WO2007099710A1 - 中間層材料およびコンポジット積層板 - Google Patents

中間層材料およびコンポジット積層板 Download PDF

Info

Publication number
WO2007099710A1
WO2007099710A1 PCT/JP2007/000139 JP2007000139W WO2007099710A1 WO 2007099710 A1 WO2007099710 A1 WO 2007099710A1 JP 2007000139 W JP2007000139 W JP 2007000139W WO 2007099710 A1 WO2007099710 A1 WO 2007099710A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate layer
layer material
curable resin
inorganic filler
resin composition
Prior art date
Application number
PCT/JP2007/000139
Other languages
English (en)
French (fr)
Inventor
Hideki Kitano
Haruyuki Hatano
Original Assignee
Sumitomo Bakelite Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co., Ltd. filed Critical Sumitomo Bakelite Co., Ltd.
Priority to CN2007800076757A priority Critical patent/CN101395208B/zh
Priority to JP2008502668A priority patent/JP5332608B2/ja
Priority to US12/281,242 priority patent/US8722191B2/en
Priority to KR1020087024220A priority patent/KR101337168B1/ko
Publication of WO2007099710A1 publication Critical patent/WO2007099710A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer

Definitions

  • the present invention relates to an intermediate layer material of a laminate and a composite laminate using the same.
  • Such a metal foil-clad laminate is excellent in punching workability when forming a hole for mounting an electronic component to be mounted or punching a die, and is provided with a conductor circuit and an electronic component formed on the laminate.
  • dimensional stability in the surface direction, especially low thermal expansion during heating, is required.
  • a fiber base material is impregnated with a thermosetting resin composition containing an inorganic filler having a very small thermal expansion coefficient such as silica.
  • a method for producing a laminated board using a material for example, see Patent Document 1
  • a method for producing a laminated board using a special substrate such as alumina silica fiber cloth (for example, see Patent Document 2). ) Etc.
  • Patent Document 1 Japanese Patent Laid-Open No. 06-2 3 7 0 5 5
  • Patent Document 2 Japanese Patent Application Laid-Open No. Sho 6 1-2-7 3 94
  • thermosetting resin composition containing an inorganic filler having a small thermal expansion coefficient By the way, according to the method using the thermosetting resin composition containing an inorganic filler having a small thermal expansion coefficient, the dimensional stability of the obtained laminate can be improved.
  • the present invention can provide a laminated sheet having good punching workability and having excellent dimensional stability in the plane direction, and a laminated sheet using the same.
  • a board is provided.
  • the linear expansion coefficient (1) in the planar direction in the region below 25 ° C and below the glass transition temperature (T g) is 20 p pmZ ° C or less
  • the linear expansion coefficient (1) in the planar direction in the region below 25 ° C and below the glass transition point (T g) is 20 p pmZ ° C or less.
  • the laminated board obtained by using the intermediate layer material of the present invention is suitably used for a printed wiring board having excellent workability and connection reliability at a low price.
  • the cured product is a)
  • the linear expansion coefficient (1) in the plane direction in the region of 25 ° C or more and the glass transition point (Tg) or less is less than 20ppmZ ° C, and ii) Barcol hardness at 25 ° C Is 40 to 65.
  • the curable resin composition used in the present invention one containing a curable resin and an inorganic filler can be suitably used.
  • the curable resin include the following thermosetting resins.
  • thermosetting resins for example, phenol resin, epoxy resin, cyanate ester resin, urea (urea) resin, melamine resin, unsaturated polyester resin, bismaleimide resin, polyurethane resin, diallyl phthalate resin, silicone resin, resin having benzoxazine ring Etc.
  • phenolic resins include phenolic nopolac resins, cresol nopolac resins, bisphenol A type nopolac resins, and other nopolac type phenolic resins; And resol-type phenol resins such as oil-modified resole phenol resins modified with walnut oil and the like. These can be used alone or in combination of two or more.
  • the epoxy resin may be a compound having two or more epoxy groups in the molecule, such as bisphenol A type epoxy resin, bisphenol "type epoxy resin, bisphenol AD type epoxy resin, etc.
  • Bisphenol type epoxy resin Nopolac type epoxy resin such as phenol nopolack type epoxy resin, cresol nopolack type epoxy resin; Brominated type type such as brominated bisphenol A type epoxy resin, brominated phenol novolac type epoxy resin
  • Poxy resin In addition to heterocyclic epoxy resins such as “lidaricidyl isocyanate”, alicyclic epoxy resin, biphenyl epoxy resin, naphthalene epoxy resin, glycidyl ester epoxy resin, aryl alkylene Type epoxy resin, etc. Others can be used in combination of two or more.
  • the cyanate ester resin for example, a product obtained by reacting a cyanogen halide with phenols, or a product obtained by prepolymerizing it with a method such as heating can be used.
  • Specific examples include bisphenol type cyanate resins such as nopolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, and tetramethylbisphenol F type cyanate resin. it can. These alone or Two or more types can be used in combination.
  • thermosetting resin When the thermosetting resin is used, a curing agent and a curing accelerator can be used together as necessary.
  • thermosetting resin when a phenol resin is used as the thermosetting resin, a formaldehyde source such as paraformaldehyde as well as hexamethylenetetramine can be applied.
  • thermosetting resin When an epoxy resin is used as the thermosetting resin, a polyaddition type curing agent, a catalyst type curing agent, a condensation type curing agent, or the like can be applied.
  • polyaddition type curing agents include: aliphatic polyamines such as diethylenediamine (DETA), triethylenetetramine (TETA), and metaxylenediamine (MXDA); diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), aromatic polyamines such as diaminodiphenylsulfone (DDS); polyamine compounds including dicyandiamide (DI CY) and organic acid dihydrazide; hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA) Alicyclic acid anhydrides such as: anhydrides containing aromatic acid anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA) and benzophenone tetracarboxylic acid (BTDA); nopolac type phenol Polyphenolic compounds such as resins and phenolic polymers; polysulfide, thioe
  • Catalytic curing agents include, for example, tertiary amine compounds such as benzyldimethylamine (BDMA), 2, 4, 6_tridimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2_ethyl _ Imidazole compounds such as 4-methylimidazole (EM I 24); Lewis acids such as BF 3 complex.
  • BDMA benzyldimethylamine
  • DMP-30 2, 4, 6_tridimethylaminomethylphenol
  • 2-methylimidazole 2_ethyl _ Imidazole compounds
  • EM I 24 4-methylimidazole
  • Lewis acids such as BF 3 complex.
  • Condensation type curing agents include, for example, nopolac-type phenolic resin,
  • a phenolic resin such as a Ru-type phenolic resin
  • a urea resin such as a methylol group-containing urea resin
  • a melamine resin such as a methylol group-containing melamine resin.
  • the curable resin can contain, for example, an epoxy resin and a phenol resin. By doing so, an intermediate layer material having good dimensional stability and workability can be obtained.
  • the inorganic filler used in the present invention includes, for example, talc, calcined clay, uncalcined clay, my strength, gaiates such as glass; oxides such as titanium oxide, alumina, silica, and fused silica; Carbonates such as calcium carbonate, magnesium carbonate and hydrotalcite; hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide; sulfates or sulfites such as barium sulfate, calcium sulfate and sulfite power; boric acid Examples thereof include borates such as zinc, barium metaborate, aluminum borate, calcium borate, and sodium borate; and nitrides such as aluminum nitride, boron nitride, and silicon nitride. These can be used alone or in combination of two or more.
  • the inorganic filler it is preferable to use an inorganic filler having a layered structure.
  • a curable resin component is impregnated between layers of the layered structure, so that when the resin composition is cured, the inorganic filler is used.
  • the frictional frictional resistance in the plane direction can be increased at the contact surface between the curable resin component and the curable resin component. Further, even when this layered structure is cleaved into a plate shape, it is possible to increase the frictional frictional resistance in the planar direction at the contact surface between the inorganic filler and the curable resin component.
  • Examples of the layered inorganic filler include talc, and my strength such as muscovite, phlogopite, fluorine phlogopite, and tetrasilicon mica.
  • the inorganic filler having a layered structure includes a Mohs hardness of 4 or less. As a result, the elastic modulus of the laminate can be reduced and the punching processability can be improved.
  • the punching workability can be further improved.
  • muscovite 2.0 to 3.0
  • phlogopite 2.0 to 3.0
  • fluorine phlogopite 3.4
  • tetrasilicon mica 3.0
  • talc is particularly preferable. Thereby, the said effect
  • the inorganic filler having a layered structure preferably has an aspect ratio of 3 or more.
  • the effect of improving the dimensional stability of the laminate can be further enhanced.
  • the aspect ratio refers to the ratio of the major axis dimension in the planar direction to the dimension in the thickness direction (major dimension in the planar direction Z dimension in the thickness direction) in the inorganic filler having a layered structure.
  • the dimension in the thickness direction may be either before the layered inorganic filler is cleaved or after cleaving.
  • the upper limit of the aspect ratio is not particularly limited, but can usually be about 3,00.
  • the inorganic filler is 50 to 80% by weight, particularly 60 to 80%, based on the total solid content in the curable resin composition. It is preferable to contain by weight. Thereby, the effect of improving dimensional stability can be enhanced.
  • solid content in curable resin composition means the part which match
  • the amount of the inorganic filler is too small, the effect of improving the dimensional stability may not be sufficient. Also, if there are too many inorganic fillers, the curable resin composition will be adjusted. When manufacturing, workability may be reduced.
  • the inorganic filler contains 50 to 100% by weight, particularly 70 to 100% by weight, of a layered inorganic filler. It is preferable. And it is preferable to contain 30 to 80% by weight, particularly 60 to 80% by weight of the inorganic filler having a layered structure with respect to the entire curable resin composition. As a result, the effect of improving the dimensional stability can be enhanced.
  • the amount of the inorganic filler having a layered structure is too small, the effect of improving the dimensional stability may not be sufficient.
  • the curable resin composition of the present invention includes, in addition to the curable resin, the curing agent, the curing accelerator, and the inorganic filler described above, as required, a phenoxy resin, a polyether sulfone, a polyphenylene sulfide.
  • Thermoplastic resins such as eyed; plasticizers, facial materials, surface treatment agents and the like can be blended.
  • Examples of the surface treatment agent include epoxy coupling agents, titanate coupling agents, aminosilane coupling agents, silicone oil type coupling agents, and other curable resin components used in the composition. Can also be used.
  • the curable resin composition used in the present invention is, for example, mixed with a curable resin, a curing agent, a curing accelerator, or the like described above, or dissolved or dispersed in a solvent that can be dissolved or dispersed.
  • a curable resin e.g., a curable resin, a curing agent, a curing accelerator, or the like described above, or dissolved or dispersed in a solvent that can be dissolved or dispersed.
  • an inorganic filler after adding an inorganic filler, it can be prepared by mixing and dispersing using a stirring device, a dispersing device, or the like.
  • the curable resin composition is preferably in a liquid form. Thereby, the impregnation property to the fiber base material can be improved.
  • the inorganic filler and the curable resin component are mixed. It is preferable to apply a surface treatment to the inorganic filler at the stage of Yes.
  • the inorganic filler having a layered structure is preferably subjected to a surface treatment.
  • the curable resin component is impregnated in a short time between the layers of the inorganic filler having the layered structure, and the entire curable resin composition is obtained. It is possible to prevent the mixing accuracy and mixing workability from being deteriorated due to excessive increase in the viscosity.
  • the composition excessively increases in viscosity. Therefore, it is possible to prepare a curable resin composition excellent in mixing accuracy and handleability.
  • the affinity with the curable resin component is improved, and the effect of improving mechanical properties, heat resistance (particularly solder heat resistance after moisture absorption) and dimensional stability is also exhibited. be able to.
  • Glass fiber base materials such as a glass woven fabric and a glass nonwoven fabric
  • Inorganic fiber groups such as a woven fabric or a nonwoven fabric which contain inorganic compounds other than glass as a component Materials: Polyamide resin, aromatic polyamide resin, polyester resin, aromatic polyester resin, polyimide resin, organic fiber substrate composed of organic fibers such as fluororesin, and the like.
  • a glass fiber base material is preferable because of its low linear expansion coefficient, low price, high mechanical strength, and low hygroscopicity.
  • a glass fiber non-woven fabric can improve punching workability. Is preferred.
  • the basis weight of the glass fiber nonwoven fabric to be used for example, can be suitably used for 3 0 ⁇ 1 5 0 g Zm 2 .
  • the intermediate layer material of the present invention can be produced by impregnating the fiber base material with a curable resin composition and heat-treating it.
  • curable As a method for impregnating the fiber base material with the curable resin composition, for example, curable A method of immersing a fiber base material in a resin composition, a method of applying a curable resin composition to a fiber base material using a spraying device such as a spray, a curability using various coater devices such as a comma coater and a knife coater And a method of applying a resin composition to a fiber base material.
  • the above method can be appropriately selected depending on the properties of the curable resin composition and the fiber base material, the amount of the curable resin composition to be impregnated into the fiber base material, and the like.
  • the curable resin composition After impregnating the curable resin composition into the fiber base material, this is heat-treated. If a solvent is used during the preparation of the curable resin composition, it is removed by drying, and the handling property is improved. Can be a good intermediate layer material. In addition, if necessary, the curing reaction of the curable resin component can be advanced halfway to adjust the resin fluidity during the production of the laminate.
  • condition for the heat treatment for example, it can be carried out at 120 to 220 ° C. for 30 to 180 minutes.
  • the cured product obtained by curing the intermediate layer material has a linear expansion coefficient (Q) in the planar direction in a region of a glass transition point (Tg) of 25 ° C or higher and lower than Tg. Is less than 20 pp mZ ° C, and the barcol hardness at 25 ° C is 40 or more and 65 or less, it has the effect of simultaneously improving the workability and dimensional stability of the resulting laminate. Play.
  • Specific means for satisfying the above a) and b) is to combine a specific curable resin and an inorganic filler as appropriate, for example, epoxy resin as the curable resin, Mohs hardness of 4 or less as the inorganic filler, Appropriate combination of talc with a ratio of 3 or more.
  • the intermediate layer material of the present invention is a cured product obtained by curing at 180 ° C.
  • A) Lines in the plane direction in the region of 25 ° C or more and the glass transition point (Tg) or less
  • the expansion coefficient (Q? 1) is less than 20 pp mZ ° C.
  • the lower limit is not particularly limited, but is preferably 0 p p mZ ° C to 20 p p mZ ° C, and more preferably 15 to 18 p p mZ ° C.
  • the linear expansion coefficient in the above region of the cured intermediate layer material is 20 p
  • the temperature is not more than P mZ ° C
  • a composite laminated board that can reduce the linear expansion coefficient of the laminated board and can manufacture a circuit board having excellent connection reliability with electronic components can be obtained.
  • the linear expansion coefficient is calculated using a thermomechanical analysis (TMA) apparatus.
  • TMA thermomechanical analysis
  • a cured product of the intermediate layer material is used as a measurement sample, which is set on the stage of the apparatus, heated at a constant speed while applying a constant load, and the amount of expansion that occurs is differential transformer. It can be detected as an electrical output and calculated from the relationship with temperature.
  • the cured product of the intermediate layer material means a state in which the reaction of the functional group of the curable resin component in the curable resin composition constituting the intermediate layer material is substantially completed.
  • DSC differential scanning calorimetry
  • the calorific value can be evaluated by measuring the calorific value with a device. Specifically, this means that the calorific value is hardly detected.
  • the treatment As a condition for obtaining such a cured product of the intermediate layer material, for example, it is preferable to perform the treatment at 120 to 220 ° C. for 30 to 180 minutes, and in particular, 150 to 200 It is preferable to treat at 45 ° C. for 45 to 120 minutes.
  • the intermediate layer material of the present invention is a cured product obtained by curing it at 180 ° C.
  • the Barcol hardness at 25 ° C is 40 to 65.
  • the bar call hardness is preferably 45 to 65.
  • the workability at the time of punching the laminated plate can be improved, cracking at the time of punching can be prevented, and sufficient mechanical strength required for the laminated plate can be obtained. More preferably, it is 50 to 65. This can further improve the punching workability.
  • the above-mentioned Barcol hardness can be measured at 25 ° C. or lower according to JISK 9 6 1 1 4 6-5 2 using a Barcol hardness meter.
  • Examples of a method for obtaining an intermediate layer material having a thermal expansion coefficient and an elastic modulus as described above include a blending ratio of a curable resin component and an inorganic filler, and a layered structure. Examples thereof include methods for appropriately preparing the use of inorganic fillers and the mixing ratio thereof, the use of a fiber base material having a small linear expansion coefficient, and the like.
  • the composite laminate of the present invention is characterized in that one or more of the intermediate layer materials of the present invention are superposed and a structure in which one or more surface layer materials are overlapped on both sides is cured.
  • a fiber base material for the surface layer material impregnated with a curable resin composition for the surface layer material and dried can be preferably used.
  • the fiber base material for the surface layer material examples include glass fiber base materials such as glass woven fabric and glass non-woven fabric; inorganic fiber base materials such as woven fabric and non-woven fabric containing inorganic compounds other than glass; polyamide Examples thereof include organic fiber base materials composed of organic fibers such as resins, aromatic polyamide resins, polyester resins, aromatic polyester resins, polyimide resins, and fluororesins.
  • a glass fiber base material is preferable because it has a low linear expansion coefficient, low price, high mechanical strength, and low hygroscopicity. Among them, sufficient mechanical strength is provided for the composite laminate.
  • a glass fiber woven fabric is preferable because it can be applied.
  • a glass fiber of 50 to 2500 g Zm 2 can be suitably used.
  • thermosetting resin examples include phenol resin, epoxy resin, cyanate ester resin, urea (urea) resin, melamine resin, unsaturated polyester resin, bismaleimide resin, polyurethane resin, diallyl phthalate resin, Examples thereof include silicone resins and resins having a benzoxazine ring.
  • thermosetting resin and the curing agent used in combination those described in the section of the curable resin composition used for the material for the intermediate layer are similarly used. Can be applied.
  • the curable resin composition for the surface layer material may further contain a thermoplastic resin, a plasticizer, a pigment, a surface treatment agent, an inorganic filler, and the like.
  • a thermoplastic resin e.g., polymethyl methacrylate
  • a plasticizer e.g., polymethyl methacrylate
  • a pigment e.g., polymethyl methacrylate
  • a surface treatment agent e.g., polystymer, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl me
  • the surface layer material used in the composite laminate of the present invention can be produced by impregnating the above-mentioned surface base fiber substrate with a surface layer curable resin composition and heat-treating it.
  • Examples of the method of impregnating the fiber base material with the curable resin composition include, for example, a method of immersing the fiber base material in the curable resin composition, and a method of using a spraying device such as a spray as a fiber for the curable resin composition. Examples thereof include a method of applying to a substrate, a method of applying a curable resin composition to a fiber substrate using various coaters such as a comma coater and a knife coater.
  • the above method can be appropriately selected depending on the properties of the curable resin composition and the fiber base material, the amount of the curable resin composition to be impregnated into the fiber base material, and the like.
  • the curable resin composition After impregnating the curable resin composition into the fiber base material, this is heat-treated. If a solvent is used during the preparation of the curable resin composition, it is removed by drying, and the handling property is improved. Can be a good surface layer material. In addition, if necessary, the curing reaction of the curable resin component can be advanced halfway to adjust the resin fluidity during the production of the laminate.
  • the heat treatment can be performed at 120 to 200 ° C. for 1 to 10 minutes.
  • the composite laminate of the present invention is obtained by curing a configuration in which the intermediate layer material of the present invention and a surface layer material are superposed.
  • a metal foil-clad recomposite laminate may be obtained by curing a configuration in which a metal foil such as a copper foil is disposed on the side or both sides.
  • a method of heating and pressing under the conditions of 150 to 250 ° C, 30 to 180 minutes, and 0.5 to 1 OMPa is applied. But it can.
  • the linear expansion coefficient (1) in the region of 25 ° C or more and the glass transition point (Tg) or less is 20ppmZ ° C or less. More preferably, it is 15 to 18 p pmZ.
  • the linear expansion coefficient of the composite laminate can be measured by the same method as the linear expansion coefficient of the cured product of the intermediate layer material.
  • the linear expansion coefficient of the composite laminate By setting the linear expansion coefficient of the composite laminate to the above range, even in the process of heat-treating the circuit board after mounting the electronic component (for example, reflow mounting, flow mounting, etc.), the linear expansion amount of the circuit board and the electronic component Since the difference from the amount of linear expansion can be reduced, the connection reliability between the conductor circuit on the circuit board and the electronic component can be ensured.
  • the elastic modulus at 25 ° C is 8,000 to 20,000 MPa, preferably 10 000 to 18,000 MPa, more preferably 10 000 to 15,000 OMPa.
  • the elastic modulus of the composite laminate can be measured according to JIS C 6481.
  • the elastic modulus of the composite laminate By setting the elastic modulus of the composite laminate within the above range, it is possible to reduce the punching resistance when the circuit board is punched while giving sufficient mechanical strength to the laminate. It is possible to prevent cracks from occurring. Thereby, the punching process can be performed efficiently. In addition, the processing yield of the circuit board can be improved, the life of a processing tool such as a drill can be extended, and the manufacturing cost of the circuit board can be reduced.
  • Epoxy resin 1 Brominated bisphenol A type epoxy resin, “1 53” manufactured by Dainippon Ink & Chemicals, Inc., epoxy equivalent 400
  • Epoxy resin 2 Bisphenol A type epoxy resin, “850” manufactured by Dainippon Ink & Chemicals, Epoxy equivalent 1 90
  • Curing agent Nopolac type phenol resin, “PR — 51 470” manufactured by Sumitomo Bakelite Co., Ltd.
  • Inorganic filler 1 Talc, ⁇ ⁇ ⁇ _53 manufactured by Fuji Talc Kogyo Co., Ltd., aspect ratio 10, Mohs hardness 1, particle size 18 m
  • Inorganic filler 2 My strength, manufactured by Co-op Chemical Co., Ltd., ratio of 10 and Mohs hardness 3
  • Inorganic filler 3 Silica, manufactured by Admatechs, Mohs hardness 7
  • surface treatment inorganic filler 1 was prepared by subjecting 100 parts by weight of inorganic filler 1 to 2 parts by weight of a surface treatment agent and performing surface treatment by a high-speed stirrer method.
  • Curable resin composition (solid content) Curable resin composition for intermediate layer material in the same manner as in 2.1 except that 230 parts by weight of surface-treated inorganic filler 1 was blended with 100 parts by weight of solid resin 3 was prepared.
  • inorganic filler 1 Except for using 100 parts by weight of inorganic filler 1 as the inorganic filler, a total of 50 parts by weight of inorganic filler 1 and 50 parts by weight of inorganic filler 2 was used.2. In the same manner as in Example 1, a curable resin composition 4 for intermediate layer material was prepared.
  • a glass fiber nonwoven fabric (“EPM”, 50 gZm 2 manufactured by Cumulus Co., Ltd.) was used as a fiber base material for the intermediate layer material.
  • Intermediate layer material 2 was produced in the same manner as in Example 1, except that curable resin composition 2 for intermediate layer material was used instead of curable resin composition 1 for intermediate layer material.
  • Intermediate layer material 3 was produced in the same manner as in Example 1, except that curable resin composition 3 for intermediate layer material was used instead of curable resin composition 1 for intermediate layer material.
  • Curable resin composition for intermediate layer material instead of 1 curable resin composition for intermediate layer material
  • An intermediate layer material 4 was produced in the same manner as in Example 1 except that the composition 4 was used.
  • Intermediate layer material 5 was produced in the same manner as in Example 1, except that curable resin composition 5 for intermediate layer material was used instead of curable resin composition 1 for intermediate layer material.
  • the intermediate layer material 5 is a material mainly composed of silica that has been conventionally used.
  • a glass fiber woven fabric manufactured by Totobo Co., Ltd., 180 g Zm 2 .
  • This configuration was heated from normal temperature using a vacuum press molding device that was reduced from normal pressure to 7 40 TO rr, and was heated and pressed under the conditions of 4 MPa for 60 minutes at a maximum temperature of 1800 ° C.
  • a composite laminate was manufactured.
  • thermomechanical analysis (TMA) apparatus Using this cured product as a sample, the linear expansion coefficient in two directions was measured using a thermomechanical analysis (TMA) apparatus in accordance with the method described in JISK 7 1 97.
  • TMA thermomechanical analysis
  • the glass transition point (T g) was 1 05-1 45 ° C
  • the measurement conditions are as follows.
  • thermomechanical analysis (TMA) device Using the obtained laminated plate with the copper foil removed from the entire surface by etching, using a thermomechanical analysis (TMA) device, the wire in two directions was compliant with the method described in JISK 7 1 97. The expansion coefficient was measured.
  • TMA thermomechanical analysis
  • a 150T (ton) punching press was performed, and after the press, the verbal specimen was removed from the die, and the surface of the part corresponding to the hole was evaluated by appearance.
  • Examples 1 to 4 are intermediate layer materials according to the present invention, which have a low coefficient of linear expansion, excellent dimensional stability in the direction of the surface, and a bar-coal hardness within a suitable range.
  • the composite laminate using this intermediate layer material is excellent in punching workability, and has a low coefficient of linear expansion, so it has excellent dimensional stability in the surface direction and excellent connection reliability. Met.
  • Comparative Example 1 is an intermediate layer material containing a large amount of silica, which has a small coefficient of linear expansion but a large elastic modulus.
  • the composite laminate using this intermediate layer material had good connection reliability but poor punching workability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

  硬化性樹脂組成物と繊維基材とから形成され、コンポジット積層板の中間層を形成するのに用いられる中間層材料であって、前記中間層材料を硬化して得られる硬化物は、ア)25°C以上ガラス転移点(Tg)以下の領域における平面方向の線膨張係数(α1)が20ppm/°C以下であり、イ)25°Cにおけるバーコール硬度が40以上65以下である、ことを特徴とする中間層材料と、この中間層材料の一枚以上を重ね合わせ、その表裏両側に表面層材料を各々一枚以上重ね合わせてなる構成を、硬化させてなることを特徴とするコンポジット積層板。

Description

明 細 書
中間層材料およびコンポジット積層板
技術分野
[0001 ] 本発明は、 積層板の中間層材料およびこれを用いたコンポジット積層板に 関するものである。
背景技術
[0002] 汎用用途に用いられるプリント配線板には、 紙繊維基材、 有機繊維基材、 ガラス繊維基材等を用いた片面または両面金属箔張積層板が、 多岐の分野に おいて広範に使用されている。
このような金属箔張積層板は、 搭載される電子部品実装用孔の形成や型抜 きを行なう際の打抜き加工性に優れているとともに、 積層板に形成された導 体回路と電子部品との接続信頼性向上のため、 面方向における寸法安定性、 特に、 加熱時の低熱膨張性が要求されるようになっている。
積層板の面方向の寸法安定性を向上させる方法としては、 例えば、 シリカ のように、 熱膨張係数がきわめて小さい無機充填材を含有させた熱硬化性樹 脂組成物を繊維基材に含浸させた材料を用いて、 積層板を製造する方法 (例 えば、 特許文献 1参照) のほか、 アルミナシリカ繊維布など、 特殊な基材を 用いて積層板を製造する方法 (例えば、 特許文献 2参照) などが挙げられる
[0003] 特許文献 1 :特開平 0 6— 2 3 7 0 5 5号公報
特許文献 2:特開昭 6 1 - 2 7 3 9 4 8号公報
発明の開示
[0004] ところで、 熱膨張係数の小さい無機充填材を含有させた熱硬化性樹脂組成 物を用いる方法によれば、 得られる積層板の寸法安定性を向上させることが できる。
しかしながら、 シリカのような無機充填材は硬度が大きいため、 積層板の 弾性率が大きくなリ、 打抜き加工時の加工性が低下するという問題があった また、 特殊な基材を用いて積層板を製造する場合には、 価格、 汎用性にお いて必ずしも有用なものではなかった。
本発明はこのような背景を鑑み、 良好な打抜き加工性を有するとともに、 面方向の寸法安定性に優れた積層板を得ることができる、 積層板の中間層材 料と、 これを用いた積層板を提供するものである。
このような目的は、 以下の本発明 (1 ) 〜 (1 1 ) により達成される。
(1 ) 硬化性樹脂組成物と繊維基材とから形成され、 コンポジット積層板の 中間層を形成するのに用いられる中間層材料であって、 前記中間層材料を 1 80°Cの温度で硬化して得られる硬化物は、
ァ) 25°C以上ガラス転移点 (T g) 以下の領域における平面方向の線膨 張係数 (ひ 1 ) が 20 p pmZ°C以下であり、
ィ) 25 °Cにおけるバーコール硬度が 40以上 65以下である、 ことを特徴とする中間層材料。
(2) 上記硬化性樹脂組成物は、 (a) 硬化性樹脂と、 (b) 無機充填材と を含有するものである上記 (1 ) に記載の中間層材料。
(3) 上記 (a) 硬化性樹脂は、 エポキシ樹脂とフエノール樹脂とを含有す るものである上記 (2) に記載の中間層材料。
(4) 上記硬化性樹脂組成物中の固形分全体に対して、 上記 (b) 無機充填 材 50〜80重量%を含有する、 上記 (2) に記載の中間層材料。
(5) 上記 (b) 無機充填材は、 層状構造の無機充填材を含むものである、 上記 (2) に記載の中間層材料。
(6) 上記 (b) 無機充填材全体に対して、 層状構造の無機充填材 50〜1 00重量%を含有する、 上記 (2) に記載の中間層材料。
(7) 上記層状構造の無機充填材は、 モース硬度が 4以下であるものを含む 、 上記 (5) に記載の中間層材料。
(8) 上記層状構造の無機充填材は、 アスペクト比が 3以上である、 上記 ( 5) に記載の中間層材料。 (9) 上記層状構造の無機充填材として、 タルクを含有する、 上記 (5) に 記載の中間層材料。
(1 0) 上記 (1 ) に記載の中間層材料の一枚以上を重ね合わせ、 その表裏 両側に表面層材料を各々一枚以上重ね合わせてなる構成を、 硬化させてなる ことを特徴とするコンポジット積層板。
(1 1 ) 上記コンポジット積層板は、
ゥ) 25°C以上ガラス転移点 (T g) 以下の領域における平面方向の線膨 張係数 (ひ 1 ) が 20 p pmZ°C以下であり、
ェ) 25°Cにおける弾性率が 8, 000〜20, 000MPa
である、 上記 (1 0) に記載のコンポジット積層板。
[0006] 本発明によれば、 良好な打抜き加工性を有するとともに、 面方向の寸法安 定性に優れた積層板に適用できる中間層材料を得ることができる。
そして、 本発明の中間層材料を用いて得られた積層板は、 低価格でありな がら、 加工性や接続信頼性に優れたプリン卜配線板に好適に用いられるもの である。
発明を実施するための最良の形態
[0007] 以下に、 本発明の中間層材料、 及び、 積層板について詳細に説明する。
[0008] 本発明に係る中間層材料は、
硬化性樹脂組成物と繊維基材とから形成され、 コンポジット積層板の中間 層を形成するのに用いられる中間層材料であって、 上記中間層材料を 1 80 °Cの温度で硬化して得られる硬化物は、 ァ) 25°C以上ガラス転移点 (T g ) 以下の領域における平面方向の線膨張係数 (ひ 1 ) が 20 p pmZ°C以下 であり、 ィ) 25°Cにおけるバーコール硬度が 40以上 65以下である、 こ とを特徴とするものである。
[0009] まず、 本発明の中間層材料に用いられる硬化性樹脂組成物について説明す る。
本発明で用いられる硬化性樹脂組成物としては、 硬化性樹脂と、 無機充填 材とを含有するものを好適に用いることができる。 [0010] ここで硬化性樹脂としては、 以下のような熱硬化性樹脂が挙げられる。 例 えば、 フエノール樹脂、 エポキシ樹脂、 シァネートエステル樹脂、 ユリア ( 尿素) 樹脂、 メラミン樹脂、 不飽和ポリエステル樹脂、 ビスマレイミド樹脂 、 ポリウレタン樹脂、 ジァリルフタレート樹脂、 シリコーン樹脂、 ベンゾォ キサジン環を有する樹脂等が挙げられる。
[0011 ] フエノール樹脂としては例えば、 フエノールノポラック樹脂、 クレゾール ノポラック樹脂、 ビスフエノール A型ノポラック樹脂等のノポラック型フエ ノール樹脂; メチロール型レゾール樹脂、 ジメチレンエーテル型レゾール樹 脂、 桐油、 アマ二油、 クルミ油等で変性した油変性レゾールフエノール樹脂 等のレゾール型フエノール樹脂等が挙げられる。 これらを単独または 2種類 以上組み合わせて使用することができる。
[0012] エポキシ樹脂としては、 分子内に 2個以上のエポキシ基を持つ化合物であ ればよく、 例えば、 ビスフエノール A型エポキシ樹脂、 ビスフエノール「型 エポキシ樹脂、 ビスフエノール A D型エポキシ樹脂等のビスフエノ一ル型ェ ポキシ樹脂; フエノールノポラック型エポキシ樹脂、 クレゾールノポラック 型エポキシ樹脂等のノポラック型エポキシ樹脂;臭素化ビスフエノール A型 エポキシ樹脂、 臭素化フエノールノボラック型エポキシ樹脂等の臭素化型ェ ポキシ樹脂; 卜リダリシジルイソシァネー卜などの複素環式エポキシ樹脂の ほか、 脂環式型エポキシ樹脂、 ビフエ二ル型エポキシ樹脂、 ナフタレン型ェ ポキシ樹脂、 グリシジルエステル型エポキシ樹脂、 ァリールアルキレン型ェ ポキシ樹脂等が挙げられる。 これらを単独または 2種類以上組み合わせて使 用することができる。
[0013] シァネートエステル樹脂としては例えば、 ハロゲン化シアン化合物とフエ ノール類とを反応させたものや、 これを加熱等の方法でプレポリマー化した もの等を用いることができる。 具体的な形態としては例えば、 ノポラック型 シァネート樹脂、 ビスフエノール A型シァネート樹脂、 ビスフエノール E型 シァネー卜樹脂、 テトラメチルビスフエノール F型シァネー卜樹脂等のビス フエノール型シァネー卜樹脂等を挙げることができる。 これらを単独または 2種類以上組み合わせて使用することができる。
[0014] 上記熱硬化性樹脂を用いる場合、 必要に応じて、 硬化剤、 硬化促進剤を併 用することができる。
例えば、 熱硬化性樹脂としてフエノール樹脂を用いる場合は、 へキサメチ レンテトラミンなどのほか、 パラホルムアルデヒドなどのホルムアルデヒド 源を適用することができる。
[0015] 熱硬化性樹脂としてエポキシ樹脂を用いる場合は、 重付加型の硬化剤、 触 媒型の硬化剤、 縮合型の硬化剤などを適用することができる。
重付加型の硬化剤としては例えば、 ジエチレン卜リアミン (DETA) 、 トリエチレンテトラミン (TETA) 、 メタキシレンジァミン (MXDA) などの脂肪族ポリアミン; ジアミノジフエ二ルメタン (DDM) 、 m—フエ 二レンジァミン (MPDA) 、 ジアミノジフエニルスルホン (DDS) など の芳香族ポリアミン; ジシアンジアミド (D I CY) 、 有機酸ジヒドラジド などを含むポリアミン化合物;へキサヒドロ無水フタル酸 (HHPA) 、 メ チルテトラヒドロ無水フタル酸 (MTHPA) などの脂環族酸無水物;無水 トリメリッ卜酸 (TMA) 、 無水ピロメリッ卜酸 (PMDA) 、 ベンゾフエ ノンテトラカルボン酸 (BTDA) などの芳香族酸無水物などを含む酸無水 物; ノポラック型フエノール樹脂、 フエノールポリマーなどのポリフエノー ル化合物;ポリサルフアイド、 チォエステル、 チォエーテルなどのポリメル カブタン化合物; イソシァネートプレボリマー、 ブロック化イソシァネート などのイソシァネート化合物; カルボン酸含有ポリエステル樹脂などの有機 酸類などが挙げられる。
触媒型の硬化剤としては、 例えば、 ベンジルジメチルァミン (BDMA) 、 2, 4, 6_トリジメチルァミノメチルフエノール (DMP— 30) など の 3級ァミン化合物; 2—メチルイミダゾール、 2 _ェチル _ 4—メチルイ ミダゾール (EM I 24) などのイミダゾール化合物; B F3錯体などのルイ ス酸などが挙げられる。
縮合型の硬化剤としては、 例えば、 ノポラック型フエノール樹脂、 レゾー ル型フ Iノール樹脂などのフ Iノール樹脂; メチロール基含有尿素樹脂のよ うな尿素樹脂; メチロール基含有メラミン樹脂のようなメラミン樹脂などが 挙げられる。
[0016] 上記硬化性樹脂は、 例えば、 エポキシ樹脂とフエノール樹脂とを含有する ことができる。 こうすることにより、 寸法安定性と加工性が良好な中間層材 料を得ることができる。
[0017] 本発明において用いられる無機充填材としては、 例えば、 タルク、 焼成ク レー、 未焼成クレー、 マイ力、 ガラス等のゲイ酸塩;酸化チタン、 アルミナ 、 シリカ、 溶融シリカ等の酸化物;炭酸カルシウム、 炭酸マグネシウム、 ハ ィドロタルサイ卜等の炭酸塩;水酸化アルミニウム、 水酸化マグネシウム、 水酸化カルシウム等の水酸化物;硫酸バリウム、 硫酸カルシウム、 亜硫酸力 ルシゥム等の硫酸塩または亜硫酸塩;ホウ酸亜鉛、 メタホウ酸バリウム、 ホ ゥ酸アルミニウム、 ホウ酸カルシウム、 ホウ酸ナトリウム等のホウ酸塩;窒 化アルミニウム、 窒化ホウ素、 窒化ゲイ素等の窒化物等を挙げることができ る。 これらを単独または 2種類以上組み合わせて使用することができる。
[0018] 上記無機充填材としては、 層状構造の無機充填材を用いることが好ましい これにより、 層状構造の層間に硬化性樹脂成分が含浸するので、 樹脂組成 物が硬化した際に、 無機充填材と硬化性樹脂成分との接触面において、 平面 方向への擦れ摩擦抵抗を大きくすることができる。 また、 この層状構造が劈 開して板状になった場合も、 その形状から、 無機充填材と硬化性樹脂成分と の接触面において、 平面方向への擦れ摩擦抵抗を大きくすることができる。 これらの作用により、 積層板の平面方向の寸法安定性を向上させることがで さる。
層状構造の無機充填材としては、 例えば、 タルクのほか、 白雲母、 金雲母 、 フッ素金雲母、 四珪素雲母などのマイ力類を挙げることができる。
[0019] 上記層状構造の無機充填材は、 モース硬度が 4以下であるものを含むこと が好ましい。 これにより、 積層板の弾性率を小さくし、 打抜き加工性を向上させること ができる。
より好ましくは、 1 . 5以下である。 これにより、 さらに打ち抜き加工性 を良好にすることができる。
このようなモース硬度を有する無機充填材としては、 例えば、 タルク (1
〜 1 . 5 ) のほか、 白雲母 (2 . 0〜3 . 0 ) 、 金雲母 (2 . 0〜3 . 0 ) 、 フッ素金雲母 (3 . 4 ) 、 四珪素雲母 (3 . 0 ) などのマイ力類を挙げる ことができる。
これらの中でも、 特にタルクが好ましい。 これにより、 上記作用をより高 く発現させることができる。
[0020] 上記層状構造の無機充填材は、 アスペクト比が 3以上であることが好まし い。
これにより、 積層板の寸法安定性を向上させる効果をより高めることがで さる。
上記ァスぺク卜比とは、 層状構造の無機充填材において、 厚み方向寸法に 対する平面方向の長径寸法の比率 (平面方向の長径寸法 Z厚み方向寸法) を いう。 ここで、 上記厚み方向の寸法は、 層状構造の無機充填材が劈開する前 、 あるいは、 劈開した後のいずれであってもよい。
アスペクト比の上限は特に限定されないが、 通常、 3 , 0 0 0程度とするこ とができる。
[0021 ] 本発明において用いられる硬化性樹脂組成物においては、 上記無機充填材 を、 硬化性樹脂組成物中の固形分全体に対して 5 0〜 8 0重量%、 特に、 6 0〜8 0重量%含有することが好ましい。 これにより、 寸法安定性を向上さ せる効果を高めることができる。 ここで、 硬化性樹脂組成物中の固形分とは 、 硬化性樹脂成分の溶液部分を除いた固形分と、 無機充填材とを合わせた部 分をいう。
無機充填材の配合量が少なすぎると、 寸法安定性を向上させる効果が充分 でないことがある。 また、 無機充填材が多すぎると、 硬化性樹脂組成物を調 製する際に、 作業性が低下することがある。
[0022] 本発明において用いられる硬化性樹脂組成物においては、 上記無機充填材 中、 層状構造の無機充填材を 5 0〜 1 0 0重量%、 特に、 7 0〜 1 0 0重量 %含有することが好ましい。 そして、 硬化性樹脂組成物全体に対して、 層状 構造の無機充填材を 3 0〜8 0重量%、 特に、 6 0〜8 0重量%含有するこ とが好ましい。 これにより、 寸法安定性を向上させる効果を高めることがで さる。
層状構造の無機充填材の配合量が少なすぎると、 寸法安定性を向上させる 効果が充分でないことがある。
[0023] 本発明の硬化性樹脂組成物は、 以上に説明した硬化性樹脂、 硬化剤、 硬化 促進剤、 無機充填材のほか、 必要に応じて、 フエノキシ樹脂、 ポリエーテル サルフォン、 ポリフエ二レンサルフアイドなどの熱可塑性樹脂;可塑剤、 顔 料、 表面処理剤などを配合することができる。
上記表面処理剤としては、 例えば、 エポキシシランカップリング剤、 チタ ネート系カップリング剤、 アミノシランカップリング剤、 シリコーンオイル 型力ップリング剤などの力ップリング剤のほか、 組成物において用いられる 硬化性樹脂成分を用いることもできる。
[0024] 次に、 本発明において用いられる硬化性樹脂組成物の調製方法について説 明する。
本発明において用いられる硬化性樹脂組成物は、 例えば、 以上に説明した 硬化性樹脂、 硬化剤、 硬化促進剤などを混合、 あるいは、 これらを溶解また は分散可能な溶媒に溶解、 分散し、 これに、 無機充填材を加えた後、 攪拌装 置、 分散装置などを用いて混合分散することで調製することができる。 この硬化性樹脂組成物は、 液状の形態とすることが好ましい。 これにより 、 繊維基材への含浸性を向上させることができる。
[0025] 本発明の硬化性樹脂組成物を上記方法によリ調製する場合には、 無機充填 材と硬化性樹脂成分 (あるいは、 硬化性樹脂成分の溶剤溶液または分散液) とを混合する前の段階で、 無機充填材に表面処理を施しておくことが好まし い。 特に、 層状構造の無機充填材については、 表面処理を施しておくことが 好ましい。
これによリ、 硬化性樹脂成分に層状構造の無機充填材を加えて混合する際 に、 層状構造の無機充填材の層間に硬化性樹脂成分が短時間に含浸し、 硬化 性樹脂組成物全体の粘度が過剰に高くなつて混合精度や混合作業性が低下す ることを防ぐことができる。
そして、 硬化性樹脂成分に層状構造の無機充填材を加えた後、 攪拌装置や 分散装置により付与される剪断力によって層状構造の無機充填材が劈開して も、 組成物が過剰に粘度上昇することがなく、 混合精度と取り扱い性に優れ た硬化性樹脂組成物を調製することができる。
また、 このような表面処理を施すことにより、 硬化性樹脂成分との親和性 が向上し、 機械的特性、 耐熱性 (特に吸湿後の半田耐熱性) 、 寸法安定性を 向上させる効果も発現させることができる。
[0026] 次に、 本発明の中間層材料に用いられる繊維基材について説明する。
本発明の中間層材料に用いられる繊維基材としては特に限定されないが、 ガラス織布、 ガラス不織布などのガラス繊維基材;ガラス以外の無機化合物 を成分とする織布又は不織布などの無機繊維基材;ポリアミド樹脂、 芳香族 ポリアミド樹脂、 ポリエステル樹脂、 芳香族ポリエステル樹脂、 ポリイミド 樹脂、 フッ素樹脂などの有機繊維で構成される有機繊維基材などが挙げられ る。
これらの中でも、 線膨張係数が小さく、 低価格であり、 機械的強度が大き く、 吸湿性を抑えられることから、 ガラス繊維基材が好ましく、 中でも、 打 抜き加工性を向上できることからガラス繊維不織布が好ましい。
ここで用いられるガラス繊維不織布の坪量としては、 例えば、 3 0〜 1 5 0 g Zm 2のものを好適に用いることができる。
[0027] 本発明の中間層材料は、 上記繊維基材に、 硬化性樹脂組成物を含浸、 熱処 理することにより製造することができる。
[0028] 硬化性樹脂組成物を繊維基材に含浸させる方法としては、 例えば、 硬化性 樹脂組成物に繊維基材を浸漬する方法、 スプレー等の噴霧装置を用いて硬化 性樹脂組成物を繊維基材に塗布する方法、 コンマコーター、 ナイフコーター などの各種コーター装置を用いて、 硬化性樹脂組成物を繊維基材に塗工する 方法、 などが挙げられる。
上記方法は、 硬化性樹脂組成物や繊維基材の性状、 繊維基材に含浸させる 硬化性樹脂組成物の量などによリ、 適宜選択することができる。
[0029] 繊維基材に硬化性樹脂組成物を含浸させた後、 これを熱処理することによ リ、 硬化性樹脂組成物の調製時に溶媒を用いた場合はこれを乾燥除去して、 取り扱い性が良好な中間層材料とすることができる。 また、 必要に応じて、 硬化性樹脂成分の硬化反応を中途まで進行させ、 積層板製造時の樹脂流動性 を調整することができる。
熱処理する条件としては、 例えば、 1 2 0〜2 2 0 °Cで、 3 0〜1 8 0分 間実施することができる。
[0030] 本発明の中間層材料は、 これを硬化して得られる硬化物が、 ァ) 2 5 °C以 上ガラス転移点 (T g ) 以下の領域における平面方向の線膨張係数 (Q ) が 2 0 p p mZ°C以下であり、 かつィ) 2 5 °Cにおけるバーコール硬度が 4 0以上 6 5以下であることによって、 得られる積層板の加工性と寸法安定性 が同時に優れるという効果を奏する。
上記ァ) 、 ィ) をみたす具体的な手段は、 特定の硬化性樹脂と無機充填剤 を適宜組み合わせる、 例えば、 硬化性樹脂としてエポキシ樹脂、 無機充填剤 としてモース硬度が 4以下、 ァスぺク卜比が 3以上であるタルクを適切に組 み合わせることが挙げられる。
[0031 ] 本発明の中間層材料は、 1 8 0 °Cでこれを硬化して得られる硬化物が、 ァ) 2 5 °C以上ガラス転移点 (T g ) 以下の領域における平面方向の線膨張 係数 (Q? 1 ) が 2 0 p p mZ°C以下である。 下限は特に限定されないが、 好 ましくは 0 p p mZ°C〜 2 0 p p mZ°C、 さらに好ましくは、 1 5〜 1 8 p p mZ°Cである。
このように、 中間層材料の硬化物の上記領域における線膨張係数が 2 0 p P mZ°C以下であることにより、 積層板の線膨張係数を小さくすることがで き、 電子部品との接続信頼性に優れた回路基板を製造できるコンポジッ卜積 層板を得ることができる。
[0032] 上記線膨張係数は、 熱機械分析 (T M A) 装置を用いて、 J I S K - 7
1 9 7に記載された方法に準拠して測定することができる。 具体的には、 中 間層材料の硬化物を測定試料とし、 これを装置のステージにセットして、 一 定荷重の負荷を与えながら等速で昇温して、 生じる膨張量を差動トランスで 電気的出力として検出し、 温度との関係から算出することができる。
上記中間層材料の硬化物とは、 中間層材料を構成する硬化性樹脂組成物中 の硬化性樹脂成分が有する官能基の反応が実質的に完結した状態を意味し、 例えば、 示差走査熱量測定 (D S C) 装置により発熱量を測定することによ リ評価することができ、 具体的には、 この発熱量がほとんど検出されない状 態を指すものである。
このような中間層材料の硬化物を得る条件としては、 例えば、 1 2 0〜2 2 0 °Cで、 3 0〜 1 8 0分間処理することが好ましく、 特に、 1 5 0〜2 0 0 °Cで、 4 5〜 1 2 0分間処理することが好ましい。
[0033] また、 本発明の中間層材料は、 1 8 0 °Cでこれを硬化して得られる硬化物 が、
ィ) 2 5 °Cにおけるバーコール硬度が 4 0以上 6 5以下である。 バーコール硬度は、 好ましくは、 4 5以上 6 5以下とする。 これにより、 積層板の打抜き加工時の加工性を向上させ、 打抜き時のクラック発生を防止 することができるとともに、 積層板に必要な充分な機械的強度を有すること ができる。 より好ましくは、 5 0以上 6 5以下とする。 これにより、 さらに 打ち抜き加工性を向上させることができる。
上記バーコール硬度は、 バーコール硬度計を用いて、 J I S K 9 6 1 1 4 6 - 5 2 に準拠して、 2 5 °C以下で測定することができる。
[0034] 上記のような熱膨張係数および弾性率を有した中間層材料を得る方法とし ては、 例えば、 硬化性樹脂成分と無機充填材との配合割合、 層状構造を有す る無機充填材の使用およびその配合割合、 線膨張係数の小さい繊維基材の使 用、 などを適宜調製する方法を挙げることができる。
[0035] 次に、 本発明のコンポジット積層板について説明する。
本発明のコンポジット積層板は、 上記本発明の中間層材料の一枚以上を重 ね合わせ、 その表裏両側に表面層材料を各々一枚以上重ね合わせてなる構成 を、 硬化させてなることを特徴とする。
[0036] ここで用いられる表面層材料としては、 表面層材料用の繊維基材に、 表面 層材料用の硬化性樹脂組成物を含浸■乾燥させたものを好適に用いることが できる。
[0037] 表面層材料用の繊維基材としては、 例えば、 ガラス織布、 ガラス不織布な どのガラス繊維基材;ガラス以外の無機化合物を成分とする織布又は不織布 などの無機繊維基材;ポリアミド樹脂、 芳香族ポリアミド樹脂、 ポリエステ ル樹脂、 芳香族ポリエステル樹脂、 ポリイミド樹脂、 フッ素樹脂などの有機 繊維で構成される有機繊維基材などが挙げられる。
これらの中でも、 線膨張係数が小さく、 低価格であり、 機械的強度が大き く、 吸湿性を抑えられることから、 ガラス繊維基材が好ましく、 中でも、 コ ンポジット積層板に充分な機械的強度を付与できることから、 ガラス繊維織 布が好ましい。
ここで用いられるガラス繊維織布の坪量としては、 例えば、 5 0〜2 5 0 g Zm 2のものを好適に用いることができる。
[0038] また、 表面層材料用の硬化性樹脂組成物としては、 熱硬化性樹脂を含有す るものを好適に用いることができる。 ここで熱硬化性樹脂としては、 例えば 、 フエノール樹脂、 エポキシ樹脂、 シァネートエステル樹脂、 ユリア (尿素 ) 樹脂、 メラミン樹脂、 不飽和ポリエステル樹脂、 ビスマレイミド樹脂、 ポ リウレタン樹脂、 ジァリルフタレート樹脂、 シリコーン樹脂、 ベンゾォキサ ジン環を有する樹脂等が挙げられる。
ここで、 各々の熱硬化性樹脂、 および、 併用される硬化剤としては、 中間 層用材料に用いられる硬化性樹脂組成物の項において説明したものを同様に 適用することができる。
[0039] また、 表面層材料用の硬化性樹脂組成物には、 このほか、 熱可塑性樹脂、 可塑剤、 顔料、 表面処理剤、 無機充填材などを含有することができる。 例えば、 表面層材料用の硬化性樹脂組成物に無機充填材を含有させると、 積層板に耐トラッキング性を付与することができる。
[0040] 本発明のコンポジット積層板に用いられる表面層材料は、 上記の表面層用 の繊維基材に、 表面層用の硬化性樹脂組成物を含浸、 熱処理することにより 製造することができる。
[0041 ] 硬化性樹脂組成物を繊維基材に含浸させる方法としては、 例えば、 硬化性 樹脂組成物に繊維基材を浸漬する方法、 スプレー等の噴霧装置を用いて硬化 性樹脂組成物を繊維基材に塗布する方法、 コンマコーター、 ナイフコーター などの各種コーター装置を用いて、 硬化性樹脂組成物を繊維基材に塗工する 方法、 などが挙げられる。
上記方法は、 硬化性樹脂組成物や繊維基材の性状、 繊維基材に含浸させる 硬化性樹脂組成物の量などによリ、 適宜選択することができる。
[0042] 繊維基材に硬化性樹脂組成物を含浸させた後、 これを熱処理することによ リ、 硬化性樹脂組成物の調製時に溶媒を用いた場合はこれを乾燥除去して、 取り扱い性が良好な表面層材料とすることができる。 また、 必要に応じて、 硬化性樹脂成分の硬化反応を中途まで進行させ、 積層板製造時の樹脂流動性 を調整することができる。
熱処理する条件としては、 例えば、 1 2 0〜2 0 0 °Cで、 1〜 1 0分間実 施することができる。
[0043] 本発明のコンポジット積層板は、 上記本発明の中間層材料と、 表面層材料 とを重ね合わせてなる構成を、 硬化させてなるものであるが、 さらに上記構 成の外側に、 片面側もしくは両面側に銅箔などの金属箔を配した構成を硬化 させることにより、 金属箔張リコンポジット積層板としてもよい。
上記構成を積層板とするには、 例えば、 1 5 0〜2 5 0 °C、 3 0〜 1 8 0 分間、 0 . 5〜 1 O M P aの条件で加熱加圧成形する方法を適用することが できる。
[0044] また、 本発明のコンポジット積層板は、
ゥ) 25°C以上ガラス転移点 (T g) 以下の領域における平面方向の線膨張 係数 (ひ 1 ) が 20 p pmZ°C以下である。 より好ましくは、 1 5〜 1 8 p p mZ°Cである。
ここでコンポジット積層板の線膨張係数は、 上記中間層材料の硬化物の線 膨張係数と同様の方法で測定することができる。
コンポジット積層板の線膨張係数を上記範囲とすることにより、 電子部品 搭載後の回路基板を熱処理する工程 (例えば、 リフロー実装、 フロー実装な ど) においても、 回路基板の線膨張量と電子部品の線膨張量との差を小さく することができるので、 回路基板上の導体回路と、 電子部品との接続信頼性 を確保することができる。
[0045] また、 本発明のコンポジット積層板は、
ェ) 25°Cにおける弾性率が 8, 000〜20, 000MPa、 好ましくは 1 0, 000〜1 8, 000MPa、 さらに好ましくは 1 0, 000〜 1 5, 00 OMP aである。
ここで、 コンポジット積層板の弾性率は、 J I S C 6481に準拠し て測定することができる。
コンポジット積層板の弾性率を上記範囲とすることにより、 積層板に充分 な機械的強度を付与しつつ、 回路基板の打抜き加工時の打抜き抵抗を小さく することができるので、 打抜き加工により、 加工部位におけるクラックの発 生を防止することができる。 これにより、 打抜き加工を効率的に行うことが できる。 そして、 回路基板の加工歩留まりを向上させ、 ドリルなどの加工治 具の寿命を長くして、 回路基板の製造コストを低減することができる。
[0046] 以下、 本発明を実施例および比較例により説明するが、 本発明はここで例 示された形態に限定されるものではない。
[0047] 1. 原材料 本発明の実施例、 比較例において用いた原材料は、 以下の通りである。
(1 ) エポキシ樹脂 1 :臭素化ビスフエノール A型エポキシ樹脂、 大日本ィ ンキ化学工業社製 「1 53」 、 エポキシ当量 400
(2) エポキシ樹脂 2 : ビスフエノール A型エポキシ樹脂、 大日本インキ化 学工業社製 「850」 、 エポキシ当量 1 90
(3) 硬化剤: ノポラック型フエノール樹脂、 住友ベークライト社製 「PR — 51 470」
(4) 硬化促進剤: 2—メチルイミダゾール
(5) 無機充填材 1 : タルク、 富士タルク工業社製 ΓΡΚΡ_53」 、 ァス ぺクト比 1 0、 モース硬度 1、 粒径 1 8 m
(6) 無機充填材 2 :マイ力、 コープケミカル社製、 ァスぺク卜比 1 0、 モ ース硬度 3
(7) 無機充填材 3 : シリカ、 アドマテックス社製、 モース硬度 7
(8) 表面処理剤:エポキシシランカップリング剤、 信越化学社製
[0048] 2. 中間層材料用硬化性樹脂組成物の調製
2. 1 中間層材料用硬化性樹脂組成物 1の調製
エポキシ樹脂 1を 55重量部、 エポキシ樹脂 2を 20重量部、 硬化剤を 2 5重量部、 硬化促進剤を 0. 1重量部、 各々配合し、 これをメチルセ口ソル ブに溶解して、 固形分濃度 60重量%の、 硬化性樹脂溶液を調製した。
これとは別に、 無機充填材 1の 1 00重量部に対して、 表面処理剤 2重量 部を用い、 高速攪拌機の方法で表面処理を行ない、 表面処理済み無機充填材 1を調製した。
硬化性樹脂溶液 (固形分) 1 00重量部に対して、 表面処理済み無機充填 材 1を 1 80重量部配合した後、 デイスパーザーを用いて 1 , 000回転で 3 0分間混合し、 中間層材料用硬化性樹脂組成物 1を調製した。
[0049] 2. 2 中間層材料用硬化性樹脂組成物 2の調製
硬化性樹脂溶液 (固形分) 1 00重量部に対して、 表面処理済み無機充填 材 1を 1 50重量部配合した以外は、 2. 1と同様にして、 中間層材料用硬 化性樹脂組成物 2を調製した。
[0050] 2. 3 中間層材料用硬化性樹脂組成物 3の調製
硬化性樹脂溶液 (固形分) 1 00重量部に対して、 表面処理済み無機充填 材 1を 230重量部配合した以外は、 2. 1と同様にして、 中間層材料用硬 化性樹脂組成物 3を調製した。
[0051] 2. 4 中間層材料用硬化性樹脂組成物 4の調製
無機充填材として、 無機充填材 1の 1 00重量部の代わりに、 無機充填材 1の 50重量部と、 無機充填材 2の 50重量部との合計したものを用いた以 外は、 2. 1と同様にして、 中間層材料用硬化性樹脂組成物 4を調製した。
[0052] 2. 5 中間層材料用硬化性樹脂組成物 5の調製
無機充填材として、 無機充填材 1の 1 00重量部の代わりに、 無機充填材 3の 1 00重量部を用いた以外は、 2. 1と同様にして、 中間層材料用硬化 性樹脂組成物 5を調製した。
[0053] 3. 中間層材料の製造
3. 1 く実施例 1>
中間層材料用の繊維基材として、 ガラス繊維不織布 (キュムラス (株) 社 製 「EPM」 、 50 gZm2) を用いた。
通常の塗布含浸装置を用いて、 上記ガラス繊維不織布 1 OO gに対して、 中間層材料用硬化性樹脂組成物 1を固形分換算で 1 , 000 g含浸させ、 これ を、 1 50°Cの乾燥装置で 5分間乾燥させ、 中間層材料 1を製造した。
[0054] 3. 2 〈実施例 2>
中間層材料用硬化性樹脂組成物 1の代わリに、 中間層材料用硬化性樹脂組 成物 2を用いた以外は、 実施例 1と同様にして、 中間層材料 2を製造した。
[0055] 3. 3 〈実施例 3>
中間層材料用硬化性樹脂組成物 1の代わリに、 中間層材料用硬化性樹脂組 成物 3を用いた以外は、 実施例 1と同様にして、 中間層材料 3を製造した。
[0056] 3. 4 〈実施例 4>
中間層材料用硬化性樹脂組成物 1の代わリに、 中間層材料用硬化性樹脂組 成物 4を用いた以外は、 実施例 1と同様にして、 中間層材料 4を製造した。
[0057] 3. 5 〈比較例 1>
中間層材料用硬化性樹脂組成物 1の代わリに、 中間層材料用硬化性樹脂組 成物 5を用いた以外は、 実施例 1と同様にして、 中間層材料 5を製造した。 中間層材料 5は、 従来用いられているシリカを主成分とした材料である。
[0058] 4. 表面層材料用硬化性樹脂組成物の調製
エポキシ樹脂 1を 55重量部、 エポキシ樹脂 2を 20重量部、 硬化剤を 2 5重量部、 硬化促進剤を 0. 1重量部、 各々配合し、 これをメチルセ口ソル ブに溶解して、 固形分濃度 60重量%の、 表面層材料用硬化性樹脂組成物を 調製した。
[0059] 5. 表面層材料の製造
表面層材料用の繊維基材として、 ガラス繊維織布 (曰東紡社製、 1 80 g Zm2) を用いた。
通常の塗布含浸装置を用いて、 上記ガラス繊維織布 1 OO gに対して、 表 面層材料用硬化性樹脂組成物を固形分換算で 250 g含浸させ、 これを、 1 50°Cの乾燥装置で 2分間乾燥させ、 表面層材料を製造した。
[0060] 6. 積層板の製造
実施例 1〜4、 および、 比較例 1で得られた中間層材料を 4枚重ねた。 そ の表裏両側に、 表面層材料を 1枚ずつ重ね、 さらに、 その表裏両側に、 1 8 m厚みの電解銅箔 (古河サーキットフオイル社製、 GTS—MP— 1 8) を 1枚ずつ重ねた。
この構成を、 常圧から 7 40 T O r r減圧した真空プレス成形装置を用い て、 常温から昇温し、 最高温度 1 80°Cで 60分間、 4 M P aでの条件で加 熱加圧成形して、 コンポジット積層板を製造した。
[0061] 7. 評価
7. 1 中間層材料の評価
( 1 ) 線膨張係数
中間層材料を、 1 80°C、 4MP aの条件で加熱加圧成形して、 中間層材 料の硬化物を得た。
この硬化物を試料として、 熱機械分析 (TMA) 装置を用いて、 J I S K 7 1 97に記載された方法に準拠して、 二方向についての線膨張係数を 測定した。 ガラス転移点 (T g) は 1 05〜1 45°Cであった
測定条件は以下の通りである。
•荷重: 0. 1 N
■昇温速度: 1 0°CZ分
[0062] (2) バーコール硬度
上記 (1 ) で用いたものを試料として、 J I S K 691 1 46-5 2の方法で測定した。
[0063] 7. 2 積層板の評価
( 1 ) 線膨張係数
得られた積層板の銅箔を両面全面エッチング除去したものを試料として、 熱機械分析 (TMA) 装置を用いて、 J I S K 7 1 97に記載された方 法に準拠して、 二方向についての線膨張係数を測定した。 測定条件は以下の 通りである。
•荷重: 0. 1 N
■昇温速度: 1 0°CZ分
[0064] (2) 弾性率
上記 (1 ) で用いたものを試料として、 J I S C 6481に準拠した 方法で測定した。
[0065] (3) 打抜き加工性
上記 (1 ) で用いたものを試料として、 下記表 1の欄外に記載した方法で 測定した。
[0066] (4) 接続信頼性
下記表 1の欄外に記載した方法で測定した。
[0067] 上記評価結果を表 1に示す。
[0068] [表 1]
Figure imgf000020_0001
打ち抜き加工性 : 〗 50mm X ( 50mmの試験片を用いて、 1 mm øの穴が 2mm間隔で 20
穴開けられた金型を用いて、 150T (トン)打ち抜きプレスを行い、プレ ス後の言式験片を金型から外して、穴の部分に相当する箇所の表面を 外観で評価。
O;打ち抜き面に白化、クラックがない
X;打ち抜き表面にクラックあり
接続信頼性:抵抗 2125を実装した基板の温湿度サイクル試験 (2000サイウル後〉 o : 断線無し
X : 断線あり
8 . 考察
実施例 1 〜 4は、 本発明の中間層材料であり、 線膨張係数が小さく、 面方 向の寸法安定性に優れるとともに、 バーコール硬度が好適な範囲のものであ つた。 そして、 この中間層材料を用いたコンポジット積層板は、 打抜き加工 性に優れたものであり、 また、 線膨張係数が小さいことから、 面方向の寸法 安定性に優れ、 接続信頼性に優れたものであった。
比較例 1は、 シリカを多量に配合した中間層材料であり、 線膨張係数は小 さいが、 弾性率が大きいものであった。 そして、 この中間層材料を用いたコ ンポジット積層板は、 接続信頼性は良好であったものの、 打抜き加工性は劣 るものとなった。

Claims

請求の範囲
[I] 硬化性樹脂組成物と繊維基材とから形成され、 コンポジット積層板の中間 層を形成するのに用いられる中間層材料であって、 前記中間層材料を 1 8 0 °Cの温度で硬化して得られる硬化物は、
ァ) 2 5 °C以上ガラス転移点 (T g ) 以下の領域における平面方向の線膨張 係数 (ひ 1 ) が 2 0 p p mZ°C以下であり、
ィ) 2 5 °Cにおけるバーコール硬度が 4 0以上 6 5以下である、
ことを特徴とする中間層材料。
[2] 前記硬化性樹脂組成物は、 (a ) 硬化性樹脂と、 (b ) 無機充填材とを含 有するものである請求項 1に記載の中間層材料。
[3] 前記 (a ) 硬化性樹脂は、 エポキシ樹脂とフエノール樹脂とを含有するも のである請求項 2に記載の中間層材料。
[4] 前記硬化性樹脂組成物中の固形分全体に対して、 前記 (b ) 無機充填材 5
0〜8 0重量%を含有する、 請求項 2に記載の中間層材料。
[5] 前記 (b ) 無機充填材は、 層状構造の無機充填材を含むものである、 請求 項 2に記載の中間層材料。
[6] 前記 ( b ) 無機充填材全体に対して、 層状構造の無機充填材 5 0〜 1 0 0 重量%を含有する、 請求項 2に記載の中間層材料。
[7] 前記層状構造の無機充填材は、 モース硬度が 4以下であるものを含む、 請 求項 5に記載の中間層材料。
[8] 前記層状構造の無機充填材は、 ァスぺク卜比が 3以上である、 請求項 5に 記載の中間層材料。
[9] 前記層状構造の無機充填材として、 タルクを含有する、 請求項 5に記載の 中間層材料。
[10] 請求項 1に記載の中間層材料の一枚以上を重ね合わせ、 その表裏両側に表 面層材料を各々一枚以上重ね合わせてなる構成を、 硬化させてなることを特 徴とするコンポジット積層板。
[I I] 前記コンポジット積層板は、 ゥ) 25°C以上ガラス転移点 (T g) 以下の領域における平面方向の線膨張 係数 (ひ 1 ) が 20 p pmZ°C以下であり、
ェ) 25°Cにおける弾性率が 8, 000~20, 000MPa
である、 請求項 1 0に記載のコンポジット積層板。
PCT/JP2007/000139 2006-03-03 2007-02-27 中間層材料およびコンポジット積層板 WO2007099710A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800076757A CN101395208B (zh) 2006-03-03 2007-02-27 中间层材料和复合层压板
JP2008502668A JP5332608B2 (ja) 2006-03-03 2007-02-27 中間層材料およびコンポジット積層板
US12/281,242 US8722191B2 (en) 2006-03-03 2007-02-27 Intermediate layer material and composite laminate
KR1020087024220A KR101337168B1 (ko) 2006-03-03 2007-02-27 중간층 재료 및 복합 적층판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-058537 2006-03-03
JP2006058537 2006-03-03

Publications (1)

Publication Number Publication Date
WO2007099710A1 true WO2007099710A1 (ja) 2007-09-07

Family

ID=38458831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000139 WO2007099710A1 (ja) 2006-03-03 2007-02-27 中間層材料およびコンポジット積層板

Country Status (7)

Country Link
US (1) US8722191B2 (ja)
JP (1) JP5332608B2 (ja)
KR (1) KR101337168B1 (ja)
CN (1) CN101395208B (ja)
MY (1) MY157959A (ja)
TW (1) TWI458401B (ja)
WO (1) WO2007099710A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057867A (ja) * 2009-09-10 2011-03-24 Sekisui Chem Co Ltd 透明複合材料及び透明シート
JP2013216086A (ja) * 2012-03-14 2013-10-24 Sumitomo Bakelite Co Ltd 金属張積層板、プリント配線基板、半導体パッケージ、および半導体装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785373B (zh) * 2007-08-24 2012-03-28 住友电木株式会社 多层布线基板以及半导体装置
TWI473717B (zh) * 2010-08-02 2015-02-21 Tech Advance Ind Co Ltd 熱壓機用之緩衝材及其應用
KR20120066141A (ko) * 2010-12-14 2012-06-22 삼성전기주식회사 인쇄회로기판의 절연층, 이의 제조방법, 및 이를 포함하는 인쇄회로기판
JP5617028B2 (ja) * 2011-02-21 2014-10-29 パナソニック株式会社 金属張積層板、及びプリント配線板
JP2013000995A (ja) * 2011-06-17 2013-01-07 Panasonic Corp 金属張積層板、及びプリント配線板
EP2759400B1 (en) * 2011-09-22 2020-04-15 Hitachi Chemical Company, Ltd. Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
JP2013123907A (ja) * 2011-12-16 2013-06-24 Panasonic Corp 金属張積層板、及びプリント配線板
JP2013203936A (ja) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd 複合体組成物および複合体組成物の製造方法
JP5941847B2 (ja) * 2013-01-17 2016-06-29 信越化学工業株式会社 シリコーン・有機樹脂複合積層板及びその製造方法、並びにこれを使用した発光半導体装置
DE102014226834A1 (de) * 2014-12-22 2016-06-23 Henkel Ag & Co. Kgaa Verwendung eines Thiolester als Härter für Epoxid-Klebstoffe
CN106751436B (zh) * 2016-11-09 2019-06-18 上海欧亚合成材料有限公司 用于薄壁结构的酚醛模塑料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086120A (ja) * 1983-10-17 1985-05-15 Hitachi Chem Co Ltd 難燃性ポリエチレングリコ−ル−シリコ−ン変性エポキシ樹脂の製造方法
JP2000273222A (ja) * 1999-03-26 2000-10-03 Sumitomo Bakelite Co Ltd 難燃性プリプレグ及び積層板
JP2000273238A (ja) * 1999-03-26 2000-10-03 Sumitomo Bakelite Co Ltd 難燃性プリプレグ及び積層板
JP2000344917A (ja) * 1999-06-04 2000-12-12 Sumitomo Bakelite Co Ltd 難燃性プリプレグ及び積層板
JP2001260157A (ja) * 2000-03-22 2001-09-25 Sumitomo Bakelite Co Ltd 積層板の製造方法
JP2002353581A (ja) * 2001-05-30 2002-12-06 Hitachi Chem Co Ltd プリント配線板用プリプレグの製造方法
JP2003078064A (ja) * 2001-09-27 2003-03-14 Sumitomo Bakelite Co Ltd インターポーザ、半導体パッケージおよびその製造方法
JP2005162787A (ja) * 2003-11-28 2005-06-23 Sumitomo Bakelite Co Ltd 樹脂組成物およびそれを用いた基板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273948A (ja) 1985-05-30 1986-12-04 住友ベークライト株式会社 熱硬化性樹脂積層板
JPH06237055A (ja) 1993-02-09 1994-08-23 Hitachi Chem Co Ltd 積層板の製造方法
US5545697A (en) * 1994-02-14 1996-08-13 Ciba-Geigy Corporation Urethane modified epoxy resin compositions
JP2000191745A (ja) * 1998-12-25 2000-07-11 Sumitomo Bakelite Co Ltd 紫外線硬化型樹脂組成物
JP2000301534A (ja) * 1999-02-19 2000-10-31 Hitachi Chem Co Ltd プリプレグ、金属張積層板及びこれらを用いた印刷配線板
EP1178074A4 (en) * 1999-02-19 2002-09-18 Hitachi Chemical Co Ltd PREMIX, LAMINATE WITH METAL COATING AND PRINTED CIRCUIT BOARD OBTAINED THEREFROM
EP1275682B1 (en) * 2000-03-27 2007-12-19 Japan Composite Co., Ltd. Lowly heat-expandable laminate
EP1457515A4 (en) * 2001-08-31 2004-11-24 Sumitomo Bakelite Co RESIN COMPOSITION, PREMIX, LAMINATED SHEET, AND SEMICONDUCTOR PACKAGE
CN100473253C (zh) * 2003-06-02 2009-03-25 松下电工株式会社 印刷线路板用半固化片及覆铜层叠板
WO2005007742A1 (ja) * 2003-07-22 2005-01-27 Matsushita Electric Works, Ltd. 印刷配線板用樹脂組成物、プリプレグ、積層板、及びこれを用いたプリント配線板
JP4501492B2 (ja) * 2004-03-30 2010-07-14 住友ベークライト株式会社 多層プリント配線板の製造方法
JP4810875B2 (ja) * 2004-06-09 2011-11-09 三菱瓦斯化学株式会社 硬化性樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086120A (ja) * 1983-10-17 1985-05-15 Hitachi Chem Co Ltd 難燃性ポリエチレングリコ−ル−シリコ−ン変性エポキシ樹脂の製造方法
JP2000273222A (ja) * 1999-03-26 2000-10-03 Sumitomo Bakelite Co Ltd 難燃性プリプレグ及び積層板
JP2000273238A (ja) * 1999-03-26 2000-10-03 Sumitomo Bakelite Co Ltd 難燃性プリプレグ及び積層板
JP2000344917A (ja) * 1999-06-04 2000-12-12 Sumitomo Bakelite Co Ltd 難燃性プリプレグ及び積層板
JP2001260157A (ja) * 2000-03-22 2001-09-25 Sumitomo Bakelite Co Ltd 積層板の製造方法
JP2002353581A (ja) * 2001-05-30 2002-12-06 Hitachi Chem Co Ltd プリント配線板用プリプレグの製造方法
JP2003078064A (ja) * 2001-09-27 2003-03-14 Sumitomo Bakelite Co Ltd インターポーザ、半導体パッケージおよびその製造方法
JP2005162787A (ja) * 2003-11-28 2005-06-23 Sumitomo Bakelite Co Ltd 樹脂組成物およびそれを用いた基板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057867A (ja) * 2009-09-10 2011-03-24 Sekisui Chem Co Ltd 透明複合材料及び透明シート
JP2013216086A (ja) * 2012-03-14 2013-10-24 Sumitomo Bakelite Co Ltd 金属張積層板、プリント配線基板、半導体パッケージ、および半導体装置

Also Published As

Publication number Publication date
CN101395208B (zh) 2012-07-04
US20090017308A1 (en) 2009-01-15
MY157959A (en) 2016-08-30
JP5332608B2 (ja) 2013-11-06
TWI458401B (zh) 2014-10-21
US8722191B2 (en) 2014-05-13
KR20090004909A (ko) 2009-01-12
TW200810623A (en) 2008-02-16
CN101395208A (zh) 2009-03-25
JPWO2007099710A1 (ja) 2009-07-16
KR101337168B1 (ko) 2013-12-05

Similar Documents

Publication Publication Date Title
WO2007099710A1 (ja) 中間層材料およびコンポジット積層板
KR101355777B1 (ko) 프리프레그, 적층판, 프린트 배선판 및 반도체 장치
KR100920535B1 (ko) 수지 조성물, 프리프레그, 적층판 및 반도체 패키지
JP5338187B2 (ja) 無機充填剤含有樹脂組成物、プリプレグ、積層板及び配線板
JP5206600B2 (ja) エポキシ樹脂組成物、プリプレグ、積層板、樹脂シート、多層プリント配線板、及び半導体装置
JP2011178992A (ja) プリプレグ、積層板、プリント配線板、および半導体装置
JP5533657B2 (ja) 積層板、回路板および半導体装置
TW201012860A (en) Epoxy resin composition, prepreg, cured body, sheet-like molded body, laminate and multilayer laminate
JP2007045984A (ja) 難燃性樹脂組成物、並びにこれを用いたプリプレグ及び積層板
JP5263134B2 (ja) 回路基板用樹脂組成物、プリプレグ、積層板、樹脂シート、多層プリント配線板および半導体装置
KR20180027419A (ko) 수지 조성물, 프리프레그, 레진 시트, 금속박 피복 적층판 및 프린트 배선판
JP5849390B2 (ja) エポキシ樹脂前駆体組成物、プリプレグ、積層板、樹脂シート、プリント配線板および半導体装置
WO2017175614A1 (ja) 樹脂組成物及びその製造方法、プリプレグ、レジンシート、積層板、金属箔張積層板、並びにプリント配線板
CN108472831A (zh) Frp前体、层叠板、覆金属层叠板、印刷布线板、半导体封装体及它们的制造方法
WO2014087882A1 (ja) 樹脂層付き金属層、積層体、回路基板および半導体装置
KR102605758B1 (ko) 수지 조성물, 프리프레그, 레진 시트, 적층판, 및 프린트 배선판
JP6819921B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP5493948B2 (ja) プリント配線板用樹脂組成物、プリプレグ、積層板、樹脂シート、プリント配線板、および半導体装置
JP2004315705A (ja) 変性ポリイミド樹脂組成物ならびにそれを用いたプリプレグおよび積層板
JP5448414B2 (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板、及び半導体装置
JP2012158681A (ja) エポキシ樹脂組成物
JP2020117611A (ja) 樹脂組成物、硬化物、成形体、プリプレグ、レジンシート、金属箔張積層板、プリント配線板、半導体装置、封止用材料、繊維強化複合材料及び接着剤
JP6829808B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP2001139775A (ja) エポキシ樹脂組成物及びそれを用いたフレキシブル印刷配線板材料
JPH09260843A (ja) 内層回路入り多層銅張積層板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008502668

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12281242

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780007675.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087024220

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07713521

Country of ref document: EP

Kind code of ref document: A1