WO2007099726A1 - 車両駆動装置および車両駆動装置の制御方法 - Google Patents

車両駆動装置および車両駆動装置の制御方法 Download PDF

Info

Publication number
WO2007099726A1
WO2007099726A1 PCT/JP2007/051340 JP2007051340W WO2007099726A1 WO 2007099726 A1 WO2007099726 A1 WO 2007099726A1 JP 2007051340 W JP2007051340 W JP 2007051340W WO 2007099726 A1 WO2007099726 A1 WO 2007099726A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating electrical
vehicle
electrical machine
temperature
control device
Prior art date
Application number
PCT/JP2007/051340
Other languages
English (en)
French (fr)
Inventor
Hidenori Takahashi
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP07707571.1A priority Critical patent/EP1990231A4/en
Priority to JP2008502674A priority patent/JP4321668B2/ja
Priority to US12/223,403 priority patent/US7923950B2/en
Priority to CN2007800070002A priority patent/CN101395030B/zh
Publication of WO2007099726A1 publication Critical patent/WO2007099726A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1415Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with a generator driven by a prime mover other than the motor of a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a vehicle drive device, and more particularly to a vehicle drive device used in a hybrid vehicle that drives a vehicle by using an internal combustion engine and a rotating electric machine together.
  • hybrid vehicles require a large-capacity battery to extend the mileage, increase the vehicle weight and take a long time for charging. It is equipped with a generator to be driven.
  • both the power generated by regeneration and the power generated by the generator are applied between the terminals of the battery, and the voltage between the terminals rises above the allowable voltage depending on the battery storage state. There is a case. In this way, when an excessive voltage is applied between the terminals, the battery electrolyte decomposes, generates gas, or heats, which shortens the battery life.
  • Japanese Laid-Open Patent Publication No. 8-7 9 9 1 1 discloses a hybrid electric vehicle that solves such problems and can prevent an excessive voltage from being applied between battery terminals during regenerative braking. Disclosure.
  • An object of the present invention is to provide a vehicle drive device that improves energy efficiency while protecting a power storage device. Disclosure of the invention
  • the present invention relates to a vehicle horse drive device, which is a first rotating electrical machine that drives a vehicle and generates power during regenerative operation, and a power storage device that can exchange power with the first rotating electrical machine.
  • a temperature detection unit that detects the temperature of the power storage device, and a control device that controls the first rotating electrical machine.
  • the control device switches whether to cause the first rotating electrical machine to perform regenerative control according to the output of the temperature detection unit when detecting that the required value of the driving torque of the first rotating electrical machine has decreased.
  • the control device prohibits regenerative braking of the first rotating electrical machine for a predetermined period after detecting a decrease in the required value.
  • the control device permits regenerative braking to the first rotating electric machine for a predetermined period after detecting a decrease in the required value.
  • the vehicle drive device further includes a braking device that applies a braking force to the vehicle.
  • the control device prohibits the regenerative braking of the first rotating electric machine for a predetermined period when the temperature of the power storage device exceeds a predetermined value, and applies a braking force to the vehicle by the braking apparatus for the predetermined period.
  • the control device recognizes a required value of the driving torque based on an output of an accelerator sensor that detects an accelerator pedal position.
  • the vehicle drive device further includes an internal combustion engine and a second rotating electrical machine that is driven by the internal combustion engine and generates electric power.
  • the power storage device includes the first and second rotating electric machines Electric power can be exchanged, and the control device controls the first and second rotating electric machines.
  • a vehicle drive device the first rotating electrical machine that drives the vehicle and generates power during regenerative braking, and the power storage device that can exchange power with the first rotating electrical machine.
  • a temperature detection unit that detects the temperature of the power storage device; and a control device that controls the first rotating electrical machine.
  • the vehicle drive device further includes a braking device that applies a braking force to the vehicle.
  • the control device delays the timing at which the first rotating electrical machine starts regenerative braking when the temperature of the power storage device exceeds a predetermined value for a predetermined period, and applies braking force to the vehicle by the braking device during the predetermined period.
  • control device recognizes the required value of the driving torque based on the output of the acceleration sensor that detects the position of the finished accelerator pedal.
  • the vehicle drive device further includes an internal combustion engine and a second rotating electrical machine that is driven by the internal combustion engine and generates electric power.
  • the power storage device can exchange power with the first and second rotating electrical machines, and the control device controls the first and second rotating electrical machines.
  • a first rotating electrical machine that drives a vehicle and generates power during regenerative braking, a power storage device that can exchange power with the first rotating electrical machine, and a temperature of the power storage device are detected.
  • a temperature detection unit that detects a decrease in the required value of the drive torque of the first rotating electrical machine, and a first rotation according to the output of the temperature detection unit.
  • FIG. 1 is a block diagram showing a configuration of a hybrid vehicle 1 according to an embodiment of the present invention.
  • Figure 2 illustrates the energy flow when the vehicle is accelerating or traveling at a constant speed
  • FIG. 3 is a flowchart showing a control structure of a program related to vehicle braking executed by the control device 30 of FIG.
  • FIG. 4 is a schematic diagram for explaining the energy flow during traveling in steps S 4 and S 5 of FIG.
  • FIG. 5 is a waveform diagram for explaining the temporal change in energy shown in FIG.
  • FIG. 6 is a schematic diagram for explaining the flow of energy during traveling in step S 6 of FIG.
  • FIG. 7 is a waveform diagram for explaining the temporal change in energy shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing the configuration of a hybrid vehicle 1 according to an embodiment of the present invention.
  • the hybrid vehicle 1 includes a front wheel 2 OR, 20 L, a rear wheel 2 2 R, 2 2 L, an engine 20 00, a planetary gear PG, a differential gear DG, and a gear 4. , 6 and.
  • the hybrid vehicle 1 further includes a battery B, a direct current output from the battery B, a booster unit 25 for boosting the electric power, and an inverter 14 for transferring direct current power between the booster unit 25. Including A.
  • the hybrid vehicle 1 further includes an engine 2 0 through the planetary gear PG.
  • Motor generator MG 1 that generates electric power by receiving 0 power and motor generator MG 2 whose rotating shaft is connected to planetary gear PG are included.
  • Inverters 14 and • 14 A are connected to motor generators MG 1 and MG 2, respectively, and convert between AC power and DC power from the booster circuit.
  • Planetary gear PG includes a sun gear, a ring gear, a pinion gear that meshes with both the sun gear and the ring gear, and a planetary carrier that rotatably supports the pinion gear around the sun gear.
  • the planetary gear PG has first to third rotating shafts.
  • the first rotating shaft is a rotating shaft of a planetary carrier connected to the engine 200.
  • the second rotating shaft is the rotating shaft of the sun gear connected to the motor generator V1G1.
  • the third rotating shaft is a rotating shaft of a ring gear connected to motor generator MG2.
  • a gear 4 is attached to the third rotating shaft, and the gear 4 drives the gear 6 to transmit power to the differential gear DG.
  • the differential gear DG transmits the power received from the gear 6 to the front wheels 2 OR, 20 L, and the rotation power of the front wheels 20 R, 20 L via the gears 6, 4 is the third rotation of the planetary gear PG. Transmit to the shaft. '
  • Planetary gear PG serves to divide the power between engine 200 and motor generators MG 1 and MG 2. That is, if the rotation of two of the three rotation shafts of the planetary gear PG is determined, the rotation of the remaining one rotation shaft is naturally determined. Therefore, the vehicle speed is controlled by driving the motor generator MG 2 by controlling the power generation amount of the motor generator MG 1 while operating the engine 200 in the most efficient region, and the energy efficiency as a whole is increased. Realizing a good car.
  • the battery B which is the DC battery 1, is composed of, for example, a secondary battery such as Nikkenore hydrogen or lithium ion, and supplies DC power to the booster unit 25 and is charged by DC power from the booster unit 25.
  • a secondary battery such as Nikkenore hydrogen or lithium ion
  • Battery B is an assembled battery and includes a plurality of battery units B 0 to B n connected in series.
  • System main relays S R 1 and S R 2 are provided between the booster unit 25 and the battery B, and the high voltage is cut off when the vehicle is not in operation.
  • Booster unit 25 boosts the DC voltage received from battery B and supplies the boosted DC voltage to inverters 14, 14 A.
  • Inverters 14 and 14 A convert the supplied DC voltage into AC voltage and drive-control motor generator MG 1 when the engine starts. Also, after the engine starts, motor generator MG 1 The supplied AC power is converted to DC by inverters 14 and 14 A, converted to a voltage suitable for charging battery B by booster unit 25, and battery B is charged.
  • the hybrid vehicle 1 further includes an accelerator sensor 9 that detects the position of an accelerator pedal that is an input unit that receives an acceleration request instruction from the driver, a temperature sensor 10 that is attached to the battery B, and an accelerator sensor 9. And a control device 30 that controls the engine 20 0, the inverters 14 and 14 A, and the booster unit 2 5 according to the accelerator opening A cc and the temperature T bat detected by the temperature sensor 10.
  • the temperature sensor 10 detects the temperature T b at of the battery B and transmits it to the control device 30.
  • Inverters 14 and 14 A drive motor generator MG 2 in response to an instruction from control device 30 when the accelerator pedal is depressed.
  • Motor generator M G 2 assists engine 2 0 0 to drive front wheels 2 O R and 2 0 L.
  • control device 30 performs braking by coordinating hydraulic brake device 40, brake caliper 44, brake disc 42, and motor generator MG 2 that are mechanical brakes.
  • the motor generator MG 2 performs regenerative operation and converts the rotational kinetic energy of the wheels into electric energy.
  • the obtained electric energy is returned to battery B via inverters 14 and 14 A and booster unit 25.
  • the control device 30 determines the usage ratio of the regenerative brake and the mechanical brake based on the temperature of the battery B and the state of charge (SOC).
  • regenerative control during braking includes braking with regenerative electricity when a driver operating a hybrid vehicle performs a footbrake operation. Even when the foot brake is not operated, it includes the case where the vehicle is decelerated or accelerated while regenerative power is generated by turning off the accelerator pedal while driving.
  • FIG. 2 is a schematic diagram for explaining the flow of energy when the vehicle is accelerating or traveling at a constant speed.
  • the electric power generated by motor generator MG 1 is referred to as electric power P mg 1
  • the electric power consumed by motor generator MG 2 is referred to as electric power P mg 2.
  • the power P b at that is charged / discharged from the main battery is the difference between the power P mg 1 and the power P mg 2 and is not so large.
  • FIG. 3 is a flowchart showing a control structure of a program related to vehicle braking executed by control device 30 of FIG. The processing of this flowchart is called and executed every time a predetermined time elapses or a predetermined condition is satisfied from a predetermined main routine.
  • control device 30 monitors the output of accelerator sensor 9 to determine whether or not the accelerator opening is decreased. If the decrease in the opening of the case is not detected, the energy balance shown in FIG. 2 is continued, so the process proceeds to step S7 and the control is moved to the main routine.
  • step S1 if a decrease in the accelerator opening is detected in step S1, the process proceeds to step S2.
  • control device 30 is generated by motor generator MG 1. It is determined whether it is in a state.
  • a hybrid vehicle is capable of EV traveling that is driven only by a motor like an electric vehicle with the engine stopped, but the motor generator MG 1 is not generating electricity during EV traveling.
  • step S2 If motor generator MG1 is generating power in step S2, the process proceeds to step S3. If motor generator MG1 is not generating power, the process proceeds to step S6.
  • control device 30 determines whether or not battery temperature T b at detected by temperature sensor 10 is equal to or higher than specified temperature T 1.
  • the specified temperature T 1 is a temperature at which input / output restriction is started to protect the battery ⁇ ⁇ ⁇ , or cooling is started by a cooling fan (not shown).
  • step S 3 When the main battery temperature T b at is greater than or equal to the specified temperature T 1 at step S 3, the process proceeds to step S 4, while when the main battery temperature T b at is less than the specified temperature T 1, the process proceeds to step S 6.
  • step S4 control device 30 restricts or prohibits regenerative power generation of motor generator MG2.
  • step S5 the control device 30 operates the hydraulic brake device 40 in order to generate the braking force equivalent to the engine brake, and then in step S7, the control is transferred to the main routine.
  • step S 6 regenerative power generation is performed in motor generator MG 2 to generate a braking force, and then in step S 7 control is transferred to the main routine.
  • FIG. 4 is a schematic diagram for explaining the energy flow during traveling in steps S 4 and S 5 of FIG.
  • FIG. 5 is a waveform diagram for explaining the temporal change in energy shown in FIG.
  • step S4 in Fig. 3 the driver loosens the accelerator pedal or removes it completely from the foot, and the battery temperature T bat exceeds the specified value T 1 It is a state.
  • the surplus generated power is charged into battery B as P b at (MG 1).
  • the hydraulic brake is operated for a predetermined period from time t1 to t2.
  • the rotational kinetic energy Pt of the wheel is consumed as frictional heat between the disc wheel of the hydraulic brake and the brake pad. Then stop the operation of the hydraulic brake and switch to regenerative braking.
  • the start of regenerative braking using motor generator MG 2 is delayed until time t 2 when the engine speed is slightly reduced and surplus power P b at (MG 1) is reduced.
  • the initial hydraulic brake is activated in response to the accelerator pedal being loosened, and regenerative braking by MG 2 is started after the delay time TD.
  • the amount of recovered power can be increased accordingly.
  • FIG. 6 is a schematic diagram for explaining the flow of energy during traveling in step S 6 of FIG.
  • FIG. 7 is a waveform diagram for explaining the temporal change in energy shown in FIG.
  • step S6 in Fig. 3 the driver has released the accelerator pedal or removed it from the foot, and the battery temperature T bat Is less than the specified value T1.
  • the engine speed has not yet decreased, and the rotational kinetic energy Pe obtained by burning the fuel from the engine 20 0 rotates the motor generator MG 1.
  • the motor generator MG 1 serves as a generator P mg 1 continues to be output.
  • the control response speed of motor generator MG 2 is faster than the control response speed of engine 200, so when the accelerator is off, motor generator MG 2 does not need to generate torque applied to the wheels and consumes power. Disappear. Then, the surplus generated power is charged into battery B as P b at (MG 1). If the battery temperature T b at does not reach the regulation, the motor generator MG 2 may immediately start regenerative braking without operating the hydraulic brake, and the battery B may be charged together with P b at (MG 2). In this case, the energy P 1: consumed as heat in the friction brake in FIG. 4 can be recovered by the main battery B, and the energy efficiency is improved.
  • the battery does not have to be used at a low temperature, but has an optimum temperature range for use. For this reason, it is expected that the battery temperature can be quickly brought to the optimum range by positively heating the battery during regenerative braking immediately after starting at extremely low temperatures.
  • the vehicle drive device includes an engine 200, a motor generator MG 1 that is driven by the engine 200 and generates electric power, a motor generator MG 2 that drives the vehicle and generates electric power during regenerative braking, and a motor generator It includes a battery B that can exchange with MG 1 and MG 2, a temperature sensor 10 that detects the temperature of the battery B, and a control device 30 that controls the motor generators MG 1 and MG 2. Control device 30 determines whether or not to cause motor generator MG 2 to perform regenerative control in response to the output of temperature sensor 10 when it detects that the required value of drive torque of motor generator MG 2 has decreased. Switch.
  • the control device 30 monitors the output of the accelerator sensor and detects a decrease in the required value for a predetermined period (from tl in FIG. 5). At t 2), regenerative braking of motor generator MG 2 is prohibited.
  • control device 30 detects a decrease in the required value of the drive torque for a predetermined period (in FIG. 7 corresponding to tl to t 2 in FIG. 5). During the period, regenerative braking is permitted for motor generator MG2.
  • the vehicle drive device further includes a braking device that applies a braking force to the vehicle.
  • the braking device includes a hydraulic braking device, a brake caliper 4 4, and a brake disc 4 2.
  • the control device 30 prohibits the regenerative braking of the motor generator MG 2 for a predetermined period when the temperature of the battery B exceeds a predetermined value T 1 (tl to t 2 in FIG. 5). Apply braking force to
  • the vehicle drive device is driven by an engine 20 ° and a motor generator MG 1 that is driven by the engine 20 0 to generate power, and a motor generator MG 2 that drives the vehicle and generates power during regenerative braking.
  • a battery B that can exchange power with the motor generators MG 1 and MG 2
  • a temperature sensor 10 that detects the temperature of the battery B
  • a control device 30 that controls the motor generators MG 1 and MG 2.
  • Control device 30 changes the timing at which motor generator MG 2 starts regenerative braking according to the output of temperature sensor 10 when it detects that the required value of drive torque of motor generator MG 2 has decreased. .
  • the vehicle drive device further includes a braking device that applies a braking force to the vehicle.
  • the braking device includes a hydraulic braking device, a brake caliper 4 4, and a brake disc 4 2.
  • Control device 30 delays a timing for starting regenerative braking by motor generator MG 2 for a predetermined period when the temperature of battery B exceeds a predetermined value, and applies a braking force to the vehicle by the braking device during the predetermined period.
  • the rate at which the temperature of the battery is maintained in an appropriate range increases, so that the battery life is not impaired and the energy efficiency can be further increased.
  • the present invention is applied to a series / parallel type hybrid system in which the power of the engine can be divided and transmitted to the axle and the generator by the power split mechanism.
  • the present invention uses an engine only to drive the generator, It can also be applied to series hybrid vehicles that generate axle driving force only with a motor that uses the power generated by the machine, and electric vehicles that run only with a motor.
  • the axle and the motor or the electrical machinery are connected, and regenerative energy at the time of deceleration can be collected and stored in the battery, so that the present invention can be applied.

Abstract

 車両駆動装置は、エンジン(200)と、エンジン(200)により駆動され、発電を行なうモータジェネレータ(MG1)と、車両を駆動し、かつ回生制動時に発電を行なうモータジェネレータ(MG2)と、モータジェネレータ(MG1,MG2)と電力授受可能なバッテリ(B)と、バッテリ(B)の温度を検知する温度センサ(10)と、モータジェネレータ(MG1,MG2)の制御を行なう制御装置(30)とを備える。制御装置(30)は、モータジェネレータ(MG2)の駆動トルクの要求値が減少したことを検出した場合に、温度センサ(10)の出力に応じてモータジェネレータ(MG2)に回生制動を開始させるタイミングを変更する。

Description

明細書 車両駆動装置および車両駆動装置の制御方法 技術分野
この発明は、 車両駆動装置に関し、 特に内燃機関と回転電機とを併用して車両 を駆動するハイプリッド車両に用いられる車両駆動装置に関する。 背景技術
近年、 環境にやさしい車両として、 蓄電装置を搭載し、 駆動装置としてモータ を搭載する電気自動車、 ハイプリッド自動車および燃料電池自動車などが注目を 浴びている。 これらの車両では、 車両にブレーキをかける際に運動エネルギをモ ータで電気工ネルギに変換してバッテリに戻す回生制動を積極的に行なうことに よって、 エネルギ効率の改善を図っている。
これらの車両のうちハイブリッド自動車は、 走行距離を伸ばすには大容量のバ ッテリが必要とされ車重が増加しまた充電に長時間を要するという電気自動車の 欠点を補うために、 車両にエンジンで駆動される発電機を搭載したものである。 しかしながら、 回生制動を行なう場合は、 回生により発生した電力と、 発電機 により発生した電力が共にバッテリの端子間にかかり、 バッテリの蓄電状態によ ' つては、 端子間電圧が許容電圧以上に上昇する場合がある。 このように端子間に 過大な電圧がかかった場合、 パッテリの電解液が分解したり、 ガスが発生したり、 加熱したりして、 バッテリの寿命を短くするという問題があった。
特開平 8— 7 9 9 1 1号公報は、 このような問題点が解決された、 回生制動時 • のバッテリ端子間に過大な電圧がかかることを防止することができるハイプリッ ド型電気自動車を開示している。
バッテリの寿命にはバッテリ温度が大きく影響を与える。 バッテリにおける発 熱は、 バッテリ電流を I、 内部抵抗を Rとすると I 2Rで表わされるので、 短時 間であっても過大な電流が流れるとその電流の 2乗に比例して発熱量が増加する。 したがって、 蓄電状態のみならずバッテリ温度の面からも、 回生により発生した 電力と、 発電機により発生した電力が共にバッテリの端子間にかからないように 制御する必要がある。 すなわち、 充電状態が低くても、 充電電流の瞬間的なピー クが過大とならないようにも配慮しなければならない。
し力 し、 一方で、 バッテリ温度は低ければ低いほど良いわけでもなく、 使用す るための最適な温度範囲がある。 したがってバッテリ温度が低い場合に関しては、 特開平 8— 7 9 9 1 1号公報に開示されたハイプリッド自動車は改良の余地があ る。
この発明の目的は、 蓄電装置の保護を図りつつエネルギ効率を向上させた車両 駆動装置を提供することである。 発明の開示
この発明は、 要約すると、 車両馬区動装置であって、 車両を駆動し、 かつ回生制 動時に発電を行なう第 1の回転電機と、 第 1の回転電機と電力授受可能な蓄電装 置と、 蓄電装置の温度を検知する温度検知部と、 第 1の回転電機の制御を行なう 制御装置とを備える。 制御装置は、 第 1の回転電機の駆動トルクの要求値が減少 したことを検出した場合に、 温度検知部の出力に応じて第 1の回転電機に回生制 動を行なわせるか否かを切換える。
好ましくは、 制御装置は、 蓄電装置の温度が所定値を超えたときには、 要求値 の減少を検出してからの所定期間において第 1の回転電機の回生制動を禁止する。 好ましくは、 制御装置は、 蓄電装置の温度が所定値に達していないときは、 要 '求値の減少を検出してからの所定期間において第 1の回転電機に回生制動を許可 する。
好ましくは、 車両駆動装置は、 車両に制動力を働かせる制動装置をさらに備え る。 制御装置は、 蓄電装置の温度が所定値を超えたときに所定期間第 1の回転電 機の回生制動を禁止し、 所定期間は制動装置によつて車両に制動力を働かせる。 好ましくは、 制御装置は、 ァクセルペダル位置を検知するァクセルセンサの出 力によって駆動トルクの要求値を認識する。
好ましくは、 車両駆動装置は、 内燃機関と、 内燃機関により駆動され、 発電を 行なう第 2の回転電機とをさらに備える。 蓄電装置は、 第 1、 第 2の回転電機と 電力授受可能であり、 制御装置は、 第 1、 第 2の回転電機の制御を行なう。 この発明の他の局面に従うと、 車両駆動装置であって、 車両を駆動し、 かつ回 生制動時に発電を行なう第 1の回転電機と、 第 1の回転電機と電力授受可能な蓄 電装置と、 蓄電装置の温度を検知する温度検知部と、 第 1の回転電機の制御を行 なう制御装置とを備える。 制御装置は、 第 1の回転電機の駆動トルクの要求値が 減少したことを検出した場合に、 温度検知部の出力に応じて第 1の回転電機に回 生制動を開始させるタイミングを変更する。
好ましぐは、 車両駆動装置は、 車両に制動力を働かせる制動装置をさらに備え る。 制御装置は、 蓄電装置の温度が所定値を超えたときに第 1の回転電機に回生 制動を開始させるタイミングを所定期間遅延させ、 所定期間は制動装置によって 車両に制動力を働かせる。
好ましくは、 制御装置は、 了クセルペダル位置を検知するァクセノレセンサの出 力によって駆動トルクの要求値を認識する。
好ましくは、 車両駆動装置は、 内燃機関と、 内燃機関により駆動され、 発電を 行なう第 2の回転電機とをさらに備える。 蓄電装置は、 第 1、 第 2の回転電機と 電力授受可能であり、 制御装置は、 第 1、 第 2の回転電機の制御を行なう。 この発明は、 さらに他の局面に従うと、 車両を駆動し、 かつ回生制動時に発電 を行なう第 1の回転電機と、 第 1の回転電機と電力授受可能な蓄電装置と、 蓄電 装置の温度を検知する温度検知部とを含む車両駆動装置の制御方法であって、 第 1の回転電機の駆動トルクの要求値が減少したことを検出するステップと、 温度 検知部の出力に応じて第 1の回転電機に回生制動を行なわせるか否かを切換える ステップとを備える。
本発明によれば、 車両において蓄電装置の保護を図りつつ、 さらにエネルギ効 率を向上させることができる。 図面の簡単な説明
図 1は、 本発明の実施の形態に係るハイプリッド自動車 1の構成を示すプロッ ク図である。
図 2は、 車両の加速時または一定速度での走行時のエネルギの流れを説明する ための概略図である。
図 3は、 図 1の制御装置 3 0が実行する車両制動に関するプログラムの制御構 , 造を示したフローチャートである。
図 4は、 図 3のステップ S 4, S 5での走行時のエネルギの流れを説明するた めの概略図である。
図 5は、 図 4に示したエネルギの時間変化について説明するための波形図であ ' る。
図 6は、 図 3のステップ S 6での走行時のエネルギの流れを説明するための概 略図である。
図 7は、 図 6に示したエネルギの時間変化について説明するための波形図であ る。 発明を実施するための最良の形態
以下、 本発明の実施の形態について図面を参照して詳しく説明する。 なお、 図 ' 中同一または相当部分には同一の符号を付してそれらについての説明は繰返さな い。
図 1は、 本発明の実施の形態に < (系るハイプリッド自動車 1の構成を示すプロッ ク図である。
図 1を参照して、 ハイブリッド自動車 1は、 前輪 2 O R , 2 0 Lと、 後輪 2 2 R , 2 2 Lと、 エンジン 2 0 0と、 プラネタリギヤ P Gと、 デファレンシャルギ ャ D Gと、 ギヤ 4, 6とを含む。
ハイブリッド自動車 1は、 さらに、 バッテリ Bと、 バッテリ Bの出力する直流 . 電力を昇圧する昇圧ュ-ット 2 5と、 昇圧ュニット 2 5との間で直流電力を授受 するインバータ 1 4, 1 4 Aとを含む。
ハイブリッド自動車 1は、 さらに、 プラネタリギヤ P Gを介してエンジン 2 0
. 0の動力を受けて発電を行なうモータジェネレータ MG 1と、 回転軸がプラネタ リギヤ P Gに接続されるモータジェネレータ MG 2とを含む。 インバータ 1 4, • 1 4 Aは、 モータジェネレータ MG 1 , MG 2にそれぞれ接続され、 交流電力と 昇圧回路からの直流電力との変換を行なう。 プラネタリギヤ P Gは、 サンギヤと、 リングギヤと、 サンギヤおよびリングギ ャの両方に嚙み合うピニオンギヤと、 ピニオンギヤをサンギヤの周りに回転可能 に支持するブラネタリキヤリャとを含む。 ブラネタリギヤ P Gは第 1〜第 3の回 転軸を有する。 第 1の回転軸はエンジン 2 0 0に接続されるプラネタリキヤリャ の回転軸である。 第 2の回転軸はモータジェネレータ] V1G 1に接続されるサンギ ャの回転軸である。 第 3の回転軸はモータジェネレータ MG 2に接続されるリン グギヤの回転軸である。
この第 3の回転軸にはギヤ 4が取付けられ、 このギヤ 4はギヤ 6を駆動するこ とによりデフアレンシャルギヤ D Gに動力を伝達する。 デフアレンシャルギヤ D Gはギヤ 6から受ける動力を前輪 2 O R , 2 0 Lに伝達するとともに、 ギヤ 6, 4を介して前輪 2 0 R , 2 0 Lの回転カをプラネタリギヤ P Gの第 3の回転軸に 伝達する。 '
プラネタリギヤ P Gはエンジン 2 0 0, モータジェネレータ MG 1 , MG 2の 間で動力を分割する役割を果たす。 すなわちブラネタリギヤ P Gの 3つの回転軸 のうちの 2つの回転軸の回転が定まれば残る 1つの回転軸の回転は自ずと定めら れる。 したがって、 エンジン 2 0 0を最も効率のよい領域で動作させつつ、 モー タジェネレータ MG 1の発電量を制御してモータジェネレータ MG 2を駆動させ ることにより車速の制御を行ない、 全体としてエネルギ効率のよい自動車を実現 している。
直流電¾1であるバッテリ Bは、 たとえば、 二ッケノレ水素またはリチウムイオン などの二次電池からなり、 直流電力を昇圧ュニット 2 5に供給するとともに、 昇 圧ユニット 2 5からの直流電力によって充電される。
バッテリ Bは、 組電池であり、 直列に接続された複数の電池ュニット B 0〜 B nを含む。 昇圧ュニット 2 5とバッテリ Bとの間にはシステムメインリレー S R 1 , S R 2が設けられ車両非運転時には高電圧が遮断される。
昇圧ュニット 2 5はバッテリ Bから受ける直流電圧を昇圧し、 その昇圧された 直流電圧をインバータ 1 4 , 1 4 Aに供給する。 インバータ 1 4, 1 4 Aは供給 された直流電圧を交流電圧に変換してエンジン始動時にはモータジェネレータ M G 1を駆動制御する。 また、 エンジン始動後にはモータジェネレータ MG 1が発 電した交流電力はインバータ 1 4, 1 4 Aによって直流に変換されて昇圧ュニッ ト 2 5によってバッテリ Bの充電に適切な電圧に変換されバッテリ Bが充電され る。
ハイブリツド自動車 1は、 さらに、 運転者からの加速要求指示を受ける入力部 であるアクセルペダルの位置を検知するアクセルセンサ 9と、 ノ ッテリ Bに取付 けられる温度センサ 1 0と、 アクセルセンサ 9からのアクセル開度 A c cおよび 温度センサ 1 0の検知した温度 T b a tに応じてエンジン 2 0 0、 インバータ 1 4, 1 4 Aおよび昇圧ュニット 2 5を制御する制御装置 3 0とを含む。 温度セン サ 1 0は、 バッテリ Bの温度 T b a tを検知して制御装置 3 0に送信する。
インバータ 1 4, 1 4 Aは、 アクセルペダルが踏込まれると、 制御装置 3 0か らの指示に応じてモータジェネレータ MG 2を駆動する。 モータジェネレータ M G 2はエンジン 2 0 0を補助して前輪 2 O R , 2 0 Lを駆動する。
制動時には、 制御装置 3 0は、 機械的ブレーキである油圧ブレーキ装置 4 0、 ブレーキキヤリパ 4 4およびブレーキディスク 4 2と、 モータジェネレータ MG 2とを協調させて制動を行なう。 モータジェネレータ MG 2は回生運転を行ない、 車輪の回転運動エネルギを電気工ネルギに変換する。 得られた電気工ネルギは、 ィンバータ 1 4, 1 4 Aおよび昇圧ュニット 2 5を経由してバッテリ Bに戻され る。
制御装置 3 0は、 バッテリ Bの温度や充電状態 ( S O C : State Of Charge) に基づいて回生ブレーキと機械的ブレーキの使用比率を定める。
なお、 制動時の回生制御には、 ハイブリッド自動車を運転するドライバによる フットブレーキ操作があった場合の回生宪電を伴う制動が含まれる。 また、 フッ トプレーキを操作しない場合であっても、 走行中にアクセルペダルをオフするこ とで回生発電をさせながら車両を減速させたりまたは加速を中止させたりすると きが含まれる。
図 2は、 車両の加速時または一定速度での走行時のエネルギの流れを説明する ための概略図である。
車両の加速時または一定速度での走行時は、 運転者はアクセルペダルを踏んで いる状態である。 そして図 2に示すように、 エンジン 2 0 0が燃料を燃焼させて 得た回転運動エネルギ P eがモータジェネレータ MG 1を回転させモータジエネ レータ MG 1は発電機として電力 P m g 1を出力する。 このときモータジエネレ ータ MG 2は車輪に対して回転運動エネルギ P tを与えている。 また、 動力分割 機構であるプラネタリギヤによって、 エンジン 2 0 0から直接車輪に伝えられる 回転運動エネルギ P t 2も存在する。 回転運動エネルギ P tおよび P t 2は、 車 両の加速や走行時の空気抵抗や摩擦抵抗に抗するために用いられる。
モータジェネレータ MG 1で発電される電力を電力 P m g 1とし、 モータジェ ネレータ MG 2で消費される電力を電力 P m g 2とする。 メインバッテリから充 放電.される電力 P b a tは、 電力 P m g 1と電力 P m g 2の差であり余り大きく ない。
このような状態で、 ァクセノレペダルが放されアクセルオフ状態またはフットプ レーキをかけた状態となると、 モータジェネレータ MG 2は加速をしないので電 力を消費しなくなる。 その一方でモータジェネレータ MG 1は 電を急には停止 しない。 したがって、 電力 P m g 1はバッテリ Bに向かって充電される。 このと きモータジェネレータ MG 2が回生制動を行なえば、 さらにバッテリ Bに対して 回生電力が充電され、 電流の増大に伴いその 2乗に比例してバッテリで熱が発生' する。 このときのバッテリの発熱がバッテリに悪影響を与えないように配慮しつ つ、 なるべく効率よく回生電力をバッテリに回収することが望ましい。
図 3は、 図 1の制御装置 3 0が実行する車両制動に関するプログラムの制御構 造を示したフローチャートである。 このフローチャートの処理は、 所定のメイン ルーチンから一定時間経過ごとまたは所定の条件が成立するごとに呼び出されて 実行される。
図 1、 図 3を参照して、.ステップ S 1において、 制御装置 3 0は、 アクセルセ ンサ 9の出力を監視して、 アクセル開度が減少するかどうかを判断する。 ァクセ ル開度の減少が検知されない場合には図 2で示したエネルギの均衡が継続される ので、 処理はステップ S 7に進み制御はメインルーチンに移される。
一方、 ステップ S 1においてアクセル開度の減少が検知された場合には、 ステ ップ S 2に処理が進む。 この場合、 モータジェネレータ MG 2での電力消費が停 止されることになるので、 制御装置 3 0は、 モータジェネレータ MG 1が発電し ている状態かどうかを判断する。 たとえば、 ハイブリッド自動車は、 エンジンを 停止させ電気自動車のようにモータのみで走行する E V走行も可能であるが、 E V走行時はモータジェネレータ MG 1が発電していない状態である。
ステップ S 2においてモータジェネレータ MG 1が発電している状態であれば 処理はステップ S 3に進み、 モータジェネレータ MG 1が発電していない状態で あれば処理はステップ S 6に進む。
ステップ S 3では、 制御装置 3 0は、 温度センサ 1 0で検知されたバッテリ温 度 T b a tが、 規定温度 T 1以上であるか否かを判断する。 規定温度 T 1は、 バ ッテリ Βを保護するために入出力の制限を開始する温度、 または図示しない冷却 ファン等によって冷却を開始する温度である。
ステップ S 3においてメインパッテリ温度 T b a tが規定温度 T 1以上である ときにはステップ S 4に処理が進み、 一方メインバッテリ温度 T b a tが規定温 度 T 1未満であればステップ S 6に処理が進む。
ステップ S 4では、 制御装置 3 0は、 モータジェネレータ MG 2の回生発電を : 制限または禁止する。 そしてステップ S 5において、 エンジンブレーキ相当の制 動力を発生させるために、 制御装置 3 0は油圧ブレーキ装置 4 0を作動させ、 そ の後ステップ S 7において制御はメインルーチンに移される。
一方、 ステップ S 6では、 モータジェネレータ MG 2において回生発電を実施 して制動力を発生させ、 その後ステップ S 7において制御はメインルーチンに移 される。
図 4は、 図 3のステップ S 4, S 5での走行時のエネルギの流れを説明するた めの概略図である。
図 5は、 図 4に示したエネルギの時間変化について説明するための波形図であ る。
図 4、 図 5を参照して、 図 3のステップ S 4に処理が進んだ場合は、 運転者が アクセルペダルを緩めるかまたは完全に足から離し、 かつバッテリ温度 T b a t が規定値 T 1以上となっている状態である。
この時刻 t l直後では、 エンジン回転はまだ減少せず、 エンジン 2 0 0が燃料 を燃焼させて得た回転運動エネルギ P eがモータジェネレータ MG 1を回転させ モータジェネレータ MG 1は発電機として電力 P m g 1を出力しつづけている。 一方、 モータジエネレータ MG 2の制御の応答速度はエンジン 2 0 0の制御の 応答速度より も速いので、 ァクセノレペダルが放されアクセルオフ状態となると、 モータジェネレータ MG 2は車輪に与えるトルクを発生させる必要が無くなり電 力を消費しなくなる。
すると余った発電電力が P b a t (MG 1 ) としてバッテリ Bに充電されるこ とになる。 このとき、 油圧ブレーキを時刻 t 1〜 t 2の所定期間作動させる。 そ の間は、 油圧ブレーキのディスクホイールとブレーキパットの摩擦熱として車輪 の回転運動エネルギ P tが消費される。 その後油圧ブレーキの作動を停止させ回 生制動に切換える。
すなわち、 エンジン回転が少し減少し余剰電力 P b a t (MG 1 ) が少なくな る時刻 t 2まで、 モータジェネレータ MG 2を用いた回生制動の開始を遅らせる。 つまり、 バッテリ温度が規定値よりも高い場合には、 アクセルペダルが緩めら れたことに応じて当初油圧ブレーキを作動させ、 遅延時間 T D後に MG 2による 回生制動を開始させる。
このように油圧ブレーキと回生ブレーキを協調制御することで、 エンジンブレ ーキ相当の減速効果を得ることができ、 ハイブリッド自動車の操作感をガソリン 車と同等にすることができる。
また、 モータジェネレータ MG 1からバッテリに充電される電力のピークとモ ータジェネレータ MG 2からの回生電力のピークとをずらすことで、 一 Δ Ρに相 当するバッテリの発熱量を抑えることができる。
し力 し、 バッテリ温度がさほど高くなければ、 その分電力の回収量を増やして も良い。
図 6は、 図 3のステップ S 6での走行時のエネルギの流れを説明するための概 略図である。
図 7は、 図 6に示したエネルギの時間変化について説明するための波形図であ る。
図 6、 図 7を参照して、 図 3のステップ S 6に処理が進んだ場合は、 運転者が アクセルペダルを緩めるかまたは足から離しており、 かつバッテリ温度 T b a t が規定値 T 1未満の状態である。
この時刻 t l直後では、 エンジン回転はまだ減少せず、 エンジン 2 0 0が燃料 を燃焼させて得た回転運動エネルギ P eがモータジェネレータ MG 1を回転させ モータジェネレータ MG 1は発電機として電力 P m g 1を出力しつづけている。 一方、 モータジェネレータ MG 2の制御の応答速度はエンジン 2 0 0の制御の 応答速度よりも速いので、 アクセルオフ状態となるとモータジェネレータ MG 2 は車輪に与えるトルクを発生させる必要が無くなり電力を消費しなくなる。 すると、 余った発電電力が P b a t (MG 1 ) としてバッテリ Bに充電される ことになる。 バッテリ温度 T b a tが規定 に達していなければ、 油圧ブレーキ 作動させずに直ちにモータジェネレータ MG 2に回生制動を開始させて P b a t (MG 2 ) もあわせてバッテリ Bに充電しても良い。 この場合は図 4では摩擦ブ レーキにおいて熱として消費されていたエネルギ P 1:がメインバッテリ Bに回収 できることとなりエネルギ効率が向上する。
また、 バッテリは、 使用温度が低ければよいというものではなく、 使用最適温 度範囲がある。 このため、 極低温時の始動直後等においては回生制動時に積極的 にバッテリが加熱されることによりバッテリ温度を最適範囲に速やかに持ってい くことができるという効果も期待される。
以上説明した内容に基づいて、 再度図 1を参照して以下に本実施の形態につい てまとめる。
車両駆動装置は、 エンジン 2 0 0と、 エンジン 2 0 0により駆動され、 発電を 行なうモータジェネレータ MG 1と、 車両を駆動し、 かつ回生制動時に発電を行 なうモータジェネレータ MG 2と、 モータジェネレータ MG 1 , MG 2と竃カ授 受可能なバッテリ Bと、 バッテリ Bの温度を検知する温度センサ 1 0と、 モータ ジエネレータ MG 1, MG 2の制御を行なう制御装置 3 0とを備える。 制御装置 3 0は、 モータジェネレータ MG 2の駆動トルクの要求値が減少したことを検出 した場合に、 温度センサ 1 0の出力に応じてモータジェネレータ MG 2に回生制 動を行なわせるか否かを切換える。
制御装置 3 0は、 バッテリ Bの温度が所定値 T 1を超えたときには、 アクセル センサの出力を監視し、 要求値の減少を検出してからの所定期間 (図 5の t l〜 t 2 ) においてモータジェネレータ MG 2の回生制動を禁止する。
制御装置 3 0は、 バッテリ Bの温度が所定値に達していないときは、 駆動トル クの要求値の減少を検出してからの所定期間 (図 5の t l〜t 2に対応する図 7 の期間) においてモータジェネレータ MG 2に回生制動を許可する。
車両駆動装置は、 車両に制動力を働かせる制動装置をさらに備える。 制動装置 は、 油圧ブレーキ装置、 ブレーキキヤリパ 4 4、 ブレーキディスク 4 2を含む。 制御装置 3 0は、 バッテリ Bの温度が所定値 T 1を超えたときに所定期間 (図 5 の t l〜t 2 ) モータジェネレータ MG 2の回生制動を禁止し、 その所定期間は 制動装置によって車両に制動力を働かせる。
この実施の形態は、 他の表現では、 次のように言うこともできる。 すなわち、 車両駆動装置は、 エンジン 2 0◦と、 エンジン 2 0 0により駆動され、 発電を行 なうモータジェネレータ MG 1と、 車両を駆動し、 かつ回生制動時に発電を行な うモータジェネレータ MG 2と、 モータジェネレータ MG 1, MG 2と電力授受 可能なバッテリ Bと、 バッテリ Bの温度を検知する温度センサ 1 0と、 モータジ ヱネレータ MG 1, MG 2の制御を行なう制御装置 3 0とを備える。 制御装置 3 0は、 モータジェネレータ MG 2の駆動トルクの要求値が減少したことを検出し た場合に、 温度センサ 1 0の出力に応じてモータジェネレータ MG 2に回生制動 を開始させるタイミングを変更する。
車両駆動装置は、 車両に制動力を働かせる制動装置をさらに備える。 制動装置 は、 油圧ブレーキ装置、 ブレーキキヤリパ 4 4、 ブレーキディスク 4 2を含む。 制御装置 3 0は、 バッテリ Bの温度が所定値を超えたときにモータジェネレータ MG 2に回生制動を開始させるタイミングを所定期間遅延させ、 その所定期間は 制動装置によって車両に制動力を働かせる。
本実施の形態によれば、 バッテリの温度が適切な範囲に維持される割合が増え るので、 バッテリ寿命を損なわず、 かつエネルギ効率をさらに高めることができ る。
なお、 本実施の形態では動力分割機構によりエンジンの動力を車軸と発電機と に分割して伝達可能なシリーズ /パラレル型ハイプリッドシステムに適用した例 を示した。 しかし本発明は、 発電機を駆動するためにのみエンジンを用い、 発電 機により発電された電力を使うモータでのみ車軸の駆動力を発生させるシリーズ 型ハイブリッド自動車や、 モータのみで走行する電気自動車にも適用できる。 こ れらの構成は、 いずれも車軸とモータまたは宪電機とが接続されており、 減速時 の回生エネルギを回収しバッテリに蓄えることが可能であるため本発明が適用可 能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示され、 請求の範囲と均等の意味およぴ範囲内でのすべての変更が含まれ ることが意図される。

Claims

請求の範囲
1 . 車両を駆動し、 かつ回生制動時に発電を行なう第 1の回転電機と、 ' 前記第 1の回転電機と電力授受可能な蓄電装置と、
前記蓄電装置の温度を検知する温度検知部と、
前記第 1の回転電機の制御を行なう制御装置とを備え、
前記制御装置は、 前記第 1の回転電機の駆動トルクの要求値が減少したことを 検出した場合に、 前記温度検知部の出力に応じて前記第 1の回転電機に回生制動 を行なわせるか否かを切換える、 車両駆動装置。
2 . 前記制御装置は、 前記蓄電装置の温度が所定値を超えたときには、 前記要 • 求値の減少を検出してからの所定期間において前記第 1の回転電機の回生制動を 禁止する、 請求の範囲第 1項に記載の車両駆動装置。
3 . 前記制御装置は、 前記蓄電装置の温度が所定値に達していないときは、 前 記要求値の減少を検出してからの所定期間において前記第 1の回転電機に回生制 動を許可する、 請求の範囲第 1項に記載の車両駆動装置。
4 . 車両に制動力を働力せる制動装置をさらに備え、
前記制御装置は、 前記蓄電装置の温度が所定値を超えたときに所定期間前記第 1の回転電機の回生制動を禁止し、 前記所定期間は前記制動装置によって車両に • 制動力を働かせる、 請求の範囲第 1項に記載の車両駆動装置。
5 . 前記制御装置は、 アクセルペダル位置を検知するアクセルセンサの出力に よって前記駆動トルクの要求値を認識する、 請求の範囲第 1項に記載の車両駆動 装置。
6 . 内燃機関と、
前記内燃機関により駆動され、 発電を行なう第 2の回転電機とをさらに備え、 前記蓄電装置は、 前記第 1、 第 2の回転電機と電力授受可能であり、 前記制御装置は、 前記第 1、 第 2の回転電機の制御を行なう、 請求の範囲第 1 〜 5項のいずれか 1項に記載の車両駆動装置。
7 . 車両を駆動し、 かつ回生制動時に発電を行なう第 1の回転電機と、 前記第 1の回転電機と電力授受可能な蓄電装置と、 前記蓄電装置の温度を検知する温度検知部と、
前記第 1の回転電機の制御を行なう制御装置とを備え、
前記制御装置は、 前記第 1の回転電機の駆動トルクの要求値が減少したことを 検出した場合に、 前記温度検知部の出力に応じて前記第 1の回転電機に回生制動 ' を開始させるタイミングを変更する、 車両駆動装置。
8 . 車両に制動力を働かせる制動装置をさらに備え、
前記制御装置は、 前記蓄電装置の温度が所定値を超えたときに前記第 1の回転 電機に回生制動を開始させる前記タイミングを所定期間遅延させ、 前記所定期間 は前記制動装置によって車両に制動力を働かせる、 請求の範囲第 7項に記載の車 両駆動装置。
9 . 前記制御装置は、 アクセルペダル位置を検知するアクセルセンサの出力に よって前記駆動トルクの要求値を認、識する、 請求の |S囲第 7項に記載の車両駆動 装置。
1 0 ; 内燃機関と、
前記内燃機関により駆動され、 発電を行なう第 2の回転電機とをさらに備え、 前記蓄電装置は、 前記第 1、 第 2の回転電機と電力授受可能であり、 前記制御装置は、 前記第 1、 第 2の回転電機の制御を行なう、 請求の範囲第 7 〜 9項のいずれか 1項に記載の車両駆動装置。
1 1 . 車両を駆動し、 かつ回生制動時に発電を行なう第 1の回転電機と、 前記 第 1の回転電機と電力授受可能な蓄電装置と、 前記蓄電装置の温度を検知する温 度検知部とを含む車両駆動装置の制御方法であって、
前記第 1の回転電機の駆動トルクの要求値が減少したことを検出するステップ と、
前記温度検知部の出力に応じて前記第 1の回転電機に回生制動を行なわせるか 否かを切換えるステップとを備える、 車両駆動装置の制御方法。
PCT/JP2007/051340 2006-02-28 2007-01-23 車両駆動装置および車両駆動装置の制御方法 WO2007099726A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07707571.1A EP1990231A4 (en) 2006-02-28 2007-01-23 Vehicle drive device and method of controlling vehicle drive device
JP2008502674A JP4321668B2 (ja) 2006-02-28 2007-01-23 車両駆動装置
US12/223,403 US7923950B2 (en) 2006-02-28 2007-01-23 Vehicle drive device and method of controlling vehicle drive device
CN2007800070002A CN101395030B (zh) 2006-02-28 2007-01-23 车辆驱动装置以及车辆驱动装置的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006052845 2006-02-28
JP2006-052845 2006-02-28

Publications (1)

Publication Number Publication Date
WO2007099726A1 true WO2007099726A1 (ja) 2007-09-07

Family

ID=38458846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051340 WO2007099726A1 (ja) 2006-02-28 2007-01-23 車両駆動装置および車両駆動装置の制御方法

Country Status (6)

Country Link
US (1) US7923950B2 (ja)
EP (1) EP1990231A4 (ja)
JP (1) JP4321668B2 (ja)
KR (1) KR100981119B1 (ja)
CN (1) CN101395030B (ja)
WO (1) WO2007099726A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237381A (ja) * 2012-05-16 2013-11-28 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の制御方法
JP2014079096A (ja) * 2012-10-11 2014-05-01 Honda Motor Co Ltd 発電機の制御装置
JP2014534802A (ja) * 2011-11-08 2014-12-18 ルノー エス.ア.エス. 模擬エンジンブレーキの指示の調節
CN110562099A (zh) * 2019-09-23 2019-12-13 北京海纳川汽车部件股份有限公司 车辆的电池监控系统、方法及车辆

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035349B2 (en) * 2008-09-30 2011-10-11 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for absorbing waste electricity from regenerative braking in hybridized vehicles
US8738260B2 (en) * 2009-08-07 2014-05-27 Toyota Jidosha Kabushiki Kaisha Brake control system, and brake control method
JP5168409B2 (ja) * 2009-09-03 2013-03-21 トヨタ自動車株式会社 ブレーキ制御装置
KR20120024001A (ko) * 2010-09-03 2012-03-14 현대자동차주식회사 전기자동차의 제동 제어 방법
JP5808923B2 (ja) * 2011-03-18 2015-11-10 Ntn株式会社 モータ駆動装置及び電気自動車
JP5333604B2 (ja) * 2011-04-06 2013-11-06 トヨタ自動車株式会社 ブレーキ制御装置及びブレーキ制御方法
DE102012202647A1 (de) * 2012-02-21 2013-08-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer elektrischen Maschine
CA2899497C (en) 2013-03-14 2021-03-16 Allison Transmission, Inc. System and method for optimizing hybrid vehicle battery usage constraints
WO2014158826A1 (en) 2013-03-14 2014-10-02 Allison Transmission, Inc. System and method for engine driveline disconnect during regeneration in hybrid vehicles
AU2014241787B2 (en) 2013-03-14 2016-07-28 Allison Transmission, Inc. System and method for power management during regeneration mode in hybrid electric vehicles
WO2014158827A1 (en) 2013-03-14 2014-10-02 Allison Transmission, Inc. System and method for compensation of turbo lag in hybrid vehicles
EP2969683A4 (en) 2013-03-15 2017-01-25 Allison Transmission, Inc. System and method for energy rate balancing in hybrid automatic transmissions
EP2969695B1 (en) 2013-03-15 2019-07-03 Allison Transmission, Inc. Service disconnect interlock system and method for hybrid vehicles
EP2969640B1 (en) 2013-03-15 2019-09-04 Allison Transmission, Inc. System and method for balancing states of charge of energy storage modules in hybrid vehicles
CN103887578B (zh) * 2014-03-25 2016-03-30 东风汽车公司 提高电动汽车低温续航里程的动力电池加热方法和系统
JP6508346B2 (ja) * 2015-09-16 2019-05-08 三菱自動車工業株式会社 回生ブレーキ制御装置
NL2015587B1 (en) 2015-09-28 2017-04-21 Trs Transp B V A vehicle comprising a wheel driven generator for charging a battery.
US10106053B2 (en) * 2016-03-31 2018-10-23 Honda Motor Co., Ltd. Vehicle
CN108177560A (zh) * 2017-12-28 2018-06-19 华晨鑫源重庆汽车有限公司 整车控制系统
US11167745B2 (en) * 2018-04-19 2021-11-09 Toyota Jidosha Kabushiki Kaisha Control system of hybrid vehicle
DE102018214953A1 (de) * 2018-09-04 2020-03-05 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftfahrzeugs, Steuergerät, Kraftfahrzeug
CN112606694B (zh) * 2020-12-25 2022-06-28 中国第一汽车股份有限公司 一种车辆能量回收分配方法、装置、车辆及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241603A (ja) * 1988-07-27 1990-02-09 Suzuki Motor Co Ltd 電気車の回生制動制御回路
JPH0879911A (ja) 1994-09-02 1996-03-22 Toyota Motor Corp ハイブリッド型電気自動車
JPH08140203A (ja) * 1994-11-04 1996-05-31 Honda Motor Co Ltd 電動車両のバッテリ充電装置
JPH08163707A (ja) * 1994-12-06 1996-06-21 Mitsubishi Motors Corp 電気自動車の制動制御装置
JPH0974605A (ja) * 1995-09-05 1997-03-18 Toyota Motor Corp 電気車両の回生制動制御装置及び方法
JP2002095105A (ja) * 2001-07-23 2002-03-29 Hitachi Ltd 電気自動車の回生制動制御方法および制御装置
JP2002337573A (ja) * 2001-05-15 2002-11-27 Toyota Motor Corp ハイブリッド車
JP2005318731A (ja) * 2004-04-28 2005-11-10 Toyota Motor Corp 自動車用電源装置およびそれを備える自動車

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10248175A (ja) 1997-03-06 1998-09-14 J N T:Kk 二次電池の充電方法及び充電装置
US5910722A (en) * 1997-11-21 1999-06-08 Lockheed Martin Corp. Hybrid electric vehicle with reduced auxiliary power to batteries during regenerative braking
US6573675B2 (en) 2000-12-27 2003-06-03 Transportation Techniques Llc Method and apparatus for adaptive energy control of hybrid electric vehicle propulsion
JP3689908B2 (ja) * 2001-09-26 2005-08-31 マツダ株式会社 ハイブリッド自動車
JP3876979B2 (ja) * 2002-03-18 2007-02-07 三菱自動車工業株式会社 バッテリ制御装置
KR100534709B1 (ko) * 2003-12-30 2005-12-07 현대자동차주식회사 전기자동차의 회생제동 제어 방법 및 장치
JP4085996B2 (ja) 2004-03-16 2008-05-14 トヨタ自動車株式会社 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241603A (ja) * 1988-07-27 1990-02-09 Suzuki Motor Co Ltd 電気車の回生制動制御回路
JPH0879911A (ja) 1994-09-02 1996-03-22 Toyota Motor Corp ハイブリッド型電気自動車
JPH08140203A (ja) * 1994-11-04 1996-05-31 Honda Motor Co Ltd 電動車両のバッテリ充電装置
JPH08163707A (ja) * 1994-12-06 1996-06-21 Mitsubishi Motors Corp 電気自動車の制動制御装置
JPH0974605A (ja) * 1995-09-05 1997-03-18 Toyota Motor Corp 電気車両の回生制動制御装置及び方法
JP2002337573A (ja) * 2001-05-15 2002-11-27 Toyota Motor Corp ハイブリッド車
JP2002095105A (ja) * 2001-07-23 2002-03-29 Hitachi Ltd 電気自動車の回生制動制御方法および制御装置
JP2005318731A (ja) * 2004-04-28 2005-11-10 Toyota Motor Corp 自動車用電源装置およびそれを備える自動車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1990231A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534802A (ja) * 2011-11-08 2014-12-18 ルノー エス.ア.エス. 模擬エンジンブレーキの指示の調節
JP2013237381A (ja) * 2012-05-16 2013-11-28 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の制御方法
JP2014079096A (ja) * 2012-10-11 2014-05-01 Honda Motor Co Ltd 発電機の制御装置
CN110562099A (zh) * 2019-09-23 2019-12-13 北京海纳川汽车部件股份有限公司 车辆的电池监控系统、方法及车辆

Also Published As

Publication number Publication date
US7923950B2 (en) 2011-04-12
EP1990231A1 (en) 2008-11-12
CN101395030B (zh) 2012-07-25
KR100981119B1 (ko) 2010-09-08
KR20080098439A (ko) 2008-11-07
JP4321668B2 (ja) 2009-08-26
EP1990231A4 (en) 2017-09-27
JPWO2007099726A1 (ja) 2009-07-16
CN101395030A (zh) 2009-03-25
US20090026987A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
KR100981119B1 (ko) 차량 구동 장치 및 차량 구동 장치의 제어 방법
JP5725037B2 (ja) 車両および車両用制御方法
JP2006312352A (ja) 駆動システムの制御装置
JP5729475B2 (ja) 車両および車両の制御方法
JP2010058579A (ja) ハイブリッド車両
JP5668946B2 (ja) 車両用制御装置
JP5644868B2 (ja) 車両および車両の制御方法
JP5765419B2 (ja) 車両および車両用制御方法
JP5446730B2 (ja) 動力伝達装置および動力伝達装置の制御装置
JP6531130B2 (ja) ハイブリッド車両の制御装置
JPH10243501A (ja) 電気自動車のブレーキ制御装置及び充電制御装置
JP5576336B2 (ja) 駆動装置および駆動制御方法
JP7309293B2 (ja) ハイブリッド車両の制御装置
JP2004229408A (ja) ハイブリッド車両の制御装置
JP2017024534A (ja) 車両用電源装置および車両用電源装置の制御方法
JP2015013517A (ja) 車両の制御装置
JP4063193B2 (ja) 電動車両の駆動システム
WO2023021614A1 (ja) 車両
JPH11289608A (ja) ハイブリッド車両の制御装置
JP5205849B2 (ja) モータ制御装置
JPWO2012105019A1 (ja) 車両および車両の制御方法
JP2010202189A (ja) ハイブリッド車両
JP2023096711A (ja) ハイブリッド車両
JP2013112320A (ja) ハイブリッド車両
JP2004040872A (ja) ハイブリッド自動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12223403

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2007707571

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007707571

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008502674

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780007000.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087023515

Country of ref document: KR

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)