacteria with the organic raw material while growing them in a medium containing the organic raw material, or the cells obtained by proliferating in advance contain the organic raw material.
  • the organic acid may be produced by reacting with an organic raw material in the reaction solution.
  • a processed product of bacterial cells can also be used.
  • the treated product of cells include, for example, immobilized cells obtained by immobilizing cells with acrylamide, carrageenan, etc., crushed materials obtained by disrupting cells, centrifuged supernatants thereof, or supernatants thereof by ammonium sulfate treatment, etc. Examples include partially purified fractions.
  • the organic raw material used in the production method of the present invention is not particularly limited as long as the bacterium can assimilate and produce an organic acid such as succinic acid, but usually galactose, ratatoose, gnolecose, Carbohydrates such as funolectose, glyceronole, sucrose, saccharose, starch, cellulose, etc .; fermentable saccharides such as glycerin, mannitol, xylitol, ribitol, and other polyalcohols are used, of which glucose or sucrose is preferred. In particular, glucose is preferable.
  • a starch saccharified solution, molasses and the like containing the fermentable saccharide are also used. These fermentable carbohydrates can be used alone or in combination.
  • concentration of the organic raw material used is not particularly limited, but it is advantageous to make it as high as possible within the range that does not hinder the production of organic acids such as succinic acid, and usually 5-30% ( 1 ⁇ ⁇ 7), The reaction is preferably carried out within the range of 10 to 20% ( 1 ⁇ 7).
  • additional organic raw materials may be added as the organic raw materials decrease as the reaction progresses.
  • the reaction solution containing the organic raw material is not particularly limited, and may be, for example, a medium for culturing bacteria or a buffer solution such as a phosphate buffer solution.
  • the reaction solution is preferably an aqueous solution containing a nitrogen source or an inorganic salt.
  • the nitrogen source is not particularly limited as long as the bacteria can be assimilated to produce organic acids such as succinic acid, but specifically, ammonium salt, nitrate, urea, soybean hydrolysis
  • organic acids such as succinic acid, but specifically, ammonium salt, nitrate, urea, soybean hydrolysis
  • organic products such as food, casein digest, peptone, yeast extract, meat extract, corn steep liquor, etc.
  • An inorganic nitrogen compound is mentioned.
  • inorganic salts include metal salts such as various phosphates, sulfates, magnesium, potassium, manganese, iron, and zinc.
  • vitamins such as piotin, pantothenic acid, inositol, and nicotinic acid, nucleotides, amino acids and other factors that promote growth may be added as necessary.
  • the reaction solution contains carbonate ion, bicarbonate ion, or diacid carbon gas.
  • Carbonate or bicarbonate ions are also supplied with magnesium carbonate, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, etc., which can also be used as neutralizing agents. Acids or their salts or diacid carbon gas can also be supplied.
  • Specific examples of the carbonate or bicarbonate salt include magnesium carbonate, ammonium carbonate, sodium carbonate, potassium carbonate, ammonium bicarbonate, sodium bicarbonate, potassium bicarbonate and the like.
  • Carbonate ions and bicarbonate ions are added at a concentration of 1 to 500 mM, preferably 2 to 300 mM, more preferably 3 to 200 mM.
  • carbon dioxide gas is contained, 50 mg to 25 g, preferably 100 mg to 15 g, more preferably 150 mg to 1 Og of diacid carbon dioxide gas per liter of the solution is contained.
  • the pH of the reaction solution is adjusted by adding sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, or the like. be able to.
  • the pH in this reaction is usually pH 5 to 10, preferably pH 6 to 9.5, and the pH of the reaction solution is adjusted within the above range with an alkaline substance, carbonate, urea or the like as needed during the reaction.
  • the optimal temperature for growth of bacteria used in this reaction is usually 25 ° C to 35 ° C.
  • the temperature during the reaction is usually 25 ° C to 40 ° C, preferably 30 ° C to 37 ° C.
  • the amount of cells used in the reaction is not particularly limited, but 1 to 700 gZL, preferably 10 to 500 gZL, more preferably 20 to 400 gZL is used.
  • the reaction time is preferably 1 hour to 168 hours, more preferably 3 hours to 72 hours.
  • the reaction for producing an organic acid such as succinic acid may be carried out by aeration and stirring. You may perform in the anaerobic atmosphere which does not supply.
  • the anaerobic atmosphere here means to react with the dissolved oxygen concentration kept low. In this case, the dissolved oxygen concentration
  • a container is sealed and reacted without aeration, a reaction is performed by supplying an inert gas such as a nitrogen gas, or a inert gas containing diacid-carbon gas is vented.
  • an inert gas such as a nitrogen gas, or a inert gas containing diacid-carbon gas is vented. Can be used.
  • organic acids such as succinic acid, fumaric acid, malic acid or pyruvic acid are generated and accumulated in the reaction solution.
  • the organic acid accumulated in the reaction solution (culture solution) can be collected from the reaction solution according to a conventional method. Specifically, for example, solids such as bacterial cells are removed by centrifugation, filtration, etc., then desalted with ion exchange resin, etc., and purified from the solution by crystallization or column chromatography. Organic acids can be collected.
  • an organic acid-containing polymer can be produced by producing an organic acid by the above-described method of the present invention and then performing a polymerization reaction using the obtained organic acid as a raw material.
  • the succinic acid produced in the present invention is used after being processed into polymers such as polyester and polyamide.
  • the succinic acid-containing polymer is obtained by polymerizing succinic acid with a succinic acid polyester obtained by polymerizing a diol such as butanediol or ethylene glycol with succinic acid, or a diamine such as hexamethylenediamine. Examples thereof include succinic acid polyamide.
  • the succinic acid obtained by the production method of the present invention or a composition containing the succinic acid can be used for food additives, pharmaceuticals, cosmetics and the like.
  • the obtained cells were suspended in 0.15 mL of a 10 mM NaCl / 20 mM Tris buffer (pH 8.0) / lmM EDTA ′ 2Na solution containing lysozyme at a concentration of lOmgZmL.
  • proteinase K was added to the suspension so that the final concentration was 100 gZmL, and the mixture was incubated at 37 ° C for 1 hour.
  • sodium dodecyl sulfate was added to a final concentration of 0.5%, and the mixture was incubated at 50 ° C for 6 hours for lysis.
  • the E1 component gene (odhA) was obtained by using the DNA prepared in (A) above as a cage, and the entire genome sequence was reported.
  • Synthetic DNA SEQ ID NO: 1 and SEQ ID NO: 2 designed on the basis of the sequence of the gene of Corynebaterium glutamicum ATCC13032 (complementary strand of 1172498... 1176271 of GenBank Database Accession No. BA000036) Performed by PCR used.
  • Reaction solution composition vertical DNA 1 ⁇ PfxDNA polymerase (manufactured by Invitrogen) 0.5 ⁇ 1x concentrated buffer, 0.4 ⁇ each primer, ImM MgSO, 0.2 MdNTPs are mixed, and the total amount
  • the recombinant Escherichia coli thus obtained was smeared on an LB agar medium containing 50 ⁇ g ZmL ampicillin and 50 ⁇ g ZmLX-Gal. Clones that formed white colonies on this medium were subjected to liquid culture by a conventional method, and then plasmid DNA was purified. By cutting the obtained plasmid DNA with restriction enzymes Ssel and BamHI, an inserted fragment of about 4.4 kb was observed, which was named pODHl.
  • Coryneform bacterial vectors that can coexist with PTZ4 can be obtained by replacing the kanamycin metagene of the plasmid vector pC3 (Plasmid 36 62 (1996)), which has a replication region compatible with pTZ4, with a streptomycin ⁇ spectinomycin resistance gene. It was constructed. Note that ⁇ 4 is an original plasmid for a PC amplification plasmid introduced into the MJ233ZPCZ A LDH strain described later.
  • reaction solution vertical DNA 10 ng, PfxDNA polymerase (manufactured by Invitrogen) 0.2 ⁇ L, 1 ⁇ concentration attached buffer, 0.3 M each primer (synthetic DNA shown in SEQ ID NO: 10 and SEQ ID NO: 11), ImM MgSO, mixed with 0.25 MdNTPs, total volume of 20
  • DNA thermal cycler PTC-200 manufactured by MJ Research
  • 20 cycles at 94 ° C for 20 seconds, 60 ° C for 20 seconds and 72 ° C for 60 seconds were repeated 20 times.
  • the heat insulation at 94 ° C in the first cycle was 1 minute 20 seconds, and the heat insulation at 72 ° C in the final cycle was 2 minutes.
  • Confirmation of the amplification product was carried out by separating by 0.8% agarose (SeaKem GTG agarose: manufactured by FMCBioProducts) gel electrophoresis, and then visualized by bromide zyme staining to detect a 937 bp fragment.
  • the target DNA fragment is recovered from the gel using the QIAQuick Gel Extraction Kit (QIAGEN). After recovery, the DNA fragment is phosphorylated at the 5 'end with T4 Polynucleotide Kinase (Treasure Bio). did.
  • plasmid DNA was prepared by a conventional method and analyzed by the above PCR using the synthetic DNAs of SEQ ID NO: 10 and SEQ ID NO: 11 as a result.
  • streptomycin Z-spectinomycin resistance gene was It was confirmed that it was inserted, and this was named pC3.
  • the DNA fragment prepared by cleaving pC3 with restriction enzymes BamHI and PvuII is blunt-ended with Klenow fragment, mixed with pBglll linker (Takara Bio: CAGATCTG), and ligation kit.
  • E. coli DH5a strain
  • E. coli DH5a strain
  • plasmid DNA was prepared by a conventional method, and a plasmid that was cleaved with the restriction enzyme Bglll was selected and named pC3.1.
  • the ⁇ -peptide gene containing the LacZ multicloning site was prepared by PCR using the E. coli plasmid pT7Blue (Novagen) as a saddle type and the synthetic DNAs shown in SEQ ID NO: 12 and SEQ ID NO: 13 as primers.
  • Reaction solution composition vertical DNA 10 ng, PfxDNA polymerase (manufactured by Invitrogen) 0.2 ⁇ L, 1x concentration buffer, 0.3 ⁇ M each primer, ImM MgSO, 0. Md NTPs were mixed to make a total volume of 20 ⁇ L.
  • Reaction temperature condition 94 using DNA thermal cycler PTC-200 (manufactured by MJ Research). C for 20 seconds, 60. C for 20 seconds, 72. The cycle of 30 seconds force in C was repeated 20 times. The heat insulation at 94 ° C in the first cycle was 1 minute 20 seconds, and the heat insulation at 72 ° C in the final cycle was 2 minutes.
  • the amplification product was confirmed by separation by 1.0% agarose (SeaKem GTG agarose: manufactured by FMCBioProducts) gel electrophoresis, followed by visualization by bromide zyme staining to detect a 5777 bp fragment.
  • the target DNA fragment is recovered from the gel using the QIAQuick Gel Extraction Kit (manufactured by QIAGEN). After recovery, the DNA fragment is phosphorylated at the 5 'end with T4 Polynucleotide Kinase (Treasure Bio). did.
  • a DNA fragment of about 4.4 kb generated by cleaving the above pODHl.0 with restriction enzymes Ssel and BamHI was separated and recovered by 0.75% agarose gel electrophoresis, and the plasmid pC3.14 was separated from the restriction enzyme Pstl and The DNA was mixed with DNA prepared by cutting with BamHI, and ligated using Ligation Kit ver. 2 (Takara Bio).
  • the Escherichia coli DH5 ⁇ strain was transformed with the plasmid DNA thus obtained, and smeared on an LB agar medium containing 50 gZmL spectinomycin and 50 ⁇ g ZmLX-Gal.
  • ODH-enhancement plasmid pODH3.2 into Brevibaterium 'flavum MJ233 / PC / ⁇ LDH strain (a strain in which the PC gene is enhanced and the LDH gene is disrupted: JP 2005-951 69: WO2005Z21770) Transformants obtained by the electric pulse method (Res.
  • the Brevibaterium flavum MJ233ZpODHZPCZ ⁇ LDH strain was cultured overnight in 100 ml of A medium containing 2% dulcose. 50 ml of the obtained culture solution was collected by centrifugation at 4,000 rpm ⁇ 10 minutes at 4 ° C. and then washed twice with 30 ml of 100 mM TES-NaOH buffer (pH 7.5). The washed cells were suspended in 10 ml of Buffer A (100 mM TES-NaOH buffer (pH 7.5), 30% glycerol).
  • ODH activity was measured as follows with reference to the method described in Agric. Boil. Chem., 44 (8), 1897-1904, 1980, I Shiio and K Ujiga wa-Takeda. First, 100 mM TES (DOJINDO, # 344-02653)-NaOH buffer (pH 7.7), 0.2 mM coenzyme A (Wako, # 306-50481), 0.3 mM thiamin pyrophosphate (SIGMA, # C— 8754), 5 mM 2— oxoglutarate (S IGMA, # 305-72-6), 3 mM L-cysteine (Wako, # 033-05272), 5 mM MgCl, 1 mM 3-ac
  • a reaction solution was prepared to be etylpyridine adenine dinucleotide (Wako, # 44047000). After transferring the reaction solution to the measurement cuvette, the reaction was started by adding the crude enzyme solution, and the increase in absorbance (A) at 365 nm was measured. 1U is the amount of enzyme when A force increases in 1 minute
  • the ODH specific activity of Brevibaterium flavum MJ233ZpODHZPCZ ⁇ LDH strain was 0.028 U / mg-protein according to the above measurement method.
  • the activity was 0.009 U / mg-protein, and in the ODH gene plasmid-enhanced strain approximately 3 times as much as ODH It was confirmed that the activity increased.
  • Urea 4 g, ammonium sulfate: 14 g, 1 potassium phosphate: 0.5 g, 2 potassium phosphate. 5g, Magnesium sulfate heptahydrate: 0.5g, Ferrous sulfate ⁇ Heptahydrate: 20mg, Manganese sulfate ⁇ Hydrate: 20mg, D Piotin: 200g, Thiamine hydrochloride: 200g, yeast extract : 5 g, force Zamino acid: 5 g, and distilled water: lOOOOmL medium lOOmL was placed in a 500 mL Erlenmeyer flask and sterilized by heating at 120 ° C for 20 minutes.
  • Ammonium sulfate 42 g, 1 potassium phosphate: 1.5 g, 1.5 potassium potassium phosphate, 1.5 g, magnesium sulfate heptahydrate: 1.5 g, ferrous sulfate, heptahydrate: 60 mg, Manganese sulfate ⁇ Hydrate: 60 mg, D-Piotin: 600 / ⁇ 8 , Thiamine hydrochloride: 600 g, Yeast extract 15 g, Casamino acid 15 g, Antifoaming agent (Ade force Nord LG294: manufactured by Asahi Denka): lmL and Distilled water: 2500 mL of medium was placed in a 5 L fermentor and sterilized by heating at 120 ° C for 20 minutes.
  • antifoaming agent Ade force Nord L G294: manufactured by Asahi Denka
  • the culture solution obtained by the above main culture is added to the cells collected by centrifugation at 8000 rpm for 5 minutes and resuspended so that the OD (660 ⁇ m) becomes 60. It became cloudy.
  • 200 mL of this suspension and 200 mL of a 20% dalcose solution sterilized in advance were mixed in a 1 L jar mentor, and kept at 35 ° C.
  • the pH was maintained at 7.6 using 2M ammonium carbonate, and the reaction was carried out without aeration and stirring at 400 rpm. The reaction was completed about 47 hours after the start of the reaction.
  • the Brevibaterium flavum MJ233ZpODHZPCZ ALDH strain had a 3.4% increase in succinic acid yield and a 47% decrease in amino acid production relative to succinic acid production compared to the MJ 233ZPCZ ALDH strain.
  • the enhancement of ODH showed a clear increase in succinic acid yield and a reduction in amino acid yield.
  • Urea 4 g, ammonium sulfate: 14 g, 1 potassium phosphate: 0.5 g, 2 potassium phosphate. 5g, Magnesium sulfate heptahydrate: 0.5g, Ferrous sulfate ⁇ Heptahydrate: 20mg, Manganese sulfate ⁇ Hydrate: 20mg, D Piotin: 200g, Thiamine hydrochloride: 200g, yeast extract : 5 g, force Zamino acid: 5 g, and distilled water: lOOOOmL medium lOOmL was placed in a 500 mL Erlenmeyer flask and sterilized by heating at 120 ° C for 20 minutes.
  • Ammonium sulfate 42 g, 1 potassium phosphate: 1.5 g, 1.5 potassium potassium phosphate, 1.5 g, magnesium sulfate heptahydrate: 1.5 g, ferrous sulfate, heptahydrate: 60 mg, Manganese sulfate Hydrate: 60 mg, D-Piotin: 600 / ⁇ 8 , thiamine hydrochloride: 600 / z g , yeast extract 15g, casamino acid 15g, antifoaming agent (Ade force Nord LG294: manufactured by Asahi Denka): lmL and distilled water: 2500mL Was placed in a 5 L fermenter and sterilized by heating at 120 ° C for 20 minutes.
  • Ade force Nord LG294 manufactured by Asahi Denka
  • Ade force Nord L G294 manufactured by Asahi Denka
  • the culture solution obtained by the above main culture is added to the cells collected by centrifugation at 8000 rpm for 5 minutes and resuspended so that the OD (660 ⁇ m) becomes 60. It became cloudy.
  • 200 mL of this suspension and 200 mL of a 20% dalcose solution sterilized in advance were mixed in a 1 L jar mentor, and kept at 35 ° C.
  • the pH was kept at 7.6 using 2M sodium carbonate, and the reaction was conducted with no aeration and stirring at 400 rpm. The reaction was completed about 47 hours after the start of the reaction.
  • strains with reduced acetic acid production include latipate dehydrogenase (Id h), acetylyl CoA nodose enzyme (ach), Phosphotransacetylase (pta), Tokinase (ack), a strain with reduced pyruvate oxidase (poxB) activity (2256 ⁇ (ldh, pta, ack, ach, poxB) strain) was used (International Publication WO2005 / 113744, WO2005 / 113745 Pamphlet) .
  • Ratatofamentum 2256 A (ldh, pta, ack, ac h, poxB) strain was transformed by the electric pulse method and CM-Dex agar medium containing 25 ⁇ g / ml kanamycin (Gnorecose 5 g / L, Polypeptone 10 g / L) , East extra tart 10g / L, KH P
  • the 2256 ⁇ (ldh, pta, ack, poxB, ach) / (pPKS-X) strain which is an ODH amplification strain, is the control strain 2256 ⁇ (ldh, pta, ack, poxB, ach) / (pPK4
  • the yield was improved by about 3% on average, and the by-product a-KG decreased by about 1/2. From this, in cono and succinic acid-producing bacteria modified to reduce the production of acetic acid, by enhancing the ODH activity, by-product a-KG may be reduced, and the amount of succinic acid produced may be increased. Indicated.
  • an organic acid such as succinic acid can be produced quickly and efficiently.
  • the obtained organic acid such as succinic acid can be used for food additives, pharmaceuticals, cosmetics and the like.
  • An organic acid-containing polymer can also be produced by conducting a polymerization reaction using the obtained organic acid as a raw material.

Abstract

有機酸生産能を有し、2-オキソグルタル酸デヒドロゲナーゼ活性が該酵素の非改変株と比較して増強するように改変された細菌を創出し、これを培養することによってコハク酸などの有機酸を製造する。

Description

明 細 書
有機酸生産菌及び有機酸の製造法
技術分野
[0001] 本発明は、コリネ型細菌等の有機酸生産菌、およびそれを用いたコハク酸などの有 機酸の製造に関するものである。
背景技術
[0002] コハク酸などの有機酸を発酵により生産する場合、通常、 Anaerobiospirillum属、 Ac tinobacillus属等の嫌気性細菌が用いられている(特許文献 1及び 2、非特許文献 1) 。嫌気性細菌を用いる場合は、生産物の収率が高いが、その一方では、増殖するた めに多くの栄養素を要求するために、培地中に多量の CSL (コーンスティープリカ一 )などの有機窒素源を添加する必要がある。これらの有機窒素源を多量に添加するこ とは培地コストの上昇をもたらすだけでなぐ生産物を取り出す際の精製コストの上昇 にもつながり経済的でな!、。
[0003] また、コリネ型細菌のような好気性細菌を好気性条件下で一度培養し、菌体を増殖 させた後、静止菌体として酸素を通気せずに有機酸を生産する方法も知られている( 特許文献 3及び 4)。この場合、菌体を増殖させるに当たっては、有機窒素の添加量 が少なくてよぐ簡単な培地で十分増殖できるため経済的ではあるが、目的とする有 機酸の生成量、生成濃度、及び菌体当たりの生産速度の向上、製造プロセスの簡略 化等、改善の余地があった。また、ホスホェノールピルビン酸カルボキシラーゼの活 性を増強させた細菌を用いた有機酸の発酵生産などが報告されていたが (例えば、 特許文献 5参照)、さらなる有機酸発酵プロセスの開発が求められていた。
[0004] 2—ォキソグルタル酸デヒドロゲナーゼ( at -ケトグルタル酸デヒドロゲナーゼとも呼 ばれる)については、コリネ型細菌において活性が確認されたという報告 (非特許文 献 2)や、遺伝子がクローユングされたという報告 (非特許文献 3)がある。また、 2—ォ キソダルタル酸デヒドロゲナーゼ活性が低減した微生物を用いたアミノ酸の製造法が 開示されて!ヽる (特許文献 6)。
し力しながら、 2—ォキソダルタル酸デヒドロゲナーゼの活性を増強させた細菌を用 V、て有機酸を製造することは、これまで報告されて 、なかった。
特許文献 1 :米国特許第 5, 143, 834号公報
特許文献 2 :米国特許第 5, 504, 004号公報
特許文献 3:特開平 11― 113588号公報
特許文献 4:特開平 11 196888号公報
特許文献 5:特開平 11— 196887号公報
特許文献 6:国際公開第 95Z34672号パンフレット
非特許文献 1 : International Journal of Systematic Bacteriology (1999), 49,207-216 非特許文献 2 : Shiio I, Ujigawa- Takeda K. 1980. Presence and regulation of -keto glutarate dehydrogenase complex in a glutamate— producing bacterium, Brevibacteriu m flavum. Agric. Biol. Chem. 44:1897—1904.
非特許文献 3 : Usuda Y.Tujimoto N,Abe CAsakura Y.Kimura E.Kawahara Y, O, Mat sui H. 1996. Molecular cloning of the Corynebacterium glutamicum ('Brevibacteriu m lactofermentum' AJ12036) odhA gene encoding a novel type of 2-oxoglutaratedeh ydrogenase. Microbiology. 142:3347-54.
発明の開示
[0005] 本発明の課題は、より生産効率の高いコハク酸などの有機酸の製造方法を提供す ることにある。
[0006] 本発明者は、上記課題を解決するために鋭意検討を行った結果、 2—ォキソグルタ ル酸デヒドロゲナーゼ活性が増強するように改変された細菌あるいはその処理物を、 炭酸イオン、重炭酸イオンまたは二酸ィヒ炭素ガスを含有する反応液中で有機原料に 作用させることにより、有機原料の消費速度、コハク酸などの有機酸の生成速度、あ るいは、収率が高まることを見出し、本発明を完成するに至った。
[0007] すなわち本発明によれば、以下の発明が提供される。
(1)有機酸生産能を有し、 2—ォキソダルタル酸デヒドロゲナーゼ活性が該酵素の非 改変株と比較して増強するように改変された細菌。
(2)有機酸生産能を有し、酢酸の生成が低減されるように改変され、かつ、 2—ォキソ ダルタル酸デヒドロゲナーゼ活性が該酵素の非改変株と比較して増強するように改 変された細菌。
(3)アセテートキナーゼ及びホスホトランスァセチラーゼの 、ずれか一方又は両方の 活性が低減ィ匕するように改変することによって酢酸の生成が低減した、 (2)の細菌。
(4)ァセチルー CoAノヽイド口ラーゼの活性が低減ィ匕するように改変することによって 酢酸の生成が低減した、(2)の細菌。
(5)ピルべートォキシダーゼの活性が低減ィ匕するように改変することによって酢酸の 生成が低減した、(2)の細菌。
(6)さらに、ラタテートデヒドロゲナーゼ活性が低減ィ匕するように改変された、(1)〜(5 )のいずれかの細菌。
(7)さら〖こ、ピルビン酸カルボキシラーゼ活性が増強するように改変された、(1)〜(6 )のいずれかの細菌。
(8)コリネ型細菌、バチルス属細菌、リゾビゥム属細菌、ェシエリヒア属細菌、ラタトバ チルス属細菌、およびサクシノバチルス属細菌よりなる群力 選ばれる 、ずれかの細 菌である(1)〜(7)の!、ずれかの細菌。
(9)有機酸がコハク酸である(1)〜(8)の 、ずれかの細菌。
(10) (1)〜(9)のいずれかの細菌あるいはその処理物を、炭酸イオン、重炭酸ィォ ン又は二酸化炭素ガスを含有する反応液中で有機原料に作用させることによって有 機酸を生成させ、該有機酸を採取する事を特徴とする有機酸の製造方法。
(11)前記細菌あるいはその処理物を嫌気的雰囲気下で有機原料に作用させること を特徴とする、(10)の製造方法。
(12)有機原料が、グルコースまたはシユークロースである、(10)又は(11)の製造方 法。
(13)有機酸がコハク酸である、( 10)〜( 12)の 、ずれかの製造方法。
(14) (10)〜(13)のいずれかの方法により有機酸を製造する工程、及び前記工程 で得られた有機酸を原料として重合反応を行う工程を含む、有機酸含有ポリマーの 製造方法。
図面の簡単な説明
[図 1]プラスミド pC3.14の構築手順を示す図。 [図 2]プラスミド pODH3.2の構築手順を示す図。
発明を実施するための最良の形態
[0009] 以下、本発明の実施の形態について詳細に説明する。
本発明の細菌は、有機酸生産能を有し、 2—ォキソダルタル酸デヒドロゲナーゼ (以 下、 ODHとも呼ぶ)活性が非改変株と比較して増強するように改変された細菌である 本発明において、「有機酸の生産能」とは、本発明の細菌を培養したときに、培地 中に有機酸を蓄積する能力をいう。また、「有機酸」とは、 TCA回路の代謝中間体の 有機酸が挙げられ、例えば、コハク酸、リンゴ酸、フマル酸、クェン酸、イソクェン酸、 シス一アコニット酸などが挙げられる力 この中でもコハク酸、リンゴ酸、フマル酸が好 ましぐコハク酸がより好ましい。
このような細菌は、本来的に有機酸生産能を有する細菌又は育種により有機酸生 産能を付与された細菌にぉ ヽて、 ODH活性を増強する改変を行ったものでもよ ヽし 、 ODH活性を増強する改変を行うことにより有機酸生産能を有するようになつたもの でもよい。育種により有機酸生産能を付与する手段としては、例えば、変異処理、遺 伝子組換え処理などが挙げられる力 より具体的には、後述するようなラタテートデヒ ドロゲナーゼ活性を低減するような改変やピルビン酸カルボキシラーゼ活性を増強 するような改変などが挙げられる。
なお、本発明に用いる細菌は 2種類以上の有機酸を生産する能力を有するもので あってもよい。
[0010] 本発明の製造法に使用できる細菌は、有機酸生産能を有すれば特に限定されな いが、コリネ型細菌(coryneform bacterium)、バチルス属細菌、ェシエリヒア属細菌、 ラクトバチルス属細菌、サクシノバチルス属細菌及びリゾビゥム属細菌が好ましぐこ の中ではコリネ型細菌がより好ま U、。
例えば、ェシエリヒア属細菌としてはェシエリヒア'コリなどが挙げられ、ラクトバチル ス属細菌としてはラクトバチルス 'ヘルヴェチカスが挙げられ (J Appl Microbiol, 2001, 91, p846- 852)、バチルス属細菌としては、バチルス'ズブチリス、バチルス 'アミロリ ケファシエンス、バチルス'プミルス、バチルス'ステア口サーモフィルス等が挙げられ 、リゾビゥム属細菌としては、リゾビゥム.エトリ (Rhizobium etli)などが挙げられる。 コリネ型細菌は、これに分類されるものであれば特に制限されないが、コリネバクテ リゥム属に属する細菌、ブレビバタテリゥム属に属する細菌又はアースロバクター属に 属する細菌などが挙げられ、このうち好ましくは、コリネバタテリゥム属又はブレビバタ テリゥム属に属するものが挙げられ、更に好ましくは、コリネバタテリゥム 'ダルタミカム (し orynebacterium glutamicumノ、ブレヒノヽクァリウム ·フフノ ム (Brevibactenum ilavu m)、ブレビバタテリゥム ·アンモニアゲネス (Brevibacterium ammoniagenes)又はブレ ビバクテリウム ·ラタトフアーメンタム(Brevibacterium lactofermentum)に分類される細 菌が挙げられる。
本発明に用いる細菌の親株の特に好ましい具体例としては、ブレビバタテリゥム 'フ ラバム MJ— 233 (FERM BP— 1497)、同 MJ— 233 AB— 41 (FERM BP— 14 98)、ブレビバタテリゥム 'アンモニアゲネス ATCC6872、コリネバタテリゥム'グルタ ミカム ATCC31831、及びブレビバタテリゥム'ラタトフアーメンタム ATCC13869等 が挙げられる。なお、ブレビバタテリゥム 'フラバムは、現在、コリネバクテリウム'グルタ ミカムに分類される場合もあることから(Lielbl, W., Ehrmann, M., Ludwig, W. and Sch leifer, K. H., International Journal of Systematic Bacteriology, 1991, vol. 41, p255— 2 60)、本発明においては、ブレビバタテリゥム 'フラバム MJ— 233株、及びその変異株 MJ- 233 AB— 41株はそれぞれ、コリネバタテリゥム 'グルタミカム MJ— 233株及 びコリネバタテリゥム.ダルタミカム MJ— 233 AB— 41株と同一の株であるものとする ブレビバタテリゥム 'フラバム MJ— 233は、 1975年 4月 28日に通商産業省工業技術 院微生物工業技術研究所 (現独立行政法人産業技術総合研究所特許生物寄託 センター)(干 305-8566 日本国茨城県つくば巿東 1丁目 1番地 1中央第 6)に受託番 号 FERM P-3068として寄託され、 1981年 5月 1日にブダペスト条約に基づく国際寄託 に移管され、 FERM BP-1497の受託番号で寄託されている。
また、親株として用いられる上記細菌は、野生株だけでなぐ UV照射や NTG処理 等の通常の変異処理により得られる変異株、細胞融合もしくは遺伝子組換え法など の遺伝学的手法により誘導される組換え株などの 、ずれの株であってもよ 、。 [0012] 本発明の細菌は、上記のような有機酸生産能を有する細菌を、 ODH活性が増強す るよう〖こ改変すること〖こよって得ることができる。ただし、 ODH活性増強のための改変 を行った後に有産生産能を付与する改変を行ってもよい。
ここで、「ODH活性」とは、 2—ォキソダルタル酸(α—ケトグルタル酸)を酸化的に 脱炭酸し、サクシ二ルー CoA(succiny卜 CoA)を生成する反応を触媒する活性を ヽ、 「ODH活性が増強する」とは、 ODH非改変株と比較して ODH活性が増強していること をいう。 ODH活性は、 ODH非改変株と比較して、単位菌体重量当たり 1.5倍以上増 強されていることが好ましぐ 2倍以上増強されていることがより好ましい。なお、 ODH 7舌'性は、 Shuoらの方法 (Isamu Shno and Kyoko Ujigawa— Takeda, Agnc.Biol.L^hem.,4 4(8), 1897-1904, 1980)に従って測定することができる。
[0013] ODH遺伝子を用いた ODH活性を増強させるための改変は、例えば、プラスミドなど を用いた形質転換、相同組換えなどによる染色体上への ODH遺伝子の組み込み、 ODH遺伝子発現調節配列の改変などによって行うことができる。
プラスミドなどを用いた形質転換や相同組換えなどによって ODH遺伝子を宿主細 菌に導入する場合に用いることのできる ODH遺伝子としては、宿主細菌に導入したと きに ODH活性を増加させる遺伝子、すなわち、 ODH活性を有するタンパク質をコード する遺伝子である限り特に限定されないが、例えば、配列番号 3に示す塩基配列を 有するコリネ型細菌由来の ODH遺伝子 (odhA)を挙げることができる。 ODH遺伝子は 、 ODH活性を有するタンパク質をコードする限り、上記塩基配列を有する DNAとストリ ンジェントな条件でノ、イブリダィズする DNA、または上記塩基配列と 90%以上、好ま しくは 95%以上、より好ましくは 99%以上の相同性を有する DNAのようなホモログ遺 伝子であってもよい。
ここで、ストリンジェントな条件としては、通常のサザンハイブリダィゼーシヨンの洗い の条件である 60。C、 1 X SSC, 0. 1%SDS、好ましくは、 0. 1 X SSC、0. 1%SDS に相当する塩濃度でハイブリダィズする条件が挙げられる。
また、コリネ型細菌以外の細菌、または他の微生物又は動植物由来の ODH遺伝子 を使用することもできる。微生物または動植物由来の ODH遺伝子は、既にその塩基 配列が決定されて 、る遺伝子、ホモロジ一等に基 、て ODH活性を有するタンパク質 をコードする遺伝子を微生物、動植物等の染色体より単離し、塩基配列を決定したも のなどを使用することができる。また、塩基配列が決定された後には、その配列にし たがって合成した遺伝子を使用することもできる。これらは、例えば、ハイブリダィゼ ーシヨン法や PCR法によりそのプロモーターおよび ORF部分を含む領域を増幅する こと〖こよって、取得することができる。
[0014] 上述したような ODH遺伝子を含む DNA断片を、適当なプラスミド、例えばコリネ型 細菌内でプラスミドの複製増殖機能を司る遺伝子を少なくとも含むプラスミドベクター に導入することにより、コリネ型細菌内で ODHの高発現可能な糸且換えプラスミドを得る ことができる。ここで、上記組み換えプラスミドにおいて、 ODH遺伝子を発現させるた めのプロモーターは ODH遺伝子自身のプロモーターであってもよいが、宿主細菌で 機能しうる他の強力なプロモーターに置換してもよい。例えば、 tacプロモーターや tr cプロモーターなどの大腸菌由来のプロモーターが挙げられる。
[0015] コリネ型細菌に ODH遺伝子を導入する場合、用いることができるプラスミドベクター としては、コリネ型細菌内での複製機能を司る遺伝子を少なくとも含むものであれば 特に制限されない。その具体例としては、例えば、特開平 3— 210184号公報に記載 のプラスミド PCRY30 ;特開平 2— 72876号公報及び米国特許 5, 185, 262号明細 書に記載のプラスミド pCRY21、 pCRY2KE、 pCRY2KX、 pCRY31、 pCRY3KE 及び PCRY3KX;特開平 1 191686号公報に記載のプラスミド pCRY2および pCR Y3 ;特開日召 58— 67679号公報【こ記載の pAM330 ;特開日召 58— 77895号公報【こ 記載の PHM1519 ;特開昭 58— 192900号公報に記載の pAJ655、pAJ611及び p AJ1844 ;特開昭 57— 134500号公報に記載の pCGl ;特開昭 58— 35197号公報 に記載の PCG2 ;特開昭 57— 183799号公報に記載の pCG4および pCGl l、国際 公開第 95Z34672号パンフレットに記載の pPK4等を挙げることができる。それらの 中でもコリネ型細菌の宿主 ベクター系で用いられるプラスミドベクターとしては、コリ ネ型細菌内でプラスミドの複製機能を司る遺伝子とコリネ型細菌内でプラスミドの安 定化機能を司る遺伝子とを有するものが好ましぐ例えば、プラスミド pCRY30、 pCR Y21、 pCRY2KE、 pCRY2KX、 pCRY31、 pCRY3KEおよび pCRY3KX等が好 適に使用される。 [0016] このようなプラスミドベクターの適当な部位に ODH遺伝子を挿入して得られる組み 換えベクターで、コリネ型細菌、例えばブレビバタテリゥム 'フラバム (Brevibacterium A avum)MJ-233株(FERM BP— 1497)を形質転換することにより、 ODH遺伝子の発 現が増強されたコリネ型細菌が得られる。形質転換は、例えば、電気パルス法 (Res. Microbiol, Vol.144, p.181-185, 1993)等の公知の方法によって行うことができる。 なお、 ODH活性の増強は、公知の相同組換え法によって染色体上に ODH遺伝子 を多コピー組み込んで高発現ィ匕させることによつても行うことができる。
以上、コリネ型細菌を用いる例を述べた力 他の細菌を用いる場合も同様の方法に よって、 ODH活性の増強を達成することができる。
[0017] また、 ODH活性の増強は、宿主染色体上でプロモーターを置換することによつても 達成しうる。プロモーター領域の配列情報は、例えば、 GenBank Database Acc ession No. AP005276などから得ることができる。置換するプロモーターの種類は 宿主細菌で機能しうるものであれば特に制限されないが、嫌気的条件下での転写活 性抑制されないプロモーターが好ましぐ例えば、大腸菌で用いられる tacプロモータ 一や、 trcプロモーターなどが挙げられる。
プロモーター置換の方法としては、例えば、後述の実施例に示すような sacB遺伝子 を用いる方法(Schafer,A.et al.Gene 145 (1994)69-73)が挙げられる。
[0018] 本発明にお ヽては、酢酸生産が低減するように改変された有機酸生産菌にお ヽて 、 ODH活性を増強するように改変してもよい。酢酸生産が低減するように改変された 有機酸生産菌においては、 2—ォキソダルタル酸が副生することがある。 ODHは、 2 —ォキソグルタル酸を酸ィ匕的に脱炭酸し、サクシニル -CoAを生成する反応を触媒す るため、 ODH活性を増強することによって、 2—ォキソダルタル酸の副生が低下し、目 的の有機酸の生成量が増加する。
酢酸生産が低減するような改変としては、たとえば、アセテートキナーゼ (以下、 AC Kとも呼ぶ)、ホスホトランスァセチラーゼ(以下、 PTAとも呼ぶ)、ァセチルー CoAノヽィ ドラーゼ(以下、 ACHとも呼ぶ)、ピルべートォキシダーゼ (以下、 POXBとも呼ぶ)の活 性を低減するような改変が挙げられる。
酢酸はォキサ口酢酸及びォキサ口酢酸誘導体生合成経路の中間体であるァセチ ル— CoA力も生成されるため、酢酸合成経路をブロックして酢酸の副生を低減させる ためには、上記酵素のいずれか一つあるいは全ての活性を低下させることが好まし い。
[0019] 「PTA活性」とは、ァセチル— CoAにリン酸を転移してァセチルリン酸を生成する反 応を触媒する活性をいう。「PTA活性が低下するように改変された」とは、 PTA活性が 、非改変株、例えば野生株の比活性よりも低くなつたことをいう。 PTA活性は非改変 株と比較して、菌体当たり 30%以下に低下していることが好ましぐ菌体当たり 10%以 下に低下していることがより好ましい。また、 PTA活性は完全に消失していてもよい。 P TA活性が低下したことは、 Klotzschらの方法(Klotzsch, H. R., Meth Enzymol. 12, 3 81-386(1969))により、 PTA活性を測定することによって確認することができる。
[0020] 「ACK活性」は、ァセチルリン酸と ADPから酢酸を生成する反応を触媒する活性を いう。「ACK活性が低下するように改変された」とは、 ACK活性が、非改変株、例えば 野生株の比活性よりも低くなつたことをいう。 ACK活性は非改変株と比較して、菌体 当たり 30%以下に低下していることが好ましぐ菌体当たり 10%以下に低下しているこ とがより好ましい。また、 ACK活性は完全に消失していてもよい。 ACK活性が低下し たことは、 Ramponiらの方法(Ramponi G., Meth. Enzymol. 42,409-426(1975))により、 ACK活性を測定することによって確認することができる。
[0021] なお、コリネバタテリゥム'ダルタミカム(ブレビバタテリゥム 'フラバムに分類されるも のも含む)においては、 Microbiology. 1999 Feb; 145 (Pt 2):503- 13に記載されている ように、両酵素は pta— ackオペロンにコードされているため、 pta遺伝子を破壊した場 合は、 PTA及び ACKの両酵素の活性を低下させることができる。
[0022] pta遺伝子の破壊は、公知の方法、例えば、相同組換えを利用する方法や sacB遺 伝子を用いる方法(Schafer, A. et al. Gene 145 (1994) 69-73)にしたがって行うことが できる。 pta遺伝子としては、例えば、配列番号 7の塩基番号 1〜1383からなる塩基 配列を含む DNAを挙げることができる。また、遺伝子破壊に用いる遺伝子は破壊対 象のコリネ型細菌の染色体 DNA上の pta遺伝子と相同組換えを起こす程度の相同 性を有していればよいため、該配列の相同遺伝子も使用することができる。ここで、相 同組換えを起こす程度の相同性とは、好ましくは 70%以上、より好ましくは 80%以上 、さらに好ましくは 90%以上、特に好ましくは 95%以上の相同性を意味する。また、 上記遺伝子とストリンジェントな条件下でノヽイブリダィズし得る DNA同士であれば、 相同組換えは起こり得る。
[0023] なお、 ACK単独で活性低下させる場合、 ack遺伝子を用いて改変してもよ ヽ。 add! 伝子としては、例えば、配列番号 7の塩基番号 1386— 2579番目の塩基配列を有す る遺伝子を挙げることができる。また、染色体上の ack遺伝子と相同組換えを起こす 程度に、該配列に対して相同性を有する遺伝子も使用することができる。ここで、相 同組換えを起こす程度の相同性とは、好ましくは 70%以上、より好ましくは 80%以上 、さらに好ましくは 90%以上、特に好ましくは 95%以上の相同性を意味する。また、 上記遺伝子とストリンジェントな条件下でノヽイブリダィズし得る DNA同士であれば、 相同組換えは起こり得る。
なお、本発明において使用する細菌は、 ODH活性を増強する改変に加え、上記改 変のうちの 2種類以上の改変を組み合わせて得られる細菌であってもよ 、。複数の改 変を行う場合、その 1噴番は問わない。
[0024] 「ACH活性」は、ァセチル—CoAと水力も酢酸を生成する反応を触媒する活性を ヽ う。「ACH活性が低下するように改変された」とは、 ACH活性が、非改変株、例えば野 生株の比活性よりも低くなつたことをいう。 ACH活性は非改変株と比較して、菌体当 たり 50%以下、好ましくは 30%以下、さらに望ましくは 10%以下に低下されていること が好ましい。尚、「低下」には活性が完全に消失した場合も含まれる。 ACH活性が低 下したことは、 GergelyJ.,らの方法(GergelyJ., Hele.P. & Ramkrishnan,C.V. (1952) J .Biol.Chem. 198 p323_334)を参考にして ACH活性を測定することによって確認する ことができる。なお、コリネ型細菌の ACHをコードする遺伝子の例としては、 GenBank に登録のコリネバタテリゥム 'グルタミカムの配列(GenBank Accession No.NC_003450 の NCgl2480 (NC_003450の 2729376..2730884番目の相補鎖) )が挙げられる(WO200 5/113744)。コリネバタテリゥム ·グルタミカムの ach遺伝子の配列を配列番号 14の 10 37— 2545に示す。また、染色体上の ach遺伝子と相同組換えを起こす程度に、該配 列に対して相同性を有する遺伝子も使用することができる。ここで、相同組換えを起 こす程度の相同性とは、好ましくは 70%以上、より好ましくは 80%以上、さらに好まし くは 90%以上、特に好ましくは 95%以上の相同性を意味する。また、上記遺伝子と ストリンジェントな条件下でノヽイブリダィズし得る DNA同士であれば、相同組換えは 起こり得る。
[0025] 「POXB活性」は、ピルビン酸と水から酢酸を生成する反応を触媒する活性を!ヽぅ。「 ΡΟΧΒ活性が低下するように改変された」とは、 ΡΟΧΒ活性力 非改変株、例えば野生 株の比活性よりも低くなつたことをいう。 ΡΟΧΒ活性は非改変株と比較して、菌体当た り 50%以下に低下していることが好ましぐ 30%以下に低下していることがより好ましく 、 10%以下に低下していることが特に好ましい。「低下」には活性が完全に消失した 場合も含まれる。 ΡΟΧΒ活性が低下したことは、 Changらの方法(Chang Y. and Crona n J. E. JR, J.Bacteriol.151, 1279-1289(1982))〖こより、 POXB活性を測定することによ つて確認することができる。なお、コリネ型細菌の poxB遺伝子の例としては、 GenBank に登録されて 、る配列 (GenBank Accession No. NC_003450の 2776766- 2778505番 目の相補鎖)が挙げられる(WO2005/113745)。コリネバタテリゥム 'グルタミカムの pox B遺伝子の配列を配列番号 16の 996— 2735に示す。また、染色体上の poxB遺伝 子と相同組換えを起こす程度に、該配列に対して相同性を有する遺伝子も使用する ことができる。ここで、相同組換えを起こす程度の相同性とは、好ましくは 70%以上、 より好ましくは 80%以上、さらに好ましくは 90%以上、特に好ましくは 95%以上の相 同性を意味する。また、上記遺伝子とストリンジェントな条件下でハイブリダィズし得る DNA同士であれば、相同組換えは起こり得る。
なお、 ach遺伝子及び poxB遺伝子の破壊は、上述の pta遺伝子の破壊と同様に、公 知の方法により行うことができる。
[0026] 本発明の細菌は、 ODH活性の増強に加えて、ラタテートデヒドロゲナーゼ (以下、 L DHとも呼ぶ)活性が低減ィ匕するように改変された細菌であってもよい。このような細菌 は、有機酸がコハク酸である場合に特に有効である。このような細菌は、例えば、 LD H遺伝子が破壊された細菌を作製し、さらに該細菌を ODH遺伝子を用いて改変する こと〖こより得ることができる。ただし、 LDH活性低減化のための改変と、 ODH活性増強 のための改変はいずれを先に行ってもよい。
[0027] 「LDH活性が低減された」とは、 LDH遺伝子非改変株と比較して LDH活性が低下し ていることをいう。 LDH活性は、非改変株と比較して、菌体当たり 10%以下に低減ィ匕 されていることが好ましい。また、 LDH活性は完全に消失していてもよい。 LDH活性が 低減されたことは、公知の方法(L.Kanarek and R丄. Hill, J. Biol. Chem.239, 4202 (1 964))により LDH活性を測定することによって確認することができる。コリネ型細菌の L DH活性の低減した株の具体的な製造方法としては、特開平 11— 206385号公報に 記載されている染色体への相同組換えによる方法、あるいは、 sacB遺伝子を用いる 方法(Schafer, A. et al. Gene 145 (1994) 69- 73)等が挙げられる。
[0028] また、本発明に用いる細菌は、 ODH活性の増強に加えて、ピルビン酸カルボキシラ ーゼ(以下、 PCとも呼ぶ)の活性が増強するように改変された細菌であってもよい。 Γρ C活性が増強される」とは、 PC活性が野生株又は親株等の非改変株に対して好まし くは 100%以上、より好ましくは 300%以上増加していることをいう。 PC活性は例えば 、 NADHの減少を測定する方法 (WO2005Z021770)により測定することができる。 このような細菌は、例えば、 ODH遺伝子の発現増強されたコリネ型細菌に、 PC遺伝 子を導入することにより得ることができる。なお、 PC遺伝子の導入と ODH活性増強の ための改変操作は 、ずれの操作を先に行ってもよ!、。
[0029] PC遺伝子の導入は、例えば、特開平 11— 196888号公報に記載の方法と同様に して、ピルビン酸カルボキシラーゼ (PC)遺伝子をコリネ型細菌中で高発現させること により行うことができる。具体的な PC遺伝子遺伝子としては、例えば、コリネバクテリウ ム.ダルタミカム由来の PC遺伝子(Peters- Wendisch, P.G. et al. Microbiology, vol.14 4 (1998) p915-927 (配列番号 5) )などを用いることができる。 PC遺伝子は、 PC活性 を実質的に損なうことがない限り、配列番号 5の塩基配列において、一部の塩基が他 の塩基と置換されていてもよぐ又は欠失していてもよぐ或いは新たに塩基が挿入さ れていてもよぐ塩基配列の一部が転位されているものであってもよぐこれらの誘導 体のいずれもが、本発明に用いることができる。さらに、配列番号 5の塩基配列を有 する DNAとストリンジェントな条件でハイブリダィズする DNA、または配列番号 5の塩 基配列と 90%以上、好ましくは 95%以上、より好ましくは 99%以上の相同性を有す る DNAであって、 PC活性を有するタンパク質をコードする DNAも好適に用いることが できる。 [0030] また、コリネバタテリゥム 'ダルタミカム以外の細菌、または他の細菌又は動植物由 来の PC遺伝子を使用することもできる。特に、以下に示す細菌または動植物由来の PC遺伝子は、その配列が既知(以下に文献を示す)であり、上記と同様にしてハイブ リダィゼーンシヨンにより、あるいは PCR法によりその ORF部分を増幅することによつ て、取得することができる。
ヒト [Biochem.Biophys.Res.Comm., 202, 1009—1014, (1994)]
マウス [Proc.Natl.Acad.Sci.USA., 90, 1766-1779, (1993)]
ラッド [GENE, 165, 331-332, (1995)]
酵母;サッカロマイセス .セレビシェ (Saccharomyces cerevisiae)
[Mol.Gen.Genet., 229, 307-315, (1991)]
シゾサッ 7ロマ セス ·ホンぺ (Schizosaccharomyces pombe)
[DDBJ Accession No.; D78170]
ノ チルス'ステア口サーモフィルス (Bacillus stearothermophilus)
[GENE, 191, 47-50, (1997)]
リゾビゥム 'エトリ (Rhizobium etli)
[j.Bacteriol, 178, 5960-5970, (1996)]
なお、 PC活性の増強は上述したような ODHの活性増強と同様の方法にて行うこと ができる。
[0031] 2.有機酸の製造方法
本発明の有機酸の製造方法は、上記細菌またはその処理物を、炭酸イオン、重炭 酸イオンまたは二酸化炭素ガスを含有する反応液中で有機原料に作用させ、有機 酸を生成させ、これを採取する事を特徴とする有機酸の製造方法である。製造する 有機酸は上述した有機酸である力 コハク酸、フマル酸、リンゴ酸又はピルビン酸が 好ましぐコハク酸がより好ましい。
[0032] 有機酸の製造に上記細菌を用いるに当たっては、寒天培地等の固体培地で斜面 培養したものを直接反応に用いても良 ヽが、上記細菌を予め液体培地で培養 (種培 養)したものを用いるのが好ましい。種培養に用いる培地は、細菌の培養に用いられ る通常の培地を用いることができる。例えば、硫酸アンモ-ゥム、リン酸カリウム、硫酸 マグネシウム等の無機塩カゝらなる組成に、肉エキス、酵母エキス、ペプトン等の天然 栄養源を添加した一般的な培地を用いることができる。種培養後の菌体は、遠心分 離、膜分離等によって回収した後に、有機酸の製造反応に用いることが好ましい。な お、種培養した細菌を有機原料を含む培地で増殖させながら、有機原料と反応させ ることによって有機酸を製造してもよいし、予め増殖させて得られた菌体を有機原料 を含む反応液中で有機原料と反応させることによつても有機酸を製造してもよい。
[0033] 本発明では細菌の菌体の処理物を使用することもできる。菌体の処理物としては、 例えば、菌体をアクリルアミド、カラギーナン等で固定化した固定化菌体、菌体を破 砕した破砕物、その遠心分離上清、又はその上清を硫安処理等で部分精製した画 分等が挙げられる。
[0034] 本発明の製造方法に用いる有機原料としては、本細菌が資化してコハク酸などの 有機酸を生成させうる炭素源であれば特に限定されないが、通常、ガラクトース、ラタ トース、グノレコース、フノレクトース、グリセローノレ、シユークロース、サッカロース、デン プン、セルロース等の炭水化物;グリセリン、マン-トール、キシリトール、リビトール等 のポリアルコール類等の発酵性糖質が用いられ、このうちグルコース又はシユークロ ースが好ましぐ特にグルコースが好ましい。
[0035] また、上記発酵性糖質を含有する澱粉糖化液、糖蜜なども使用される。これらの発 酵性糖質は、単独でも組み合わせても使用できる。上記有機原料の使用濃度は特 に限定されないが、コハク酸などの有機酸の生成を阻害しない範囲で可能な限り高く するのが有利であり、通常、 5〜30% (1\^7 )、好ましくは10〜20% (1^7 )の範 囲内で反応が行われる。また、反応の進行に伴う上記有機原料の減少にあわせ、有 機原料の追加添加を行っても良 、。
[0036] 上記有機原料を含む反応液としては特に限定されず、例えば、細菌を培養するた めの培地であってもよいし、リン酸緩衝液等の緩衝液であってもよい。反応液は、窒 素源や無機塩などを含む水溶液であることが好ましい。ここで、窒素源としては、本 細菌が資化してコハク酸などの有機酸を生成させうる窒素源であれば特に限定され ないが、具体的には、アンモニゥム塩、硝酸塩、尿素、大豆加水分解物、カゼイン分 解物、ペプトン、酵母エキス、肉エキス、コーンスティープリカ一などの各種の有機、 無機の窒素化合物が挙げられる。無機塩としては各種リン酸塩、硫酸塩、マグネシゥ ム、カリウム、マンガン、鉄、亜鉛等の金属塩が挙げられる。また、ピオチン、パントテ ン酸、イノシトール、ニコチン酸等のビタミン類、ヌクレオチド、アミノ酸などの生育を促 進する因子を必要に応じて添加してもよい。また、反応時の発泡を抑えるために、培 養液には市販の消泡剤を適量添加しておくことが望ましい。
[0037] 反応液には、上記した有機原料、窒素源、無機塩などのほかに、炭酸イオン、重炭 酸イオン又は二酸ィ匕炭素ガスを含有させる。炭酸イオン又は重炭酸イオンは、中和 剤としても用いることのできる炭酸マグネシウム、炭酸ナトリウム、重炭酸ナトリウム、炭 酸カリウム、重炭酸カリウムなど力も供給されるが、必要に応じて、炭酸若しくは重炭 酸又はこれらの塩或 、は二酸ィヒ炭素ガス力 供給することもできる。炭酸又は重炭酸 の塩の具体例としては、例えば炭酸マグネシウム、炭酸アンモ-ゥム、炭酸ナトリウム 、炭酸カリウム、重炭酸アンモニゥム、重炭酸ナトリウム、重炭酸カリウム等が挙げられ る。そして、炭酸イオン、重炭酸イオンは、 l〜500mM、好ましくは 2〜300mM、さら に好ましくは 3〜200mMの濃度で添加する。二酸化炭素ガスを含有させる場合は、 溶液 1L当たり 50mg〜25g、好ましくは 100mg〜15g、さらに好ましくは 150mg〜l Ogの二酸ィ匕炭素ガスを含有させる。
[0038] 反応液の pHは、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、 炭酸マグネシウム、水酸化ナトリウム、水酸ィ匕カルシウム、水酸ィ匕マグネシウム等を添 加することによって調整することができる。本反応における pHは、通常、 pH5〜10、 好ましくは pH6〜9. 5であり、反応中も必要に応じて反応液の pHはアルカリ性物質 、炭酸塩、尿素などによって上記範囲内に調節する。
[0039] 本反応に用いる細菌の生育至適温度は、通常、 25°C〜35°Cである。反応時の温 度は、通常、 25°C〜40°C、好ましくは 30°C〜37°Cである。反応に用いる菌体の量 は、特に規定されないが、 l〜700gZL、好ましくは 10〜500gZL、さらに好ましく は 20〜400gZLが用いられる。反応時間は 1時間〜 168時間が好ましぐ 3時間〜 72時間がより好ましい。
[0040] 細菌の種培養時は、通気、攪拌し酸素を供給することが必要である。一方、コハク 酸などの有機酸の生成反応は、通気、攪拌して行ってもよいが、通気せず、酸素を 供給しない嫌気的雰囲気下で行ってもよい。ここで言う嫌気的雰囲気とは、溶液中の 溶存酸素濃度を低く抑えて反応することを意味する。この場合、溶存酸素濃度として
0〜2ppm、好ましくは 0〜lppm、さらに好ましくは 0〜0. 5ppmで反応させることが 望ましい。そのための方法としては、例えば容器を密閉して無通気で反応させる、窒 素ガス等の不活性ガスを供給して反応させる、二酸ィ匕炭素ガス含有の不活性ガスを 通気する等の方法を用いることができる。
[0041] 以上のような細菌反応により、コハク酸、フマル酸、リンゴ酸又はピルビン酸などの 有機酸が反応液中に生成蓄積する。反応液 (培養液)中に蓄積した有機酸は、常法 に従って、反応液より採取することができる。具体的には、例えば、遠心分離、ろ過等 により菌体等の固形物を除去した後、イオン交換榭脂等で脱塩し、その溶液から結 晶化あるいはカラムクロマトグラフィーにより精製するなどして、有機酸を採取すること ができる。
[0042] さらに本発明においては、上記した本発明の方法により有機酸を製造した後に、得 られた有機酸を原料として重合反応を行うことにより有機酸含有ポリマーを製造する ことができる。
近年、環境に配慮した工業製品が数を増す中、植物由来の原料を用いたポリマー に注目が集まってきており、本発明において製造されるコハク酸は、ポリエステルや ポリアミドといったポリマーに加工されて用いる事が出来る。コハク酸含有ポリマーとし て具体的には、ブタンジオールやエチレングリコールなどのジオールとコハク酸を重 合させて得られるコハク酸ポリエステル、へキサメチレンジァミンなどのジァミンとコハ ク酸を重合させて得られるコハク酸ポリアミドなどが挙げられる。
また、本発明の製造法により得られるコハク酸または該コハク酸を含有する組成物 は食品添加物や医薬品、化粧品などに用いることができる。
実施例 1
[0043] < ODHプラスミド増強株作製 >
(A) MJ233株ゲノム DNAの抽出
A培地 [尿素 2g、 (NH ) SO 7g、 KH PO 0. 5g、 K HPO 0. 5g、 MgSO - 7
4 2 4 2 4 2 4 4
H O 0. 5g、 FeSO - 7H O 6mg、 MnSO ·4— 5Η 06mg、ビォチン SOO /z g チ ァミン 100 g、イーストエキストラタト lg、カザミノ酸 lg、グルコース 20g、蒸留水 1 Lに溶解] 10mLに、ブレビバタテリゥム 'フラバム MJ— 233株を対数増殖期後期まで 培養し、遠心分離(10000g、 5分)により菌体を集めた。得られた菌体を lOmgZmL の濃度にリゾチームを含む 10mM NaCl/20mMトリス緩衝液(pH8. 0) /lmM E DTA' 2Na溶液 0. 15mLに懸濁した。次に、上記懸濁液にプロテナーゼ Kを、最終 濃度が 100 gZmLになるように添カ卩し、 37°Cで 1時間保温した。さらにドデシル硫 酸ナトリウムを最終濃度が 0. 5%になるように添加し、 50°Cで 6時間保温して溶菌し た。この溶菌液に、等量のフエノール Zクロロフオルム溶液を添カ卩し、室温で 10分間 ゆるやかに振盪した後、全量を遠心分離(5, 000 X g、 20分間、 10〜12°C)し、上 清画分を分取し、酢酸ナトリウムを 0. 3Mとなるように添加した後、 2倍量のエタノール を加え混合した。遠心分離(15, OOO X g、 2分)により回収した沈殿物を 70%ェタノ ールで洗浄した後、風乾した。得られた DNAに 10mMトリス緩衝液 (pH7. 5)— lm M EDTA' 2Na溶液 5mLをカ卩え、 4°Cでー晚静置し、以後の PCRの铸型 DNAに使 用した。
(B) ODH遺伝子のクローユングと増強用プラスミドの構築
プロモーター領域を含むブレビバタテリゥム.フラバム MJ233株由来 2—ォキソダル タル酸デヒドロゲナーゼ複合体 E1コンポーネントの遺伝子(odhA)の取得は上記 (A )で調製した DNAを铸型とし、全ゲノム配列が報告されているコリネバタテリゥム 'グ ルタミカム ATCC13032株の該遺伝子の配列(GenBank Database Accessio n No. BA000036の 1172498. . 1176271の相補鎖)を基に設計した合成 DNA (配列番号 1および配列番号 2)を用いた PCRによって行った。反応液組成:铸型 D NA1 μ PfxDNAポリメラーゼ (インビトロジェン社製) 0. 5 μ 1倍濃度添付バッ ファー、 0. 4 μ Μ各々プライマー、 ImM MgSO、 0. 2 MdNTPsを混合し、全量
4
を 50 μ Lとした。反応温度条件: DNAサーマルサイクラ一 PTC— 200 (MJResear ch社製)を用い、 94°Cで 10秒、 68°Cで 5分力 なるサイクルを 35回繰り返した。但し 、 1サイクル目の 94°Cでの保温は 2分、最終サイクルの 68°Cでの保温は 10分とした。 PCR反応終了後、 Takara Ex Taq (宝バイオ)を 0. 1 L加え、さらに 72°Cで 30 分保温した。増幅産物の確認は、 0. 75%ァガロース(SeaKem GTG agarose :F MCBioProducts製)ゲル電気泳動により分離後、臭化工チジゥム染色により可視化 することにより行い、約 4. 4kbの断片を検出した。ゲルからの目的 DNA断片の回収 は、 QIAQuick Gel Extraction Kit (QIAGEN製)を用いて行った。回収した DN A断片を、 PCR産物クロー-ングベクター pT7Blue T— Vector (Novagen製)と混 合し、ライゲーシヨンキット ver. 2 (宝バイオ)を用いて連結後、得られたプラスミド DN Aで大腸菌(DH5 a株)を形質転換した。この様にして得られた組換え大腸菌を 50 μ gZmLアンピシリンおよび 50 μ gZmLX— Galを含む LB寒天培地に塗抹した。こ の培地上で白色のコロニーを形成したクローンを、常法により液体培養した後、ブラ スミド DNAを精製した。得られたプラスミド DNAを制限酵素 Sselおよび BamHIで切 断することにより、約 4. 4kbの挿入断片が認められ、これを pODHl . 0と命名した。
(C) pTZ4と和合性を有するコリネ型細菌発現ベクターの構築
(i)ストレプトマイシン Ζスぺクチノマイシン耐性遺伝子の導入
PTZ4と共存可能なコリネ型細菌ベクターは、 pTZ4と和合性を示す複製領域を持 つプラスミドベクター pC3 (Plasmid 36 62 ( 1996) )のカナマイシン而性遺伝子を ストレプトマイシン Ζスぺクチノマイシン耐性遺伝子に置き換えることによって構築し た。なお、 ρΤΖ4とは、後述の MJ233ZPCZ A LDH株に導入されている PC増幅用 プラスミドのオリジナルプラスミドである。
ストレプトマイシン Zスぺクチノマイシン耐性遺伝子(大腸菌 Tn7)の取得は、同遺 伝子を有する植物形質転換用バイナリーベクター PLAN421 (Plant Cell Reports 10,
286 (1991))を铸型とした PCRによって行った。
反応液組成:铸型 DNA10ng、 PfxDNAポリメラーゼ (インビトロジェン社製) 0. 2 μ L、 1倍濃度添付バッファー、 0. 3 M各々プライマー、(配列番号 10および配列番 号 11で示した合成 DNA)、 ImM MgSO、 0. 25 MdNTPsを混合し、全量を 20
4
μ乙とした。
反応温度条件: DNAサーマルサイクラ一 PTC— 200 (MJResearch社製)を用い 、 94°Cで 20秒、 60°Cで 20秒、 72°Cで 60秒力 なるサイクルを 20回繰り返した。伹 し、 1サイクル目の 94°Cでの保温は 1分 20秒、最終サイクルの 72°Cでの保温は 2分と した。 増幅産物の確認は、 0. 8%ァガロース(SeaKem GTG agarose: FMCBioProd ucts製)ゲル電気泳動により分離後、臭化工チジゥム染色により可視化することにより 行い、 937bpの断片を検出した。ゲルからの目的 DNA断片の回収は、 QIAQuick Gel Extraction Kit (QIAGEN製)を用いて行い、回収後同 DNA断片を、 T4ポリ ヌクレオチドキナーゼ(T4 Polynucleotide Kinase :宝バイオ)により 5'末端をリン酸 化した。
pC3を制限酵素 Hindlllおよび Nrulで切断後、タレノウフラグメント(Klenow Frag ment :宝バイオ)により両末端を平滑ィ匕した DNA断片の末端を、上記で調製したス トレプトマイシン Zスぺクチノマイシン耐性遺伝子と混合し、ライゲーシヨンキット ver. 2 (宝バイオ)を用いて結合した。得られたプラスミド DNAで大腸菌(DH5 a株)を形 質転換し、 50 gZmLスぺクチノマイシンを LB寒天培地に塗抹した。得られたコロ ニーから、液体培養後、定法によりプラスミド DNAを調製し、配列番号 10および配列 番号 11の合成 DNAをプライマーとした上記 PCRによって解析した結果、ストレプトマ イシン Zスぺクチノマイシン耐性遺伝子が挿入されて ヽることが確認され、これを pC3 と命名した。
次に、 pC3を制限酵素 BamHIおよび PvuIIで切断して調製した DNA断片をクレノ ゥフラグメントにて末端を平滑ィ匕し、これに pBglllリンカ一(宝バイオ: CAGATCTG)を 混合し、ライゲーシヨンキット ver. 2 (宝バイオ)を用いて連結後、得られたプラスミド D NAで大腸菌(DH5 a株)を形質転換し、 50 μ g/mLスぺクチノマイシンを含む LB 寒天培地に塗抹した。得られたコロニーから、液体培養後、定法によりプラスミド DN Aを調製し、制限酵素 Bglllにて切断されるプラスミドを選抜し、これを pC3. 1と命名し た。
(ii)マルチクローユングサイトの導入
大腸菌プラスミド pT7Blue (Novagen社)を铸型として LacZマルチクローユングサイト を含む α—ペプチド遺伝子を配列番号 12および配列番号 13で示す合成 DNAをプ ライマーとした PCRにより調製した。
反応液組成:铸型 DNA10ng、 PfxDNAポリメラーゼ (インビトロジェン社製) 0. 2 μ L、 1倍濃度添付バッファー、 0. 3 ^ M各々プライマー、 ImM MgSO、 0. Md NTPsを混合し、全量を 20 μ Lとした。
反応温度条件: DNAサーマルサイクラ一 PTC— 200 (MJResearch社製)を用い 、 94。Cで 20秒、 60。Cで 20秒、 72。Cで 30秒力もなるサイクルを 20回繰り返した。伹 し、 1サイクル目の 94°Cでの保温は 1分 20秒、最終サイクルの 72°Cでの保温は 2分と した。
増幅産物の確認は、 1. 0%ァガロース(SeaKem GTG agarose: FMCBioProd ucts製)ゲル電気泳動により分離後、臭化工チジゥム染色により可視化することにより 行い、 5777bpの断片を検出した。ゲルからの目的 DNA断片の回収は、 QIAQuick Gel Extraction Kit (QIAGEN製)を用いて行い、回収後同 DNA断片を、 T4ポ リヌクレオチドキナーゼ (T4 Polynucleotide Kinase :宝バイオ)により 5'末端をリン 酸化した。
pC3. 1を制限酵素 Pstlおよび Hpalで切断後、タレノウフラグメント(Klenow Frag ment :宝バイオ)により末端を平滑ィ匕した DNA断片を、上記で調製したひ一ペプチド の遺伝子断片と混合し、ライゲーシヨンキット ver. 2 (宝バイオ)を用いて結合した。得 られたプラスミド DNAで大腸菌(DH5 a株)を形質転換し、 50 μ gZmLX- Galおよ び 50 μ gZmLスぺクチノマイシンを含む LB寒天培地に塗抹した。得られたコロニー の中から青色を呈するもの選抜し、液体培養後、定法によりプラスミド DNAを調製し た。このプラスミド DNAは、挿入した LacZマルチクローユングサイトに由来する EcoRV の切断部位を有することが確認され、これを pC3. 14と命名した(図 1に構築手順を 示す)。
次に、上記 pODHl . 0を制限酵素 Sselおよび BamHIで切断して生じた約 4. 4kb の DNA断片を 0. 75%ァガロースゲル電気泳動により分離、回収し、上記プラスミド pC3. 14を制限酵素 Pstlおよび BamHIで切断することによって調製した DNAと混 合し、ライゲーシヨンキット ver. 2 (宝バイオ)を用いて連結した。このようにして得られ たプラスミド DNAで大腸菌 DH5 α株を形質転換し、 50 gZmLスぺクチノマイシン および 50 μ gZmLX— Galを含む LB寒天培地に塗抹した。この培地上で生育した 白色コロニーを常法により液体培養した後、プラスミド DNAを精製した。得られたブラ スミド DNAを制限酵素 Sselおよび BamHIで切断することにより、約 4. 4kbの挿入断 片が認められたものを選抜し、これを pODH3. 2と命名した(図 2)。
[0048] (D) ODHプラスミド増強株の作製
ODH増強用プラスミド pODH3. 2のブレビバタテリゥム 'フラバム MJ233/PC/ Δ LDH株 (PC遺伝子が増強され、 LDH遺伝子が破壊された株:特開 2005— 951 69 :WO2005Z21770)への導入は、電気パルス法 (Res. Microbiol.、 Vol.144, p.181-185, 1993)によってそれぞれ行い、得られた形質転換体をストレプトマイシン 1 0 μ gZmLおよびカナマイシン 25 μ gZmLを含む LBG寒天培地 [トリプトン 10g、ィ 一ストエキストラタト 5g、 NaCl 5g、グルコース 20g、及び寒天 15gを蒸留水 1Lに溶 解]に塗抹した。この培地上に生育したそれぞれの株から、常法により液体培養した 後、プラスミド DNAを抽出、制限酵素切断による解析を行った結果、同株が pODH3 . 2を保持していることを確認し、該株をブレビバタテリゥム 'フラバム MJ233/pODH /PC/ Δ LDH株と命名した。
[0049] (E) ODH酵素活性測定
上記ブレビバタテリゥム ·フラバム MJ233ZpODHZPCZ Δ LDH株をダルコース 2%を含む A培地 100mlで終夜培養を行った。得られた培養液 50 mlを 4°Cで 4,000rp m x 10分の遠心分離により回収後、 30 mlの 100 mM TES- NaOH buffer (pH 7.5)で 2 回洗浄した。洗浄後の菌体は、 10 mlの BufferA (100 mM TES- NaOH buffer (pH 7.5) , 30% glycerol)に懸濁した。菌体懸濁液 1 mlを破砕用 15 mlファルコンに移し、ガラ スビーズ 1 mgを加え、バイオラブター(コスモバイオ製)で 4°Cに冷却しながら超音波 破砕(Highレベルで 1分破砕, 2分休止のサイクルを 1サイクルとしてこれを 7サイクル )を行った。この菌体破砕液を 4°Cで 18,000 x g, 5 min遠心してビーズを除去後、さら に 18,000 X g, 25 minの遠心を行い、得られた上清を粗酵素画分として ODH酵素活 性測定に供した。なお、タンパク濃度の測定は BSA濃度を指標とし、 Protein Assay (B IO-RAD, #500-0006 )を用いて行った。
ODH活性測定は、 Agric. Boil. Chem., 44(8), 1897-1904, 1980, I Shiio and K Ujiga wa-Takedaに記載の方法を参考に、以下の通りに行った。まず、終濃度 100 mM TES (DOJINDO, #344- 02653)- NaOH buffer (pH 7.7), 0.2 mM coenzyme A (和光, #306- 50481), 0.3 mM thiamin pyrophosphate (SIGMA, #C— 8754), 5 mM 2— oxoglutarate (S IGMA, #305-72-6), 3 mM L- cysteine (和光, #033-05272), 5 mM MgCl , 1 mM 3- ac
2
etylpyridine adenine dinucleotide (和光, #44047000)になるよう反応液を調製した。測 定用キュベットに反応液を移した後、粗酵素液の添カ卩により反応を開始し 365nmで の吸光度 (A )の上昇を測定した。 1Uは 1分間に A 力 ^増加する時の酵素量とした
365 365
。上記測定法によるブレビバタテリゥム ·フラバム MJ233ZpODHZPCZ Δ LDH株 の ODH比活性は 0. 028U/mg-蛋白質であった。なお親株であるブレビバタテリゥム •フラバム MJ233/PC/ A LDH株を同様に培養した菌体では、同活性は 0. 009U /mg-蛋白質であり、 ODH遺伝子プラスミド増強株では約 3倍に ODH活性が増加し ていることが確認された。
実施例 2
< ODHプラスミド増強株評価 >
(A)アンモニア嫌気条件
尿素: 4g、硫酸アンモ-ゥム: 14g、リン酸 1カリウム:0. 5g、リン酸 2カリウム。. 5g、 硫酸マグネシウム · 7水和物: 0. 5g、硫酸第一鉄 · 7水和物: 20mg、硫酸マンガン · 水和物: 20mg、 D ピオチン: 200 g、塩酸チアミン: 200 g、酵母エキス: 5g、力 ザミノ酸: 5g、及び蒸留水: lOOOmLの培地 lOOmLを 500mLの三角フラスコにいれ 、 120°C、 20分加熱滅菌した。これを室温まで冷やし、あら力じめ滅菌した 50%ダル コース水溶液を 4mL、無菌濾過した 5%カナマイシン水溶液:50 L、無菌濾過した 2%ストレプトマイシン水溶液: 50 μ Lを添加し、実施例 1の(D)で作製したブレビバタ テリゥム 'フラバム MJ233ZODHZPCZ Δ LDH株を接種して 24時間 30°Cにて種 口 しプ 。
硫酸アンモ-ゥム: 42g、リン酸 1カリウム: 1. 5g、リン酸 2カリウム 1. 5g、硫酸マグネ シゥム · 7水和物: 1. 5g、硫酸第一鉄 · 7水和物: 60mg、硫酸マンガン ·水和物: 60 mg、 D—ピオチン: 600 /ζ 8、塩酸チアミン: 600 g、酵母エキス 15g、カザミノ酸 15 g、消泡剤(アデ力ノール LG294 :旭電化製): lmL及び蒸留水: 2500mLの培地を 5Lの発酵糟に入れ、 120°C、 20分加熱滅菌した。これを室温まで冷やした後、あら かじめ滅菌した 12%グルコース水溶液: 500mL、無菌濾過した 5%カナマイシン水 溶液: 1. 5mL、無菌濾過した 2%ストレプトマイシン水溶液: 1. 5mLを添カ卩し、これ に前述の種培養液を lOOmL加えて、 30°Cに保温した。 pHは 2M炭酸アンモ-ゥム を用いて 7. 5に保ち、通気は毎分 500mL、攪拌は毎分 500回転で 16時間本培養 を行った。
硫酸マグネシウム · 7水和物: 0. 2g、硫酸第一鉄 · 7水和物: 8mg、硫酸マンガン · 水和物: 8mg、 D ピオチン: 80 μ g、塩酸チアミン: 80 μ g、消泡剤(アデ力ノール L G294:旭電化製): 1ml及び蒸留水: 200mLの培地を 500mLの三角フラスコに入 れ、 120°C、 20分加熱滅菌した。室温まで冷やした後、上記の本培養により得られた 培養液を 8000rpm、 5分の遠心分離により集菌した菌体に添カ卩して、 O. D. (660η m)が 60になるように再懸濁した。この懸濁液 200mLとあらかじめ滅菌した 20%ダル コース溶液 200mLを 1Lのジャーフアーメンターに入れて混合し、 35°Cに保温した。 pHは 2M炭酸アンモ-ゥムを用いて 7. 6に保ち、無通気、毎分 400回転で攪拌しな 力 反応を行った。反応開始後約 47時間で反応を終了した。
その結果、ブレビバタテリゥム 'フラバム MJ233ZpODHZPCZ ALDH株は、 MJ 233ZPCZ ALDH株と比較して、コハク酸収率が 3. 4%増大し、コハク酸の生産 量に対するアミノ酸生産量が 47%減少した。すなわち、 ODHの増強により、明らか なコハク酸収率向上、アミノ酸収率低減の効果が見られた。
(B)ナトリウム嫌気条件
尿素: 4g、硫酸アンモ-ゥム: 14g、リン酸 1カリウム:0. 5g、リン酸 2カリウム。. 5g、 硫酸マグネシウム · 7水和物: 0. 5g、硫酸第一鉄 · 7水和物: 20mg、硫酸マンガン · 水和物: 20mg、 D ピオチン: 200 g、塩酸チアミン: 200 g、酵母エキス: 5g、力 ザミノ酸: 5g、及び蒸留水: lOOOmLの培地 lOOmLを 500mLの三角フラスコにいれ 、 120°C、 20分加熱滅菌した。これを室温まで冷やし、あら力じめ滅菌した 50%ダル コース水溶液を 4mL、無菌濾過した 5%カナマイシン水溶液:50 L、無菌濾過した 2%ストレプトマイシン水溶液: 50 μ Lを添加し、実施例 1の(D)で作製したブレビバタ テリゥム 'フラバム MJ233ZpODHZPCZ Δ LDH株を接種して 24時間 30°Cにて 種培養した。
硫酸アンモ-ゥム: 42g、リン酸 1カリウム: 1. 5g、リン酸 2カリウム 1. 5g、硫酸マグネ シゥム · 7水和物: 1. 5g、硫酸第一鉄 · 7水和物: 60mg、硫酸マンガン ·水和物: 60 mg、 D—ピオチン: 600 /ζ 8、塩酸チアミン: 600 /z g、酵母エキス 15g、カザミノ酸 15 g、消泡剤(アデ力ノール LG294 :旭電化製): lmL及び蒸留水: 2500mLの培地を 5Lの発酵糟に入れ、 120°C、 20分加熱滅菌した。これを室温まで冷やした後、あら かじめ滅菌した 12%グルコース水溶液: 500mL、無菌濾過した 5%カナマイシン水 溶液: 1. 5mL、無菌濾過した 2%ストレプトマイシン水溶液: 1. 5mLを添カ卩し、これ に前述の種培養液を lOOmL加えて、 30°Cに保温した。 pHは 2M炭酸アンモ-ゥム を用いて 7. 5に保ち、通気は毎分 500mL、攪拌は毎分 500回転で 16時間本培養 を行った。
硫酸マグネシウム · 7水和物: 0. 2g、硫酸第一鉄 · 7水和物: 8mg、硫酸マンガン · 水和物: 8mg、 D—ピオチン: 80 μ g、塩酸チアミン: 80 μ g、消泡剤(アデ力ノール L G294 :旭電化製): 1ml及び蒸留水: 200mLの培地を 500mLの三角フラスコに入 れ、 120°C、 20分加熱滅菌した。室温まで冷やした後、上記の本培養により得られた 培養液を 8000rpm、 5分の遠心分離により集菌した菌体に添カ卩して、 O. D. (660η m)が 60になるように再懸濁した。この懸濁液 200mLとあらかじめ滅菌した 20%ダル コース溶液 200mLを 1Lのジャーフアーメンターに入れて混合し、 35°Cに保温した。 pHは 2M炭酸ナトリウムを用いて 7. 6に保ち、無通気、毎分 400回転で攪拌しながら 反応を行った。反応開始後約 47時間で反応を終了した。
その結果、ブレビバタテリゥム 'フラバム MJ233ZpODHZPCZ A LDH株は、 MJ 233ZPCZ A LDH株と比較して、コハク酸収率が 3. 8%増大し、コハク酸生産量 に対する酢酸生産量が 27%減少した。すなわち、 ODHの増強により、明らかなコハ ク酸収率向上、酢酸収率低減の効果が見られた。
実施例 3
<酢酸生成が低減化された株の ODH増強効果 >
(A) ODH増幅株の作製
酢酸の生成が低減ィ匕された株の 2—ォキソダルタル酸デヒドロゲナーゼの増強効果 を確認した。酢酸生成が低減ィ匕された株として、ブレビパクテリゥム 'ラタトフアーメンタ ム 2256 (コリネバタテリゥム 'グルタミカム ATCC13869)のラタテートデヒドロゲナーゼ(Id h)、ァセチル一 CoAノヽイド口ラーゼ(ach)、ホスホトランスァセチラーゼ (pta)、ァセテ一 トキナーゼ (ack)、ピルビン酸ォキシダーゼ (poxB)活性を低減化した株 (2256 Δ (ldh, pta,ack,ach,poxB)株)を用いた(国際公開 WO2005/113744、 WO2005/113745号パン フレット)。
ODH増幅用プラスミドとして、 ODH遺伝子を含む pPKS-X (国際公開 W095/34672 号パンフレット)を、また対照としてそのベクターである pPK4(国際公開 W095/34672号 パンフレット)を用いて、ブレビバタテリゥム'ラタトフアーメンタム 2256 A (ldh,pta,ack,ac h,poxB)株を電気パルス法により形質転換し、カナマイシン 25 μ g/mlを含む CM- Dex 寒天培地(グノレコース 5g/L、ポリペプトン 10g/L、イーストエキストラタト 10g/L、 KH P
2
0 lg/Lゝ MgSO · 7Η O 0.4g/L、 FeSO · 7Η O 0.01g/L、 MnSO - 7H O 0.01g/L、尿
4 4 2 4 2 4 2
素 3g/L、大豆加水分解物 1.2g/L、 pH7.5(KOH)に寒天 1.5%を含む)に塗布し、 31.5 °Cで約 24時間培養した。出現したコロニーを純ィ匕し、定法によりプラスミドを抽出し、 目的のプラスミドが導入されていることを確認した。酢酸低減株に ODH増幅プラスミド を導入した株を 2256 Δ (ldh,pta,ack,ach,poxB)/pPKS- X、ベクターを導入した株を 225 6 Δ (ldh,pta,ack,ach,poxB)/pPK4と名づけた。
(B) ODH増幅株によるコハク酸生産
上述の ODH増幅プラスミド導入株 (2256 Δ (ldh,pta,ack,ach,poxB)/pPKS-X)、ベタ ター導入株 (2256 Δ (ldh,pta,ack,ach,poxB)/pPK4)を CM- Dex寒天培地にて培養し、 得られた菌体をシード培地 3ml (グルコース 20g/L、 (NH ) SO 14g/L、 KH PO 0.5g/
4 2 4 2 4
L、 K HPO 0.5g/L、 MgSO - 7H O 0.5g/L、尿素 4g/L、 FeSO - 7H O 0.02g/L、 MnS
2 4 4 2 4 2
O - 7H O 0.02g/L、ビォチン 200 μ g/L、 VB1 · HC1 200 μ g/L、イーストエキストラタト
4 2
lg/L,カザミノ酸 lg/L)に接種し、好気条件にて 31.5°Cにて試験管で約 8時間振と 培養を行った。
その後、その試験管にメイン培地 3ml (グルコース 200g/Lをフィルターろ過したもの に、乾熱滅菌した炭酸マグネシウムを終濃度 143g/Lとなるように混合)を接種し、通 気を防ぐためシリコン栓で密栓し、 31.5°Cで約 48時間振とうしつつコハク酸生産培養 を行った。生成したコハク酸量を液体クロマトグラフィーにより分析した。カラムは Reze X ROA- Organic Acid H+ (Phenomenex)を二本直列接続したものを用い、サンプルは 5mM p-トルエンスルホン酸を用いて 50°Cで溶出した。溶出液を 5mM p-トルエンスル ホン酸および 100 M EDTAを含む 20mM Bis-Tris水溶液を用いて中和し、 CDD- 10 AD(SimadZu)にて電気伝導度を測定することによりコハク酸を測定した。各菌株につ いて、複数検体の評価を行った平均の結果を表 1に示した。 Yield (%)は糖に対する コハク酸の収率、 a - KG/SA(%)は、培養液中のコハク酸(SA)に対する α -ケトグルタ ル酸( a -KG)の濃度比を示す。
[0054] [表 1] 表 1. 0DH増強によるコハク酸生産
Figure imgf000027_0001
[0055] ODH増幅株である 2256 Δ (ldh,pta,ack,poxB,ach)/(pPKS-X)株では対照株である 2 256 Δ (ldh,pta,ack,poxB,ach)/(pPK4)株に比べて、収率は平均で約 3%の向上が認 められ、副生物の a - KGは約 1/2の減少が認められた。このことから、酢酸の生成が 低減するように改変されたコノ、ク酸生産菌において、 ODH活性を増強することにより 、副生 a - KGが低下し、コハク酸の生成量が増加することが示された。
産業上の利用可能性
[0056] 本発明の製造方法によれば、迅速かつ高効率でコハク酸などの有機酸を製造する ことができる。得られたコハク酸などの有機酸は食品添加物や医薬品、化粧品等に 用いることができる。また、得られた有機酸を原料として重合反応を行うことにより有機 酸含有ポリマーを製造することもできる。

Claims

請求の範囲
[I] 有機酸生産能を有し、 2—ォキソダルタル酸デヒドロゲナーゼ活性が該酵素の非改 変株と比較して増強するように改変された細菌。
[2] 有機酸生産能を有し、酢酸の生成が低減されるように改変され、かつ、 2—才キソグ ルタル酸デヒドロゲナーゼ活性が該酵素の非改変株と比較して増強するように改変さ れた細菌。
[3] アセテートキナーゼ及びホスホトランスァセチラ一ゼの 、ずれか一方又は両方の活 性が低減ィ匕するように改変することによって酢酸の生成が低減した、請求項 2に記載 の細菌。
[4] ァセチルー CoAノヽイド口ラーゼの活性が低減ィ匕するように改変することによって酢酸 の生成が低減した、請求項 2に記載の細菌。
[5] ピルべートォキシダーゼの活性が低減ィ匕するように改変することによって酢酸の生成 が低減した、請求項 2に記載の細菌。
[6] さらに、ラタテートデヒドロゲナーゼ活性が低減ィ匕するように改変された、請求項 1〜5 の!、ずれか一項に記載の細菌。
[7] さらに、ピルビン酸カルボキシラーゼ活性が増強するように改変された、請求項 1〜6 の!、ずれか一項に記載の細菌。
[8] コリネ型細菌、バチルス属細菌、リゾビゥム属細菌、ェシエリヒア属細菌、ラクトバチル ス属細菌、およびサクシノバチルス属細菌よりなる群力 選ばれる 、ずれかの細菌で ある請求項 1〜7のいずれか一項に記載の細菌。
[9] 有機酸がコハク酸である請求項 1〜8のいずれか一項に記載の細菌。
[10] 請求項 1〜9のいずれか一項に記載された細菌あるいはその処理物を、炭酸イオン、 重炭酸イオン又は二酸ィ匕炭素ガスを含有する反応液中で有機原料に作用させること によって有機酸を生成させ、該有機酸を採取する事を特徴とする有機酸の製造方法
[II] 前記細菌あるいはその処理物を嫌気的雰囲気下で有機原料に作用させることを特 徴とする、請求項 10に記載の製造方法。
[12] 有機原料が、グルコースまたはシユークロースである、請求項 10又は 11に記載の製 造方法。
[13] 有機酸がコハク酸である、請求項 10〜 12のいずれか一項に記載の製造方法。
[14] 請求項 10〜 13のいずれか一項に記載の方法により有機酸を製造する工程、及び前 記工程で得られた有機酸を原料として重合反応を行う工程を含む、有機酸含有ポリ マーの製造方法。
PCT/JP2007/053360 2006-02-24 2007-02-23 有機酸生産菌及び有機酸の製造法 WO2007099867A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008502748A JP5180060B2 (ja) 2006-02-24 2007-02-23 有機酸生産菌及び有機酸の製造法
US12/280,426 US7993888B2 (en) 2006-02-24 2007-02-23 Bacterium having enhanced 2-oxoglutarate dehydrogenase activity
BRPI0707674-6A BRPI0707674A2 (pt) 2006-02-24 2007-02-23 bactÉria capaz de produzir Ácido orgÂnico e processo para produÇço do mesmo
EP07714831.0A EP1995308B1 (en) 2006-02-24 2007-02-23 Bacterium capable of producing organic acid, and method for production of organic acid
CN200780006557.4A CN101389752B (zh) 2006-02-24 2007-02-23 能够产生有机酸的细菌以及产生有机酸的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-048060 2006-02-24
JP2006048060 2006-02-24

Publications (1)

Publication Number Publication Date
WO2007099867A1 true WO2007099867A1 (ja) 2007-09-07

Family

ID=38458977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053360 WO2007099867A1 (ja) 2006-02-24 2007-02-23 有機酸生産菌及び有機酸の製造法

Country Status (6)

Country Link
US (1) US7993888B2 (ja)
EP (1) EP1995308B1 (ja)
JP (1) JP5180060B2 (ja)
CN (1) CN101389752B (ja)
BR (1) BRPI0707674A2 (ja)
WO (1) WO2007099867A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001960A1 (ja) * 2008-07-03 2010-01-07 株式会社カネカ 組換えブレビバチルス属細菌による組換え蛋白質の製造方法
US7763447B2 (en) 2003-08-28 2010-07-27 Ajinomoto Co., Inc. Method of producing succinic acid with bacterium comprising a modified fumarate reductase gene or a modified succinate dehydrogenase gene
US7833763B2 (en) 2003-07-09 2010-11-16 Mitsubishi Chemical Corporation Method for producing organic acid
US7972823B2 (en) 2004-05-20 2011-07-05 Ajinomoto Co., Inc. Succinic acid-producing bacterium and process for producing succinic acid
JP2014150747A (ja) * 2013-02-06 2014-08-25 Sekisui Chem Co Ltd 変異微生物、並びに、コハク酸の生産方法
JP2016504917A (ja) * 2013-02-01 2016-02-18 ティエンジン インスティテュート オブ インダストリアル バイオテクノロジー, チャイニーズ アカデミー オブ サイエンスィズ テルペノイドを調製するための組換え微生物、及び組換え微生物の構築方法
JP2016519936A (ja) * 2013-05-17 2016-07-11 ザイレコ,インコーポレイテッド バイオマスの加工
JP2017516488A (ja) * 2014-06-03 2017-06-22 シージェイ チェイルジェダン コーポレーション O−スクシニルホモセリンまたはコハク酸の生産能を有する微生物、及びそれを利用したコハク酸またはo−スクシニルホモセリンの生産方法
CN107922955A (zh) * 2015-07-20 2018-04-17 Cj第制糖株式会社 用于产生腐胺或鸟氨酸的微生物和使用其产生腐胺或鸟氨酸的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0510921A (pt) * 2004-05-20 2008-05-20 Ajinomoto Kk bactéria produtora de ácido succìnico e processo para produzir ácido succìnico
CA2830373A1 (en) 2011-03-18 2012-09-27 Mitsubishi Chemical Corporation Method for producing polymer, method for producing organic acid, and organic acid-producing microorganism
WO2013018734A1 (ja) * 2011-07-29 2013-02-07 三井化学株式会社 二酸化炭素固定経路を導入した微生物
KR20140066553A (ko) 2012-11-23 2014-06-02 삼성전자주식회사 코리네박테리움 속 균주의 신규 프로모터
KR101714943B1 (ko) * 2013-01-24 2017-03-09 미쓰이 가가쿠 가부시키가이샤 이산화탄소 고정 회로를 도입한 미생물
EP3273782B9 (en) 2015-02-27 2022-07-13 White Dog Labs, Inc. Mixotrophic fermentation method for making acetone, isopropanol, and other bioproducts, and mixtures thereof
CN109897796A (zh) * 2019-01-29 2019-06-18 天津大学 厌氧快速生长的大肠杆菌平台菌株及用途
CN113774096A (zh) * 2021-10-21 2021-12-10 呼伦贝尔东北阜丰生物科技有限公司 一种苏氨酸生产提取工艺的优化方法

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134500A (en) 1981-02-12 1982-08-19 Kyowa Hakko Kogyo Co Ltd Plasmid pcg1
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
JPS5835197A (ja) 1981-08-26 1983-03-01 Kyowa Hakko Kogyo Co Ltd プラスミドpcg2
JPS5867679A (ja) 1981-09-30 1983-04-22 アメリカン・サイアナミド・カンパニ− イソシアン酸を三量化してシアヌル酸をつくる方法
JPS5877895A (ja) 1981-11-02 1983-05-11 Ajinomoto Co Inc プラスミドphm1519
JPS58192900A (ja) 1982-05-04 1983-11-10 Ajinomoto Co Inc 複合プラスミド
JPH01191686A (ja) 1988-01-26 1989-08-01 Mitsubishi Petrochem Co Ltd 複合プラスミド
JPH0272876A (ja) 1988-09-08 1990-03-13 Mitsubishi Petrochem Co Ltd トリプトフアンシンターゼの製造法
JPH03210184A (ja) 1990-01-11 1991-09-13 Mitsubishi Petrochem Co Ltd 新規プラスミドベクター
US5143834A (en) 1986-06-11 1992-09-01 Glassner David A Process for the production and purification of succinic acid
US5185262A (en) 1988-07-27 1993-02-09 Mitsubishi Petrochemical Co., Ltd. DNA fragment containing gene which encodes the function of stabilizing plasmid in host microorganism
WO1995034672A1 (fr) 1994-06-14 1995-12-21 Ajinomoto Co., Inc. GENE A DESHYDROGENASE α-CETOGLUTARIQUE
US5504004A (en) 1994-12-20 1996-04-02 Michigan Biotechnology Institute Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms
JPH11113588A (ja) 1997-10-09 1999-04-27 Mitsubishi Chemical Corp 含酸素化合物の製造方法
JPH11196887A (ja) 1998-01-16 1999-07-27 Mitsubishi Chemical Corp ホスホエノールピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法
JPH11196888A (ja) 1998-01-16 1999-07-27 Mitsubishi Chemical Corp ピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法
JPH11206385A (ja) 1998-01-28 1999-08-03 Mitsubishi Chemical Corp ラクテートデヒドロゲナーゼ遺伝子及び該遺伝子破壊株
WO2005010182A1 (ja) * 2003-07-29 2005-02-03 Research Institute Of Innovative Technology For The Earth コリネ型細菌形質転換体及びそれを用いるジカルボン酸の製造方法
WO2005021770A1 (ja) 2003-08-28 2005-03-10 Mitsubishi Chemical Corporation コハク酸の製造方法
WO2005026349A1 (ja) * 2003-09-17 2005-03-24 Mitsubishi Chemical Corporation 非アミノ有機酸の製造方法
JP2005095169A (ja) 2003-08-28 2005-04-14 Mitsubishi Chemicals Corp コハク酸の製造方法
WO2005113745A1 (ja) 2004-05-20 2005-12-01 Ajinomoto Co., Inc. コハク酸生産菌及びコハク酸の製造方法
WO2005113744A1 (ja) 2004-05-20 2005-12-01 Ajinomoto Co., Inc. コハク酸生産菌及びコハク酸の製造方法
WO2006020663A2 (en) * 2004-08-09 2006-02-23 Rice University Aerobic succinate production in bacteria
WO2006031424A2 (en) * 2004-08-27 2006-03-23 Rice University Mutant e. coli strain with increased succinic acid production
WO2006034156A2 (en) * 2004-09-17 2006-03-30 Rice University High succinate producing bacteria
WO2006069174A2 (en) * 2004-12-22 2006-06-29 Rice University Simultaneous anaerobic production of isoamyl acetate and succinic acid
JP2006238843A (ja) * 2005-03-07 2006-09-14 Mitsubishi Heavy Ind Ltd コハク酸の製造方法、コハク酸、生分解性プラスチックの製造方法および生分解性プラスチック
JP2006320208A (ja) * 2005-05-17 2006-11-30 Mitsubishi Chemicals Corp コハク酸の製造方法

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696561B1 (en) * 1909-07-09 2004-02-24 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
ZA816779B (en) 1981-09-30 1982-09-29 American Cyanamid Co Process for trimerizing isocyanic acid to make cyanuric acid
JPS61209596A (ja) 1985-03-12 1986-09-17 Kanegafuchi Chem Ind Co Ltd 固定化微生物による有機酸の製法
JPH0636746B2 (ja) 1985-08-24 1994-05-18 味の素株式会社 L―グルタミン酸の製造方法
JPH0796522B2 (ja) 1986-04-08 1995-10-18 軽質留分新用途開発技術研究組合 カルボン酸アンモニウム水溶液からのカルボン酸の製造法
JPS62238232A (ja) 1986-04-09 1987-10-19 Res Assoc Util Of Light Oil カルボン酸アンモニウム水溶液からのカルボン酸の製造法
US5168055A (en) * 1986-06-11 1992-12-01 Rathin Datta Fermentation and purification process for succinic acid
ES2036188T3 (es) 1986-06-11 1993-05-16 Michigan Biotechnology Institute Un procedimiento para la produccion de acido succinico por fermentacion anaerobia.
US5143832A (en) * 1987-08-25 1992-09-01 Schering Corporation ATCC 53620 production of a triacetylenic dioxolone with Microbispora sp. SCC 1438
US5034105A (en) 1989-07-27 1991-07-23 Michigan Biotechnology Institute Carboxylic acid purification and crystallization process
JP2820279B2 (ja) 1989-08-11 1998-11-05 日本合成化学工業株式会社 ソルビン酸の製造方法
US5142834A (en) * 1990-07-12 1992-09-01 Donnelly Corporation Vehicle trim assembly and fastener therefor
US5132456A (en) * 1991-05-07 1992-07-21 The Regents Of The University Of California Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pKa of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine
JP2526836B2 (ja) 1991-08-23 1996-08-21 味の素株式会社 酢酸資化性遺伝子
CA2126365C (en) * 1993-07-06 1999-08-24 Steven W. Felman Recovery of citric acid from impure process streams by addition of strong acids and salts thereof
JP2844511B2 (ja) 1993-09-02 1999-01-06 味の素株式会社 酢酸資化性遺伝子及びその利用
JP3394593B2 (ja) 1994-05-11 2003-04-07 昭和高分子株式会社 生分解性脂肪族ポリエステルの製造方法
US5869301A (en) * 1995-11-02 1999-02-09 Lockhead Martin Energy Research Corporation Method for the production of dicarboxylic acids
US5770435A (en) * 1995-11-02 1998-06-23 University Of Chicago Mutant E. coli strain with increased succinic acid production
KR19990013007A (ko) * 1997-07-31 1999-02-25 박원훈 형질전환된 대장균 ss373(kctc 8818p)과 이를 이용한숙신산의 생산방법
US5958744A (en) * 1997-08-18 1999-09-28 Applied Carbochemicals Succinic acid production and purification
JP3480274B2 (ja) 1997-10-29 2003-12-15 三菱化学株式会社 脂肪族ポリエステル共重合体の製造方法
US20030087381A1 (en) * 1998-04-13 2003-05-08 University Of Georgia Research Foundation, Inc. Metabolically engineered organisms for enhanced production of oxaloacetate-derived biochemicals
EP1073722B1 (en) 1998-04-13 2010-02-17 The University Of Georgia Research Foundation, Inc. Pyruvate carboxylase overexpression for enhanced production of oxaloacetate-derived biochemicals in microbial cells
JP4132253B2 (ja) 1998-07-24 2008-08-13 株式会社武蔵野化学研究所 アンモニア耐性l(+)−乳酸産生能菌およびl(+)−乳酸の生産方法
DE19951975A1 (de) * 1999-10-28 2001-05-03 Degussa Neue für das poxB-Gen codierende Nuleotidsequenzen
DE19959650A1 (de) 1999-12-10 2001-06-13 Degussa Neue für die Gene sdhA, sdhB und sdhC codierende Nukleotidsequenzen
JP4623825B2 (ja) * 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
US6670505B1 (en) 2000-03-07 2003-12-30 Eastman Chemical Company Process for the recovery of organic acids from aqueous solutions
DE10044681A1 (de) * 2000-09-09 2002-03-21 Degussa Neue für das lldD2-Gen kodierende Nukleotidsequenzen
US6911329B2 (en) * 2000-09-23 2005-06-28 Degussa Ag Process for the fermentative preparation of D-pantothenic acid using coryneform bacteria
EP1320586B1 (en) 2000-09-30 2004-08-25 Degussa AG Process for the fermentative preparation of d-pantothenic acid using coryneform bacteria
AU2002215910A1 (en) 2000-11-04 2002-05-15 Degussa Ag Process for the fermentative preparation of l-amino acids using strains of the enterobacteriaceae family
DE10112102A1 (de) 2001-03-14 2002-09-19 Degussa Verfahren zur fermentativen Herstellung von D-Pantothensäure und/oder deren Salzen
US6743610B2 (en) * 2001-03-30 2004-06-01 The University Of Chicago Method to produce succinic acid from raw hydrolysates
JP2002291477A (ja) 2001-03-30 2002-10-08 Mitsubishi Chemicals Corp フマラーゼをコードするdna及びその利用
US7338792B2 (en) * 2001-07-07 2008-03-04 Degussa Ag Process for the preparation of D-pantothenic acid and/or salts thereof
DE60216029T2 (de) * 2001-09-26 2007-06-21 Kabushiki Kaisha Toshiba Copolymer-Harzzusammensetzung und Verfahren zu seiner Herstellung
JP3754014B2 (ja) 2001-09-26 2006-03-08 株式会社東芝 共重合体樹脂組成物およびその製造方法
JP2003199522A (ja) 2002-01-09 2003-07-15 Inobakkusu Kk 食用調味料
JP4032765B2 (ja) 2002-02-13 2008-01-16 三菱化学株式会社 有機酸の製造方法
JP2003235592A (ja) 2002-02-13 2003-08-26 Mitsubishi Chemicals Corp 有機酸の製造方法
US20040152159A1 (en) * 2002-11-06 2004-08-05 Causey Thomas B. Materials and methods for the efficient production of acetate and other products
JP4469568B2 (ja) * 2003-07-09 2010-05-26 三菱化学株式会社 有機酸の製造方法
EP1669459B1 (en) * 2003-09-30 2014-10-22 Ajinomoto Co., Inc. Method of purifying succinic acid from fermentation liquid
BRPI0617491B1 (pt) * 2005-10-18 2021-04-27 Ajinomoto Co., Inc Processo para produção de ácido succínico

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134500A (en) 1981-02-12 1982-08-19 Kyowa Hakko Kogyo Co Ltd Plasmid pcg1
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
JPS5835197A (ja) 1981-08-26 1983-03-01 Kyowa Hakko Kogyo Co Ltd プラスミドpcg2
JPS5867679A (ja) 1981-09-30 1983-04-22 アメリカン・サイアナミド・カンパニ− イソシアン酸を三量化してシアヌル酸をつくる方法
JPS5877895A (ja) 1981-11-02 1983-05-11 Ajinomoto Co Inc プラスミドphm1519
JPS58192900A (ja) 1982-05-04 1983-11-10 Ajinomoto Co Inc 複合プラスミド
US5143834A (en) 1986-06-11 1992-09-01 Glassner David A Process for the production and purification of succinic acid
JPH01191686A (ja) 1988-01-26 1989-08-01 Mitsubishi Petrochem Co Ltd 複合プラスミド
US5185262A (en) 1988-07-27 1993-02-09 Mitsubishi Petrochemical Co., Ltd. DNA fragment containing gene which encodes the function of stabilizing plasmid in host microorganism
JPH0272876A (ja) 1988-09-08 1990-03-13 Mitsubishi Petrochem Co Ltd トリプトフアンシンターゼの製造法
JPH03210184A (ja) 1990-01-11 1991-09-13 Mitsubishi Petrochem Co Ltd 新規プラスミドベクター
WO1995034672A1 (fr) 1994-06-14 1995-12-21 Ajinomoto Co., Inc. GENE A DESHYDROGENASE α-CETOGLUTARIQUE
US5504004A (en) 1994-12-20 1996-04-02 Michigan Biotechnology Institute Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms
JPH11113588A (ja) 1997-10-09 1999-04-27 Mitsubishi Chemical Corp 含酸素化合物の製造方法
JPH11196887A (ja) 1998-01-16 1999-07-27 Mitsubishi Chemical Corp ホスホエノールピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法
JPH11196888A (ja) 1998-01-16 1999-07-27 Mitsubishi Chemical Corp ピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法
JPH11206385A (ja) 1998-01-28 1999-08-03 Mitsubishi Chemical Corp ラクテートデヒドロゲナーゼ遺伝子及び該遺伝子破壊株
WO2005010182A1 (ja) * 2003-07-29 2005-02-03 Research Institute Of Innovative Technology For The Earth コリネ型細菌形質転換体及びそれを用いるジカルボン酸の製造方法
WO2005021770A1 (ja) 2003-08-28 2005-03-10 Mitsubishi Chemical Corporation コハク酸の製造方法
JP2005095169A (ja) 2003-08-28 2005-04-14 Mitsubishi Chemicals Corp コハク酸の製造方法
WO2005026349A1 (ja) * 2003-09-17 2005-03-24 Mitsubishi Chemical Corporation 非アミノ有機酸の製造方法
WO2005113745A1 (ja) 2004-05-20 2005-12-01 Ajinomoto Co., Inc. コハク酸生産菌及びコハク酸の製造方法
WO2005113744A1 (ja) 2004-05-20 2005-12-01 Ajinomoto Co., Inc. コハク酸生産菌及びコハク酸の製造方法
WO2006020663A2 (en) * 2004-08-09 2006-02-23 Rice University Aerobic succinate production in bacteria
WO2006031424A2 (en) * 2004-08-27 2006-03-23 Rice University Mutant e. coli strain with increased succinic acid production
WO2006034156A2 (en) * 2004-09-17 2006-03-30 Rice University High succinate producing bacteria
WO2006069174A2 (en) * 2004-12-22 2006-06-29 Rice University Simultaneous anaerobic production of isoamyl acetate and succinic acid
JP2006238843A (ja) * 2005-03-07 2006-09-14 Mitsubishi Heavy Ind Ltd コハク酸の製造方法、コハク酸、生分解性プラスチックの製造方法および生分解性プラスチック
JP2006320208A (ja) * 2005-05-17 2006-11-30 Mitsubishi Chemicals Corp コハク酸の製造方法

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
ARIKAWA Y. ET AL.: "Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae", J. BIOSCI. BIOENG., vol. 87, no. 1, 1999, pages 28 - 36, XP003017715 *
BIOCHEM. BIOPHYS. RES. COMM., vol. 202, 1994, pages 1009 - 1014
CHANG Y.; CRONAN J. E. JR, J. BACTERIOL., vol. 151, 1982, pages 1279 - 1289
GENE, vol. 165, 1995, pages 331 - 332
GENE, vol. 191, 1997, pages 47 - 50
GERGELY, J.; HELE, P.; RAMKRISHNAN, C. V., J. BIOL. CHEM., vol. 198, 1952, pages 323 - 334
I SHIIO; K UJIGAWA-TAKEDA, AGRIC. BOIL. CHEM., vol. 44, no. 8, 1980, pages 1897 - 1904
IMABORI K. ET AL.: "Seikagaku Jiten", DAI 3 PAN TOKYO KAGAKU DOJIN, 8 October 1998 (1998-10-08), pages 392 - 393, XP003017714 *
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, vol. 49, 1999, pages 207 - 216
ISAMU SHIIO; KYOKO UJIGAWA-TAKEDA, AGRIC. BIOL. CHEM., vol. 44, no. 8, 1980, pages 1897 - 1904
J APPL MICROBIOL, vol. 91, 2001, pages 846 - 852
J. BACTERIOL., vol. 178, 1996, pages 5960 - 5970
KLOTZSCH, H. R., METH ENZYMOL., vol. 12, 1969, pages 381 - 386
LIELBL, W. ET AL., INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, vol. 41, 1991, pages 255 - 260
MOL. GEN. GENET., vol. 229, 1991, pages 307 - 315
PETERS-WENDISCH, P. G. ET AL., MICROBIOLOGY, vol. 144, 1998, pages 915 - 927
PLANT CELL REPORTS, vol. 10, 1991, pages 286
PLASMID, vol. 36, 1996, pages 62
PROC. NATL. ACAD. SCI. USA., vol. 90, 1993, pages 1766 - 1779
RAMPONI G., METH. ENZYMOL., vol. 42, 1975, pages 409 - 426
RES. MICROBIOL., vol. 144, 1993, pages 181 - 185
SCHAFER, A. ET AL., GENE, vol. 145, 1994, pages 69 - 73
See also references of EP1995308A4 *
SHIIO I; UJIGAWA-TAKEDA K.: "Presence and regulation of a-ketoglutarate dehydrogenase complex in a glutamate-producing bacterium, Brevibacterium flavum", AGRIC. BIOL. CHEM., vol. 44, 1980, pages 1897 - 1904
USUDA Y ET AL.: "Molecular cloning of the Corynebacterium glutamicum CBrevibacterium lactofermentum AJ12036) odhA gene encoding a novel type of 2-oxoglutaratedehydrogenase", MICROBIOLOGY, vol. 142, 1996, pages 3347 - 54
USUDA Y. ET AL.: "Molecular cloning of the Corynebacterium glutamicum ('Brevibacterium lactofermentum' AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase", MICROBIOLOGY, vol. 142, no. PART 12, 1996, pages 3347 - 3354, XP001037496 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833763B2 (en) 2003-07-09 2010-11-16 Mitsubishi Chemical Corporation Method for producing organic acid
US7763447B2 (en) 2003-08-28 2010-07-27 Ajinomoto Co., Inc. Method of producing succinic acid with bacterium comprising a modified fumarate reductase gene or a modified succinate dehydrogenase gene
US7972823B2 (en) 2004-05-20 2011-07-05 Ajinomoto Co., Inc. Succinic acid-producing bacterium and process for producing succinic acid
WO2010001960A1 (ja) * 2008-07-03 2010-01-07 株式会社カネカ 組換えブレビバチルス属細菌による組換え蛋白質の製造方法
JP2015077152A (ja) * 2008-07-03 2015-04-23 株式会社カネカ 組換えブレビバチルス属細菌による組換え蛋白質の製造方法
JP5763920B2 (ja) * 2008-07-03 2015-08-12 株式会社カネカ 組換えブレビバチルス属細菌による組換え蛋白質の製造方法
JP2016504917A (ja) * 2013-02-01 2016-02-18 ティエンジン インスティテュート オブ インダストリアル バイオテクノロジー, チャイニーズ アカデミー オブ サイエンスィズ テルペノイドを調製するための組換え微生物、及び組換え微生物の構築方法
JP2014150747A (ja) * 2013-02-06 2014-08-25 Sekisui Chem Co Ltd 変異微生物、並びに、コハク酸の生産方法
JP2016519936A (ja) * 2013-05-17 2016-07-11 ザイレコ,インコーポレイテッド バイオマスの加工
JP2017516488A (ja) * 2014-06-03 2017-06-22 シージェイ チェイルジェダン コーポレーション O−スクシニルホモセリンまたはコハク酸の生産能を有する微生物、及びそれを利用したコハク酸またはo−スクシニルホモセリンの生産方法
CN107922955A (zh) * 2015-07-20 2018-04-17 Cj第制糖株式会社 用于产生腐胺或鸟氨酸的微生物和使用其产生腐胺或鸟氨酸的方法
CN107922955B (zh) * 2015-07-20 2021-04-27 Cj第一制糖株式会社 用于产生腐胺或鸟氨酸的微生物和使用其产生腐胺或鸟氨酸的方法

Also Published As

Publication number Publication date
CN101389752B (zh) 2015-08-05
CN101389752A (zh) 2009-03-18
EP1995308A4 (en) 2010-03-24
EP1995308A1 (en) 2008-11-26
US7993888B2 (en) 2011-08-09
JP5180060B2 (ja) 2013-04-10
US20090156779A1 (en) 2009-06-18
EP1995308B1 (en) 2014-07-30
JPWO2007099867A1 (ja) 2009-07-16
BRPI0707674A2 (pt) 2011-05-10

Similar Documents

Publication Publication Date Title
JP5180060B2 (ja) 有機酸生産菌及び有機酸の製造法
US7563606B2 (en) Method for producing non-amino organic acid
JP4575086B2 (ja) コハク酸の製造方法
US7763447B2 (en) Method of producing succinic acid with bacterium comprising a modified fumarate reductase gene or a modified succinate dehydrogenase gene
JP5023701B2 (ja) コハク酸生産菌及びコハク酸の製造方法
JP5572279B2 (ja) コハク酸生産菌及びコハク酸の製造方法
JP4760121B2 (ja) コハク酸の製造方法
JP5034630B2 (ja) 有機酸生産微生物の菌体の調製法及び有機酸の製造法
JP5602982B2 (ja) コハク酸の製造方法
EP2192189A1 (en) Method for production of succinic acid
JP2008067623A (ja) 非アミノ有機酸の製造方法
JP4428999B2 (ja) 非アミノ有機酸の製造方法
JP4720114B2 (ja) オキザロ酢酸またはオキザロ酢酸誘導体の製造方法
JP5034395B2 (ja) 有機酸生産菌及び有機酸の製造方法
JP5663859B2 (ja) 非アミノ有機酸生産菌および非アミノ有機酸の製造方法
JP2008067624A (ja) 非アミノ有機酸の製造方法
JP2008067627A (ja) 非アミノ有機酸生産菌および非アミノ有機酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008502748

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780006557.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007714831

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12280426

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0707674

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080822