WO2007015448A1 - 樹脂組成物およびそれからなる成形品 - Google Patents
樹脂組成物およびそれからなる成形品 Download PDFInfo
- Publication number
- WO2007015448A1 WO2007015448A1 PCT/JP2006/315118 JP2006315118W WO2007015448A1 WO 2007015448 A1 WO2007015448 A1 WO 2007015448A1 JP 2006315118 W JP2006315118 W JP 2006315118W WO 2007015448 A1 WO2007015448 A1 WO 2007015448A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- acid
- polymer
- resin composition
- styrene
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/006—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to block copolymers containing at least one sequence of polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/08—Copolymers of styrene
- C08L25/12—Copolymers of styrene with unsaturated nitriles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L35/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L35/06—Copolymers with vinyl aromatic monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/04—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L55/00—Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
- C08L55/02—ABS [Acrylonitrile-Butadiene-Styrene] polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/092—Polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0853—Vinylacetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
- C08L33/12—Homopolymers or copolymers of methyl methacrylate
Definitions
- the present invention is excellent in strength, impact resistance, heat resistance, and molding processability, and further reduces the environmental load during production, which can significantly reduce the carbon dioxide (CO) emission during production and disposal.
- CO carbon dioxide
- the present invention relates to a greave composition and a molded article comprising the same.
- Styrenic resin is used in a wide range of fields such as electrical and electronic parts, automobiles, miscellaneous goods, and various applications due to its excellent mechanical properties, molding processability, and appearance.
- styrene resin is made from petroleum resources, and CO emissions into the atmosphere during production and disposal
- biodegradable polymers that are degraded in the natural environment by the action of microorganisms present in soil and water have attracted attention, and various biodegradable polymers have been developed.
- polylactic acid is expected as a biodegradable polymer that can be melt-molded with a relatively low melting point of about 170 ° C.
- lactic acid a monomer, has been produced at low cost by fermentation using microorganisms, using corn and other biomass as raw materials, and polylactic acid can be produced at a much lower cost. Therefore, it is expected to be a biopolymer derived from not only biodegradable polymer but also to use it as a general-purpose polymer.
- it has physical defects such as low impact resistance and flexibility, and an improvement has been desired.
- Patent Document 1 a method of mixing polylactic acid and a thermoplastic resin such as polystyrene, polyethylene, polyethylene terephthalate and polypropylene. When mixed by this method, it becomes an environmentally low load material, but in order to use it as a general-purpose resin, it was necessary to improve mechanical properties.
- an aliphatic polyester resin composition containing an aliphatic polyester and a multilayer structure polymer (Patent Document 3), and a vinyl monomer graft-polymerized to a polylactic acid polymer and a rubber polymer.
- Patent Document 4 a resin composition having a graft copolymer strength obtained.
- these resin compositions contain no styrene-based resin and can be obtained.
- the product has a problem in terms of heat resistance, and when used as a general-purpose polymer, further improvement is necessary.
- Patent Document 1 Japanese Patent Publication No. 6-504799 (Page 53)
- Patent Document 2 JP 2005-60637 A (Page 2)
- Patent Document 3 JP 2003-286396 A (Page 2)
- Patent Document 4 JP 2004-285258 A (Page 2)
- the present invention has been achieved as a result of studying the solution of the problems in the above-described conventional technology as an object, and the object thereof is excellent strength, impact resistance, heat resistance, and the like. Has moldability and greatly reduces CO emissions during production and environmental impact during disposal
- the present inventors blended at least one selected from a styrene-based resin, an aliphatic polyester, and a compatibilizing agent and dicarboxylic anhydride power. It has been found that the above problems can be solved by using a resin composition.
- the present invention relates to
- A Styrenic resin, (B) aliphatic polyester, and (C) compatibilizer and (D) dicarboxylic anhydride power, a resin composition comprising at least one selected.
- X represents at least one selected from hydrogen, an alkyl group, a hydroxyl group, an alkyl ester group, a cyan group, a phenol group, an amide group, and a halogen group strength.
- M and n each represent a number average molecular weight, 1000 Value of ⁇ 100000;
- Rubbery polymer strength A graft polymer in which 10 to 80% by weight of the rubbery polymer is graft-polymerized with 10 to 70% by weight of aromatic vinyl units and 10 to 50% by weight of cyanide-based bull units.
- the resin composition according to (5) which is a polymer.
- the (C) compatibilizer is the (C 2) and Z or (C 3) component, and the sum of (C 2) and Z or (C 3) in the electron micrograph of the cross-section of the resin composition
- a styrene resin (B) an aliphatic polyester, (C) a compatibilizing agent, and (D) a dicarboxylic acid anhydride are selected.
- a resin composition containing at least one kind an environmentally low-impact resin composition having excellent strength, impact resistance, heat resistance, and moldability and a molded product thereof can be obtained.
- FIG. 1 is a schematic diagram showing the phase structure of the greave composition of the present invention.
- FIG. 2 is a schematic diagram showing a phase structure that is a greave composition in the prior art.
- Styrenic resin used in the present invention includes styrene, a-methylstyrene, o-methylolstyrene, p-methylolstyrene, o-ethylstyrene, p-ethynolestyrene and p-t.
- styrene a-methylstyrene, o-methylolstyrene, p-methylolstyrene, o-ethylstyrene, p-ethynolestyrene and p-t.
- Known bulk polymerization and bulk suspension polymerization of (b) aromatic vinyl monomers such as butylstyrene, or (b) aromatic vinyl monomers and other copolymerizable monomers It can be obtained by subjecting it to solution polymerization, precipitation polymerization or emulsion polymerization.
- the (A) styrene-based resin in the present invention does not include a rubber polymer obtained by graft polymerization of (b) an aromatic bur unit or the like. Those obtained by graft polymerization of (b) aromatic vinyl-based units etc. on rubbery polymers are included in (E) rubbery polymers described below.
- the typical (A) styrene-based resin is specifically (b) Aromatic Bulle Unit 1 to: LOO weight%, (a) Unsaturated carboxylic acid alkyl ester unit 0-99 wt%, ⁇ , in terms of heat resistance, preferably 10 to 90 wt%, more preferably 30 to 80 wt%, (c) cyanide Bulle based unit 0-50 wt 0/0, In terms of impact resistance and heat resistance, preferably 10 to 45% by weight, more preferably 20 to 35% by weight, and (d) 0 to 99% by weight of other vinyl units copolymerizable with these, impact resistance From the viewpoint of heat resistance and heat resistance, it is preferably a vinyl copolymer obtained by copolymerizing 1 to 80% by weight, more preferably 5 to 50% by weight.
- the (a) unsaturated carboxylic acid alkyl ester monomer used in (A) styrene-based resin in the present invention is not particularly limited, but an alkyl group having 1 to 6 carbon atoms or a substituted alkyl. Acrylic esters with groups and Z or methacrylic esters are preferred.
- unsaturated carboxylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and (meth) acrylic acid.
- (c) cyanobyl monomers used for (A) styrene-based resins in the present invention are not particularly limited, and examples thereof include acrylonitrile, methacrylic mouth-tolyl, and ethacrylo-tolyl. Among them, acrylonitrile is preferably used. These can be used alone or in combination of two or more.
- (A) (d) other vinyl monomers copolymerizable with these used for styrene-based resins include (a) unsaturated carboxylic acid alkyl ester monomers, (b) There is no particular limitation as long as it can be copolymerized with (a) aromatic vinyl monomers and (c) vinyl cyanide monomers. Specific examples include N-methylmaleimide, N-ethylmaleimide, and N-cyclohexane.
- Maleimide monomers such as xylmaleimide and N-phenolmaleimide, unsaturated carboxylic acid monomers such as acrylic acid and methacrylic acid, and unsaturated dicarboxylic acid monomers such as maleic acid and maleic acid monoethyl ester And its ester monomers, 3-hydroxy-1-propene, 4-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3-hydroxy-1-2-methyl-1-propene Cis-5 hydroxy-2 pentene, trans-5-hydroxy-2 pentene, 4,4-dihydroxy-2-butene-containing butyl monomers such as butyl glycidyl ether, styrene-p glycidyl ether and p-glycidyl styrene Bull monomer having epoxy group, acrylamide, methacrylamide, N methyl acrylamide, butoxymethyl acrylamide, N-propyl methacryl
- unsaturated carboxylic acid glycidyl esters such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, or unsaturated dicarboxylic anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, etc.
- unsaturated carboxylic acid glycidyl ester or unsaturated dicarboxylic acid anhydride is less than 3% by weight.
- the properties of the styrene-based resin are not limited, but using a methyl ethyl ketone solvent in that a resin composition having excellent impact resistance and molding processability can be obtained.
- the intrinsic viscosity [r?] Measured at 30 ° C is preferably in the range of 0.20-2. OOdlZg 0.25 to 1. More preferably in the range of 50 dlZg 0.28 to: The range of 0.30 to 0.50 is particularly preferred in that a rosin composition having excellent heat resistance that is more preferred in the range of LOOdlZg is obtained.
- the (B) aliphatic polyester of the present invention is not particularly limited, but is a polymer mainly comprising an aliphatic hydroxycarboxylic acid, an aliphatic polycarboxylic acid and an aliphatic polyhydric alcohol. And the like, and the like.
- polymers having aliphatic hydroxycarboxylic acid as the main component include polydaricol acid, polylactic acid, poly-3-hydroxybutyric acid, poly-4-hydroxybutyric acid, poly-4-hydroxyvaleric acid, and poly-3-hydroxy.
- polystyrene resin examples include polyethylene adipate, polyethylene succinate, polybutylene adipate, or polybutylene succinate. Etc.
- polyethylene adipate examples include polyethylene adipate, polyethylene succinate, polybutylene adipate, or polybutylene succinate. Etc.
- polylactic acid is particularly preferably used from the viewpoint of heat resistance that is preferably a polymer mainly composed of hydroxycarboxylic acid.
- the polylactic acid is a polymer mainly composed of L lactic acid and Z or D lactic acid, but may contain other copolymer components other than lactic acid as long as the object of the present invention is not impaired. Good.
- Examples of other copolymer component units that can be used include polyvalent carboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, and ratatones.
- oxalic acid, malonic acid, succinic acid, Glutaric acid, adipic acid, azelaic acid, sebacic acid dodecanedioic acid, fumaric acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 2, 6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid Acids, polyvalent carboxylic acids such as 5-tetrabutylphosphorosulfoisophthalic acid, ethylene glycol, propylene glycol mononole, butanediole, heptanediole, hexanediole, octanediole, nonanediol, decanediol 1,4-cyclohexanedimethanol, neopentylglycone, glyce , Trimethylolpropane, pent
- Polyhydric alcohols glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid, hydroxybenzoic acid and other hydroxycarboxylic acids, glycolide, epsilon prolataton glycolide, epsilon It is also possible to use ratatones such as —force prolatatone, ⁇ -propiolatathon, ⁇ -buty-mouthed rataton, 13—or ⁇ -buty-mouthed rataton, pivala rataton, and ⁇ -valerolataton. These copolymerization components can be used alone or in combination of two or more.
- the optical purity of the lactic acid component is high.
- the L-form or D-form is contained in an amount of 80 mol% or more. More preferably, it is more preferably 90 mol% or more, more preferably 95 mol% or more. The upper limit is 100 mol 0/0.
- a polylactic acid stereocomplex in terms of heat resistance and molding cacheability.
- L form is 90 mol% or more, preferably 95 mol% or more, more preferably 98 mol% or more poly-L-lactic acid and D form is 90 mol% or more, Preferably 9 Examples thereof include a method in which 5 mol% or more, more preferably 98 mol% or more of poly-D-lactic acid is mixed by melt kneading or solution kneading.
- Another method is a method of using poly-L lactic acid and poly-D-lactic acid as a block copolymer, and the polylactic acid stereocomplex can be easily formed.
- a method using a block copolymer of L-lactic acid and poly-D-lactic acid is preferred.
- the (B) aliphatic polyester of the present invention may be used alone or in combination of two or more.
- polylactic acid and polybutylene succinate may be used in combination
- poly L milk A block copolymer of poly (L-lactic acid) and poly (D-lactic acid) forming a polylactic acid stereocomplex can be used in combination.
- a known polymerization method can be used. Particularly, for polylactic acid, a direct polymerization method from lactic acid, a ring-opening polymerization method via lactide, or the like can be employed. Can do.
- the molecular weight and molecular weight distribution of the (B) aliphatic polyester are not particularly limited as long as they can be processed substantially.
- the weight average molecular weight is preferably from the viewpoint of heat resistance. It should be 10,000 or more, more preferably 40,000 or more, further preferably 80,000 or more, particularly preferably 10,000 or more, and most preferably 130,000 or more.
- the upper limit is not particularly limited, but in terms of fluidity, 500,000 or less is preferable, 300,000 or less is more preferable, and 250,000 or less is more preferable.
- the weight average molecular weight is preferably in the range of 200,000 to 250,000 in that a rosin composition having excellent heat resistance can be obtained.
- the weight average molecular weight here is a weight average molecular weight in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent. .
- the melting point of the (B) aliphatic polyester is not particularly limited, but it is preferably 90 ° C or higher from the viewpoint of heat resistance, and more preferably 150 ° C or higher. .
- the melting point here is the temperature at the top of the endothermic peak measured with a differential scanning calorimeter (DSC).
- melt viscosity ratio of (A) styrene-based resin and (B) aliphatic polyester ((A) Z (B)) is in the range of 0.1 to 10 Preferably there is.
- the compatibilizing agent has a function of improving the compatibility between (A) styrene-based rosin and (B) aliphatic polyester, and (C) the compatibilizing agent.
- the phase structure of (A) styrenic resin and (B) aliphatic polyester is affected, and properties such as strength, impact resistance, heat resistance and cx H and ll molding processability , Greatly improved.
- (C2) A vinyl polymer obtained by copolymerizing 3% by weight or more of an unsaturated carboxylic acid glycidyl ester unit or an unsaturated dicarboxylic acid anhydride unit.
- the polylactic acid segment represented by the general formula (I) and the vinyl polymer segment represented by the general formula ( ⁇ ) have a copolymerization ratio ((1) 7 (11)) 99 1 to Block copolymer bound at 1799 parts by weight (where (1) + (II) is 100 parts by weight)
- X represents at least one selected from hydrogen, alkyl group, hydroxyl group, alkyl ester group, cyan group, phenol group, amide group and halogen group power.
- M and n represent number average molecular weights.
- the (C1) polymethyl methacrylate polymer of the present invention is a graft obtained by graft-polymerizing methyl methacrylate units to a polymer of methyl methacrylate and Z or copolymer. Does not contain polymer.
- the graft polymer obtained by graft-polymerizing 20 to 90% by weight of methyl methacrylate units to 10 to 80% by weight of the rubbery polymer is included in the graft polymer (C2) described later, and other rubbery polymers to methacrylic acid.
- the graft polymer obtained by graft polymerization of the methyl unit is included in the (E) rubbery polymer described later.
- the (C-1) polymethyl methacrylate polymer of the present invention is mainly composed of a methyl methacrylate component unit, and in terms of impact resistance and heat resistance, the methyl methacrylate component unit. It is also possible to use a copolymer obtained by copolymerizing other bulle monomer component units preferably containing 70 mol% or more, preferably 30 mol% or less, more preferably 20 mol% or less.
- the (C1) polymethyl methacrylate polymer of the present invention may be copolymerized with other beryl monomers such as acrylic acid, methyl acrylate, ethyl acrylate, acrylic acid. Pill, butyl acrylate, 2-ethylhexyl acrylate, aminoethyl acrylate, propylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, dicyclopenteroxyl acrylate, acrylic acid Dicyclopental, Butanediol diacrylate, Nonanediol diacrylate, Polyethylene glycol diacrylate, Methyl 2- (hydroxymethyl) acrylate, Ethyl 2- (hydroxymethyl) acrylate, Methacrylic acid, Ethyl methacrylate, Methacrylic acid Propyl, butyl methacrylate, methacryl Cyclohexyl, 2-ethylhexyl methacrylate, hydroxychetyl me
- butyl monomers can be copolymerized, and other vinyl monomers include ⁇ -methyl styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, ⁇ ethyl styrene, ⁇ ethyl styrene, Aromatic butyl monomers such as p-t-butyl styrene, cyanide butyl monomers such as acrylonitrile, metatali-tolyl, etatali-tolyl, allyl glycidyl ether, styrene-p glycidyl ether, p glycidyl N-substituted maleimides such as styrene, maleic acid monoethyl ester, itaconic acid, butyl acetate, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenolmale
- examples of other copolymerizable bull monomers include glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, and glycidyl itaconate.
- the copolymerization amount of unsaturated carboxylic acid glycidyl ester or unsaturated carboxylic acid anhydride is less than 3% by weight. Copolymers of 3% by weight or more of unsaturated carboxylic acid glycidyl ester or unsaturated rubonic acid anhydride are included in the (C2) vinyl polymer described later.
- the weight average molecular weight of the (C 1) polymethyl methacrylate polymer is not particularly limited, but is preferably in the range of 10,000 to 450,000 in terms of impact resistance and heat resistance. More preferably, it is in the range of 30,000 to 200,000, and more preferably in the range of 50,000 to 150,000.
- the weight average molecular weight here is a weight average molecular weight in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent.
- the glass transition temperature (Tg) of (C-1) polymethyl methacrylate polymer is not particularly limited, but is preferably 60 ° C or higher from the viewpoint of heat resistance. More preferably, ° C or higher, more preferably 80 ° C or higher, and most preferably 90 ° C or higher, most preferably 100 ° C or higher.
- the upper limit is not particularly limited, but is preferably 150 ° C. or less from the viewpoint of moldability.
- Tg is a Tg value obtained by differential scanning calorimeter (DSC) measurement, and is a temperature at which the change in specific heat capacity in the Tg region is halved.
- the stereoregularity of the (C-1) polymethyl methacrylate polymer is not particularly limited, but in terms of impact resistance and heat resistance, syndiotacticity is 20% or more is preferable 30% or more is more preferable 40% or more is more preferable.
- the upper limit is not particularly limited, but is preferably 90% or less from the viewpoint of moldability.
- the heterotacticity is preferably 50% or less, more preferably 40% or less, and even more preferably 30% or less.
- the isotacticity is preferably 20% or less, more preferably 15% or less, and even more preferably 10% or less.
- Syndiotacticity, heterotacticity, and isotacticity here are values calculated from the integrated intensity ratio of methyl groups in a linear branch by 1H-NMR measurement using a deuterated black-mouth form as a solvent. It is.
- a known polymerization method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization or the like can be used as a method for producing the (C 1) polymethyl methacrylate polymer.
- the vinyl polymer obtained by copolymerizing 3% by weight or more of the (C2) unsaturated carboxylic acid glycidyl ester unit or unsaturated dicarboxylic acid anhydride unit of the present invention is a single amount of unsaturated carboxylic acid glycidyl ester.
- a graft polymer obtained by graft-polymerizing 3% by weight or more of a glycidyl ester unit or an unsaturated dicarboxylic acid anhydride unit to a rubbery polymer is included in (E) rubbery polymer described later.
- the copolymer in terms of impact resistance and heat resistance, unsaturated glycidyl ester units or unsaturated dicarboxylic anhydride unit forces of 3% by weight or more are copolymerized bulles. It is preferable that the copolymer is a vinyl copolymer copolymerized by 6% by weight or more, more preferably a vinyl copolymer copolymerized by 9% by weight or more. Further preferred.
- the upper limit is preferably a bulle copolymer copolymerized by 90% by weight or less from the viewpoint of fluidity, and more preferably a vinyl copolymer copolymerized by 40% by weight or less. More preferably, it is a vinyl copolymer copolymerized by 20% by weight or less, and particularly preferably a vinyl copolymer copolymerized by 15% by weight or less.
- examples of the unsaturated carboxylic acid glycidyl ester monomer include glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, and the like.
- unsaturated glycidyl ester monomers include glycidyl acrylate, glycidyl methacrylate, and unsaturated dicarboxylic acid.
- acid anhydride monomer maleic acid anhydride and 5-norbornene-2,3 dicarboxylic acid anhydride are preferable. These can be used alone or in combination of two or more.
- the vinyl polymer in which 3% by weight or more of the (C2) unsaturated carboxylic acid glycidyl ester unit or unsaturated dicarboxylic acid anhydride unit of the present invention is copolymerized The bull monomer other than the ester monomer or the unsaturated dicarboxylic acid anhydride monomer may be copolymerizable with the unsaturated carboxylic acid glycidyl ester monomer or the unsaturated dicarboxylic acid anhydride monomer.
- methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate are not particularly limited.
- Aromatic butyl monomers such as butyl styrene, cyanide butyl monomers such as acrylonitrile, methallyl-tolyl, and etatali-tolyl, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide , N maleimide monomers such as phenol maleimide, acrylic acid, methacrylic acid, maleic acid, maleic acid monoethyl ester, 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2- Butyl monomers with hydroxyl groups such as butene, trans-4-hydroxy-2 butene, 3 hydroxy-2-methyl-1-probe, cis-5-hydroxy-2-pentene, trans-5-hydroxy-2-pentene, 4,4-dihydroxy-2-butene , Arylglycidyl ether, styrene p glycidyl ether and And p-glycid
- the weight average molecular weight of the vinyl polymer obtained by copolymerizing 3% by weight or more of (C2) unsaturated carboxylic acid glycidyl ester unit or unsaturated dicarboxylic acid anhydride unit is particularly limited. However, in terms of impact resistance and heat resistance, it is preferably in the range of 1000 to 450,000, more preferably in the range of 3000 to 100,000, and in the range of 5000 to 10,000. Is more preferable.
- the weight average molecular weight here is a weight average molecular weight in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent.
- the glass transition temperature (Tg) of a vinyl polymer copolymerized with 3% by weight or more of dicarboxylic acid anhydride units is not particularly limited, but is preferably 50 ° C or higher from the viewpoint of heat resistance. More preferred is 50 ° C or higher, more preferred is 70 ° C or higher. Most preferred is 90 ° C or higher.
- the upper limit is not particularly limited, but it is preferably 150 ° C or less from the viewpoint of moldability.
- Tg is a value of Tg obtained by differential scanning calorimeter (DSC) measurement, and is a temperature at which the specific heat capacity change in the glass transition region becomes a half value.
- [0053] of the present invention (C-3) is methyl methacrylate units 20 to 90 wt.% Graft polymerized graft polymer in the rubber-like polymer 10-80 weight 0/0, the rubber polymer of 10 to 80
- a monomer mixture obtained by adding 20 to 90% by weight of methyl methacrylate and a monomer copolymerizable therewith can be converted into a known bulk polymerization, bulk suspension polymerization, solution polymerization, precipitation polymerization or It is obtained by subjecting it to emulsion polymerization.
- the (C-3) rubber is methyl methacrylate units 20 to 90% by weight and the graft polymer is graft-polymerized to the polymer 10 to 80 wt 0/0, methyl methacrylate units 20 to 90 wt% Copolymer strength containing 10 to 80% by weight of grafted rubber polymer Copolymer strength containing 20 to 90% by weight of methyl methacrylate units (r) Rubbery polymer 10 to 80% And those having a structure ungrafted in weight percent.
- any vinyl-based graft polymer obtained by copolymerizing 20 to 90% by weight of a methyl methacrylate unit in the presence of 10 to 80% by weight of a rubbery polymer may be particularly limited. no but impact resistance, in terms of heat resistance, in the presence of the rubbery polymer 10 to 80 wt%, Metaku acrylic acid methyl units 20 to 90 weight 0/0, the aromatic Bulle based unit 0 to 70 wt 0 Preferred is a vinyl graft copolymer obtained by copolymerizing / 0 , 0 to 50% by weight of vinyl cyanide units and 0 to 70% by weight of other vinyl units copolymerizable therewith.
- the rubbery polymer is not particularly limited! However, a rubbery polymer having a glass transition temperature of 0 ° C or lower is preferred, such as Gen rubber, acrylic rubber, ethylene rubber, organosilo Xanthan rubber can be used. Specific examples of these rubbery polymers include polybutadiene, styrene butadiene copolymer, block copolymer of styrene butadiene, acrylo-tolyl butadiene copolymer, butyl acrylate-butadiene copolymer, and polyisoprene.
- Examples include ethylene methyl acrylate copolymer and polyorganosiloxane acrylic copolymer containing polyorganosiloxane and alkyl (meth) acrylate rubber.
- polybutadiene, styrene butadiene copolymer, block copolymer of styrene butadiene, atta-tri-butadiene copolymer, butyl acrylate-methacrylic acid especially in terms of impact resistance.
- Acid methyl copolymers and polyorganosiloxane acrylic copolymers are preferred and can be used in one or a mixture of two or more.
- the weight of the rubbery polymer from 20 to 90 wt% of methyl methacrylate units in the rubber-like polymer 10-80 weight 0/0 constitutes the graft polymerized graft polymer Rights
- the average particle diameter is not particularly limited, but in terms of impact resistance, it is preferably in the range of 0.05-: L 0 m, and more preferably in the range of 0.1-0.5 / zm. preferable. By setting the weight average particle diameter of the rubbery polymer in the range of 0.05 ⁇ m to 1.0 ⁇ m, excellent impact resistance can be exhibited.
- the weight average particle diameter of the rubbery polymer is the sodium alginate method described in "Rubber Age, Vol. 88, p. 484-490, (1960) by E. Schmidt, PH Biddison"
- the polybutadiene particle size to be creamed differs depending on the concentration of sodium alginate, it is measured by a method that obtains a particle size of 50% cumulative weight fraction from the weight proportion of cream and the cumulative weight fraction of sodium alginate concentration. can do.
- the monomers that can be combined are not particularly limited, for example, acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, 2-ethyl acrylate. Hexyl, allylic acrylate, aminoethyl acrylate, propylaminoethyl acrylate
- other vinyl monomers can be copolymerized.
- bulle monomers include styrene, ⁇ -methylolstyrene, ⁇ -methylolstyrene, ⁇ -methylstyrene, ⁇ ethylstyrene, ⁇ Acetyl butyl, aromatic butyl monomers such as p-t-butyl styrene, cyanide butyl monomers such as acrylonitrile, methacrylic mouth-tolyl, etatalue-tolyl, glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylic acid , Glycidyl itaconate, allylic glycidyl ether, styrene-p glycidyl ether, p glycidyl styrene and other butyl monomers having an epoxy group, maleic acid monoethyl
- aromatic vinyl monomers cyanine vinyl One or more of these which are preferred for the monomer can be used.
- the present invention (C- 3) 2 0 ⁇ 90 wt% of methyl methacrylate units in the rubber-like polymer 10-80 weight 0/0 Te per cent, the graft polymerized graft polymer, other copolymerizable
- unsaturated glycidyl esters such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, or maleic anhydride, itaconic anhydride, citraconic acid
- An unsaturated dicarboxylic acid anhydride such as an anhydride may be copolymerized, but the copolymerization amount of the unsaturated carboxylic acid glycidyl ester or the unsaturated carboxylic acid anhydride is less than 3% by
- (C-3) use the graft polymer of methyl methacrylate units 2 0-90 wt% grafted polymerized to the rubber-like polymer 10-80 weight 0/0, Ru aromatic vinyl
- monomers that are not particularly limited include styrene, a-methylstyrene, o-methylstyrene, p-methylolstyrene, o-ethylstyrene, p-ethylstyrene, and p-t-butylstyrene.
- Styrene and ⁇ -methylstyrene are preferably used. These can be used alone or in combination of two or more.
- (C-3) use the graft polymer of methyl methacrylate units 2 0-90 wt% grafted polymerized to the rubber-like polymer 10-80 weight 0/0, Ru Shiani spoon vinyl
- acrylonitrile is preferably used among the specific strengths such as acrylonitrile, methacrylo-tolyl, and ethacrylo-tolyl as specific examples without particular limitation. One or more of these can be used.
- (C- 3) 2 0 ⁇ 90 wt% of methyl methacrylate units in the rubber-like polymer 10-80 weight 0/0 graft polymerized graft polymer, the rubbery polymer 10 80 wt%, more preferably in the presence of 30 to 70 wt%, methyl methacrylate 20 to 90 weight 0/0, more preferably the force impact resistance obtained by copolymerizing 30 to 70 wt%, heat
- the aromatic bule monomer is 0 to 70% by weight, more preferably 0 to 50% by weight.
- the vinyl monomer is 0 to 50% by weight, more preferably 0 to 30% by weight, and other vinyl monomers copolymerizable with these are 0 to 70% by weight, more preferably 0 to 50% by weight. It is obtained by copolymerization. Even if the ratio of the rubbery polymer is less than the above range or exceeds the above range, the impact strength and the surface appearance may be deteriorated.
- (C 3) 20 to 90 wt% of methyl methacrylate units in the rubber-like polymer 10-80 weight 0/0 graft polymerized graft polymer, monomer or single rubber-like polymer
- an ungrafted copolymer is contained.
- the graft ratio of the graft polymer is not particularly limited, but in order to obtain a resin composition having an excellent balance between impact resistance and gloss, it is 10 to LOO% by weight, particularly 20 to 80% by weight. Preferably there is.
- the graft ratio is a value calculated by the following equation.
- Graft ratio (%) [ ⁇ Amount of vinyl copolymer grafted onto rubbery polymer> Z ⁇ Rubber content of graph copolymer>] X 100
- the characteristics of the copolymer after grafting are not particularly limited! However, in terms of impact resistance, the intrinsic viscosity [] (measured at 30 ° C) of the methylethyl ketone-soluble component is 0.1 to 10: L OOdl / g, particularly preferably in the range of 0.20 to 0.80 dl / g.
- [0065] of the present invention (C-3) 20 to 90 wt% of methyl methacrylate units in the rubber-like polymer 10-80 weight 0/0 graft polymerized graft polymer may be obtained by known polymerization methods it can. For example, it is obtained by a method in which a mixture of a monomer and a chain transfer agent and a solution of a radical generator dissolved in an emulsifying agent are continuously supplied to a polymerization vessel in the presence of a rubbery polymer latex and subjected to emulsion polymerization. Can do.
- (C4) the polylactic acid segment represented by the general formula (I) and the vinyl polymer segment represented by the general formula ( ⁇ ) have a copolymerization ratio ((I) / ( II))
- a block copolymer bonded with 99 parts by weight of 99Zl to 99 parts by weight (where (I) + (II) is 100 parts by weight) is represented by the polylactic acid segment (A) and the general formula ( ⁇ ).
- the polylactic acid segment in the block copolymer of the present invention is a structural unit represented by the general formula (I), and is a polymer having L lactic acid and Z or D lactic acid as the main monomer component. Although it is one, other copolymerization components other than lactic acid may be included. Other monomer units include ethylene glycol, propylene glycol, butanediol, heptanediol.
- a polylactic acid segment having a high lactic acid component optical purity in order to obtain a particularly high and heat-resistant resin composition, it is preferable to use a polylactic acid segment having a high lactic acid component optical purity.
- the L-form is contained at 80% or more, or the D-form is contained at 80% or more.
- the L-form is contained at 90% or more, or the D-form is 90%. It is even more preferable that the L isomer is contained in an amount of 95% or more or the D isomer is contained in an amount of 95% or more.
- a known polymerization method can be used, and examples thereof include a direct polymerization method from lactic acid and a ring-opening polymerization method via lactide.
- the m (number average molecular weight) of the polylactic acid segment used in the present invention is preferably 1000 to LOOOOO, more preferably 1000 to 50000 in order to have practical mechanical properties as a compatibilizing effect. is there.
- m (number average molecular weight) of the polylactic acid segment is a value obtained by calculating the specific power of the main chain and the terminal of the spectrum obtained by 1H-NMR measurement.
- Polylactic acid segment is dissolved in deuterium chloroform solvent, and the peak area near 5.2ppm derived from main chain CH and 4.6ppm peak area derived from terminal CH is also a structural repeating unit And the number average molecular weight is obtained.
- the average molecular weight of the polylactic acid segment can be determined by measuring the molecular weight of the raw material before obtaining the copolymer, but the number average molecular weight can also be obtained by measuring 1H-NMR of the copolymer. .
- the vinyl polymer segment represented by the general formula ( ⁇ ) of the present invention is a structural force represented by the general formula ( ⁇ ).
- X is hydrogen, an alkyl group.
- the carbon number of the alkyl group and the alkyl ester group is preferably 1 to 12, more preferably 1 to 6.
- Typical examples of the bull polymer segment include polyethylene, ethylene monoacetate butyl copolymer, ethylene-glycidyl methacrylate copolymer, ethylene-dimethylaminoethyl methacrylate copolymer, and ethylene monomaleic anhydride copolymer.
- Z or a derivative can be used.
- n (number average molecular weight) of the bull polymer segment used in the present invention is preferably 1000 to 100,000, and more preferably 1000 to 1,000 in order to have a compatibility effect and practical mechanical properties. 50000.
- n (number average molecular weight) of the bull polymer segment is a value of number average molecular weight in terms of standard polystyrene or standard polymethyl methacrylate, measured by gel permeation chromatography (GPC).
- GPC gel permeation chromatography
- the compound CXHI can be produced by melting the compound CXHI into I-lactide and using a ring-opening polymerization method using a known ring-opening polymerization catalyst.
- a compound containing one or more hydroxyl groups at the terminal or side chain melts into lactide.
- the method for producing a compound containing one or more hydroxyl groups at the terminal or side chain is not particularly limited, but random copolymerization with a monomer containing hydroxyl groups, block copolymerization, A method of polymerizing by graft copolymerization or radical polymerization of a monomer represented by the following general formula ( ⁇ ) and end-capping with a chain transfer agent containing a hydroxyl group is used.
- X represents at least one selected from hydrogen, alkyl group, hydroxyl group, alkyl ester group, cyano group, phenol group, amide group and halogen group power.
- examples of the radical polymerization system include suspension polymerization, emulsion polymerization, and solution polymerization.
- an initiator is used for these polymerizations, and a known radical initiator can be used.
- a radical initiator can be preferably used, and a living radical polymerization initiator is used for polymerization in a living manner. It can also be used.
- Representative radical polymerization initiators include benzoin-based compounds such as benzoin and benzoinmethyl, acetophenone-based compounds such as acetophenone and 2,2-dimethoxy-2-ferulacetophenone, thixanthone and 2,4 Thioxanthone compounds such as tilthioxanthone, 4,4'-diazide chalcone, 2,6bis (4 'azide Benzal) cyclohexanone and bisazido compounds such as 4,4'-diazidobenzophenone, azobisisobutylnitryl, 2,2-azobispropane, mazo, such as m, m, azoxystyrene and hydrazone Compounds, and organics such as 2,5 dimethyl-2,5 di (tert-butylperoxy) hexane and 2,5 dimethyl-2,5 di (t-butylperoxy) hexyne 3, dicumyl peroxide
- a known method can be used, for example, 2, 2, 6, 6-tetramethyl-1-piberidi-dioxy (TEMPO).
- TEMPO 2, 2, 6, 6-tetramethyl-1-piberidi-dioxy
- -A method using a troxy radical, a compound having a carbon-iodine bond and a method using a radical polymerization initiator, a halogenated hydrocarbon or a halogenated sulfone compound, a metal complex and an activator comprising a Lewis acid examples thereof include a polymerization method using a polymerization catalyst system.
- Examples of the chain transfer agent containing a hydroxyl group used for end-capping include, for example, mercaptoethanol, mercaptobutanol, mercaptopropanol, mercaptobenzoyl alcohol, mercaptohexanol, mercaptodecane, mercapto Examples include tophenol, and preferably used are mercaptoethanol, mercaptobutanol, mercaptopropanol, mercaptohexanol, mercaptodecanol and the like.
- the (C4) block copolymer of the present invention is prepared by melting a compound containing one or more hydroxyl groups at its terminal or side chain into lactide, and then using a known ring-opening polymerization catalyst.
- the ring-opening polymerization catalyst used here is, for example, tin, zinc, lead, titanium, bismuth, zirconium, germanium, antimony, aluminum, etc. Examples include metals and derivatives thereof. As the derivatives, metal alkoxides, carboxylates, carbonates, oxides and halides are preferable.
- tin chloride tin chloride
- tin octylate zinc chloride
- zinc acetate lead oxide
- lead carbonate titanium chloride
- titanium chloride alkoxytitanium, germanium oxide, and zirconium oxide.
- tin compounds are preferred, and tin octoate is more preferred.
- the addition amount of the ring-opening polymerization catalyst is not particularly limited, but the lactide used and the raw material are not limited. 0.001 to 2 parts by weight is preferable with respect to 100 parts by weight of the total weight of the material (F), more preferably 0.001 to 1 part by weight. If the amount of catalyst is less than 0.001 part by weight, the effect of shortening the polymerization time is reduced.
- the reaction vessel used in the production of the (C4) block copolymer of the present invention is not particularly limited, but a mixer type reactor, a column type reactor and an extruder type reactor are used. Etc. can be used. These reactors can be used in combination of two or more.
- the polymerization temperature is not particularly limited, but a range of 60 to 250 ° C is preferable.
- the main polymerization reaction is preferably performed in a molten state. Therefore, in order to melt the polymer, the reaction is preferably performed at a temperature higher than the melting point of the polymer, but the decomposition reaction is suppressed. Therefore, it is preferable to carry out the reaction at a temperature as low as possible so that the reaction product does not solidify.
- reaction pressure in each step is not particularly limited, and may be any of reduced pressure, normal pressure and increased pressure.
- each step it is preferable to make the reaction system as dry as possible.
- drying the compound containing one or more hydroxyl groups at the end or side chain of the raw material, or conducting the reaction in a dehumidified nitrogen atmosphere will increase the molecular weight of the resulting block copolymer. It is effective for achieving the block rate.
- the polymer is For example, a method in which the solution is dissolved in a solvent in which the block copolymer is dissolved and then the solution is developed in a solvent and precipitated without dissolving the block copolymer such as methanol.
- the polylactic acid segment represented by the general formula (I) and the bulle polymer segment represented by the general formula ( ⁇ ) are 99 to lZl to 99 Parts by weight (where (I) + (II) is 100 parts by weight), preferably 80 to 20 Z 20 to 80 parts by weight, more preferably 70 to 30 to 30 to 70 parts by weight.
- dicarboxylic acid anhydride is a compound having a structure in which water molecules are eliminated from dicarboxylic acid in the molecule.
- the (D) dicarboxylic acid anhydride may exist as a single compound, and ( ⁇ ) a styrene-based rosin, ( ⁇ ) an aliphatic polyester, and (C ) It may be present without reacting with one or more of the compatibilizers and retaining the structure of the dicarboxylic anhydride.
- the blending ratio of (i) styrenic resin and (ii) aliphatic polyester is , (A) Styrenic resin and (B) Aliphatic polyester total amount 100 parts by weight, (A) Styrenic resin is 5 parts by weight or more, impact resistance, heat resistance In this respect, it is preferably 10 parts by weight or more, more preferably 25 to 80 parts by weight, still more preferably 30 to 70 parts by weight, and (B) the aliphatic polyester is 1 to 95 parts by weight, In terms of impact resistance and heat resistance, the amount is preferably 7 to 50 parts by weight, more preferably 10 to 50 parts by weight. Furthermore, the addition amount of (B) aliphatic polyester is less than 85 parts by weight, preferably in the range of 65 to: LO parts by weight, more preferably 50 to 10 parts by weight.
- the blending amount of (C) the compatibilizer is (C-1) polymethacrylic acid with respect to 100 parts by weight of the total amount of (A) styrenic resin and (B) aliphatic polyester.
- the addition amount of the methyl polymer is 0.1 to 30 parts by weight, more preferably 2 to 15 parts by weight, and further preferably 2 to: LO parts by weight in terms of impact resistance and heat resistance.
- the amount of added bulle polymer in which 3% by weight or more of unsaturated carboxylic acid glycidyl ester unit or unsaturated dicarboxylic acid anhydride unit is copolymerized is 0.01 to 35 parts by weight, and impact resistance From the viewpoint of heat resistance, preferably 0.1 to 20 parts by weight, more preferably 0.2 to: LO part by weight, (C-3) 10 to 80% by weight of methyl methacrylate units in the rubbery polymer
- the addition amount of the graft polymer in which 20 to 90% by weight is graft-polymerized is 1 to 60 parts by weight, which is favorable in terms of impact resistance and heat resistance.
- (C-4) a polylactic acid segment represented by the above general formula (I) and a vinyl represented by the above general formula ( ⁇ ).
- the blending amount of (D) dicarboxylic acid anhydride is 0 to 5 parts by weight with respect to 100 parts by weight of the total amount of (A) styrenic resin and (B) aliphatic polyester. In view of impact resistance and heat resistance, it is preferably 0.05 to 2 parts by weight, more preferably 0.1 to 1 part by weight.
- the resin composition of the present invention has the composition as described above.
- the rubbery polymer is not particularly limited! However, a rubbery polymer having a glass transition temperature of 0 ° C or lower is preferred, Acrylic rubber, ethylene rubber, organosiloxane rubber, etc. can be used. Specific examples of these rubbery polymers include polybutadiene, styrene butadiene copolymer, styrene butadiene block copolymer, acrylonitrile butadiene copolymer, butyl acrylate-butadiene copolymer, polyisoprene, butadiene.
- Methyl methacrylate copolymer methyl acrylate methyl methacrylate copolymer, butadiene ethyl acrylate copolymer, ethylene propylene copolymer, ethylene propylene copolymer, ethylene isoprene copolymer, ethylene acrylic acid
- examples thereof include a methyl copolymer and a polyorganosiloxane-acrylic copolymer containing polyorganosiloxane and an alkyl (meth) acrylate rubber.
- polybutadiene polystyrene-butadiene copolymer
- block copolymer of styrene-butadiene acrylonitrile-butadiene copolymer
- polyorganosiloxane-acrylic copolymer especially in terms of heat resistance. It is possible to use one or a mixture of two or more.
- the rubbery polymer is a polymer in which an aromatic vinyl-based unit and a cyanvinyl-based unit are graft-polymerized. It is possible to copolymerize possible vinyl monomers.
- the aromatic vinyl monomer used in the (E) rubbery polymer of the present invention is not particularly limited, and is not limited to styrene, ⁇ -methylol styrene, ⁇ -methino styrene, ⁇ -methino styrene, ⁇ Aromatic butyl monomers such as ethyl styrene, ⁇ ethyl styrene and p-t-butyl styrene can be mentioned. From the viewpoint of heat resistance, styrene and a-methyl styrene are preferable.
- the cyan vinyl monomer used in the (E) rubbery polymer of the present invention is particularly limited. Examples thereof include vinyl cyanide monomers such as hanaguacrylonitrile, methatalonitrile, and etatalonitrile. Acrylic-tolyl is preferable in terms of heat resistance and weather resistance.
- copolymerizable monomers used in the (E) rubbery polymer of the present invention are not particularly limited, for example, acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, Cyclohexyl acrylate, 2-ethylhexyl acrylate, allylic acrylate, aminoethyl acrylate, propylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, dicyclopente-luccietyl acrylate, Dicyclopental acrylate, butanediol diacrylate, nonanediol diacrylate, polyethylene glycol diacrylate, 2- (hydroxymethyl) methyl acrylate, 2- (hydroxymethyl) ethyl acrylate, methacrylic acid, methyl methacrylate, Methacrylic acid Propyl methacrylate, butyl methacrylate, cyclohexyl methacryl
- aromatic vinyl monomers and cyanide monomers are used.
- unsaturated glycidyl ester units such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate or maleic anhydride, itaconic anhydride, citraconic anhydride, etc.
- Copolymers of 3% by weight or more of unsaturated dicarboxylic acid anhydride units are not included in (E) rubbery polymer, and are not included in (C 2) unsaturated carboxylic acid glycidyl ester units or unsaturated dicarboxylic acid. Included in beryl polymers copolymerized with 3% by weight or more of anhydride units.
- the rubbery polymer of the present invention specifically, impact resistance, heat resistance, in terms of moldability, rubber-like polymer 10-80 weight 0/0, the impact resistance In terms of impact resistance, more preferably in the presence of 30 to 70% by weight of aromatic bule monomer, 10 to 70% by weight, more preferably 10 to 50% by weight in terms of impact resistance. 10 to 50% by weight of monomer and more preferably 10 to 30% by weight in terms of impact resistance.
- Other vinyl monomers copolymerizable with these (excluding methyl methacrylate) are 0 70 wt 0/0, in terms of impact resistance, and more preferably obtained by copolymerizing 0-50 by weight%. Even if the ratio of the rubbery polymer is less than the above range or exceeds the above range, the impact strength and the surface appearance may be deteriorated.
- the rubbery polymer of the present invention aroma to the rubber polymer of 10 to 80 weight 0/0 Zokubi - Le-based unit, Shiani spoon vinyl units, copolymerizable with these single
- the polymer is preferably a graft polymer obtained by graft polymerization, but the rubbery polymer is mixed with a monomer or a monomer mixture.
- an ungrafted copolymer is contained.
- the graft ratio of the graft polymer is not particularly limited, but in order to obtain a resin composition having an excellent balance between impact resistance and gloss, it is 10 to LOO% by weight, particularly 20 to 80% by weight. Preferably there is.
- the graft ratio is a value calculated by the following equation.
- Graft ratio (%) [ ⁇ Amount of vinyl copolymer grafted onto rubbery polymer> Z ⁇ Rubber content of graph copolymer>] X 100
- the characteristics of the copolymer after grafting are not particularly limited! However, in terms of impact resistance, the intrinsic viscosity [] (measured at 30 ° C) of the methylethyl ketone-soluble component is 0.1 to 10: L OOdl / g, particularly preferably in the range of 0.20 to 0.80 dl / g.
- the (E) rubbery polymer of the present invention can be obtained by a known polymerization method. For example, it is obtained by a method in which a mixture of a monomer and a chain transfer agent and a solution of a radical generator dissolved in an emulsifier is continuously supplied to a polymerization vessel in the presence of a rubbery polymer latex and subjected to emulsion polymerization. It is out.
- the weight average particle diameter of the (E) rubbery polymer in the present invention is not particularly limited !, but in terms of impact resistance, it should be in the range of 0.05-1. Preferably, the range is from 0.1 to 0.5 m. By setting the weight average particle diameter of the rubbery polymer in the range of 0.05 / ⁇ ⁇ to 1.0 ⁇ m, excellent impact resistance can be exhibited.
- the weight average particle diameter of the (E) rubbery polymer is a sodium alginate described in "Rubber Age, Vol. 88, p. 484 to 490, (1960), by E. Schmidt, PH Biddison J".
- Method that is, a method of obtaining a particle size of 50% cumulative weight fraction from the creamed weight fraction and the cumulative weight fraction of sodium alginate concentration by utilizing the difference in the size of the creamed polybutadiene depending on the concentration of sodium alginate. Can be measured by
- the blending amount of (E) the rubbery polymer is 1 to 60 parts by weight with respect to 100 parts by weight of the total amount of (A) styrene-based resin and (B) aliphatic polyester. In terms of impact resistance and heat resistance, it is preferably 2 to 40 parts by weight, more preferably 5 to 35 parts by weight.
- a small amount selected from (C) a compatibilizing agent and (D) a dicarboxylic acid anhydride At least one (C) compatibilizer is selected as at least one, and the (C) compatibilizer is the (C-2) or (C-3) component. (B-2) and (C-3) and (C-2) and (C-2) present in the aliphatic polyester, assuming that the total area of (Ji-2) 7 or (C-3) is 100%. ) It is also preferred that the area percentage is 10-90%.
- (C3) a rubbery polymer, a graft polymer in which 20 to 90% by weight of methyl methacrylate units are graft polymerized to 10 to 80% by weight, and (E) a rubbery polymer power of at least one selected from (C 2), (C 3) and (E), which are dispersed phases at this time, are (B) the area ratio force existing in the aliphatic polyester matrix 10 to 90%
- the area ratio is preferably in the range of 20 to 85%. More preferably, it exists in the range of%. If the area ratio is not in the range of 10 to 90%, the impact resistance is significantly reduced, which is not preferable.
- a molded product obtained by injection molding is subjected to osmium block dyeing method to (A) styrene-based resin, (C-2) glycidyl unsaturated carboxylate. ester unit or unsaturated dicarboxylic anhydride unit is less than 3 wt% copolymerization engaged the Bulle polymer, (C-3) rubber-like polymer 10-80 weight 0/0 methacrylic acid methylation units 20 to 90 After dyeing the graft polymer and (E) the rubbery polymer, the cross-section of the sample cut out of the ultrathin slice is magnified 600 times with a transmission electron microscope and the cross section is observed.
- the composition of the vinyl polymer in which 3% by weight or more of (C-2) unsaturated carboxylic acid glycidyl ester unit or unsaturated dicarboxylic anhydride unit is copolymerized is, for example, unsaturated.
- composition of the draft polymer grafted by weight% for example, the number of methyl methacrylate units is increased within a range that does not impair the purpose of the present invention, or the composition of (E) the rubbery polymer is, for example, By increasing the amount of ⁇ -methylstyrene as a cyanobyl monomer or aromatic vinyl monomer in the monomer mixture to be graft copolymerized within the range not impairing the object of the present invention.
- (C-3) The composition of the graft polymer in which 20 to 90% by weight of methyl methacrylate units are graft-polymerized to 10 to 80% by weight of the rubbery polymer.
- (E) Regarding the composition of the rubbery polymer, for example, as a vinyl cyanide monomer or aromatic vinyl monomer in the monomer mixture to be graft copolymerized ame (C-2), (C-3), and (E) are less dispersed in the (B) aliphatic polyester phase by reducing the amount of rustyrene within a range that does not impair the purpose of the present invention. It can be confirmed that the dispersion is in the styrene-based resin phase.
- (C-2), (J-3) Shobi) is a method similar to the above for measuring the area ratio of (B) the aliphatic polyester.
- the cross section of the molded product was photographed with a transmission electron microscope. Further expanded 4 times, (B) Dispersed in aliphatic polyester (C-2), (C-3) and (E) area (X) and (A) Dispersed in styrene-based resin ( The area (Y) of C-2), (C-3) and (E) was also determined by using the weight method and the photographic power was determined, and was determined according to the formula (X) Z ((X) + (Y)) It is.
- FIG. 1 and Fig. 2 are schematic diagrams of the electron micrographs, and Fig. 1 shows (A) component matrix.
- Tas 2 is the (B) component matrix
- 3 is the dispersed phase.
- FIG. 1 is an example of the present invention, and dispersed phase 3 is composed of (C 2), (C 3) or (E) component, and is also present in the (B) component matrix of 2.
- FIG. 2 is a conventional example, and dispersed phase 3 is composed of (E) component, and (C-2) and (C-3) components are not present. In this case, it can be seen that the dispersed phase 3 is concentrated in the (A) component matrix 1 and not present in the (B) component matrix.
- (F) polycarbonate, aromatic polyester, polyamide, polyethylene, polypropylene, and polysalt salt are used in terms of impact resistance, heat resistance, molding processability, fluidity, and appearance. It is preferable to include one or more thermoplastic resins selected from vinyl cinnamon.
- any of aromatic polycarbonates and aliphatic polycarbonates that are not particularly limited can be used, but aromatic polycarbonates are preferred in terms of flame retardancy. In terms of impact, aliphatic polycarbonate is preferable.
- the aromatic polycarbonate (F) is an aromatic polycarbonate or an aromatic polycarbonate obtained by reacting an aromatic divalent phenol compound with phosgene or a carbonic acid diester. Glass transition measured by a differential calorimeter, preferably having a weight average molecular weight in the range of 5000 to 500,000 in terms of polymethylol methacrylate (PMMA) measured by gel permeation chromatography. Those having a temperature in the range of 100 to 155 ° C are preferably used.
- the (F) aliphatic polycarbonate refers to a polymer whose straight chain consists of an aliphatic hydrocarbon group and a carbonate group, and the substituent side chain may not be an aliphatic hydrocarbon. Good. Specific examples include polyethylene carbonate, polypropylene carbonate, polycyclohexene carbonate, and polystyrene carbonate.
- the (F) carbonate of the present invention is a polycarbonate containing a silicone compound and Z or silicone copolymer polycarbonate in terms of impact resistance, heat resistance, molding processability, and flame retardancy. I like it!
- the (F) aromatic polyester is not particularly limited, but examples of the aromatic polyester include an aromatic dicarboxylic acid (or its ester-forming derivative). And a polymer or copolymer obtained by a condensation reaction mainly comprising a diol (some! /, Or an ester-forming derivative thereof).
- aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis (p-carboxyphenol) methane, anthracene dicarboxylic acid, Aromatic dicarboxylic acids such as 4,4'-diphenyl ether dicarboxylic acid and 5-sodium sulfoisophthalic acid. Examples of such aromatic dicarboxylic acids include aliphatic dicarboxylic acids, alicyclic dicarboxylic acids and esters thereof. It is also possible to copolymerize formable derivatives.
- Examples of the aliphatic dicarboxylic acid that can be produced include adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, and the like.
- Examples of the alicyclic dicarboxylic acid include 1,3 cyclohexanedicarboxylic acid, 1,4-cyclohexanediic acid.
- alicyclic dicarboxylic acids such as carboxylic acids and ester-forming derivatives thereof.
- Examples of the diol component include aliphatic glycols having 2 to 20 carbon atoms, that is, ethylene glycol, propylene glycol, 1,4 butanediol, neopentyl glycol, 1,5 pentanediol, 1,6 hexanediol, and decamethylene.
- Examples include glycols, cyclohexanedimethanol, cyclohexanediol, etc., or long-chain glycols having a molecular weight of 400 to 6000, that is, polyethylene glycol, poly 1,3 propylene glycol, polytetramethylene glycol, and ester-forming derivatives thereof. It is,
- Preferable examples of these polymers or copolymers include polybutylene terephthalate, polybutylene (terephthalate Z isophthalate), polybutylene (terephthalate Z adipate), polybutylene (terephthalate Z sebacate), polybutylene (terephthalate Z Decanedicanolate), polybutylene naphthalate, polypropylene terephthalate, polypropylene (terephthalate Z isophthalate), polypropylene (terephthalate Z adipate), polypropylene (terephthalate Z sebacate), polypropylene (terephthalate z decandicanoloxylate) , Polypropylene naphthalate, polyethylene terephthalate, polyethylene (terephthalate z isophthalate), polyethylene (terephthalate Z adipate), polyethylene (terephthalate Z5-sodium sulfoisophthalate), polybuty Examples include lene (terephthalate Z is
- the (F) polyethylene is an unmodified polyethylene which is not copolymerized with a carboxylic group-containing monomer such as an unsaturated carboxylic acid or a derivative thereof and a carboxylic acid bull ester as a modifier.
- the (F) polyamide is a polyamide mainly composed of amino acid, ratatam or diamine and dicarboxylic acid.
- Representative examples of its main constituents include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, paraaminomethylbenzoic acid, latatin such as ⁇ -force prolatata, ⁇ -laumouth ratatam, Pentamethylene diamine, hexamethylene diamine, 2-methylpentamethylene diamine, nonamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2, 2, 4- / 2, 4, 4-trimethyl hexamethylenediamine, 5-methylnonamethylenediamine, metaxylylenediamine, paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (amino) Methyl) cyclohexane, 1-amino-3-aminomethyl
- Particularly useful polyamides in the present invention are polyamides having a melting point of 150 ° C or higher and excellent in heat resistance and strength, such as nylon 6, nylon 66, nylon 12, nylon 610, nylon 6Z66 copolymer, Mention may also be made of copolymers having hexamethylterephthalamide units such as nylon 6TZ66 copolymer, nylon 6TZ6I copolymer, nylon 6TZ12, and nylon 6-6 copolymer.
- the (F) polypropylene is V, unmodified polyethylene obtained by copolymerizing a carboxylic group-containing monomer such as an unsaturated carboxylic acid or a derivative thereof and a carboxylic acid bull ester as a modifier. .
- (F) Aliphatic polycarbonate, aromatic polyester, polyethylene, polypropylene, and polysalt-vinyl rubica are also selected.
- the blending amount of one or more thermoplastic resins is (A) styrene-based By making it to be in the range of less than 85 parts by weight, preferably 65 to 1 part by weight, more preferably 50 to 5 parts by weight, with respect to 100 parts by weight of the total amount of rosin and (B) aliphatic polyester, Sufficient impact resistance and heat resistance can be obtained.
- At least one (A) styrene-based resin, (B) aliphatic polyester, (C) compatibilizer, and (D) dicarboxylic anhydride power is selected in the composition as described above.
- the unsaturated carboxylic acid alkyl ester unit is 1 to 90% by weight, preferably 10 to 80% by weight, based on the resin component, (b) aromatic vinyl unit 0.1 -80% by weight, preferably 1-70% by weight, (c) Cyanide bur units 0-45% by weight, preferably 0-40% by weight, (d) Other vinyl units copolymerizable therewith 0 In the range of ⁇ 85 wt%, preferably 0-80 wt%, Sufficient impact resistance and heat resistance can be obtained.
- the characteristics of the resin composition in the present invention include (A) styrene-based resin, (B) aliphatic polyester,
- C 2 Unsaturated carboxylic acid glycidyl ester units or Fu ⁇ sum dicarboxylic anhydride unit is less than 3 wt% copolymerized vinyl polymer, (C 3) rubber-like polymer 10-80 weight 0/0 methyl unit 20 methacrylate 90 weight 0/0 has summer and a graft weight engaged the graft polymer and
- C In terms of impact resistance, heat resistance, molding processability, appearance, and colorability, 3) and (E) are preferably in the range of 10% to 90% area ratio force existing in (B) aliphatic polyester.
- the area ratio is 20-85% It is preferable to exist in a range. More
- (G) the volume resistivity value is 10 13 in terms of permanent antistatic properties.
- the polymer (G) having a volume resistivity of 10 13 ⁇ cm or less is preferably an alkylene oxide having a number average molecular weight of 100 to 10,000.
- examples include polymers containing residues, quaternary ammonium salt residues, sulfonate residues, ionomer residues, etc.
- Vinyl polymers containing alkylene oxide residues (4) vinyl polymers containing quaternary ammonium salt residues, (5) polymers containing alkali metal ionomer residues, (6) sulfonic acid Alkali metal salt Vinyl-based polymer containing, and the like.
- poly (alkylene oxide) glycols include polyethylene glycol, polypropylene oxide glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, ethylene oxide. Examples thereof include a block or random copolymer of xoxide and propylene oxide, and a block or random copolymer of ethylene oxide and tetrahydrofuran.
- Polyether amides, polyether esters, and polyether ester amides containing alkylene oxide residues having a number average molecular weight of 200 to 10,000 include (2—al) a polyamide-forming component or (2— It is a block or graft copolymer obtained from the reaction of a2) a polyester-forming component and (2-b) a diol containing an alkylene oxide residue having a number average molecular weight of 200-: L0,000.
- a polyamide-forming component is an aminocarboxylic acid having 6 or more carbon atoms, or a lactam or a salt of diamine and dicarboxylic acid having 6 or more carbon atoms, such as ⁇ -amino force proacid, ⁇ - Aminoenanthic acid, ⁇ -amino force prillic acid, ⁇ -aminopergonic acid, ⁇ - Aminocapric acid and 11 aminoundecanoic acid, aminocarboxylic acids such as 2-aminododecanoic acid or ratatam and hexamethylenediamin adipate, hexamethylene Examples include salts of diamine-dicarboxylic acids such as diamine-sebacate and hexamethylenediamine isophthalate, and particularly preferred are prolactam, 12-aminododecanoic acid, and hexamethylenediamin monoadipate. .
- the (2-a2) polyester-forming component includes dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid, naphthalene-1,6-dicarboxylic acid, naphthalene-1,7-dicarboxylic acid, diphenol-4.
- Aromatic dicarboxylic acids such as 4'-dicarboxylic acid, diphenoxyethanedicarboxylic acid and sodium 3-sulfoisophthalate, 1,4 cyclohexanedicarboxylic acid, 1,2 cyclohexanedicarboxylic acid, 1,3 cyclopentanedicarboxylic acid Alicyclic dicarboxylic acids and succinic acids, such as 1,3 dicanolevoxymethylenorecyclohexenoles, 1,4-dicanolevoxymethino cyclohexyl and dicyclohexyl 4,4'-dicarboxylic acids, Aliphatic dicarboxylic acids such as oxalic acid, adipic acid, sebacic acid and decanedicarboxylic acid and ethylene glycol as aliphatic diol Coal, 1, 2 or 1,3 propylene glycol, 1, 2—, 1, 3—, 2, 3—, or 1,4 butanediol, n
- dicarboxylic acids include terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, sebacic acid, and decanedicarboxylic acid and aliphatic diol as ethylene glycol, 1, 2 or 1,3-propylene glycol, 1, 4 Butanediol is preferably used in terms of polymerizability, color and physical properties.
- Diols containing alkylene oxide residues having a number average molecular weight of 200 to 10,000 are poly (ethylene oxide) glycol and poly (1, 2-propylene oxide) glycol. , Poly (1,3 propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, block or random copolymer of ethylene oxide and propylene oxide and ethylene Examples thereof include a block or random copolymer of oxide and tetrahydrofuran. Among these, poly (ethylene oxide) glycol is particularly preferably used in terms of excellent antistatic properties.
- the diol containing an alkylene oxide residue having a number average molecular weight of 200 to 10,000 includes hydroquinone, bisphenol A, naphthalene, and the like attached to both ends.
- the number average molecular weight of the diol containing an alkylene oxide residue is preferably from 100 to 10,000, preferably from 400 to 6,000 in view of polymerizability and antistatic properties. It is.
- a third component such as dicarboxylic acid diamin can be used.
- the dicarboxylic acid component includes terephthalic acid, isophthalic acid, phthalic acid, naphthalene-1,6-dicarboxylic acid, naphthalene-1,7-dicarboxylic acid, diphenyl-4,4-dicarboxylic acid, diphenyl Aromatic dicarboxylic acids represented by enoxyethanedicarboxylic acid and sodium 3-sulfoisophthalate, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and dicyclohexyl 4,4'-dicarboxylic Examples include alicyclic dicarboxylic acids typified by acids and succinic acid, oxalic acid, adipic acid, sebacic acid, and aliphatic dicarboxylic acids typified by decanedicarboxylic acid, especially terephthalic acid, isophthalic acid, 1,4-cyclohe
- Hexanedicarboxylic acid, sebacic acid, adipic acid and decanedicarboxylic acid are polymerisable, color and physical properties of resin composition Ca ⁇ al also preferably used, it is also possible to use tricarboxylic anhydrides such as trimellitic anhydride as required.
- Examples of the diamine component include aromatic, alicyclic, and aliphatic diamines. Among them, the aliphatic diamine hexamethylenediamine is preferably used for economic reasons.
- the content of the diol containing an alkylene oxide residue is 30 to 90% by weight, preferably 40 to 80% by weight, as a constituent unit of polyether amide, polyester ester, and polyether ester amide. %.
- polyether amide polyether ester, and polyether ester
- degree of polymerization of the amide is not particularly limited, but the relative viscosity (r? R) measured at 25 ° C in a 0.5% orthochlorophenol solution is 1.1 to 4.0, preferably 1. U, which is excellent in the mechanical properties and moldability of the final resin composition obtained in the range of 5 to 2.5.
- Bulle polymers containing alkylene oxide residues having a number average molecular weight of 100,000 to 10,000 include polyethylene glycol (meth) acrylate and methoxy polyethylene glycol (meth) acrylate and ethylene.
- Olefins such as propylene, 1-butene, styrene, butyltoluene, aromatic butyl monomers such as ⁇ -methylstyrene, maleimide monomers such as maleimide and ⁇ -phenolmaleimide, and cyanation of acrylonitrile Vinyl monomer power Copolymer with at least one selected vinyl monomer, polyethylene glycol (meth) acrylate, methoxy polyethylene glycol (meth) to (r) rubber polymer mentioned above And a graft copolymer obtained by polymerizing a monomer containing at least one monomer selected from acrylate. It is.
- the proportion of the monomer containing an alkylene oxide residue is preferably in the range of 5 to 40% by weight in terms of a vinyl polymer unit containing a poly (alkylene oxide) glycol residue.
- a bulle polymer containing a quaternary ammonium salt residue a monomer containing a quaternary ammonium base and an olefinic unit such as ethylene, propylene, 1-butene, etc.
- maleimide monomers such as maleimide and ⁇ -maleylimide
- cyanide buler monomer power such as acrylonitrile
- copolymers with at least one selected monomer for example, “ROLEX” SA-70 and A S-170 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. are commercially available.
- the proportion of the monomer containing a quaternary ammonium base is preferably in the range of 10 to 80% by weight in the bulle polymer unit containing a quaternary ammonium salt residue! /.
- Polymers containing alkali metal ionomer residues include copolymers of olefin monomers such as ethylene, propylene, 1-butene and (meth) acrylic acid with lithium, sodium, and Examples include coconut oil ionized with at least one metal selected for its potassium strength. [0154] A polymer containing an ionomer residue having a metal ion concentration of 1.5 mol Zkg or more is preferred.
- a monomer having an alkali metal base of sulfonic acid for example, potassium styrenesulfonate, sodium styrenesulfonate, lithium styrenesulfonate
- olefin monomers such as ethylene, propylene, 1-butene, aromatic butyl monomers such as styrene, helutoluene, ⁇ -methylstyrene, methyl (meth) acrylate, butyl (meth) acrylate, etc.
- (Meth) acrylic acid ester monomers maleimides, maleimide monomers such as ⁇ -maleic maleimide, and cyan vinyl monomers such as acrylonitrile
- At least one selected vinyl monomer The proportion of the monomer having an alkali metal base of sulfonic acid, such as a copolymer of It is preferably 10 to 80 wt% in the vinyl polymer unit containing the alkali metal salt groups! /,.
- the volume resistivity of the (G) antistatic polymer is 10 13 ⁇ « ⁇ or less, preferably 5 ⁇ 10 11
- the lower limit is not more than ⁇ cm, and the lower limit is not limited, but is preferably 10 5 Q cm or more, particularly preferably 10 6 ⁇ « ⁇ or more.
- a molded product obtained by compression molding, injection molding or the like of the antistatic polymer separated from the resin composition is measured.
- poly (alkylene oxide) glycol residue, quaternary ammonium salt residue, sulfonate residue, ionomer residue, etc. in the antistatic polymer according to ASTM D257 It is possible to obtain the specific volume value of the polymer by preparing a standard line of the conductive unit content and the specific volume value of the polymer, and then analyzing the content of the conductive unit in any antistatic polymer. Is possible.
- the blending amount of the polymer having a volume resistivity of 10 13 ⁇ cm or less is 100 parts by weight of the total amount of (A) styrene resin and (B) aliphatic polyester.
- the resin composition of the present invention has the composition as described above.
- the obtained rosin composition contains (a) an unsaturated alkyl carboxylate
- the ester unit is 1 to 90% by weight, preferably 10 to 80% by weight, and (b) the aromatic bule unit 0.1 to 80% by weight, preferably 1 to 70% by weight, c) Cyanide bur units 0 to 45% by weight, preferably 0 to 40% by weight, (d) Other vinyl units copolymerizable with these 0 to 85% by weight, preferably 0 to 80% by weight By making it within the range, sufficient impact resistance and heat resistance can be obtained.
- the characteristics of the resin composition in the present invention include (A) styrene-based resin, (B) aliphatic polyester,
- (G) a polymer matrix having a volume resistivity of 10 13 ⁇ cm or less, and (C 2) 3% by weight of unsaturated carboxylic acid glycidyl ester units or unsaturated dicarboxylic acid anhydride units dispersed in this matrix (C-3) a rubber polymer, a graft polymer in which 20 to 90% by weight of methyl methacrylate units are graft-polymerized to 10 to 80% by weight, and (E) a rubbery polymer. Physical strength Consists of at least one selected dispersed phase.
- (C 2), (C 3) and (E), which are dispersed phases, are (B) the proportion of the area present in the aliphatic polyester
- the range of 10 to 90% is preferable.
- the area ratio is preferably 20 to 85% in terms of impact resistance, heat resistance, molding processability, appearance, and colorability. More preferably, it is present in the range of 30-80%. When the area ratio is not in the range of 10 to 90%, the impact resistance is remarkably lowered.
- the resin composition of the present invention preferably further comprises (H) a crystal nucleating agent from the viewpoint of improving heat resistance.
- crystal nucleating agent used in the present invention those generally used as polymer crystal nucleating agents can be used without particular limitation, and both inorganic crystal nucleating agents and organic crystal nucleating agents can be used. can do.
- inorganic crystal nucleating agents include talc, kaolinite, montmorillonite, my strength, synthetic strength, clay, zeolite, silica, graphite, carbon black, zinc oxide, acid ⁇ magnesium, acid calcium, titanium oxide, calcium sulfate, boron nitride, magnesium carbonate, calcium carbonate, barium sulfate, acid aluminum, acid neodymium and phenylphosphonate metal salts From the viewpoint that the effect of improving heat resistance is great, talc, kaolinite, montmorillonite and synthetic my strength are preferred. These can be used alone or in combination of two or more. These inorganic crystal nucleating agents are preferably modified with organic substances in order to increase the dispersibility in the composition.
- the content of the inorganic crystal nucleating agent is preferably 0.01 to 100 parts by weight with respect to 100 parts by weight of the total amount of (A) styrene-based resin and (B) aliphatic polyester. 05 to 50 parts by weight Power preferred 0.1 to 30 parts by weight is more preferred.
- organic crystal nucleating agent examples include sodium benzoate, potassium benzoate, lithium benzoate, calcium benzoate, magnesium benzoate, barium benzoate, lithium terephthalate, sodium terephthalate, and terephthalic acid.
- -Phosphorus compound metal salts such as 2, 2, 1-methylene bis (4, 6 di-tert-butylphenol) phosphate, zinc phosphate, calcium phosphate phosphonate, magnesium phosphate phosphonate and 2, 2 Examples thereof include methyl bis (4,6-di-tert-butylphenol) sodium, and organic carboxylic acid metal salts and carboxylic acid amides are preferred from the viewpoint of a large effect of improving heat resistance. These can be used alone or in combination of two or more.
- the blending amount of the organic crystal nucleating agent is preferably 0.01 to 30 parts by weight with respect to 100 parts by weight of the total amount of (A) styrene-based rosin and (B) aliphatic polyester. 05 to 10 parts by weight is more preferred 0.1 to 5 parts by weight is even more preferred.
- plasticizer used in the present invention those generally used as polymer plasticizers can be used without particular limitation, and examples thereof include polyester plasticizers, glycerin plasticizers, and polyvalent carboxylic acid ester plasticizers. Agents, polyalkylene glycol plasticizers and epoxy plasticizers.
- polyester plasticizer examples include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, propylene glycol, 1,3 butanediol, Examples thereof include polyesters composed of diol components such as 1,4 butanediol, 1,6 hexane diol, ethylene glycol, and diethylene glycol, and polyesters composed of hydroxycarboxylic acid such as poly-force prolatatone. These polyesters may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
- acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, propylene glycol, 1,3 butanediol
- polyesters composed of diol components
- glycerin-based plasticizer examples include glycerin monoaceto monolaurate, glycerin diaceto monolaurate, glycerin monoaceto monostearate, and glycerin diaceto monoo. And rate and glycerin monoacetate monomontanate.
- polyvalent carboxylic acid plasticizer examples include phthalate esters such as dimethyl phthalate, jetyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, and butyl benzyl phthalate.
- Trimellitic acid esters such as tributyl trimellitic acid, trioctyl trimellitic acid, trihexyl trimellitic acid, disodecyl adipate, n-octyl adipate, n-decyl adipate, benzylmethyldalycol adipate
- Examples include citrate esters such as triethyl acetyl citrate and tributyl acetyl citrate, azelaic esters such as di-2-ethylhexyl azelate, dibutyl sebacate, and sebacates such as di-2-ethylhexyl sebacate. It is possible.
- polyalkylene glycol plasticizer examples include polyethylene glycol, polypropylene glycol, poly (ethylene oxide 'propylene oxide) block and Z or random copolymer, polytetramethylene glycol, ethylene oxide of bisphenols.
- Polyalkylene glycols such as addition polymers, propylene oxide addition polymers of bisphenols, tetrahydrofuran addition polymers of bisphenols, or terminal epoxy-modified compounds, terminal ester-modified compounds, and terminal ether-modified products Examples thereof include end-capping compounds such as compounds.
- An epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil.
- a so-called epoxy resin such as bisphenol A and epichlorohydrin is used as a raw material. Fats can also be used.
- plasticizers include benzoic acid esters of aliphatic polyols such as neopentyl glycol dibenzoate, polyethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, polyethylene glycol dibenzoate, and stearamide.
- Fatty acid amides such as butyl oleate, aliphatic carboxylic acid esters such as butyl oleate, methyl acetyl acetylinoleate, oxyesters such as butyl acetyl ricinoleate, pentaerythritol, various sorbitols, polyacrylates, silicone oils and paraffins And the like.
- plasticizers used in the present invention among those exemplified above, in particular, polyester. Plasticizers and polyalkylene glycol plasticizers At least one selected is preferred.
- the plasticizer used in the present invention can be used alone or in combination of two or more.
- the blending amount of the plasticizer is preferably in the range of 0.01 to 30 parts by weight with respect to 100 parts by weight of the total amount of (A) styrene-based resin and (B) aliphatic polyester.
- the range of 1 to 20 parts by weight is more preferable.
- the range of 0.5 to 10 parts by weight is more preferable.
- the crystal nucleating agent and the plasticizer may be used alone, but it is preferable to use both in combination.
- the resin composition of the present invention from the viewpoint of improving heat resistance, it is preferable to further add a filler other than the ⁇ -inorganic crystal nucleating agent.
- fibrous, plate-like, granular, and powdery materials that are usually used for reinforcing thermoplastic resin can be used.
- glass fiber, asbestos fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, asbestos, slag Fibrous inorganic fillers such as fiber, zonolite, elestadite, gypsum fiber, silica fiber, silica'alumina fiber, zircoua fiber, boron nitride fiber, silicon nitride fiber and boron fiber, glass flake, graphite, metal foil, ceramic Plate or granular inorganic filler such as beads, sericite, bentonite, dolomite, fine silicate, feldspar powder, potassium titanate, shirasu balloon, aluminum silicate, silicon oxide, g
- fibrous inorganic fillers are preferable, and glass fiber and wollastonite are particularly preferable. Also preferred is the use of fibrous organic fillers.
- fibrous inorganic fillers are preferable, and glass fiber and wollastonite are particularly preferable. Also preferred is the use of fibrous organic fillers.
- B From the viewpoint of utilizing the biodegradability of the aliphatic polyester, natural fibers and regenerated fibers are more preferable. Further, the aspect ratio (average fiber length Z average fiber diameter) of the fibrous filler used for blending is preferably 5 or more, more preferably 10 or more, and further preferably 20 or more.
- the filler may be coated or focused with a thermoplastic resin such as ethylene Z vinyl acetate copolymer or a thermosetting resin such as epoxy resin, and may be aminosilane or epoxy. Treated with a coupling agent such as silane!
- the blending amount of the filler is preferably 0.1 to 200 parts by weight with respect to 100 parts by weight of the total amount of (A) styrene-based rosin and (B) aliphatic polyester. : LOO parts by weight are even more preferred.
- the carboxyl group-reactive end-blocking agent used in the present invention is not particularly limited as long as it is a compound capable of blocking the carboxyl end group of the polymer, and is used as a carboxyl-end blocking agent for a polymer. You can use what you want.
- the carboxyl group-reactive end-blocking agent that is strong is (B) lactic acid produced not only by blocking the end of the aliphatic polyester but also by thermal decomposition or hydrolysis of naturally-occurring organic fillers. It can also block carboxyl groups of acidic low molecular weight compounds such as formic acid.
- the end-capping agent is more preferably a compound that can also block the hydroxyl end where an acidic low molecular weight compound is generated by thermal decomposition.
- a carboxyl group-reactive end-blocking agent at least one compound selected from an epoxy compound, an oxazoline compound, an oxazine compound, a carposimide compound, and an isocyanate compound can be used.
- an epoxy compound an oxazoline compound, an oxazine compound, a carposimide compound, and an isocyanate compound.
- epoxy compounds and Z or carpositimide compounds are preferred.
- the compounding amount of the carboxyl group-reactive end-capping agent is in the range of 0.01 to: LO parts by weight with respect to 100 parts by weight of the total amount of (A) styrenic resin and (B) aliphatic polyester. The range of 0.05 to 5 parts by weight is more preferable.
- the timing of adding the carboxyl group-reactive end-blocking agent is not particularly limited, but it is possible to improve the mechanical properties and durability just by improving the heat resistance. After kneading, it is preferable to knead with other things.
- a colorant containing a stabilizer an anti-oxidation agent, an ultraviolet absorber, a weathering agent, etc.
- a lubricant e.g., a lubricant, a release agent, a flame retardant, a dye or a pigment as long as the object of the present invention is not impaired.
- Antistatic agents, foaming agents, and the like can be added.
- thermoplastic resins for example, polyamide resins, polyphenylene sulfide resins, polyether ether ketone resins, polysulfone resins, Polyethersulfone resin, aromatic polycarbonate resin, polyarylate resin, polyphenylene oxide resin, polyacetal resin, polyimide resin, polyetherimide resin, aromatic and aliphatic polyketone resin, fluorine resin, Polysalt-vinylidene resin, bulle ester resin, cellulose acetate resin, polybulal alcohol resin, etc.
- thermosetting resin for example, phenol resin, melamine resin, polyester resin, silicone
- a molded product having excellent characteristics can be obtained.
- additives can be blended at an arbitrary stage for producing the resin composition of the present invention.
- the components (A), (B), (C), and (D) are added.
- examples thereof include a method of adding at the same time when blending, and a method of adding at least two components of the resin after melt kneading in advance.
- the method for producing the rosin composition of the present invention is not particularly limited.
- A a styrene-based rosin
- B an aliphatic polyester
- C a compatibilizing agent
- D Dicarboxylic anhydride force
- the method of melt kneading in a solution and the method of removing the solvent after mixing in a solution are preferably used, and in terms of strength, impact resistance, heat resistance, molding processability, and appearance, uniformly melt kneading with a twin screw extruder.
- the method of doing is more preferable.
- the obtained resin composition can be molded by any method such as generally known injection molding, extrusion molding, inflation molding, blow molding, etc. It can be widely used as a molded product. Molded products include films, sheets, fibers, fabrics, non-woven fabrics, injection molded products, extrusion molded products, vacuum / pressure molded products, blow molded products, or composites with other materials.
- Automotive materials such as exterior parts, TVs, air conditioners, vacuum cleaners, refrigerators, telephones, fax machines, audiovisual equipment, cameras, watches, computers, personal computers, printers, copiers and other electrical equipment materials, toilet parts such as toilet seats Civil engineering such as kitchen, bathroom parts, curing sheets, molds, window frames, etc.As building materials, agricultural materials, horticultural materials, fishing materials, stationery, medical supplies, miscellaneous goods, or other uses Useful. Also, this molded product can be used after being painted or textured.
- the method for preparing styrene-based resin is shown below.
- the polymer obtained was dried under reduced pressure at 70 ° C for 5 hours, and then a methyl ethyl ketone solution with a concentration of 0.4 g / 100 ml was prepared, and the intrinsic viscosity was measured using an Ubbelohde viscometer at a temperature of 30 ° C. It was measured.
- Methyl methacrylate Z acrylamide copolymer (published in Japanese Examined Patent Publication No. 45-24151) in a stainless steel auto-talve with a capacity of 20L, equipped with a noble and a fiddle-type stirring blade 0.05% by weight of ion-exchanged water The solution dissolved in 165 parts by weight was added and stirred at 400 rpm, and the system was replaced with nitrogen gas. Next, the following mixed substances were added with stirring in the reaction system, and the temperature was raised to 60 ° C. to initiate polymerization.
- Suspension polymerization was carried out in the same manner except that 70 parts by weight of styrene and 30 parts by weight of acrylonitrile were changed to 70 parts by weight of methyl methacrylate, 25 parts by weight of styrene and 5 parts by weight of acrylonitrile.
- the intrinsic viscosity of the methyl styrene ketone-soluble component of the obtained styrene-based rosin was 0.35 dlZg.
- styrene 50 parts by weight of styrene, 10 parts by weight of acrylonitrile, 40 parts by weight of N-phenolmaleimide, 0.2 part by weight of tododecyl mercaptan, and 0.4 part by weight of 2,2, azobisisobutyryl-tolyl Solution polymerization was performed in hexanone solvent. Thereafter, the polymer was obtained by cooling the reaction system, reprecipitation with a methanol solution, washing, drying, and pulverization according to ordinary methods.
- the intrinsic viscosity of the methyl styrene ketone soluble part of the obtained styrenic rosin is 0.33 dl / g.
- Suspension polymerization was carried out in the same manner except that the above-mentioned ⁇ A-2> dodecyl mercaptan was changed to 0.35 parts by weight.
- the intrinsic viscosity of the methyl styrene ketone soluble part of the obtained styrene-based resin was 0.41 dlZg.
- methyl methacrylate Z acrylamide copolymer (described in Japanese Examined Patent Publication No. 45-24151) 0.5 g of a solution dissolved in 1650 g of ion-exchanged water was added and stirred, and the system was stirred. The inside was replaced with nitrogen gas. Next, in a nitrogen atmosphere, styrene (Tokyo Kasei Co., Ltd .: 700 g), acrylonitrile (Tokyo Kasei Co., Ltd .: 300 g), t-dodecyl mercaptan 4 g, 2,2′-azobisisobuti-titol-tolyl 4 g with stirring are added.
- styrene Tokyo Kasei Co., Ltd .: 700 g
- acrylonitrile Tokyo Kasei Co., Ltd .: 300 g
- t-dodecyl mercaptan 4 g 2,2′-azobisisobuti-t
- Poly L-lactic acid having a weight average molecular weight of 160,000 and D-lactic acid unit of 1.2% was used.
- Poly-L-lactic acid having a weight average molecular weight of 210,000 and D-lactic acid unit of 4% was used.
- Poly-L-lactic acid having a weight average molecular weight of 200,000 and D-lactic acid unit of 1% was used.
- Methacrylic resin (Sumitomo Chemical "Sumipex LG21" Tgl05 ° C, syndiotacticity 4 1%, weight average molecular weight 80,000, MFR21gZlO (230 ° C, 37.2N))
- Methacrylic resin Karl Fischer “Parabed, HR—L, Tgll7 ° C, Syndiotacticity 56%, Weight average molecular weight 90,000, MFR2gZlO min (230 ° C, 37.2N))
- Glycidyl methacrylate modified styrene Z acrylic copolymer (“ARUFON” UG-4030 manufactured by Toagosei Co., Ltd., glycidyl methacrylate 20% by weight, glass transition temperature 51 ° C, weight average molecular weight 10,000)
- the method for preparing the graft copolymer is shown below.
- the graft ratio was determined by the following method. Acetone was refluxed for 4 hours in a predetermined amount (m) of the graft copolymer. This solution was centrifuged at 8000 rpm (centrifugal force 10, OOOG (about 100 ⁇ 10 3 m / s 2 )) for 30 minutes, and the insoluble matter was filtered. This insoluble matter was dried under reduced pressure at 70 ° C. for 5 hours, and the weight (n) was measured.
- R means the rubber content of the graft copolymer.
- the filtrate of the acetone solution was concentrated with a rotary evaporator to obtain a precipitate (acetone-soluble matter).
- the soluble matter was dried under reduced pressure at 70 ° C. for 5 hours, and then a methyl ethyl ketone solution having a concentration of 0.4 gZlOOml was prepared, and the intrinsic viscosity was measured using an Ubbelohde viscometer at a temperature of 30 ° C.
- the obtained graft copolymer latex was coagulated with sulfuric acid, neutralized with caustic soda, washed, filtered and dried to obtain a powder.
- the graft copolymer obtained had a graft ratio of 40%, and the intrinsic viscosity of methylethylketone soluble matter was 0.30 dlZg.
- the graft copolymer thus obtained had a graft ratio of 42% and an intrinsic viscosity of methyl ethyl ketone soluble matter of 0.28 dlZg.
- the polylactic acid segment represented by the general formula (I) and the vinyl polymer segment represented by the general formula ( ⁇ ) have a copolymerization ratio ((1) 7 (11)) 99 1 to 1799 parts by weight ( (1) + (II) is 100 parts by weight)
- a styrene-acrylonitrile copolymer (c-4-1) was synthesized using a chain transfer agent containing a hydroxyl group.
- Styrene Tokyo Kasei Co., Ltd .: 527 g
- acrylonitrile Tokyo Kasei Co., Ltd .: 205 g
- mercaptoethanol ADRICH: 4.2 g
- benzoyl peroxide 3.58 g and dehydrated tetrahydrofuran 4 mL were attached with a stirrer.
- the reaction was conducted in a reaction vessel under a nitrogen atmosphere at 84 ° C. under reflux for 24 hours.
- the reaction After the reaction, cool to room temperature, concentrate the solvent with an evaporator, drop it into methanol to completely remove the monomer, perform reprecipitation and purification at 80 ° C for 12 hours. Vacuum drying was performed to obtain a white powder. As a result of GPC measurement, the obtained white powder was a styrene-acrylonitrile copolymer having a number average molecular weight of 26000.
- CH and CH2 derived from styrene were around 1.2 ppm to 2.9 ppm, and CH derived from aromatics was around 6.4 ppm to 7.2 ppm.
- CH and CH2 derived from acrylonitrile were confirmed in the vicinity of 1.5 ppm to 2.5 ppm, CH derived from positive acid was confirmed in 5.2 ppm, and CH3 was confirmed in the vicinity of 1.5 ppm.
- L-Lactide (PURAC: 100g) Styrene-acrylonitrile copolymer (c-4-1) synthesized when synthesizing C-4-1-> lOOg in a reaction vessel equipped with a stirrer, nitrogen After dissolution at 150 ° C. in an atmosphere, tin octylate (manufactured by ALDRICH: 1. OgZ toluene 2 mL) was added, followed by polymerization reaction for 3 hours. After completion of the polymerization reaction, the reaction product was dissolved in chloroform and precipitated with stirring in methanol, and the monomer was completely removed to obtain a block copolymer 2 of polylactic acid and styrene-acryl-tolyl ( Yield 91%).
- PURAC 100g
- tin octylate manufactured by ALDRICH: 1. OgZ toluene 2 mL
- Polylactic acid obtained by performing 1H-NMR measurement of the obtained block copolymer 2 and determining the peak specific force The number average molecular weight was 21,000, and the weight ratio was (polylactic acid Z styrene-acrylonitrile copolymer) 45.1 / 14.9 parts by weight.
- the obtained graft copolymer latex was coagulated with sulfuric acid, neutralized with caustic soda, washed, filtered and dried to obtain a powder.
- the graft ratio of the obtained graft copolymer was 38%, and the intrinsic viscosity of the methylethylketone-soluble component was 0.33 dlZg.
- Toraycon made by Toray 1100S (polybutylene terephthalate)
- Shell “Corterra” CP509200 polypropylene terephthalate
- Helical ribbon with 40 parts of force prolatatam, 56.3 parts of polyethylene glycol with number average molecular weight 2000, and 4.8 parts of terephthalic acid with 0.2 parts by weight of antioxidant (Irganox 1098) and 0.1 parts by weight of antimony trioxide Charge to a reaction vessel equipped with a stirring blade, replace with nitrogen, and heat and stir for 50 minutes while flowing a small amount of nitrogen at 260 ° C to obtain a transparent homogeneous solution. Then, under conditions of 260 ° C and 0.5 mmHg or less, 3 The polymer was polymerized over time to obtain a transparent polymer. The polymer was discharged onto a cooling belt in the form of a gut and pelletized to prepare a polyether ester amide ⁇ G-1> in the form of pellets.
- the resulting polyether ester amide has a relative viscosity (7? R) measured at 25 ° C in a 0.5% ortho-clonal phenol solution of 2.01 and a volume resistivity of 1 X 10 9 ⁇ cm.
- polyether ester amide ⁇ G-2> was prepared according to Reference Example ⁇ G-1>.
- the resulting polyether ester amide has a relative viscosity (7? R) measured at 25 ° C in a 0.5% ortho-clonal phenol solution of 2.11 and a volume resistivity of 3 X 10 13 ⁇ cm.
- Polyamide G-3> was prepared by pressure polymerization of force prolatatam.
- the resulting polyamide had a relative viscosity (7? R) of 2.10 and a volume resistivity of 5 x 10 14 ⁇ cm measured at 25 ° C in a 0.5% ortho-clog phenol solution. It is.
- LMS300 talc; inorganic crystal nucleating agent manufactured by Fuji Talc Industry was used. [0230] ⁇ H-2>
- PEG4000 polyethylene glycol manufactured by Sanyo Chemical Industries was used.
- melt mixing and pelletizing were performed using a twin screw extruder (TEX-30, manufactured by Nippon Steel Works) set at an extrusion temperature of 220 ° C.
- Table 1 shows the tensile properties, impact resistance, heat resistance, and measurement results for TEM observation of each sample.
- melt mixing and pelletizing were performed using a twin screw extruder (TEX-30 manufactured by Nippon Steel Works) set at an extrusion temperature of 220 ° C.
- the pellets obtained in Examples 20 to 36 and Comparative Examples 8 to 13 were injection-molded under the conditions of a molding temperature of 230 ° C and a mold temperature of 40 ° C using an IS55EPN injection molding machine manufactured by Toshiba Machine. About the test piece obtained from Kotoko, each characteristic was evaluated by the following measuring methods. The pellets obtained in Examples 37 to 41 were all molded and evaluated in the same manner except that the conditions were changed to a molding temperature of 230 ° C and a mold temperature of 85 ° C.
- [0251] [Area ratio]: For molded products obtained by injection molding, (A) styrene-based resin, (C-2) vinyl-based polymer, (C-3) graft weight were measured by osmium block dyeing. After staining the union and (E) rubber polymer, the sample cut out of the ultrathin section was magnified 6000 times with a transmission electron microscope, and the cross-section was observed and photographed.
- Tables 2 and 3 show the measurement results for tensile properties, impact resistance, heat resistance, fluidity, and area ratio of each sample, respectively.
- Example 20 41 and Comparative Example 8 13 From Example 20 41 and Comparative Example 8 13, it is evident that the resin composition of the present invention is excellent in tensile properties, impact resistance, heat resistance, and fluidity. [0256] [Examples 42 to 54]
- melt mixing and pelletizing were performed using a twin screw extruder (TEX-30 manufactured by Nippon Steel Works) set to an extrusion temperature of 220 ° C.
- Example 42 54 From Example 42 54, it can be seen that the resin composition of the present invention is excellent in tensile properties, impact resistance, heat resistance and fluidity.
- melt mixing and pelletizing were performed using a twin screw extruder (PCM-30, manufactured by Ikegai Co., Ltd.) set at an extrusion temperature of 220 ° C.
- Example 55 69 and Comparative Example 14 16 were manufactured by Toshiba Machine IS55EP. Each characteristic of the test piece obtained by injection molding under the conditions of a molding temperature of 230 ° C and a mold temperature of 40 ° C using an N injection molding machine was evaluated by the following measurement methods.
- Example 7 The pellets obtained in 0 to 72 were molded and evaluated in the same manner except that the conditions were changed to a molding temperature of 230 ° C and a mold temperature of 80 ° C.
- Table 6 shows the measurement results for the impact resistance, heat resistance, and area ratio of (C3) and (E) present in the aliphatic polyester.
- the resin composition of the present invention was obtained by comparing styrene-based resin, aliphatic polyester, compatibilizer and dicarboxylic anhydride with respect to polylactic acid alone (Comparative Example 15). By adding at least one selected, the impact resistance can be greatly improved and a practical heat resistant temperature can be obtained.
- Examples 55 to 59 show that the impact resistance can be improved as the proportion of (C-3) and (E) present in the aliphatic polyester increases.
- [0279] The dynamic viscoelasticity is measured using a viscoelasticity measuring device DMS6100 (Seiko Instruments Ne), and a 20 m thick film from 0 ° C to 220 ° C under nitrogen. The loss elastic modulus was measured when the temperature was raised at 2 ° C Zmin, and the elastic modulus at 30 ° C and the temperature at which the elastic modulus decreased by 50% from the start of measurement were measured.
- melt mixing and pelletizing were performed using a twin screw extruder (PCM-30, manufactured by Ikekai Co., Ltd.) set at an extrusion temperature of 220 ° C.
- Example 9 The pellets obtained in 5 to 97 were molded and evaluated in the same manner except that the conditions were changed to a molding temperature of 230 ° C and a mold temperature of 80 ° C.
- the resin composition of the present invention is selected from styrene-based resin, aliphatic polyester, compatibilizer and dicarboxylic acid anhydride for polylactic acid alone (Comparative Example 21). By blending at least one kind, impact resistance can be greatly improved, and a practical heat-resistant temperature can be obtained.
- Example 81 82 86 88 shows that the impact resistance can be improved as the proportion of (C13) and (E) present in the aliphatic polyester increases.
- melt mixing and pelletizing were performed using a twin screw extruder (PCM-30, manufactured by Ikegai Co., Ltd.) set at an extrusion temperature of 220 ° C. O
- the pellets obtained in Examples 96-109 and Comparative Examples 23-29 were injection molded using IS55E PN injection molding machine manufactured by Toshiba Machine under the conditions of a molding temperature of 230 ° C and a mold temperature of 40 ° C. Each test piece was evaluated by the following measuring method.
- the pellets obtained in Examples 110 to 112 were molded and evaluated in the same manner except that the conditions were changed to a molding temperature of 230 ° C and a mold temperature of 80 ° C.
- the resin composition of the present invention is at least selected from styrene-based resin, aliphatic polyester, compatibilizer and dicarboxylic acid anhydride with respect to polylactic acid alone (Comparative Example 24).
- the impact resistance can be greatly improved, it has a practical heat-resistant temperature, a low surface resistivity, and a high strength. The surface resistivity does not change even when the shape of the product is cleaned or changes over time, and excellent permanent electrical properties can be exhibited.
- Examples 98 to 102 show that the impact resistance can be improved as the proportion of (C-2) and (E) present in the aliphatic polyester increases.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
本発明は優れた強度、耐衝撃性、耐熱性および成形加工性を有し、製造時のCO2排出量を低減可能な環境低負荷樹脂組成物を得る。 本発明は(A)スチレン系樹脂、(B)脂肪族ポリエステル、ならびに(C)相溶化剤および(D)ジカルボン酸無水物から選ばれる少なくとも1種を配合してなる樹脂組成物であって、好ましくは、(C)相溶化剤が、下記のいずれか1種以上である樹脂組成物である。 (C-1)ポリメタクリル酸メチル重合体 (C-2)エポキシまたは酸無水物を共重合したビニル系重合体 (C-3)ゴム質重合体にメタクリル酸メチルがグラフト重合されたグラフト重合体 (C-4)ポリ乳酸セグメントとビニル系ポリマーセグメントとが結合したブロック共重合体
Description
明 細 書
樹脂組成物およびそれからなる成形品
技術分野
[0001] 本発明は、強度、耐衝撃性、耐熱性および成形加工性に優れ、さらに製造時の二 酸ィ匕炭素 (CO )排出や廃棄時の環境負荷を大幅に低減可能な環境低負荷である
2
榭脂組成物およびそれからなる成形品に関するものである。
背景技術
[0002] スチレン系榭脂は、優れた機械的性質、成形加工性、外観によって、電気'電子部 品、自動車、雑貨、各種用途など広範な分野で使用されている。しかしながら、スチ レン系榭脂は、石油資源を原料としており、製造時の大気への CO排出や廃棄時の
2
環境負荷が近年問題視されており、非石油資源を含有する材料が環境低負荷材料 として求められている。
[0003] 最近、地球環境保全の見地から、土中、水中に存在する微生物の作用により自然 環境下で分解される生分解性ポリマーが注目され、様々な生分解性ポリマーが開発 されている。中でも、ポリ乳酸は比較的コストが安ぐ融点もおよそ 170°Cと高ぐ溶融 成形可能な生分解性ポリマーとして期待されている。また、最近では、モノマーである 乳酸が、とうもろこしなどのバイオマスを原料として、微生物を利用した発酵法により 安価に製造されるようになり、より一層低コストでポリ乳酸を生産できるようになつてき たため、生分解性ポリマーとしてだけでなぐバイオマス由来のノィォポリマーとして 期待され、汎用ポリマーとしての利用も検討されるようになってきた。しかし、その一方 で、耐衝撃性や柔軟性が低いなどの物性的な欠点を有しており、その改良が望まれ ていた。
[0004] そこで、環境低負荷材料として、ポリ乳酸とポリスチレン、ポリエチレン、ポリエチレン テレフタレート、ポリプロピレンなどの熱可塑性榭脂とを混合する方法 (特許文献 1)が 開示されている。しカゝしこの方法で混合した場合、環境低負荷材料とはなるものの、 いずれも汎用榭脂として用いるには、機械特性の改良が必要であった。
[0005] また、ポリ乳酸とポリ乳酸のガラス転移温度より高 、ガラス転移温度を有する非晶性
榭脂とを含む生分解性榭脂組成物 (特許文献 2)も知られているが、耐熱性と耐衝撃 性を共に向上させるという点では、さらに改良が必要であった。
[0006] さらに、脂肪族ポリエステルと多層構造重合体とを含有する脂肪族ポリエステル榭 脂組成物 (特許文献 3)、およびポリ乳酸系重合体とゴム質重合体にビニル系単量体 をグラフト重合して得られるグラフト共重合体力 なる榭脂組成物 (特許文献 4)も知ら れているが、これらの榭脂組成物には、スチレン系榭脂が含まれておらず、得られる 榭脂組成物は、耐熱性の点で課題があり、汎用ポリマーとして用いる場合さらなる改 良が必要であった。
特許文献 1:特表平 6— 504799号公報 (第 53頁)
特許文献 2:特開 2005 - 60637号公報 (第 2頁)
特許文献 3:特開 2003 - 286396号公報 (第 2頁)
特許文献 4:特開 2004— 285258号公報 (第 2頁)
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、上述した従来技術における問題点の解決を課題として検討した結果、 達成されたものであり、その目的とするところは、優れた強度、耐衝撃性、耐熱性およ び成形加工性を有し、製造時の CO排出量や廃棄時の環境負荷を大幅に低減する
2
ことができる環境低負荷榭脂組成物およびそれカゝらなる成形品を提供することにある
課題を解決するための手段
[0008] 本発明者らは、上記課題を解決すべく鋭意検討した結果、スチレン系榭脂、脂肪 族ポリエステル、ならびに相溶化剤およびジカルボン酸無水物力 選ばれる少なくと も 1種を配合してなる榭脂組成物とすることで上記課題を解決できることがゎカゝつた。
[0009] すなわち本発明は、
(1) (A)スチレン系榭脂、(B)脂肪族ポリエステル、ならびに (C)相溶化剤および (D )ジカルボン酸無水物力 選ばれる少なくとも 1種を配合してなる榭脂組成物、
(2) (C)相溶化剤が、下記のいずれ力 1種以上である(1)に記載の榭脂組成物、 (C 1)ポリメタクリル酸メチル重合体
(C 2)不飽和カルボン酸グリシジルエステル単位または不飽和ジカルボン酸無水 物単位が 3重量%以上共重合されたビニル系重合体
(C— 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 20〜90重量0 /0がグ ラフト重合されたグラフト重合体
(C-4)一般式 (I)で表されるポリ乳酸セグメントと一般式 (Π)で表されるビュル系ポリ マーセグメントとが、共重合比((1) 7 (11) ) 99 1〜1799重量部(ただし(1) + (II) は 100重量部)で結合したブロック共重合体
[化 1]
(Xは水素、アルキル基、ヒドロキシル基、アルキルエステル基、シァノ基、フエ-ル基 、アミド基およびハロゲン基力も選ばれる少なくとも 1種を表す。 m、 nは数平均分子 量を表し、それぞれ 1000〜 100000の値である。;)
(3) (D)ジカルボン酸無水物が、マレイン酸無水物またはコハク酸無水物のいずれ 力 1種以上である(1)に記載の榭脂組成物、
(4) (C)相溶化剤および (D)ジカルボン酸無水物力も選ばれる少なくとも 1種力 (C )相溶化剤であることを特徴とする(1)に記載の榭脂組成物。
(5)さらに (E)ゴム質重合体を配合してなることを特徴とする(1)〜 (4)に記載の榭脂
組成物。
(6) (E)ゴム質重合体力 ゴム質重合体 10〜80重量%に、芳香族ビニル系単位 10 〜70重量%、シアン化系ビュル単位 10〜50重量%がグラフト重合されているグラフ ト重合体であることを特徴とする(5)に記載の榭脂組成物。
(7) (C)相溶化剤が (C 2)および Zまたは (C 3)成分であり、榭脂組成物の断面 の電子顕微鏡写真において、(C 2)および Zまたは(C 3)の合計面積を 100% とした時に、(B)脂肪族ポリエステル中に存在する(C 2)および Zまたは (C 3)の 面積割合が 10〜90%である(4)に記載の榭脂組成物。
(8)榭脂組成物の断面の電子顕微鏡写真において、(C— 2)、(C— 3)および (E)ゴ ム質重合体の合計面積を 100%とした時に、(B)脂肪族ポリエステル中に存在する( C— 2)、(C— 3)および (E)ゴム質重合体の面積割合が 10〜90%である(5)に記載 の榭脂組成物。
(9)さらに(F)ポリカーボネート、芳香族ポリエステル、ポリエチレン、ポリプロピレン、 ポリ塩ィ匕ビ二ルカゝら選ばれる 1種以上を配合してなる(1)に記載の榭脂組成物、
(10)さらに (G)体積固有抵抗 10〜13 Ω cm以下の重合体を配合してなる(1)に記載 の榭脂組成物、
(11) (A)スチレン系榭脂と (B)脂肪族ポリエステルの合計 100重量%に対し、 (B) 脂肪族ポリエステルが 50重量%未満である(1)に記載の榭脂組成物、
(12) (1)に記載の榭脂組成物力 なる成形品、
である。
発明の効果
[0012] 本発明の榭脂組成物およびその成形品において、(A)スチレン系榭脂、(B)脂肪 族ポリエステル、ならびに (C)相溶化剤および (D)ジカルボン酸無水物カゝら選ばれる 少なくとも 1種を配合してなる榭脂組成物とすることにより、優れた強度、耐衝撃性、 耐熱性、および成形加工性を有する環境低負荷の榭脂組成物およびその成形品が 得られる。
図面の簡単な説明
[0013] [図 1]本発明の榭脂組成物の相構造を示す模式図である。
[図 2]従来技術における榭脂組成物である相構造を示す模式図である。 符号の説明
[0014] 1 : (A)成分マトリックス
2 : (B)成分マトリックス
3 :分散相
発明を実施するための最良の形態
[0015] 以下に本発明の榭脂組成物について具体的に説明する。
[0016] 本発明で用いる(A)スチレン系榭脂とは、スチレンをはじめ、 a—メチルスチレン、 o—メチノレスチレン、 p—メチノレスチレン、 o—ェチルスチレン、 p—ェチノレスチレンお よび p—t—ブチルスチレンなどの(b)芳香族ビニル系単量体、または(b)芳香族ビ- ル系単量体と他の共重合可能な単量体とを公知の塊状重合、塊状懸濁重合、溶液 重合、沈殿重合または乳化重合に供することにより得られる。
[0017] 本発明における (A)スチレン系榭脂は、ゴム質重合体に (b)芳香族ビュル系単位 などをグラフト重合したものは含まな 、こととする。ゴム質重合体に (b)芳香族ビニル 系単位などをグラフト重合したものは、後述する (E)ゴム質重合体に含める。
[0018] 代表的な (A)スチレン系榭脂とは、具体的には (b)芳香族ビュル系単位 1〜: LOO重 量%に対して、 (a)不飽和カルボン酸アルキルエステル系単位 0〜 99重量%、耐衝 撃性、耐熱性の点で、好ましくは 10〜90重量%、より好ましくは 30〜80重量%、(c) シアン化ビュル系単位 0〜50重量0 /0、耐衝撃性、耐熱性の点で、好ましくは 10〜45 重量%、より好ましくは 20〜35重量%、および (d)これらと共重合可能な他のビニル 系単位 0〜99重量%、耐衝撃性、耐熱性の点で、好ましくは 1〜80重量%、より好ま しくは 5〜50重量%を共重合して得られるビニル系共重合体である。
[0019] 本発明における (A)スチレン系榭脂に用いる(a)不飽和カルボン酸アルキルエステ ル系単量体には、特に制限はないが、炭素数 1〜6のアルキル基または置換アルキ ル基を持つアクリル酸エステルおよび Zまたはメタクリル酸エステルが好適である。
[0020] (a)不飽和カルボン酸アルキルエステル系単量体の具体例としては、(メタ)アクリル 酸メチル、 (メタ)アクリル酸ェチル、 (メタ)アクリル酸 n—プロピル、 (メタ)アクリル酸 n ーブチル、 (メタ)アクリル酸 tーブチル、 (メタ)アクリル酸 n—へキシル、 (メタ)アクリル
酸シクロへキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸 2—クロロェチル、( メタ)アクリル酸 2 -ヒドロキシェチル、(メタ)アクリル酸 3 -ヒドロキシプロピル、(メタ) アクリル酸 2, 3, 4, 5, 6 ペンタヒドロキシへキシルおよび (メタ)アクリル酸 2, 3, 4, 5—テトラヒドロキシペンチルなどが挙げられ、なかでもメタクリル酸メチルが最も好ま しく用いられる。これらはその 1種または 2種以上を用いることができる。
[0021] 本発明における (A)スチレン系榭脂に用いる(c)シアンィ匕ビュル系単量体には、特 に制限はなぐ具体例としては、アクリロニトリル、メタタリ口-トリルおよびエタクリロ-ト リルなどが挙げられ、なかでもアクリロニトリルが好ましく用いられる。これらは 1種また は 2種以上を用いることができる。
[0022] 本発明における (A)スチレン系榭脂に用いる(d)これらと共重合可能な他のビニル 系単量体としては、(a)不飽和カルボン酸アルキルエステル系単量体、(b)芳香族ビ 二ル系単量体、(c)シアン化ビニル系単量体と共重合可能であれば特に制限はなく 、具体例として、 N—メチルマレイミド、 N ェチルマレイミド、 N シクロへキシルマレ イミド、 N フエ-ルマレイミドなどのマレイミド系単量体、アクリル酸、メタクリル酸など の不飽和カルボン酸系単量体、マレイン酸、マレイン酸モノェチルエステルなどの不 飽和ジカルボン酸系単量体およびそのエステル系単量体、 3 ヒドロキシー 1 プロ ペン、 4 ヒドロキシ一 1—ブテン、シス一 4 ヒドロキシ一 2 ブテン、トランス一 4 ヒ ドロキシ一 2 ブテン、 3 ヒドロキシ一 2—メチル 1—プロペン、シス一 5 ヒドロキ シー 2 ペンテン、トランス 5 ヒドロキシー 2 ペンテン、 4, 4ージヒドロキシー 2— ブテンなどのヒドロキシル基を有するビュル系単量体、ァリルグリシジルエーテル、ス チレン—p グリシジルエーテルおよび p グリシジルスチレンなどのエポキシ基を有 するビュル系単量体、アクリルアミド、メタクリルアミド、 N メチルアクリルアミド、ブトキ シメチルアクリルアミド、 N—プロピルメタクリルアミド、アクリル酸アミノエチル、アクリル 酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸ェチルァミノ プロピル、メタクリル酸フエ-ルアミノエチル、メタクリル酸シクロへキシルアミノエチル 、 N—ビニルジェチルァミン、 N ァセチルビニルァミン、ァリルァミン、メタァリルアミ ン、 N—メチルァリルァミン、 p アミノスチレンなどのアミノ基およびその誘導体を有 するビュル系単量体、 2—イソプロべ-ルーォキサゾリン、 2—ビュルーォキサゾリン、
2—ァクロイルーォキサゾリンおよび 2—スチリルーォキサゾリンなどのォキサゾリン基 を有するビュル系単量体などが挙げられ、これらは 1種または 2種以上を用いることが できる。なお、アクリル酸グリシジル、メタクリル酸グリシジル、ェタクリル酸グリシジル、 ィタコン酸グリシジルなどの不飽和カルボン酸グリシジルエステル、または、マレイン 酸無水物、ィタコン酸無水物、シトラコン酸無水物などの不飽和ジカルボン酸無水物 を共重合していてもよいが、流動性の点で、不飽和カルボン酸グリシジルエステルま たは不飽和ジカルボン酸無水物の共重合量は 3重量%未満である。
[0023] (A)スチレン系榭脂の特性には制限はないが、優れた耐衝撃性および成形加工性 を有する榭脂組成物が得られるという点で、メチルェチルケトン溶媒を用いて、 30°C で測定した極限粘度 [ r? ]が、 0. 20-2. OOdlZgの範囲のものが好ましぐ 0. 25〜 1. 50dlZgの範囲のものがより好ましぐ 0. 28〜: L OOdlZgの範囲のものがさらに 好ましぐ優れた耐熱性を有する榭脂組成物が得られるという点で、 0. 30〜0. 50の 範囲のものが特に好まし 、。
[0024] 本発明の (B)脂肪族ポリエステルとしては、特に限定されるものではなぐ脂肪族ヒ ドロキシカルボン酸を主たる構成成分とする重合体、脂肪族多価カルボン酸と脂肪 族多価アルコールを主たる構成成分とする重合体などが挙げられる。具体的には、 脂肪族ヒドロキシカルボン酸を主たる構成成分とする重合体としては、ポリダリコール 酸、ポリ乳酸、ポリ 3—ヒドロキシ酪酸、ポリ 4ーヒドロキシ酪酸、ポリ 4ーヒドロキシ吉草 酸、ポリ 3—ヒドロキシへキサン酸またはポリ力プロラタトンなどが挙げられ、脂肪族多 価カルボン酸と脂肪族多価アルコールを主たる構成成分とする重合体としては、ポリ エチレンアジペート、ポリエチレンサクシネート、ポリブチレンアジペートまたはポリブ チレンサクシネートなどが挙げられる。これらの脂肪族ポリエステルは、単独ないし 2 種以上を用いることができる。これらの脂肪族ポリエステルの中でも、ヒドロキシカルボ ン酸を主たる構成成分とする重合体が好ましぐ耐熱性の点で、特にポリ乳酸が好ま しく使用される。
[0025] ポリ乳酸としては、 L 乳酸および Zまたは D 乳酸を主たる構成成分とする重合 体であるが、本発明の目的を損なわない範囲で、乳酸以外の他の共重合成分を含 んでいてもよい。
[0026] 力かる他の共重合成分単位としては、例えば、多価カルボン酸、多価アルコール、 ヒドロキシカルボン酸、ラタトンなどが挙げられ、具体的には、シユウ酸、マロン酸、コ ハク酸、グルタル酸、アジピン酸、ァゼライン酸、セバシン酸、ドデカンジオン酸、フマ ル酸、シクロへキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、 2, 6—ナ フタレンジカルボン酸、 5—ナトリウムスルホイソフタル酸、 5—テトラブチルホスホ-ゥ ムスルホイソフタル酸などの多価カルボン酸類、エチレングリコール、プロピレングリコ 一ノレ、ブタンジォーノレ、ヘプタンジォーノレ、へキサンジォーノレ、オクタンジォーノレ、ノ ナンジオール、デカンジオール、 1, 4—シクロへキサンジメタノール、ネオペンチルグ リコーノレ、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ビスフエノーノレ A、 ビスフエノールにエチレンォキシドを付加反応させた芳香族多価アルコール、ジェチ レングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコ ール、ポリテトラメチレングリコールなどの多価アルコール類、グリコール酸、 3—ヒドロ キシ酪酸、 4ーヒドロキシ酪酸、 4ーヒドロキシ吉草酸、 6—ヒドロキシカプロン酸、ヒドロ キシ安息香酸などのヒドロキシカルボン酸類、グリコリド、 ε一力プロラタトングリコリド、 ε—力プロラタトン、 β—プロピオラタトン、 δ—ブチ口ラタトン、 13—または γ —ブチ 口ラタトン、ピバロラタトン、 δ—バレロラタトンなどのラタトン類などを使用することがで きる。これらの共重合成分は、単独ないし 2種以上を用いることができる。
[0027] ポリ乳酸で高い耐熱性を得るためには、乳酸成分の光学純度が高い方が好ましぐ 総乳酸成分の内、 L体あるいは D体が 80モル%以上含まれることがより好ましぐ 90 モル%以上含まれることがさらに好ましぐ 95モル%以上含まれることが特に好まし い。上限は 100モル0 /0である。
[0028] また、収縮率などの寸法安定性の点で、ポリ乳酸の総乳酸成分の内、 L体あるいは D体が 50〜100モル0 /0の範囲で含まれることが好ましぐ 70〜98モル0 /0の範囲で含 まれることがより好ましぐ 80〜95モル%の範囲で含まれることがさらに好ましい。
[0029] また、本発明の(Β)脂肪族ポリエステルとしては、耐熱性、成形カ卩ェ性の点で、ポリ 乳酸ステレオコンプレックスを用いることが好まし 、。ポリ乳酸ステレオコンプレックス を形成させる方法としては、例えば、 L体が 90モル%以上、好ましくは 95モル%以上 、より好ましくは 98モル%以上のポリ— L—乳酸と D体が 90モル%以上、好ましくは 9
5モル%以上、より好ましくは 98モル%以上のポリ— D—乳酸を溶融混練や溶液混 練などにより混合する方法が挙げられる。また、別の方法として、ポリ— L 乳酸とポリ —D—乳酸をブロック共重合体とする方法も挙げることができ、ポリ乳酸ステレオコン プレックスを容易に形成させることができるという点で、ポリ一 L 乳酸とポリ一 D 乳 酸をブロック共重合体とする方法が好まし ヽ。
[0030] 本発明の(B)脂肪族ポリエステルとしては、単独で用いてもよぐ 2種以上併用して もよぐ例えば、ポリ乳酸とポリブチレンサクシネートを併用して用いたり、ポリ L 乳 酸とポリ乳酸ステレオコンプレックスを形成するポリ L 乳酸とポリ D 乳酸のブ ロック共重合体を併用して用いることもできる。
[0031] (B)脂肪族ポリエステルの製造方法としては、既知の重合方法を用いることができ、 特にポリ乳酸については、乳酸からの直接重合法、ラクチドを介する開環重合法など を採用することができる。
[0032] (B)脂肪族ポリエステルの分子量や分子量分布は、実質的に成形加工が可能であ れば、特に限定されるものではなぐ重量平均分子量としては、耐熱性の点で、好ま しくは 1万以上、より好ましくは 4万以上、さらに好ましくは 8万以上、特に好ましくは 1 0万以上、最も好ましくは 13万以上であるのがよい。上限は特に限定されないが、流 動性の点で、 50万以下が好ましぐ 30万以下がより好ましぐ 25万以下がさらに好ま しい。特に、優れた耐熱性を有する榭脂組成物が得られるという点で、重量平均分子 量は 20万〜 25万の範囲にあることが好ましい。ここでいう重量平均分子量とは、溶 媒としてへキサフルォロイソプロパノールを用いたゲルパーミエーシヨンクロマトグラフ ィー(GPC)で測定したポリメタクリル酸メチル (PMMA)換算の重量平均分子量であ る。
[0033] (B)脂肪族ポリエステルの融点は、特に限定されるものではな 、が、耐熱性の点で 、 90°C以上であることが好ましぐさらに 150°C以上であることが好ましい。ここでいう 融点とは、示差走査型熱量計 (DSC)で測定した吸熱ピークのピークトップの温度で ある。
[0034] 本発明にお 、て、耐熱性に優れる榭脂組成物が得られると!、う点で、(A)スチレン 系榭脂と (B)脂肪族ポリエステルの溶融粘度比((A) Z(B) )が、 0. 1〜10の範囲に
あることが好ましい。
[0035] 本発明において、(C)相溶化剤とは、(A)スチレン系榭脂と (B)脂肪族ポリエステ ルの相溶性を向上させる働きを有するものであり、(C)相溶化剤を配合することにより 、(A)スチレン系榭脂と (B)脂肪族ポリエステルの相構造が影響を受け、強度、耐衝 撃性、耐熱性およcx Hびll成形加工性などの特性が、大きく向上する。
[0036] 本発明の(C)相溶化剤の具体例としては、下記のいずれか 1種以上であることが好 ましい。 C HHII
(C 1)ポリメタクリル酸メチル重合体
(C 2)不飽和カルボン酸グリシジルエステル単位または不飽和ジカルボン酸無水 物単位を 3重量%以上共重合したビニル系重合体
(C 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 20〜90重量0 /0がグ ラフト重合されたグラフト重合体
(C-4)一般式 (I)で表されるポリ乳酸セグメントと一般式 (Π)で表されるビニル系ポリ マーセグメントとが、共重合比((1) 7 (11) ) 99 1〜1799重量部(ただし(1) + (II) は 100重量部)で結合したブロック共重合体
[0037] [化 2]
[0039] 本発明の(C 1)ポリメタクリル酸メチル重合体とは、メタクリル酸メチルの重合体お よび Zまたは共重合体である力 ゴム質重合体にメタクリル酸メチル単位をグラフト重 合したグラフト重合体は含まな 、。ゴム質重合体 10〜80重量%にメタクリル酸メチル 単位を 20〜90重量%グラフト重合したグラフト重合体は、後述する(C 2)グラフト 重合体に含め、それ以外のゴム質重合体にメタクリル酸メチル単位をグラフト重合し たグラフト重合体は、後述する (E)ゴム質重合体に含める。
[0040] 本発明の(C— 1)ポリメタクリル酸メチル重合体としては、メタクリル酸メチル成分単 位を主成分とするものであり、耐衝撃性、耐熱性の点で、メタクリル酸メチル成分単位 を 70モル%以上含むものであることが好ましぐ他のビュル系単量体成分単位を好 ましくは 30モル%以下、より好ましくは 20モル%以下共重合した共重合体でもよい。
[0041] 本発明の(C 1)ポリメタクリル酸メチル重合体にぉ 、て、共重合可能な他のビ- ル系単量体としては、アクリル酸、アクリル酸メチル、アクリル酸ェチル、アクリル酸プ 口ピル、アクリル酸ブチル、アクリル酸 2—ェチルへキシル、アクリル酸アミノエチル、 アクリル酸プロピルアミノエチル、アクリル酸 2—ヒドロキシェチル、アクリル酸 2—ヒドロ キシプロピル、アクリル酸ジシクロペンテ-ルォキシェチル、アクリル酸ジシクロペンタ -ル、ジアクリル酸ブタンジオール、ジアクリル酸ノナンジオール、ジアクリル酸ポリエ チレングリコール、 2—(ヒドロキシメチル)アクリル酸メチル、 2—(ヒドロキシメチル)ァ クリル酸ェチル、メタクリル酸、メタクリル酸ェチル、メタクリル酸プロピル、メタクリル酸 ブチル、メタクリル酸シクロへキシル、メタクリル酸 2—ェチルへキシル、メタクリル酸ヒ ドロキシェチル、メタクリル酸ァリル、メタクリル酸ジメチルアミノエチル、メタクリル酸ェ チルァミノプロピル、メタクリル酸フエ-ルアミノエチル、メタクリル酸シクロへキシルアミ ノエチル、メタクリル酸 2—ヒドロキシェチル、メタクリル酸 2—ヒドロキシプロピル、メタク リル酸ジシクロペンテニルォキシェチル、メタクリル酸ジシクロペンタニル、メタクリル 酸ペンタメチルピペリジル、メタクリル酸テトラメチルピペリジル、メタクリル酸べンジル 、ジメタクリル酸エチレングリコール、ジメタクリル酸プロピレングリコール、ジメタクリル
酸ポリエチレングリコールなどが挙げられ、これらの 1種または 2種以上を用いることが できる。また、その他のビュル系単量体を共重合することもでき、その他のビニル系単 量体としては、 α—メチルスチレン、 ο—メチルスチレン、 ρ—メチルスチレン、 ο ェチ ルスチレン、 ρ ェチルスチレン、 p—t—ブチルスチレンなどの芳香族ビュル系単量 体、アクリロニトリル、メタタリ口-トリル、エタタリ口-トリルなどのシアン化ビュル系単量 体、ァリルグリシジルエーテル、スチレン—p グリシジルエーテル、 p グリシジルス チレン、マレイン酸モノェチルエステル、ィタコン酸、酢酸ビュル、 N メチルマレイミ ド、 N ェチルマレイミド、 N シクロへキシルマレイミド、 N—フエ-ルマレイミドなど の N 置換マレイミド、アクリルアミド、メタクリルアミド、 N メチルアクリルアミド、ブト キシメチルアクリルアミド、 N—プロピルメタクリルアミド、 N ビ-ルジェチルァミン、 N ァセチルビニルァミン、ァリルァミン、メタァリルァミン、 N—メチルァリルァミン、 p— アミノスチレン、 2—イソプロぺニルーォキサゾリン、 2—ビニルーォキサゾリン、 2—ァ クロイルーォキサゾリンおよび 2—スチリルーォキサゾリンなどが挙げられ、これらの 1 種または 2種以上を用いることができる。なお、本発明の(C—1)ポリメタクリル酸メチ ル重合体において、共重合可能な他のビュル系単量体としては、アクリル酸グリシジ ル、メタクリル酸グリシジル、ェタクリル酸グリシジル、ィタコン酸グリシジルなどの不飽 和カルボン酸グリシジルエステル、または、マレイン酸無水物、ィタコン酸無水物、シ トラコン酸無水物などの不飽和ジカルボン酸無水物を共重合してもよ 、が、流動性の 点で、不飽和カルボン酸グリシジルエステルまたは不飽和カルボン酸無水物の共重 合量は 3重量%未満である。不飽和カルボン酸グリシジルエステルまたは不飽和力 ルボン酸無水物を 3重量%以上共重合したものは、後述する(C 2)ビニル系重合 体に含める。
本発明において、(C 1)ポリメタクリル酸メチル重合体の重量平均分子量は、特 に限定されないが、耐衝撃性、耐熱性の点で、 1万〜 45万の範囲であることが好まし く、 3万〜 20万の範囲であることがより好ましぐ 5万〜 15万の範囲であることがさらに 好ましい。ここでいう重量平均分子量とは、溶媒としてへキサフルォロイソプロパノー ルを用いたゲルパーミエーシヨンクロマトグラフィー(GPC)で測定したポリメタクリル酸 メチル(PMMA)換算の重量平均分子量である。
[0043] 本発明にお 、て、(C— 1)ポリメタクリル酸メチル重合体のガラス転移温度 (Tg)は、 特に限定されないが、耐熱性の点で、 60°C以上が好ましぐ 70°C以上がより好ましく 、 80°C以上がさらに好ましぐ 90°C以上が特に好ましぐ 100°C以上が最も好ましい 。上限は特に限定されないが、成形カ卩ェ性の点で、 150°C以下が好ましい。ここでい う Tgは、示差走査型熱量計 (DSC)測定により求めた Tgの値であり、 Tg領域におけ る比熱容量変化が半分の値となる温度である。
[0044] 本発明にお 、て、(C— 1)ポリメタクリル酸メチル重合体の立体規則性は、特に限 定されないが、耐衝撃性、耐熱性の点で、シンジオタクチシチ一が、 20%以上が好 ましぐ 30%以上がより好ましぐ 40%以上がさらに好ましい。上限は特に限定されな いが、成形カ卩ェ性の点で、 90%以下が好ましい。また、耐熱性の点で、ヘテロタクチ シチ一が、 50%以下であることが好ましぐ 40%以下であることがより好ましぐ 30% 以下であることがさらに好ましい。また、耐熱性の点で、ァイソタクチシチ一が、 20% 以下であることが好ましぐ 15%以下であることがより好ましぐ 10%以下であることが さらに好ましい。ここでいうシンジオタクチシチ一、ヘテロタクチシチ一、ァイソタクチシ チ一とは、溶媒として、重水素化クロ口ホルムを用いた 1H— NMR測定による直鎖分 岐のメチル基の積分強度比から算出した値である。
[0045] 本発明にお 、て、(C 1)ポリメタクリル酸メチル重合体の製造方法としては、塊状 重合、溶液重合、懸濁重合、乳化重合等の公知の重合方法を用いることができる。
[0046] 本発明の(C 2)不飽和カルボン酸グリシジルエステル単位または不飽和ジカルボ ン酸無水物単位が 3重量%以上共重合されたビニル系重合体とは、不飽和カルボン 酸グリシジルエステル単量体または不飽和ジカルボン酸無水物単量体が 3重量%以 上重合されたビニル系重合体および Zまたは共重合体であるが、ゴム質重合体に不 飽和カルボン酸グリシジルエステル単位または不飽和ジカルボン酸無水物単位が 3 重量%以上グラフト重合されたグラフト重合体は含まな!/、。ゴム質重合体に不飽和力 ルボン酸グリシジルエステル単位または不飽和ジカルボン酸無水物単位が 3重量% 以上グラフト重合されたグラフト重合体は、後述する (E)ゴム質重合体に含める。
[0047] 本発明にお!/、ては、耐衝撃性、耐熱性の点で、不飽和カルボン酸グリシジルエステ ル単位または不飽和ジカルボン酸無水物単位力 3重量%以上共重合されたビュル
系共重合体であることが好ましぐ 6重量%以上共重合されたビニル系共重合体であ ることがより好ましぐ 9重量%以上共重合されたビュル系共重合体であることがさら に好ましい。上限としては、流動性の点で、 90重量%以下共重合されたビュル系共 重合体であることが好ましぐ 40重量%以下共重合されたビニル系共重合体であるこ とがより好ましぐ 20重量%以下共重合されたビニル系共重合体であることがさらに 好ましぐ 15重量%以下共重合されたビニル系共重合体であることが特に好ま 、。
[0048] 本発明にお 、て、不飽和カルボン酸グリシジルエステル単量体としては、アクリル酸 グリシジル、メタクリル酸グリシジル、ェタクリル酸グリシジル、ィタコン酸グリシジルなど が挙げられ、不飽和ジカルボン酸無水物単量体としては、マレイン酸無水物、イタコ ン酸無水物、シトラコン酸無水物、 5 ノルボルネンー 2, 3 ジカルボン酸無水物、 1 ーシクロへキセン 1, 2 ジカルボン酸無水物、シス 4ーシクロへキセン 1, 2- ジカルボン酸無水物などが挙げられ、なかでも、耐衝撃性、耐熱性、生産性の点で、 不飽和カルボン酸グリシジルエステル単量体としては、アクリル酸グリシジル、メタタリ ル酸グリシジル、不飽和ジカルボン酸無水物単量体としては、マレイン酸無水物、 5 ノルボルネンー 2, 3 ジカルボン酸無水物が好ましい。これらは、 1種または 2種 以上を用いることができる。
[0049] 本発明の(C 2)不飽和カルボン酸グリシジルエステル単位または不飽和ジカルボ ン酸無水物単位が 3重量%以上共重合されたビニル系重合体につ 、て、不飽和力 ルボン酸グリシジルエステル単量体または不飽和ジカルボン酸無水物単量体以外の ビュル系単量体としては、不飽和カルボン酸グリシジルエステル単量体または不飽 和ジカルボン酸無水物単量体と共重合可能であれば、特に制限はなぐ例えば、(メ タ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸 n—プロピル、(メタ)ァ クリル酸 n—ブチル、(メタ)アクリル酸 t—ブチル、(メタ)アクリル酸 n—へキシル、(メタ )アクリル酸シクロへキシル、(メタ)アクリル酸 2—ェチルへキシル、(メタ)アクリル酸ク 口ロメチル、(メタ)アクリル酸 2—クロロェチル、(メタ)アクリル酸 2—ヒドロキシェチル、 (メタ)アクリル酸 3 ヒドロキシプロピル、(メタ)アクリル酸 2, 3, 4, 5, 6 ペンタヒドロ キシへキシルおよび (メタ)アクリル酸 2, 3, 4, 5—テトラヒドロキシペンチルなどの不 飽和カルボン酸アルキルエステル系単量体、スチレン、 α—メチルスチレン、 ο—メチ
ノレスチレン、 p—メチノレスチレン、 o ェチルスチレン、 p ェチルスチレンおよび p— t
—ブチルスチレンなどの芳香族ビュル系単量体、アクリロニトリル、メタタリ口-トリルお よびエタタリ口-トリルなどのシアン化ビュル系単量体、 N—メチルマレイミド、 N ェ チルマレイミド、 N シクロへキシルマレイミド、 N フエ-ルマレイミドなどのマレイミド 系単量体、アクリル酸、メタクリル酸、マレイン酸、マレイン酸モノェチルエステル、 3— ヒドロキシ一 1—プロペン、 4 ヒドロキシ一 1—ブテン、シス一 4 ヒドロキシ一 2 ブ テン、トランスー4ーヒドロキシー2 ブテン、 3 ヒドロキシー2—メチルー 1—プロべ ン、シス 5 ヒドロキシー 2 ペンテン、トランス 5 ヒドロキシー 2 ペンテン、 4, 4ージヒドロキシ 2—ブテンなどのヒドロキシル基を有するビュル系単量体、ァリルグ リシジルエーテル、スチレン p グリシジルエーテルおよび p グリシジルスチレン などのエポキシ基を有するビニル系単量体、アクリルアミド、メタクリルアミド、 N—メチ ルアクリルアミド、ブトキシメチルアクリルアミド、 N プロピルメタクリルアミド、アクリル 酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、 メタクリル酸ェチルァミノプロピル、メタクリル酸フエ-ルアミノエチル、メタクリル酸シク 口へキシルアミノエチル、 N ビ-ルジェチルァミン、 N ァセチルビ-ルァミン、ァリ ルァミン、メタァリルァミン、 N—メチルァリルァミン、 p—アミノスチレンなどのアミノ基 およびその誘導体を有するビニル系単量体、 2—イソプロべ-ルーォキサゾリン、 2— ビュル ォキサゾリン、 2—ァクロィル ォキサゾリンおよび 2—スチリルーォキサゾリ ンなどのォキサゾリン基を有するビニル系単量体などが挙げられ、これらは 1種または 2種以上を用いることができる。
[0050] 本発明にお 、て、(C 2)不飽和カルボン酸グリシジルエステル単位または不飽和 ジカルボン酸無水物単位が 3重量%以上共重合されたビニル系重合体の重量平均 分子量は、特に限定されないが、耐衝撃性、耐熱性の点で、 1000〜45万の範囲で あることが好ましぐ 3000〜 10万の範囲であることがより好ましぐ 5000〜1万の範 囲であることがさらに好ましい。ここでいう重量平均分子量とは、溶媒としてへキサフ ルォロイソプロパノールを用いたゲルパーミエーシヨンクロマトグラフィー(GPC)で測 定したポリメタクリル酸メチル (PMMA)換算の重量平均分子量である。
[0051] 本発明において、(C 2)不飽和カルボン酸グリシジルエステル単位または不飽和
ジカルボン酸無水物単位が 3重量%以上共重合されたビニル系重合体のガラス転移 温度 (Tg)は、特に限定されないが、耐熱性の点で、 50°C以上が好ましぐ 0°C以 上がより好ましぐ 50°C以上がさらに好ましぐ 70°C以上が特に好ましぐ 90°C以上 が最も好ましい。上限は特に限定されないが、成形加工性の点で、 150°C以下が好 ましい。ここでいう Tgは、示差走査型熱量計 (DSC)測定により求めた Tgの値であり 、ガラス転移領域における比熱容量変化が半分の値となる温度である。
[0052] 本発明にお 、て、(C 2)不飽和カルボン酸グリシジルエステル単位または不飽和 ジカルボン酸無水物単位が 3重量%以上共重合されたビニル系重合体の製造方法 としては、塊状重合、溶液重合、懸濁重合、乳化重合等の公知の重合方法を用いる ことができる。
[0053] 本発明の(C— 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 20〜90 重量%がグラフト重合されたグラフト重合体とは、ゴム質重合体 10〜80重量%の存 在下に、メタクリル酸メチル 20〜90重量%およびこれと共重合可能な単量体を加え た単量体混合物を、公知の塊状重合、塊状懸濁重合、溶液重合、沈殿重合または 乳化重合に供することにより得られる。
[0054] そして(C— 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 20〜90重量 %がグラフト重合されたグラフト重合体とは、メタクリル酸メチル単位 20〜90重量%を 含有する共重合体力 ゴム質重合体 10〜80重量%にグラフトした構造をとつたもの と、メタクリル酸メチル単位 20〜90重量%を含有する共重合体力 (r)ゴム質重合体 10〜80重量%に非グラフトした構造をとつたものとを含むものである。
[0055] 具体的には、ゴム質重合体 10〜80重量%の存在下に、メタクリル酸メチル単位 20 〜90重量%を共重合して得られるビニル系グラフト重合体であれば、特に制限され ないが、耐衝撃性、耐熱性の点で、ゴム質重合体 10〜80重量%の存在下に、メタク リル酸メチル単位 20〜90重量0 /0、芳香族ビュル系単位 0〜70重量0 /0、シアン化ビ ニル系単位 0〜50重量%、およびこれらと共重合可能な他のビニル系単位 0〜70重 量%を共重合して得られるビニル系グラフト共重合体が好ましい。
[0056] 上記ゴム質重合体としては、特に制限されな!、が、ガラス転移温度が 0°C以下のゴ ム質重合体が好ましぐジェン系ゴム、アクリル系ゴム、エチレン系ゴム、オルガノシロ
キサン系ゴムなどが使用できる。これらゴム質重合体の具体例としては、ポリブタジェ ン、スチレン ブタジエン共重合体、スチレン ブタジエンのブロック共重合体、ァク リロ-トリルーブタジエン共重合体、アクリル酸ブチルーブタジエン共重合体、ポリイソ プレン、ブタジエンーメタクリル酸メチル共重合体、アクリル酸ブチルーメタクリル酸メ チル共重合体、ブタジエン アクリル酸ェチル共重合体、エチレン プロピレン共重 合体、エチレン プロピレン ジェン系共重合体、エチレン イソプレン共重合体、 エチレン アクリル酸メチル共重合体およびポリオルガノシロキサンとアルキル (メタ) アタリレートゴムとを含有するポリオルガノシロキサン アクリル系共重合体などが挙 げられる。これらのゴム質重合体の中で、特に耐衝撃性の点で、ポリブタジエン、スチ レン ブタジエン共重合体、スチレン ブタジエンのブロック共重合体、アタリ口-トリ ルーブタジエン共重合体、アクリル酸ブチルーメタクリル酸メチル共重合体およびポリ オルガノシロキサン アクリル系共重合体が好ましぐ 1種または 2種以上の混合物で 使用することが可能である。
[0057] 本発明における(C— 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 20 〜90重量%がグラフト重合されたグラフト重合体を構成するゴム質重合体の重量平 均粒子径は、特に制限されないが、耐衝撃性の点で、 0. 05〜: L 0 mの範囲であ ることが好ましく、 0. 1〜0. 5 /z mの範囲であることがさらに好ましい。ゴム質重合体 の重量平均粒子径を 0. 05 μ m〜l. 0 μ mの範囲とすることによって、優れた耐衝撃 性を発現することができる。
[0058] なお、ゴム質重合体の重量平均粒子径は、「Rubber Age、 Vol. 88、 p. 484〜4 90、(1960)、 by E. Schmidt, P. H. Biddison」に記載のアルギン酸ナトリウム 法、つまりアルギン酸ナトリウムの濃度によりクリーム化するポリブタジエン粒子径が異 なることを利用して、クリーム化した重量割合とアルギン酸ナトリウム濃度の累積重量 分率より累積重量分率 50%の粒子径を求める方法により測定することができる。
[0059] 本発明において、(C— 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 2 0〜90重量%がグラフト重合されたグラフト重合体に用いるメタクリル酸メチルと共重 合可能な単量体としては、特に制限はなぐ例えば、アクリル酸、アクリル酸メチル、ァ クリル酸ェチル、アクリル酸ブチル、アクリル酸シクロへキシル、アクリル酸 2—ェチル
へキシル、アクリル酸ァリル、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル
、アクリル酸 2—ヒドロキシェチル、アクリル酸 2—ヒドロキシプロピル、アクリル酸ジシク 口ペンテ-ルォキシェチル、アクリル酸ジシクロペンタ -ル、ジアクリル酸ブタンジォ ール、ジアクリル酸ノナンジオール、ジアクリル酸ポリエチレングリコール、 2—(ヒドロ キシメチル)アクリル酸メチル、 2—(ヒドロキシメチル)アクリル酸ェチル、メタクリル酸、 メタクリル酸ェチル、メタクリル酸ブチル、メタクリル酸シクロへキシル、メタクリル酸 2— ェチルへキシル、メタクリル酸ジメチルアミノエチル、メタクリル酸ェチルァミノプロピル 、メタクリル酸フエニルアミノエチル、メタクリル酸シクロへキシルアミノエチル、メタタリ ル酸 2—ヒドロキシェチル、メタクリル酸 2—ヒドロキシプロピル、メタクリル酸ジシクロべ ンテニルォキシェチル、メタクリル酸ジシクロペンタニル、メタクリル酸ペンタメチルピ ペリジル、メタクリル酸テトラメチルピペリジル、メタクリル酸ァリル、メタクリル酸べンジ ル、ジメタクリル酸エチレングリコール、ジメタクリル酸プロピレングリコール、ジメタタリ ル酸ポリエチレングリコールなどが挙げられ、これらの 1種または 2種以上を用いること ができる。また、その他のビニル系単量体を共重合することもでき、その他のビュル系 単量体としては、スチレン、 α—メチノレスチレン、 ο—メチノレスチレン、 ρ—メチルスチ レン、 ο ェチルスチレン、 ρ ェチルスチレン、 p—t—ブチルスチレンなどの芳香族 ビュル系単量体、アクリロニトリル、メタタリ口-トリル、エタタリ口-トリルなどのシアン化 ビュル系単量体、アクリル酸グリシジル、メタクリル酸グリシジル、ェタクリル酸グリシジ ル、ィタコン酸グリシジル、ァリルグリシジルエーテル、スチレン—p グリシジルエー テル、 p グリシジルスチレンなどのエポキシ基を有するビュル系単量体、マレイン酸 モノェチルエステル、ィタコン酸、酢酸ビュル、 N—メチルマレイミド、 N—ェチルマレ イミド、 N シクロへキシルマレイミド、 N フエ-ルマレイミドなどの N 置換マレイミド 系単量体、マレイン酸無水物、フタル酸およびィタコン酸などのカルボキシル基また は無水カルボキシル基を有するビュル系単量体、アクリルアミド、メタクリルアミド、 N メチルアクリルアミド、ブトキシメチルアクリルアミド、 N プロピルメタクリルアミド、 N ービ-ルジェチルァミン、 N ァセチルビ-ルァミン、ァリルァミン、メタァリルアミン、 N—メチルァリルァミン、 p アミノスチレンなどのアミノ基およびその誘導体を有する ビュル系単量体、 2—イソプロべ-ルーォキサゾリン、 2—ビュルーォキサゾリン、 2—
ァクロィル ォキサゾリンおよび 2—スチリルーォキサゾリンなどォキサゾリン基を有す るビニル系単量体が挙げられ、耐衝撃性、耐熱性の点で、芳香族ビニル系単量体、 シアンィ匕ビ二ル系単量体が好ましぐこれらの 1種または 2種以上を用いることができ る。なお、本発明の(C— 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 2 0〜90重量%がグラフト重合されたグラフト重合体にぉ 、て、共重合可能な他のビ- ル系単量体として、アクリル酸グリシジル、メタクリル酸グリシジル、ェタクリル酸グリシ ジル、ィタコン酸グリシジルなどの不飽和カルボン酸グリシジルエステル、または、マ レイン酸無水物、ィタコン酸無水物、シトラコン酸無水物などの不飽和ジカルボン酸 無水物を共重合してもよいが、流動性の点で、不飽和カルボン酸グリシジルエステル または不飽和カルボン酸無水物の共重合量は 3重量%未満である。不飽和カルボン 酸グリシジルエステルまたは不飽和カルボン酸無水物を 3重量%以上共重合したも のは、前述の(C 2)ビニル系重合体に含める。
[0060] 本発明において、(C— 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 2 0〜 90重量%がグラフト重合されたグラフト重合体に用 、る芳香族ビニル系単量体 には、特に制限はなぐ具体例としては、スチレン、 aーメチルスチレン、 o—メチルス チレン、 p—メチノレスチレン、 o ェチルスチレン、 p ェチルスチレンおよび p—t—ブ チルスチレンなどが挙げられる力 なかでもスチレンおよび α—メチルスチレンが好ま しく用いられる。これらは 1種または 2種以上を用いることができる。
[0061] 本発明において、(C— 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 2 0〜 90重量%がグラフト重合されたグラフト重合体に用 、るシアンィ匕ビニル系単量体 には、特に制限はなぐ具体例としては、アクリロニトリル、メタタリ口-トリルおよびエタ クリロ-トリルなどが挙げられる力 なかでもアクリロニトリルが好ましく用いられる。これ らは 1種または 2種以上を用いることができる。
[0062] 本発明において、(C— 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 2 0〜90重量%がグラフト重合されたグラフト重合体は、ゴム質重合体 10〜80重量% 、より好ましくは 30〜70重量%の存在下に、メタクリル酸メチル 20〜90重量0 /0、より 好ましくは 30〜70重量%を共重合することにより得られる力 耐衝撃性、耐熱性の点 で、芳香族ビュル系単量体が 0〜70重量%、より好ましくは 0〜50重量%、シアンィ匕
ビニル系単量体が 0〜50重量%、より好ましくは 0〜30重量%、これらと共重合可能 な他のビニル系単量体が 0〜70重量%、より好ましくは 0〜50重量%を共重合する ことによって得られる。ゴム質重合体の割合が上記の範囲未満でも、また上記の範囲 を超えても、衝撃強度や表面外観が低下する場合があるため好ましくない。
[0063] なお、(C 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 20〜90重量 %がグラフト重合されたグラフト重合体は、ゴム質重合体に単量体または単量体混合 物がグラフトした構造をとつたグラフト共重合体の他に、グラフトしていない共重合体 を含有したものである。グラフト重合体のグラフト率は特に制限がないが、耐衝撃性 および光沢が均衡してすぐれる榭脂組成物を得るためには、 10〜: LOO重量%、特に 20〜80重量%の範囲であることが好ましい。ここで、グラフト率は次式により算出され る値である。
グラフト率(%) = [<ゴム質重合体にグラフト重合したビニル系共重合体量 >Z<グ ラフト共重合体のゴム含有量〉] X 100
[0064] グラフトして 、な 、共重合体の特性は、特に制限されな!、が、耐衝撃性の点で、メ チルェチルケトン可溶分の極限粘度 [ ] (30°Cで測定)が、 0. 10〜: L OOdl/g, 特に 0. 20〜0. 80dl/gの範囲であることが好ましい。
[0065] 本発明の(C— 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 20〜90 重量%がグラフト重合されたグラフト重合体は、公知の重合法で得ることができる。例 えば、ゴム質重合体ラテックスの存在下に単量体および連鎖移動剤の混合物と乳化 剤に溶解したラジカル発生剤の溶液を連続的に重合容器に供給して乳化重合する 方法などによって得ることができる。
[0066] 本発明の(C 4)前記一般式 (I)で表されるポリ乳酸セグメントと前記一般式 (Π)で 表されるビニル系ポリマーセグメントとが、共重合比( (I) / (II) ) 99Zl〜lZ99重量 部(ただし (I) + (II)は 100重量部)で結合したブロック共重合体とは、ポリ乳酸セグメ ント (A)と前記一般式 (Π)で表されるビニル系ポリマーセグメント (B)が連結したプロ ック共重合体である。
[0067] 本発明のブロック共重合体中のポリ乳酸セグメントとは、前記一般式 (I)で表される 構造単位力 なり、 L 乳酸及び Zまたは D 乳酸を主たる単量体成分とするポリマ
一であるが、乳酸以外の他の共重合成分を含んでいてもよい。他のモノマー単位とし ては、エチレングリコール、プロピレングリコール、ブタンジオール、ヘプタンジオール
、へキサンジオール、オクタンジオール、ノナンジオール、デカンジオール、 1, 4ーシ クロへキサンジメタノール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、 ビスフエノール A、ポリエチレングリコール、ポリプロピレングリコールおよびポリテトラメ チレングリコールなどのグリコール化合物、シユウ酸、アジピン酸、セバシン酸、ァゼラ イン酸、ドデカンジオン酸、マロン酸、グルタル酸、シクロへキサンジカルボン酸、テレ フタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビス(p—カルボキシフエ -ル)メタン、アントラセンジカルボン酸、 4, 4'ージフエ-ルエーテルジカルボン酸、 5—ナトリウムスルホイソフタル酸、 5—テトラブチルホスホ-ゥムイソフタル酸などのジ カルボン酸、グリコール酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸 、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸、力プロラクト ン、バレロラタトン、プロピオラタトン、ゥンデカラクトン、 1, 5—ォキセパンー2—オンな どのラタトン類を挙げることができる。上記他の共重合成分の共重合量は、全単量体 成分に対し、 0〜30モル%であることが好ましぐ 0〜 10モル%であることが好ましい
[0068] 本発明にお 、て、特に高 、耐熱性を有する榭脂組成物を得るためには、ポリ乳酸 セグメントとして乳酸成分の光学純度が高 、ものを用いることが好ま 、。ポリ乳酸セ グメントの総乳酸成分の内、 L体が 80%以上含まれるかあるいは D体が 80%以上含 まれることが好ましぐ L体が 90%以上含まれるかあるいは D体が 90%以上含まれる ことが特に好ましぐ L体が 95%以上含まれるかあるいは D体が 95%以上含まれるこ とが更に好ましい。
[0069] ポリ乳酸セグメントの製造方法としては、既知の重合方法を用いることができ、乳酸 からの直接重合法、ラクチドを介する開環重合法などを挙げることができる。
[0070] 本発明で用いられるポリ乳酸セグメントの m (数平均分子量)については、相溶化効 果ゃ実用的な機械物性を有するために、好ましくは 1000〜: LOOOOO、さらに好ましく は 1000〜50000である。ここで、ポリ乳酸セグメントの m (数平均分子量)は、 1H— NMR測定により求めたスペクトルの主鎖と末端の比力も算出して求めた値である。
ポリ乳酸セグメントを重水素クロ口ホルム溶媒に溶解し、主鎖の CHに由来する 5. 2p pm付近のピーク面積と、末端の CHに由来する 4. 6ppmのピーク面積の比力も構造 の繰り返し単位を求め、数平均分子量を求める。ポリ乳酸セグメントの平均分子量は 、共重合体を得る前の原料の分子量を測定することで決定することができるが、共重 合体の 1H—NMRを測定することで数平均分子量を求めることもできる。
[0071] 次に本発明の前記一般式 (Π)で表されるビニル系ポリマーセグメントとは、一般式( Π)で表される構造力 なり、式 (Π)中、 Xは水素、アルキル基、ヒドロキシル基、アル キルエステル基、シァノ基、フエ-ル基およびアミド基力 選ばれる少なくとも 1種であ る。ここで、アルキル基、アルキルエステル基の炭素数は、 1〜 12であることが好まし く、更に好ましくは 1〜6である。
[0072] 代表的なビュル系ポリマーセグメントとしては、ポリエチレン、エチレン一酢酸ビュル 共重合体、エチレンーメタクリル酸グリシジル共重合体、エチレンーメタクリル酸ジメチ ルアミノエチル共重合体、エチレン一無水マレイン酸共重合体、エチレン一一酸化 炭素共重合体、エチレンーケテンァセタール共重合体、エチレン一ビュルォキシラン 共重合体、エチレンージォキソラン共重合体エチレン一スチレン共重合体、エチレン 一ビニルアルコール共重合体、ポリ塩化ビニル、塩化ビュル一酢酸ビュル共重合体 、エチレン—塩化ビュル共重合体、ポリスチレン、ポリアクリロニトリル、スチレン—ァク リロ-トリル共重合体、アクリロニトリル一アクリル酸メチル共重合体、アクリロニトリル一 酢酸ビュル共重合体、アクリロニトリル一塩ィ匕ビュル共重合体、アクリロニトリル一メタ クリル酸メチル共重合体、酢酸ビュル、ポリビュルアルコール、ポリメタクリル酸メチル 、ポリアクリルアミド、ポリ塩ィ匕ビユリデンなどが挙げられ、これらの共重合体および Z または誘導体などを 1種または 2種以上用いることができる。これらの中で特に好まし くは、ポリスチレン、スチレンアクリロニトリル共重合体、ポリメタクリル酸メチルである。
[0073] 本発明で用いられるビュル系ポリマーセグメントの n (数平均分子量)については、 相溶ィ匕効果や実用的な機械物性を有するために、好ましくは 1000〜100000、さら に好ましくは 1000〜50000である。ここで、ビュル系ポリマーセグメントの n (数平均 分子量)は、ゲルパーミエーシヨンクロマトグラフィー(GPC)により測定した、標準ポリ スチレンまたは標準ポリメタクリル酸メチル換算の数平均分子量の値である。
[0074] 本発明の (C 4)ブロック共重合体の製造方法としては、前記一般式 (Π)で表され るビニル系ポリマーセグメントの末端または側鎖に 1つ以上のヒドロキシル基を含有す る化合物CX HIをI ラクチドに融解させた後、既知の開環重合触媒を用いて開環重合法を用 いて製造することができる。なおここで、ブロック共重合を定量的に進行させるために は、末端または側鎖に 1つ以上のヒドロキシル基を含有する化合物がラクチドに融解 することが好ましい。
[0075] ここで、末端または側鎖に 1つ以上のヒドロキシル基を含有する化合物の製造方法 は、特に制限はないが、ヒドロキシル基を含有するモノマーとのランダム共重合、プロ ック共重合、グラフト共重合や、下記一般式 (ΠΙ)で表されるモノマーのラジカル重合 により重合され、ヒドロキシル基を含有する連鎖移動剤により末端封鎖する方法が用 いられる。
[0076] [化 3]
[0077] (Xは水素、アルキル基、ヒドロキシル基、アルキルエステル基、シァノ基、フエ-ル基 、アミド基およびハロゲン基力も選ばれる少なくとも 1種を表す。 )
[0078] さらにラジカル重合系は懸濁重合、乳化重合、溶液重合などが挙げられる。通常こ れらの重合には開始剤が用いられ、既知の開始剤を用いることができる力 ラジカル 開始剤が好ましく用いることができ、さらにリビング的に重合させるために、リビングラ ジカル重合開始剤を用いることもできる。
[0079] 代表的なラジカル重合開始剤としては、ベンゾイン及びべンゾインメチルのようなべ ンゾイン系化合物、ァセトフエノン及び 2, 2—ジメトキシ一 2—フエ-ルァセトフエノン のようなァセトフヱノン系化合物、チォキサントン及び 2, 4 ジェチルチオキサントン のようなチォキサンソン系化合物、 4, 4'ージアジドカルコン、 2, 6 ビス(4' アジド
ベンザル)シクロへキサノン及び 4, 4'ージアジドベンゾフエノンのようなビスアジドィ匕 合物、ァゾビスイソブチル二トリル、 2、 2—ァゾビスプロパン、 m, m,—ァゾキシスチレ ン及びヒドラゾンのようなァゾ化合物、ならびに 2, 5 ジメチルー 2, 5 ジ(tーブチ ルバーオキシ)へキサン及び 2, 5 ジメチルー 2, 5 ジ(t ブチルパーォキシ)へ キシン 3、ジクミルパーォキシド、ベンゾィルパーォキシドのような有機過酸化物等 が挙げられる。
[0080] リビングラジカル重合開始剤を使用した重合方法としては既知の方法を用いること ができ、例えば、 2, 2, 6, 6—テトラメチル— 1—ピベリジ-口キシ (TEMPO)に代表 される-トロキシラジカルを用いる方法、炭素 ヨウ素結合を有する化合物とラジカル 重合開始剤を用いる方法、ハロゲン化炭化水素又はハロゲン化スルホ二ルイ匕合物と 金属錯体及びルイス酸からなる活性化剤とからなる重合触媒系を用いる重合方法な どが挙げられる。
[0081] 末端封鎖するために使用されるヒドロキシル基を含有する連鎖移動剤としては、例 えばメルカプトエタノール、メルカプトブタノール、メルカプトプロパノール、メルカプト ベンゾィルアルコール、メルカプトへキサノール、メルカプトゥンデカノール、メルカプ トフエノールなどが挙げられ、メルカプトエタノール、メルカプトブタノール、メルカプト プロパノール、メルカプトへキサノール、メルカプトゥンデカノールなどが好ましく用い られる。
[0082] 本発明の(C 4)ブロック共重合体は、前述の通り、末端または側鎖に 1つ以上の ヒドロキシル基を含有する化合物をラクチドに融解させた後、既知の開環重合触媒を 用いて開環重合法を用いて製造することができるが、ここで使用される開環重合触媒 としては、例えば、錫、亜鉛、鉛、チタン、ビスマス、ジルコニウム、ゲルマニウム、アン チモン、アルミニウムなどの金属及びその誘導体が挙げられる。誘導体としては、金 属アルコキシド、カルボン酸塩、炭酸塩、酸化物、ハロゲン化物が好ましい。具体的 には、塩化錫、ォクチル酸錫、塩化亜鉛、酢酸亜鉛、酸化鉛、炭酸鉛、塩化チタン、 アルコキシチタン、酸化ゲルマニウム、酸化ジルコニウムなどが挙げられる。これらの 中でも、錫化合物が好ましぐ特にォクチル酸錫がより好ましい。
[0083] 開環重合触媒の添加量は、特に限定されるものではないが、使用するラクチドと原
料 (F)の総重量 100重量部に対して 0. 001〜2重量部が好ましぐとくに 0. 001〜1 重量部がより好ましい。触媒量が 0. 001重量部未満では重合時間の短縮効果が低 下し、 2重量部を越えると高分子量のブロックが得られにくい。
[0084] またブロック率の高 、ブロック共重合体を製造するためには、末端または側鎖に 1 つ以上のヒドロキシル基を含有する化合物をあら力じめ乾燥して水分を取り除くことが 好ましい。また、末端または側鎖に 1つ以上のヒドロキシル基を含有する化合物をラタ チドに融解させた後、ブロック共重合に供することが好ましい。融解させる際の温度 は末端または側鎖に 1つ以上のヒドロキシル基を含有する化合物とラクチドの仕込み 量により異なる力 通常 60〜150°Cであり、好ましくは 80〜140°C、より好ましくは 10 0〜140°Cである。
[0085] 本発明の (C 4)ブロック共重合体を製造する際に使用される反応容器は特に限 定されるものではないが、ミキサー型反応器、塔型反応器および押出し機型反応器 などを用いることができる。また、これらの反応器は 2種以上組み合わせて使用するこ とがでさる。
[0086] 重合温度については、特に限定されるものではないが、 60〜250°Cの範囲が好ま しい。
[0087] なお、本重合反応は溶融状態で反応を行うことが好ま U、ため、ポリマーを溶融さ せるためにはポリマーの融点以上で反応させることが好ましいが、分解反応を抑制す るという点で、反応物が固まらない程度にできる限り温度を下げて反応を行うことが好 ましい。
[0088] 各工程の反応圧力は、特に限定されるものではなぐ減圧、常圧および加圧いずれ の条件でもよい。
[0089] また、各工程においては、反応系内をできる限り乾燥状態にすることが好ましい。原 料であるラクチドゃ末端または側鎖に 1つ以上のヒドロキシル基を含有する化合物を 乾燥させたり、脱湿窒素雰囲気下で反応を行うなどが、得られるブロック共重合体の 高分子量化ゃ高 、ブロック率達成のために有効である。
[0090] 重合終了後、未反応のモノマーが残存しな 、ように精製することが好ま 、。精製 する方法としては、特に限定されるものではないが、例えば、ポリマーをクロ口ホルム
などのブロック共重合体が溶解する溶媒に溶解させた後、その溶液をメタノールなど のブロック共重合体が溶解しな 、溶媒中に展開して沈殿させる方法などを使用する ことができる。
[0091] 本発明の(C 4)ブロック共重合体は、一般式 (I)で表されるポリ乳酸セグメントと一 般式 (Π)で表されるビュル系ポリマーセグメントが、 99〜lZl〜99重量部(ただし (I ) + (II)は 100重量部)であり、好ましくは 80〜20Z20〜80重量部、より好ましくは 7 0〜30Ζ30〜70重量部である。
[0092] ポリ乳酸セグメントとビュル系ポリマーセグメントのみを上記組成範囲で単に溶融混 合すると、両ポリマーは粗大分散となり、ビュル系ポリマーセグメントの種類によって は溶融配合が不可能となる。ところがポリ乳酸セグメントとビュル系ポリマーセグメント を結合したブロック共重合体により相溶ィ匕が可能となり、ポリ乳酸単独では得られな 力つた機械物性や耐熱性、透明性などの特性を向上できることを見出した。
[0093] 本発明にお 、て、(D)ジカルボン酸無水物とは、ジカルボン酸から、分子内で水分 子が脱離した構造を有する化合物のことであり、例えば、マレイン酸無水物、ィタコン 酸無水物、シトラコン酸無水物、 5 ノルボルネンー 2, 3 ジカルボン酸無水物、 1 シクロへキセン 1, 2 ジカルボン酸無水物、シス 4ーシクロへキセン 1, 2 ジ カルボン酸無水物、コハク酸無水物、アジピン酸無水物、シクロへキサンジカルボン 酸無水物、フタル酸無水物などが挙げられ、耐衝撃性、耐熱性、成形加工性の点で 、マレイン酸無水物、コハク酸無水物のいずれか 1種以上であることが好ましぐ耐衝 撃性、耐熱性の点で、マレイン酸無水物、コハク酸無水物がより好ましぐマレイン酸 無水物がさらに好ましい。なお、本発明の榭脂組成物において、(D)ジカルボン酸 無水物は、化合物として単体で存在していてもよぐまた、(Α)スチレン系榭脂、 (Β) 脂肪族ポリエステルおよび (C)相溶化剤の!/ヽずれか 1種以上と反応し、ジカルボン酸 無水物の構造を保持せずに存在していてもよい。本発明では、(D)ジカルボン酸無 水物を配合することにより、(Α)スチレン系榭脂、(Β)脂肪族ポリエステルおよび (C) 相溶化剤の相構造に影響を及ぼすため、強度、耐衝撃性、耐熱性および成形加工 性などの特性が、大きく向上すると考えられる。
[0094] 本発明において、(Α)スチレン系榭脂および (Β)脂肪族ポリエステルとの配合比は
、(A)スチレン系榭脂および (B)脂肪族ポリエステルの合計量 100重量部に対して、 (A)スチレン系榭脂の配合量は、 5重量部以上であり、耐衝撃性、耐熱性の点で、好 ましくは 10重量部以上、より好ましくは 25〜80重量部、さらに好ましくは 30〜70重 量部であり、(B)脂肪族ポリエステルは、 1〜95重量部であり、耐衝撃性、耐熱性の 点で、好ましくは 7〜50重量部、より好ましくは 10〜50重量部である。さらに(B)脂肪 族ポリエステルの添加量は、 85重量部未満であり、好ましくは 65〜: LO重量部、より好 ましくは 50〜 10重量部の範囲である。
[0095] 本発明において、(C)相溶化剤の配合量は、(A)スチレン系榭脂および (B)脂肪 族ポリエステルの合計量 100重量部に対して、(C— 1)ポリメタクリル酸メチル重合体 の添加量は、 0. 1〜30重量部であり、耐衝撃性、耐熱性の点で、より好ましくは 2〜1 5重量部、さらに好ましくは 2〜: LO重量部であり、(C 2)不飽和カルボン酸グリシジ ルエステル単位または不飽和ジカルボン酸無水物単位が 3重量%以上共重合され たビュル系重合体の添加量は、 0. 01〜35重量部であり、耐衝撃性、耐熱性の点で 、好ましくは 0. 1〜20重量部、より好ましくは 0. 2〜: LO重量部であり、(C— 3)ゴム質 重合体 10〜80重量%にメタクリル酸メチル単位 20〜90重量%がグラフト重合され たグラフト重合体の添加量は、 1〜60重量部であり、耐衝撃性、耐熱性の点で、好ま しくは 2〜50重量部、より好ましくは 5〜35重量部であり、(C— 4)前記一般式 (I)で 表されるポリ乳酸セグメントと前記一般式 (Π)で表されるビニル系ポリマーセグメントと 力 共重合比( (I) / (II) ) 99Z1〜: LZ99重量部(ただし (I) + (II)は 100重量部)で 結合したブロック共重合体の添加量は、 0. 05〜20重量部であり、耐衝撃性、耐熱 性の点で、好ましくは 0. 1〜15重量部であり、より好ましくは 1〜: L0重量部である。
[0096] 本発明において、(D)ジカルボン酸無水物の配合量は、(A)スチレン系榭脂およ び (B)脂肪族ポリエステルの合計量 100重量部に対して、 0〜5重量部であり、耐衝 撃性、耐熱性の点で、好ましくは 0. 05〜2重量部、より好ましくは 0. 1〜1重量部で ある。
[0097] 本発明の榭脂組成物は、上記のような組成で (A)スチレン系榭脂、(B)脂肪族ポリ エステル、ならびに(C)相溶化剤および (D)ジカルボン酸無水物力も選ばれる少なく とも 1種を混合することにより得られる力 得られた榭脂組成物には、不飽和カルボン
酸アルキルエステル系単位が榭脂成分に対して 1〜90重量%、好ましくは 10〜80 重量0 /0、芳香族ビュル系単位 0. 1〜80重量0 /0、好ましくは 1〜70重量0 /0、シアンィ匕 ビュル系単位 0〜45重量%、好ましくは 0〜40重量%、これらと共重合可能な他のビ -ル系単位 0〜85重量%、好ましくは 0〜80重量%の範囲となるようにすることで、 十分な耐衝撃性と耐熱性を得ることができる。
[0098] さらに、本発明においては、(E)ゴム質重合体を配合することが好ましい。
[0099] 本発明にお 、て、 (E)ゴム質重合体としては、特に制限されな!、が、ガラス転移温 度が 0°C以下のゴム質重合体が好ましぐジェン系ゴム、アクリル系ゴム、エチレン系 ゴム、オルガノシロキサン系ゴムなどが使用できる。これらゴム質重合体の具体例とし ては、ポリブタジエン、スチレン ブタジエン共重合体、スチレン ブタジエンのブロ ック共重合体、アクリロニトリル ブタジエン共重合体、アクリル酸ブチルーブタジエン 共重合体、ポリイソプレン、ブタジエンーメタクリル酸メチル共重合体、アクリル酸プチ ルーメタクリル酸メチル共重合体、ブタジエン アクリル酸ェチル共重合体、エチレン プロピレン共重合体、エチレン プロピレン ジェン系共重合体、エチレン イソ プレン共重合体、エチレン アクリル酸メチル共重合体およびポリオルガノシロキサ ンとアルキル (メタ)アタリレートゴムとを含有するポリオルガノシロキサン一アクリル系 共重合体などが挙げられる。これらのゴム質重合体の中で、特に耐熱性の点で、ポリ ブタジエン、スチレン ブタジエン共重合体、スチレン ブタジエンのブロック共重合 体、アクリロニトリル—ブタジエン共重合体、ポリオルガノシロキサン—アクリル系共重 合体が好ましぐ 1種または 2種以上の混合物で使用することが可能である。
[0100] 本発明にお 、て、 (E)ゴム質重合体は、芳香族ビニル系単位およびシアンィ匕ビ- ル系単位がグラフト重合されているものであることが好ましぐこれらと共重合可能な ビニル系単量体を共重合してもよ 、。
[0101] 本発明の (E)ゴム質重合体に用いる芳香族ビニル系単量体としては、特に制限は なぐスチレン、 α—メチノレスチレン、 ο—メチノレスチレン、 ρ—メチノレスチレン、 ο ェ チルスチレン、 ρ ェチルスチレンおよび p—t—ブチルスチレンなどの芳香族ビュル 系単量体が挙げられ、耐熱性の点で、スチレン、 aーメチルスチレンが好ましい。
[0102] 本発明の (E)ゴム質重合体に用いるシアンィ匕ビ二ル系単量体としては、特に制限
はなぐアクリロニトリル、メタタリロニトリルおよびエタタリロニトリルなどのシアン化ビニ ル系単量体が挙げられ、耐熱性、耐候性の点で、アクリル-トリルが好ましい。
本発明の (E)ゴム質重合体に用いるその他の共重合可能な単量体としては、特に 制限はなぐ例えば、アクリル酸、アクリル酸メチル、アクリル酸ェチル、アクリル酸プロ ピル、アクリル酸ブチル、アクリル酸シクロへキシル、アクリル酸 2—ェチルへキシル、 アクリル酸ァリル、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、アクリル 酸 2—ヒドロキシェチル、アクリル酸 2—ヒドロキシプロピル、アクリル酸ジシクロペンテ -ルォキシェチル、アクリル酸ジシクロペンタ-ル、ジアクリル酸ブタンジオール、ジァ クリル酸ノナンジオール、ジアクリル酸ポリエチレングリコール、 2—(ヒドロキシメチル) アクリル酸メチル、 2—(ヒドロキシメチル)アクリル酸ェチル、メタクリル酸、メタクリル酸 メチル、メタクリル酸ェチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸シ クロへキシル、メタクリル酸 2—ェチルへキシル、メタクリル酸ジメチルアミノエチル、メ タクリル酸ェチルァミノプロピル、メタクリル酸フエ-ルアミノエチル、メタクリル酸シクロ へキシルアミノエチル、メタクリル酸 2—ヒドロキシェチル、メタクリル酸 2—ヒドロキシプ 口ピル、メタクリル酸ジシクロペンテニルォキシェチル、メタクリル酸ジシクロペンタニ ル、メタクリル酸ペンタメチルピペリジル、メタクリル酸テトラメチルピペリジル、メタタリ ル酸ァリル、メタクリル酸ベンジル、ジメタクリル酸エチレングリコール、ジメタクリル酸 プロピレングリコール、ジメタクリル酸ポリエチレングリコールなどが挙げられ、これらの 1種または 2種以上を用いることができる。また、その他のビニル系単量体を共重合す ることもでき、その他のビュル系単量体としては、アクリル酸グリシジル、メタクリル酸グ リシジル、ェタクリル酸グリシジル、ィタコン酸グリシジル、ァリルグリシジルエーテル、 スチレン p グリシジルエーテル、 p グリシジルスチレンなどのエポキシ基を有す るビュル系単量体、マレイン酸モノェチルエステル、ィタコン酸、酢酸ビュル、 N—メ チルマレイミド、 N ェチルマレイミド、 N シクロへキシルマレイミド、 N フエ-ルマ レイミドなどの N 置換マレイミド系単量体、マレイン酸無水物、ィタコン酸無水物、シ トラコン酸無水物、フタル酸およびィタコン酸などのカルボキシル基または無水カル ボキシル基を有するビュル系単量体、アクリルアミド、メタクリルアミド、 N—メチルァク リルアミド、ブトキシメチルアクリルアミド、 N—プロピルメタクリルアミド、 N—ビュルジ
ェチルァミン、 N ァセチルビニルァミン、ァリルァミン、メタァリルァミン、 N—メチル ァリルァミン、 p アミノスチレンなどのアミノ基およびその誘導体を有するビュル系単 量体、 2—イソプロぺニルーォキサゾリン、 2—ビニルーォキサゾリン、 2—ァクロィル ーォキサゾリンおよび 2—スチリルーォキサゾリンなどォキサゾリン基を有するビュル 系単量体が挙げられ、耐衝撃性、耐熱性の点で、芳香族ビニル系単量体、シアンィ匕 ビニル系単量体、エポキシ基を有するビニル系単量体が好ましぐこれらの 1種また は 2種以上を用いることができる。なお、本発明において、アクリル酸グリシジル、メタ クリル酸グリシジル、ェタクリル酸グリシジル、ィタコン酸グリシジルなどの不飽和カル ボン酸グリシジルエステル単位またはマレイン酸無水物、ィタコン酸無水物、シトラコ ン酸無水物などの不飽和ジカルボン酸無水物単位が 3重量%以上共重合されたも のは、(E)ゴム質重合体には含めず、前述の(C 2)不飽和カルボン酸グリシジルェ ステル単位または不飽和ジカルボン酸無水物単位が 3重量%以上共重合されたビ- ル系重合体に含める。また、本発明において、ゴム質重合体 10〜80重量%にメタク リル酸メチル単位 20〜90重量%がグラフト重合されたものは、(E)ゴム質重合体に は含めず、前述の(C— 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 20 〜90重量%がグラフト重合されたグラフト重合体に含める。
[0104] 本発明の (E)ゴム質重合体として、具体的には、耐衝撃性、耐熱性、成形加工性 の点で、ゴム質重合体 10〜80重量0 /0、耐衝撃性の点で、より好ましくは 30〜70重 量%の存在下に、芳香族ビュル系単量体が 10〜70重量%、耐衝撃性の点で、より 好ましくは 10〜50重量%、シアン化ビュル系単量体が 10〜 50重量%、耐衝撃性の 点で、より好ましくは 10〜30重量%、これらと共重合可能な他のビニル系単量体 (メ タクリル酸メチルを除く)が 0〜70重量0 /0、耐衝撃性の点で、より好ましくは 0〜50重 量%を共重合することによって得られる。ゴム質重合体の割合が上記の範囲未満で も、また上記の範囲を超えても、衝撃強度や表面外観が低下する場合があるため好 ましくない。
[0105] なお、本発明の (E)ゴム質重合体は、ゴム質重合体 10〜80重量0 /0に芳香族ビ- ル系単位、シアンィ匕ビニル系単位、これらと共重合可能な単量体がグラフト重合され たグラフト重合体であることが好ま 、が、ゴム質重合体に単量体または単量体混合
物がグラフトした構造をとつたグラフト共重合体の他に、グラフトしていない共重合体 を含有したものである。グラフト重合体のグラフト率は特に制限がないが、耐衝撃性 および光沢が均衡してすぐれる榭脂組成物を得るためには、 10〜: LOO重量%、特に 20〜80重量%の範囲であることが好ましい。ここで、グラフト率は次式により算出され る値である。
グラフト率(%) = [<ゴム質重合体にグラフト重合したビニル系共重合体量 >Z<グ ラフト共重合体のゴム含有量〉] X 100
[0106] グラフトして 、な 、共重合体の特性は、特に制限されな!、が、耐衝撃性の点で、メ チルェチルケトン可溶分の極限粘度 [ ] (30°Cで測定)が、 0. 10〜: L OOdl/g, 特に 0. 20〜0. 80dl/gの範囲であることが好ましい。
[0107] 本発明の (E)ゴム質重合体は、公知の重合法で得ることができる。例えば、ゴム質 重合体ラテックスの存在下に単量体および連鎖移動剤の混合物と乳化剤に溶解した ラジカル発生剤の溶液を連続的に重合容器に供給して乳化重合する方法などによ つて得ることがでさる。
[0108] 本発明における (E)ゴム質重合体の重量平均粒子径は、特に制限されな!、が、耐 衝撃'性の点、で、 0. 05-1. の範囲であること力 S好ましく、 0. 1〜0. 5 mの範 囲であることがさらに好ましい。ゴム質重合体の重量平均粒子径を 0. 05 /ζ πι〜1. 0 μ mの範囲とすることによって、優れた耐衝撃性を発現することができる。
[0109] なお、(E)ゴム質重合体の重量平均粒子径は、「Rubber Age、 Vol. 88、 p. 484 〜490、(1960)、 by E. Schmidt, P. H. BiddisonJに記載のアルギン酸ナトリ ゥム法、つまりアルギン酸ナトリウムの濃度によりクリーム化するポリブタジエン粒子径 が異なることを利用して、クリーム化した重量割合とアルギン酸ナトリウム濃度の累積 重量分率より累積重量分率 50%の粒子径を求める方法により測定することができる
[0110] 本発明において、(E)ゴム質重合体の配合量は、(A)スチレン系榭脂および (B)脂 肪族ポリエステルの合計量 100重量部に対して、 1〜60重量部であり、耐衝撃性、耐 熱性の点で、好ましくは 2〜40重量部、より好ましくは 5〜35重量部である。
[0111] 本発明にお 、て、(C)相溶化剤および (D)ジカルボン酸無水物から選ばれる少な
くとも 1種として、(C)相溶化剤のみを選択し、その (C)相溶化剤が(C— 2)または (C —3)成分であり、榭脂組成物の断面の電子顕微鏡写真において、(じー2)ぉょび7 または (C— 3)の合計面積を 100%とした時に、 (B)脂肪族ポリエステル中に存在す る(C— 2)および Zまたは(C - 3)の面積割合が 10〜90%であることも好ま U、。
[0112] また、本発明において、(E)ゴム質重合体を配合する場合には、榭脂組成物の断 面の電子顕微鏡写真において、(C 2)、 (C 3)および Zまたは (E)ゴム質重合体 の合計面積を 100%とした時に、(B)脂肪族ポリエステル中に存在する(C— 2)、 (C - 3)および Zまたは (E)ゴム質重合体の面積割合が 10〜90%であることも好ま ヽ
[0113] 本発明の榭脂組成物の断面の電子顕微鏡写真においては、(A)スチレン系榭脂、
(B)脂肪族ポリエステル力もなるマトリックスと、これらのマトリックス中に分散する(C 2)不飽和カルボン酸グリシジルエステル単位または不飽和ジカルボン酸無水物単 位が 3重量%以上共重合されたビニル系重合体、(C 3)ゴム質重合体 10〜80重 量%にメタクリル酸メチル単位 20〜90重量%がグラフト重合されたグラフト重合体お よび (E)ゴム質重合体力 選ばれる少なくとも 1種以上の分散相とから構成されてお り、このとき分散相である (C 2)、 (C 3)および (E)が、(B)脂肪族ポリエステルマ トリックス中に存在する面積割合力 10〜90%の範囲であるものであり、耐衝撃性、 耐熱性、成形加工性、外観性、着色性の点で、その面積割合が、 20〜85%の範囲 で存在することが好ましぐ 30〜80%の範囲で存在することがより好ましい。面積割 合が 10〜90%の範囲にない場合は、耐衝撃性が著しく低下するため好ましくない。
[0114] 本発明の榭脂組成物においては、例えば、射出成形により得られた成形品につい て、オスミウムブロック染色法により、(A)スチレン系榭脂、(C— 2)不飽和カルボン酸 グリシジルエステル単位または不飽和ジカルボン酸無水物単位が 3重量%以上共重 合されたビュル系重合体、(C— 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチ ル単位 20〜90重量%がグラフト重合されたグラフト重合体および (E)ゴム質重合体 を染色した後、超薄切片を切り出したサンプルについて、透過型電子顕微鏡にて 60 00倍に拡大して断面の観察を行うことにより、(C— 2)、 (C— 3)および (E)の分散形 態を確認することができる。
[0115] 本発明においては、(C— 2)不飽和カルボン酸グリシジルエステル単位または不飽 和ジカルボン酸無水物単位が 3重量%以上共重合されたビニル系重合体の組成に ついて、例えば、不飽和カルボン酸グリシジルエステル単位または不飽和ジカルボン 酸無水物単位を本発明の目的を損なわない範囲で多くしたり、(C— 3)ゴム質重合 体 10〜80重量%にメタクリル酸メチル単位 20〜90重量%がグラフト重合されたダラ フト重合体の組成について、例えば、メタクリル酸メチル単位を本発明の目的を損な わない範囲で多くしたり、(E)ゴム質重合体の組成について、例えば、グラフト共重合 する単量体混合物中のシアンィヒビ二ル系単量体や芳香族ビニル系単量体として α ーメチルスチレンを本発明の目的を損なわない範囲で多くすることにより、(C— 2)、 ( じー3)ぉょび )は、(B)脂肪族ポリエステル相での分散が多くなり、一方、(C— 2) 不飽和カルボン酸グリシジルエステル単位または不飽和ジカルボン酸無水物単位が 3重量%以上共重合されたビニル系重合体の組成について、例えば、不飽和カルボ ン酸グリシジルエステル単位または不飽和ジカルボン酸無水物単位を本発明の目的 を損なわない範囲で少なくしたり、(C— 3)ゴム質重合体 10〜80重量%にメタクリル 酸メチル単位 20〜90重量%がグラフト重合されたグラフト重合体の組成について、 例えば、メタクリル酸メチル単位を本発明の目的を損なわない範囲で少なくしたり、 ( E)ゴム質重合体の組成について、例えば、グラフト共重合する単量体混合物中のシ アン化ビニル系単量体や芳香族ビニル系単量体として aーメチルスチレンを本発明 の目的を損なわない範囲で少なくすることにより、(C— 2)、 (C— 3)および (E)は、( B)脂肪族ポリエステル相での分散が少なくなり、(A)スチレン系榭脂相での分散とな ることが確認できる。
[0116] 本発明において、(C— 2)、(じー3)ぉょび )が、(B)脂肪族ポリエステル中に存 在する面積割合を測定する方法としては、上記と同様の方法で透過型電子顕微鏡 にて成形品断面を撮影した。さらに 4倍に拡大し、(B)脂肪族ポリエステル中に分散 する(C— 2)、(C— 3)および (E)の面積 (X)と (A)スチレン系榭脂中の分散する (C — 2)、(C— 3)および (E)の面積 (Y)を該写真力も切り出し重量法を用いて求め、(X ) Z ( (X) + (Y) )の式に従って求めたものである。
[0117] 図 1および図 2はその電子顕微鏡写真を模式ィ匕した図であり、 1は (A)成分マトリツ
タス、 2は (B)成分マトリックス、 3は分散相を示している。図 1は本発明の実施例であ り、分散相 3は (C 2)、 (C 3)もしくは (E)成分で構成されており、 2の(B)成分マト リックス中にもかなり存在していることが認められる。一方、図 2は従来例であり、分散 相 3は (E)成分で構成されており、 (C- 2) , (C— 3)成分が存在しない。この場合、 分散相 3は (A)成分マトリックス 1中に集中して存在し、 (B)成分マトリックス中には存 在していないことが分かる。
[0118] さらに、本発明においては、耐衝撃性、耐熱性、成形加工性、流動性、外観性の点 で、(F)ポリカーボネート、芳香族ポリエステル、ポリアミド、ポリエチレン、ポリプロピレ ン、ポリ塩ィ匕ビ二ルカゝら選ばれる 1種以上の熱可塑性榭脂を含むことが好ま ヽ。
[0119] かかる(F)ポリカーボネートとしては、特に限定されるものではなぐ芳香族ポリカー ボネートおよび脂肪族ポリカーボネートのいずれも用いることができるが、難燃性の点 で、芳香族ポリカーボネートが好ましぐ耐衝撃性の点で、脂肪族ポリカーボネートが 好ましい。
[0120] 本発明にお 、て、(F)芳香族ポリカーボネートとしては、芳香族二価フエノール系 化合物とホスゲン、または炭酸ジエステルとを反応させることにより得られる芳香族ホ モまたはコポリカーボネートなどの芳香族ポリカーボネートが挙げられ、ゲルパーミエ ーシヨンクロマトグラフィーで測定したポリメチノレメタタリレート(PMMA)換算の重量 平均分子量が 5000〜500000の範囲のものが好ましく用いられ、示差熱量計で測 定されるガラス転移温度が 100〜155°Cの範囲にあるものが好ましく用いられる。
[0121] 本発明において、(F)脂肪族ポリカーボネートとは、高分子の直鎖が脂肪族炭化水 素基および炭酸基からなるものを指し、置換基側鎖は脂肪族炭化水素でなくてもよ い。具体的には、ポリエチレンカーボネート、ポリプロピレンカーボネート、ポリシクロ へキセンカーボネート、ポリスチレンカボーネートが挙げられる。
[0122] 本発明の (F)カーボネートとしては、耐衝撃性、耐熱性、成形加工性、難燃性の点 でシリコーンィ匕合物及び Z又はシリコーン共重合ポリカーボネートを含むポリカーボ ネートであることが好まし!/、。
[0123] かかる(F)芳香族ポリエステルとしては、特に限定されるものではな 、が、芳香族 ポリエステルの例としては、芳香族ジカルボン酸 (あるいは、そのエステル形成性誘導
体)とジオール (ある!/、はそのエステル形成性誘導体)とを主成分とする縮合反応によ り得られる重合体ないしは共重合体が挙げられる。
[0124] 上記芳香族ジカルボン酸としてはテレフタル酸、イソフタル酸、フタル酸、 2, 6 ナ フタレンジカルボン酸、 1, 5 ナフタレンジカルボン酸、ビス(p—カルボキシフエ-ル )メタン、アントラセンジカルボン酸、 4, 4'ージフエ-ルエーテルジカルボン酸、 5— ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸が挙げられ、かかる芳香族ジ カルボン酸には、脂肪族ジカルボン酸や脂環式ジカルボン酸およびこれらのエステ ル形成性誘導体を共重合することも可能である。カゝかる脂肪族ジカルボン酸としては 、アジピン酸、セバシン酸、ァゼライン酸、ドデカンジオン酸などが挙げられ、脂環式 ジカルボン酸としては、 1, 3 シクロへキサンジカルボン酸、 1, 4ーシクロへキサンジ カルボン酸などの脂環式ジカルボン酸およびこれらのエステル形成性誘導体などが 挙げられる。
[0125] 上記ジオール成分としては炭素数 2〜20の脂肪族グリコールすなわち、エチレング リコーノレ、プロピレングリコール、 1, 4 ブタンジオール、ネオペンチルグリコール、 1 , 5 ペンタンジオール、 1, 6 へキサンジオール、デカメチレングリコール、シクロへ キサンジメタノール、シクロへキサンジオールなど、あるいは分子量 400〜6000の長 鎖グリコール、すなわちポリエチレングリコール、ポリ 1, 3 プロピレングリコール、 ポリテトラメチレングリコールなどおよびこれらのエステル形成性誘導体などが挙げら れる。
[0126] これらの重合体ないしは共重合体の好ましい例としては、ポリブチレンテレフタレー ト、ポリブチレン(テレフタレート Zイソフタレート)、ポリブチレン(テレフタレート Zアジ ペート)、ポリブチレン(テレフタレート Zセバケート)、ポリブチレン(テレフタレート Z デカンジカノレボキシレート)、ポリブチレンナフタレート、ポリプロピレンテレフタレート、 ポリプロピレン(テレフタレート Zイソフタレート)、ポリプロピレン(テレフタレート Zアジ ペート)、ポリプロピレン(テレフタレート Zセバケート)、ポリプロピレン(テレフタレート zデカンジカノレボキシレート)、ポリプロピレンナフタレート、ポリエチレンテレフタレー ト、ポリエチレン(テレフタレート zイソフタレート)、ポリエチレン(テレフタレート Zアジ ペート)、ポリエチレン(テレフタレート Z5—ナトリウムスルホイソフタレート)、ポリブチ
レン(テレフタレート Z5—ナトリウムスルホイソフタレート)、ポリエチレンナフタレート、 ポリシクロへキサンジメチレンテレフタレートなどが挙げられる。
[0127] かかる(F)ポリエチレンとしては、変性剤として不飽和カルボン酸またはその誘導体 およびカルボン酸ビュルエステルなどのカルボ-ル基含有単量体を共重合してない 未変性ポリエチレンである。
[0128] かかる(F)ポリアミドとしては、アミノ酸、ラタタムあるいはジァミンとジカルボン酸を主 たる構成成分とするポリアミドである。その主要構成成分の代表例としては、 6-ァミノ カプロン酸、 11-アミノウンデカン酸、 12-アミノドデカン酸、パラアミノメチル安息香酸 などのアミノ酸、 ε -力プロラタタム、 ω -ラウ口ラタタムなどのラタタム、ペンタメチレンジ ァミン、へキサメチレンジァミン、 2-メチルペンタメチレンジァミン、ノナメチレンジアミ ン、ゥンデカメチレンジァミン、ドデカメチレンジァミン、 2, 2, 4-/2, 4, 4-トリメチル へキサメチレンジァミン、 5-メチルノナメチレンジァミン、メタキシリレンジァミン、パラキ シリレンジァミン、 1, 3-ビス(アミノメチル)シクロへキサン、 1, 4-ビス(アミノメチル)シ クロへキサン、 1-ァミノ- 3-アミノメチル- 3, 5, 5-トリメチルシクロへキサン、ビス(4-ァ ミノシクロへキシル)メタン、ビス(3-メチル -4-アミノシクロへキシル)メタン、 2, 2-ビス (4-アミノシクロへキシル)プロパン、ビス(ァミノプロピル)ピぺラジン、アミノエチルピ ペラジンなどの脂肪族、脂環族、芳香族のジァミン、およびアジピン酸、スペリン酸、 ァゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、 2-クロロテレ フタル酸、 2-メチルテレフタル酸、 5-メチルイソフタル酸、 5-ナトリウムスルホイソフタ ル酸、 2, 6-ナフタレンジカルボン酸、へキサヒドロテレフタル酸、へキサヒドロイソフタ ル酸などの脂肪族、脂環族、芳香族のジカルボン酸が挙げられ、本発明においては 、これらの原料力 誘導されるナイロンホモポリマーまたはコポリマーを各々単独また は混合物の形で用いることができる。
[0129] 本発明において、特に有用なポリアミドは、 150°C以上の融点を有する耐熱性や強 度に優れたポリアミドであり、ナイロン 6、ナイロン 66、ナイロン 12、ナイロン 610、ナイ ロン 6Z66コポリマー、またナイロン 6TZ66コポリマー、ナイロン 6TZ6Iコポリマー、 ナイロン 6TZ12、およびナイロン 6ΤΖ6コポリマーなどのへキサメチレテレフタルアミ ド単位を有する共重合体を挙げることができる。
[0130] かかる(F)ポリプロピレンとしては、変性剤として不飽和カルボン酸またはその誘導 体およびカルボン酸ビュルエステルなどのカルボ-ル基含有単量体を共重合してな V、未変性ポリエチレンである。
[0131] 本発明において、(F)脂肪族ポリカーボネート、芳香族ポリエステル、ポリエチレン、 ポリプロピレン、ポリ塩ィ匕ビ二ルカも選ばれる 1種以上の熱可塑性榭脂の配合量は、( A)スチレン系榭脂および (B)脂肪族ポリエステルの合計量 100重量部に対して、 85 重量部未満、好ましくは 65〜1重量部、さらに好ましくは 50〜5重量部の範囲となる ようにすることで、十分な耐衝撃性と耐熱性を得ることができる。
[0132] 本発明においては、上記のような組成で (A)スチレン系榭脂、(B)脂肪族ポリエス テル、ならびに(C)相溶化剤および (D)ジカルボン酸無水物力も選ばれる少なくとも 1種、(F)ポリカーボネート、芳香族ポリエステル、ポリアミド、ポリエチレン、ポリプロピ レン、ポリ塩ィ匕ビ二ルカゝら選ばれる 1種以上の熱可塑性榭脂を混合することにより得ら れるが、得られた榭脂組成物には、(a)不飽和カルボン酸アルキルエステル系単位 が榭脂成分に対して 1〜90重量%、好ましくは 10〜80重量%、(b)芳香族ビニル系 単位 0. 1〜80重量%、好ましくは 1〜70重量%、(c)シアン化ビュル系単位 0〜45 重量%、好ましくは 0〜40重量%、(d)これらと共重合可能な他のビニル系単位 0〜 85重量%、好ましくは 0〜80重量%の範囲となるようにすることで、十分な耐衝撃性 と耐熱性を得ることができる。
[0133] 本発明での榭脂組成物の特色は、(A)スチレン系榭脂、(B)脂肪族ポリエステル、
(F)ポリカーボネート、芳香族ポリエステル、ポリアミド、ポリエチレン、ポリプロピレン、 ポリ塩ィ匕ビ二ルカ 選ばれる 1種以上の熱可塑性榭脂からなるマトリックスと、このマト リックス中に分散する(C 2)不飽和カルボン酸グリシジルエステル単位または不飽 和ジカルボン酸無水物単位が 3重量%以上共重合されたビニル系重合体、(C 3) ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 20〜90重量0 /0がグラフト重 合されたグラフト重合体および (E)ゴム質重合体力 選ばれる少なくとも 1種以上の 分散相とからなつており、このとき分散相である(C 2)、 (C 3)および (E)が、 (B) 脂肪族ポリエステル中に存在する面積割合力 10〜90%の範囲が好ましぐ耐衝撃 性、耐熱性、成形加工性、外観性、着色性の点で、その面積割合が、 20〜85%の
範囲で存在することが好ましぐ 30〜80%の範囲で存在することがより好ましい。面 積割合が 10〜90%の範囲にない場合は、耐衝撃性が著しく低下するため好ましく ない。
[0134] さらに、本発明においては、永久帯電防止性の点で、(G)体積固有抵抗値が 1013
Ω cm以下を示す重合体を含むことが好まし ヽ。
[0135] かかる(G)体積固有抵抗値が 1013 Ω cm以下を示す重合体 (以降、帯電防止性重 合体と略称する)としては、好ましくは数平均分子量が 100〜10, 000のアルキレン ォキシド残基、四級アンモ-ゥム塩残基、スルホン酸塩残基、アイオノマー残基など を含有する重合体が挙げられ、例えば(1)数平均分子量 1, 000-10, 000のポリ( アルキレンォキシド)グリコール、 (2)数平均分子量 200〜10, 000のアルキレンォキ シド残基を含有するポリエーテルアミド、ポリエーテルエステル、またはポリエーテル エステルアミド、 (3)数平均分子量 100〜10, 000のアルキレンォキシド残基を含有 するビニル系重合体、(4)四級アンモニゥム塩残基を含有するビニル系重合体、 (5) アルカリ金属アイオノマー残基を含有する重合体、 (6)スルホン酸のアルカリ金属塩 残基を含有するビニル系重合体などが挙げられる。
[0136] 具体的には(1)ポリ(アルキレンォキシド)グリコールとしては、ポリエチレングリコー ル、ポリプロピレンォキシドグリコール、ポリ(テトラメチレンォキシド)グリコール、ポリ( へキサメチレンォキシド)グリコール、エチレンォキシドとプロピレンォキシドのブロック またはランダム共重合体およびエチレンォキシドとテトラヒドロフランのブロックまたは ランダム共重合体などが挙げられる。
[0137] (2)数平均分子量 200〜10, 000のアルキレンォキシド残基を含有するポリエーテ ルアミド、ポリエーテルエステル、およびポリエーテルエステルアミドとしては、 (2— al )ポリアミド形成成分または(2— a2)ポリエステル形成成分と(2— b)数平均分子量 2 00〜: L0, 000のアルキレンォキシド残基を含有するジオールとの反応から得られる ブロックまたはグラフト共重合体である。
[0138] (2— al)ポリアミド形成成分としては炭素原子数 6以上のアミノカルボン酸またはラ クタムもしくは炭素原子数 6以上のジァミンとジカルボン酸の塩としては、 ω—ァミノ力 プロン酸、 ω—アミノエナント酸、 ω—ァミノ力プリル酸、 ω—ァミノペルゴン酸、 ω—
アミノカプリン酸及び 11 アミノウンデカン酸、 2—アミノドデカン酸などのアミノカルボ ン酸あるいは力プロラタタム、ェナントラクタム、力プリルラタタム及びラウ口ラタタムなど のラタタム及びへキサメチレンジァミン アジピン酸塩、へキサメチレンジアミンーセ バシン酸塩及びへキサメチレンジァミン イソフタル酸塩などのジアミンージカルボン 酸の塩が挙げられ、特に力プロラタタム、 12—アミノドデカン酸、及びへキサメチレン ジァミン一アジピン酸塩が好ましく用いられる。
[0139] また(2— a2)ポリエステル形成成分としては、ジカルボン酸としてテレフタル酸、イソ フタル酸、フタル酸、ナフタレン一 2, 6 ジカルボン酸、ナフタレン一 2, 7 ジカルボ ン酸、ジフエ-ルー 4, 4'ージカルボン酸、ジフエノキシエタンジカルボン酸及び 3— スルホイソフタル酸ナトリウムのごとき芳香族ジカルボン酸、 1, 4 シクロへキサンジ カルボン酸、 1, 2 シクロへキサンジカルボン酸、 1, 3 シクロペンタンジカルボン酸 、 1, 3 ジカノレボキシメチノレシクロへキシノレ、 1, 4ージカノレボキシメチノレシクロへキシ ル及びジシクロへキシルー 4, 4'ージカルボン酸のごとき脂環族ジカルボン酸及びコ ハク酸、シユウ酸、アジピン酸、セバシン酸及びデカンジカルボン酸のごとき脂肪族ジ カルボン酸と脂肪族ジオールとしてエチレングリコール、 1, 2 または 1, 3 プロピ レングリコール、 1, 2—、 1, 3—、 2, 3—、または 1, 4 ブタンジオール、ネオペンチ ルグリコール、 1, 6 へキサンジオールなどが挙げられ、特にジカルボン酸としはテ レフタル酸、イソフタル酸、 1, 4ーシクロへキサンジカルボン酸、セバシン酸、及びデ カンジカルボン酸と脂肪族ジオールとしてエチレングリコール、 1, 2 または 1, 3— プロピレングリコール、 1, 4 ブタンジオールが重合性、色調および物性の点力 好 ましく用いられる。
[0140] (2— b)数平均分子量 200〜10, 000のアルキレンォキシド残基を含有するジォー ルとしてはポリ(エチレンォキシド)グリコール、ポリ(1, 2—プロピレンォキシド)グリコ ール、ポリ(1, 3 プロピレンォキシド)グリコール、ポリ(テトラメチレンォキシド)グリコ ール、ポリ(へキサメチレンォキシド)グリコール、エチレンォキシドとプロピレンォキシ ドのブロックまたはランダム共重合体およびエチレンォキシドとテトラヒドロフランのブ ロックまたはランダム共重合体などが挙げられる。これらの中でも、制電性が優れる点 で、特にポリ(エチレンォキシド)グリコールが好ましく用いられる。
[0141] また、数平均分子量 200〜10, 000のアルキレンォキシド残基を含有するジォー ルとしてはハイドロキノン、ビスフエノール A、およびナフタレンなどの両末端に付カロし たものも含まれる。
[0142] (2— b)アルキレンォキシド残基を含有するジオールの数平均分子量は 100〜10, 000、好ましくは 400〜6, 000の範囲が重合性、帯電防止性の面で好ましく用いら れる。
[0143] (2-al)ポリアミド形成成分または(2— a2)ポリエステル形成成分と(2—b)アルキ レンォキシド残基を含有するジオールとの反応は (b)アルキレンォキシド残基を含有 するジオールの末端基に応じてエステル反応またはアミド反応が考えられる。
[0144] 上記の反応に応じてジカルボン酸ゃジァミンのなどの第 3成分を用いることができる
[0145] この場合、ジカルボン酸成分としてはテレフタル酸、イソフタル酸、フタル酸、ナフタ レン一 2, 6—ジカルボン酸、ナフタレン一 2, 7—ジカルボン酸、ジフエ-ルー 4, 4, ージカルボン酸、ジフエノキシエタンジカルボン酸及び 3—スルホイソフタル酸ナトリウ ムに代表される芳香族ジカルボン酸、 1, 4ーシクロへキサンジカルボン酸、 1, 2—シ クロへキサンジカルボン酸及びジシクロへキシルー 4, 4'ージカルボン酸に代表され る脂環族ジカルボン酸及びコハク酸、シユウ酸、アジピン酸、セバシン酸及びデカン ジカルボン酸に代表される脂肪族ジカルボン酸などが挙げられ、特にテレフタル酸、 イソフタル酸、 1, 4ーシクロへキサンジカルボン酸、セバシン酸、アジピン酸及びデカ ンジカルボン酸が重合性、色調及び榭脂組成物の物性面カゝら好ましく用いられる また、必要に応じてトリメリット酸無水物などのトリカルボン酸無水物を使用することも できる。
[0146] ジァミン成分としては芳香族、脂環族、脂肪族ジァミンが挙げられる。その中で脂肪 族ジァミンのへキサメチレンジァミンが経済的な理由で好ましく用いられる。
[0147] (2)アルキレンォキシド残基を含有するジオールの含有量はポリエーテルアミド、ポ リエ一テルエステル、およびポリエーテルエステルアミドの構成単位で 30〜90重量 %、好ましくは 40〜80重量%である。
[0148] また、(2)ポリエーテルアミド、ポリエーテルエステル、およびポリエーテルエステル
アミドの重合度に関しては特に制限されないが、 0. 5%濃度のオルトクロロフヱノール 溶液中、 25°Cで測定した相対粘度(r? r)が 1. 1〜4. 0、好ましくは 1. 5〜2. 5の範 囲のものが得られる最終榭脂組成物の機械的特性、成形加工性が優れて好ま U、。
[0149] (3)数平均分子量 100〜10, 000のアルキレンォキシド残基を含有するビュル系 重合体としてはポリエチレングリコール (メタ)アタリレート、メトキシポリエチレングリコ ール(メタ)アタリレートなどとエチレン、ポロピレン、 1ーブテンなどのォレフィン、スチ レン、ヒ-ルトルエン、 α—メチルスチレンなどの芳香族ビュル系単量体、マレイミド、 Ν—フエ-ルマレイミドなどのマレイミド系単量体、アクリロニトリルなどのシアン化ビ- ル系単量体力 選ばれた少なくとも一種のビニル系単量体との共重合体、前述の (r) ゴム質重合体にポリエチレングリコール (メタ)アタリレート、メトキシポリエチレングリコ ール (メタ)アタリレートから選ばれた少なくとも一種の単量体を含む単量体を重合し てなるグラフト共重合体などが挙げられる。
[0150] 上記アルキレンォキシド残基を含有する単量体の割合はポリ(アルキレンォキシド) グリコール残基を含有するビニル系重合体単位で 5〜40重量%の範囲が好ましい。
[0151] (4)四級アンモ-ゥム塩残基を含有するビュル系重合体としては、四級アンモ-ゥ ム塩基を含有する単量体とエチレン、ポロピレン、 1ーブテンなどのォレフィン系単量 体、スチレン、ヒ-ルトルエン、 α—メチルスチレンなどの芳香族ビュル系単量体、メ チル (メタ)アタリレート、ブチル (メタ)アタリレートなどの(メタ)アクリル酸エステル系単 量体、マレイミド、 Ν—フエ-ルマレイミドなどのマレイミド系単量体、アクリロニトリルな どのシアンィ匕ビュル系単量体力 選ばれた少なくとも一種の単量体との共重合体な どが挙げられる。例えば、第一工業製薬 (株)製の"レオレックス" SA— 70、および A S— 170が市販されている。
[0152] 四級アンモニゥム塩基を含有する単量体の割合は四級アンモニゥム塩残基を含有 するビュル系重合体単位で 10〜80重量%の範囲が好まし!/、。
[0153] (5)アルカリ金属アイオノマー残基を含有する重合体としてはエチレン、ポロピレン 、 1—ブテンなどのォレフィン系単量体と (メタ)アクリル酸との共重合体をリチウム、ナ トリウム、およびカリウム力も選ばれた少なくとも一種の金属でアイオノマー化した榭脂 が挙げられる。
[0154] 金属イオン濃度が 1. 5モル Zkg以上であるアイオノマー残基を含有する重合体が 好ましい。
[0155] (6)スルホン酸のアルカリ金属塩残基を含有するビュル系重合体としてはスルホン 酸のアルカリ金属塩基を有する単量体、例えばスチレンスルホン酸カリウム、スチレン スルホン酸ナトリウム、スチレンスルホン酸リチウムとエチレン、ポロピレン、 1ーブテン などのォレフィン系単量体、スチレン、ヒ-ルトルエン、 α—メチルスチレンなどの芳 香族ビュル系単量体、メチル (メタ)アタリレート、ブチル (メタ)アタリレートなどの (メタ )アクリル酸エステル系単量体、マレイミド、 Ν—フエ-ルマレイミドなどのマレイミド系 単量体、アクリロニトリルなどのシアンィ匕ビ二ル系単量体力 選ばれた少なくとも一種 のビニル系単量体との共重合体などが挙げられるスルホン酸のアルカリ金属塩基を 有する単量体の割合はスルホン酸のアルカリ金属塩残基を含有するビニル系重合体 単位で 10〜80重量%の範囲が好まし!/、。
[0156] (G)帯電防止性重合体の体積固有抵抗値は 1013 Ω «η以下、好ましくは 5 Χ 1011
Ω cm以下であり、また下限は制限されないが 105 Q cm以上、特に 106 Ω «η以上 が経済的で好ましい。
[0157] (G)帯電防止性重合体の体積固有抵抗値が 1013 Ω cmを越える場合には得られる 最終榭脂組成物の帯電防止性が不足し好ましくな ヽ。
[0158] (G)帯電防止性重合体の体積固有抵抗値は、 ASTM D257に従って測定する。
榭脂組成物から測定する場合には、榭脂組成物カゝら分離した帯電防止重合体を圧 縮成形、射出成形などによって得られた成形品を測定する。また、簡便な方法として は、 ASTM D257に従って帯電防止性重合体中のポリ(アルキレンォキシド)グリコ ール残基、四級アンモ-ゥム塩残基、スルホン酸塩残基、アイオノマー残基などの導 電体ユニット含量と体積固有抵抗値の標線を作成し、次いで、任意の帯電防止性重 合体中の導電体ユニット含量を分析することによって該重合体の体積固有抵抗値を 得ることが可能である。
[0159] 本発明において、(G)体積固有抵抗値が 1013 Ω cm以下を示す重合体の配合量 は、(A)スチレン系榭脂および (B)脂肪族ポリエステルの合計量 100重量部に対し て、 1〜30重量部、好ましくは 5〜20重量部の範囲となるようにすることで、十分な永
久帯電防止性を得ることができる。
[0160] 本発明の榭脂組成物は、上記のような組成で (A)スチレン系榭脂、(B)脂肪族ポリ エステル、ならびに(C)相溶化剤および (D)ジカルボン酸無水物力も選ばれる少なく とも 1種、(G)体積固有抵抗値が 1013 Q cm以下を示す重合体を混合することにより 得られる力 得られた榭脂組成物には、(a)不飽和カルボン酸アルキルエステル系単 位が榭脂成分に対して 1〜90重量%、好ましくは 10〜80重量%、(b)芳香族ビュル 系単位 0. 1〜80重量%、好ましくは 1〜70重量%、(c)シアン化ビュル系単位 0〜4 5重量%、好ましくは 0〜40重量%、(d)これらと共重合可能な他のビニル系単位 0 〜85重量%、好ましくは 0〜80重量%の範囲となるようにすることで、十分な耐衝撃 性と耐熱性を得ることができる。
[0161] 本発明での榭脂組成物の特色は、(A)スチレン系榭脂、(B)脂肪族ポリエステル、
(G)体積固有抵抗値が 1013 Ω cm以下を示す重合体マトリックスと、このマトリックス中 に分散する(C 2)不飽和カルボン酸グリシジルエステル単位または不飽和ジカル ボン酸無水物単位が 3重量%以上共重合されたビニル系重合体、 (C- 3)ゴム質重 合体 10〜80重量%にメタクリル酸メチル単位 20〜90重量%がグラフト重合されたグ ラフト重合体および (E)ゴム質重合体力 選ばれる少なくとも 1種以上の分散相とから なっており、このとき分散相である(C 2)、 (C 3)および (E)が、(B)脂肪族ポリエ ステル中に存在する面積割合力 10〜90%の範囲が好ましぐ耐衝撃性、耐熱性、 成形加工性、外観性、着色性の点で、その面積割合が、 20〜85%の範囲で存在す ることが好ましぐ 30〜80%の範囲で存在することがより好ましい。面積割合が 10〜 90%の範囲にない場合は、耐衝撃性が著しく低下するため好ましくない。
[0162] 本発明の榭脂組成物においては、耐熱性が向上するという観点から、さらに (H)結 晶核剤を配合することが好まし 、。
[0163] 本発明で使用する結晶核剤としては、一般にポリマーの結晶核剤として用いられる ものを特に制限なく用いることができ、無機系結晶核剤および有機系結晶核剤のい ずれをも使用することができる。
[0164] 無機系結晶核剤の具体例としては、タルク、カオリナイト、モンモリロナイト、マイ力、 合成マイ力、クレー、ゼォライト、シリカ、グラフアイト、カーボンブラック、酸化亜鉛、酸
ィ匕マグネシウム、酸ィ匕カルシウム、酸化チタン、硫ィ匕カルシウム、窒化ホウ素、炭酸マ グネシゥム、炭酸カルシウム、硫酸バリウム、酸ィ匕アルミニウム、酸ィ匕ネオジゥムおよび フエニルホスホネートの金属塩などが挙げられ、耐熱性を向上させる効果が大きいと いう観点から、タルク、カオリナイト、モンモリロナイトおよび合成マイ力が好ましい。こ れらは単独ないし 2種以上を用いることができる。これらの無機系結晶核剤は、組成 物中での分散性を高めるために、有機物で修飾されて 、ることが好ま U 、。
[0165] 無機系結晶核剤の含有量は、(A)スチレン系榭脂および (B)脂肪族ポリエステル の合計量 100重量部に対して、 0. 01〜100重量部が好ましぐ 0. 05〜50重量部 力 り好ましぐ 0. 1〜30重量部がさらに好ましい。
[0166] また、有機系結晶核剤の具体例としては、安息香酸ナトリウム、安息香酸カリウム、 安息香酸リチウム、安息香酸カルシウム、安息香酸マグネシウム、安息香酸バリウム、 テレフタル酸リチウム、テレフタル酸ナトリウム、テレフタル酸カリウム、シユウ酸カルシ ゥム、ラウリン酸ナトリウム、ラウリン酸カリウム、ミリスチン酸ナトリウム、ミリスチン酸カリ ゥム、ミリスチン酸カルシウム、ォクタコサン酸ナトリウム、ォクタコサン酸カルシウム、ス テアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸カルシ ゥム、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸ナトリウム、モンタン 酸カルシウム、トルィル酸ナトリウム、サリチル酸ナトリウム、サリチル酸カリウム、サリチ ル酸亜鉛、アルミニウムジベンゾエート、カリウムジベンゾエート、リチウムジベンゾェ ート、ナトリウム j8—ナフタレート、ナトリウムシクロへキサンカルボキシレートなどの有 機カルボン酸金属塩、 p—トルエンスルホン酸ナトリウム、スルホイソフタル酸ナトリウム などの有機スルホン酸塩、ステアリン酸アミド、エチレンビスラウリン酸アミド、パルチミ ン酸アミド、ヒドロキシステアリン酸アミド、エル力酸アミド、トリメシン酸トリス (t ブチル アミド)、トリメシン酸トリシクロへキシルアミドなどのカルボン酸アミド、フタル酸ヒドラジ ド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、セバシン酸ジ安息香酸ヒドラジド などのヒドラジドィ匕合物、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、 ポリイソプロピレン、ポリブテン、ポリ 4ーメチルペンテン、ポリ 3—メチルブテン 1、ポリビュルシクロアルカン、ポリビュルトリアルキルシラン、高融点ポリ乳酸などのポ リマー、メラミンシァヌレート、ポリリン酸メラミンなどのメラミン系化合物、エチレン一ァ
クリル酸またはメタクリル酸コポリマーのナトリウム塩、スチレン一無水マレイン酸コポリ マーのナトリウム塩などのカルボキシル基を有する重合体のナトリウム塩または力リウ ム塩(いわゆるアイオノマー)、ベンジリデンソルビトールおよびその誘導体、ナトリウム
- 2, 2, 一メチレンビス(4, 6 ジ一 t—ブチルフエ-ル)フォスフェート、フエ-ルホス ホン酸亜鉛、フエ-ルホスホン酸カルシウム、フエ-ルホスホン酸マグネシウムなどの リン化合物金属塩および 2, 2 メチルビス(4, 6 ジー t—ブチルフエ-ル)ナトリウム などが挙げられ、耐熱性を向上させる効果が大きいという観点からは、有機カルボン 酸金属塩およびカルボン酸アミドが好ま 、。これらは単独な!/、し 2種以上用いること ができる。
[0167] 有機系結晶核剤の配合量は、(A)スチレン系榭脂および (B)脂肪族ポリエステル の合計量 100重量部に対して、 0. 01〜30重量部が好ましぐ 0. 05〜10重量部が より好ましぐ 0. 1〜5重量部がさらに好ましい。
[0168] 本発明においては、耐熱性が向上するという観点から、さらに (I)可塑剤を配合す ることが好ましい。
[0169] 本発明で使用する可塑剤としては、一般にポリマーの可塑剤として用いられるもの を特に制限なく用いることができ、例えば、ポリエステル系可塑剤、グリセリン系可塑 剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤及びェポ キシ系可塑剤などを挙げることができる。
[0170] ポリエステル系可塑剤の具体例としては、アジピン酸、セバチン酸、テレフタル酸、 イソフタル酸、ナフタレンジカルボン酸、ジフヱ-ルジカルボン酸などの酸成分と、プ ロピレングリコール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、 1, 6 へキサン ジオール、エチレングリコール、ジエチレングリコールなどのジオール成分からなるポ リエステルやポリ力プロラタトンなどのヒドロキシカルボン酸からなるポリエステルなどを 挙げることができる。これらのポリエステルは単官能カルボン酸もしくは単官能アルコ ールで末端封鎖されて!ヽてもよく、またエポキシィ匕合物などで末端封鎖されて ヽても よい。
[0171] グリセリン系可塑剤の具体例としては、グリセリンモノァセトモノラウレート、グリセリン ジァセトモノラウレート、グリセリンモノァセトモノステアレート、グリセリンジァセトモノォ
レートおよびグリセリンモノァセトモノモンタネートなどを挙げることができる。
[0172] 多価カルボン酸系可塑剤の具体例としては、フタル酸ジメチル、フタル酸ジェチル 、フタル酸ジブチル、フタル酸ジォクチル、フタル酸ジヘプチル、フタル酸ジベンジル 、フタル酸ブチルベンジルなどのフタル酸エステル、トリメリット酸トリブチル、トリメリット 酸トリオクチル、トリメリット酸トリへキシルなどのトリメリット酸エステル、アジピン酸ジィ ソデシル、アジピン酸 n—ォクチルー n—デシル、アジピン酸ベンジルメチルダリコー ルなどのアジピン酸エステル、ァセチルクェン酸トリエチル、ァセチルクェン酸トリブチ ルなどのクェン酸エステル、ァゼライン酸ジ 2—ェチルへキシルなどのァゼライン酸 エステル、セバシン酸ジブチル、およびセバシン酸ジ 2—ェチルへキシルなどのセ バシン酸エステルなどを挙げることができる。
[0173] ポリアルキレングリコール系可塑剤の具体例としては、ポリエチレングリコール、ポリ プロピレングリコール、ポリ(エチレンオキサイド 'プロピレンオキサイド)ブロック及び Z またはランダム共重合体、ポリテトラメチレングリコール、ビスフエノール類のエチレン ォキシド付加重合体、ビスフエノール類のプロピレンォキシド付加重合体、ビスフエノ ール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその 末端エポキシ変性ィ匕合物、末端エステル変性ィ匕合物および末端エーテル変性ィ匕合 物などの末端封鎖化合物などを挙げることができる。
[0174] エポキシ系可塑剤とは、一般にはエポキシステアリン酸アルキルと大豆油とからなる エポキシトリグリセリドなどを指す力 その他にも、主にビスフエノール Aとェピクロロヒド リンを原料とするような、いわゆるエポキシ榭脂も使用することができる。
[0175] その他の可塑剤の具体例としては、ネオペンチルグリコールジベンゾエート、ジェ チレングリコールジベンゾエート、トリエチレングリコールジー 2—ェチルブチレート、 ポリエチレングリコールジベンゾエートなどの脂肪族ポリオールの安息香酸エステル、 ステアリン酸アミドなどの脂肪酸アミド、ォレイン酸ブチルなどの脂肪族カルボン酸ェ ステル、ァセチルリシノール酸メチル、ァセチルリシノール酸ブチルなどのォキシ酸ェ ステル、ペンタエリスリトール、各種ソルビトール、ポリアクリル酸エステル、シリコーン オイルおよびパラフィン類などを挙げることができる。
[0176] 本発明で使用する可塑剤としては、上記に例示したものの中でも、特にポリエステ
ル系可塑剤及びポリアルキレングリコール系可塑剤力 選択した少なくとも 1種が好 ましい。本発明に使用する可塑剤は、単独ないし 2種以上用いることができる。
[0177] また、可塑剤の配合量は、(A)スチレン系榭脂および (B)脂肪族ポリエステルの合 計量 100重量部に対して、 0. 01〜30重量部の範囲が好ましぐ 0. 1〜20重量部の 範囲がより好ましぐ 0. 5〜10重量部の範囲がさらに好ましい。
[0178] 本発明においては、結晶核剤と可塑剤を各々単独で用いてもよいが、両者を併用 して用いることが好ましい。
[0179] 本発明の榭脂組成物においては、耐熱性が向上するという観点から、さらに ω無 機系結晶核剤以外の充填剤を配合することが好まし ヽ。
[0180] 本発明で使用する無機系結晶核剤以外の充填剤としては、通常熱可塑性榭脂の 強化に用いられる繊維状、板状、粒状、粉末状のものを用いることができる。具体的 には、ガラス繊維、アスベスト繊維、炭素繊維、グラフアイト繊維、金属繊維、チタン酸 カリウムゥイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ゥイスカー、珪素 系ゥイスカー、ワラストナイト、セピオライト、アスベスト、スラグ繊維、ゾノライト、ェレス タダイト、石膏繊維、シリカ繊維、シリカ'アルミナ繊維、ジルコユア繊維、窒化ホウ素 繊維、窒化硅素繊維及びホウ素繊維などの繊維状無機状充填剤、ガラスフレーク、 グラフアイト、金属箔、セラミックビーズ、セリサイト、ベントナイト、ドロマイト、微粉珪酸 、長石粉、チタン酸カリウム、シラスバルーン、珪酸アルミニウム、酸化珪素、石膏、ノ バキユライト、ドーソナイトおよび白土などの板状もしくは粒状無機充填剤、ポリエステ ル繊維、ナイロン繊維、アクリル繊維、再生セルロース繊維、アセテート繊維、ケナフ 繊維、竹繊維、ヘンプ繊維、ジユート繊維、ラミー繊維、バナナ繊維、ココナッツ繊維 、木綿繊維、麻繊維、サイザル繊維、亜麻繊維、リネン繊維、絹繊維、マニラ麻繊維 、さとうきび、バガス 木材パルプ、紙屑、古紙および絹、羊毛、アンゴラ、カシミヤ、ラ クダなどの動物繊維などの繊維状有機充填剤、籾殻、木材チップ、おから、古紙粉 砕材、衣料粉砕材、紙粉、木粉、ケナフ粉、竹粉、セルロース粉末、籾殻粉末、果実 殻粉末、キチン粉末、キトサン粉末、タンパク質、澱粉などのチップ状もしくは粉末状 有機充填剤が挙げられる。これらの充填剤の中では、繊維状無機充填剤が好ましく 、特にガラス繊維、ワラストナイトが好ましい。また、繊維状有機充填剤の使用も好ま
しぐ(B)脂肪族ポリエステルの生分解性を生かすという観点から、天然繊維や再生 繊維がさらに好ましい。また、配合に供する繊維状充填剤のアスペクト比(平均繊維 長 Z平均繊維径)は 5以上であることが好ましぐ 10以上であることがさらに好ましぐ 20以上であることがさらに好ましい。
[0181] 上記の充填剤は、エチレン Z酢酸ビニル共重合体などの熱可塑性榭脂や、ェポキ シ榭脂などの熱硬化性榭脂で被覆または集束処理されて ヽてもよく、アミノシランや エポキシシランなどのカップリング剤などで処理されて!、てもよ!/、。
[0182] 充填剤の配合量は、(A)スチレン系榭脂および (B)脂肪族ポリエステルの合計量 1 00重量部に対して、 0. 1〜200重量部が好ましぐ 0. 5〜: LOO重量部がさらに好まし い。
[0183] 本発明の榭脂組成物においては、加水分解抑制により耐熱性、耐久性が向上する 、う観点から、さらに (K)カルボキシル基反応性末端封鎖剤を配合することが好ま しい。
[0184] 本発明で使用するカルボキシル基反応性末端封鎖剤としては、ポリマーのカルボ キシル末端基を封鎖することのできる化合物であれば、特に制限はなぐポリマーの カルボキシル末端の封鎖剤として用いられて ヽるものを用いることができる。本発明 にお 、て力かるカルボキシル基反応性末端封鎖剤は、(B)脂肪族ポリエステルの末 端を封鎖するのみではなぐ天然由来の有機充填剤の熱分解や加水分解などで生 成する乳酸ゃギ酸などの酸性低分子化合物のカルボキシル基も封鎖することができ る。また、上記末端封鎖剤は、熱分解により酸性低分子化合物が生成する水酸基末 端も封鎖できる化合物であることがさらに好ましい。
[0185] このようなカルボキシル基反応性末端封鎖剤としては、エポキシィ匕合物、ォキサゾリ ン化合物、ォキサジンィ匕合物、カルポジイミドィ匕合物、イソシァネートイ匕合物力 選ば れる少なくとも 1種の化合物を使用することが好ましぐなかでもエポキシィ匕合物およ び Zまたはカルポジイミドィ匕合物が好ましい。
[0186] カルボキシル基反応性末端封鎖剤の配合量は、 (A)スチレン系榭脂および (B)脂 肪族ポリエステルの合計量 100重量部に対して、 0. 01〜: LO重量部の範囲が好まし ぐ 0. 05〜5重量部の範囲がより好ましい。
[0187] カルボキシル基反応性末端封鎖剤の添加時期は、特に限定されないが、耐熱性を 向上するだけでなぐ機械特性や耐久性を向上できるという点で、(B)脂肪族ポリエ ステルと予め溶融混練した後、その他のものと混練することが好ま 、。
[0188] 本発明において、本発明の目的を損なわない範囲で安定剤 (酸ィ匕防止剤、紫外線 吸収剤、耐候剤など)、滑剤、離型剤、難燃剤、染料または顔料を含む着色剤、帯電 防止剤、発泡剤などを添加することができる。
[0189] 本発明にお ヽて、本発明の目的を損なわな ヽ範囲で、他の熱可塑性榭脂(例えば 、ポリアミド榭脂、ポリフエ-レンサルファイド榭脂、ポリエーテルエーテルケトン樹脂、 ポリスルホン樹脂、ポリエーテルスルホン榭脂、芳香族ポリカーボネート榭脂、ポリアリ レート榭脂、ポリフエ二レンオキサイド榭脂、ポリアセタール榭脂、ポリイミド榭脂、ポリ エーテルイミド榭脂、芳香族および脂肪族ポリケトン樹脂、フッ素榭脂、ポリ塩ィ匕ビ- リデン榭脂、ビュルエステル系榭脂、酢酸セルロース榭脂、ポリビュルアルコール榭 脂など)または熱硬化性榭脂 (例えば,フエノール榭脂、メラミン榭脂、ポリエステル榭 脂、シリコーン榭脂、エポキシ榭脂など)などの少なくとも 1種以上をさらに含有するこ とができる。これらの榭脂を配合することで、優れた特性を有する成形品を得ることが できる。
[0190] これらの添加剤は、本発明の榭脂組成物を製造する任意の段階で配合することが 可能であり、例えば、(A)、(B)、(C)、(D)成分を配合する際に同時に添加する方 法や、予め少なくとも 2成分の榭脂を溶融混練した後に添加する方法が挙げられる。
[0191] 本発明の榭脂組成物の製造方法は、特に限定されるものではなぐ例えば、(A)ス チレン系榭脂、(B)脂肪族ポリエステル、ならびに (C)相溶化剤および (D)ジカルボ ン酸無水物力 選ばれる少なくとも 1種および必要に応じて結晶核剤、可塑剤、充填 剤、その他の添加剤を予めブレンドした後、融点以上において、一軸または二軸押 出機で、均一に溶融混練する方法や溶液中で混合した後に溶媒を除く方法などが 好ましく用いられ、強度、耐衝撃性、耐熱性、成形加工性、外観性の点で、二軸押出 機で均一に溶融混練する方法がより好ましい。
[0192] 本発明において、得られた榭脂組成物は、通常公知の射出成形、押出成形、イン フレーシヨン成形、ブロー成形などの任意の方法で成形することができ、あらゆる形
状の成形品として広く用いることができる。成形品とは、フィルム、シート、繊維'布、 不織布、射出成形品、押出成形品、真空圧空成形品、ブロー成形品、または他の材 料との複合体などであり、自動車内装部品および自動車外装部品などの自動車用 資材、テレビ、エアコン、掃除機、冷蔵庫、電話機、ファックス、視聴覚機器、カメラ、 時計、コンピューター、パソコン、プリンター、複写機などの電機'電子機器用資材、 便座等のトイレ部品、キッチン、バスルームなどの部品、養生シート、型枠、窓枠など の土木 ·建築用資材、農業用資材、園芸用資材、漁業用資材、文具、医療用品、雑 貨、またはその他の用途として有用である。また本成形品は、塗装、メツキ等を施して 用いることちでさる。
実施例
[0193] 本発明をさらに具体的に説明するために、以下、実施例および比較例を挙げて説 明するが、本発明はこれらの実施例に限定されるものではない。実施例中の部数お よび%はそれぞれ重量部および重量%を示す。
[0194] [参考例 1] (A)スチレン系榭脂
以下にスチレン系榭脂の調製方法を示す。なお得られたポリマーを、 70°Cで 5時間 減圧乾燥後、 0. 4g/100ml濃度のメチルェチルケトン溶液を調製し、 30°Cの温度 条件下でウベローデ粘度計を用いて極限粘度を測定した。
[0195] <A- 1 >
PSジャパン製" HF77" (ポリスチレン:標準グレード)を使用した。
[0196] <A- 2>
容量が 20Lで、ノ ッフルおよびファゥドラ型撹拌翼を備えたステンレス製オートタレ ーブに、メタクリル酸メチル Zアクリルアミド共重合体 (特公昭 45— 24151号公報記 載) 0. 05重量部をイオン交換水 165重量部に溶解した溶液を添カ卩して 400rpmで 撹拌し、系内を窒素ガスで置換した。次に、下記混合物質を反応系で撹拌しながら 添加し、 60°Cに昇温し重合を開始した。
スチレン 70重量部
アクリロニトリル 30重量部
tードデシルメルカプタン 0. 2重量部
2, 2,―ァゾビスイソブチロニトリル 0. 4重量部。
[0197] 30分かけて反応温度を 65°Cまで昇温したのち、 120分かけて 100°Cまで昇温した 。以降、通常の方法に従い、反応系の冷却、ポリマーの分離、洗浄、乾燥を行なうこ とにより、ビーズ状のポリマーを得た。得られたスチレン系榭脂のメチルェチルケトン 可溶分の極限粘度は 0. 53dlZgであった。
[0198] <A-3>
上記く A— 2>のスチレン 70重量部、アクリロニトリル 30重量部をメタクリル酸メチ ル 70重量部、スチレン 25重量部、アクリロニトリル 5重量部に変更した以外はすべて 同様に懸濁重合を行った。得られたスチレン系榭脂のメチルェチルケトン可溶分の 極限粘度は 0. 35dlZgであった。
[0199] <A-4>
スチレン 50重量部、アクリロニトリル 10重量部、 N—フエ-ルマレイミド 40重量部、 および tードデシルメルカプタン 0. 2重量部、 2, 2,ーァゾビスイソブチ口-トリル 0. 4 重量部をシクロへキサノン溶媒中で溶液重合した。以降、通常の方法に従い、反応 系の冷却、メタノール溶液による再沈殿、洗浄、乾燥、粉砕を行うことによりポリマーを 得た。得られたスチレン系榭脂のメチルェチルケトン可溶分の極限粘度は 0. 33dl/ gであつ 7こ o
[0200] <A- 5 >
上記 < A— 2 >の ドデシルメルカプタンを 0. 35重量部にする以外はすべて同 様に懸濁重合を行った。得られたスチレン系榭脂のメチルェチルケトン可溶分の極 限粘度は 0. 41dlZgであった。
[0201] <A-6>
撹拌装置のっ ヽた反応容器中で、メタクリル酸メチル Zアクリルアミド共重合体 (特 公昭 45— 24151号公報記載) 0. 5gをイオン交換水 1650gに溶解した溶液を添カロ して撹拌し、系内を窒素ガスで置換した。次に、窒素雰囲気下、スチレン (東京化成 社製: 700g)、アクリロニトリル (東京化成社製: 300g)、 t—ドデシルメルカプタン 4g、 2, 2 '―ァゾビスイソブチ口-トリル 4gを攪拌しながら添カ卩し、 60°Cに昇温して重合を 開始した。 15分かけて反応温度を 65°Cまで昇温したのち、 50分力けて 100°Cまで
昇温した。以降、通常の方法に従い、反応系の冷却、ポリマーの分離、洗浄、乾燥を 行なうことにより、 GPC測定の結果、数平均分子量 52000のスチレン系榭脂を得た( 収率 97%)。
[0202] [参考例 2] (B)脂肪族ポリエステル
<B-1>
重量平均分子量 16万、 D 乳酸単位 1.2%のポリ L 乳酸を使用した。
[0203] <B-2>
重量平均分子量 21万、 D 乳酸単位 4%のポリ -L-乳酸を使用した。
[0204] <B-3>
重量平均分子量 20万、 D 乳酸単位 1 %のポリ -L-乳酸を使用した。
[0205] [参考例 3] (C)相溶化剤
< C 1 >ポリメタクリル酸メチル重合体
<C 1 1>
メタクリル樹脂(住友化学製"スミペックス LG21"Tgl05°C、シンジオタクチシチー 4 1%、重量平均分子量 8万、 MFR21gZlO分(230°C、 37.2N))
<C-l-2>
メタクリル樹脂(クラレ製"パラベッド, HR—L、 Tgll7°C、シンジオタクチシチー 56 %、重量平均分子量 9万、 MFR2gZlO分(230°C、 37.2N))
[0206] <C-2>不飽和カルボン酸グリシジルエステル単位または不飽和ジカルボン酸無 水物単位を 3重量%以上共重合したビニル系重合体
<C-2-l>
メタクリル酸グリシジル変性スチレン Zアクリル共重合体 (東亞合成製" ARUFON"U G— 4030、メタクリル酸グリシジル 20重量%、ガラス転移温度 51°C、重量平均分子 量 1万)
<C-2-2>
メタクリル酸グリシジル変性スチレン Zアクリル共重合体 (ジョンソンポリマー製"ジョ ンクリル" ADR— 4368、メタクリル酸グリシジル 49重量0 /0、ガラス転移温度 54°C、重 量平均分子量 8000)
< C- 2- 3 >
エチレン Zメタクリル酸グリシジル/アクリル酸メチル共重合体 (住友ィ匕学製"ボンド ファースド, 7M、メタクリル酸グリシジル 6重量0 /0)
< C- 2-4>
無水マレイン酸変性 SEBS (旭化成ケミカルズ製"タフテック" M1913、無水マレイ ン酸 1重量%)
[0207] < C 3 >ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 20〜90重量0 /0 力 Sグラフト重合されたグラフト重合体
以下にグラフト共重合体の調製方法を示す。なおグラフト率は次の方法で求めたも のである。グラフト共重合体の所定量 (m)にアセトンをカ卩ぇ 4時間還流した。この溶液 を 8000rpm (遠心力 10, OOOG (約 100 X 103 m/s2 ) ) 30分遠心分離後、不溶分 を濾過した。この不溶分を 70°Cで 5時間減圧乾燥し、重量 (n)を測定した。
グラフト率 = [ (n)— (m) XR]/[ (m) XR] X 100
ここで Rはグラフト共重合体のゴム含有率を意味する。
[0208] 上記アセトン溶液の濾液をロータリーエバポレーターで濃縮し、析出物(アセトン可 溶分)を得た。この可溶分を、 70°Cで 5時間減圧乾燥後、 0. 4gZl00ml濃度のメチ ルェチルケトン溶液を調製し、 30°Cの温度条件下でウベローデ粘度計を用いて極限 粘度を測定した。
[0209] < C- 3- l >
ポリブタジエン(重量平均粒子径 0. 35 μ m) 50重量部
(日本ゼオン社製 Nipol LX111K) (固形分換算)
ォレイン酸カリウム 0. 5重量部
ブドウ糖 0. 5重量部
ピロリン酸ナトリウム 0. 5重量部
硫酸第一鉄 0. 005重量部
脱イオン水 120重量部。
[0210] 以上の物質を重合容器に仕込み、撹拌しながら 65°Cに昇温した。内温が 65°Cに 達した時点を重合開始として、メタクリル酸メチル 35重量部、スチレン 12. 5重量部、
アクリロニトリル 2. 5重量部、および tードデシルメルカプタン 0. 3重量部を 5時間かけ て連続滴下した。並行してタメンノヽイド口パーオキサイド 0. 25重量部、ォレイン酸カリ ゥム 2. 5重量部および純水 25重量部からなる水溶液を、 7時間で連続滴下し反応を 完結させた。得られたグラフト共重合体ラテックスを硫酸で凝固し、苛性ソーダで中和 した後、洗浄、濾過、乾燥してパウダー状として得た。得られたグラフト共重合体のグ ラフト率は 40%、メチルェチルケトン可溶分の極限粘度は 0. 30dlZgであった。
[0211] < C- 3- 2>
上記く C— 3—1 >のメタクリル酸メチル 35重量部、スチレン 12. 5重量部、アタリ口 二トリル 2. 5重量部をメタクリル酸メチル 42. 5重量部、スチレン 7. 5重量部に変更し た以外はすべて同様に乳化重合を行った。得られたグラフト共重合体のグラフト率は 42%、メチルェチルケトン可溶分の極限粘度は 0. 28dlZgであった。
[0212] < C 3— 3 >
上記く C— 3—1 >のメタクリル酸メチル 35重量部、スチレン 12. 5重量部、アタリ口 二トリル 2. 5重量部をメタクリル酸メチル 50重量部に変更した以外はすべて同様に乳 化重合を行った。得られたグラフト共重合体のグラフト率は 43%、メチルェチルケトン 可溶分の極限粘度は 0. 27dlZgであった。
[0213] < C-4>
前記一般式 (I)で表されるポリ乳酸セグメントと前記一般式 (Π)で表されるビニル系 ポリマーセグメントとが、共重合比((1) 7 (11) ) 99 1〜1799重量部(ただし(1) + (I I)は 100重量部)で結合したブロック共重合体
< C 4 1 >
まず、末端にヒドロキシル基を含有する原料を合成するため、ヒドロキシル基を含有 する連鎖移動剤を用い、スチレン—アクリロニトリル共重合体 (c— 4— 1)を合成した。 スチレン (東京化成社製: 527g)とアクリロニトリル (東京化成社製: 205g)、メルカプト エタノール (ALDRICH社製: 4. 2g)、ベンゾィルパーオキサイド 3. 58g、脱水テトラ ヒドロフラン 900mLを撹拌装置のついた反応容器中で、窒素雰囲気下、 84°C、環流 下で 24時間反応した。反応後室温まで冷却し、エバポレーターで溶媒を濃縮しメタノ ール中へ滴下してモノマーを完全に除去して再沈殿精製を行った後に 80°Cで 12時
間真空乾燥を行い白色粉末を得た。得られた白色粉末は GPC測定の結果、数平均 分子量 26000のスチレン—アクリロニトリル共重合体であった。
[0214] 得られたスチレン—アクリロニトリル共重合体(c— 4—l)の1 H— NMR (DMSO溶 媒)測定を行い、スチレン由来の CHおよび CH2を 1. 2ppm〜2. 9ppm付近に、芳 香族由来の CHを 6. 4ppm〜7. 2ppm付近に、アクリロニトリル由来の CHおよび C H2を 1. 5ρρπ!〜 2. 5ppm付近に確認し、メルカプトエタノールにより封鎖された末 端の CH20Hを 3. 6ppm付近に確認した。
[0215] 次に、 L ラクチド (PURAC社製: 150g)と得られたスチレン一アクリロニトリル共重 合体 (c— 4—1) lOOgを撹拌装置のついた反応容器中で、窒素雰囲気下、 150°Cで 溶解させた後、ォクチル酸錫 (ALDRICH社製: 1. OgZトルエン 2mL)をカ卩えた後、 3時間重合反応させた。重合反応終了後、反応物をクロ口ホルムに溶解させ、メタノ ール中で撹拌しながら沈殿させ、モノマーを完全に除去して、ポリ乳酸とスチレン アクリル-トリルのブロック共重合体 1を得た (収率 89%)。得られたブロック共重合体 1の1 H— NMR測定を行い、ピーク比から求めたポリ乳酸の数平均分子量は 36000 であり、重量比は (ポリ乳酸 Zスチレン アクリロニトリル共重合体) 58. 5/41. 5重 量部であった。スチレン—アクリロニトリル共重合体の1 H— NMR(DMSO溶媒)測定 を行い、スチレン由来の CHおよび CH2を 1. 2ppm〜2. 9ppm付近に、芳香族由来 の CHを 6. 4ppm〜7. 2ppm付近に、アクリロニトリル由来の CHおよび CH2を 1. 5p pm〜2. 5ppm付近に確認し、ポジ孚し酸由来の CHを 5. 2ppmに、 CH3を 1. 5ppm 付近に確認した。
[0216] < C 4 2>
L ラクチド (PURAC社製: 100g)とく C— 4— 1 >を合成する際に合成したスチレ ン—アクリロニトリル共重合体 (c— 4—1) lOOgを撹拌装置のついた反応容器中で、 窒素雰囲気下、 150°Cで溶解させた後、ォクチル酸錫 (ALDRICH社製: 1. OgZト ルェン 2mL)を加えた後、 3時間重合反応させた。重合反応終了後、反応物をクロ口 ホルムに溶解させ、メタノール中で撹拌しながら沈殿させ、モノマーを完全に除去し て、ポリ乳酸とスチレン—アクリル-トリルのブロック共重合体 2を得た (収率 91%)。 得られたブロック共重合体 2の 1H—NMR測定を行 、、ピーク比力 求めたポリ乳酸
の数平均分子量は 21000であり、重量比は(ポリ乳酸 Zスチレン—アクリロニトリル共 重合体) 45. 1/54. 9重量部であった。スチレン アクリロニトリル共重合体の 1H— NMR (DMSO溶媒)測定を行い、スチレン由来の CHおよび CH2を 1. 2ppm〜2. 9ppm付近に、芳香族由来の CHを 6. 4ppm〜7. 2ppm付近に、アクリロニトリル由 来の CHおよび CH2を 1. 5ppm〜2. 5ppm付近に確認し、ポリ乳酸由来の CHを 5. 2ppm【こ、 CH3を 1. 5ppm付近【こ確認した。
[0217] [参考例 4] (D)ジカルボン酸無水物
< D- 1 >
東京化成工業製マレイン酸無水物を使用した。
[0218] < D- 2>
東京化成工業製コハク酸無水物を使用した。
[0219] [参考例 5] (E)ゴム質重合体
<E- 1 >
ポリブタジエン(重量平均粒子径 0. 35 μ m) 50重量部
(日本ゼオン社製 Nipol LX111K) (固形分換算)
ォレイン酸カリウム 0. 5重量部
ブドウ糖 0. 5重量部
ピロリン酸ナトリウム 0. 5重量部
硫酸第一鉄 0. 005重量咅
脱イオン水 120重量部。
[0220] 以上の物質を重合容器に仕込み、撹拌しながら 65°Cに昇温した。内温が 65°Cに 達した時点を重合開始として、スチレン 35重量部、アクリロニトリル 15重量部、および tードデシルメルカプタン 0. 3重量部を 5時間かけて連続滴下した。並行してタメンノヽ イド口パーオキサイド 0. 25重量部、ォレイン酸カリウム 2. 5重量部および純水 25重 量部からなる水溶液を、 7時間で連続滴下し反応を完結させた。得られたグラフト共 重合体ラテックスを硫酸で凝固し、苛性ソーダで中和した後、洗浄、濾過、乾燥して パウダー状として得た。得られたグラフト共重合体のグラフト率は 38%、メチルェチル ケトン可溶分の極限粘度は 0. 33dlZgであった。
[0221] <E- 2>
ポリブタジエンラテックス(平均ゴム粒子径 0. 09 μ m) 75部(固形分換算)の存在下 で、 MAA— BA共重合体を固形分として 2部添加し、室温にて 30分攪拌することに よって肥大化し、その後ォレイン酸カリウム 1. 5部、ナトリウムホルムアルデヒドスルホ キシレート 0. 6部をフラスコ内に仕込み、内温を 70°Cに保持して、メチルメタクリレー ト 13部および n—ブチルアタリレート 2部およびクメンハイドロキシパーオキサイド 0. 0 3部の混合物を 1時間かけて滴下した後 1時間保持した。その後、前段階で得られた 重合体の存在下で、第 2段目としてスチレン 17部およびタメンノヽイドロキシパーォキ サイド 0. 034部の混合物を 1時間かけて滴下した後 3時間保持した。し力る後、第 1 段目および第 2段目で得られた重合体の存在下で、第 3段目としてメチルメタクリレー ト 3部およびクメンハイドロキシパーオキサイド 0. 003部の混合物を 0. 5時間かけて 滴下した後 1時間保持して力 重合を終了した。得られたグラフト共重合体ラテックス にプチルイ匕ハイドロキシトルエン 0. 5部を添加した後、硫酸で凝固した後、洗浄、乾 燥してパウダー状として得た。得られたグラフト共重合体のグラフト率は 26%、メチル ェチルケトン可溶分の極限粘度は 0. 26dlZgであった。
[0222] [参考例 6] (F)脂肪族ポリカーボネート、芳香族ポリエステル、ポリエチレン、ポリプ ロピレン、ポリ塩ィ匕ビュル力 選ばれる 1種以上の熱可塑性榭脂
<F- 1 >
東亜合成製 "カルポジオール" 2000 (脂肪族ポリカーボネート)
<F- 2>
東レ製"トレコン" 1100S (ポリブチレンテレフタレート)
<F- 3 >
シェル製"コルテラ" CP509200 (ポリプロピレンテレフタレート)
<F-4>
三井ィ匕学社製"ハイゼックス "2200J (高密度ポリエチレン)
<F- 5 >
住友化学社製"ノーブレン" Y101 (ポリプロピレン)
<F-6 >
新第一塩ビ社製 "ZEST" 1300Z (ポリ塩ィ匕ビュル)
[0223] [参考例 7] (G)帯電防止性重合体
< G- 1 >
力プロラタタム 40部、数平均分子量 2000のポリエチレングリコール 56. 3部、及び テレフタル酸 4. 8部を酸化防止剤(ィルガノックス 1098) 0. 2重量部及び三酸化アン チモン 0. 1重量部と共にへリカルリボン撹拌翼を備えた反応容器に仕込み、窒素置 換して 260°Cで少量窒素を流しながら 50分間加熱撹拌して透明な均質溶液とした後 、 260°C、 0. 5mmHg以下の条件で 3時間重合し透明なポリマーを得た。ポリマーを 冷却ベルト上にガット状に吐出し、ペレタイズすることによって、ペレット状のポリエー テルエステルアミド< G— 1 >を調製した。
[0224] 得られたポリエーテルエステルアミドは 0. 5%濃度のオルトクロ口フエノール溶液中 、 25°Cで測定した相対粘度( 7? r)が 2. 01で、体積固有抵抗値が 1 X 109 Ω cmで ある。
[0225] < G- 2>
力プロラタタム 90部、数平均分子量 2000のポリエチレングリコール 9. 4部、及びテ レフタル酸 0. 8部を酸化防止剤(ィルガノックス 1098) 0. 2重量部及び三酸化アン チモン 0. 05重量部と共にへリカルリボン撹拌翼を備えた反応容器に仕込んだ後、 参考例 < G— 1 >に従ってポリエーテルエステルアミド< G— 2 >を調製した。
[0226] 得られたポリエーテルエステルアミドは 0. 5%濃度のオルトクロ口フエノール溶液中 、 25°Cで測定した相対粘度( 7? r)が 2. 11で、体積固有抵抗値が 3 X 1013 Ω cmで ある。
[0227] < G- 3 >
力プロラタタムを加圧重合してポリアミドく G— 3 >を調製した。
[0228] 得られたポリアミドは 0. 5%濃度のオルトクロ口フエノール溶液中、 25°Cで測定した 相対粘度( 7? r)が 2. 10で、体積固有抵抗値が 5 X 1014 Ω cmである。
[0229] [参考例 8] (H)結晶核剤
<H- 1 >
富士タルク工業製" LMS300" (タルク;無機系結晶核剤)を使用した。
[0230] <H- 2>
日本ィ匕成製"スリパックス L" (エチレンビスラウリン酸アミド;有機系結晶核剤)を使用 した。
[0231] [参考例 9] (I)可塑剤
<1- 1 >
三洋化成工業製" PEG4000" (ポリエチレングリコール)を使用した。
[0232] [参考例 10] CO充填剤
<J- 1 >
日東紡績製" CS3J948" (ガラス繊維)を使用した。
[0233] [参考例 11] (K)カルボキシル基反応性末端封鎖剤
<κ-ι>
日清紡製 "カルポジライド, LA— 1 (カルポジイミド)を使用した。
[0234] [参考例 12] (L)他の熱可塑性榭脂
<L- 1 >
BASFジャパン製" 576H" (ポリスチレン:高衝撃グレード)を使用した。
[0235] <L- 2>
旭化成ケミカルズ製"スタイラック 121" (ABS:標準グレード)を使用した。
[0236] [実施例 1〜19、比較例 1〜7]
表 1記載の組成力 なる原料をドライブレンドした後、押出温度 220°Cに設定した 2 軸スクリュー押出機(日本製鋼所製 TEX— 30)を使用して溶融混合ペレタイズを行つ た。
[0237] 実施例 1〜 19および比較例 1〜7で得られたペレットを東芝機械製 IS55EPN射出 成形機を用いて、成形温度 230°C、金型温度 40°Cの条件で射出成形することにより 得られた試験片につ!/ヽて、各特性を以下の測定方法にて評価した。
[0238] I張特性] : ASTM D638に従い、引張特性を評価した。
[0239] [耐衝撃性]: ASTM D256 - 56Aに従!ヽ、耐衝撃性を評価した。
[0240] [耐熱性] : ASTM D648 (荷重: 0. 46MPa)に従 、、荷重たわみ温度を測定した
[0241] [TEM観察] :透過型電子顕微鏡(HITACHI、 ELECTRON MICROSCOPE H- 700)を用いて、得られた榭脂組成物の断面にっ 、てモルフォロジ一観察を行 い、倍率 1000倍の写真 (写真上 lcmが 10 mに相当)をもとに、写真上に撮影され た、分散した個々の球状分散相の任意の 30個について、最も長い粒子径を測定し、 数平均した値を平均粒径とした。
[0242] 各サンプルの引張特性、耐衝撃性、耐熱性、 TEM観察にっ ヽての測定結果をそ れぞれ表 1に示す。
[0243] [表 1]
-5>
-2
<c-i-i> 2 5 ie
-2> 2 2
-2 2 0.2 0.2 0.2 0.2 0.2 -2*2> 0.1
ft
-2> A
[0244] 実施例 1〜19、比較例 1〜7より、本発明の榭脂組成物は、引張特性、耐衝撃性、 耐熱性に優れることがわかる。
[0245] [実施例 20〜41、比較例 8〜13]
表 2、 3記載の組成力 なる原料をドライブレンドした後、押出温度 220°Cに設定し た 2軸スクリュー押出機 (日本製鋼所製 TEX— 30)を使用して溶融混合ペレタイズを 行った。
[0246] 実施例 20〜36および比較例 8〜13で得られたペレットを東芝機械製 IS55EPN射 出成形機を用いて、成形温度 230°C、金型温度 40°Cの条件で射出成形すること〖こ より得られた試験片について、各特性を以下の測定方法にて評価した。実施例 37〜 41で得られたペレットは、成形温度 230°C、金型温度 85°Cの条件に変更した以外は すべて同様に成形、評価をした。
[0247] I張特性]: ASTM D638に従 、、弓 |張特性を評価した。
[0248] [耐衝撃性]: ASTM D256 - 56Aに従!ヽ、耐衝撃性を評価した。
[0249] [耐熱性] : ASTM D648 (荷重: 0. 46MPa)に従 、、荷重たわみ温度を測定した
[0250] [流動性] :射出成形時の最低充填圧力(ゲージ圧力)から流動性を評価した。最低 充填圧力が小さいものほど流動性に優れる。
[0251] [面積割合] :射出成形により得られた成形品について、オスミウムブロック染色法に より、(A)スチレン系榭脂、(C— 2)ビニル系重合体、(C— 3)グラフト重合体、(E)ゴ ム質重合体を染色した後、超薄切片を切り出したサンプルについて、透過型電子顕 微鏡にて 6000倍に拡大して断面の観察、撮影した。さらに 4倍に拡大し、(B)脂肪 族ポリエステル中に分散して 、る(C— 2)、(C— 3)および (E)の面積 (X)と (A)スチ レン系榭脂中に分散して 、る(C— 2)、(C— 3)および (E)の面積 (Y)を該写真から 切り出し重量法を用いて求め、(X)Z( (X) + (Y) )の式に従って面積割合を求めた
[0252] 各サンプルの引張特性、耐衝撃性、耐熱性、流動性、面積割合につ ヽての測定 結果をそれぞれ表 2、表 3に示す。
[0253] [表 2]
2
[0254] [表 3]
[0255] 実施例 20 41、比較例 8 13より、本発明の榭脂組成物は、引張特性、耐衝撃 性、耐熱性、流動性に優れることがわ力る。
[0256] [実施例 42〜54]
表 4、 5記載の組成力 なる原料をドライブレンドした後、押出温度 220°Cに設定し た 2軸スクリュー押出機 (日本製鋼所製 TEX— 30)を使用して溶融混合ペレタイズを 行った。
[0257] 実施例 42〜51で得られたペレットを東芝機械製 IS55EPN射出成形機を用いて、 成形温度 230°C、金型温度 40°Cの条件で射出成形することにより得られた試験片に ついて、各特性を以下の測定方法にて評価した。実施例 52〜54で得られたペレット は、成形温度 230°C、金型温度 80°Cの条件に変更した以外はすべて同様に成形、 評価をした。
[0258] I張特性] : ASTM D638に従い、引張特性を評価した。
[0259] [耐衝撃性]: ASTM D256 - 56Aに従!ヽ、耐衝撃性を評価した。
[0260] [耐熱性] : ASTM D648 (荷重: 0. 46MPa)に従 、、荷重たわみ温度を測定した
[0261] [流動性] :射出成形時の最低充填圧力(ゲージ圧力)から流動性を評価した。最低 充填圧力が小さいものほど流動性に優れる。
[0262] [面積割合] :射出成形により得られた成形品について、オスミウムブロック染色法に より、(A)スチレン系榭脂、(C— 2)ビニル系重合体、(C— 3)グラフト重合体、(E)ゴ ム質重合体を染色した後、超薄切片を切り出したサンプルについて、透過型電子顕 微鏡にて 6000倍に拡大して断面の観察、撮影した。さらに 4倍に拡大し、(B)脂肪 族ポリエステル中に分散して 、る(C— 2)、(C— 3)および (E)の面積 (X)と (A)スチ レン系榭脂中に分散して 、る(C— 2)、(C— 3)および (E)の面積 (Y)を該写真から 切り出し重量法を用いて求め、(X)Z( (X) + (Y) )の式に従って面積割合を求めた
[0263] 結果をそれぞれ表 4、表 5に示す。
[0264] [表 4]
〔〕〔〕02655
[0266] 実施例 42 54より、本発明の榭脂組成物は、引張特性、耐衝撃性、耐熱性、流動 性に優れることがわかる。
[0267] [実施例 55 72、比較例 14 16]
表 6記載の組成力 なる原料をドライブレンドした後、押出温度 220°Cに設定した 2 軸スクリュー押出機 (池貝社製 PCM— 30)を使用して溶融混合ペレタイズを行った。
[0268] 実施例 55 69、および比較例 14 16で得られたペレットを東芝機械製 IS55EP
N射出成形機を用いて、成形温度 230°C、金型温度 40°Cの条件で射出成形するこ とにより得られた試験片について、各特性を以下の測定方法にて評価した。実施例 7 0〜72で得られたペレットは、成形温度 230°C、金型温度 80°Cの条件に変更した以 外はすべて同様に成形、評価をした。
[0269] [耐衝撃性]: ASTM D256 - 56Aに従!ヽ、耐衝撃性を評価した。
[0270] [耐熱性] : ASTM D648 (荷重: 1. 82MPa)に従い、荷重たわみ温度を測定した
[0271] [面積割合] :射出成形により得られた成形品について、オスミウムブロック染色法に より、(A)スチレン系榭脂、(C— 3)グラフト重合体、(E)ゴム質重合体を染色した後、 超薄切片を切り出したサンプルにつ 、て、透過型電子顕微鏡にて 6000倍に拡大し て断面の観察、撮影した。さらに 4倍に拡大し、(B)脂肪族ポリエステル中に分散して いる(C— 3)および (E)の面積 (X)と (A)スチレン系榭脂中に分散して 、る (C - 3) および (E)の面積 (Y)を該写真力も切り出し重量法を用いて求め、 (X) / ( (X) + (Y ) )の式に従って面積割合を求めた。
[0272] 各サンプルの耐衝撃性、耐熱性、および脂肪族ポリエステル中に存在する(C 3) および (E)の面積割合につ 、ての測定結果をそれぞれ表 6に示す。
[0273] [表 6]
表 6
[0274] 実施例 55〜72より、本発明の榭脂組成物は、ポリ乳酸単体 (比較例 15)に対して、 スチレン系榭脂、脂肪族ポリエステル、ならびに相溶化剤およびジカルボン酸無水物 力 選ばれる少なくとも 1種を添加することにより、大幅に耐衝撃性を改良することが でき、さらに実用的な耐熱温度を有することができる。
[0275] 特に実施例 55〜59より、(C— 3)および (E)が脂肪族ポリエステル中に存在する割 合が増すほど耐衝撃性を向上できることがわかる。
[0276] [実施例 73〜78、比較例 17〜19]
実施例 73〜78および比較例 17については、表 7記載の組成力もなる原料をドライ ブレンドし、東洋精機製小型ブラベンダーを用い、 220°Cで、 15分間溶融混合し、 3 mm φのノズルを装着した小型二軸混練押出機に窒素気流下で投入し、榭脂の溶 融温度でストランド状に押出し、空冷してカットし、ペレツトイ匕し、得られたペレットを 20 0°Cで溶融プレスして厚さ 20 mの無色透明フィルムを得た。得られたフィルムにつ いて、動的粘弾性試験を行った結果を表 7に示す。
[0277] 比較例 18では、表 7記載の原料を用いて、 200°Cで溶融プレスして厚さ 20 μ mの 無色透明フィルムを得た。得られたフィルムについて、動的粘弾性試験を行った結果 を表 7に示す。
[0278] 比較例 19では、表 7記載の原料を用いて、 230°Cで溶融プレスして厚さ mの 透明フィルムを得た。得られたフィルムについて、動的粘弾性試験を行った結果を表 7に示す。
[0279] [動的粘弾性率] :動的粘弾性率は粘弾性測定装置 DMS6100 (セイコーインスッ ルメンツネ土製)を用い、 20 m厚のフィルムを、窒素下、 0°Cから 220°Cまで 2°CZmi nで昇温したときの損失弾性率を測定し、 30°Cにおける弾性率、および測定開始より 弾性率が 50%低下した温度を測定した。
[0280] [TEM観察] :透過型電子顕微鏡(HITACHI、 ELECTRON MICROSCOPE H- 700)を用いて、得られた榭脂組成物の断面にっ 、てモルフォロジ一観察を行 い、倍率 1000倍の写真 (写真上 lcmが 10 mに相当)をもとに、写真上に撮影され た、分散した個々の球状分散相の任意の 30個について、最も長い粒子径を測定し、 数平均した値を平均粒径とした。
llSTC/900Zdf/X3d YL 8 0/ム00 OAV
表 7
[0282] 本結果力 次の事項が明らかである。
[0283] スチレン系榭脂と脂肪族ポリエステルの混合系にポリ乳酸と用いたスチレン系榭脂 とのブロックポリマーを加えることで相溶性が向上し、ブロックポリマーを添カ卩しない場 合 (比較例 17)に比べ島構造のポリマーの粒子が細小化して平均粒子系が小さくな り、弾性率、耐熱性も向上する(実施例 73〜78)。
[0284] ブロックポリマーを混合しな 、場合、相溶性の向上は見られず、弾性率、耐熱性が 従来の物性よりも低下し、粗大な分散が物性にむしろ悪影響を与えている (比較例 1 9〜20)。
[0285] [実施例 79〜97、比較例 20〜22]
表 8、 9記載の組成力 なる原料をドライブレンドした後、押出温度 220°Cに設定し た 2軸スクリュー押出機 (池貝社製 PCM— 30)を使用して溶融混合ペレタイズを行つ た。
[0286] 実施例 78〜94、および比較例 20〜22で得られたペレットを東芝機械製 IS55EP N射出成形機を用いて、成形温度 230°C、金型温度 40°Cの条件で射出成形するこ とにより得られた試験片について、各特性を以下の測定方法にて評価した。実施例 9 5〜97で得られたペレットは、成形温度 230°C、金型温度 80°Cの条件に変更した以 外はすべて同様に成形、評価をした。
[0287] [耐衝撃性]: ASTM D256 - 56Aに従!ヽ、耐衝撃性を評価した。
[0288] [耐熱性] : ASTM D648 (荷重: 1. 82MPa)に従い、荷重たわみ温度を測定した
[0289] [面積割合] :射出成形により得られた成形品について、オスミウムブロック染色法に より、(A)スチレン系榭脂、(C— 3)グラフト重合体、(E)ゴム質重合体を染色した後、 超薄切片を切り出したサンプルにつ 、て、透過型電子顕微鏡にて 6000倍に拡大し て断面の観察、撮影した。さらに 4倍に拡大し、(B)脂肪族ポリエステル中に分散して いる(C— 3)および (E)の面積 (X)と (A)スチレン系榭脂中に分散して 、る (C - 3) および (E)の面積 (Y)を該写真力も切り出し重量法を用いて求め、 (X) / ( (X) + (Y ) )の式に従って面積割合を求めた。
[0292] 実施例 79 97より、本発明の榭脂組成物は、ポリ乳酸単体 (比較例 21)に対して、 スチレン系樹脂、脂肪族ポリエステル、ならびに相溶化剤およびジカルボン酸無水物 力 選ばれる少なくとも 1種を配合することにより、大幅に耐衝撃性を改良することが でき、さらに実用的な耐熱温度を有することができる。
[0293] 特に実施例 81 82 86 88より、(C一 3)および (E)が脂肪族ポリエステル中に 存在する割合が増すほど耐衝撃性を向上できることがわ力る。
[0294] [実施例 98〜112、比較例 23〜29]
表 10、 11記載の組成力 なる原料をドライブレンドした後、押出温度 220°Cに設定 した 2軸スクリュー押出機 (池貝社製 PCM— 30)を使用して溶融混合ペレタイズを行 つた o
[0295] 実施例 96〜109、および比較例 23〜29で得られたペレットを東芝機械製 IS55E PN射出成形機を用いて、成形温度 230°C、金型温度 40°Cの条件で射出成形する ことにより得られた試験片について、各特性を以下の測定方法にて評価した。実施例 110〜112で得られたペレットは、成形温度 230°C、金型温度 80°Cの条件に変更し た以外はすべて同様に成形、評価をした。
[0296] [耐衝撃性] : ASTM D256— 56Aに従い、耐衝撃性を評価した。
[0297] [耐熱性]: ASTM D648 (荷重: 1. 82MPa)に従い、荷重たわみ温度を測定した
[0298] [帯電防止性]:表面固有抵抗値: 2mmt X 40mm φの円板を用いて、下記の条件 で測定した。測定には東亜電波工業 (株)製の超絶縁抵抗計 SM— 10型を用いた。
[0299] (1) 成形直後、洗剤"ママローヤル" (ライオン (株)製)水溶液で洗浄し、続いて蒸 留水で十分洗浄してから表面の水分を取り除いた後、室温 23°C、湿度 50%RH雰 囲気下で測定した。
[0300] (2) 成形後、 23°C、 50%RH中に 100日間放置した後、洗剤"ママローヤル"(ラ イオン (株)製)水溶液で洗浄し、続ヽて蒸留水で十分洗浄してから表面の水分を取 り除いた後、室温 23°C、湿度 50%RH雰囲気下で測定した。
[0301] [面積割合] :射出成形により得られた成形品について、オスミウムブロック染色法 により、 (A)スチレン系榭脂、 (C— 3)グラフト重合体、(E)ゴム質重合体を染色した 後、超薄切片を切り出したサンプルについて、透過型電子顕微鏡にて 6000倍に拡 大して断面の観察、撮影した。さらに 4倍に拡大し、(B)脂肪族ポリエステル中に分散 して 、る (C - 3)および (E)の面積 (X)と (A)スチレン系榭脂中に分散して 、る (C - 3)および (E)の面積 (Y)を該写真力も切り出し重量法を用いて求め、(X) Z ( (X) + (Y) )の式に従って面積割合を求めた。
[0302] 各サンプルの耐衝撃性、耐熱性、帯電防止性、および脂肪族ポリエステル中に存
〔〕0304
表
¾s () s¾C 31I
実施例 98〜112より、本発明の榭脂組成物は、ポリ乳酸単体 (比較例 24)に対して 、スチレン系榭脂、脂肪族ポリエステル、ならびに相溶化剤およびジカルボン酸無水 物から選ばれる少なくとも 1種を配合することにより、大幅に耐衝撃性を改良すること ができ、さらに実用的な耐熱温度を有し、かつ低い表面固有抵抗値を有し、し力も成
形品の表面洗浄や経時変化によっても表面固有抵抗値が変化せず、優れた永久帯 電性を発揮することができる。
[0306] 特に実施例 98〜102より、(C— 2)および (E)が脂肪族ポリエステル中に存在する 割合が増すほど耐衝撃性を向上できることがわかる。
[0307] また、比較例 26〜29より、 (C)相溶化剤が配合されて 、な 、場合には、耐衝撃性 、耐熱性、帯電防止性のいずれにも優れる榭脂組成物を得ることはできず、さらに、 比較例 30より、(G)帯電防止性重合体の配合量が 40重量%を超える場合、耐熱性 の低下が著しぐ(G)帯電防止性重合体の体積固有抵抗値が 1013 Ω cmを超える場 合 (比較例 31、 32)は耐衝撃性、帯電防止性が劣るものになる。
産業上の利用可能性
[0308] 自動車用資材、電機 ·電子機器用資材、農業用資材、園芸用資材、漁業用資材、 土木'建築用資材、文具、医療用品、便座、雑貨、またはその他各種の用途として用 いることがでさる。
Claims
(C 1)ポリメタクリル酸メチル重合体
(C 2)不飽和カルボン酸グリシジルエステル単位または不飽和ジカルボン酸無水 物単位が 3重量%以上共重合されたビニル系重合体
(C 3)ゴム質重合体 10〜80重量0 /0にメタクリル酸メチル単位 20〜90重量0 /0がグ ラフト重合されたグラフト重合体
(C-4)一般式 (I)で表されるポリ乳酸セグメントと一般式 (Π)で表されるビニル系ポリ マーセグメントとが、共重合比((1) 7 (11) ) 99 1〜1799重量部(ただし(1) + (II) は 100重量部)で結合したブロック共重合体
[化 1]
(xは水素、アルキル基、ヒドロキシル基、アルキルエステル基、シァノ基、フエ-ル基
、アミド基およびハロゲン基力も選ばれる少なくとも 1種を表す。 m、 nは数平均分子
量を表し、それぞれ 1000〜 100000の値である。;)
[3] (D)ジカルボン酸無水物が、マレイン酸無水物またはコハク酸無水物のいずれか 1 種以上である請求項 1に記載の榭脂組成物。
[4] (C)相溶化剤および (D)ジカルボン酸無水物力も選ばれる少なくとも 1種力 (C)相 溶化剤であることを特徴とする請求項 1に記載の榭脂組成物。
[5] さらに (E)ゴム質重合体を配合してなることを特徴とする請求項 1〜4に記載の榭脂 組成物。
[6] (E)ゴム質重合体力 ゴム質重合体 10〜80重量%に、芳香族ビュル系単位 10〜7
0重量%、シアン化系ビュル単位 10〜50重量%がグラフト重合されているグラフト重 合体であることを特徴とする請求項 5に記載の榭脂組成物。
[7] (C)相溶化剤が (C 2)および Zまたは (C 3)成分であり、榭脂組成物の断面の 電子顕微鏡写真にぉ 、て、(C 2)および Zまたは (C 3)の合計面積を 100%とし た時に、(B)脂肪族ポリエステル中に存在する(C 2)および Zまたは (C 3)の面 積割合が 10〜90%である請求項 4に記載の榭脂組成物。
[8] 榭脂組成物の断面の電子顕微鏡写真において、(C 2)、(C 3)および Zまたは(
E)ゴム質重合体の合計面積を 100%とした時に、 (B)脂肪族ポリエステル中に存在 する(C— 2)、 (C- 3)および Zまたは (E)ゴム質重合体の面積割合が 10〜90%で ある請求項 5に記載の榭脂組成物。
[9] さらに(F)ポリカーボネート、芳香族ポリエステル、ポリエチレン、ポリプロピレン、ポリ 塩化ビニルから選ばれる 1種以上を配合してなる請求項 1に記載の榭脂組成物。
[10] さらに(G)体積固有抵抗 10〜13 Ω cm以下の重合体を配合してなる請求項 1に記載 の榭脂組成物。
[11] (A)スチレン系榭脂と (B)脂肪族ポリエステルの合計 100重量%に対し、(B)脂肪族 ポリエステルが 50重量%未満である請求項 1に記載の榭脂組成物。
[12] 請求項 1に記載の榭脂組成物からなる成形品。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06781996.1A EP1911807B1 (en) | 2005-08-04 | 2006-07-31 | Resin composition and molded article comprising the same |
CN2006800287471A CN101238177B (zh) | 2005-08-04 | 2006-07-31 | 树脂组合物和由该树脂组合物形成的成型品 |
US11/989,836 US7999021B2 (en) | 2005-08-04 | 2006-07-31 | Resin composition and molded article made thereof |
US13/180,031 US8664334B2 (en) | 2005-08-04 | 2011-07-11 | Resin composition and molded article made thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-226072 | 2005-08-04 | ||
JP2005226072 | 2005-08-04 | ||
JP2005369377 | 2005-12-22 | ||
JP2005-369377 | 2005-12-22 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/989,836 A-371-Of-International US7999021B2 (en) | 2005-08-04 | 2006-07-31 | Resin composition and molded article made thereof |
US13/180,031 Division US8664334B2 (en) | 2005-08-04 | 2011-07-11 | Resin composition and molded article made thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007015448A1 true WO2007015448A1 (ja) | 2007-02-08 |
Family
ID=37708728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/315118 WO2007015448A1 (ja) | 2005-08-04 | 2006-07-31 | 樹脂組成物およびそれからなる成形品 |
Country Status (7)
Country | Link |
---|---|
US (2) | US7999021B2 (ja) |
EP (2) | EP1911807B1 (ja) |
KR (1) | KR20080039890A (ja) |
CN (2) | CN101838425B (ja) |
MY (2) | MY159858A (ja) |
TW (1) | TWI396712B (ja) |
WO (1) | WO2007015448A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1975201A1 (en) * | 2007-03-30 | 2008-10-01 | Total Petrochemicals France | Monovinylaromatic polymer composition comprising a polymer made from renewable resources as a dispersed phase |
US20090099313A1 (en) * | 2007-10-10 | 2009-04-16 | E. I. Du Pont De Nemours And Company | Poly(hydroxyalkanoic acid) and thermoformed articles |
EP2147934A1 (en) | 2008-07-25 | 2010-01-27 | Total Petrochemicals France | Process to make a composition comprising a monovinylaromatic polymer and a polymer made from renewable resources |
EP2147952A1 (en) * | 2007-05-15 | 2010-01-27 | Techno Polymer Co., Ltd. | Thermoplastic resin composition and resin molded article |
US20100104882A1 (en) * | 2007-03-16 | 2010-04-29 | Toray Industries, Inc. | Aliphatic polyester sheet and molded body composed of the same |
JP2011514417A (ja) * | 2008-03-14 | 2011-05-06 | パクティヴ・コーポレーション | 生分解性またはバイオ系の重合体および合成重合体のポリマーブレンドおよびその発泡体 |
US20120208913A1 (en) * | 2011-02-10 | 2012-08-16 | Fina Technology, Inc. | Use of Polar Additives for Enhancing Blowing Agent Solubility in Polystyrene |
CN101932657B (zh) * | 2007-12-07 | 2013-10-23 | 住友化学株式会社 | 树脂组合物的制造方法及成形体 |
JP2014040535A (ja) * | 2012-08-23 | 2014-03-06 | Du Pont Mitsui Polychem Co Ltd | 樹脂組成物、成形材料、成形体、および樹脂組成物の製造方法 |
JP5726078B2 (ja) * | 2010-03-30 | 2015-05-27 | 日東電工株式会社 | ポリ乳酸系フィルム又はシート、及びその製造方法 |
JP2016020052A (ja) * | 2014-07-14 | 2016-02-04 | 三菱樹脂株式会社 | 積層体 |
JP2016199654A (ja) * | 2015-04-09 | 2016-12-01 | 東洋スチレン株式会社 | スチレン系樹脂組成物及び成形体 |
JP6249129B1 (ja) * | 2017-07-18 | 2017-12-20 | ユーエムジー・エービーエス株式会社 | ポリ乳酸系熱可塑性樹脂組成物およびその成形品 |
JP2020011516A (ja) * | 2014-07-14 | 2020-01-23 | 三菱ケミカル株式会社 | 積層体 |
JP2020011517A (ja) * | 2019-10-09 | 2020-01-23 | 三菱ケミカル株式会社 | 積層体 |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008041356A1 (fr) * | 2006-10-03 | 2008-04-10 | Techno Polymer Co., Ltd. | Composition de résine thermoplastique et article moulé en résine |
JP4742007B2 (ja) * | 2006-10-11 | 2011-08-10 | 株式会社トープラ | タッピンねじ用皮膜形成剤、同皮膜形成剤を用いてタッピンねじの外周を被覆する皮膜を形成する皮膜形成方法、および、同皮膜形成剤にて形成された皮膜付きタッピンねじ |
ATE474080T1 (de) | 2007-02-20 | 2010-07-15 | Basf Se | Verfahren zur herstellung von metallisierten textilen oberflächen mit strom erzeugenden oder strom verbrauchenden artikeln |
WO2008101937A2 (de) * | 2007-02-23 | 2008-08-28 | Basf Se | Verbundwerkstoffe und verfahren zu ihrer herstellung |
CN102056595A (zh) * | 2008-06-13 | 2011-05-11 | 阿科玛股份有限公司 | 可生物降解的抗冲击改性的聚合物组合物 |
WO2010053110A1 (ja) | 2008-11-05 | 2010-05-14 | 独立行政法人産業技術総合研究所 | 二酸化炭素由来脂肪族ポリカーボネート複合体およびその製造方法 |
CN101402786B (zh) * | 2008-11-14 | 2011-05-18 | 上海宝利纳材料科技有限公司 | 一种增韧聚乙烯-聚乳酸组合物 |
KR20100075085A (ko) * | 2008-12-24 | 2010-07-02 | 제일모직주식회사 | 폴리히드록시 알카노에이트 수지 조성물 |
KR101233373B1 (ko) * | 2008-12-30 | 2013-02-18 | 제일모직주식회사 | 폴리유산 수지 조성물 |
BE1019289A5 (fr) * | 2010-04-13 | 2012-05-08 | Futerro Sa | Composition de polymeres issus de ressources renouvelables. |
KR101466151B1 (ko) | 2010-12-31 | 2014-11-27 | 제일모직 주식회사 | 아크릴계 수지 조성물 및 이를 이용한 성형품 |
US20120189860A1 (en) * | 2011-01-24 | 2012-07-26 | Fina Technology, Inc. | Polymeric compositions comprising polylactic acid oligomers and methods of making the same |
EP2676996B1 (en) | 2011-02-15 | 2015-08-12 | Toray Industries, Inc. | Thermoplastic resin composition and molded articles thereof |
KR101281834B1 (ko) | 2011-04-18 | 2013-07-03 | (주)엘지하우시스 | 생분해성 고분자 복합재 |
US8957152B2 (en) * | 2011-06-29 | 2015-02-17 | Fina Technology, Inc. | Polarity manipulation in polystyrene for enhanced bio-polymer miscibility |
US9045630B2 (en) * | 2011-06-29 | 2015-06-02 | Fina Technology, Inc. | Epoxy functional polystyrene for enhanced PLA miscibility |
EP2554597B1 (en) * | 2011-08-02 | 2014-12-31 | Styron Europe GmbH | Chemical resistant and fire retardant polycarbonate polyester composition |
JP6019930B2 (ja) | 2011-09-02 | 2016-11-02 | 住友化学株式会社 | 熱可塑性エラストマー組成物及びその製造方法 |
US10253175B2 (en) * | 2011-10-05 | 2019-04-09 | Kaneka Corporation | Acrylic resin film having excellent resistance to whitening on bending and excellent cracking resistance |
US9902842B2 (en) | 2011-10-18 | 2018-02-27 | King Abdulaziz City For Science And Technology | Renewable and cost-effective fillers for polymeric materials |
TW201343763A (zh) * | 2012-02-29 | 2013-11-01 | Toray Industries | 熱塑性樹脂組成物及其成形品 |
WO2014115029A2 (en) * | 2013-01-22 | 2014-07-31 | University Of Guelph | Poly (lactic actd)-based biocomposite materials having improved toughness and heat distortion temperature and methods of making and using thereof |
EP2998355B1 (en) * | 2013-05-16 | 2018-09-19 | Kuraray Co., Ltd. | Methacrylic resin composition and molded body thereof |
JP6291488B2 (ja) * | 2013-05-20 | 2018-03-14 | 株式会社カネカ | ポリエステル樹脂組成物および該樹脂組成物を含む成形体 |
BR102013013965B1 (pt) * | 2013-06-06 | 2020-12-15 | Petróleo Brasileiro S/A - Petrobras | blendas de poliestireno e poli ácido lático |
KR102237635B1 (ko) * | 2013-06-18 | 2021-04-12 | 토탈 리서치 앤드 테크놀로지 펠루이 | 중합체 조성물 |
US20160215138A1 (en) * | 2013-07-03 | 2016-07-28 | Kaneka Corporation | Polyester resin composition and molded article comprising resin composition |
US20150086800A1 (en) * | 2013-09-04 | 2015-03-26 | Roderick Hughes | Stress-Resistant Extrudates |
US10179853B2 (en) | 2013-09-11 | 2019-01-15 | Toray Industries, Inc. | Material for fused deposition modeling type three-dimensional modeling, and filament for fused deposition modeling type 3D printing device |
WO2015052876A1 (ja) * | 2013-10-11 | 2015-04-16 | 株式会社カネカ | 脂肪族ポリエステル樹脂組成物および脂肪族ポリエステル樹脂成形体 |
CN104292771B (zh) * | 2014-10-16 | 2016-02-24 | 傅宇晓 | 一种聚酯增强的高分子复合材料及其制备方法 |
US20170313834A1 (en) * | 2014-11-14 | 2017-11-02 | Kuraray Co., Ltd. | Methacrylate resin composition and molded article |
JP2016132718A (ja) * | 2015-01-19 | 2016-07-25 | 富士ゼロックス株式会社 | 樹脂組成物及び樹脂成形体 |
KR101925621B1 (ko) * | 2017-04-12 | 2018-12-05 | 이상만 | 칼라 씽크볼 |
KR102161592B1 (ko) * | 2017-11-09 | 2020-10-05 | 주식회사 엘지화학 | 열가소성 수지 조성물 |
CN108374388B (zh) * | 2018-04-03 | 2020-05-15 | 江西翔博建设工程有限公司 | 一种水利工程挡土墙 |
FR3083543B1 (fr) * | 2018-07-06 | 2021-03-05 | Carbiolice | Matiere plastique à haute teneur en pla comprenant un ester de citrate |
KR102067346B1 (ko) * | 2018-10-30 | 2020-01-17 | 다이텍연구원 | 로드바이크용 재생폴리에스테르/천연섬유/유리섬유 오버몰딩 복합사출성형재의 제조방법 |
CN109401248A (zh) * | 2018-11-02 | 2019-03-01 | 许五妮 | 一种可降解无毒冷热用吸管材料 |
EP3663340B1 (en) * | 2018-12-03 | 2022-03-16 | Trinseo Europe GmbH | Foams and methods of forming foams of chain extended/branched copolymers of vinylidene substituted aromatic monomers |
CN109860481B (zh) * | 2019-01-07 | 2021-06-22 | 常州大学 | 一种pp/pa66复合电池隔膜的制备方法 |
EP3750929A1 (en) * | 2019-06-12 | 2020-12-16 | Trinseo Europe GmbH | Styrenic polymers having reduced trimer content |
JPWO2021039400A1 (ja) * | 2019-08-27 | 2021-03-04 | ||
EP4011971B1 (en) * | 2020-10-16 | 2024-04-03 | LG Chem, Ltd. | Thermoplastic resin composition, method for preparing same, and molded article comprising same |
JPWO2022210029A1 (ja) * | 2021-03-29 | 2022-10-06 | ||
MX2023014127A (es) * | 2021-05-28 | 2023-12-11 | Parkdale Incorporated | Composicion textil mezclada con propiedades de teñido mejoradas. |
CN113354917A (zh) * | 2021-06-23 | 2021-09-07 | 苏州双象光学材料有限公司 | 一种高耐热聚甲基丙烯酸甲酯树脂的制备方法 |
CN113912937B (zh) * | 2021-09-30 | 2023-06-06 | 成都金发科技新材料有限公司 | 一种聚丙烯纳米复合材料及其制备方法和应用 |
GB2609063B (en) * | 2022-01-11 | 2023-11-15 | Ellsi Ltd | Bathroom sanitary ware |
CN115975363B (zh) * | 2023-02-17 | 2024-04-16 | 重庆江际材料技术有限公司 | 一种降解速率可控的高分子量高冲击强度聚乙醇酸pga树脂组合物及其制备方法与应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07207142A (ja) * | 1994-01-14 | 1995-08-08 | Mitsubishi Gas Chem Co Inc | 帯電防止性樹脂組成物 |
JPH09124923A (ja) * | 1995-11-02 | 1997-05-13 | Asahi Chem Ind Co Ltd | 車両用外装部品 |
JPH11100480A (ja) * | 1997-09-29 | 1999-04-13 | Techno Polymer Kk | 熱可塑性樹脂組成物 |
JP2001207072A (ja) * | 1999-11-15 | 2001-07-31 | Daicel Chem Ind Ltd | 難燃性樹脂組成物 |
JP2002096376A (ja) * | 2000-09-26 | 2002-04-02 | Idemitsu Petrochem Co Ltd | 模様付ブロー成形品の製造方法 |
JP2002129026A (ja) * | 2000-10-25 | 2002-05-09 | Teijin Chem Ltd | 帯電防止性樹脂組成物 |
JP2003119352A (ja) * | 2001-10-16 | 2003-04-23 | Idemitsu Petrochem Co Ltd | 着色顔料マスターバッチ組成物及び成形方法 |
JP2003313428A (ja) * | 2002-04-25 | 2003-11-06 | Dainichiseika Color & Chem Mfg Co Ltd | 導電性樹脂組成物 |
JP2005060637A (ja) * | 2003-08-20 | 2005-03-10 | Fujitsu Ltd | 生分解性樹脂組成物とそれを用いた樹脂筐体 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL132158C (ja) * | 1965-03-15 | |||
WO1992004413A1 (en) | 1990-09-06 | 1992-03-19 | Biopak Technology Ltd | Packaging thermoplastics from lactic acid |
FR2726568B1 (fr) * | 1994-11-08 | 1996-12-06 | Atochem Elf Sa | Melanges de polymeres comprenant un polymere halogene et compatibilises par un polyester aliphatique greffe |
CN1159462A (zh) * | 1996-03-09 | 1997-09-17 | 拜奥帕克技术有限公司 | 可生物降解的组合物及其制备方法 |
JP3693756B2 (ja) | 1996-05-27 | 2005-09-07 | カネボウ株式会社 | ポリ乳酸樹脂組成物 |
JPH10330580A (ja) | 1997-05-30 | 1998-12-15 | Asahi Chem Ind Co Ltd | 耐酢酸性及び耐衝撃性に優れた熱可塑性樹脂組成物 |
JPH10330581A (ja) | 1997-05-30 | 1998-12-15 | Asahi Chem Ind Co Ltd | 耐薬品性に優れた熱可塑性樹脂組成物及びその成形体 |
JPH11279380A (ja) | 1998-03-27 | 1999-10-12 | Daise Kogyo Kk | 生分解性パール光沢プラスチック、生分解性パール光沢プラスチック製品及び生分解性パール光沢プラスチック製品の製造方法 |
CA2325972A1 (en) * | 1999-11-24 | 2001-05-24 | Dainippon Ink And Chemicals, Inc. | Compatibilizing agent, radical copolymerizable unsaturated resin composition, molding material, and molded article |
JP2002161147A (ja) | 2000-11-27 | 2002-06-04 | Dainippon Ink & Chem Inc | シュリンクフィルム |
JP5177931B2 (ja) | 2002-01-24 | 2013-04-10 | 東レ株式会社 | 脂肪族ポリエステル樹脂組成物およびそれからなる成形品 |
JP2004285258A (ja) | 2003-03-24 | 2004-10-14 | Mitsubishi Rayon Co Ltd | 熱可塑性樹脂組成物 |
US7354973B2 (en) | 2003-12-12 | 2008-04-08 | E.I. Du Pont De Nemours And Company | Toughened poly(lactic acid) compositions |
JP2005239957A (ja) * | 2004-02-27 | 2005-09-08 | Hitachi Ltd | ポリ乳酸樹脂組成物 |
RU2422281C2 (ru) * | 2004-03-10 | 2011-06-27 | Эвери Деннисон Копэрейшн, | Этикетка (варианты) и способ этикетирования (варианты) |
JP2005344075A (ja) | 2004-06-07 | 2005-12-15 | Mitsubishi Rayon Co Ltd | ポリ乳酸系熱可塑性樹脂組成物 |
KR101075653B1 (ko) * | 2005-03-11 | 2011-10-21 | 후지쯔 가부시끼가이샤 | 식물성 수지 조성물 및 식물성 수지 성형체 |
JP5396681B2 (ja) | 2005-11-30 | 2014-01-22 | ユーエムジー・エービーエス株式会社 | 難燃ポリ乳酸系熱可塑性樹脂組成物およびその成形品 |
-
2006
- 2006-07-31 WO PCT/JP2006/315118 patent/WO2007015448A1/ja active Application Filing
- 2006-07-31 CN CN2010101704070A patent/CN101838425B/zh not_active Expired - Fee Related
- 2006-07-31 CN CN2006800287471A patent/CN101238177B/zh not_active Expired - Fee Related
- 2006-07-31 EP EP06781996.1A patent/EP1911807B1/en not_active Ceased
- 2006-07-31 US US11/989,836 patent/US7999021B2/en not_active Expired - Fee Related
- 2006-07-31 EP EP20130163939 patent/EP2617766A1/en not_active Withdrawn
- 2006-07-31 KR KR1020087002521A patent/KR20080039890A/ko active IP Right Grant
- 2006-08-02 TW TW095128278A patent/TWI396712B/zh not_active IP Right Cessation
- 2006-08-04 MY MYPI2012000524A patent/MY159858A/en unknown
- 2006-08-04 MY MYPI20063780A patent/MY146562A/en unknown
-
2011
- 2011-07-11 US US13/180,031 patent/US8664334B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07207142A (ja) * | 1994-01-14 | 1995-08-08 | Mitsubishi Gas Chem Co Inc | 帯電防止性樹脂組成物 |
JPH09124923A (ja) * | 1995-11-02 | 1997-05-13 | Asahi Chem Ind Co Ltd | 車両用外装部品 |
JPH11100480A (ja) * | 1997-09-29 | 1999-04-13 | Techno Polymer Kk | 熱可塑性樹脂組成物 |
JP2001207072A (ja) * | 1999-11-15 | 2001-07-31 | Daicel Chem Ind Ltd | 難燃性樹脂組成物 |
JP2002096376A (ja) * | 2000-09-26 | 2002-04-02 | Idemitsu Petrochem Co Ltd | 模様付ブロー成形品の製造方法 |
JP2002129026A (ja) * | 2000-10-25 | 2002-05-09 | Teijin Chem Ltd | 帯電防止性樹脂組成物 |
JP2003119352A (ja) * | 2001-10-16 | 2003-04-23 | Idemitsu Petrochem Co Ltd | 着色顔料マスターバッチ組成物及び成形方法 |
JP2003313428A (ja) * | 2002-04-25 | 2003-11-06 | Dainichiseika Color & Chem Mfg Co Ltd | 導電性樹脂組成物 |
JP2005060637A (ja) * | 2003-08-20 | 2005-03-10 | Fujitsu Ltd | 生分解性樹脂組成物とそれを用いた樹脂筐体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1911807A4 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100104882A1 (en) * | 2007-03-16 | 2010-04-29 | Toray Industries, Inc. | Aliphatic polyester sheet and molded body composed of the same |
US8673432B2 (en) * | 2007-03-16 | 2014-03-18 | Toray Industries, Inc. | Aliphatic polyester sheet and molded body composed of the same |
US8575271B2 (en) | 2007-03-30 | 2013-11-05 | Total Petrochemicals France | Monovinylaromatic polymer composition comprising a polymer made from renewable resources as a dispersed phase |
EP1975201A1 (en) * | 2007-03-30 | 2008-10-01 | Total Petrochemicals France | Monovinylaromatic polymer composition comprising a polymer made from renewable resources as a dispersed phase |
JP2010523732A (ja) * | 2007-03-30 | 2010-07-15 | トタル ペトロケミカルス フランス | 再生可能な資源から作ったポリマーを分散相として含むモノビニル芳香族ポリマー組成物 |
WO2008119668A1 (en) * | 2007-03-30 | 2008-10-09 | Total Petrochemicals France | Monovinylaromatic polymer composition comprising a polymer made from renewable resources as a dispersed phase |
KR101207819B1 (ko) | 2007-03-30 | 2012-12-05 | 토탈 페트로케미컬스 프랑스 | 재생산가능한 자원으로부터 분산상으로서 제조된 중합체를 함유하는 모노비닐방향족 중합체 조성물 |
EP2147952A1 (en) * | 2007-05-15 | 2010-01-27 | Techno Polymer Co., Ltd. | Thermoplastic resin composition and resin molded article |
US8653188B2 (en) | 2007-05-15 | 2014-02-18 | Techno Polymer Co., Ltd. | Thermoplastic resin composition and resin molded product |
EP2147952A4 (en) * | 2007-05-15 | 2012-10-31 | Techno Polymer Co Ltd | THERMOPLASTIC RESIN COMPOSITION AND RESIN FORMATS |
US20090099313A1 (en) * | 2007-10-10 | 2009-04-16 | E. I. Du Pont De Nemours And Company | Poly(hydroxyalkanoic acid) and thermoformed articles |
CN101932657B (zh) * | 2007-12-07 | 2013-10-23 | 住友化学株式会社 | 树脂组合物的制造方法及成形体 |
US9000093B2 (en) | 2007-12-07 | 2015-04-07 | Sumitomo Chemical Company, Limited | Method for producing resin composition and molded article |
JP2011514417A (ja) * | 2008-03-14 | 2011-05-06 | パクティヴ・コーポレーション | 生分解性またはバイオ系の重合体および合成重合体のポリマーブレンドおよびその発泡体 |
US9527993B2 (en) | 2008-07-25 | 2016-12-27 | Total Research & Technology Feluy | Process to make a composition comprising a monovinylaromatic polymer and a polymer made from renewable resources |
EP2147934A1 (en) | 2008-07-25 | 2010-01-27 | Total Petrochemicals France | Process to make a composition comprising a monovinylaromatic polymer and a polymer made from renewable resources |
JP5726078B2 (ja) * | 2010-03-30 | 2015-05-27 | 日東電工株式会社 | ポリ乳酸系フィルム又はシート、及びその製造方法 |
US20120208913A1 (en) * | 2011-02-10 | 2012-08-16 | Fina Technology, Inc. | Use of Polar Additives for Enhancing Blowing Agent Solubility in Polystyrene |
US9850357B2 (en) * | 2011-02-10 | 2017-12-26 | Fina Technology, Inc. | Use of polar additives for enhancing blowing agent solubility in polystyrene |
JP2014040535A (ja) * | 2012-08-23 | 2014-03-06 | Du Pont Mitsui Polychem Co Ltd | 樹脂組成物、成形材料、成形体、および樹脂組成物の製造方法 |
JP2016020052A (ja) * | 2014-07-14 | 2016-02-04 | 三菱樹脂株式会社 | 積層体 |
JP2020011516A (ja) * | 2014-07-14 | 2020-01-23 | 三菱ケミカル株式会社 | 積層体 |
JP2016199654A (ja) * | 2015-04-09 | 2016-12-01 | 東洋スチレン株式会社 | スチレン系樹脂組成物及び成形体 |
JP6249129B1 (ja) * | 2017-07-18 | 2017-12-20 | ユーエムジー・エービーエス株式会社 | ポリ乳酸系熱可塑性樹脂組成物およびその成形品 |
JP2019019235A (ja) * | 2017-07-18 | 2019-02-07 | ユーエムジー・エービーエス株式会社 | ポリ乳酸系熱可塑性樹脂組成物およびその成形品 |
JP2020011517A (ja) * | 2019-10-09 | 2020-01-23 | 三菱ケミカル株式会社 | 積層体 |
Also Published As
Publication number | Publication date |
---|---|
TW200710146A (en) | 2007-03-16 |
US20110269907A1 (en) | 2011-11-03 |
TWI396712B (zh) | 2013-05-21 |
MY159858A (en) | 2017-02-15 |
CN101238177B (zh) | 2012-12-26 |
EP2617766A1 (en) | 2013-07-24 |
EP1911807A1 (en) | 2008-04-16 |
MY146562A (en) | 2012-08-30 |
CN101838425B (zh) | 2012-07-18 |
US7999021B2 (en) | 2011-08-16 |
US20100160505A1 (en) | 2010-06-24 |
EP1911807B1 (en) | 2015-03-04 |
KR20080039890A (ko) | 2008-05-07 |
CN101238177A (zh) | 2008-08-06 |
EP1911807A4 (en) | 2010-08-18 |
US8664334B2 (en) | 2014-03-04 |
CN101838425A (zh) | 2010-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007015448A1 (ja) | 樹脂組成物およびそれからなる成形品 | |
JP5494757B2 (ja) | 樹脂組成物およびそれからなる成形品 | |
JP5509517B2 (ja) | 樹脂組成物およびそれからなる成形品 | |
JP5352937B2 (ja) | ポリ乳酸系熱可塑性樹脂組成物およびその成形品 | |
KR101233373B1 (ko) | 폴리유산 수지 조성물 | |
JP2007191695A (ja) | 樹脂組成物およびそれからなる成形品 | |
JP5120521B2 (ja) | 熱可塑性樹脂組成物およびその成形品 | |
JP5272283B2 (ja) | スチレン系樹脂組成物 | |
KR101023650B1 (ko) | 재생 폴리에스테르 수지를 이용한 친환경 열가소성 수지 조성물 | |
JP5228297B2 (ja) | スチレン系樹脂組成物およびそれからなる成形品 | |
JP2007321141A (ja) | ポリ乳酸セグメントを含むブロック共重合体、その製造方法、および樹脂組成物 | |
JP5092228B2 (ja) | ポリ乳酸系熱可塑性樹脂組成物およびその成形品 | |
JP5017818B2 (ja) | ポリ乳酸系熱可塑性樹脂組成物およびその成形品 | |
JP4935222B2 (ja) | 樹脂組成物およびそれからなる成形品 | |
KR20100055270A (ko) | 클레이 강화 폴리유산 스테레오컴플렉스 수지 조성물 | |
JP2009120725A (ja) | ポリ乳酸系樹脂シート、および、情報記録カ−ド | |
JP5229417B2 (ja) | スチレン系樹脂組成物およびそれからなる成形品 | |
JP5504548B2 (ja) | スチレン系樹脂組成物 | |
WO2018043334A1 (ja) | エポキシ変性ビニル系共重合体、それを含む熱可塑性樹脂組成物およびその成形品 | |
JP2012082315A (ja) | 複合ポリ乳酸系熱可塑性樹脂組成物およびその成形品 | |
JP5353986B2 (ja) | ポリ乳酸系熱可塑性樹脂組成物およびその成形品 | |
JP2013181046A (ja) | 熱可塑性樹脂組成物およびその成形品 | |
JP2012136715A (ja) | 樹脂組成物およびそれからなる成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680028747.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020087002521 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11989836 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006781996 Country of ref document: EP |