WO2007034830A1 - 積層型正特性サーミスタ - Google Patents

積層型正特性サーミスタ Download PDF

Info

Publication number
WO2007034830A1
WO2007034830A1 PCT/JP2006/318630 JP2006318630W WO2007034830A1 WO 2007034830 A1 WO2007034830 A1 WO 2007034830A1 JP 2006318630 W JP2006318630 W JP 2006318630W WO 2007034830 A1 WO2007034830 A1 WO 2007034830A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
site
semiconductor ceramic
internal electrode
ceramic layer
Prior art date
Application number
PCT/JP2006/318630
Other languages
English (en)
French (fr)
Inventor
Atsushi Kishimoto
Kenjiro Mihara
Hideaki Niimi
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to EP06810326.6A priority Critical patent/EP1939898B1/en
Priority to JP2007536532A priority patent/JP4710096B2/ja
Priority to CN2006800340774A priority patent/CN101268527B/zh
Publication of WO2007034830A1 publication Critical patent/WO2007034830A1/ja
Priority to US12/050,413 priority patent/US7679485B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/021Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient formed as one or more layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals

Definitions

  • the present invention relates to a laminated positive temperature coefficient thermistor for overcurrent protection, temperature detection, etc.
  • the present invention relates to a multilayer positive temperature coefficient thermistor having a high resistance change rate and an improved resistance rise coefficient at a temperature equal to or higher than the Curie point.
  • This positive temperature coefficient thermistor has a positive resistance temperature characteristic, and for example, a stacked positive temperature coefficient thermistor is known as a downsized positive temperature coefficient thermistor.
  • This type of laminated positive temperature coefficient thermistor usually has a plurality of semiconductor ceramic layers having positive resistance temperature characteristics, and a plurality of internal electrode layers formed respectively along the interface of the semiconductor ceramic layers.
  • a ceramic body, and the internal electrode layers are drawn alternately at both ends of the ceramic body, and external electrodes are formed so as to be electrically connected to the drawn internal electrode layers.
  • a semiconductor ceramic layer the thing which has a BaTiO type ceramic material as a main component is used.
  • BaTiO series BaTiO series
  • Ni is widely used as an internal electrode material of the stacked positive temperature coefficient thermistor.
  • the ceramic body of a multilayer positive characteristic thermistor is a ceramic green sheet on which a conductive pattern is formed by screen-printing a conductive paste for internal electrodes on a ceramic green sheet to be a semiconductor ceramic layer. Are laminated in a predetermined order, and the ceramic green sheet and the conductor pattern are integrally fired.
  • Ni when Ni is used as the internal electrode material, if it is integrally fired in an air atmosphere, Ni will be oxidized, so that it is necessary to integrally fire in a reducing atmosphere S, if it is integrally fired in a reducing atmosphere. Because the semiconductor ceramic layer is also reduced, sufficient resistance change rate Cannot be obtained. For this reason, normally, after performing integral firing in a reducing atmosphere, re-oxidation treatment is separately performed in an air atmosphere or an oxygen atmosphere.
  • the porosity of the semiconductor ceramic layer is set to 5 to 40% by volume, and a plurality of thermistor layers serving as effective layers between the two internal electrodes located on the outermost sides in the stacking direction are provided.
  • a stacked positive temperature coefficient thermistor has been proposed in which the porosity force of the thermistor layer at the center in the stacking direction is higher than the porosity of the thermistor layer at the outside in the stacking direction.
  • Patent Document 1 a force that sets the porosity of the semiconductor ceramic layer to 5 to 40% by volume. When this porosity is converted into a sintered density, it corresponds to approximately 60% or more and 95% or less of the theoretical sintered density. To do.
  • the measured sintered density of the semiconductor ceramic layer is reduced to 60 to 95% of the theoretical sintered density, and the porosity is set to be larger than the thermistor layer outside the central thermistor layer.
  • oxygen is easily distributed to the central part of the ceramic body, thereby preventing the occurrence of uneven oxidation, thereby obtaining a desired rate of change in resistance.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-93574
  • a semiconductor ceramic layer added with Sm as a semiconducting agent and an internal electrode layer using Ni as an electrode material are formed by integral firing.
  • the measured sintered density with respect to the theoretical sintered density is 65% or more and 90% or less.
  • the present invention has been made in view of such circumstances, and a BaTiO-based ceramic material is used.
  • the semiconductor ceramic layer is mainly composed of a BaTiO-based ceramic material, and the measured sintered density is the theoretical sintered density.
  • the ratio of Ba site to Ti site should be in the range of 0.99 8 to 1.006, and as a semiconducting agent, such as Dy, Y, etc.
  • To 0.5 mole part can maintain a large resistance change rate even when firing is performed at a high firing temperature.
  • the multilayer specific thermistor according to the present invention is a semiconductor ceramic whose measured sintered density is 65% to 90% of the theoretical sintered density.
  • the semiconductor ceramic layer is mainly composed of a BaTi 2 O-based ceramic material, and the ratio of Ba site to Ti site is 0.998 ⁇ Ba substrate.
  • the content is 0.1 mol part or more and 0.5 mol part or less based on the above.
  • a conductive material that is mainly composed of Ni is usually used as the internal electrode material, and the internal electrode layer and the semiconductor ceramic layer are formed by body firing.
  • a conductive material mainly composed of Ni diffuses from the internal electrode layer into the semiconductor ceramic layer, and a diffusion layer is formed at the interface between the internal electrode layer and the semiconductor ceramic layer.
  • the characteristics of the multilayer positive temperature coefficient thermistor such as the resistance rise coefficient and resistance change rate, it is necessary to increase the thickness of the semiconductor ceramic layer. I got it.
  • the ratio of Ba site to Ti site is within the above range, and the specific semiconducting agent is contained in the semiconductor ceramic layer within the above range. It has been found that the diffusion layer can be thinned, whereby the thickness of the semiconductor ceramic layer that contributes substantially to the characteristics of the laminated positive temperature coefficient thermistor can be reduced.
  • both the resistance change rate and the resistance rising coefficient are both It was found that a good stacked positive temperature coefficient thermistor can be obtained.
  • the internal electrode layer is mainly composed of Ni, and the semiconductor ceramic layer and the internal electrode layer are integrally fired.
  • the semiconductor ceramic layer has a BaTiO-based ceramic.
  • the ratio of Ba site to Ti site is 0.998 ⁇ Ba site / Ti site ⁇ 1.006, and the semiconductor is a homogeneous IJ. Eu, Gd, Tb, Dy, Y , Ho, Er, Tm medium force, etc.
  • At least one elemental power selected TilOO mol part is contained in the range of 0.1 mol part or more and 0.5 mol part or less. Even when the sintering density is 65% or more and 90% or less of the theoretical sintering density, the rise coefficient of resistance at a temperature above the Curie point can be made steep, and a high firing temperature can be achieved. A sufficient resistance change rate can be obtained even if it is fired at 1. Therefore, both an excellent resistance change rate and a resistance rise coefficient can be achieved.
  • the internal electrode layer is mainly composed of Ni, and the semiconductor ceramic layer and the internal electrode layer are integrally fired, and from the internal electrode layer into the semiconductor ceramic layer during the integral firing.
  • the specific force between the thickness t of the diffusion layer, which is mainly composed of Ni, formed by diffusion, and the thickness D of the semiconductor ceramic layer is 0.01 ⁇ t / D ⁇ 0.20. Even when the ceramic layer is thin, it is possible to obtain a multilayer positive-characteristics thermistor with both a good rise coefficient and resistance change rate, making it possible to further reduce the thickness of the semiconductor ceramic layer. This can contribute to downsizing of the positive temperature coefficient thermistor.
  • FIG. 1 is a schematic cross-sectional view schematically showing an embodiment of a laminated positive temperature coefficient thermistor according to the present invention.
  • FIG. 2 is an enlarged view of part A in FIG.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a stacked positive temperature coefficient thermistor according to the present invention.
  • internal electrode layers 3 a and 3 b are embedded in a ceramic body 4 having a semiconductor ceramic layer 2.
  • External electrodes 5a and 5b are formed at both ends of the ceramic body 4 so as to be electrically connected to the internal electrode layers 3a and 3b. That is, the internal electrode layers 3 a are formed on one end face of the ceramic body 4, and the internal electrode layers 3 b are formed on the other end face of the ceramic body 4 so as to be alternately drawn.
  • the external electrode 5a is electrically connected to the internal electrode layer 3a
  • the external electrode 5b is electrically connected to the internal electrode layer 3b.
  • first adhesion films 6a and 6b formed of Ni or the like are formed on the surfaces of the external electrodes 5a and 5b, and Sn or the like is formed on the surfaces of the first adhesion films 6a and 6b.
  • the second plating films 7a and 7b formed in (1) are formed.
  • the measured sintered density is 65 of the theoretical sintered density. / 0 or more and 90% or less. That is, when the measured sintered density is less than 65% of the theoretical sintered density, the sintered density becomes too low, so that the mechanical strength of the ceramic body 4 is lowered and the room temperature resistance value is increased. On the other hand, if the measured sintered density exceeds 90% of the theoretical sintered density, the sintered density is too high, and it becomes difficult to distribute oxygen to the center of the ceramic body 4 by reoxidation treatment. Therefore, the reoxidation process does not proceed smoothly, and a sufficient resistance change rate cannot be obtained.
  • the measured sintered density of the semiconductor ceramic layer 2 is 65 of the theoretical sintered density. / If it is 0 or more and 90% or less, oxygen can be spread to the center of the ceramic body 4 by reoxidation treatment that does not cause a decrease in mechanical strength, and as a result, it has a sufficient resistance change rate. It is possible to obtain a stacked positive temperature coefficient thermistor, and it is possible to improve the force and the rising coefficient of resistance at a temperature above the Curie point.
  • the semiconductor ceramic layer 2 has a perovskite structure (general formula AB0) in terms of composition.
  • Eu, Gd, Tb, Dy, Y, Ho, Er, and Tm are collectively referred to as “specific semiconducting agents.” At least one of the semiconducting agents is contained in an amount of 0.1 mol parts or more and 0.5 mol parts or less with respect to TilOO mol parts.
  • the Ba site is an A site in which Ba is coordinated in BaTiO represented by the general formula ABO.
  • the element including the substituted element is included.
  • the Ti site means the entire B site coordinated with Ti. Therefore, when an element substituted with a part of Ti is coordinated with the B site, the element including the substituted element is included.
  • the measured sintered density is 6% of the theoretical sintered density even if the firing temperature is high. It was found that a sintered density as low as 5 to 90% can be maintained, and that a sufficiently large resistance change rate can be obtained. In other words, by adding the above specific semiconducting agent to the main component, it was possible to achieve both a large resistance change rate and an improved resistance rise coefficient.
  • the content of the specific semiconducting agent is less than 0.1 mol part relative to the TilOO mol part, the BaTiO-based ceramic material cannot be sufficiently made into a semiconductor, and the room temperature resistance value is reduced. But
  • the content of the specific semiconducting agent is less than the TilOO mole part. 0. 1 mol part or more and 0.5 mol part or less are prepared.
  • the internal electrode material constituting the internal electrode layers 3a and 3b a material excellent in ohmic contact with the semiconductor ceramic layer 2 is preferred. As long as S and Ni are the main components, other metals such as Cu may be included.
  • the laminated positive temperature coefficient thermistor when the internal electrode layers 3a and 3b and the semiconductor ceramic layer 2 are integrally fired, as shown in FIG. 2, the main components of the internal electrode layers 3a and 3b are formed. Ni diffuses into the semiconductor ceramic layer 2, and a diffusion layer 8 is formed between the internal electrode layers 3 a and 3 b and the semiconductor ceramic layer 2.
  • the ratio of the thickness t of the diffusion layer 8 to the thickness D of the semiconductor ceramic layer D / D is set so that the ratio t / D becomes 0.01 ⁇ t / D ⁇ 0.20. Even when the thickness t is reduced, a multilayer positive temperature coefficient thermistor having a good resistance rising coefficient and a large resistance change rate can be obtained.
  • the ratio of the thickness t of the diffusion layer 8 to the thickness D of the semiconductor ceramic layer 2 is such that the ratio t / D is 0 ⁇ 01 or more and 0 ⁇ 20 or less. Even if the thickness D of layer 2 is reduced, it is possible to obtain a laminated positive temperature coefficient thermistor with a good resistance rise coefficient and a high resistance change rate. Realization of a model correct thermistor is possible.
  • the reason why the ratio tZD is set to be not less than 0.01 and not more than 0.20 is as follows.
  • the ratio t / D exceeds 0.20, the thickness D of the semiconductor ceramic layer 2 is reduced with respect to the thickness t of the diffusion layer 8, and as a result, a large amount of Ni diffuses into the semiconductor ceramic layer 2. As a result, the rise coefficient of the resistance becomes small, and a sufficient resistance change rate cannot be obtained.
  • the ratio t / D is less than 0.01, delamination occurs between the internal electrode layers 3a and 3b and the semiconductor ceramic layer 2, resulting in a high room temperature resistance value and a variation in resistance change rate. That is unfavorable.
  • the ratio t / D is preferably 0.01 or more and 0.20 or less.
  • the external electrode material constituting the external electrodes 5a and 5b it is possible to use simple metals and alloys of noble metals such as Ag, Ag-Pd and Pd, or simple metals and alloys of base metals such as Ni and Cu. It is preferable to select one that is suitable for connection and conduction with the internal electrode layers 3a and 3b.
  • the thickness of the semiconductor ceramic layer 2 can be variously adjusted according to the required room temperature resistance value and the number of laminated layers, and a thickness of about 5/1111 to 50/1111 can be used.
  • a thickness of about 5/1111 to 50/1111 can be used.
  • the diffusion layer 8 can be thinned, a sufficient effect can be obtained even in the range of 5 / im to 20 / im.
  • this laminated positive temperature coefficient thermistor has (i) a ratio of Ba site to Ti site of 0.998 or more and 1.006 or less, and (ii) a specific semiconducting agent (Eu, Gd, Tb, Dy, Y, Ho, Er, and Tm) are contained in the semiconductor ceramic layer 2 in the range of 0.1 mol part or more and 0.5 mol part or less with respect to the TilOO mol part. Even if the measured sintered density in Fig. 2 is a low sintered density of 65% or more and 90% or less of the theoretical sintered density, a multilayer positive temperature coefficient thermistor with a large resistance rise coefficient and a sufficient resistance change rate can be obtained. Obtainable.
  • the force, the ratio between the thickness t of the diffusion layer 8 and the thickness D of the semiconductor ceramic layer 2 t / D force 0.01 ⁇ t /D ⁇ 0.20 Even when the relationship of 20 is satisfied, it is possible to obtain a stacked positive temperature coefficient thermistor with a high resistance rise coefficient ⁇ and a high resistance change rate. A stacked positive temperature coefficient thermistor can be obtained.
  • the ceramic composition is (Ba A) (Ti A) O (where A is Eu, Gd, Tb, Dy,
  • At least one of Y, Ho, Er, Tm, px + qy u, 0. 998 ⁇ x / y ⁇ l .006, 0.
  • the ceramic powder is calcined at ° C).
  • an organic binder is added to the ceramic powder, and wet mixing is performed to prepare a ceramic slurry. Thereafter, the obtained ceramic slurry is formed into a sheet shape using a sheet forming method such as a doctor blade method to produce a ceramic green sheet.
  • the measured sintered density of the sintered semiconductor ceramic layer 2 is 65 to 90 of the theoretical sintered density.
  • the amount of organic binder added is adjusted so that it becomes%.
  • an internal electrode conductive paste containing Ni as a main component is prepared. Then, the conductive paste for internal electrodes is printed on the ceramic green sheet by screen printing or the like to form a conductor pattern.
  • the ceramic green sheets on which these conductor patterns are formed in a predetermined order are arranged up and down and pressed to produce a laminate.
  • the laminate is cut into a predetermined size, accommodated in an alumina sheath, subjected to binder removal treatment at a predetermined temperature (for example, 300 to 400 ° C), and then subjected to a predetermined reducing atmosphere.
  • a predetermined temperature for example, 300 to 400 ° C
  • a predetermined reducing atmosphere for example, the concentration of H gas with respect to N gas is about 1 to 3% by weight
  • a predetermined temperature for example, 120
  • a ceramic body 4 in which the internal electrode layers 3a and 3b and the semiconductor ceramic layer 2 are alternately stacked is formed by performing a baking treatment at 0 to 1250 ° C.).
  • the ceramic body 4 is reoxidized at a predetermined temperature (for example, 500 to 700 ° C) in an air atmosphere or an oxygen atmosphere.
  • a predetermined temperature for example, 500 to 700 ° C
  • both ends of the ceramic body 4 are sputtered to form external electrodes 5a and 5b mainly composed of Ag. Further, Ni coatings 6a and 6b and Sn coatings 7a and 7b are sequentially formed on the surfaces of the external electrodes 5a and 5b by electrolytic plating, whereby the multilayer positive temperature coefficient thermistor is manufactured.
  • the present invention is not limited to the above-described embodiment.
  • the sintering density of the semiconductor ceramic layer 2 is not limited to the force adjusted by the addition amount of the organic binder at the time of producing the ceramic green sheet.
  • the external electrodes 5a and 5b may be formed by a force baking process using a sputtering method. That is, the conductive base for the external electrode may be applied to both ends of the ceramic body 4 and then baked at a predetermined temperature (for example, 550 to 700 ° C.). It may be configured to also serve as a reoxidation treatment. In addition, if the adhesion is good, other thin film forming methods such as a vacuum deposition method other than the sputtering method can be used.
  • an oxide is used as a starting material.
  • carbonate or the like can be used.
  • the laminated positive temperature coefficient thermistor of the present invention is useful for overcurrent protection and temperature detection, but is not limited thereto.
  • the internal electrode layers 3a and 3b are alternately connected to the external electrodes 5a and 5b. At least one set of continuous internal electrode layers 3a and 3b are connected via the semiconductor ceramic layer 2. If the external electrodes 5a and 5b are connected to different potentials, the other internal electrode layers 3a and 3b are not necessarily formed alternately. It is not limited.
  • a protective layer such as a glass layer or a resin layer may be formed on the surface of the ceramic body 4 where the external electrodes 5a and 5b are not formed (not shown).
  • a protective layer This makes it less susceptible to the influence of the external environment, and can suppress characteristic deterioration due to temperature'humidity and the like.
  • the raw material was weighed.
  • an acrylic acid organic binder, a polycarboxylic acid ammonium salt as a dispersant, and pure water are added to the obtained calcined powder and mixed with a PSZ ball in a ball mill for 15 hours to make ceramics. I got a rally.
  • the amount of the acrylic organic binder added was adjusted so that the measured sintered density of the fired semiconductor ceramic layer was 70% of the theoretical sintered density.
  • the obtained ceramic slurry was formed into a sheet shape by a doctor blade method and dried to produce a ceramic Darene sheet so that the thickness of the fired semiconductor ceramic layer was 20 ⁇ m.
  • Ni powder and an organic binder were dispersed in an organic solvent to obtain a conductive paste for internal electrodes.
  • the obtained conductive paste for internal electrodes was screen-printed on the main surface of the ceramic green sheet so that the thickness of the fired internal electrode layer was 1 zm to form a conductor pattern.
  • the ceramic body is immersed in a silica-based glass solution and dried at a temperature of 600 ° C to protect the surface of the ceramic body. A layer was formed. Next, a re-oxidation treatment was performed at 700 ° C. in an air atmosphere to form a glass protective layer on the surface of the ceramic body. After that, among the ceramic body on which the glass protective layer is formed, the external electrode forming portion is barrel-polished, and both ends of the ceramic body are sequentially sputtered with Cu, Cr, and Ag as targets, A three-layered external electrode was formed.
  • Samples of sample numbers 9 to 11 as comparative examples were produced in order.
  • the amount of the acrylic organic binder added is adjusted so that the measured sintered density is 70% of the theoretical sintered density. It was calculated as follows. That is, first, a plurality of ceramic green sheets on which no conductive pattern is formed are stacked and fired, whereby a sample for sintering density measurement is separately prepared, and the volume and weight of this sample are measured. Calculated.
  • the room temperature resistance value ⁇ ( ⁇ ), the resistance change rate AR (number of digits), and the resistance at a temperature equal to or higher than the Curie point are calculated from Equations (1) to (3).
  • the rising force S coefficient (% / ° C) was calculated.
  • the rise coefficient ⁇ was calculated from 130 ° C to 150 ° C.
  • Table 1 shows the sintered density (relative ratio of the measured sintered density to the theoretical sintered density), the optimum firing temperature, the room temperature resistance value X, and the resistance change rate AR for each of the 20 samples of sample numbers 1 to 11: , And the rise coefficient of resistance at a temperature above the Curie point (hereinafter simply referred to as “rise coefficient”).
  • the optimum firing temperature is that the room temperature resistance value X is 0.3 ⁇ or less, the resistance change rate is 3.5 digits or more, and the sintering density is 70. Of the firing temperatures satisfying / o, the lowest temperature is shown.
  • sample number 9 is Sm, where the semiconducting agent is conventionally used, so the rate of change in resistance AR is 4.2 digits and 4 digits or more.
  • the rise coefficient ⁇ was found to be as small as 8% / ° C.
  • Sample Nos. 10 and 11 are Yb, a rare earth element belonging to the present invention as a semiconducting agent. It was found that semiconductors could not be made at a firing temperature of 1150-1275 ° C using Lu.
  • Sample Nos. 1 to 8 contain a semiconducting agent within the scope of the present invention at a compounding ratio of 0.2 mol part relative to TilOO mol part, and the resistance change rate AR is 4.2 to 4.
  • a sufficient resistance change rate of 5 digits can be obtained, and the rise coefficient string is 9 ⁇ : 13% Z ° C and 9% Z ° C or more, both resistance change rate AR and rise coefficient string It was found that a good stacked positive temperature coefficient thermistor can be obtained.
  • Sample number 9 (prior art) using Sm as the semiconducting agent has an optimum firing temperature of 1200 ° C, whereas sample numbers 1 to 8 using the semiconducting agent of the present invention are Therefore, it was confirmed that a semiconductor ceramic layer having a sintered density of 70% can be obtained even at a firing temperature higher than that of the prior art because the optimum firing temperature is 1225 to 1275 ° C.
  • BaTiO, TiO as a starting material, and Er O as a semiconducting agent are prepared.
  • Table 2 shows the Er content in each sample, the ratio x / y of Ba site to Ti site, room temperature resistance value X, resistance change rate ⁇ ⁇ ⁇ ⁇ ⁇ , and rise coefficient ⁇ of 20 samples. Average values are shown.
  • Sample Nos. 21 to 27 are obtained by making the ratio x / y of the Ba site and Ti site constant at 1,000 and varying the Er content.
  • Sample No. 21 has an Er content of 0.05 monolayers relative to the TilOO mole part, and is less than 0.1 mole part, so it cannot be fully semiconductorized, and the resistance change rate AR is as small as 2.8 digits.
  • the room temperature resistance X also increased to 2.37 ⁇ .
  • Sample No. 27 has an Er content of 1 mol part with respect to TilOO mol part and exceeds 0.5 mol part, so the rate of change in resistance AR is as small as 2.8 digits, and the rising force ⁇ Coefficient string 4%
  • the room temperature resistance X which is as small as / ° C, was found to be as high as 1.48 ⁇ .
  • the resistance change rate AR is also 4 digits or more, and Standing person It was found that the number ⁇ was 9% / ° C or more, a good result was obtained, and the room temperature resistance X was as low as 0.3 ⁇ or less.
  • Sample number 34 is the ix / y force S1.008 at the Ba site and Ti site. Since it exceeds 1.006, the characteristics are unstable, and the rise coefficient and resistance change rate AR are Yes. None of them could be measured accurately.
  • the ratio x / y of Ba site to Ti site is 0.998 or more and 1.006 or less and is within the scope of the present invention. It was found that the rise coefficient ⁇ was 9% / ° C or more with 4 digits or more. In particular, the ratio x / y of Ba site to Ti site is 1.000 or more and 1.006 or less. Sample numbers 30 to 33 have a resistance change rate AR of 4.8 digits or more, and a rising coefficient ⁇ of 13% / °. It was found that the resistance change rate AR and the rise coefficient ⁇ were more significantly improved.
  • BaTiO, TiO, and ErO as a semiconducting agent are prepared as starting materials.
  • a calcined powder was obtained by the same method and procedure as in Example 1.
  • an acrylic acid organic binder, polycarboxylic acid ammonium salt (dispersant), and pure water are added to the obtained calcined powder and mixed with a PSZ ball in a ball mill for 15 hours to obtain a ceramic slurry.
  • the additive amount of the acrylic organic binder was adjusted so that the measured sintered density after firing was 60 to 95% of the theoretical sintered density.
  • Table 3 shows the sintered density (relative ratio of the measured sintered density to the theoretical sintered density) for each sample, the room temperature resistance value X, the resistance change rate AR, and the rise coefficient of each 20 samples. Show the average value.
  • Sample No. 48 has a sintered density of 95%, and the sintered density is high. Therefore, oxygen in the reoxidation treatment does not reach the center sufficiently, resulting in uneven oxidation.
  • the characteristics of the multilayer positive temperature coefficient thermistor were evaluated using the ratio tZD between the thickness t of the diffusion layer produced by diffusion from the internal electrode layer and the thickness D of the semiconductor ceramic layer as a parameter.
  • composition of the semiconductor ceramic layer is (Ba A) (TiA) ⁇ (A is Er or
  • the firing process under a reducing atmosphere is performed at a firing temperature of 1250 ° C, and the ratio t / D between the thickness t of the diffusion layer and the thickness D of the semiconductor ceramic layer is different from the thickness of the ceramic green sheet.
  • the ratio t / D was obtained from the thickness t of the diffusion layer and the semiconductor ceramic layer D by observing each sample with a TEM (transmission electron microscope).
  • the thickness D of the semiconductor ceramic layer of sample number 57 and sample number 59 is 10 / im.
  • the room temperature resistance value X, the resistance change rate A R, and the rise coefficient ⁇ were obtained in the same manner as in 1).
  • Table 4 shows the type of semiconducting agent, diffusion layer thickness t and semiconductor ceramic layer thickness D ratio tZD, room temperature resistance value X, resistance change rate AR, rise, for sample numbers 5:! Show the average value of each coefficient.
  • Sample No. 59 uses Sm outside the scope of the present invention as a semiconducting agent, so the rise coefficient ⁇ is 7% / °. It turned out to become small with C.
  • the thickness D of the semiconductor ceramic layer is 10 / im, the thickness of the diffusion layer for both was confirmed by TEM. As a result, it was found that Sample No. 59 was diffused about 1.25 times compared to Sample No. 57.
  • sample number 59 unlike sample number 57, uses Sm as a semiconducting agent, so Ni diffuses excessively from the internal electrode layer into the semiconductor ceramic layer. For this reason, the ratio of the diffusion layer thickness t to the semiconductor ceramic layer thickness D must be increased, and as a result, the rise coefficient ⁇ seems to have decreased.
  • Sample No. 51 has a ratio t / D of 0.008 and is less than 0.01, so the rise coefficient is as good as 10% Z ° C, but the resistance change rate AR varies.
  • the average value was less than 3.9 digits and 4 digits, and the room temperature resistance was also high at 0.39 ⁇ .
  • the thickness t of the diffusion layer can be reduced as shown in sample numbers 52 to 57. .
  • a laminated positive temperature coefficient thermistor capable of further thinning can be obtained while maintaining a good resistance change rate AR and a rising coefficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 本発明の積層型正特性サーミスタは、半導体セラミック層がBaTiO3系セラミック材料を主成分とすると共に、BaサイトとTiサイトの比が0.998~1.006であり、半導体化剤としてEu、Gd、Tb、Dy、Y、Ho、Er、Tmのうち少なくとも一種が、Ti100モル部に対し0.1モル部以上0.5モル部以下の範囲で含有されている。これにより実測焼結密度が理論焼結密度の65%~90%という焼結密度の低い半導体セラミック層の場合であっても、十分に大きな抵抗変化率を有し、かつ、キュリー点以上の温度における抵抗の立ち上がり係数が高い積層型正特性サーミスタを実現することができる。

Description

明 細 書
積層型正特性サーミスタ
技術分野
[0001] 本発明は、過電流保護用、温度検知用等の積層型正特性サーミスタに関し、特に
、抵抗変化率が高ぐかつ、キュリー点以上の温度での抵抗の立ち上がり係数を向上 させた積層型正特性サーミスタに関する。
背景技術
[0002] 近年、電子機器の分野では小型化が進んでおり、これらの電子機器に搭載される 正特性サーミスタにおいても小型化が進んでいる。この正特性サーミスタは正の抵抗 温度特性を有するものであり、小型化された正特性サーミスタとして、例えば、積層型 正特性サーミスタが知られてレ、る。
[0003] この種の積層型正特性サーミスタは、通常、正の抵抗温度特性を有する複数の半 導体セラミック層と、半導体セラミック層の界面に沿ってそれぞれ形成された複数の 内部電極層とを有するセラミック素体を有し、前記セラミック素体の両端部には前記 内部電極層が互い違いになるように引き出され、この引き出された内部電極層と電気 的に接続するように外部電極が形成されている。また、半導体セラミック層としては、 BaTiO系セラミック材料を主成分としたものが用いられている。さらに、 BaTiO系セ
3 3 ラミック材料で正の抵抗温度特性を発現させるには、極微量の半導体化剤が添加さ れる力 この半導体化剤としては、一般には Smが広く用いられている。
[0004] また、積層型正特性サーミスタの内部電極材料としては、 Niが広く用いられている。
通常、積層型正特性サーミスタのセラミック素体は、半導体セラミック層となるセラミツ クグリーンシートに、内部電極用導電性ペーストをスクリーン印刷して導体パターンを 形成し、導体パターンの形成されたセラミックグリーンシートを所定順序で積層し、セ ラミックグリーンシートと導体パターンとを一体焼成することによって形成される。
[0005] ところで、内部電極材料として Niを用いた場合、大気雰囲気下で一体焼成すると、 Niが酸化されてしまうため還元雰囲気下で一体焼成する必要がある力 S、還元雰囲気 下で一体焼成すると、半導体セラミック層も還元されてしまうため、十分な抵抗変化率 が得られなくなる。このため、通常は還元雰囲気下で一体焼成を行った後に、別途、 大気雰囲気下または酸素雰囲気下で再酸化処理を行っている。
[0006] し力しながら、この再酸化処理は、熱処理温度の制御が難しぐセラミック素体の中 央部にまで酸素を行き渡らすのが困難であり、このため酸化むらが生じて十分な抵 抗変化率が得られなくなるおそれがある。
[0007] そこで、特許文献 1では、半導体セラミック層の空隙率を 5〜40体積%とし、積層方 向に関して最も外側にそれぞれ位置する 2つの内部電極間にある有効層となる複数 のサーミスタ層のうち、積層方向での中央部にあるサーミスタ層の空隙率力 積層方 向での外側にあるサーミスタ層の空隙率よりも高くした積層型正特性サーミスタが提 案されている。
[0008] 特許文献 1では、半導体セラミック層の空隙率を 5〜40体積%としている力 この空 隙率を焼結密度に換算すると、おおよそ理論焼結密度の 60%以上 95%以下に相 当する。そして、この特許文献 1では、半導体セラミック層の実測焼結密度を理論焼 結密度の 60以上 95%以下と小さくし、空隙率を中央部のサーミスタ層よりも外側の サーミスタ層よりも大きくすることにより、セラミック素体の中央部にまで酸素を行き渡り やすくし、これにより酸化むらが生じるのを防いで所望の抵抗変化率を得ようとしてい る。
[0009] 特許文献 1 :特開 2005— 93574号公報
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、特許文献 1のように、主成分として BaTiO系セラミック材料を用い、
3
半導体化剤として Smを添加した半導体セラミック層と、電極材料として Niを用いた内 部電極層とを一体焼成により形成し、例えば理論焼結密度に対する実測焼結密度 が 65%以上 90%以下の焼結密度の低い半導体セラミック層を得ようとすると、キユリ 一点以上の温度での抵抗の立ち上がり係数が小さいという問題があった。
[0011] すなわち、高い抵抗変化率を発現させるために焼結密度の低い半導体セラミック層 を得ようとすると、抵抗の立ち上がり係数が低くなるため、高い抵抗変化率と抵抗の 立ち上力^係数の両立を図ることができなかった。 [0012] 本発明はこのような事情に鑑みなされたものであって、 BaTiO系セラミック材料を
3
主成分とする焼結密度の低い半導体セラミック層を有する場合であっても、抵抗変化 率が高ぐかつ、キュリー点以上の温度での抵抗の立ち上がり係数が大きな積層型 正特性サーミスタを提供することを目的とする。
課題を解決するための手段
[0013] 上記目的を達成するために、本発明者らは鋭意検討を重ねた結果、半導体セラミ ック層が BaTiO系セラミック材料を主成分とし、かつ実測焼結密度が理論焼結密度
3
の 65〜90%という焼結密度の低い場合であっても、 Baサイトと Tiサイトの比を 0. 99 8〜: 1. 006の範囲とし、かつ、半導体化剤として、 Dy、 Y等の特定の物質を TilOOモ ル部に対し 0. :!〜 0. 5モル部添加することにより、高い焼成温度で焼成処理を行つ ても、大きな抵抗変化率を維持することができ、その結果、大きな抵抗変化率と大き な抵抗の立ち上がり係数の両立が可能な積層型正特性サーミスタを得ることができる という知見を得た。
[0014] 本発明はこのような知見に基づきなされたものであって、本発明に係る積層型正特 性サーミスタは、実測焼結密度が理論焼結密度の 65%以上 90%以下の半導体セラ ミック層と内部電極層とが交互に積層されて焼結されてなるセラミック素体と、前記内 部電極層と電気的に接続されるように前記セラミック素体の両端部に形成された外部 電極とを有する積層型正特性サーミスタにおいて、前記半導体セラミック層は、 BaTi O系セラミック材料を主成分とすると共に、 Baサイトと Tiサイトの比が 0. 998≤Baサ
3
イト/ Tiサイト≤1. 006であり、半導体ィ匕斉 1Jとして Eu、 Gd、 Tb、 Dy、 Y、 Ho, Er、 T mの中から選択された少なくとも 1種の元素力 S、 TilOOモノレ部に対し 0. 1モル部以上 0. 5モル部以下の範囲で含有されてレ、ることを特徴としてレ、る。
[0015] また、この種の積層型正特性サーミスタでは、内部電極材料として、通常は Niを主 成分とした導電性材料が使用され、内部電極層と半導体セラミック層とがー体焼成し て形成される場合、内部電極層から半導体セラミック層中に Niを主成分とする導電 性材料が拡散し、内部電極層と半導体セラミック層との界面に拡散層の形成されるこ とが知られており、従来では、抵抗の立ち上がり係数や抵抗変化率等、積層型正特 性サーミスタの諸特性を確保するためには、半導体セラミック層を厚くせざるを得なか つた。
[0016] し力 ながら、本発明者ら研究結果により、 Baサイトと Tiサイトの比を上述の範囲と し、かつ上記特定の半導体化剤を上述の範囲で半導体セラミック層に含有させた場 合は、上記拡散層を薄くすることができ、これにより、実質的に積層型正特性サーミス タの特性に寄与する半導体セラミック層の厚みも薄くすることが可能であることが分か つた。
[0017] 具体的には、前記拡散層の厚み tと、前記半導体セラミック層の厚み Dとの比が、 0 . 01以上 0. 20以下としても、抵抗変化率及び抵抗の立ち上がり係数の双方が良好 な積層型正特性サーミスタが得られることが分かった。
[0018] すなわち、本発明の積層型正特性サーミスタは、前記内部電極層は Niを主成分と すると共に、前記半導体セラミック層と前記内部電極層とは一体焼成されてなり、前 記一体焼成時に前記内部電極層から前記半導体セラミック層中に拡散して形成され る Niを主成分とする拡散層の厚み tと、前記半導体セラミック層の厚み Dとの比力 0 . 01≤t/D≤0. 20であること特徴としている。
発明の効果
[0019] 本発明の積層型正特性サーミスタによれば、半導体セラミック層は、 BaTiO系セラ
3 ミック材料を主成分とすると共に、 Baサイトと Tiサイトの比が 0. 998≤Baサイト/ Tiサ イト≤1. 006であり、半導体ィ匕斉 IJとして Eu、 Gd、 Tb、 Dy、 Y、 Ho, Er、 Tmの中力、ら 選択された少なくとも一種の元素力 TilOOモル部に対し 0. 1モル部以上 0. 5モル 部以下の範囲で含有されているので、半導体セラミック層の実測焼結密度が理論焼 結密度の 65%以上 90%以下という焼結密度の低い場合であっても、キュリー点以上 の温度での抵抗の立ち上がり係数を急峻にすることができると共に、高い焼成温度 で焼成したとしても十分な抵抗変化率が得ることができ、したがって優れた抵抗変化 率と抵抗の立ち上がり係数の両立を図ることができる。
[0020] また、前記内部電極層は Niを主成分とすると共に、前記半導体セラミック層と前記 内部電極層とは一体焼成されてなり、前記一体焼成時に前記内部電極層から前記 半導体セラミック層中に拡散して形成される Niを主成分とする拡散層の厚み tと、前 記半導体セラミック層の厚み Dとの比力 0. 01≤t/D≤0. 20であるので、半導体 セラミック層が薄い場合であっても、抵抗の立ち上がり係数及び抵抗変化率の双方 が良好な積層型正特性サーミスタを得ることができ、半導体セラミック層のより一層の 薄層化が可能となり、積層型正特性サーミスタの小型化に寄与することができる。 図面の簡単な説明
[0021] [図 1]本発明に係る積層型正特性サーミスタの一実施の形態を模式的に示した概略 断面図である。
[図 2]図 1の A部拡大図である。
符号の説明
[0022] 2 半導体セラミック層
3a、 3b 内部電極層
4 セラミック素体
5a、 5b 外部電極
発明を実施するための最良の形態
[0023] 次に、本発明の実施の形態を詳細に説明する。
[0024] 図 1は、本発明に係る積層型正特性サーミスタの一実施の形態を示す概略断面図 である。
[0025] 本積層型正特性サーミスタは、半導体セラミック層 2を有するセラミック素体 4の内部 に内部電極層 3a、 3bが埋設されている。そして、セラミック素体 4の両端部には、内 部電極層 3a、 3bと電気的に接続されるように外部電極 5a、 5bが形成されている。す なわち、内部電極層 3aはセラミック素体 4の一方の端面に、内部電極層 3bはセラミツ ク素体 4の他方の端面に、交互に引き出されるように形成されている。そして、外部電 極 5aは内部電極層 3aと電気的に接続され、外部電極 5bは内部電極層 3bと電気的 に接続されている。
[0026] また、外部電極 5a、 5bの表面には Ni等で形成された第 1のめつき皮膜 6a、 6bが形 成され、さらに第 1のめつき皮膜 6a、 6bの表面には Sn等で形成された第 2のめつき 皮膜 7a、 7bが形成されている。
[0027] そして、上記半導体セラミック層 2は、実測焼結密度が理論焼結密度の 65。/0以上 9 0%以下とされている。 [0028] すなわち、実測焼結密度が理論焼結密度の 65%未満になると焼結密度が低くなり すぎるため、セラミック素体 4の機械的強度が低下したり、室温抵抗値が高くなる。一 方、実測焼結密度が理論焼結密度の 90%を超えてしまうと焼結密度が高すぎるため 、再酸化処理で酸素をセラミック素体 4の中央部にまで行き渡らせるのが困難となり、 したがって再酸化処理が円滑に進行せず、このため十分な抵抗変化率を得ることが できなくなる。
[0029] これに対し半導体セラミック層 2の実測焼結密度が理論焼結密度の 65。/0以上 90% 以下の場合は、機械的強度の低下を招くこともなぐ再酸化処理で酸素をセラミック 素体 4の中央部にまで行き渡らせることができ、その結果十分な抵抗変化率を有する 積層型正特性サーミスタを得ることが可能となり、し力、も、キュリー点以上の温度での 抵抗の立ち上がり係数の向上が可能となる。
[0030] 上記半導体セラミック層 2は、組成的には、ぺロブスカイト型構造 (一般式 AB〇 )を
3 有する BaTiO系セラミック材料を主成分として形成されると共に、 Baサイトと Tiサイト
3
との比( = Baサイト/ Tiサイト)が 0. 998以上 1. 006以下となるように配合され、かつ 半導体化剤として Eu、 Gd、 Tb、 Dy、 Y、 Ho、 Er、及び Tm (以下、これらの半導体化 剤を「特定の半導体化剤」と総称する。 )のうちの少なくとも 1種が TilOOモル部に対 し 0. 1モル部以上 0. 5モル部以下含有されている。
[0031] そしてこれにより、十分な抵抗変化率を得ることができると共に、抵抗の立ち上がり 係数を大きくすることができ、優れた抵抗変化率と抵抗の立ち上がり係数の両立を図 ること力 Sできる。
[0032] 尚、 Baサイトとは、一般式 ABOで表される BaTiOにおいて、 Baが配位する Aサイ
3 3
ト全体を意味し、したがって Baの一部と置換された元素が Aサイトに配位されている 場合は、その置換元素を含めたものをいう。同様に、 Tiサイトとは、 Tiが配位する Bサ イト全体を意味し、したがって Tiの一部と置換された元素が Bサイトに配位されている 場合は、その置換元素を含めたものをいう。
[0033] また、 Baサイトと Tiサイトとの比( = Baサイト/ Tiサイト)を 0. 998以上 1. 006以下 としたのは以下の理由による。
[0034] 上記特定の半導体化剤を半導体セラミック層に所定量含有させた場合であっても、 Baサイト/ Tiサイトが 0. 998未満になると、抵抗の立ち上がり係数が小さくなり、抵 抗変化率が小さくなり、しかも室温抵抗値が高くなる。一方、 Baサイト/ Tiサイトが 1. 006を超えた場合も室温抵抗値が高くなり、また、抵抗の立ち上がり係数や抵抗変化 率も不安定になる。
[0035] そこで、本実施の形態では、 Baサイトと Tiサイトとの比( = Baサイト ZTiサイト)を、 0 . 998以上 1. 006以下となるように各組成の配合量が調整されている。
[0036] また、特定の半導体化剤を TilOOモル部に対し 0. 1モル部以上 0. 5モル部以下 含有させたのは以下の理由による。
[0037] 半導体化剤として、特許文献 1に記載されているような Smを使用した場合、半導体 セラミック層 2の焼結密度を小さくするためには 1200°C程度の低い温度で焼成せざ るを得ず、このため大きな抵抗の立ち上がり係数を得るのが困難であった。
[0038] しかしながら、本発明者らの研究結果により、上記特定の半導体化剤を選択して主 成分に添加すると、より高い温度(例えば、 1200°C〜1300°C)での焼成可能になり 、抵抗の立ち上がり係数が向上することが分かった。
[0039] 一方、焼成温度が高くなると焼結密度が高くなることから、抵抗変化率を向上させる のが困難になるとも考えられる。
[0040] しかしながら、本発明者らが鋭意研究を重ねた結果、上記特定の半導体化剤を主 成分に添加した場合は焼成温度が高くなつても、実測焼結密度が理論焼結密度の 6 5〜90%程度の低い焼結密度を維持でき、これにより十分に大きな抵抗変化率を得 ることのできることが分かった。つまり、上記特定の半導体化剤を主成分に添加するこ とにより、大きな抵抗変化率と抵抗の立ち上がり係数の向上の両立が可能となったの である。
[0041] ただし、特定の半導体化剤の含有量が、 TilOOモル部に対し 0. 1モル部未満にな ると、 BaTiO系セラミック材料の半導体化を十分に行うことができず、室温抵抗値が
3
高くなる。一方、特定の半導体化剤の含有量が、 TilOOモル部に対し 0. 5モル部を 超えた場合も室温抵抗値が高くなり、しかもこの場合は抵抗変化率や抵抗の立ち上 力^係数も小さくなる。
[0042] そこで、本実施の形態では、特定の半導体化剤の含有量が、 TilOOモル部に対し 0. 1モル部以上 0· 5モル部以下となるように調製している。
[0043] また、内部電極層 3a、 3bを構成する内部電極材料としては、半導体セラミック層 2と のォーミック接触に優れた材料が好ましぐ Ni単体や Ni合金等の Niを主成分とした 材料を使用することができる力 S、 Niが主成分であれば、 Cu等の他の金属を含んでい てもよい。
[0044] ところで、積層型正特性サーミスタでは、内部電極層 3a、 3bと半導体セラミック層 2 とが一体焼成されて形成される場合、図 2に示すように、内部電極層 3a、 3bの主成 分である Niが半導体セラミック層 2中に拡散し、内部電極層 3a、 3bと半導体セラミツ ク層 2との間に拡散層 8が形成される。
[0045] そして、本実施の形態では、拡散層 8の厚み tと半導体セラミック層の厚み Dとの比 t /Dを 0. 01≤t/D≤0. 20となるように半導体セラミック層 2の厚み tを薄くした場合 であっても、抵抗の立ち上がり係数が良好で、かつ抵抗変化率が大きい積層型正特 性サーミスタを得ることができる。
[0046] すなわち、一般に、焼成処理時に Niが半導体セラミック層 2中に拡散すると、この N iは BaTiO系セラミック材料のァクセプターとして作用する。そして、 BaTiO系セラミ
3 3 ック材料のドナーとなる半導体化剤の含有量が過剰であったり、或いは半導体化剤 の種類によってはドナー効果を打ち消すことから、ァクセプターとして作用する Niの 内部電極層 3a、 3bからの拡散が促進される傾向がある。その結果、比較的厚みの大 きな拡散層 8が形成されやすくなり、このため抵抗の立ち上力 Sり係数が小さくなり、ま た、抵抗変化率も小さくなるおそれある。したがって、抵抗の立ち上がり係数及び抵 抗変化率の向上を図るためには、半導体セラミック層 2の厚み Dを厚くせざるを得なく なる。
[0047] し力、しながら、本実施の形態のように、 BaTiOを主成分とすると共に、 Baサイトと Ti
3
サイトとの比を 0. 998以上 1. 006以下とし、かつ上述した特定の半導体化剤を主成 分に所定量添加した場合は、これら特定の半導体化剤が Baサイトと Tiサイトの双方 に固溶するため、ァクセプターとして作用する Niが Tiサイトに固溶されるのを極力防 ぐことができ、その結果、内部電極層 3a、 3bからの Niの拡散自体を抑制することが可 能となり、これにより、半導体セラミック層 2の厚み Dを薄くすることができる。 [0048] そして、本発明者らの研究結果により、拡散層 8の厚み tと半導体セラミック層 2の厚 み Dとの比 t/Dが 0· 01以上 0· 20以下となるように半導体セラミック層 2の厚み Dを 薄くしても、抵抗の立ち上がり係数が良好で、かつ抵抗変化率の大きい積層型正特 性サーミスタを得ることができ、これによりより一層薄層化'小型化された積層型正特 十生サーミスタの実現が可能になる。
[0049] ここで、比 tZDが 0. 01以上 0. 20以下としたのは以下の理由による。
[0050] 比 t/Dが 0. 20を超えると、拡散層 8の厚み tに対し半導体セラミック層 2の厚み D が薄ぐ結果的に多量の Niが半導体セラミック層 2中に拡散することとなることから、 抵抗の立ち上がり係数が小さくなり、また十分な抵抗変化率が得られなくなる。一方、 比 t/Dが 0. 01未満になると内部電極層 3a、 3bと半導体セラミック層 2との間でデラ ミネーシヨンが発生し、室温抵抗値が高くなつたり、抵抗変化率のばらつきが生じるお それがあり、好ましくない。
[0051] したがって、比 t/Dは 0. 01以上 0. 20以下とするのが好ましい。
また、外部電極 5a、 5bを構成する外部電極材料としては、 Ag、 Ag— Pd、及び Pd 等の貴金属の単体及び合金、または Ni,及び Cu等の卑金属の単体及び合金等を 使用すること力でき、内部電極層 3a及び 3bと接続及び導通が好適なものを選ぶこと が好ましい。
[0052] 尚、半導体セラミック層 2の厚みは、要求される室温抵抗値や積層枚数によって種 々調整することができ、厚みは約5 /1 111〜50 /1 111のものを使用できるカ 本実施の形 態では拡散層 8を薄くすることができるので、 5 /i m〜20 /i mの範囲であっても十分 な効果が得られる。
[0053] このように本積層型正特性サーミスタは、(i) Baサイトと Tiサイトとの比を 0. 998以 上 1. 006以下とし、(ii)特定の半導体化剤(Eu、 Gd、 Tb、 Dy、 Y、 Ho、 Er、及び T m)を TilOOモル部に対し 0. 1モル部以上 0. 5モル部以下の範囲で半導体セラミツ ク層 2に含有させているので、半導体セラミック層 2の実測焼結密度が理論焼結密度 の 65%以上 90%以下という焼結密度の低い場合であっても、十分な抵抗変化率を 得つつ抵抗の立ち上がり係数の大きな積層型正特性サーミスタを得ることができる。
[0054] し力、も、拡散層 8の厚み tと半導体セラミック層 2の厚み Dとの比 t/D力 0. 01≤t /D≤0. 20の関係を満たすような場合であっても、抵抗の立ち上がり係数 α及び抵 抗変化率の高い積層型正特性サーミスタを得ることが可能であり、したがって、より一 層小型の積層型正特性サーミスタを得ることができる。
[0055] 次に、上記積層型正特性サーミスタの製造方法を説明する。
[0056] まず、出発原料として BaCO、 TiO、及び Eu O、 Gd〇、 Tb O 、 Dy O、 Y〇
3 2 2 3 2 3 4 7 2 3 2 3
、 Ho O、 Er〇、 Tm Oのうちの少なくとも 1種を用意する。
2 3 2 3 2 3
[0057] そして、セラミック組成が(Ba A ) (Ti A ) O (ただし、 Aは Eu、 Gd、 Tb、 Dy、
1-p P 1-q Q y 3
Y、 Ho、 Er、 Tmのうちの少なくとも 1種、 px + qy = u、 0. 998≤x/y≤l . 006、 0.
001≤u≤0. 005)となるように前記出発原料を所定量秤量する。次いで、該秤量物 を部分安定化ジルコユア等(以下、「PSZボール」という。)の粉砕媒体と共にボール ミルに投入して十分に湿式混合粉砕し、その後、所定温度(例えば、 1000〜: 1200
°C)で仮焼しセラミック粉末を作製する。
[0058] 次に、前記セラミック粉末に有機バインダをカ卩え、湿式で混合処理を行なってセラミ ックスラリーを作製する。その後、得られたセラミックスラリーをドクターブレード法等の シート成形法を用いてシート状に成形し、セラミックグリーンシートを作製する。
[0059] この際、焼成後の半導体セラミック層 2の実測焼結密度が理論焼結密度の 65〜90
%となるように、有機バインダの添加量を調整する。また、焼成後の拡散層 8の厚み t と半導体セラミック層 2の厚み Dとの比 t/Dが 0. 01 -0. 2となるようにセラミックダリ ーンシートの厚みを調整するのが好ましレ、。
[0060] 次いで、 Niを主成分とした内部電極用導電性ペーストを用意する。そして、前記セ ラミックグリーンシート上に前記内部電極用導電性ペーストをスクリーン印刷等によつ て印刷し、導体パターンを形成する。
[0061] 次に、これら導体パターンの形成されたセラミックグリーンシートを所定順序に積層 した後、導体パターンの形成されていないセラミックグリーンシートを上下に配し、圧 着して積層体を作製する。
[0062] 次いで、この積層体を所定寸法に切断してアルミナ製の匣(さや)に収容し、所定の 温度(例えば 300〜400°C)で脱バインダ処理を行った後、所定の還元雰囲気下 (例 えば、 Nガスに対する Hガスの濃度が 1〜3重量%程度)、所定温度(例えば、 120 0〜: 1250°C)で焼成処理を施し、内部電極層 3a、 3bと半導体セラミック層 2とが交互 に積層されたセラミック素体 4を形成する。
[0063] 続いて、上記セラミック素体 4を大気雰囲気下、又は酸素雰囲気下、所定の温度( 例えば、 500〜700°C)で再酸化処理を行う。
[0064] 続いて、セラミック素体 4の両端部にスパッタリング処理を施して Agを主成分とする 外部電極 5a及び 5bを形成する。さらに、外部電極 5a及び 5bの表面には電解めつき により Ni皮膜 6a、 6b、及び Sn皮膜 7a、 7bを順次形成し、これにより上記積層型正特 性サーミスタが製造される。
[0065] 尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、 半導体セラミック層 2の焼結密度に関しては、セラミックグリーンシート作製時の有機 バインダの添加量で調整している力 これに限るものではない。
[0066] また、上記実施の形態では、外部電極 5a、 5bの形成方法として、スパッタリング法 を使用している力 焼付け処理で形成してもよい。すなわち、外部電極用導電性べ 一ストをセラミック素体 4の両端部に塗布した後、所定温度(例えば、 550〜700°C) で焼付けて形成してもよぐこの際、セラミック素体 4への再酸化処理を兼ねるように 構成してもよい。また、密着性が良好であれば、スパッタリング法以外の真空蒸着法 等、他の薄膜形成方法を利用することも可能である。
[0067] また、上記実施の形態では、出発原料として酸化物を使用したが、炭酸塩等を使 用することちできる。
[0068] また、本発明の積層型正特性サーミスタは、過電流保護用、温度検知用に有用で あるがこれに限るものではない。図 1の積層型正特性サーミスタでは、内部電極層 3a 、 3bは交互に外部電極 5a、 5bに接続されている力 少なくとも 1組以上の連続する 内部電極層 3a、 3bが半導体セラミック層 2を介して異なる電位に接続された外部電 極 5a、 5bに接続されていれば、その他の内部電極層 3a、 3bは必ずしも交互に形成 する必要はなぐ図 1に示した形状の積層型正特性サーミスタに限定されるものでは ない。
[0069] また、セラミック素体 4の表面のうち、外部電極 5a、 5bが形成されていない部分にガ ラス層や樹脂層等の保護層を形成してもよく(図示せず)、このような保護層を形成す ることで、より一層外部環境の影響が受けにくくなり、温度'湿度等による特性劣化を 抑制することができる。
[0070] 次に、本発明の実施例を具体的に説明する。
実施例 1
[0071] まず、出発原料として、 BaCO 、 Ti〇、 Eu O、 Gd〇、 Tb〇、 Dv O 、 Y O、
3 2 2 3 2 3 4 7 2 3 2 3
Ho〇、 Er〇、 Tm Oを用意し、半導体セラミック層の組成が(Ba A ) (TiA
2 3 2 3 2 3 0.998 0.002- v
)〇 (但し、 Aは Eu、 Gd、 Tb、 Dv、 Y、 Ho、 Er、又は Tm)となるように、これら出発 v 3
原料を秤量した。
[0072] 続いて、これらの出発原料に純水を加え、 PSZボールと共にボールミル内で 10時 間混合粉砕し、乾燥後、 1150°Cで 2時間仮焼し、再度、 PSZボールと共にボールミ ル内で粉砕して仮焼粉を得た。
[0073] 次に、得られた仮焼粉に、アクリル酸系有機バインダ、分散剤としてのポリカルボン 酸アンモニゥム塩、及び純水を加えて、 PSZボールと共にボールミル内で 15時間混 合してセラミックスラリーを得た。ここで、アクリル酸系有機バインダの添加量は、焼成 後の半導体セラミック層の実測焼結密度が理論焼結密度の 70%となるように調整し た。
[0074] 続いて、得られたセラミックスラリーを、ドクターブレード法によりシート状に成形し、 乾燥させて、焼成後の半導体セラミック層の厚みが 20 μ mとなるようにセラミックダリ ーンシートを作製した。
[0075] 次に、 Ni粉末と有機バインダとを有機溶剤に分散させて内部電極用導電性ペース トを得た。そして得られた内部電極用導電性ペーストを、セラミックグリーンシートの主 面上に、焼成後の内部電極層の厚みが 1 z mとなるようスクリーン印刷を施し、導体 パターンを形成した。
[0076] その後、導体パターンの形成されたセラミックグリーンシートを、導体パラーンがセラ ミックグリーンシートを介して対向するようにセラミックグリーンシートを 25枚積み重ね 、さらに導体パターンの形成されていない保護用セラミックグリーンシートを上下に 5 枚づっ配して圧着し、次いで、長さ 2. 2mm、幅 1. 3mm、厚み 0. 9mmの寸法に切 断して生の積層体を得た。この生の積層体を大気中 400°C、 12時間で脱バインダ処 理を行った後、 Nガスに対する Hガスの濃度が 3重量%に調整された還元雰囲気
2 2
下、 1150oC、 1200oC、 12250C、 1250oC、及び 12750Cのレヽずれ力の焼成温度で 2時間焼成し、半導体セラミック層と内部電極層とが交互に積層されたセラミック素体 を得た。
[0077] 次に、得られたセラミック素体の表面をバレル研磨した後、該セラミック素体をシリカ 系のガラス溶液に浸漬し、 600°Cの温度で乾燥しセラミック素体の表面にガラス保護 層を形成した。次いで、大気雰囲気下、 700°Cの温度で再酸化処理を行いセラミック 素体の表面にガラス保護層を形成した。その後、ガラス保護層が形成されたセラミツ ク素体のうち、外部電極形成部分をバレル研磨し、そのセラミック素体の両端部に Cu 、 Cr、及び Agをそれぞれターゲットにして順次スパッタリング処理を施し、三層構造 の外部電極を形成した。
[0078] 最後に、外部電極の表面に電解めつきを施して外部電極の表面に Ni被膜及び Sn 被膜を順次形成し、試料番号 1〜8の積層型正特性サーミスタを作製した。
[0079] また、半導体化剤として Sm O 、 Yb〇、 Lu Oを使用し、上述と同様の方法'手
2 3 2 3 2 3
順で比較例としての試料番号 9〜 11の試料を作製した。
[0080] 尚、本実施例では、上述したように実測焼結密度が理論焼結密度の 70%となるよう にアクリル系有機バインダの添加量を調整しているが、この実測焼結密度は以下のよ うにして求めた。すなわち、まず、導電パターンの形成されていないセラミックグリーン シートを複数枚積層して焼成処理を施し、これにより焼結密度測定用の試料を別途 作製し、この試料の体積と重量を測定することにより、算出した。
[0081] 次に、試料番号 1〜: 11の各試料を 20個づっ用意し、 0. 01Vの電圧を印加し、 20 〜250°Cの範囲で 10°C刻みで昇温させ、直流四端子法により 10°C変化する毎に抵 抗値を測定した。
[0082] そして、得られた抵抗値に基づき、数式(1 )〜(3)より室温抵抗値 Χ ( Ω )、抵抗変 化率 A R (桁数)、及びキュリー点以上の温度での抵抗の立ち上力 Sり係数ひ (%/°C) を求めた。
[0083] X= (R +R ) /2
A R=log (R /R ) - - - (2) a = {2.3031og (R /R ) / (150— 130) } X 100 …(3)
150 130
尚、 BaTiOのキュリー点は 125°Cであることから、キュリー点以上の温度での抵抗
3
の立ち上がり係数 αを 130°C〜150°Cで算出した。
[0084] 表 1は、試料番号 1〜: 11の各試料 20個における焼結密度(実測焼結密度の理論 焼結密度に対する相対比)、最適焼成温度、室温抵抗値 X、抵抗変化率 A R、及び キュリー点以上の温度での抵抗の立ち上がり係数 (以下、単に、「立ち上がり係数」と いう。 )ひのそれぞれの平均値を示している。
[0085] ここで、最適焼成温度は、室温抵抗値 Xが 0. 3 Ω以下、かつ、抵抗変化率の桁数 が 3. 5桁以上であり、さらに、焼結密度が 70。/oを満足する焼成温度のうち、最低温 度を示している。
[0086] [表 1]
Figure imgf000016_0001
*は本発明の範囲外 表 1から明らかなように、試料番号 9は、半導体化剤が従来から使用されている Sm であるため、抵抗変化率 A Rは 4. 2桁と 4桁以上であるものの、立ち上がり係数 αは 8%/°Cと小さくなることが分かった。
また、試料番号 10、 11は、半導体化剤として本発明と同族の希土類元素である Yb 、 Luを使用した力 1150〜1275°Cの焼成温度では半導体化することができないこ とが分かった。
[0088] これに対し試料番号 1〜8は、 TilOOモル部に対し 0. 2モル部の配合比で本発明 範囲内の半導体化剤が含有されており、抵抗変化率 A Rが 4. 2〜4. 5桁と十分な抵 抗変化率を得ることができ、かつ、立ち上がり係数ひも 9〜: 13%Z°Cと 9%Z°C以上 であり、抵抗変化率 A R及び立ち上がり係数ひの双方で良好な積層型正特性サーミ スタを得ることのできることが分かった。
[0089] また、半導体化剤として Smを使用した試料番号 9 (従来技術)は、最適焼成温度が 1200°Cであるのに対し、本発明の半導体化剤を使用した試料番号 1〜8は、最適焼 成温度が 1225〜: 1275°Cと高ぐしたがって従来技術に比べて高い焼成温度であつ ても焼結密度が 70%の半導体セラミック層が得られることが確認された。
[0090] これにより、抵抗変化率 A Rと立ち上がり係数ひの両立を図るためには、半導体化 剤として、本発明に列挙された特定の半導体化剤を半導体セラミック層に含有させる のが極めて効果的であることが分かった。
実施例 2
[0091] 出発原料として、 BaTiO、 TiO、半導体化剤としての Er Oを用意し、半導体セラ
3 2 2 3
ミック層の組成が(Ba Er ) (Ti Er ) 〇 (ただし、 px + qy = u、 0. 996
l-p p x 1- q q y 3 ≤xZy≤ 1
. 008、 0. 0005≤u≤0. 01)となるようにこれら出発原料を秤量し、その後は、〔実 施例 1〕と同様の方法 ·手順を使用し、試料番号 21〜34の積層型正特性サーミスタ を作製した。尚、還元雰囲気下での焼成処理は全て 1250°Cで行った。
[0092] 次に、試料番号 2:!〜 34の各積層型正特性サーミスタを 20個づっ用意し、〔実施例 1]と同様の方法で室温抵抗値 X、抵抗変化率 A R、及び立ち上がり係数ひを求めた
[0093] 表 2は、各試料における Erの含有量、 Baサイトと Tiサイトとの比 x/y、各試料 20個 における室温抵抗値 X、抵抗変化率 Δ Ι、及び立ち上がり係数 αのそれぞれの平均 値を示している。
[0094] [表 2] (Ba卜 pErp)x(Ti卜 qErq)y03 ; px+qy=u u xZy 室温抵抗値 X抵抗変化率 AR 立ち上がり係数
(Ω) (桁数) (% 。 C)
21* 0.0005 1.000 2.37 2.8 12.6
22 0.001 1.000 0.29 5.6 15.6
23 0.0015 1.000 0.25 5.6 13.5
24 0.002 1.000 0.22 4.8 13
25 0.003 1.000 0.21 4.4 11
26 0.005 1.000 0.18 4 9
27* 0.01 1.000 1.48 2.8 4
28* 0.002 0.996 0.31 4 7
29 0.002 0.998 0.25 4.3 9
30 0.002 1.000 0.22 4.8 13
31 0.002 1.002 0.22 4.8 13
32 0.002 1.004 0.23 4.9 14
33 0.002 1.006 0.3 5.1 15
34* 0.002 1.008 0.52 一 一
*本発明の範囲外 試料番号 21〜27は、 Baサイトと Tiサイトの比 x/yを 1· 000と一定にし、 Erの含有 量を異ならせたものである。
[0095] 試料番号 21は Erの含有量が TilOOモル部に対し 0.05モノレ部であり、 0.1モル部 未満と少ないため、十分に半導体化することができず、抵抗変化率 ARも 2.8桁と小 さぐ室温抵抗値 Xも 2.37Ωと高くなつた。
また、試料番号 27は Erの含有量が TilOOモル部に対し 1モル部であり、 0.5モル 部を超えているため、抵抗変化率 ARが 2.8桁と小さぐまた立ち上力^係数ひも 4%
/°Cと小さぐ室温抵抗値 Xも 1.48 Ωと高くなることが分かった。
[0096] これに対し試料番号 22〜26は、 Erの含有量力 TilOOモル部に対し 0.:!〜 0.5 モル部の範囲内にあるので、抵抗変化率 ARも 4桁以上であり、かつ、立ち上がり係 数 αも 9%/°C以上と良好な結果が得られ、しかも室温抵抗値 Xも 0. 3 Ω以下と低く なることが分かった。特に、 Erが TilOOモル部に対し 0·:!〜 0· 3モル部の範囲で含 有されている試料番号 22〜25は、抵抗変化率 A Rは 4. 4桁以上、かつ、立ち上がり 係数ひは 10%Z°C以上であり、より良好な結果が得られることが分かった。
[0097] また、試料番号 28〜34は、 Erの含有量を TilOOモル部に対し 0. 2モル部と一定 にし、 Baサイトと Tiサイトの比 xZyを異ならせたものである。
[0098] 試料番号 28は、 Baサイト/ Tiサイトの比 xZyが 0. 996であり、 0. 998未満である ので、立ち上がり係数ひが 7%Z°Cと小さくなつた。
また、試料番号 34は、 Baサイトと Tiサイトの i x/y力 S1. 008であり、 1. 006を超え ているので、特性が不安定であり、立ち上がり係数ひ及び抵抗変化率 A Rは、いず れも正確に測定することができなかった。
[0099] これに対し試料番号 29〜33は、 Baサイトと Tiサイトの比 x/yは 0. 998以上 1. 00 6以下であり、本発明の範囲内であるので、抵抗変化率 A Rは 4桁以上、立ち上がり 係数 αは 9%/°C以上であることが分かった。特に、 Baサイトと Tiサイトの比 x/yが 1 . 000以上 1. 006以下の試料番号 30〜33は、抵抗変化率 A Rが 4. 8桁以上であり 、立ち上がり係数 αも 13%/°C以上と急峻であり、抵抗変化率 A R及び立ち上がり 係数 αがより顕著に向上していることが分かった。
実施例 3
[0100] 出発原料として、 BaTiO、 TiO、半導体化剤としての Er Oを用意し、半導体セラ
3 2 2 3
ミック層の組成が(Ba Er ) (TiEr ) Oとなるようにこれら出発原料を秤量し、 〔
0.998 0.002- 3
実施例 1〕と同様の方法 ·手順で仮焼粉を得た。
[0101] 次に、得られた仮焼粉に、アクリル酸系有機バインダ、ポリカルボン酸アンモニゥム 塩(分散剤)、及び純水を加えて、 PSZボールと共にボールミル内で 15時間混合して セラミックスラリーを得た。尚、アクリル系有機バインダの添カ卩量は、焼成後の実測焼 結密度が理論焼結密度の 60〜95%となるように調整した。
[0102] そして、その後は〔実施例 1〕と同様の方法 ·手順を使用し、試料番号 41〜48の積 層型正特性サーミスタを作製した。尚、還元雰囲気下での焼成処理は全て 1250°C で行った。 [0103] 次に、試料番号 41〜48の各積層型正特性サーミスタを 20個づっ用意し、〔実施例 1〕と同様の方法で室温抵抗値 X、抵抗変化率 A R、及び立ち上がり係数 αを測定し た。
[0104] 表 3は、各試料における焼結密度 (理論焼結密度に対する実測焼結密度の相対比 )、各試料 20個における室温抵抗値 X、抵抗変化率 A R、及び立ち上がり係数ひの それぞれの平均値を示してレ、る。
[0105] [表 3]
Figure imgf000020_0001
*は本発明の範囲外 表 3から明らかなように、試料番号 41は焼結密度が 60%と低すぎるため、十分に半 導体化することができなかった。
[0106] また、試料番号 48は、焼結密度が 95%であり、焼結密度が高いため、再酸化処理 における酸素が十分に中央部に行き渡らず酸化むらが生じ、このため抵抗変化率 Δ
Rや立ち上がり係数 αを正確に測定することができなかった。
[0107] これに対し試料番号 42〜47は、焼結密度が 65%以上 90%以下の範囲にあるの で、抵抗変化率 A Rは 4. 0〜5. 2桁と 4桁以上であり、かつ、立ち上がり係数 αも 10
〜13%/°Cと 9%/°C以上であり、抵抗変化率 及び立ち上がり係数 αの双方共
、良好な結果が得られることが分かった。 実施例 4
[0108] この実施例では内部電極層から拡散して生じる拡散層の厚み tと半導体セラミック 層の厚み Dとの比 tZDをパラメータとして積層型正特性サーミスタの特性を評価した
[0109] すなわち、まず、出発原料として、 BaTiO 、 TiO、半導体化剤としての Er O及び
3 2 2 3
Sm Oを用意し、半導体セラミック層の組成が(Ba A ) (TiA )〇 (Aは Er又
2 3 0.998 0.002- v v 3 は Smとなるようにこれら出発原料を秤量し、その後は〔実施例 1〕と同様の方法 ·手順 で試料番号 51〜61の積層型正特性サーミスタを作製した。
[0110] 尚、還元雰囲気下の焼成処理は焼成温度 1250°Cで行い、拡散層の厚み tと半導 体セラミック層の厚み Dとの比 t/Dはセラミックグリーンシートの厚みを異ならせること により調整し、これらの比 t/Dは、各試料を TEM (透過型電子顕微鏡)で観察して 拡散層の厚み t及び半導体セラミック層 Dから求めた。尚、試料番号 57及び試料番 号 59の半導体セラミック層の厚み Dはいずれも 10 /i mとしている。
[0111] 次に、試料番号 51〜59の各積層型正特性サーミスタを 10個づっ用意し、〔実施例
1〕と同様の方法で室温抵抗値 X、抵抗変化率 A R、及び立ち上がり係数 αを求めた
[0112] 表 4は、試料番号 5:!〜 59における半導体化剤の種類、拡散層の厚み tと半導体セ ラミック層の厚み Dとの比 tZD、室温抵抗値 X、抵抗変化率 A R、立ち上がり係数ひ のそれぞれの平均値を示してレ、る。
[0113] [表 4]
Figure imgf000022_0001
*本発明の範囲外
**本発明 (請求項 2)の範囲外 表 4から明らかなように、試料番号 59は、半導体化剤として本発明範囲外の Smを 使用しているため、立ち上がり係数 αが 7%/°Cと小さくなることが分かった。また、 上述したように試料番号 57と試料番号 59とは半導体セラミック層の厚み Dはいずれ も 10 /i mであることから、両者について拡散層の厚みを TEMで複数点確認した。す ると、試料番号 59は試料番号 57に比べ、 1. 25倍程度拡散していることが分かった。
[0114] これらのことから試料番号 59は、試料番号 57とは異なり、半導体化剤として Smを 使用しているため、内部電極層から Niが半導体セラミック層中に余分に拡散してしま レ、、このため半導体セラミック層の厚み Dに対する拡散層の厚み tが占める割合が大 きくならざるを得ず、その結果、立ち上がり係数 αが小さくなつたものと思われる。
[0115] 試料番号 51は、比 t/Dが 0. 008であり、 0. 01未満であるので、立ち上がり係数 ひは 10%Z°Cと良好であるものの、抵抗変化率 A Rにはばらつきが生じ、その平均 値は 3. 9桁と 4桁を下廻り、また室温抵抗値も 0. 39 Ωと高くなり好ましくないことが分 かった。
[0116] また、試料番号 58は、比 tZDが 0. 29であり、 0. 20を超えているため、立ち上がり 係数ひが 7%Z°Cと低くなり、また抵抗変化率も 4桁未満と低くなつて好ましくないこと が分かった。
[0117] これに対し試料番号 52〜57は、比 t/Dが 0. 01-0. 20以下であるので、抵抗変 化率 A Rは 4. 5〜4. 9桁となって良好な結果を得ることができ、かつ、立ち上がり係 数ひも 11〜: 13%/°Cと良好な結果を得ることができることが分かった。
[0118] そして、本発明では内部電極層から半導体セラミック層への Niの拡散量を減らすこ とができることから、試料番号 52〜57に示すように拡散層の厚み tを薄くすることがで きる。そしてその結果、良好な抵抗変化率 A R及び立ち上がり係数ひを維持しつつ、 より一層の薄層化が可能な積層型正特性サーミスタを得ることのできることが確認さ れた。

Claims

請求の範囲
[1] 実測焼結密度が理論焼結密度の 65。/0以上 90。/o以下の半導体セラミック層と内部 電極層とが交互に積層されて焼結されてなるセラミック素体と、前記内部電極層と電 気的に接続されるように前記セラミック素体の両端部に形成された外部電極とを有す る積層型正特性サーミスタにおいて、
前記半導体セラミック層は、 BaTi〇系セラミック材料を主成分とすると共に、 Baサイ
3
トと Tiサイトの比が 0. 998≤Baサイト/ Tiサイト≤1. 006であり、半導体化剤として E u、 Gd、 Tb、 Dy、 Y、 Ho、 Er、 Tmの中から選択された少なくとも 1種の元素が、 Til 00モノレ部に対し 0. 1モル部以上 0. 5モル部以下の範囲で含有されていることを特 徴とする積層型正特性サーミスタ。
[2] 前記内部電極層は Niを主成分とすると共に、前記半導体セラミック層と前記内部電 極層とは一体焼成されてなり、
前記一体焼成時に前記内部電極層から前記半導体セラミック層中に拡散して形成 される Niを主成分とする拡散層の厚み tと、前記半導体セラミック層の厚み Dとの比が 、 0. 01≤t/D≤0. 20であること特徴とする請求項 1記載の積層正特性サーミスタ。
PCT/JP2006/318630 2005-09-20 2006-09-20 積層型正特性サーミスタ WO2007034830A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06810326.6A EP1939898B1 (en) 2005-09-20 2006-09-20 Multilayer positive temperature coefficient thermistor
JP2007536532A JP4710096B2 (ja) 2005-09-20 2006-09-20 積層型正特性サーミスタ
CN2006800340774A CN101268527B (zh) 2005-09-20 2006-09-20 层叠型正特性热敏电阻
US12/050,413 US7679485B2 (en) 2005-09-20 2008-03-18 Multilayer positive temperature coefficient thermistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-272484 2005-09-20
JP2005272484 2005-09-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/050,413 Continuation US7679485B2 (en) 2005-09-20 2008-03-18 Multilayer positive temperature coefficient thermistor

Publications (1)

Publication Number Publication Date
WO2007034830A1 true WO2007034830A1 (ja) 2007-03-29

Family

ID=37888873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318630 WO2007034830A1 (ja) 2005-09-20 2006-09-20 積層型正特性サーミスタ

Country Status (5)

Country Link
US (1) US7679485B2 (ja)
EP (1) EP1939898B1 (ja)
JP (1) JP4710096B2 (ja)
CN (1) CN101268527B (ja)
WO (1) WO2007034830A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679485B2 (en) 2005-09-20 2010-03-16 Murata Manufacturing Co., Ltd. Multilayer positive temperature coefficient thermistor
US7830240B2 (en) 2007-03-19 2010-11-09 Murata Manufacturing Co., Ltd. Multilayer positive temperature coefficient thermistor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105130422A (zh) * 2007-09-19 2015-12-09 株式会社村田制作所 层叠陶瓷电容器
EP2377837B1 (en) * 2008-12-12 2018-08-08 Murata Manufacturing Co., Ltd. Semiconductor ceramic and positive temperature coefficient thermistor
CN107238446A (zh) * 2016-03-28 2017-10-10 新材料与产业技术北京研究院 温度检测元件及温度检测器
WO2019204430A1 (en) 2018-04-17 2019-10-24 Avx Corporation Varistor for high temperature applications
CN109727741A (zh) * 2018-12-29 2019-05-07 广东爱晟电子科技有限公司 一种芯片玻璃封装工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151103A (ja) * 1992-10-30 1994-05-31 Murata Mfg Co Ltd 積層型半導体磁器組成物
JPH06251903A (ja) * 1993-02-26 1994-09-09 Murata Mfg Co Ltd 正の抵抗温度特性を有する積層型半導体磁器
JPH0714702A (ja) * 1993-01-20 1995-01-17 Murata Mfg Co Ltd 正の抵抗温度特性を有する積層型半導体磁器
JPH08153605A (ja) * 1994-06-28 1996-06-11 Teika Corp 積層型半導体セラミック素子の製造方法
JPH08153604A (ja) * 1994-06-24 1996-06-11 Teika Corp 積層型半導体セラミック素子の製造方法
JP2001052904A (ja) * 1999-08-09 2001-02-23 Murata Mfg Co Ltd 積層型半導体セラミック素子および積層型半導体セラミック素子の製造方法
JP2001130957A (ja) * 1999-11-02 2001-05-15 Murata Mfg Co Ltd 半導体磁器、半導体磁器の製造方法およびサーミスタ
JP2001203102A (ja) * 2000-01-18 2001-07-27 Murata Mfg Co Ltd 半導体セラミック粉末および積層型半導体セラミック電子部品
JP2004063548A (ja) * 2002-07-25 2004-02-26 Murata Mfg Co Ltd 積層型正特性サーミスタの設計方法
WO2004075216A1 (ja) * 2003-02-21 2004-09-02 Murata Manufacturing Co., Ltd. 積層型セラミック電子部品およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115502A (ja) * 1990-09-05 1992-04-16 Murata Mfg Co Ltd 半導体磁器の製造方法
JPH06302403A (ja) * 1993-04-16 1994-10-28 Murata Mfg Co Ltd 積層型半導体セラミック素子
US6359327B1 (en) * 1998-03-05 2002-03-19 Murata Manufacturing Co., Ltd. Monolithic electronic element fabricated from semiconducting ceramic
JP3812268B2 (ja) 1999-05-20 2006-08-23 株式会社村田製作所 積層型半導体セラミック素子
JP3498211B2 (ja) 1999-12-10 2004-02-16 株式会社村田製作所 積層型半導体セラミック電子部品
JP4487439B2 (ja) * 2000-05-15 2010-06-23 株式会社村田製作所 積層型半導体セラミック素子およびその製造方法
JP3855611B2 (ja) * 2000-07-21 2006-12-13 株式会社村田製作所 半導体セラミック及び正特性サーミスタ
JP4211510B2 (ja) 2002-08-13 2009-01-21 株式会社村田製作所 積層型ptcサーミスタの製造方法
JP4063744B2 (ja) 2003-09-24 2008-03-19 トヨタ自動車株式会社 ハイブリッド車輌の制御装置
JP4710096B2 (ja) 2005-09-20 2011-06-29 株式会社村田製作所 積層型正特性サーミスタ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151103A (ja) * 1992-10-30 1994-05-31 Murata Mfg Co Ltd 積層型半導体磁器組成物
JPH0714702A (ja) * 1993-01-20 1995-01-17 Murata Mfg Co Ltd 正の抵抗温度特性を有する積層型半導体磁器
JPH06251903A (ja) * 1993-02-26 1994-09-09 Murata Mfg Co Ltd 正の抵抗温度特性を有する積層型半導体磁器
JPH08153604A (ja) * 1994-06-24 1996-06-11 Teika Corp 積層型半導体セラミック素子の製造方法
JPH08153605A (ja) * 1994-06-28 1996-06-11 Teika Corp 積層型半導体セラミック素子の製造方法
JP2001052904A (ja) * 1999-08-09 2001-02-23 Murata Mfg Co Ltd 積層型半導体セラミック素子および積層型半導体セラミック素子の製造方法
JP2001130957A (ja) * 1999-11-02 2001-05-15 Murata Mfg Co Ltd 半導体磁器、半導体磁器の製造方法およびサーミスタ
JP2001203102A (ja) * 2000-01-18 2001-07-27 Murata Mfg Co Ltd 半導体セラミック粉末および積層型半導体セラミック電子部品
JP2004063548A (ja) * 2002-07-25 2004-02-26 Murata Mfg Co Ltd 積層型正特性サーミスタの設計方法
WO2004075216A1 (ja) * 2003-02-21 2004-09-02 Murata Manufacturing Co., Ltd. 積層型セラミック電子部品およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679485B2 (en) 2005-09-20 2010-03-16 Murata Manufacturing Co., Ltd. Multilayer positive temperature coefficient thermistor
US7830240B2 (en) 2007-03-19 2010-11-09 Murata Manufacturing Co., Ltd. Multilayer positive temperature coefficient thermistor

Also Published As

Publication number Publication date
US20080204187A1 (en) 2008-08-28
EP1939898A1 (en) 2008-07-02
US7679485B2 (en) 2010-03-16
EP1939898A4 (en) 2015-04-08
JPWO2007034830A1 (ja) 2009-03-26
JP4710096B2 (ja) 2011-06-29
CN101268527A (zh) 2008-09-17
EP1939898B1 (en) 2018-04-25
CN101268527B (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
JP5304757B2 (ja) セラミック積層ptcサーミスタ
US7830240B2 (en) Multilayer positive temperature coefficient thermistor
KR101444678B1 (ko) 적층형 ptc 서미스터 및 이의 제조방법
JPWO2008152851A1 (ja) 圧電磁器組成物、及び圧電セラミック電子部品
US9530547B2 (en) Laminated PTC thermistor element
JP4710096B2 (ja) 積層型正特性サーミスタ
CN110776317B (zh) 电介质陶瓷组合物及层叠陶瓷电子部件
JP4780306B2 (ja) 積層型サーミスタ及びその製造方法
JPH06302403A (ja) 積層型半導体セラミック素子
EP2015318A2 (en) Stacked PTC thermistor and process for its production
JP4710097B2 (ja) 積層型正特性サーミスタ
WO2013065373A1 (ja) 半導体セラミックおよびそれを用いたptcサーミスタ
JP4462438B2 (ja) 圧電磁器組成物、積層型圧電素子及び積層型圧電素子の製造方法
JP4888264B2 (ja) 積層型サーミスタ及びその製造方法
JP4984958B2 (ja) 積層型サーミスタおよびその製造方法
US20140247107A1 (en) Barium titanate semiconductor ceramic and ptc thermistor using the same
JP4144080B2 (ja) 積層型半導体セラミック素子
JP4930676B2 (ja) 圧電磁器組成物、積層型圧電素子及び積層型圧電素子の製造方法
EP3778529A1 (en) Ceramic composition, ceramic sintered body, laminated ceramic electronic component and method for manufacturing the same
JP2008205343A (ja) 積層型サーミスタの製造方法
JP2006160531A (ja) 誘電体磁器組成物及び磁器コンデンサとそれらの製造方法
JP4711083B2 (ja) 積層型圧電素子
JP2003192436A (ja) 積層型圧電セラミック素子の製造方法
JP2006100598A (ja) 積層型圧電素子の製造方法及び酸素供給方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034077.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007536532

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006810326

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE