WO2007089037A1 - 電源装置およびそれを搭載した電動車両ならびに電源装置の制御方法 - Google Patents

電源装置およびそれを搭載した電動車両ならびに電源装置の制御方法 Download PDF

Info

Publication number
WO2007089037A1
WO2007089037A1 PCT/JP2007/052171 JP2007052171W WO2007089037A1 WO 2007089037 A1 WO2007089037 A1 WO 2007089037A1 JP 2007052171 W JP2007052171 W JP 2007052171W WO 2007089037 A1 WO2007089037 A1 WO 2007089037A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
power
power supply
insulation resistance
supply device
Prior art date
Application number
PCT/JP2007/052171
Other languages
English (en)
French (fr)
Inventor
Kenji Uchida
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/087,681 priority Critical patent/US7773353B2/en
Priority to EP07708195A priority patent/EP1981143A1/en
Priority to CN2007800043791A priority patent/CN101379669B/zh
Priority to BRPI0707354-2A priority patent/BRPI0707354A2/pt
Publication of WO2007089037A1 publication Critical patent/WO2007089037A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/308Electric sensors
    • B60Y2400/3086Electric voltages sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/22The load being a portable electronic device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • a power supply device an electric vehicle equipped with the power supply device, and a control method of the power supply device
  • the present invention relates to a power supply device mounted on an electric vehicle, an electric vehicle equipped with the same, and a control method for the power supply device mounted on the electric vehicle.
  • Japanese Laid-Open Patent Publication No. Hei 10-290 029 discloses a power supply device mounted on an electric vehicle.
  • This power supply unit is equipped with a battery, an electric circuit system such as a traveling motor and in-vehicle auxiliary equipment powered by the battery, and a commercial AC voltage generated by converting the DC voltage from the battery into a commercial AC voltage and supplying it to a commercial power supply load.
  • Inverter circuit, a breaker switch provided between the commercial AC voltage generating inverter circuit and the commercial power supply load, and a leakage detection circuit for detecting a ground fault current leaking from the battery and detecting a leakage in the electric circuit system Prepare.
  • the leakage detection circuit when detecting the leakage, stops the commercial AC voltage generating inverter circuit without interrupting the power supply to the electric circuit system such as the traction motor and the in-vehicle auxiliary machine, and The power supply to the commercial power load is cut off by operating the cut-off switch.
  • the impedance varies depending on the influence of the capacity component of the commercial power supply load when the commercial power supply load is electrically connected to the power supply device.
  • the impedance change due to the influence of the capacitance component of such a commercial power load is not taken into consideration, so that the insulation resistance of the power supply device is reduced. Cannot be detected accurately. Disclosure of the invention
  • the present invention has been made to solve an enormous problem, and an object thereof is to provide a power supply device capable of accurately detecting a decrease in insulation resistance. Another object of the present invention is to provide an electric vehicle equipped with a power supply device capable of accurately detecting a decrease in insulation resistance.
  • Another object of the present invention is to provide a method for controlling a power supply apparatus that can accurately detect a decrease in insulation resistance.
  • the power supply device is mounted on an electric vehicle.
  • the power supply device includes a power storage device, a power conversion device, and a detection device.
  • the power conversion device is configured to be able to execute at least one of power feeding from the power storage device to a load outside the vehicle and charging of the power storage device from the load.
  • the detection device detects a decrease in insulation resistance of the power supply device. Then, when the load is connected to the power conversion device, the detection device sets a determination threshold value for detecting a decrease in insulation resistance lower than that when the load is not connected.
  • the determination threshold when the load is connected to the power conversion device is determined based on the capacity of the load.
  • the detection device sets a determination time for determining a decrease in the insulation resistance to be shorter than that when the load is not connected.
  • the power supply device further includes a blocking unit.
  • the shut-off unit shuts off the systems of both electric vehicles when a decrease in insulation resistance is detected when the load is connected to the power converter.
  • the load includes a line bypass capacitor.
  • the line bypass capacitor is connected between the power line pair connected to the power converter and ground.
  • the detection device includes a resistance element, a voltage generation device, a capacitance element, a voltage detection device, a setting unit, and a determination unit.
  • the resistance element has a predetermined resistance value.
  • the voltage generator is connected between the resistance element and the vehicle ground and generates a voltage having a predetermined frequency.
  • the capacitive element is connected between the resistive element and the power line of the power supply device.
  • the voltage detection device detects a voltage between the resistance element and the capacitance element.
  • the setting unit sets a judgment threshold value.
  • the determination unit determines a decrease in insulation resistance based on the voltage detected by the voltage detection device and the determination threshold set by the setting unit.
  • the power conversion device includes first and second AC motors, first and second inverters, an inverter control device, and a connection device. 1st and 2nd Each of the AC motors includes a star-connected multiphase cable as a stator cable.
  • the first and second inverters are provided corresponding to the first and second AC motors, respectively, and exchange electric power with the power storage device.
  • the inverter control device controls the first and second inverters.
  • the connection device is provided for connecting the load to the neutral point of the multiphase feeder when either power feeding from the power storage device to the load or charging of the power storage device from the load is performed.
  • the electric vehicle is equipped with any of the power supply devices described above.
  • the control method for the power supply device is a control method for the power supply device mounted on the electric vehicle.
  • the power supply device includes a power storage device, a power conversion device, and a detection device.
  • the power conversion device is configured to be able to execute at least one of power feeding from the power storage device to a load outside the vehicle and charging of the power storage device from the load.
  • the detection device detects the decrease in insulation resistance of the power supply.
  • the power supply device control method includes first and second steps. In the first step, it is determined whether or not the load is connected to the power converter. In the second step, when it is determined that the load is connected to the power converter, the determination threshold value for detecting a decrease in insulation resistance is set lower than that when the load is not connected.
  • the determination threshold when the load is connected to the power conversion device is determined based on the capacity of the load.
  • the method for controlling the power supply apparatus further includes a third step.
  • the third step if it is determined that the load is connected to the power converter, the determination time for determining the decrease in insulation resistance is set to be shorter than when no connection is made.
  • the method for controlling the power supply apparatus further includes a fourth step.
  • the fourth step if the detection device detects a decrease in insulation resistance when the load is connected to the power converter, the system of the electric vehicle is shut off.
  • a decrease in insulation resistance is detected based on a normal determination threshold.
  • the judgment threshold is set lower than when it is not connected. ⁇ Detects a decrease in resistance. .
  • the determination time for determining the decrease in the insulation resistance is set to be shorter than that when the load is not connected.
  • FIG. 1 is an overall block diagram of a power supply and a device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a zero-phase equivalent circuit of the inverter and motor generator shown in FIG.
  • FIG. 3 is a diagram showing the configuration of the insulation resistance drop detector shown in FIG.
  • Fig. 4 is a diagram for explaining the principle of insulation resistance detection by the insulation resistance lowering detector shown in Fig. 3 '.
  • FIG. 5 is a diagram for explaining the concept of determination threshold and value setting for determining the decrease in insulation resistance based on the voltage from the insulation resistance decrease detector shown in FIG.
  • Fig. 6 is a flowchart related to abnormality determination control of insulation resistance by ECU shown in Fig. 1.
  • FIG. 7 is a diagram showing the change over time of the detected peak value while the vehicle is running with no external load connected.
  • FIG. 8 is a diagram showing the change over time of the detected peak value when an external load is electrically connected.
  • FIG. 9 is a flowchart regarding the insulation resistance abnormality determination control by ECU in the second embodiment.
  • FIG. 1 is an overall block diagram of a power supply device according to Embodiment 1 of the present invention.
  • power supply device 10 O includes a power storage device B, a smoothing capacitor C, inverters 10 and 20, motor generators MG 1 and MG2, a power supply line PL, and a ground line SL.
  • the power supply device 100 includes AC lines ACL 1 and ACL 2, a relay circuit 30, a connector 40, an insulation resistance drop detector 50, and an electronic control unit (hereinafter also referred to as “ECU”) 60. Is provided.
  • the power supply devices 10 and 0 are mounted on a hybrid vehicle.
  • Motor generator MG 1 operates as an electric motor that can start an engine (not shown, the same applies hereinafter), and is incorporated in a hybrid vehicle as operating as a generator driven by the engine.
  • the motor generator MG 2 is incorporated in a hybrid vehicle as an electric motor for driving a drive wheel (not shown, the same applies hereinafter) of a hybrid vehicle.
  • the hybrid vehicle equipped with the power supply device 100 may be of a series / parallel type that can transmit the engine power divided between the axle and the motor generator MG 1 by a power split mechanism. Even if the engine is used only for driving the motor generator MG 1 and the motor generator MG 2 that uses the electric power generated by the motor generator MG 1 only generates a driving force for the axle, Good.
  • the positive electrode of power storage device B is connected to power supply line P.L.
  • the negative electrode of power storage device B is connected to ground line SL.
  • Smoothing capacitor C is connected between power supply line PL and ground line SL.
  • the insulation resistance drop detector 50 is connected between the ground line S L and the vehicle body ground 70.
  • Inverter 10 includes a U-phase arm 12, a V-phase arm 14, and a W-phase arm 16.
  • U-phase arm 12, V-phase arm 14 and W-phase arm 16 are connected in parallel between power supply line PL and ground line SL.
  • U-phase arm 12 consists of power transistors Q 11 and Q 12 connected in series
  • V-phase arm 14 consists of power transistors Q 13 and Q 14 connected in series
  • W-phase arm 16 straight Power transistor Q 15, Q 16 force, etc. connected in a row.
  • diodes D11 to D16 for flowing current from the emitter side to the collector side are connected, respectively.
  • Inverter 20 includes a U-phase arm 22, a V-phase arm 24, and a W-phase arm 26.
  • U-phase arm 22, V-phase arm 24, and W-phase arm 26 are connected in parallel between power line PL and ground line SL.
  • U-phase arm 22 is connected in series to transistor Q
  • the V-phase arm 24 consists of power transistors Q 23, Q 24 connected in series, and the W-phase arm 26 is connected in series, with one transistor Q 25, It consists of Q 26.
  • Diodes D 21 to D 26 that flow current from the emitter side to the collector side are connected between the collector emitters of the power transistors Q21 to Q 26, respectively.
  • Motor generator MG 1 includes Y-connected three-phase coil 2 as a stator coil. One end of the U, V, and W phase coils that form the three-phase coil 2 are connected to each other to form the neutral point N1, and the other end of the U, V, and W phase coils corresponds to the inverter 10.
  • the motor generator MG 2 includes a Y-connected three-phase coil 4. as a stator coil. One end of the U, V, and W-phase coils forming the three-phase coil 4 are connected to each other. Connected to form a neutral point N 2, and the other ends of the U, V, and W phase coils are connected to the corresponding arm of the inverter 20.
  • the relay circuit 30 includes relays RY1 and RY2.
  • One end of relay RY1 is connected to neutral point N1 of 3-phase coil 2 of motor generator MG1 via AC line AC L1, and the other end is connected to connector .40.
  • One end of relay RY 2 is connected to neutral point N 2 of three-phase coil 4 of motor generator MG 2 via AC line AC L 2, and the other end is connected to connector 40.
  • the connector 82 of the vehicle load 80 is connected to the connector 40.
  • the external load 80 is, for example, a commercial commercial power load, and is connected to the connector 82 via the power lines EL 1 and EL 2.
  • a Y capacitor 84 is connected to the power supply lines EL 1 and EL 2.
  • Y capacitor 84 includes capacitors C3 and C4.
  • Capacitor C3 is connected to power line E Connected between L 1 and ground 86.
  • Capacitor C 4 is connected between power line EL 2 and ground 86.
  • the Y capacitor 84 is provided as a filter for removing common mode noise on the power supply lines EL1 and EL2.
  • the power storage device B is a direct current power source, and includes, for example, a secondary battery such as Eckel hydrogen or lithium ion. Power storage device B generates a DC voltage and outputs it to power supply line PL. The power storage device B is charged by a DC voltage output from at least one of the inverters 10 and 20. Note that a large capacity capacitor may be used as the power storage device B.
  • the capacity C 1 indicates the capacity between the power line PL and the body ground 70.
  • Capacitance C 2 indicates the capacitance between the ground line SL and the podium 70.
  • the smoothing capacitor C smoothes the voltage fluctuation between the power line P L and the ground line S L.
  • Inverter 10 converts the DC voltage received from power supply line PL into a three-phase AC voltage based on signal PWM1 from ECU 60, and outputs the converted three-phase AC voltage to motor generator MG1.
  • the inverter 10 receives the output from the engine and converts the three-phase AC voltage generated by the motor generator MG 1 into a DC voltage based on the signal from the ECU 60.
  • PWM1 converts the converted DC voltage to the power supply In output to PL.
  • the inverter 10 when the AC output command ACO UT received by the ECU 60 from an external ECU (not shown) is activated, the inverter 10 generates the three-phase coils 2 of the motor generators MG 1 and MG 2 based on the signal PWM 1 from the ECU 60. , 4 The commercial AC voltage is generated between the neutral points N1 and N2.
  • the inverter 10 when the AC input command AC IN received by the ECU 60 from the external ECU is activated, the inverter 10 generates the commercial AC given from the external load 80 to the neutral point N 1 based on the signal PWM1 from the ECU 60. The voltage is rectified and output to the power line PL.
  • Inverter 20 converts a DC voltage received from power supply line PL into a three-phase AC voltage based on signal PWM 2 from ECU 60, and outputs the converted three-phase AC voltage to motor generator MG2. In addition, the inverter 20 outputs the three-phase AC voltage generated by the motor generator MG 2 as a signal from the ECU 60 during regenerative braking of the vehicle. Converts to DC voltage based on PWM 2, and outputs the converted DC voltage to power line PL.
  • the inverter 20 is based on the signal PWM 2 from the ECU 60 and the three phases of the motor generators MG1 and MG2.
  • the potential at neutral point N2 is controlled so that a commercial AC voltage is generated between neutral points Nl and N2 at coils 2 and 4.
  • the inverter 20 is given from the external load 80 to the neutral point N 2 based on the signal PWM 2 from the ECU 60. Rectify the commercial AC voltage and output it to the power line PL.
  • Motor generators MG1 and MG2 are three-phase AC motors, for example, three-phase AC synchronous motor generators.
  • Motor generator MG 1 generates a three-phase AC voltage using the output from the engine, and outputs the generated three-phase AC voltage to inverter 10.
  • Motor generator MG 1 generates driving force by the three-phase AC voltage received from inverter 10 and starts the engine.
  • Motor generator MG 2 generates driving torque of the vehicle by the AC voltage received from inverter 20.
  • Motor generator MG 2 generates a three-phase AC voltage and outputs it to inverter 20 during regenerative braking of the vehicle.
  • the relay circuit 30 connects / disconnects the AC line AC L l, ACL 2 and the connector 40 in accordance with the permission signal EN from the ECU 60. More specifically, when the relay circuit 30 receives an H (logic high) level enable signal EN from the ECU 60, the relays RY1 and RY2 are turned on to electrically connect the AC lines ACL 1 and ACL 2 to the connector 40. To do. On the other hand, when the relay circuit 30 receives the enable signal EN at the level of £ ⁇ 1160 (one logical unit), the relays RY1 and RY2 are turned off and the AC lines ACL1 and ACL2 are electrically connected from the connector 40. Separate.
  • the connector 40 is a terminal for connecting an external load 80 to the neutral points N 1 and N 2.
  • connector 82 of vehicle load 80 is connected to connector 40.
  • the connector 40 applies the H level signal CT to the E Output to CU60.
  • the insulation resistance decrease detector 50 is a device for detecting a decrease in insulation resistance of the power supply device 100. As will be described later, the insulation resistance lowering detector 50 applies a voltage composed of a square wave having a predetermined frequency to the ground line SL, generates a voltage V that decreases in accordance with a decrease in the insulation resistance, and outputs it to the ECU 60. To do. The configuration of the insulation resistance lowering detector 50 will be described later.
  • the ECU 60 generates a signal PWM1 for driving the motor generator MG 1 based on the voltage of the power supply line PL as well as the motor current and torque command value of the motor generator MG 1, and generates the generated signal PWM1. Output to inverter 10.
  • the ECU 60 generates a signal PWM 2 for driving the motor generator MG 2 based on the voltage of the power source line PL and the motor current and torque command of the motor generator MG 2.
  • the signal PWM 2 is output to the inverter 20.
  • the voltage of power supply line PL is detected by a voltage sensor (not shown), and the motor currents of motor generators MG 1 and MG 2 are detected by a current sensor (not shown).
  • the torque command values for motor generators MG 1 and MG 2 are calculated by an external ECU based on the accelerator opening, the brake depression amount, the state of charge of the power storage device, and the like.
  • AC output command AC OUT or the AC input command AC IN when the AC output command AC OUT or the AC input command AC IN is activated when the signal CT is at the H level, the ECU 60 generates the H level enable signal EN and outputs it to the relay circuit 30.
  • AC output command AC OUT is a power supply mode that generates commercial AC voltage between neutral points Nl and N 2 of motor generators MG1 and MG2 and supplies them to vehicle load 80. Activated.
  • AC input command AC IN is activated in the charging mode in which power storage device B is charged using a commercial AC voltage applied from vehicle external load 80 to neutral points Nl and N2.
  • the ECU 60 activates the AC input command AC IN when the signal CT is H level, and outputs the H level enable signal EN to the relay circuit 30 accordingly.
  • N2 rectifies the commercial AC voltage and generates signals PWMl and PWM2 so that battery B is charged, and outputs the generated signals PWM1 and PWM2 to inverters 10 and 20, respectively.
  • the ECU 60 determines whether or not the insulation resistance of the power supply device 100 is lowered based on the peak value of the voltage V from the insulation resistance drop detector 50 by a method described later.
  • the ECU 60 switches the determination threshold for determining the decrease in the insulation resistance depending on whether or not the external load 80 is electrically connected to the power supply device 100.
  • the ECU 60 sets the determination threshold value as Wt h 1 when the external load 80 is not connected to the power supply device 100.
  • the ECU 60 sets the determination threshold value to Wth 2 which is lower than Wth1.
  • ECU 60 determines that the insulation resistance has decreased when external load 80 is not connected to power supply device 100, ECU 60 shifts the vehicle travel mode from the normal mode to the retreat travel mode.
  • the evacuation travel mode is a travel mode in which, for example, the next start of the vehicle system is prohibited.
  • ECU 60 determines that the insulation resistance has decreased when external load 80 is connected to power supply device 100, ECU 60 immediately shuts off the vehicle system including power supply device 100.
  • FIG. 2 shows a zero phase equivalent circuit of inverters 10 and 20 and motor generators MG 1 and MG 2 shown in FIG.
  • inverters 10 and 20 which are three-phase inverters
  • the three transistors in the upper arm can be regarded as the same switching state (all on or off), and the three transistors in the lower arm can be regarded as the same switching state.
  • Imper The three transistors in the upper arm of the inverter 10 are collectively shown as the upper arm 1 OA, and the three transistors in the lower arm of the inverter 1 are collectively shown as the lower arm 10B.
  • the three transistors in the upper arm of inverter 20 are collectively shown as upper arm 2 OA, and the three transistors in the lower arm of inverter 20 are collectively shown as lower arm 2 OB.
  • this zero-phase equivalent circuit is seen as a single-phase PWM inverter that generates a single-phase AC voltage at neutral points N 1 and N 2 using a DC voltage supplied from the power line PL. be able to.
  • This zero-phase equivalent circuit can also be viewed as a single-phase PWM converter that receives single-phase AC commercial power applied to neutral points Nl and N2 via AC lines AC L 1 and ACL 2. Therefore, the zero voltage vector is changed in each of the inverters 10 and 20 and switching control is performed so that the inverters 10 and 20 operate as respective phase arms of the single-phase PWM inverter or the single-phase PWM converter.
  • the DC power from the power line ⁇ PL can be converted to AC power and output from the connector 40. Also, the connector 40 power ⁇
  • the AC power input can be converted to DC power and converted to the power line PL. Can be output.
  • FIG. 3 is a diagram showing a configuration of the insulation resistance lowering detector 50 shown in FIG.
  • insulation resistance lowering detector 50 includes a square wave generator 52, a resistance element RD, a capacitor CD, and a voltage sensor 54.
  • Square wave generator 52 has one end connected to body ground 70 and the other end connected to resistance element RD.
  • the resistor element RD has one end connected to the square wave generator 52 and the other end connected to the capacitor CD.
  • Capacitor CD has one end connected to resistance element RD and the other end connected to ground line SL.
  • the square wave generator 52 generates a voltage composed of a square wave having a low voltage (for example, several V) and a low frequency (for example, several Hz), and outputs the generated voltage to the resistance element RD.
  • the voltage sensor 54 detects the voltage V between the resistance element RD and the capacitor CD, and outputs the detected voltage V to the ECU 60 (not shown).
  • FIG. 4 is a diagram for explaining the principle of insulation resistance detection by the insulation resistance lowering detector 50 shown in FIG.
  • the system 90 to be detected has an external load 80 Corresponds to the power supply 1 '0 0 when not connected to the power supply 1 0 0, and when the external load 8 0 is electrically connected to the power supply 1 0 0, the power supply 1 0 Corresponds to 0 and overall load 80.
  • the resistance component RT of the detected system 90 indicates the insulation resistance of the power supply device 100.
  • the capacity component CT of the system to be detected 90 is composed of the sum of the capacity C 1 and the capacity C 2 shown in Fig. 1 when the external load 80 is not connected to the power supply 10 0 0.
  • Zero wave resistance drop detector 50 A square wave generator 52 generates a voltage composed of a low-voltage and low-frequency square wave, and the generated voltage is received through a resistance element RD and a capacitor CD. Give to detection system 90.
  • the impedance of the system to be detected 90 decreases, so the voltage V between the resistance element R D and the system to be detected 90 decreases. Therefore, a decrease in the image resistance can be detected based on the voltage V.
  • the impedance of the system to be detected 90 varies depending on the capacitance component C T. Specifically, in a state where the external load 80 is electrically connected to the power supply device 100, the capacitance component CT increases by the amount of the capacitors C 3 and C 4 included in the Y capacitor 84. . For this reason, the impedance of the system to be detected 90 when the external load 80 is electrically connected to the power supply device 100 is smaller than that when it is not connected. Therefore, the voltage V when the vehicle external load 80 is electrically connected to the power supply device 100 is smaller than that when the vehicle is not connected even if the insulation resistance (resistance component RT) is the same.
  • the external load 80 when detecting a decrease in insulation resistance based on a voltage V of 50 insulation resistance detectors, the external load 80 is electrically connected to the power supply device 100.
  • the judgment threshold for judging the decrease in insulation resistance based on the voltage V is set to be smaller than when no connection is made. This makes it possible to accurately detect a decrease in the insulation resistance.
  • FIG. 5 is a diagram for explaining the concept of setting a determination threshold value for determining a decrease in insulation resistance based on the voltage V from the insulation resistance decrease detector 50 shown in FIG.
  • the horizontal axis represents the insulation resistance of power supply device 100
  • the vertical axis represents the peak value of voltage V from insulation resistance lowering detector 50 (hereinafter also referred to as “detected peak value”).
  • Curve kl shows the relationship between the insulation resistance and the detected peak value when the external load 80 is not connected to the power supply 10 0
  • the curve k 2 shows that the external load 8 0 is electrically connected to the power supply 1 0 0
  • the detected peak value (curve k 2) when the external load 80 is electrically connected to the power supply device 100 is the effect of the capacitors C 3 and C 4 of the Y capacitor 8 4.
  • the vehicle load 80 is smaller than the detected peak value (curve k 1) when the power supply device 100 is not connected.
  • the threshold for determining the detected peak value when the external load 80 is not connected to the power supply 1 0 0 is based on the curve k 1.
  • W th 1 is set.
  • the threshold for determining the detected peak value when the external load 80 is electrically connected to the power supply device 100 is set to W th 2 corresponding to the insulation resistance R 1. It was decided to set. Thereby, even when the external load 80 is electrically connected to the power supply device 100, it is possible to accurately detect a decrease in insulation resistance.
  • the curve k 2 can be determined based on the capacitors C 3 and C 4 of the Y capacitor 84 with reference to the curve k l. Therefore, the detection threshold value W th 2 of the detected peak value when the external load 80 is electrically connected to the power supply device 100 is based on the capacitors C 3 and C 4 of the Y capacitor 8 4. Can be determined.
  • FIG. 6 is a flowchart regarding the insulation resistance abnormality determination control by the ECU 60 shown in FIG. The processing shown in this flowchart is called from the main routine and executed at regular time intervals or whenever a predetermined condition is satisfied.
  • ECU 60 is based on signal CT from connector 40, It is determined whether or not the connector 82 of the external load 80 is connected to the connector 40 (step S10). If the ECU 60 determines that the signal CT is L level and the connector 82 of the external load 80 is not connected to the connector 40 (NO in step S10), the ECU 60 determines the detected peak value for determining the decrease in insulation resistance. Set judgment threshold to Wt hi (step S20).
  • ECU 60 determines whether or not the detected peak value calculated based on voltage V from insulation resistance lowering detector 50 is lower than determination threshold value Wt h 1 (step S30). If the ECU 60 determines that the detected peak value is lower than the determination threshold value Wt h 1 (YES in step S30), the ECU 60 determines that the insulation resistance has decreased, and evacuates the travel mode from the normal mode. Switch to mode (step S40).
  • step S30 If it is determined in step S30 that the detected peak value is equal to or greater than the determination threshold value Wt h 1 (NO in step S30), the ECU 60 determines that there is no decrease in insulation resistance and travels. A series of processing ends without shifting the mode to the evacuation mode.
  • step S10 determines whether or not the detected peak value is below the determination threshold value Wt h 2 (step S50). If ECU 60 determines that the detected peak value is below the determination threshold value Wt h 2 (YES in step S60), it determines that the insulation resistance has decreased and shuts down the vehicle system (step S70).
  • step S60 determines that the detected peak value is greater than or equal to the determination threshold value Wt h 2 (NO in step S60). ECU 60 determines that there is no decrease in insulation resistance. The series of processes is completed without shutting down the vehicle system.
  • the insulation resistance drop is detected based on the determination threshold value W th 1. Out is done.
  • the determination is made in consideration of the decrease in impedance due to the addition of the capacitors C3 and C4 of the Y capacitor 84. Detection of a decrease in insulation resistance is performed based on a determination threshold value W th 2 lower than the threshold value W th 1. Therefore, according to the first embodiment, it is possible to accurately detect a decrease in insulation resistance.
  • the motor generators MG 1 and MG 2 are electrically connected to the neutral points N 1 and N 2 of the vehicle load 8 0 so that the inverters 1 0 and 2 0 can operate as single-phase PWM inverters or single-phase PWM converters. Since power is transferred between the power supply device 100 and the external load 80 0, a dedicated inverter and converter for transmitting and receiving power between the power supply device 100 and the external load 80 are provided. I don't need it.
  • the power storage device B While the vehicle is running (that is, the state where the external load 80 is not connected to the power supply device 100), the power storage device B is frequently charged and discharged, and accordingly the insulation resistance drop detector 5 0 The voltage V from fluctuates. On the other hand, when power is being transferred between power supply device 100 and vehicle load 80 (that is, vehicle load 80 is connected to power supply device 100), power storage device B The voltage V is stable because it is not charged and discharged as often as it is running.
  • the decrease in insulation resistance is determined when the decrease in the detected peak value continues for a predetermined time.
  • the determination time for determining the decrease in insulation resistance is not connected. Is set shorter.
  • the overall configuration of the power supply device according to the second embodiment is the same as that of the power supply device 100 according to the first embodiment shown in FIG.
  • FIG. 7 is a diagram showing a temporal change in the detected peak value during traveling of the vehicle to which the external load 80 is not connected.
  • power storage device B is frequently charged and discharged according to the traveling state, and the voltage of power storage device B varies accordingly. Since the insulation resistance decrease detector 50 is connected to the ground line SL to which the negative electrode of the power storage device B is connected, the insulation resistance decrease detector is detected according to the voltage fluctuation of the power storage device B.
  • the voltage V from the output 50 also fluctuates, and the detected peak value also fluctuates as shown in FIG. 7, so in this second embodiment, when the external load 80 is not connected to the power supply 100
  • the detected peak value continues below the judgment threshold value Wt h 1 and falls below the judgment time ⁇ 1, it is judged that the insulation resistance has decreased.
  • FIG. 8 is a diagram showing a temporal change in the detected peak value when the external load 80 is electrically connected.
  • power storage device ⁇ when external load 80 is electrically connected, power storage device ⁇ is not charged and discharged as frequently as when traveling, so the voltage of power storage device ⁇ is stable. As a result, the detected peak value is also stable. Therefore, when the external load 80 is electrically connected to the power supply unit 100, the detected peak value is determined by the determination time ⁇ ⁇ 2 shorter than the above determination time ⁇ ⁇ 1 when not connected. If h2 continues to fall below, it is determined that the insulation resistance has decreased. As a result, the time required to detect an abnormality when the external load 80 is electrically connected to the power supply device 100 is reduced.
  • FIG. 9 is a flowchart regarding the insulation resistance abnormality determination control by ECU 60 in the second embodiment. The process shown in this flowchart is
  • this flowchart further includes steps S 2 5 and S 5 5 in the flowchart shown in FIG. 6, and steps S 3 5 and S 6 5 are substituted for steps S 30 and S 60. Further included. That is, in step S 20, when the detection threshold value of the detection wave height for determining the decrease in insulation resistance is set to Wth 1, ECU 60 sets the determination time for determining the decrease in insulation resistance. Set to ⁇ T 1 (step S 25).
  • the ECU 60 determines whether or not the state in which the detected peak value calculated based on the voltage V from the insulation resistance drop detector 50 is lower than the determination threshold value Wt h 1 continues for the determination time ⁇ 1 or more. Determine (Step S 3 5). If the ECU 60 determines that the detected peak value is below the determination threshold value Wt h 1 has continued for the determination time ⁇ 1 or more (YES in step S35), it confirms the decrease in insulation resistance and runs. The mode is changed from the normal mode to the evacuation travel mode (step S40). If it is determined in step S35 that the detected peak value is below the determination threshold value Wt h 1 and has not continued for more than the determination time ⁇ ⁇ 1 (NO in step S35), the ECU 60 determines the insulation resistance. It is determined that there is no decrease in the travel speed, and the series of processes is terminated without shifting the travel mode to the evacuation travel mode.
  • step S50 when the detection threshold value of the detection peak value for determining the decrease in the absolute resistance is set to Wt h 2, the ECU 60 determines the determination time for determining the decrease in the insulation resistance. Is set to ⁇ 2 shorter than ⁇ 1 (step S55). Then, the ECU 60 determines whether or not the state in which the detected peak value is lower than the determination threshold value Wt h 2 continues for the determination time ⁇ 2 or more (step S65). If E CU60 determines that the detected peak value is below the threshold value W th 2 for more than the determination time ⁇ T 2 (YES in step S65), it confirms the decrease in insulation resistance, and the vehicle system (Step S70).
  • step S 65 If it is determined in step S 65 that the detected peak value is below the determination threshold value Wt h 2 and has not continued for more than the determination time ⁇ 2 (NO in step S 65), the ECU 60 It is determined that there is no decrease in resistance, and the series of processes is terminated without shutting down the vehicle system.
  • the detection peak value of the voltage V from the insulation resistance lowering detector 50 is higher than that when the vehicle is not connected.
  • the determination time ⁇ T2 for determining the decrease in insulation resistance is set to be shorter than the determination time ⁇ T1 when not connected. Therefore, according to the first embodiment, when an abnormality in insulation resistance drop occurs when the external load 80 is electrically connected to the power supply device 100, the abnormality can be detected early. .
  • power is transferred between vehicle load 80 and power supply device 100 through neutral points N 1 and N 2 of motor generators MG 1 and MG 2.
  • the present invention can also be applied to a system including a dedicated impeller and a converter for transferring power between the external load 80 and the power supply device 100.
  • the power storage device B is a secondary battery, but instead of the secondary battery. It may be a fuel cell.
  • the power supply device 100 is mounted on a hybrid vehicle. However, the scope of application of the present invention is not limited to the power supply device mounted on a hybrid vehicle, and is applied to an electric vehicle and a fuel cell vehicle. It may be mounted.
  • a boost converter that boosts the DC voltage from power storage device B and supplies the boosted voltage to inverters 10 and 20 may be provided between power storage device B and inverters 10 and 20. ,.
  • inverters 10 and 20, motor generators MG 1 and MG 2 and ECU 60 form the “power converter” in this invention, and insulation resistance lowering detector 50 and ECU 60 are the “detection” in this invention.
  • the vehicle external load 80 and the Y capacitor 84 form the “vehicle external load” in the present invention
  • the process executed by the ECU 60 in step S 70 is the process executed by the “blocking unit” in the present invention.
  • the Y capacitor 84 corresponds to the “line bypass capacitor” in the present invention.
  • the resistance element RD corresponds to the “resistance element” in the present invention
  • the square wave generator 52 corresponds to the “voltage generation device” in the present invention
  • the capacitor CD corresponds to the “capacitance element” in the present invention
  • the voltage sensor 54 corresponds to the “voltage detection device” in the present invention.
  • the processing executed by the ECU 60 in steps S 2 ⁇ and S 50 corresponds to the processing executed by the “setting unit” in the present invention, and steps S 30, S 60, S 3 5 and The processing executed by the ECU 60 in S65 corresponds to the processing executed by the “determination unit” in the present invention.
  • motor generators MG 1 and MG 2 correspond to “first and second AC motors” in the present invention, respectively, and inverters 10 and 20 respectively correspond to “first and second AC motors” in the present invention.
  • the ECU 60 corresponds to the “inverter control device” in the present invention, and the AC line ACL l, ACL 2, the relay circuit 30 and the connector 40 correspond to the inverter j in the present invention. Forms a “connection device”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

 ECU(60)は、絶縁抵抗低下検出器(50)からの電圧(V)に基づいて、電源装置(100)の絶縁抵抗が低下しているか否かを判定する。ECU(60)は、車外負荷(80)が電源装置(100)に接続されていないときは、絶縁抵抗の低下を判定するための判定しきい値を通常の第1の値に設定する。一方、ECU(60)は、車外負荷(80)が電源装置(100)に電気的に接続されているときは、Yコンデンサ(84)のコンデンサ(C3,C4)による容量成分の増加を考慮し、判定しきい値を第1の値よりも低い第2の値に設定する。

Description

明細書 電源装置およびそれを搭載した電動車両ならびに電源装置の制御方法 技術分野
この発明は、 電動車両に搭載される電源装置、 それを搭載した電動車両、 およ び電動車両に搭載される電源装置の制御方法に関する。 背景技術 ■
特開平 1 0— 2 9 0 5 2 9号公報は、 電気自動車 (Electric Vehicle) に搭載 される電源装置を開示する。 この電源装置は、 バッテリと、 バッテリから給電さ れる走行モータや車載補機などの電気回路系と、 バッテリからの直流電圧を商用 ' 交流電圧に変換して商用電源負荷に供給する商用交流電圧発生用インバータ回路 と、 商用交流電圧発生用インバータ回路と商用電源負荷との間に設けられる遮断 スィッチと、 バッテリから漏出する地絡電流を検出して電気回路系の漏電を検出 する漏電検出回路とを備える。
この電源装置においては、 漏電検出回路は、 漏電を検出すると、 走行モータや 車載補機などの電気回路系への給電を遮断することなく、 商用交流電圧発生用ィ ンバータ回路を停止させ、 かつ、 遮断スィッチを動作させることによって商用電 源負荷への給電を遮断する。
ところで、 電源装置に商用電源負荷が電気的に接続された場合と接続されてい ない場合とでは、 商用電源負荷の容量成分の影響によりィンピーダンスが変化す る。 しかしながら、 上記の特開平 1 0— 2 9 0 5 2 9号公報では、 そのような商 用電源負荷の容量成分の影響によるインピーダンスの変化については考慮されて いないので、 電源装置の絶縁抵抗の低下を正確に検出することはできない。 発明の開示
そこで、 この発明は、 力かる課題を解決するためになされたものであり、 その 目的は、 絶縁抵抗の低下を正確に検出可能な電源装置を提供することである。 また、 この発明の別の目的は、 絶縁抵抗の低下を正確に'検出可能な電源装置を 搭載した電動車両を提供することである。
また、 この発明の別の目的は、 絶縁抵抗の低下を正確に検出可能な電源装置の 制御方法を提供することである。
この発明によれば、 電源装置は、 電動車両に搭載される。 電源装置は、 蓄電装 置と、 電力変換装置と、 検出装置とを備える。 電力変換装置は、 蓄電装置から車 両外部の負荷への給電および負荷から蓄電装置の充電の少なくとも一方を実行可 能なように構成される。 検出装置は、 当該電源装置の絶縁抵抗の低下を検出する。 そして、 検出装置は、 負荷が電力変換装置に接続されているとき、 絶縁抵抗の低 下を検出するための判定しきい値を非接続時よりも低く設定する。
好ましくは、 負荷が電力変換装置に接続されているときの判定しきい値は、 負 荷の容量に基づいて決定される。
好ましくは、 検出装置は、 負荷が電力変換装置に接続されているとき、 絶縁抵 抗の低下を確定するための判定時間を非接続時よりも短く設定する。
好ましくは、 電源装置は、 遮断部をさらに備える。 遮断部は、 負荷が電力変換 装置に接続されているときに絶縁抵抗の低下が検出されると、 電動車两のシステ ムを遮断する。
好ましくは、 負荷は、 ラインバイパスコンデンサを含む。 ラインバイパスコン デンサは、 電力変換装置に接続される電力線対とアースとの間に接続される。 好ましくは、 検出装置は、 抵抗素子と、 電圧発生装置と、 容量素子と、 電圧検 出装置と、 設定部と、 判定部とを含む。 抵抗素子は、 所定の抵抗値を有する。 電 圧発生装置は、 抵抗素子と車両アースとの間に接続され、 所定の周波数を有する 電圧を発生する。 容量素子は、 抵抗素子と当該電源装置の電力線との間に接続さ れる。 電圧検出装置は、 抵抗素子と容量素子との間の電圧を検出する。 設定部は、 判定しきい値を設定する。 判定部は、 電圧検出装置によって検出された電圧およ び設定部によつて設定された判定しきい値に基づいて、 絶縁抵抗の低下を判定す る。
好ましくは、 電力変換装置は、 第 1および第 2の交流電動機と、 第 1および第 2のインバータと、 インバータ制御装置と、 接続装置とを含む。 第 1および第 2 の交流電動機の各々は、 星形結線された多相卷線を固定子卷線として含む。 第 1 および第 2のィンバータは、 第 1および第 2の交流電動機にそれぞれ対応して設 けられ、 蓄電装置と電力を授受する。 インバータ制御装置は、 第 1および第 2の インバータを制御する。 接続装置は、 蓄電装置から負荷への給電および負荷から 蓄電装置の充電のいずれかが行なわれるときに負荷を多相卷線の中性点に接続す るために設けられる。
また、 この発明によれば、 電動車両は、 上述したいずれかの電源装置を搭載す る。
また、 この発明によれば、 電源装置の制御方法は、 電動車両に搭載される電源 装置の制御方法である。 電源装置は、 蓄電装置と、 電力変換装置と、 検出装置と を備える。 電力変換装置は、 蓄電装置から車両外部の負荷への給電および負荷か ら蓄電装置の充電の少なくとも一方を実行可能なように構成される。 検出装置は、 · 当該電源装置の絶縁抵抗の低下を検出する。 そして、 電源装置の制御方法は、 第 1および第 2のステップを含む。 第 1のステップでは、 負荷が電力変换装置に接 続されているか否かを判定する。 第 2のステップでは、 負荷が電力変換装置に接 続されていると判定されると、 絶縁抵抗の低下を検出するための判定しきい値を 非接続時よりも低く設定する。
好ましくは、 負荷が電力変換装置に接続されているときの判定しきい値は、 負 荷の容量に基づいて決定される。
好ましくは、 電源装置の制御方法は、 第 3のステップをさらに含む。 第 3のス テツプでは、 負荷が電力変換装置に接続されていると判定されると、 絶縁抵抗の 低下を確定するための判定時間を非接続時よりも短く設定する。
好ましくは、 電源装置の制御方法は、 第 4のステップをさらに含む。 第 4のス テップでは、 負荷が電力変換装置に接続されているときに検出装置により絶縁抵 抗の低下が検出されると、 電動車両のシステムを遮断する。
この発明においては、 車両外部の負荷が電力変換装置に接続されていないとき は、 通常の判定しきい値に基づいて絶縁抵抗の低下が検出される。 一方、 負荷が 電力変換装置に接続されているときは、 負荷の容量成分が付加されることによる インピーダンスの低下を考慮し、 判定しきい値を非接続時よりも低く設定して絶 緣抵抗の低下を検出する。 .
したがって、 この発明によれば、 絶縁抵抗の低下を正確に検出することができ る。
また、 この発明においては、 負荷が電力変換装置に接続されているとき、 絶縁 抵抗の低下を確定するための判定時間が非接続時よりも短く設定される。
したがって、 この発明によれば、 負荷が電力変換装置に接続されているときに 絶縁抵抗低下の異常が発生した場合、 その異常を早期に検出することができる。 図面の簡単な説明 ,
図 1は、 この発明の実施の形態 1による電源、装置の全体ブロック図である。 図 2は、 図 1に示すインバータおよびモータジェネレータのゼロ相等価回路を 示した図である。
図 3は、 図 1に示す絶縁抵抗低下検出器の構成を示した図である。
図 4は、 図 3'に示す絶縁抵抗低下検出器による絶縁抵抗の検出原理を説明する ための図である。
図 5は.、 図 3に示す絶縁抵抗低下検出器からの電圧に基づいて絶縁抵抗の低下 を判定するための判定しきレ、値の設定の考え方を説明するための図である。 図 6は、 図 1に示す E C Uによる絶縁抵抗の異常判定制御に関するフ口一チヤ ートである。
図 7は、 車外負荷が接続されていない車両走行中における検出波高値の時間的 変化を示した図である。
図 8は、 車外負荷が電気的に接続されている場合における検出波高値の時間的 変化を示した図である。
図 9は、 この実施の形態 2における E C Uによる絶縁抵抗の異常判定制御に関 するフローチャートである。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を参照しながら詳細に説明する。 な お、 図中同一または相当部分には同一符号を付してその説明は繰返さない。 〔実施の形態 1] - 図 1は、 この発明の実施の形態 1による電源装置の全体ブロック図である。 図 1を参照して、 この電源装置 10 Oは、 蓄電装置 Bと、 平滑コンデンサ Cと、 ィ ンバータ 10, 20と、 モータジェネレータ MG 1, MG2と、 電源ライン PL と、 接地ライン S Lとを備える。 また、 電源装置 100は、 ACライン ACL 1, ACL2と、 リレー回路 30と、 コネクタ 40と、 絶縁抵抗低下検出器 50と、 電子制御装置 (Electronic Control Unit、 以下 「ECU」 とも称する。 ) 60 とを備える。
この電源装置 10,0は、 ハイブリッド自動車 (Hybrid Vehicle) に搭載される。 そして、 モータジェネレータ MG 1は、 エンジン (図示せず、 以下同じ。 ) の始 動を行ない得る電動機として動作し、 かつ、 エンジンによって駆動される発電機 として動作するものとしてハイプリッド自動車に組込まれる。 また、 モータジェ ネレータ MG 2は、 ハイブリッド自動車の駆動輪 (図示せず、 以下同じ。 ) を駆 動する電動機としてハイプリッド自動車に組込まれる。
なお、 電源装置 100が搭載されるハイプリッド自動車としては、 動力分割機 構により.エンジンの動力を車軸とモータジェネレータ MG 1とに分割して伝達可 能なシリーズ/パラレル型のものであってもよいし、 モータジェネレータ MG 1 を駆動するためにのみエンジンを用い、 モータジェネレータ MG 1により発電さ れた電力を使うモータジェネレータ M G 2でのみ車軸の駆動力を発生するシリー ズ型のものであってもよい。
蓄電装置 Bの正極は、 電源ライン P.Lに接続される。 蓄電装置 Bの負極は、 接 地ライン S Lに接続される。 平滑コンデンサ Cは、 電源ライン PLと接地ライン S Lとの間に接続される。 絶縁抵抗低下検出器 50は、 接地ライン S Lと車両の ボディアース 70との間に接続される。
インバータ 10は、 U相アーム 12、 V相アーム 14および W相アーム 16を 含む。 U相アーム 12、 V相アーム 14および W相アーム 16は、 電源ライン P Lと接地ライン SLとの間に並列に接続される。 U相アーム 12は、 直列に接続 されたパワートランジスタ Q 1 1, Q 12力 ら成り、 V相アーム 14は、 直列に 接続されたパワートランジスタ Q 13, Q14力 ら成り、 W相アーム 16は、 直 列に接続されたパワートランジスタ Q 15, Q 16力、ら成る。 パワートランジス タ Q 11〜Q16のコレクターエミッタ間には、 ェミッタ側からコレクタ側へ電 流を流すダイォード D 1 1〜D 16がそれぞれ接続される。
インバータ 20は、 U相ァ ム 22、 V相アーム 24および W相ァ ム 26を 含む。 U相ア^"ム 22、 V相アーム 24および W相アーム 26は、 電源ライン P Lと接地ライン S Lとの間に並列に接続される。 U相アーム 22は、 直列に接続 されたパヮ トランジスタ Q 21, 022カ:>ら成り、 V相アーム 24は、 直列に 接続されたパワートランジスタ Q 23, Q 24力 ら成り、 W相アーム 26は、 直 列に接続されたパヮ,一トランジスタ Q 25, Q 26から成る。 パワートランジス タ Q21〜Q 26のコレクタ一ェミッタ間には、 エミッタ側からコレクタ側へ電 流を流すダイォード D 21〜D 26がそれぞれ接続される。
モータジェネレータ MG 1は、 Y結線された 3相コイル 2をステータコイルと して含む。 3相コイル 2を形成する U, V, W相コイルの一端は、 互いに接続さ れて中性点 N 1を形成し、 その U, V, W相コイルの他端は、 インバータ 10の 対応するア^ "ムに接続される。 モータジェネレータ MG 2は、 Y結線された 3相 コイル 4.をステータコィノレとして含む。 3相コイル 4を形成する U, V, W相コ ィルの一端は、 互いに接続されて中性点 N 2を形成し、 その U, V, W相コイル の他端は、 インバータ 20の対応するアームに接続される。
リ レー回路 30は、 リ レー RY1, RY2を含む。 リ レー RY1の一端は、 A Cライン AC L 1を介してモータジエネレータ MG 1の 3相コイル 2の中性点 N 1に接続され、 その他端は、 コネクタ.40に接続される。 リ レー RY 2の一端は、 ACライン AC L 2を介してモータジェネレータ MG 2の 3相コイル 4の中性点 N 2に接続され、 その他端は、 コネクタ 40に接続される。
そして、 この電源装置 100と車外負荷 80との間で電力の授受が行なわれる とき、 車外負荷 80のコネクタ 82がコネクタ 40に接続される。 車外負荷 80 は、 たとえば住宅の商用電源負荷であって、 電源ライン EL 1, EL 2を介して コネクタ 82と接続される。
電源ライン EL 1, EL 2には、 Yコンデンサ 84が接続されている。 Yコン デンサ 84は、 コンデンサ C 3, C4を含む。 コンデンサ C 3は、 電源ライン E L 1とアース 86との間に接続される。 コンデンサ C 4は、 電源ライン EL 2と アース 86との間に接続される。 この Yコンデンサ 84は、 電源ライン EL 1, EL 2上のコモンモードノイズを除去するフィルタとして設けられている。 蓄電装置 Bは、 直流電源であり、 たとえば、 エッケル水素やリチウムイオン等 の二次電池から成る。 蓄電装置 Bは、 直流電圧を発生して電源ライン PLへ出力 する。 また、 蓄電装置 Bは、 インバータ 10, 20の少なくとも一方から出力さ れる直流電圧によって充電される。 なお、 蓄電装置 Bとして、 大容量のキャパシ タを用いてもよい。
容量 C 1は、 電源ライン PLとボディアース 70との間の容量を示す。 容量 C 2は、 接地ライン SLとポディアース 70との間の容量を示す。 平滑コンデンサ Cは、 電源ライン P Lと接地ライン S Lとの間の電圧変動を平滑化する。
インバータ 10は、 ECU60からの信号 PWM1に基づいて、 電源ライン P Lから受ける直流電圧を 3相交流電圧に変換し、 その変換した 3相交流電圧をモ ータジェネレータ MG 1へ出力する。 また、 インバータ 10は、 エンジンからの 出力を受けてモータジェネレータ MG 1が発電した 3相交流電圧を ECU 60か らの信号. PWM1に基づいて直流電圧に変換し、 その変換した直流電圧を電源ラ イン PLへ出力する。
ここで、 図示されない外部 ECUから ECU60が受ける AC出力指令 ACO UTが活性化されているとき、 インバータ 10は、 ECU60からの信号 PWM 1に基づいて、 モータジェネレータ MG 1, MG 2の 3相コイル 2, 4の中性点 N 1, N2間に商用交流電圧を発生さ ·¾:るように中性点 N 1の電位を制御する。 また、 外部 ECUから ECU 60が受ける AC入力指令 AC I Nが活性化され ているとき、 インバータ 10は、 ECU60からの信号 PWM1に基づいて、 車 外負荷 80から中性点 N 1に与えられる商用交流電圧を整流して電源ライン P L へ出力する。
インバータ 20は、 ECU 60からの信号 PWM 2に基づいて、 電源ライン P Lから受ける直流電圧を 3相交流電圧に変換し、 その変換した 3相交流電圧をモ ータジェネレータ MG 2へ出力する。 また、 インバータ 20は、 車両の回生制動 時、 モータジェネレータ MG 2が発電した 3相交流電圧を ECU 60からの信号 PWM 2に基づいて直流電圧に変換し、 その変換した直流電圧を電源ライン P L へ出力する。
ここで、 外部 ECUから ECU 60が受ける AC出力指令 AC OUTが活性化 されているとき、 インバ^ "タ 20は、 ECU 60からの信号 PWM 2に基づいて、 モータジェネレータ MG1, MG 2の 3相コイル 2, 4の中性点 Nl, N2間に 商用交流電圧を発生させるように中性点 N 2の電位を制御する。
また、 外部 ECUから ECU 60が受ける AC入力指令 AC I Nが活性化され ているとき、 インバータ 20は、 ECU 60からの信号 PWM 2に基づいて、 車 外負荷 80から中性点 N 2に与えられる商用交流電圧を整流して電源ライン P L へ出力する。
モータジェネレータ MG 1, MG2は、 3相交流電動機であり、 たとえば 3相 交流同期電動発電機からなる。 モータジェネレータ MG 1は、 エンジンからの出' 力を用いて 3相交流電圧を発生し、 その発生した 3相交流電圧をインバータ 10 へ出力する。 また、 モータジェネレータ MG 1は、 インバータ 10から受ける 3 相交流電圧によって駆動力を発生し、 エンジンの始動を行なう。 モータジエネレ ータ MG 2は、 インバータ 20から受ける交流電圧によって車両の駆動トルクを 発生する。 また、 モータジェネレータ MG 2は、 車両の回生制動時、 3相交流電 圧を発生してインバータ 20へ出力する。
リレー回路 30は、 ECU60からの許可信号 ENに応じて、 ACライン AC L l, ACL 2とコネクタ 40との接続/切離しを行なう。 具体的には、 リレー 回路 30は、 ECU60からH (論理ハイ) レベルの許可信号 ENを受けると、 リレー RY1, RY2がオンされて ACライン ACL 1, ACL 2をコネクタ 4 0と電気的に接続する。 一方、 リ レー回路 30は、 £〇1160からし (論理口 一) レベルの許可信号 ENを受けると、 リレー RY1, RY 2がオフされて AC ライン ACL 1, ACL 2をコネクタ 40から電気的に切離す。
コネクタ 40は、 車外負荷 80を中性点 N 1 , N 2に接続するための端子であ る。 電源装置 100と車外負荷 80との間で電力の授受が行なわれるとき、 車外 負荷 80のコネクタ 82がコネクタ 40に接続される。 そして、 コネクタ 82が コネクタ 40に接続されているとき、 コネクタ 40は、 Hレベルの信号 CTを E CU60へ出力する。 '
絶縁抵抗低下検出器 50は、 この電源装置 100の絶縁抵抗の低下を検出する ための機器である。 絶縁抵抗低下検出器 50は、 後述のように、 所定の周波数を 有する方形波から成る電圧を接地ライン S Lに印加し、 絶縁抵抗の低下に応じて 低下する電圧 Vを生成して ECU 60へ出力する。 なお、 絶縁抵抗低下検出器 5 0の構成については、 後ほど説明する。
ECU60は、 電源ライン P Lの電圧ならぴにモータジェネレータ MG 1のモ ータ電流およびトルク指令値に基づいて、 モータジェネレータ MG 1を駆動する ための信号 PWM1,を生成し、 その生成した信号 PWM1をインバータ 10へ出 力する。 また、 ECU 60は、 電?原ライン P Lの電圧ならびにモータジエネレー タ MG 2のモータ電流おょぴトルク指令ィ直に基づいて、 モータジェネレータ MG 2を駆動するための信号 PWM 2を生成し、 その生成した信号 PWM 2をインバ ータ 20へ出力する。
なお、 電源ライン PLの電圧は、 図示されない電圧センサによって検出され、 モータジェネレータ MG 1, MG 2のモータ電流は、 図示されない電流センサに よって検出される。 また、 モータジェネレータ MG 1, MG 2のトルク指令値は、 アクセル開度やブレーキ踏込量、 蓄電装置の充電状態などに基づいて、 外部 EC Uにより算出される。
さらに、 ECU 60は、 信号 CTが Hレベルのときに AC出力指令 AC OUT または AC入力指令 AC I Nが活¾!化されると、 Hレベルの許可信号 ENを生成 してリレー回路 30へ出力する。 ここで、 AC出力指令 AC OUTは、 モータジ エネレータ MG1, MG 2の 3相コイル 2, 4の中性点 Nl, N 2間に商用交流 電圧を発生して車外負荷 80へ供給する給電モードのときに活性化される。 また、 AC入力指令 AC I Nは、 車外負荷 80から中性点 Nl , N 2間に与えられる商 用交流電圧を用いて蓄電装置 Bの充電を行なう充電モードのときに活性化される。 そして、 ECU 60は、 信号 CTが Hレベルのときに AC出力指令 AC OUT が活性化され、 それに応じて Hレベルの許可信号 ENをリレー回路 30へ出力す ると、 中性点 Nl, N 2間に商用交流電圧が発生するように信号 PWM1, PW M 2を生成し、 その生成した信号 PWM1, PWM2をそれぞれインバータ 10, 20へ出力する。 '
また、 ECU 60は、 信号 CTが Hレベルのときに AC入力指令 AC I Nが活 性化され、 それに応じて Hレベルの許可信号 ENをリレー回路 30へ出力すると 車外負荷 80から中性点 N 1, N 2間に与えられる商用交流電圧を整流して蓄電 装置 Bの充電が行なわれるように信号 PWMl, PWM2を生成し、 その生成し た信号 PWM1, PWM2をそれぞれインバータ 10, 20へ出力する。
また、 さらに、 ECU60は、 後述の方法により、 絶縁抵抗低下検出器 50か らの電圧 Vの波高値に基づいて、 電源装置 100の絶縁抵抗が低下しているか否 かを判定する。 ここで、 ECU60は、 車外負荷 80が電源装置 100に電気的 に接続されているか否かに応じて、 絶縁抵抗の低下を判定するための判定しきい 値を切替える。 具体的には、 ECU60は、 車外負荷 80が電源装置 100に接 続されていないときは、 判定しきい値を Wt h 1とする。 一方、 ECU 60は、 車外負荷 80が電源装置 100に電気的に接続されているときは、 判定しきい値 を Wt h 1よりも低い Wt h 2とする。
また、 さらに、 ECU60は、 車外負荷 80が電源装置 100に接続されてい ないときに絶縁抵抗が低下していると判定すると、 車両の走行モードを通常モー ドから退避走行モードに移行する。 なお、 退避走行モードとは、 たとえば、 次回 の車両システムの起動を禁止するような走行モードである。
また、 さらに、 ECU 60は、 車外負荷 80が電源装置 100に接続されてい るときに絶縁抵抗が低下していると判定すると、 電源装置 100を含む車両シス テムを直ちに遮断する。
図 2は、 図 1に示したインバータ 10, 20およびモータジェネレータ MG 1 MG 2のゼロ相等価回路を示す。 3相インバータであるインバータ 10, 20の 各々においては、 6個のトランジスタのオン/オフの組合わせは 8パターン存在 する。 その 8つのスイッチングパターンのうち 2つは相間電圧がゼロとなり、 そ のような電圧状態はゼロ電圧べク トルと称される。 ゼロ電圧べクトルについては, 上アームの 3つのトランジスタは互いに同じスィツチング状態 (全てオンまたは オフ) どみなすことができ、 また、 下アームの 3つのトランジスタも互いに同じ スイッチング状態とみなすことができる。 したがって、 この図 2では、 インパー タ 10の上アームの 3つのトランジスタは上アーム 1 OAとしてまとめて示され、 インバータ 1◦の下アームの 3つのトランジスタは下アーム 10Bとしてまとめ て示されている。 同様に、 インバ^ "タ 20の上アームの 3つのトランジスタは上 アーム 2 OAとしてまとめて示され、 インバータ 20の下アームの 3つのトラン ジスタは下アーム 2 OBとしてまとめて示されている。
図 2に示されるように、 このゼロ相等価回路は、 電源ライン PLから供給され る直流電圧を用いて中性点 N 1 , N 2に単相交流電圧を生じさせる単相 PWMィ ンバータとみることができる。 また、 このゼロ相等価回路は、 ACライン AC L 1, ACL 2を介して中性点 Nl, N 2に与えられる単相交流の商用電力を入力 とする単相 PWMコンバータとみることもできる。 そこで、 インバータ 10, 2 0の各々においてゼロ電圧ベクトルを変化させ、 インバータ 10, 20を単相 P WMィンバータまたは単相 P WMコンバータの各相アームとしてそれぞれ動作す . るようにスィツチング制御することによって、 電¾^ライン P Lからの直流電力を 交流電力に変換してコネクタ 40から出力することができ、 また、 コネクタ 40 力 ^入力される交流の商用電力を直流電力に変換して電源ライン PLへ出力する ことができる。
図 3は、 図 1に示した絶縁抵抗低下検出器 50の構成を示した図である。 図 3 を参照して、 絶縁抵抗低下検出器 50は、 方形波発生器 52と、 抵抗素子 RDと、 コンデンサ CDと、 電圧センサ 54とを含む。
方形波発生器 52は、 ボディアース 70に一端が接続され、 抵抗素子 RDに他 端が接続される。 抵抗素子 RDは、 方形波発生器 52に一端が接続され、 コンデ ンサ CDに他端が接続される。 コンデンサ CDは、 抵抗素子 RDに一端が接続さ れ、 接地ライン S Lに他端が接続される。
方形波発生器 52は、 低電圧 (たとえば数 V) かつ低周波 (たとえば数 Hz) の方形波からなる電圧を発生し、 その宪生した電圧を抵抗素子 RDへ出力する。 電圧センサ 54は、 抵抗素子 RDとコンデンサ CDとの間の電圧 Vを検出し、 そ の検出した電圧 Vを図示されない ECU 60へ出力する。
図 4は、 図 3に示した絶縁抵抗低下検出器 50による絶縁抵抗の検出原理を説 明するための図である。 図 4を参照して、 被検出システム 90は、 車外負荷 80 が電源装置 1 0 0に接続されていないときは、 電源装置 1' 0 0に対応し、 車外負 荷 8 0が電源装置 1 0 0に電気的に接続されているときは、 電源装置 1 0 0およ ぴ車外負荷 8 0全体に対応する。
すなわち、 被検出システム 9 0の抵抗成分 R Tは、 電源装置 1 0 0の絶縁抵抗 を示す。 被検出システム 9 0の容量成分 C Tは、 車外負荷 8 0が電源装置 1 0 0 に接続されていないときは、 図 1に示した容量 C 1と容量 C 2との和からなり、 車外負荷 8 0が電源装置 1 0 0に電気的に接続されているときは、 容量 C I , C 2と Yコンデンサ 8 4に含まれるコンデンサ C 3, C 4の容量との和からなる。 絶糸彖抵抗低下検出器 5 0の方形波発生器 5 2は、 低電圧かつ低周波の方形波か らなる電圧を S生し、 その発生した電圧を抵抗素子 R Dおよびコンデンサ C Dを 介して被検出システム 9 0に与える。 ここで、 絶縁抵抗を示す抵抗成分 R Tが低 下すると、 被検出システム 9 0のインピーダンスが低下するので、 抵抗素子 R D と被検出システム 9 0との間の電圧 Vは低下する。 したがって、 この電圧 Vに基 づいて絶像抵抗の低下を検出することができる。
しかしながら、 被検出システム 9 0のインピーダンスは、 容量成分 C Tによつ て変化する。 具体的には、 車外負荷 8 0が電源装置 1 0 0に電気的に接続されて いる状態においては、 Yコンデンサ 8 4に含まれるコンデンサ C 3 , C 4の容量 分だけ容量成分 C Tが増加する。 このため、 車外負荷 8 0が電源装置 1 0 0に電 気的に接続されているときの被検出システム 9 0のインピーダンスは、 非接続時 に比べて小さい。 したがって、 車外負荷 8 0が電源装置 1 0 0に電気的に接続さ れているときの電圧 Vは、 絶縁抵抗 (抵抗成分 R T) が同じであっても、 非接続 時よりも小さくなる。
そこで、 この実施の形態 1では、 絶縁抵抗低下検出器 5 0カゝらの電圧 Vに基づ いて絶縁抵抗の低下を検出するに際し、 車外負荷 8 0が電源装置 1 0 0に電気的 に接続されているときは、 電圧 Vに基づいて絶縁抵抗の低下を判定するための判 定しきい値を非接続時よりも小さくすることとしたものである。 これにより、 絶 緣抵抗の低下を正確に検出することが可能となる。
図 5は、 図 3に示した絶縁抵抗低下検出器 5 0からの電圧 Vに基づいて絶縁抵 抗の低下を判定するための判定しきい値の設定の考え方を説明するための図であ る。 図 5を参照して、 横軸は、 電源装置 1 0 0の絶縁抵抗を示し、 縦軸は、 絶縁 抵抗低下検出器 5 0からの電圧 Vの波高値 (以下 「検出波高値」 とも称する。 ) を示す。 曲線 k lは、 車外負荷 8 0が電源装置 1 0 0に接続されていないときの 絶縁抵抗と検出波高値との関係を示し、 曲線 k 2は、 車外負荷 8 0が電源装置 1 0 0に電気的に接続されているときの絶縁抵抗と検出波高値との関係を示す。 上 述のように、 車外負荷 8 0が電源装置 1 0 0に電気的に接続されているときの検 出波高値 (曲線 k 2 ) は、 Yコンデンサ 8 4のコンデンサ C 3, C 4の影響によ り、 車外負荷 8 0が電源装置 1 0 0に接続されていないときの検出波高値 (曲線 k 1 ) よりも小さい。
'絶縁抵抗が R 1を下回った場合に異常検出をしたい場合、 車外負荷 8 0が電源 装置 1 0 0に接続されていないときの検出波高値の判定しきい値は、 曲線 k 1に 基づいて W t h 1に設定される。
し力 しながら、 車外負荷 8 0が電源装置 1 0 0に電気的に接続されているとき に仮にこの判定しきい値 W t h 1を用いると、 曲線 k 2に基づいて、 絶縁抵抗が R 1よりも高い R 2を下回った場合に異常検出されることとなり、 過剰に異常検 出されてしまう。
そこで、 車外負荷 8 0が電源装置 1 0 0に電気的に接続されているときの検出 波高値の判定しきい値を、 曲線 k 2に基づいて、 絶縁抵抗 R 1に対応する W t h 2に設定することとしたものである。 これにより、 車外負荷 8 0が電源装置 1 0 0に電気的に接続されているときにおいても、 絶縁抵抗の低下を正確に検出でき る。
なお、 曲線 k 2は、 曲線 k lを基準にして、 Yコンデンサ 8 4のコンデンサ C 3, C 4に基づいて決定できる。 したがって、 車外負荷 8 0が電源装置 1 0 0に 電気的に接続されているときの検出波高値の判定しきい値 W t h 2は、 Yコンデ ンサ 8 4のコンデンサ C 3, C 4に基づいて決定できる。
図 6は、 図 1に示した E C U 6 0による絶縁抵抗の異常判定制御に関するフロ 一チャートである。 なお、 このフローチャートに示される処理は、 一定時間ごと または所定の条件が成立するごとにメインル一チンから呼出されて実行される。 図 6を参照して、 E C U 6 0は、 コネクタ 4 0からの信号 C Tに基づいて、 車 外負荷 80のコネクタ 82がコネクタ 40に接続されて'レ、るか否かを判定する (ステップ S 10) 。 ECU60は、 信号 CTが Lレベルであり、 車外負荷 80 のコネクタ 82がコネクタ 40に接続されていないと判定すると (ステップ S 1 0において NO) 、 絶縁抵抗の低下を判定するための検出波高値の判定しきい値 を Wt h iに設定する (ステップ S 20) 。
そして、 ECU60は、 絶縁抵抗低下検出器 50からの電圧 Vに基づいて算出 される検出波高値が判定しきい値 Wt h 1を下回っているか否かを判定する (ス テツプ S 30) 。 ECU 60は、 検出波高値が判定しきい値 Wt h 1を下回って いると判定すると , (ステップ S 30において YES) 、 絶縁抵抗が低下している と判断し、 走行モードを通常モードから退避走行モードに移行する (ステップ S 40) 。
ステップ S 30において、 検出波高値が判定しきい値 Wt h 1以上であると判 定されると (ステップ S 30において NO) 、 ECU 60は、 絶縁抵抗の低下は みられないと判断し、 走行モードを退避走行モードに移行することなく一連の処 理を終了する。
一方、 'ステップ S 10において、 信号 CTが Hレベルであり、 車外負荷 80の コネクタ 82がコネクタ 40に接続されていると^定されると (ステップ S 10 において YES) 、 ECU 60は、 絶縁抵抗の低下を判定するための検出波高値 の判定しきい値を Wt h 1よりも低い Wt h 2に設定する (ステップ S 50) 。 そして、 ECU 60は、 検出波高値が判定しきい値 Wt h 2を下回っているか 否かを判定する (ステップ S 60) 。 ECU60は、 検出波高値が判定しきい値 Wt h 2を下回っていると判定すると (ステップ S 60において YE S) 、 絶縁 抵抗が低下していると判断し、 車両システムを遮断する (ステップ S 70) 。 一方、 ステップ S 60において、 検出波高値が判定しきい値 Wt h 2以上であ ると判定されると (ステップ S 60において NO) 、 ECU 60は、 絶縁抵抗の 低下はみられないと判断し、 車両システムを遮断することなく一連の処理を終了 する。
以上のように、 この実施の形態 1においては、 車外負荷 80が電源装置 100 に接続されていないときは、 判定しきい値 W t h 1に基づいて絶縁抵抗低下の検 出が行なわれる。 一方、 車外負荷 8 0が電源装置 1 0 0に電気的に接続されてい るときは、 Yコンデンサ 8 4のコンデンサ C 3 , C 4が付加されることによるィ ンピーダンスの低下を考慮し、 判定しきい値 W t h 1よりも低い判定しきい値 W t h 2に基づいて絶縁抵抗低下の検出が行なわれる。 したがって、 この実施の形 態 1によれば、 絶縁抵抗の低下を正確に検出することができる。
また、 モータジェネレータ MG 1, MG 2の中性点N 1, N 2に車外負荷 8 0 が電気的に接続され、 インバータ 1 0, 2 0を単相 PWMインバータまたは単相 PWMコンバータとして動作させることによって電源装置 1 0 0と車外負荷 8 0 との間で電力の授受が行なわれるので、 電源装置 1 0 0と車外負荷 8 0との間で 電力の授受を行なうための専用のインバータおよびコンバータを要しない。
[実施の形態 2 ]
車両の走行中 (すなわち、 車外負荷 8 0は電源装置 1 0 0に接続されていない' 状態) は、 蓄電装置 Bの充放電が頻繁に行なわれ、 それに伴なつて絶縁抵抗低下 検出器 5 0からの電圧 Vが変動する。 一方、 電源装置 1 0 0と車外負荷 8 0との 間で電力の授受が行なわれているとき (すなわち、 車外負荷 8 0は電源装置 1 0 0に接続されている状態) は、 蓄電装置 Bの充放電が走行中のように頻繁に行な われるということはないので、 電圧 Vは安定している。
そこで、 この実施の形態 2では、 電圧 Vの変動による誤検出を防止するため、 検出波高値の低下が所定時間継続した場合に絶縁抵抗の低下を確定する。 そして、 さらに、 車外負荷 8 0が電源装置 1 0 0に電気的に接続されているときは、 検出 波高値が安定しているので、 絶縁抵抗の低下を確定するための判定時間が非接続 時よりも短く設定される。
この実施の形態 2による電源装置の全体構成は、 図 1に示した実施の形態 1に よる電源装置 1 0 0と同じである。
図 7は、 車外負荷 8 0が接続されていない車両走行中における検出波高値の時 間的変化を示した図である。 図 7を参照して、 車両走行中は、 走行状態に応じて 蓄電装置 Bの充放電が頻繁に行なわれ、 それに応じて蓄電装置 Bの電圧が変動す る。 そして、 絶縁抵抗低下検出器 5 0は、 蓄電装置 Bの負極が接続される接地ラ イン S Lに接続されているので、 蓄電装置 Bの電圧変動に応じて絶縁抵抗低下検 出器 50からの電圧 Vも変動し、 図 7に示されるように、 検出波高値も変動する, そこで、 この実施の形態 2では、 車外負荷 80が電源装置 1 00に接続されて いないときは、 検出波高値が判定しきい値 Wt h 1を継続して判定時間 ΔΤ 1下 回つた場合、 絶縁抵抗が低下しているものと判定される。
図 8は、 車外負荷 80が電気的に接続されている場合における検出波高値の時 間的変化を示した図である。 図 8を参照して、 車外負荷 80が電気的に接続され ているときは、 走行中のように蓄電装置 Βの充放電が頻繁に行なわれることはな いので、 蓄電装置 Βの電圧は安定し、 その結果、 検出波高値も安定している。 そこで、 車外負荷 80が電源装置 1 00に電気的に接続されているときは、 非 接続時の上記判定時間 Δ Τ 1よりも短い判定時間 Δ Τ 2だけ検出波高値が判定し きいィ直 Wt h 2を継続して下回った場合、 絶縁抵抗が低下しているものと判定さ れる。 これにより、 車外負荷 80が電源装置 100に電気的に接続されていると きに異常検出に要する時間が短縮される。
図 9は、 この実施の形態 2における E C U 60による絶縁抵抗の異常判定制御 に関するフローチャートである。 なお、 このフローチャートに示される処理は、
—定時間.ごとまたは所定の条件が成立するごとにメインルーチンから呼出されて 実行される。
図 9を参照して、 このフローチャートは、 図 6に示したフローチャートにおい て、 ステップ S 2 5, S 5 5をさらに含み、 ステップ S 30, S 60に代えてス テツプ S 3 5, S 6 5をさらに含む。 すなわち、 ステップ S 20において、 絶縁 抵抗の低下を判定するための検出波高 の判定しきい値が Wt h 1に設定される と、 E CU 60は、 絶縁抵抗の低下を確定するための判定時間を Δ T 1に設定す る (ステップ S 25) 。
そして、 ECU60は、 絶縁抵抗低下検出器 50からの電圧 Vに基づいて算出 される検出波高値が判定しきい値 Wt h 1を下回っている状態が判定時間 ΔΤ 1 以上継続しているか否かを判定する (ステップ S 3 5) 。 ECU60は、 検出波 高値が判定しきい値 Wt h 1を下回っている状態が判定時間 ΔΤ 1以上継続した と判定すると (ステップ S 3 5において YE S) 、 絶縁抵抗の低下を確定し、 走 行モードを通常モードから退避走行モードに移行する (ステップ S 40) 。 ステップ S 35において、 検出波高値が判定しきい値 Wt h 1を下回っている 状態が判定時間 ΔΤ1以上継続していないと判定されると (ステップ S 35にお いて NO) 、 ECU60は、 絶縁抵抗の低下はみられないと判断し、 走行モ ド を退避走行モードに移行することなく一連の処理を終了する。
一方、 ステップ S 50において、 絶緣抵抗の低下を判定するための検出波高値 の判定しきい値が Wt h 2に設定されると、 ECU 60は、 絶縁抵抗の低下を確 定するための判定時間を ΔΤ 1よりも短い ΔΤ2に設定する (ステップ S 55) 。 そして、 ECU 60は、 検出波高値が判定しきい値 Wt h 2を下回っている状 態が判定時間 ΔΤ 2以上継続しているか否かを判定する (ステップ S 65) 。 E CU60は、 検出波高値が判定しきい値 W t h 2を下回っている状態が判定時間 △ T 2以上継続したと判定すると (ステップ S 65において YES) 、 絶縁抵抗 の低下を確定し、 車両システムを遮断する (ステップ S 70) 。
ステップ S 65において、 検出波高値が判定しきい値 Wt h 2を下回っている 状態が判定時間 ΔΤ 2以上継続していないと判定されると (ステップ S 65にお いて NO) 、 ECU60は、 絶縁抵抗の低下はみられないと判断し、 車両システ ムを遮断することなく一連の処理を終了する。
以上のように、 この実施の形態 2においては、 車外負荷 80が電源装置 100 に電気的に接続されているときは、 絶縁抵抗低下検出器 50からの電圧 Vの検出 波高値が非接続時に比べて安定することを考慮し、 絶縁抵抗の低下を確定するた めの判定時間 Δ T 2が非接続時における判定時間 Δ T 1よりも短く設定される。 したがつて、 この実施の形態 1によれば、 車外負荷 80が電源装置 100に電気 的に接続されているときに絶縁抵抗低下の異常が発生した場合、 その異常を早期 に検出することができる。
なお、 上記の各実施の形態 1, 2においては、 モータジェネレータ MG 1 , M G 2の中性点 N 1, N 2を介して車外負荷 80と電源装置 100との間で電力の 授受を行なうものとしたが、 車外負荷 80と電源装置 100との間で電力の授受 を行なうための専用のインパータおよびコンバータを備えたシステムにおいても、 この発明は適用可能である。
また、 上記においては、 蓄電装置 Bは、 二次電池としたが、 二次電池に代えて 燃料電池 (Fuel Cell) であってもよい。 そして、 上記においては、 電源装置 1 00は、 ハイブリッド自動車に搭載されるものとしたが、 この発明の適用範囲は、 ハイプリッド自動車に搭載された電源装置に限定されず、 電気自動車や燃料電池 車に搭載されるものであってもよい。
また、 上記において、 蓄電装置 Bからの直流電圧を昇圧し、 その昇圧した昇圧 電圧をインバータ 10, 20へ供給する昇圧コンバータを蓄電装置 Bとインバー タ 10, 20との間に備えてもよレ、。
なお、 上記において、 インバータ 10, 20、 モータジェネレータ MG 1, M G2および ECU60は、 この発明における 「電力変換装置」 を形成し、 絶縁抵 抗低下検出器 50および ECU 60は、 この発明における 「検出装置」 を形成す る。 また、 車外負荷 80および Yコンデンサ 84は、 この発明における 「車両外 部の負荷」 を形成し、 ステップ S 70において ECU 60により実行される処理 は、 この発明における 「遮断部」 により実行される処理に対応する。 さらに、 Y コンデンサ 84は、 この発明における 「ラインバイパスコンデンサ」 に対応する。 また、 さらに、 抵抗素子 RDは、 この発明における 「抵抗素子」 に対応し、 方 形波発生器 52は、 この発明における 「電圧発生装置」 に対応する。 また、 さら に、 コンデンサ CDは、 この発明における 「容量素子」 に対応し、 電圧センサ 5 4は、 この発明における 「電圧検出装置」 に対応する。 また、 さらに、 ステップ S 2◦および S 50において ECU 60により実行される処理は、 この発明にお ける 「設定部」 により実行される処理に対応し、 ステップ S 30, S 60, S 3 5および S 65において ECU 60により実行される処理は、 この発明における 「判定部」 により実行される処理に対応する。
また、 さらに、 モータジェネレータ MG 1, MG 2は、 それぞれこの発明にお ける 「第 1および第 2の交流電動機」 に対応し、 インバータ 10, 20は、 それ ぞれこの発明における 「第 1および第 2のインバータ j に対応する。 また、 さら に、 ECU60は、 この発明における 「インバータ制御装置」 に対応し、 ACラ イン ACL l, ACL 2、 リレー回路 30およびコネクタ 40は、 この発明にお ける 「接続装置」 を形成する。
今回開示された実施の形態は、 すべての点で例示であって制限的なものではな いと考えられるべきである。 本発明の範囲は、 上記した実施の形態の説明ではな くて請求の範囲によって示され、 請求の範囲と均等の意味および範囲内でのすべ ての変更が含まれることが意図される。

Claims

請求の範囲 .
1 . 電動車両に搭載される電源装置であって、
蓄電装置と、
前記蓄電装置から車両外部の負荷への給電および前記負荷から前記蓄電装置の 充電の少なくとも一方を実行可能なように構成された電力変換装置と、
当該電源装置の絶縁抵抗の低下を検出する検出手段とを備え、
前記検出手段は、 前記負荷が前記電力変換装置に接続されているとき、 前記絶 縁抵抗の低下を検出するための判定しきい値を非接続時よりも低く設定する、 電 源装置。
2 . 前記負荷が前記電力変換装置に接続されているときの判定しきい値は、 前記 負荷の容量に基づいて決定される、 請求の範囲第 1項に記載の電源装置。
3 . 前記検出手段は、 前記負荷が前記電力変換装置に接続されているとき、 前記 絶縁抵抗の低下を確定するための判定時間を非接続時よりも短く設定する、 請求 の範囲第 1項に記載の電源、装置。 '
4. 前記負荷が前記電力変換装置に接続されているときに前記絶縁抵抗の低下が 検出されると、 前記電動車両のシステムを遮断する手段をさらに備える、 請求の 範囲第 1項に記載の電源装置。
5 . 前記負荷は、 前記電力変換装置に接続される電力線対とアースとの間に接続 されるラインバイパスコンデンサを含む、 請求の範囲第 1項に記載の電源装置。
6 . 前記検出手段は、 .
所定の抵抗値を有する抵抗素子.と、
前記抵抗素子と車両アースとの間に接続され、 所定の周波数を有する電圧を発 生する電圧発生装置と、
前記抵抗素子と当該電源装置の電力線との間に接続される容量素子と、 前記抵抗素子と前記容量素子との間の電圧を検出する電圧検出装置と、 前記判定しきい値を設定する設定部と、
前記電圧検出装置によつて検出された電圧および前記設定部によつて設定され た判定しきい値に基づいて、 前記絶縁抵抗の低下を判定する判定部とを含む、 請 求の範囲第 1項に記載の電源装置。 '
7 . 前記電力変換装置は、
星形結線された多相卷線を固定子卷線として各々が含む第 1および第 2の交流 電動機と、
前記第 1および第 2の交流電動機にそれぞれ対応して設けられ、 前記蓄電装置 と電力を授受する第 1および第 2のインバータと、
前記第 1および第 2のインバータを制御するインバータ制御装置と、 前記蓄電装置から前記負荷への給電および前記負荷から前記蓄電装置の充電の いずれかが行なわれるときに前記負荷を前記多相卷線の中性点に接続するための 接続装置とを含む、 請求の範囲第 1項に記載の電源装置。
8 . 請求の範囲第 1項から第 7項のいずれか 1項に記載の電源装置を搭載した電 動車両。
9 . 電動車両に搭載される電源装置の制御方法であって、
前記電源装置は、
蓄電装置と、
前記蓄電装置から車両外部の負荷への給電および前記負荷から前記蓄電装置の 充電の少なくとも一方を実行可能なように構成された電力変換装置と、
当該電源装置の絶縁抵抗の低下を検出する検出装置とを備え、
前記制御方法は、
前記負荷が前記電力変換装置に接続されているか否かを判定する第 1のステツ プと、 · ·
前記負荷が前記電力変換装置に接続されていると判定されると、 前記絶縁抵抗 の低下を検出するための判定しきレ、値を非接続時よりも低く設定する第 2のステ ップとを含む、 電源装置の制御方法。
1 0 . 前記負荷が前記電力変換装置に接続されているときの判定しきい値は、 前 記負荷の容量に基づいて決定される、 請求の範囲第 9項に記載の電源装置の制御 方法。
1 1 . 前記負荷が前記電力変換装置に接銃されていると判定されると、 前記絶縁 抵抗の低下を確定するための判定時間を非接続時よりも短く設定する第 3のステ ップをさらに含む、 請求の範囲第 9項に記載の電源装置の制御方法。
1 2 . 前記負荷が前記電力変換装置に接続されているときに前記検出装置により 前記絶縁抵抗の低下が検出されると、 前記電動車両のシステムを遮断する第 4の ステップをさらに含む、 請求の範囲第 9項に記載の電源装置の制御方法。
PCT/JP2007/052171 2006-02-03 2007-02-01 電源装置およびそれを搭載した電動車両ならびに電源装置の制御方法 WO2007089037A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/087,681 US7773353B2 (en) 2006-02-03 2007-02-01 Power supply device, electrically-driven vehicle incorporating power supply device, and method of controlling power supply device
EP07708195A EP1981143A1 (en) 2006-02-03 2007-02-01 Power source device, electric vehicle mounted with the power source device, and control method for power source device
CN2007800043791A CN101379669B (zh) 2006-02-03 2007-02-01 电源装置、装有电源装置的电动车以及控制电源装置的方法
BRPI0707354-2A BRPI0707354A2 (pt) 2006-02-03 2007-02-01 dispositivo de abastecimento de potência, veìculo eletricamente acionado incorporando dispositivo de abastecimento de potência e método para controle do dispositivo de abastecimento de potência

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-026947 2006-02-03
JP2006026947A JP4635890B2 (ja) 2006-02-03 2006-02-03 電源装置

Publications (1)

Publication Number Publication Date
WO2007089037A1 true WO2007089037A1 (ja) 2007-08-09

Family

ID=38327587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052171 WO2007089037A1 (ja) 2006-02-03 2007-02-01 電源装置およびそれを搭載した電動車両ならびに電源装置の制御方法

Country Status (8)

Country Link
US (1) US7773353B2 (ja)
EP (1) EP1981143A1 (ja)
JP (1) JP4635890B2 (ja)
KR (1) KR100976148B1 (ja)
CN (1) CN101379669B (ja)
BR (1) BRPI0707354A2 (ja)
RU (1) RU2398687C2 (ja)
WO (1) WO2007089037A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096630A (ja) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 電動車両及び給電システム
JP2016195510A (ja) * 2015-04-01 2016-11-17 トヨタ自動車株式会社 絶縁抵抗低下検出装置
WO2021199490A1 (ja) * 2020-03-30 2021-10-07 三洋電機株式会社 漏電検出装置、車両用電源システム

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679891B2 (ja) * 2004-11-30 2011-05-11 トヨタ自動車株式会社 交流電圧発生装置および動力出力装置
KR100812760B1 (ko) * 2005-12-08 2008-03-12 김득수 축전지 내부 임피던스 유효성분 측정연산 장치 및 그 방법
JP4822025B2 (ja) * 2008-03-26 2011-11-24 三菱自動車工業株式会社 車載充電装置
WO2010036153A1 (en) * 2008-09-26 2010-04-01 Volvo Lastvagnar Ab Method for monitoring insulation faults in an electric network and vehicle comprising an insulation fault monitor
JP4737277B2 (ja) * 2008-11-11 2011-07-27 トヨタ自動車株式会社 電動車両、電動車両の制御装置、および電動車両の制御プログラム
JP5453917B2 (ja) * 2009-05-18 2014-03-26 日産自動車株式会社 絶縁異常検出装置
US20110049977A1 (en) * 2009-09-01 2011-03-03 Boston-Power, Inc. Safety and performance optimized controls for large scale electric vehicle battery systems
JP5365432B2 (ja) * 2009-09-07 2013-12-11 コベルコ建機株式会社 建設機械の漏電検出装置
JP5515532B2 (ja) * 2009-09-07 2014-06-11 コベルコ建機株式会社 建設機械の漏電検出装置
DE102010012884A1 (de) * 2010-03-26 2011-09-29 Li-Tec Battery Gmbh Verfahren und Anordnung elektrischer Leiter zum Laden einer Fahrzeugbatterie
EP2594424B1 (en) 2010-07-14 2016-12-21 Toyota Jidosha Kabushiki Kaisha Controller for vehicle
FR2963500B1 (fr) * 2010-08-02 2012-09-21 Michelin Soc Tech Dispositif de connexion comprenant une unite de controle, coffre a batterie comprenant un tel dispositif de connexion et procede de controle d'un tel coffre a batterie.
DE102010041074A1 (de) * 2010-09-20 2012-03-22 Robert Bosch Gmbh System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems
CN103430035B (zh) * 2011-01-18 2015-12-09 日产自动车株式会社 充电设备和导通状态判断方法
DE102011084006A1 (de) * 2011-10-05 2013-04-11 Robert Bosch Gmbh Steuereinheit für ein Kraftfahrzeug
JP5423766B2 (ja) * 2011-10-26 2014-02-19 株式会社デンソー 地絡検出装置
JP5887841B2 (ja) * 2011-11-02 2016-03-16 ソニー株式会社 制御システム
US10182228B2 (en) 2012-03-16 2019-01-15 Magna Electronics, Inc. Video output diagnostics for automotive application
JP5577367B2 (ja) * 2012-03-19 2014-08-20 本田技研工業株式会社 電動車両の制御装置
JP5971549B2 (ja) 2012-03-23 2016-08-17 パナソニックIpマネジメント株式会社 モータ駆動回路、モータ装置、および電動車両
FR2993056B1 (fr) * 2012-07-06 2015-06-26 Renault Sa Chargeur electrique pour vehicule automobile
KR101371854B1 (ko) 2012-08-01 2014-03-24 기아자동차주식회사 절연저항측정센서를 이용한 차량의 누전진단장치 및 이의 제어방법
US9696384B2 (en) * 2012-08-24 2017-07-04 GM Global Technology Operations LLC High voltage bus-to-chassis isolation resistance and Y-capacitance measurement
JP2014060893A (ja) * 2012-09-19 2014-04-03 Panasonic Corp 充電装置
JP6151561B2 (ja) * 2013-05-23 2017-06-21 株式会社Soken インバータの制御装置
FR3010676B1 (fr) * 2013-09-16 2015-10-30 Renault Sas Procede de commande d'un systeme electrique de traction et systeme electrique de traction correspondant
FR3011401B1 (fr) * 2013-10-01 2015-09-04 Renault Sa Systeme d'alimentation electrique pour vehicule automobile
US9349227B2 (en) * 2013-12-09 2016-05-24 GM Global Technology Operations LLC Methods and apparatus for diagnosing open faults in an automotive electrical circuit
KR101637768B1 (ko) * 2014-12-08 2016-07-07 현대자동차주식회사 차량 배터리 관리 시스템의 절연파괴 고장 부품 진단 및 안내 방법
US9772384B2 (en) * 2015-12-01 2017-09-26 Chicony Power Technology Co., Ltd. Alternating current input voltage detecting device
KR101755910B1 (ko) * 2015-12-02 2017-07-07 현대자동차주식회사 친환경 차량의 절연파괴 검출장치 및 방법
JP6714705B2 (ja) 2015-12-22 2020-06-24 ボルボトラックコーポレーション 電気システムにおける電気絶縁抵抗を監視するための方法及びシステム
CN107219404B (zh) * 2016-03-21 2020-11-10 华为技术有限公司 一种频率调节的方法及装置
DE102017201350B4 (de) * 2017-01-27 2018-03-22 Continental Automotive Gmbh Verfahren zum Übertragen elektrischer Energie zwischen einem fahrzeugseitigen Energiespeicher und einer Anschlussstation sowie Fahrzeugbordnetz

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294225A (ja) * 1995-04-20 1996-11-05 Nissan Motor Co Ltd 漏電検知システム
JPH10290529A (ja) 1997-04-14 1998-10-27 Denso Corp 電気自動車の電源装置
JP2005348483A (ja) * 2004-06-01 2005-12-15 Nissan Motor Co Ltd 燃料電池車用地絡検知装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19503749C1 (de) * 1995-02-04 1996-04-18 Daimler Benz Ag Fahrzeug mit einem brennstoffzellen- oder batteriegespeisten Energieversorgungsnetz
TW403838B (en) * 1997-10-30 2000-09-01 Matsushita Electric Ind Co Ltd Electric leak detecting method and apparatus for electric motorcars
JP2001124814A (ja) * 1999-10-28 2001-05-11 Matsushita Electric Works Ltd インバータ装置における絶縁劣化検出装置及びそれを用いた太陽光発電システム並びに電気自動車
JP2001183405A (ja) * 1999-12-24 2001-07-06 Hokuto Denshi Kogyo Kk 電気機器の診断装置
DE60118718T2 (de) * 2000-02-22 2007-04-12 Sanyo Electric Co., Ltd., Moriguchi Schaltung zur erkennung von lecks in einer stromversorgung
JP3678151B2 (ja) 2001-01-11 2005-08-03 日産自動車株式会社 電気車両の地絡検出装置
RU2175138C1 (ru) 2001-01-22 2001-10-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт судовой электротехники и технологии" Способ измерения сопротивления изоляции силовой сети электроустановок транспорта под рабочим напряжением и устройство для его реализации
JP4061168B2 (ja) * 2002-10-16 2008-03-12 矢崎総業株式会社 地絡検知装置および絶縁抵抗計測装置
UA61537C2 (en) 2003-02-25 2006-07-17 Ltd Liability Company Firm Tet Device for protecting a motor and equipment driven by the motor
JP4082676B2 (ja) * 2003-05-29 2008-04-30 株式会社デンソー 漏電検出装置の検査システム
AU2003304333A1 (en) 2003-06-20 2005-01-28 Shell Oil Company Systems and methods for constructing subsea production wells
JP4337464B2 (ja) * 2003-08-07 2009-09-30 日産自動車株式会社 地絡検出装置
JP2005114496A (ja) * 2003-10-07 2005-04-28 Yazaki Corp 状態検出方法及び絶縁抵抗低下検出器
JP4053501B2 (ja) 2004-01-13 2008-02-27 ファナック株式会社 モータ駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294225A (ja) * 1995-04-20 1996-11-05 Nissan Motor Co Ltd 漏電検知システム
JPH10290529A (ja) 1997-04-14 1998-10-27 Denso Corp 電気自動車の電源装置
JP2005348483A (ja) * 2004-06-01 2005-12-15 Nissan Motor Co Ltd 燃料電池車用地絡検知装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096630A (ja) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 電動車両及び給電システム
US9884564B2 (en) 2014-11-13 2018-02-06 Toyota Jidosha Kabushiki Kaisha Electrically powered vehicle and power supply system
JP2016195510A (ja) * 2015-04-01 2016-11-17 トヨタ自動車株式会社 絶縁抵抗低下検出装置
WO2021199490A1 (ja) * 2020-03-30 2021-10-07 三洋電機株式会社 漏電検出装置、車両用電源システム

Also Published As

Publication number Publication date
RU2008135710A (ru) 2010-03-10
KR20080091392A (ko) 2008-10-10
CN101379669B (zh) 2011-08-03
JP4635890B2 (ja) 2011-02-23
BRPI0707354A2 (pt) 2011-05-03
JP2007209158A (ja) 2007-08-16
KR100976148B1 (ko) 2010-08-16
US7773353B2 (en) 2010-08-10
US20090002903A1 (en) 2009-01-01
RU2398687C2 (ru) 2010-09-10
CN101379669A (zh) 2009-03-04
EP1981143A1 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
WO2007089037A1 (ja) 電源装置およびそれを搭載した電動車両ならびに電源装置の制御方法
JP4635710B2 (ja) 交流電圧出力装置
US7550861B2 (en) AC power supplying system, power supply apparatus, and vehicle having the same
US8487636B2 (en) Malfunction determining apparatus and malfunction determining method for charging system
US11097624B2 (en) Driving system
US10513185B2 (en) Electrified vehicle ground fault monitoring system
JP5029793B2 (ja) 車両
US20120055727A1 (en) Power converting apparatus for vehicle and vehicle including same
JP2009296793A (ja) 蓄電装置を搭載する車両および充電ケーブル
JP2011010406A (ja) 車両用の電力変換装置およびそれを搭載する車両
JP2013051831A (ja) 電動車両の電源制御装置
JP6135409B2 (ja) 電流センサの異常検出方法、及び車両
JP2003244801A (ja) 電圧変換装置
JP2009130940A (ja) 電動車両、残留電荷の放電方法、およびその放電方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP2009296844A (ja) 電動車両およびリレー溶着判定方法
JP2008236943A (ja) 負荷駆動装置
JP2006320074A (ja) 交流電圧出力装置
JP2006033966A (ja) 電動機駆動装置
JP2009071898A (ja) 蓄電機構の充電制御システムおよびその制御方法
JP6007876B2 (ja) 給電車両及び給電システム
JP2006233852A (ja) 内燃機関の始動装置および車両
JP2013090410A (ja) 電動車両
JP6274169B2 (ja) モータ駆動装置
JP2009291037A (ja) 電動車両および電動車両の異常検知方法
JP2006320071A (ja) 交流電圧出力装置

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12087681

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2007708195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007708195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6483/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200780004379.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087021547

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008135710

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0707354

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080731