WO2010053110A1 - 二酸化炭素由来脂肪族ポリカーボネート複合体およびその製造方法 - Google Patents

二酸化炭素由来脂肪族ポリカーボネート複合体およびその製造方法 Download PDF

Info

Publication number
WO2010053110A1
WO2010053110A1 PCT/JP2009/068881 JP2009068881W WO2010053110A1 WO 2010053110 A1 WO2010053110 A1 WO 2010053110A1 JP 2009068881 W JP2009068881 W JP 2009068881W WO 2010053110 A1 WO2010053110 A1 WO 2010053110A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
resin
aliphatic polycarbonate
weight
component
Prior art date
Application number
PCT/JP2009/068881
Other languages
English (en)
French (fr)
Inventor
博 清水
勇進 李
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2010536780A priority Critical patent/JP5610479B2/ja
Priority to CN200980140208.0A priority patent/CN102177193B/zh
Priority to EP09824809A priority patent/EP2351783A1/en
Priority to US13/127,530 priority patent/US8937126B2/en
Publication of WO2010053110A1 publication Critical patent/WO2010053110A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a carbon dioxide-derived aliphatic polycarbonate composite and a method for producing the same.
  • the APC is characterized by incorporating carbon dioxide (CO 2 ) as a polymer skeleton.
  • CO 2 carbon dioxide
  • various aliphatic polycarbonates (APC) can be produced by selecting various polymerization catalysts and selecting the kind of epoxide.
  • the initial catalyst was a diethylzinc-water system
  • various catalyst systems including various systems based on zinc and other metals have been studied, and a search for a catalyst system with higher activity is ongoing.
  • Reaction Scheme 1 In order to promote industrialization of aliphatic polycarbonate (APC) in China and the like, the epoxide in Reaction Scheme 1 is limited to propylene oxide, which is an inexpensive monomer, and poly (propylene carbonate) (shown in Reaction Scheme 2 shown below) It is said that they are starting trial production of PPC.
  • propylene oxide which is an inexpensive monomer
  • poly (propylene carbonate) shown in Reaction Scheme 2 shown below
  • the PPC in China shown in the above reaction scheme 2 has been attempted for plant production even in a catalyst system different from the diethyl zinc-water (Et 2 Zn—H 2 O) system.
  • These relatively high-quality PPCs produced by the pilot plant already have a molecular weight exceeding 100,000 and a weight average molecular weight (Mw) exceeding 400,000.
  • the glass transition temperature (Tg) of PPC is still around 30 ° C., and its property is a soft rubber-like plastic.
  • it has extremely low heat resistance and easily decomposes around 200 ° C. That is, as the mechanical performance of PPC, the elastic modulus is extremely small and the elongation at break is excellent. Such a property is also like an adhesive.
  • Non-Patent Document 3 a blend is prepared by melting and kneading ethylene-vinyl alcohol copolymer (EVOH) to PPC to improve mechanical performance and thermal decomposition temperature. .
  • EVOH ethylene-vinyl alcohol copolymer
  • Non-Patent Document 4 first, a filler (montmorillonite) is dissolved in a benzene solution, and then PPC is added to the solution and stirred for several hours. After intercalation of PPC in the montmorillonite layer, Is removed to produce a film.
  • the main purpose is to improve the mechanical performance, but the elastic modulus is over to the extent that it has obtained a result that has been improved more than twice against expectations.
  • Patent Document 1 when the resin is blended with PPC by the melt-kneading method, the weight of resin is 50 wt. Unless blended in an amount exceeding%, mechanical performance comparable to or exceeding low-density polyethylene, which is a typical general-purpose resin, cannot be exhibited. Although it is intended to improve the performance of PPC, when blending other resins, the composition of PPC will be 50% by weight or less. This means that the original purpose of aiming at an immobilization technology is achieved. This is not desirable. That is, 43% of CO 2 is immobilized on the PPC main chain in terms of weight.
  • the present inventors blended other resins by a melt-kneading method with the main goal of modifying PPC, in particular, improving mechanical properties and heat resistance.
  • the blend composition is suppressed to 50% by weight or less, and as the performance of the blended product, it is possible to express performance that is not inferior to mechanical performance such as low density polyethylene and polypropylene, which are typical of general-purpose resins. We focused our efforts on whether we could do it.
  • the present invention relates to an aliphatic polycarbonate (APC) that is an alternating copolymer of carbon dioxide and epoxide, a novel carbon dioxide-derived aliphatic polycarbonate composite that may be blended with 50% by weight or less of resin based on APC, and
  • APC aliphatic polycarbonate
  • novel manufacturing method, the novel molded product, and the novel molding method are provided.
  • the ternary carbon dioxide-derived aliphatic polycarbonate composite has a smooth internal structure that is close to a co-continuous structure, and a significant improvement in mechanical performance that could not be achieved with the binary composite. succeeded in.
  • the novel composition composite is described as follows. (1) 97-50% by weight of first component resin made of aliphatic polycarbonate (APC), which is an alternating copolymer of carbon dioxide and epoxide, 2-50% by weight of second component resin made of methacrylic resin or aliphatic polyester And a third component resin composed of 1% by weight of a vinyl resin, and a second component resin domain present in the first component resin matrix via a third component resin binder.
  • a ternary composite composition characterized in that it exists in a co-continuous structure state.
  • An aliphatic polycarbonate derived from carbon dioxide as a main component that is, an aliphatic polycarbonate (APC) which is an alternating copolymer of carbon dioxide and epoxide, and at least two other resins, a cylinder, a screw,
  • a method for producing a carbon dioxide-derived aliphatic polycarbonate composite A method for producing a carbon dioxide-derived aliphatic polycarbonate composite.
  • the said resin contains at least 1 sort (s) of methacrylic resin or aliphatic polyester as components other than aliphatic polycarbonate,
  • the manufacturing method of the carbon dioxide origin aliphatic polycarbonate complex characterized by the above-mentioned.
  • the resin includes an aliphatic polycarbonate as a main component, includes at least one resin selected from the resins described in (3) above, and includes a vinyl resin as a third component.
  • the resin is an aliphatic polycarbonate; 97-50% by weight, and a methacrylic resin or aliphatic polyester; 3-50% by weight, a vinyl resin; 1-20% by weight, and further a filler; 0-10 It is preferable that weight% is contained.
  • the aliphatic polycarbonate is preferably an alternating copolymer using polypropylene oxide as an epoxide, that is, poly (propylene carbonate) (PPC).
  • the methacrylic resin is preferably polymethyl methacrylate (PMMA), polyethyl methacrylate (PEMA) or polybutyl methacrylate (PBMA).
  • PMMA polymethyl methacrylate
  • PEMA polyethyl methacrylate
  • PBMA polybutyl methacrylate
  • the aliphatic polyester may be polylactic acid (PLLA), polyglycolic acid (PGA), polybutylene succinate (PBS), a copolymer obtained by copolymerizing succinic acid with PBS (PBSA), poly ( ⁇ -caprolactone) (PCL) or poly It is preferably a biodegradable aliphatic polyester selected from butylene adipate butylene terephthalate copolymer (PBAT) or a copolymer thereof.
  • PLLA polylactic acid
  • PGA polyglycolic acid
  • PBS polybutylene succinate
  • PBSA poly ( ⁇ -caprolactone)
  • PCL poly ( ⁇ -caprolactone)
  • PBAT butylene adipate butylene terephthalate copolymer
  • the vinyl resin is preferably polyvinyl acetate (PVAc) or ethylene-vinyl acetate copolymer (EVA; VA content of 5 to 90% by weight).
  • PVAc polyvinyl acetate
  • EVA ethylene-vinyl acetate copolymer
  • the filler contained in the resin preferably contains at least one kind of layered silicate (clay mineral or clay: including those subjected to organic treatment), mica, silica fine particles, and cage silica compound (POSS). .
  • layered silicate clay mineral or clay: including those subjected to organic treatment
  • mica titanium dioxide
  • silica fine particles titanium dioxide
  • CPS cage silica compound
  • the melt-kneaded resin may be molded and extruded as an extrudate.
  • the present invention provides an extrudate characterized by being manufactured by the above melt-kneading method.
  • the extrudate is any one of a rod, a film, a sheet, and a fiber.
  • the extrudate preferably has mechanical properties such that the elastic modulus at 25 ° C. is 1 GPa or more and the elongation at break is 300% or more.
  • the resin molded product is preferably a material having a transmittance of 80% or more in a visible wavelength region of 400 nm to 700 nm when formed into a film having a thickness of 100 ⁇ m.
  • methacrylic resin or aliphatic polyester is blended (composited) as a second component with 20 to 30% by weight as a resin that is highly likely to be able to greatly improve mechanical properties relative to PPC, and at the same time, A small amount of vinyl-based resin was added as a third component that acts as a compatibilizing agent to smooth the internal structure of the composite.
  • a ternary carbon dioxide-derived aliphatic polycarbonate composite has a smooth internal structure and a structure close to a co-continuous structure, and remarkable mechanical performance that could not be achieved with a binary composite. Successfully improved.
  • the ternary carbon dioxide-derived aliphatic polycarbonate composite to which a small amount of vinyl resin is added as a third component has a smooth internal structure and a structure close to a co-continuous structure. It is possible to produce polymer blend extrudates (including films and sheets) having excellent mechanical properties that could not be achieved by blending.
  • the production method according to the present invention is a simple method of simply performing melt-kneading using a general kneading extruder or extrusion molding machine, not only general-purpose materials such as packaging materials and structural materials, An optimum method can be provided for optical materials and electronic / electrical materials that require a continuous and pure microstructure.
  • the present invention relates to 97-50 wt% of a first component resin made of aliphatic polycarbonate (APC) which is an alternating copolymer of carbon dioxide and epoxide, and a second component resin made of methacrylic resin or aliphatic polyester 3-50
  • a ternary composite composition comprising 1 to 20% by weight of a third component resin made of a vinyl resin with respect to weight% (100% by weight in total), and a second component resin present in the first component resin matrix It is a ternary composite composition in which a domain exists in a co-continuous structure state with a third component resin binder interposed therebetween.
  • the screw is rotated and heated to a temperature higher than the glass transition point in the case of an amorphous resin, or higher than its melting point in the case of a crystalline resin, and a ternary blend, PPC / PMMA. / PVAc melt-kneading.
  • the “extrudate” produced in the present invention may be a simple kneaded extrudate (referred to as “kneaded product”), or an extrudate (“molded product”) formed into a sheet shape by molding. It may be said.)
  • the above-described microfeed type high shear molding machine equipped with an internal feedback type uniaxial screw is used.
  • the present invention is not limited to this apparatus, and an ordinary uniaxial or biaxial kneading extruder or Banbury type kneading machine is used. You can get the same result using. However, since such a molding machine is not an internal feedback screw, it is necessary to set the kneading time sufficiently long.
  • polypropylene carbonate 80-60% by weight
  • PMMA polymethyl methacrylate
  • PVAc polyvinyl acetate
  • the aliphatic polycarbonate is an alternating copolymer (PPC) in which polypropylene oxide is used as an epoxide.
  • the methacrylic resin is selected from polymethyl methacrylate (PMMA), polyethyl methacrylate (PEMA), and polybutyl methacrylate (PBMA).
  • the aliphatic polyester may be polylactic acid (PLLA), polyglycolic acid (PGA), polybutylene succinate (PBS), a copolymer obtained by copolymerizing succinic acid with PBS (PBSA), poly ( ⁇ -caprolactone) (PCL) or poly A biodegradable aliphatic polyester selected from butylene adipate butylene terephthalate copolymer (PBAT) or a copolymer thereof.
  • the vinyl resin is polyvinyl acetate (PVAc) or ethylene-vinyl acetate copolymer (EVA: VA content 5 to 90% by weight).
  • the mixture is mixed in a granular state.
  • PPC and PVAc which were samples of products that were purchased in advance, were dried in vacuum at 45 ° C. to 50 ° C. for 24 hours, and PMMA was dried in vacuum at 80 ° C. for 24 hours. Put in one container and stir well.
  • the mixture composed of the ternary resin was converted into a uniaxial screw using a micro high shear molding machine equipped with an internal feedback screw. Rotate the screw under conditions of 50 rpm to 300 rpm and a shear rate of 75 to 450 sec ⁇ 1. In the case of an amorphous resin, the temperature is higher than the glass transition point. Performs melt blending of ternary blends and PPC / PMMA / PVAc under heating conditions with a temperature higher than the melting point as a guideline for 1 to 10 minutes.
  • the “extrudate” produced in the present invention may be a simple kneaded extrudate (referred to as “kneaded product”), or an extrudate (“molded product”) formed into a sheet shape by molding. It may be said.)
  • kneaded product a simple kneaded extrudate
  • molded product molded product formed into a sheet shape by molding. It may be said.
  • a smooth interface and a structure similar to a co-continuous structure, which was not achieved in the binary PPC / PMMA blend, are formed by melt kneading of the ternary resin.
  • a carbon dioxide-derived aliphatic polycarbonate composite is produced.
  • the screw rotation speed can be set between 50 and 300 rpm and the kneading time can be set between 1 minute and 10 minutes, but the rotation speed and kneading time can be set optimally at 100 rpm and 2 to 6 minutes, respectively. The result was obtained.
  • the present invention relates to 97-50 wt%, preferably 80-60 wt% carbon dioxide-derived poly (propylene carbonate) (PPC), and 3-50 wt%, preferably 20-40 wt% polymethyl methacrylate (PMMA).
  • PPC carbon dioxide-derived poly
  • PMMA polymethyl methacrylate
  • the composition was adjusted to wt%, and polyvinyl acetate (PVAc) was added as a third component to these binary blends in an amount of 1-20 wt%, preferably 2-10 wt%. From the correlation, the characteristic is that the weight composition of PVAc is optimized, and good results are obtained only by combining specific conditions. Temporarily, the composition of the binary blend, and the PVAc relative to it If one of the optimized weight compositions falls outside the above conditions, satisfactory results cannot be obtained.
  • PVAc polyvinyl acetate
  • the proportion of the second component methacrylic resin used in the binary blend is less than 3% by weight, the improvement in mechanical properties is impaired, and if it is 50% by weight or more, the material as a carbon dioxide reduction technology. This is not preferable because the significance of conversion is impaired.
  • the proportion of the third component vinyl resin used in the ternary blend is less than 1% by weight or more than 20% by weight, the lubricant effect of further miniaturizing the structure in the binary blend is obtained. This is not preferable because it results in a deterioration of mechanical performance.
  • first component resin made of aliphatic polycarbonate (APC), which is an alternating copolymer of carbon dioxide and epoxide, 3-50% by weight of second component resin made of methacrylic resin or aliphatic polyester (total) 100% by weight) is a quaternary composite composition comprising 1 to 20% by weight of a third component resin composed of a vinyl-based resin and up to 10% by weight of a fourth component filler exceeding 0, and the first component resin
  • the aliphatic polycarbonate is an alternating copolymer (PPC) in which polypropylene oxide is used as an epoxide.
  • the methacrylic resin is selected from polymethyl methacrylate (PMMA), polyethyl methacrylate (PEMA), and polybutyl methacrylate (PBMA).
  • the aliphatic polyester may be polylactic acid (PLLA), polyglycolic acid (PGA), polybutylene succinate (PBS), a copolymer obtained by copolymerizing succinic acid with PBS (PBSA), poly ( ⁇ -caprolactone) (PCL) or poly A biodegradable aliphatic polyester selected from butylene adipate butylene terephthalate copolymer (PBAT) or a copolymer thereof.
  • the vinyl resin is polyvinyl acetate (PVAc) or ethylene-vinyl acetate copolymer (EVA: VA content 5 to 90% by weight).
  • the fourth component filler contains at least one selected from layered silicates (clay minerals or clays: including those subjected to organic treatment), mica, silica fine particles, and cage silica compounds (POSS).
  • the mixture of the ternary resin and the fourth component filler In order to knead the mixture of the ternary resin and the fourth component filler, the mixture is mixed in a granular state.
  • PPC and PVAc which are samples that have been purchased in advance, are dried in a vacuum at 45 ° C. to 50 ° C. for 24 hours, and PMMA and the fourth component filler are dried in a vacuum at 80 ° C. for 24 hours, respectively. are weighed, placed in one container, and stirred thoroughly.
  • the inventors of the present invention have used a mixture of the above ternary resins, a micro high shear molding machine equipped with an internal feedback screw, and the rotational speed of a single screw from 50 rpm to 300 rpm, a shear rate.
  • Rotating the screw under the condition of 75 to 450 sec ⁇ 1 the temperature is higher than the glass transition point in the case of an amorphous resin, and the temperature higher than the melting point in the case of a crystalline resin.
  • extruded product produced in the present invention is simply called an extrudate “kneaded product” in a kneaded state. Or an extrudate “molded product” formed into a sheet-like shape by molding. ).
  • an innovative finding was found that the elastic modulus was 2 GPa or more at 25 ° C. and the elongation at break was 300% or more.
  • the molded product is any one of a rod, a film, a sheet, and a fiber.
  • the molded article has mechanical properties such that the elastic modulus at 25 ° C. is 1 GPa or more and the elongation at break is 100% or more.
  • the molded article is a material with excellent transparency having a transmittance of 80% or more in the visible wavelength region (400 nm to 700 nm) when a film having a thickness of 100 ⁇ m is formed.
  • Example 1 About the present invention, an example which manufactures a carbon dioxide origin aliphatic polycarbonate composite from PPC, PMMA, and PVAc as a ternary polymer blend is explained.
  • the raw material PPC was synthesized at the Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, and had the properties shown in Table 1.
  • Sumipex LG21 (trade name) manufactured by Sumitomo Chemical Co., Ltd. was used as polymethyl methacrylate (PMMA).
  • Synthesis Examples 1 to 4 PPC and PVAc are dried in a vacuum at 45 ° C to 50 ° C for 24 hours, and PMMA is dried in a vacuum at 80 ° C for 24 hours and then weighed a predetermined amount, put in one container, and stirred thoroughly at room temperature. Mixing was performed.
  • the predetermined amount means that the composition of PMMA is adjusted to 3 to 50% by weight with respect to 97 to 50% by weight of PPC, and polyacetic acid is used as the third component with respect to a total of 100% by weight of these binary blends.
  • Synthesis Examples 5-8 PPC and PVAc are dried in a vacuum at 45 ° C to 50 ° C for 24 hours, and PMMA is dried in a vacuum at 80 ° C for 24 hours and then weighed a predetermined amount, put in one container, and stirred thoroughly at room temperature. Mixing was performed.
  • the predetermined amount means that the composition of PMMA is adjusted to 3 to 50% by weight with respect to 97 to 50% by weight of PPC, and polyacetic acid is used as the third component with respect to a total of 100% by weight of these binary blends.
  • the structure of the binary complex in FIG. 2 (1) is still the “sea-island” structure, the matrix of the system is the white PPC phase, and the black dispersed phase is PMMA.
  • the structure was further refined and a “co-continuous” structure was formed, as shown in FIG. 2 (2). That is, here, both the white PPC phase and the black PMMA phase are not only finely changed in structure, but both are elongated to form a continuous phase (continuous phase).
  • Such a structure in which the phases of the two types of polymers are continuously connected is called a co-continuous structure.
  • FIG. 2 although the PVAc added at 5% is small, it cannot be identified, but the PVAc is considered to play a role as an adhesive between PPC and PMMA, and therefore the structure is fine and co-continuous. It seems to have changed.
  • DMA dynamic viscoelasticity measurements
  • stress-strain measurements were performed.
  • the dynamic viscoelasticity measurement was carried out in the stretching mode using Rheobibron DDV-25FP-S (Orientec Co.). The measurement was performed in the range of ⁇ 150 ° C. to 120 ° C. at a temperature rising rate of 3 ° C./min and a frequency of 1 Hz.
  • a dumbbell-shaped sample was prepared, and a crosshead speed of 10 mm / min and a temperature of 25 ° C. were used by using a tensile tester Tensilon UMT-300 (Orientec Co.) in accordance with the ASTM D412-80 test method.
  • the PPC simple substance (curve a) has a very small elastic modulus, but has a very good elongation at break and exhibits rubber-like properties.
  • the rigidity of PMMA is expressed and the elastic modulus is improved, but the ductility is lowered and the elongation at break is reduced.
  • the elastic modulus is further improved as compared to the binary composite.
  • the increase in elastic modulus is not simply proportional to the amount of PVAc added, but is maximized at 5 wt% (curve d), but the elastic modulus decreases conversely at 10 wt% added (curve e).
  • the addition of PVAc as the third component has the effect of changing the internal structure of this blend system to a co-continuous structure as shown in FIGS. 1 and 2 and smoothing the interface. As shown, it has the effect of significantly improving the mechanical performance of this system, but it has been found that there is an optimum value for the amount of PVAc added.
  • the broken line shows the dependence of tensile strength on the PVAc addition amount
  • the solid line shows the dependence of the elastic modulus on the PVAc addition amount. From this figure, there is an optimum value for the addition amount of PVAc, and the mechanical performance is In any case, it was found that the maximum was obtained when 5 wt% was added.
  • Table 3 summarizes various mechanical performances evaluated from the stress-strain curve and dynamic viscoelasticity measurement in FIG. 3, specifically storage elastic modulus, tensile strength, elongation at break, and glass transition temperature (Tg). It was shown in 2.
  • Table 2 also shows the mechanical properties of low density polyethylene (LDPE) and isotactic polypropylene (iso-PP), which are representative of general-purpose resins.
  • LDPE low density polyethylene
  • iso-PP isotactic polypropylene
  • iso-PP exhibits properties superior to LDPE in both elastic modulus and elongation at break.
  • the glass transition temperature (Tg) is shown in the right column of Table 2, the ternary composite has a Tg nearly 10 ° C. higher than that of the PPC alone, and the heat resistance is remarkably improved. I understand.
  • the present invention is a ternary composite, and the performance of a single PPC is greatly improved by adding a specific amount and a small amount of the third component resin, and LDPE, which is a general-purpose resin.
  • LDPE which is a general-purpose resin.
  • it has achieved an elastic modulus that surpasses that of iso-PP, and exhibits breakthrough performance.
  • carbon dioxide is fixed as an aliphatic polycarbonate (APC) as a leading technique for reducing carbon dioxide as a measure against global warming, and the weight composition of APC is 50% or more as a ternary APC complex. It is expected that it is widely used in the industry as an alternative material for general-purpose resins while increasing the carbon dioxide reduction effect by making the composition preferably close to 70%.
  • APC aliphatic polycarbonate
  • These carbon dioxide-derived aliphatic polycarbonate composites developed by the present invention can be used not only for LDPE and iso-PP but also for replacement of vinyl chloride, aromatic polycarbonate, etc. It can be used in a wide range of fields such as industrial materials and optical materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 脂肪族ポリカーボネートを主成分とする新規な三元系の二酸化炭素由来脂肪族ポリカーボネート複合体およびそれらの製造方法を提供することを目的とする。  脂肪族ポリカーボネートに対してメタクリル系樹脂もしくは脂肪族ポリエステルを第二成分として複合化し、第三成分としてビニル系樹脂を特定割合添加することにより、二元系複合体では達成できなかった機械的性質に優れた新規な三元系の二酸化炭素由来脂肪族ポリカーボネート複合体を得る。

Description

二酸化炭素由来脂肪族ポリカーボネート複合体およびその製造方法
 本発明は、二酸化炭素由来脂肪族ポリカーボネート複合体及びその製造方法に関するものである。
 この試みとしては、40年近く前に、触媒の存在下に二酸化炭素とエポキシドとの交互共重合による脂肪族ポリカーボネート(APC)を得ることができることが報告されている(非特許文献1,2参照)。
 反応スキーム(1)は以下の式により示される
Figure JPOXMLDOC01-appb-C000001
 上記APCは、反応スキーム(1)に示されるように、二酸化炭素(CO)をポリマーの骨格として取り込んでいることが特徴である。
 前記反応スキームに従えば、重合触媒を種々選択すること、及びエポキシドの種類を選択することにより、多様な脂肪族ポリカーボネート(APC)が作ることが可能となる。当初の触媒はジエチル亜鉛-水系であったが、亜鉛に基づく様々な系やその他の金属を含む多様な触媒系が検討され、現在もより活性の高い触媒系の探索が続いている。
 最近、地球温暖化の懸念が急激に高まる中で、この脂肪族ポリカーボネート(APC)が一躍注目を浴びている。これをプラスチック材料として広く産業界で利用することが可能となれば、CO固定化の最有力技術となる可能性が極めて高い。
 現在、地球温暖化対策として、COの削減が世界中で叫ばれており、現時点ではCOの固定は、地中深部や深海中に貯留化させる技術が有効だとされている。しかしながら、国内だけでも発電所や製鉄所から排出されるCOは、年間5億トンを超えており、喫緊にCO固定化技術の構築することが求められており、そのための一方策として前記の反応は注目されるべきものである。
 中国などでは脂肪族ポリカーボネート(APC)の産業化を進めるために、反応スキーム1におけるエポキシドを安価なモノマーであるプロピレンオキシドに限定し、以下に示される反応スキーム2に示されるポリ(プロピレンカーボネート)(PPC)の試験生産に乗り出しているとされている。
Figure JPOXMLDOC01-appb-C000002
 上記反応スキーム2で示される中国でのPPCは、ジエチル亜鉛-水(EtZn-HO)系とは異なる触媒系でもプラント生産が試みられている。
 これら、パイロットプラントにより生産されている比較的上質なPPCはすでにその分子量が10万を超えるレベルにあり、重量平均分子量(Mw)は40万を超えている。
 しかしながら、PPCのガラス転移温度(Tg)は、まだ30℃近辺にあり、その性質は柔らかいゴム状のプラスチックである。また、極めて耐熱性が低く、200℃近辺で容易に分解してしまう。即ち、PPCの機械的性能としては、弾性率は極めて小さく、破断伸びには優れているということになる。このような性質は接着剤のようでもあり、例えばPPC合成後にいったんペレット状に成形しておいても、それらを積み重ねて保存する場合には、ほどなくして、ペレット同士がくっついて離れなくなってしまう現象が起こる。この性質があると、例えば、包装フィルムとした場合には、成形後それらフィルムを重ねて置いておくだけで、フィルム同士がくっついてしまい、本来の一枚一枚のフィルムの状態に戻すことは困難となる。従来から知られているPPCの性能には実用上大きな障害となる特性が多く、この特性を改善することが必要となっている。
 現状のPPCの性質を変える技術を開発することができればPPCを経由する新しい材料の出現が期待できる。
 このような技術的背景の下に、多様な樹脂とのブレンド(複合化)を図り、少しでもPPCのガラス転移温度を上げて耐熱性を高めるとともに、その機械的性質の改善の取り組みが行なわれている。
 例えば、PPCに対して種々の組成にてポリメチルメタクリレート(PMMA)を溶融混練させることにより、このブレンド系材料の分解温度をPMMA組成の増加させることにより高温側にシフトさせて、セラミックスや金属粉末の成形加工用バインダーや発泡剤として用いることができる材料の発明がある(特許文献1)。
 又、非特許文献3に見られるように、PPCに対してエチレン-ビニルアルコール共重合体(EVOH)を溶融混練したブレンド物を作製し、機械的性能向上や熱分解温度の向上を図っている。
 又、PPCに対して種々の組成にてポリ酢酸ビニル(PVAc)を溶融混練させることにより、このブレンド系材料の機械的性質を改善する発明がある(特許文献2)。
 あるいは、非特許文献4では、まず、ベンゼン溶液にフィラー(モンモリロナイト)を溶解させ、その後PPCをその溶液に加えて数時間攪拌を行い、モンモリロナイトの層中にPPCをインターカレーションさせた後、溶媒を除去してフィルムを作製している。
 機械的性能の改善を主目的としているが、弾性率は期待に反して2倍強に改善された結果を得ている程度で終わっている。
 従来例を検討してみると、前記特許文献1、特許文献2、さらには非特許文献3の結果では、溶融混練法でPPCに樹脂をブレンドする場合に、PPCに対して、樹脂を50重量%を超える量でブレンドしないと、汎用樹脂の代表である低密度ポリエチレンに匹敵する、あるいはそれを凌ぐ機械的性能を発揮できることにはなっていない。
 PPCの性能改善を図るためとはいえ、他の樹脂をブレンドする際に、PPCの組成が50重量%以下になるということは、固定化技術とすることを目指すという本来の目的を達成しようとすると望ましいことではない。即ち、PPCの主鎖には重量換算で43%のCOの固定化が達成されている。仮にこのPPCに対して50重量%以上も他の樹脂をブレンドすることが必要ということになると、ブレンド系全体としてはCOの重量組成が20%以下に下がる結果となり、CO削減効果は著しく損なわれてしまい、魅力ある技術とはならない。また、非特許文献4の例のように、有機溶媒を用いた“溶液法”では、バルク材料に適用するのは困難であり、実用化に適したプロセスとは言えない。
 このような技術的背景の下に、本発明者らは、PPCの改質、特に機械的性質ならびに耐熱性の向上を図ることを主要な目標にしつつ、他の樹脂を溶融混練法によりブレンドし、かつそのブレンド組成を50重量%以下に抑え、さらには当該ブレンド物の性能として、汎用樹脂の代表格である低密度ポリエチレンやポリプロピレン等の機械的性能に勝るとも劣らぬ性能を発現させることはできないか、ということに努力を傾注した。
U.S. Patent 07/326938 U.S. Patent 4912149
S. Inoue, H. Koinuma, and T. Tsuruta, J. Polym. Sci., Polym. Lett., Ed., 7, 287(1969). S. Inoue, H. Koinuma, and T. Tsuruta, Makromol. Chem., 130, 210 (1969). X.L.Wang, F.G.Du, J.Jiao, Y.Z.Meng, R.K.Y.Li, J.Biomed. Mater. Res., B, 78B, 373(2007). Xudong Shi, Zhihua Gan, Eur. Polym. J., 43,4852(2007).
 本発明は、二酸化炭素とエポキシドとの交互共重合体である脂肪族ポリカーボネート(APC)、APCに対して50重量%以下の樹脂をブレンドすることらなる新規二酸化炭素由来脂肪族ポリカーボネート複合体、及びその新規製造方法並びにその新規成形加工物及び新規成形加工方法を提供することである。
 本発明者らは、以下の点を新たに見出して上記課題を解決した。
 PPCに対して他の樹脂をブレンド(複合化)するだけでは、すでに例示した特許文献1,2や非特許文献3のブレンド物のようにPPCの機械的性能をわずかに向上するだけであり、大幅にその性能を向上させるには、他の樹脂のブレンド組成を50重量%以上添加しなければ達成されない。
 これでは、CO削減効果が著しく損なわれてしまう。そこで、第1成分樹脂であるPPCに対して機械的性質を大幅に改善できる可能性の高い樹脂として弾性率の大きな第2成分からなるメタクリル系樹脂もしくは脂肪族ポリエステルを20~30重量%ブレンドすること、及び同時にこれらブレンド物により形成される内部構造に対して両者の存在を滑らかにする働きをする、“接着剤”あるいは“相容化剤”となる第三成分が必要ではないかと考え、ビニル系樹脂を少量添加することとした。
 その結果、三元系の二酸化炭素由来脂肪族ポリカーボネート複合体では、その内部構造が滑らかで共連続構造に近い構造が形成され、上記二元系複合体では達成できなかった著しい機械的性能の向上に成功した。
 新規組成物複合体を記述すると以下のとおりである。
(1)二酸化炭素とエポキシドとの交互共重合体である脂肪族ポリカーボネート(APC)からなる第1成分樹脂 97-50重量%、メタクリル系樹脂もしくは脂肪族ポリエステルからなる第2成分樹脂 3-50重量%及びビニル系樹脂からなる第3成分樹脂 1-20重量%からなる三元複合体組成物であり、第1成分樹脂マトリックス中に存在する第2成分樹脂ドメインが第3成分樹脂バインダーを介した状態で、共連続構造状態で存在することを特徴とする三元複合体組成物。
(2)主要成分として二酸化炭素由来の脂肪族ポリカーボネート、すなわち二酸化炭素とエポキシドとの交互共重合体である脂肪族ポリカーボネート(APC)とそれ以外の少なくとも2種類の樹脂を、シリンダーと、スクリューと、試料投入部と、加熱部とを備えた溶融混練部に該試料投入部から投入する投入工程と、非晶性樹脂の場合にはガラス転移点より高い温度で、結晶性樹脂の場合にはその融点より高い温度で加熱した樹脂の溶融混練を行う溶融混練工程と、を備える二酸化炭素由来脂肪族ポリカーボネート複合体の製造方法。
(3)前記の樹脂は、脂肪族ポリカーボネート以外の成分としてメタクリル系樹脂、あるいは脂肪族ポリエステルの少なくとも1種類の樹脂を含むことを特徴とする二酸化炭素由来脂肪族ポリカーボネート複合体の製造方法。
(4)前記の樹脂は、脂肪族ポリカーボネートを主成分とし、かつ上記(3)に記載された樹脂の少なくとも1種類の樹脂を含み、かつ第3成分としてビニル系樹脂を含むことを特徴とする二酸化炭素由来脂肪族ポリカーボネート複合体の製造方法。
 前記の樹脂は、脂肪族ポリカーボネート;97-50重量%、及びメタクリル系樹脂もしくは脂肪族ポリエステル;3-50重量%に対して、ビニル系樹脂;1-20重量%、さらにはフィラー;0-10重量%が含まれることが好ましい。
 前記脂肪族ポリカーボネートとしてはエポキシドとしてポリプロピレンオキシドが用いられた交互共重合体、すなわち、ポリ(プロピレンカーボネート)(PPC)であることが好ましい。
 前記メタクリル系樹脂は、ポリメチルメタクリレート(PMMA)、ポリエチルメタクリレート(PEMA)やポリブチルメタクリレート(PBMA)であることが好ましい。
 前記脂肪族ポリエステルはポリ乳酸(PLLA)、ポリグリコール酸(PGA)、ポリブチレンサクシネート(PBS)、PBSにコハク酸を共重合したコポリマー(PBSA)又はポリ(ε-カプロラクトン)(PCL)或いはポリブチレンアジペートーブチレンテレフタレート共重合体(PBAT)から選ばれる生分解性の脂肪族ポリエステルやその共重合体であることが好ましい。
 前記ビニル系樹脂は、ポリ酢酸ビニル(PVAc)もしくはエチレン-酢酸ビニル共重合体(EVA;VA含有量5~90重量%)であることが好ましい。
 前記樹脂に含まれるフィラーとしては、層状ケイ酸塩(粘土鉱物又はクレイ:有機化処理したものを含む)、マイカ、シリカ微粒子、籠状シリカ化合物(POSS)等の少なくとも1種類を含むことが好ましい。
 溶融混練した樹脂を押出し物として成形して押し出してもよい。
 本発明は上記課題を解決するために、以上の溶融混練方法により製造されたことを特徴とする押出し物を提供する。
 前記押出し物は、ロッド、フィルム、シート、ファイバーのいずれか1つである。
 前記押出し物は、25℃での弾性率が1GPa以上、かつ破断伸びが300%以上である機械的性質を備えていることが好ましい。
 前記樹脂成形物は、厚さ100μmのフィルムにしたときに、可視部の波長領域である400nm~700nmにおいて80%以上の透過率を有する材料であることが好ましい。
 本発明によれば、PPCに対して機械的性質を大幅に改善できる可能性の高い樹脂としてメタクリル系樹脂もしくは脂肪族ポリエステルを第二成分として20~30重量%ブレンド(複合化)し、同時にこれら複合体の内部構造を滑らかにするような、相容化剤の働きを担わせる第三成分としてビニル系樹脂を少量添加した。その結果、このような三元系の二酸化炭素由来脂肪族ポリカーボネート複合体では、その内部構造が滑らかで共連続構造に近い構造が形成され、二元系複合体では達成できなかった著しい機械的性能の向上に成功した。
 即ち、本発明により、第三成分としてビニル系樹脂を少量添加した三元系の二酸化炭素由来脂肪族ポリカーボネート複合体では、その内部構造が滑らかで共連続構造に近い構造が形成され、二元系ブレンドでは達成できなかった、優れた機械的性質を有する高分子ブレンド押出し物(フィルムやシート状を含む)の製造が可能となる。
 このような構造を有する材料においては相分離して分散相サイズが大きい(数ミクロンメーター以上)海・島構造(いわゆる「アイランド構造」)になっている材料に比べ、ブレンドを構成する高分子本来の性質が相乗的に発揮され得るので、極めて高性能、高機能な付加価値の高い材料を創出することが可能となる。
 また、本発明に係る製造方法は、一般的な混練押出機や押出成形機を用いて溶融混練を行うだけの簡便な方法であり、包装材料、構造材料等の汎用的な材料だけでなく、連続的かつ純粋な微細構造を必要とする光学材料や電子・電気材料に対しても最適な方法を提供することができる。
 後記する実施例ではポリプロピレンカーボネート(PPC)/ポリメチルメタクリレート(PMMA)/ポリ酢酸ビニル(PVAc)ブレンドの例だけを示したが、メタクリル樹脂としては、ポリメチルメタクリレート以外にポリエチルメタクリレート(PEMA)やポリブチルメタクリレート(PBMA)を用いても、同様な結果を得ることができる。また、メタクリル樹脂の代わりに、脂肪族ポリエステルを用いても同様の結果を得ることができる。さらには、ビニル系樹脂として、ポリ酢酸ビニル(PVAc)の代わりに、エチレン-酢酸ビニル共重合体(EVA;VA含有量5~90重量%)を用いても同様の結果を得ることができる。
二元系複合体PPC/PMMAおよび三元系複合体PPC/PMMA/PVAcのSEM写真(1:PPC/PMMA=70/30,2:PPC/PMMA/PVAc=70/30/2.5,3:PPC/PMMA/PVAc=70/30/5,4:PPC/PMMA/PVAc=70/30/10) 二元系複合体PPC/PMMA=70/30(1)および三元系複合体PPC/PMMA/PVAc=70/30/5(2)のTEM写真 PPC単体(曲線a)、二元系複合体PPC/PMMA=70/30(曲線b)および三元系複合体PPC/PMMA/PVAc(曲線c~e)の応力-ひずみ曲線(c:PPC/PMMA/PVAc=70/30/2.5,d:PPC/PMMA/PVAc=70/30/5,e:PPC/PMMA/PVAc=70/30/10) 図3の応力-ひずみ特性において、二元系複合体PPC/PMMA=70/30の力学性能(引張強度ならびに弾性率)をPVAcの添加量に対してプロットした、引張強度(破線)ならびに弾性率(実線)のPVAc添加量依存性
 本発明は、二酸化炭素とエポキシドとの交互共重合体である脂肪族ポリカーボネート(APC)からなる第1成分樹脂 97-50重量%、メタクリル系樹脂もしくは脂肪族ポリエステルからなる第2成分樹脂 3-50重量%(合計100重量%)に対してビニル系樹脂からなる第3成分樹脂 1-20重量%を備えた三元複合体組成物であり、第1成分樹脂マトリックス中に存在する第2成分樹脂ドメインが第3成分樹脂バインダーを介した状態で、共連続構造状態で存在する3元複合体組成物である。
 本発明に係る二酸化炭素由来脂肪族ポリカーボネート複合体及びその製造方法を実施するための最良の形態を、以下に説明する。
 本発明では、内部帰還型スクリュー搭載の微量型高せん断成形加工機((株)井元製作所製HSE3000mini)を用いて、一軸スクリューの回転数が50rpmから300rpm、せん断速度が75から450sec-1の条件下に,スクリューを回転し、非晶性樹脂の場合にはガラス転移点より高い温度に、結晶性樹脂の場合にはその融点より高い温度に加熱して、三元系のブレンド、PPC/PMMA/PVAcの溶融混練を行う。なお、本発明において製造する「押出し物」は、単なる混練した状態の押出し物(「混練物」という。)でもよいし、成形してシート状のような形状とした押出し物(「成形物」という。)としてもよい。
 本発明では、上記内部帰還型一軸スクリュー搭載の微量型高せん断成形加工機を用いたが、この装置に限定されることなく、通常の一軸もしくは二軸型の混練押出機あるいはバンバリー型の混練機を使用しても同じ結果を得ることができる。
 ただし、そのような成形機においては内部帰還型スクリューではないので、混練時間を十分長く設定する必要がある。
 上記三元系高分子ブレンドとして、ポリプロピレンカーボネート(PPC)80-60重量%、ポリメチルメタクリレート(PMMA)20-40重量%、ポリ酢酸ビニル(PVAc)を2-10重量%に調整して新規な高分子ブレンド押出し物を製造する場合について説明する。
 前記脂肪族ポリカーボネートとしてはエポキシドとしてポリプロピレンオキシドが用いられた交互共重合体(PPC)である。
 前記メタクリル系樹脂はポリメチルメタクリレート(PMMA)、ポリエチルメタクリレート(PEMA)やポリブチルメタクリレート(PBMA)から選ばれる。
 前記脂肪族ポリエステルはポリ乳酸(PLLA)、ポリグリコール酸(PGA)、ポリブチレンサクシネート(PBS)、PBSにコハク酸を共重合したコポリマー(PBSA)又はポリ(ε-カプロラクトン)(PCL)或いはポリブチレンアジペートーブチレンテレフタレート共重合体(PBAT)から選ばれる生分解性の脂肪族ポリエステル又はその共重合体である。
 前記ビニル系樹脂は、ポリ酢酸ビニル(PVAc)もしくはエチレン-酢酸ビニル共重合体(EVA:VA含有量5~90重量%)である。
 上記三元系樹脂の混合物を混練させるには、混合物を粒状物の状態で混合させる。混合に際して、予め製造品を購入した試料である、PPCとPVAcは真空中45℃~50℃で24時間乾燥し、PMMAは真空中80℃で24時間乾燥した後に、それぞれ所定量を秤量し、一つの容器に入れ、十分に攪拌することにより行う。
 このような問題を解決するために、本発明者らは鋭意、研究開発した結果、上記三元系樹脂からなる混合物を、内部帰還型スクリュー搭載の微量型高せん断成形加工機を用い、一軸スクリューの回転数が50rpmから300rpm、せん断速度が75から450sec-1の条件下に、スクリューを回転し、非晶性樹脂の場合にはガラス転移点より高い温度を目安に、結晶性樹脂の場合にはその融点より高い温度を目安にした加熱条件下で1分から10分、三元系のブレンド、PPC/PMMA/PVAcの溶融混練を行う。なお、本発明において製造する「押出し物」は、単なる混練した状態の押出し物(「混練物」という。)でもよいし、成形してシート状のような形状とした押出し物(「成形物」という。)としてもよい。
 直ちに成形した樹脂成形物の機械的性質を測定したところ、弾性率が25℃で2GPa以上で、かつ破断伸びが300%以上、という画期的な知見を見出した。
 このようにして、本発明によれば、三元系樹脂の溶融混練により、二元系のPPC/PMMAブレンドでは、達成されなかった、滑らかな界面と共連続構造類似の構造が形成され、新規な二酸化炭素由来脂肪族ポリカーボネート複合体が作製される。
 上記内部帰還型スクリュー搭載の微量型高せん断成形加工機を用いる場合、成形加工条件としては、上記の特定温度の設定だけでなく、当該成形加工機におけるスクリュー回転数と混練時間の設定が重要である。
 本発明では、スクリュー回転数として50~300rpm、混練時間として1分~10分の間で設定可能であるが、回転数ならびに混練時間として、それぞれ100rpm、2~6分に設定することにより最適な結果を得ることができた。
 本発明は、二酸化炭素由来ポリ(プロピレンカーボネート)(PPC)97-50重量%、好ましくは80-60重量%に対して、ポリメチルメタクリレート(PMMA)を3-50重量%、好ましくは20-40重量%に組成を調整し、これら二元系ブレンドに対して第3成分としてポリ酢酸ビニル(PVAc)を1-20重量%、好ましくは2-10重量%を調整添加し、機械的な特性との相関からPVAcの重量組成を最適化したところに特徴があり、特定の条件を組み合わせて初めて良好な結果が得られるのであって、仮に、上記二元系ブレンドの組成、それに対してのPVAcの最適化された重量組成の一方でも前記条件をはずれる場合には満足する結果を得ることができない。
 特に、二元系ブレンドにおいて第2成分のメタクリル系樹脂の使用割合が3重量%未満だと、機械的な特性改善が損なわれることとなり、また50重量%以上だと二酸化炭素削減技術としての材料化の意義が損なわれることとなるので好ましくない。さらに、三元系ブレンドとする際の第3成分のビニル系樹脂の使用割合が1重量%未満もしくは20重量%を超えると、二元系ブレンドにおける構造をより微細化するという潤滑剤的効果が損なわれることとなり、結果的に力学的な性能低下を招いてしまうこととなるので好ましくない。
 二酸化炭素とエポキシドとの交互共重合体である脂肪族ポリカーボネート(APC)からなる第1成分樹脂 97-50重量%、メタクリル系樹脂もしくは脂肪族ポリエステルからなる第2成分樹脂 3-50重量%(合計100重量%)に対してビニル系樹脂からなる第3成分樹脂 1-20重量%、及び第4成分フィラー 0を超えて~10重量%からなる4元複合体組成物であり、第1成分樹脂マトリックス中に存在する第2成分樹脂ドメインが第3成分樹脂バインダー、及び第4成分を介した状態で、共連続構造状態で存在する二酸化炭素由来脂肪族ポリカーボネート複合体。
 前記脂肪族ポリカーボネートとしてはエポキシドとしてポリプロピレンオキシドが用いられた交互共重合体(PPC)である。
 前記メタクリル系樹脂はポリメチルメタクリレート(PMMA)、ポリエチルメタクリレート(PEMA)やポリブチルメタクリレート(PBMA)から選ばれる。
 前記脂肪族ポリエステルはポリ乳酸(PLLA)、ポリグリコール酸(PGA)、ポリブチレンサクシネート(PBS)、PBSにコハク酸を共重合したコポリマー(PBSA)又はポリ(ε-カプロラクトン)(PCL)或いはポリブチレンアジペートーブチレンテレフタレート共重合体(PBAT)から選ばれる生分解性の脂肪族ポリエステル又はその共重合体である。
 前記ビニル系樹脂は、ポリ酢酸ビニル(PVAc)もしくはエチレン-酢酸ビニル共重合体(EVA:VA含有量5~90重量%)である。
 前記第4成分フィラーは、層状ケイ酸塩(粘土鉱物又はクレイ:有機化処理したものを含む)、マイカ、シリカ微粒子、籠状シリカ化合物(POSS)から選ばれる少なくとも1種類を含む。
 上記3元系樹脂の混合物及び第4成分フィラーを混練させるには、混合物を粒状物の状態で混合させる。混合に際して、予め製造品を購入した試料であるPPCとPVAcは真空中45℃~50℃で24時間乾燥し、PMMA及び第4成分フィラーは真空中80℃で24時間乾燥した後に、それぞれ所定量を秤量し、一つの容器に入れ、十分に攪拌することにより行う。
 本発明者らは鋭意、研究開発した結果、上記三元系樹脂からなる混合物を、内部帰還型スクリュー搭載の微量型高せん断成形加工機を用い、一軸スクリューの回転数が50rpmから300rpm、せん断速度が75から450sec-1の条件下に,スクリューを回転し、非晶性樹脂の場合にはガラス転移点より高い温度を目安に、結晶性樹脂の場合にはその融点より高い温度を目安にした加熱条件下で1分から10分、4元系のブレンド、PPC/PMMA/PVAc及び第4成分フィラーを溶融混練を行う。なお、本発明において製造する「押出し物」は、単なる混練した状態の押出し物「混練物」という。)でもよいし、成形してシート状のような形状とした押出し物「成形物」という。)としてもよい。
 直ちに成形した樹脂成形物の機械的性質を測定したところ、弾性率が25℃で2GPa以上で、かつ破断伸びが300%以上、という画期的な知見を見出した。
 成形加工方法により成形された二酸化炭素由来脂肪族ポリカーボネート複合体成形物である。
 前記成形物は、ロッド、フィルム、シート、ファイバーのいずれか1つである。
 前記成形物は、25℃での弾性率が1GPa以上で、かつ破断伸びが100%以上である機械的性質を備えている。
 前記成形物は、厚さ100μmのフィルムにしたときに、可視部の波長領域(400nm~700nm )において80%以上の透過率を有する、透明性に優れた材料である。
 (実施例1)
 本発明について、三元系高分子ブレンドとして、PPC、PMMA及びPVAcより二酸化炭素由来脂肪族ポリカーボネート複合体を製造する実施例を説明する。この実施例では、原料のPPCは中国科学院長春応用化学研究所で合成された、表1にある性質のものを用いた。
Figure JPOXMLDOC01-appb-T000003
 また、ポリメチルメタクリレート(PMMA)として、住友化学(株)社製のスミペックスLG21(商品名)を用いた。
 ポリ酢酸ビニル(PVAc)として、Scientific Polymer Product Inc.製の重量平均分子量(Mw)260000のものを用いた。
 合成例1~4
 PPCとPVAcは真空中45℃~50℃で24時間乾燥し、PMMAは真空中80℃で24時間乾燥した後にそれぞれ所定量を秤量し、一つの容器に入れ、室温で十分に攪拌することによる混合を行った。ここで所定量とは、PPCの97-50重量%に対して、PMMAを3-50重量%に組成を調整し、これら二元系ブレンドの合計100重量%に対して第三成分としてポリ酢酸ビニル(PVAc)の0重量%(合成例1)、2.5重量%(合成例2)、5重量%(合成例3)、10重量%(合成例4)を調整添加することである。さらに、この混合物の約5gを微量型高せん断成形加工機((株)井元製作所製HSE3000mini)に投入し、155℃に加熱溶融し、スクリュー回転数を100rpmとして3~5分間混練し、T-ダイから押出した。このようなプロセスにより、表面状態の良好な押出し物を得ることができた。
 合成例5~8
 PPCとPVAcは真空中45℃~50℃で24時間乾燥し、PMMAは真空中80℃で24時間乾燥した後にそれぞれ所定量を秤量し、一つの容器に入れ、室温で十分に攪拌することによる混合を行った。ここで所定量とは、PPCの97-50重量%に対して、PMMAを3-50重量%に組成を調整し、これら二元系ブレンドの合計100重量%に対して第三成分としてポリ酢酸ビニル(PVAc)の0重量%(合成例1)、2.5重量%(合成例2)、5重量%(合成例3)、10重量%(合成例4)を調整添加することである。さらに、この混合物の約50gをバンバリー型小型混練機((株)東洋精機製作所製KF70V)に投入し、155℃に加熱溶融し、スクリュー回転数を100rpmとして3~5分間混練した。このようなプロセスにより、表面状態の良好な押出し物を得ることができた。
 これらの系の内部構造を観察するため、液体窒素温度にて試料を破断し、その断面を走査型電子顕微鏡(SEM)により観察した。SEMはPhilips社製のXL-20を用いて、加速電圧10kVにて観察した。
 図1(1)から(4)は、合成例1~4で得られた押出し物の微視的分散構造を示すSEM写真である。この実施例では、微視的分散構造は、二元系複合体PPC/PMMA=70/30(合成例1:図1(1))、三元系複合体PPC/PMMA/PVAc=70/30/2.5(合成例2:図1(2))、PPC/PMMA/PVAc=70/30/5(合成例3:図1(3))、PPC/PMMA/PVAc=70/30/10(合成例4:図1(4))をそれぞれ示している。合成例5~8の試料においても全く同様の結果が得られた。
 図1からも明らかなように、二元系複合体PPC/PMMA=70/30(図1(1))においては数μmサイズの球状のPMMA相(ドメイン)がPPCマトリクス中に観察され、相容化していない状態、即ち相分離した構造となっていることが分かった。これに対して、第三成分である、PVAcを2.5重量%から10重量%添加していくと、三元系複合体の構造はPMMA相(ドメイン)が小さくなり(図1(2))、さらには共連続構造に類似した構造(図1(3)および(4))に変化し、界面状態が極めて滑らかになったことが分かる。
 図1で観察されたSEM写真から界面状態の変化は明白であるが、さらに微細な構造変化を調べるため、透過電子顕微鏡(TEM)観察を行った。TEMはJEOL社製のJEM 1230を用いて、加速電圧120kVにて観察した。観察に供する試料は、ウルトラミクロトームを用いて-120℃で厚さ70nmの超薄切片を作製した後、染色剤(RuO)を用いて20分間染色した。
 図2に二元系複合体PPC/PMMA=70/30(図2(1))と三元系複合体PPC/PMMA/PVAc=70/30/5(図2(2))のTEM写真を示す。図からも明らかなように、図2(1)の二元系複合体の構造は、未だ“海-島”構造のままで、系のマトリクスは白地のPPC相であり、黒地の分散相はPMMAである。これに5%のPVAcが添加された三元系複合体では、図2(2)に示されるように、その構造は一層微細化し、“共連続”構造が形成されていることが分かった。即ち、ここでは白地のPPC相も黒地のPMMA相もどちらも構造が微細に変化しただけでなく、両方とも各々が細長く伸ばされて連続的につながった相(連続相)を形成している。このように二種類の高分子のそれぞれの相が連続的につながった構造を共連続構造と呼んでいる。さらに、図2においては5%添加されたPVAcは少量であるため識別できないが、PVAcはPPCとPMMAとの接着剤としての役割を果たしていると考えられ、このために構造が微細かつ共連続に変化したと考えられる。
 これら一連の試料の力学性能を評価するため、動的粘弾性測定(DMA)ならびに応力-ひずみ測定を行った。動的粘弾性測定はRheovibron DDV-25FP-S(Orientec Co.)を用いて伸張モードで行った。測定は、-150℃~120℃の範囲で、昇温速度3℃/min、周波数1Hzにて行った。
 応力-ひずみ測定は、ダンベル型試料を作製し、ASTM D412-80試験法に準拠した方法で引っ張り試験機Tensilon UMT-300(Orientec Co.)を用いて、クロスヘッドスピード10mm/min、温度25℃、湿度50%で行った。
 PPC単体(曲線a)、二元系複合体PPC/PMMA=70/30(曲線b)および三元系複合体PPC/PMMA/PVAC(曲線c~e)の応力-ひずみ曲線を図3に示した。
 図3からも明らかなように、PPC単体(曲線a)は弾性率が非常に小さいが、破断伸びは非常に優れており、ゴムのような性質を示す。これにPMMAをブレンドした二元系複合体PPC/PMMA=70/30(曲線b)では、PMMAの剛性が発現して弾性率が向上するが、延性が低下し破断伸びが減少することが分かる。続いて、第三成分である、PVAcを2.5重量%(曲線c)から10重量%添加(曲線e)していくと、二元系複合体に比し、その弾性率はさらに向上していくことが分かる。しかしながら、弾性率における増加はPVAcの添加量に単純に比例するのではなく、5重量%(曲線d)で最大となるが、10重量%添加(曲線e)では逆にその弾性率は低下してしまうことが分かる。即ち、第三成分である、PVAcの添加は図1および2で示されたように、このブレンド系の内部構造を共連続構造様に変化させ、界面を滑らかにする作用があり、図3に示されるように、この系の力学性能を著しく向上させる効果があるが、PVAcの添加量には最適値が存在することが明らかになった。
 図3の応力-ひずみ特性において、二元系複合体PPC/PMMA=70/30の力学性能(引張強度ならびに弾性率)をPVAcの添加量に対してプロットした結果を図4に示した。図4において、破線は引張強度のPVAc添加量依存性を示し、実線は弾性率のPVAc添加量依存性を示しており、この図からPVAcの添加量には最適値が存在し、力学性能はいずれも5重量%添加で最大となることが分かった。
 上記図3における応力-ひずみ曲線ならびに動的粘弾性測定から評価された各種力学性能、具体的には貯蔵弾性率、引張強度、破断伸び、さらにはガラス転移温度(Tg)のデータをまとめて表2に示した。また、比較のために、表2には汎用樹脂の代表である、低密度ポリエチレン(LDPE)とアイソタクチック-ポリプロピレン(iso-PP)の機械的性質も合わせて示した。
 表2からも明らかなように、PPC単体は弾性率が非常に小さい(101MPa)が破断伸び(578%)が優れることは図2からも容易に推察された。これに対して、PMMAをブレンドした二元系複合体PPC/PMMA=70/30では、PMMAの剛性が発現して弾性率が向上する(1564MPa)が、延性が低下し破断伸び(390.6%)が減少することが分かる。続いて、第三成分である、PVAcを5重量%添加した三元系複合体PPC/PMMA/PVAc=70/30/5では飛躍的に弾性率が向上(2431MPa)したのが分かる。
 これらの力学性能を汎用樹脂と比較してみると、LDPEは弾性率(254MPa)が非常に小さい反面、破断伸び(616%)が非常に優れているのが特徴である。iso-PPは弾性率も破断伸びもLDPEより優れた性質を示すことが分かる。しかしながら、本発明における三元系PPC/PMMA/PVAc=70/30/5では、LDPEならびにiso-PPをも凌ぐ弾性率を達成しており、画期的な性能が発現している。
 また、表2の右欄にガラス転移温度(Tg)を示したように、三元系複合体はPPC単体に比し、Tgが10℃近く高くなっており、耐熱性が著しく向上したことが分かる。
Figure JPOXMLDOC01-appb-T000004
 以上、本発明に係る製造方法、該方法で製造された二酸化炭素由来脂肪族ポリカーボネート複合体を実施するための最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されることなく、特許請求の範囲記載の技術的事項の範囲内で、いろいろな実施例があることは言うまでもない。
 PPC単体の工業的レベルでの生産が始まっているが、上記データでも示されたように、柔らかいゴムのような性質しか持たないPPCは実用材料としては使えないのが現状である。これに対して、PPCにPMMAのような樹脂をブレンドすると、その機械的性質は幾分改善されるが、実用的にはまだ不十分である。
 これに対して、本発明は、上記のとおり、三元系複合体とし、第三成分の樹脂を特定割合かつ少量添加するだけで、PPC単体の性能を大幅に向上させ、汎用樹脂であるLDPEならびにiso-PPをも凌ぐ弾性率を達成しており、画期的な性能が発現している。
 従って、本発明は、地球温暖化対策としての、二酸化炭素削減の最有力技術として、二酸化炭素を脂肪族ポリカーボネート(APC)として固定化し、三元系APC複合体としてAPCの重量組成を50%以上、好ましくは70%近い組成にすることにより、二酸化炭素削減効果を高めながら、汎用樹脂の代替材料として広く産業界に利用されることが期待される。
 これら本発明により開発された二酸化炭素由来脂肪族ポリカーボネート複合体は、LDPEならびにiso-PPだけに留まらず、塩化ビニルや芳香族ポリカーボネート等の代替も可能となることから、包装材料、構造材料、自動車用材料、光学材料等広範な分野で利用可能である。

Claims (15)

  1.  二酸化炭素とエポキシドとの交互共重合体である脂肪族ポリカーボネート(APC)を含む少なくとも3種類の樹脂を、シリンダーとスクリューと試料投入部と加熱部とを備えた溶融混練装置の試料投入部に投入する投入工程と、
     前記スクリューの回転数;50rpmから300rpmの条件下で非晶性樹脂の場合にはガラス転移点より高い温度に、結晶性樹脂の場合にはその融点より高い温度にした加熱して、前記樹脂の溶融混練を行う溶融混練工程と、
     を備えることを特徴とする二酸化炭素由来脂肪族ポリカーボネート複合体の製造方法。
  2.  前記脂肪族ポリカーボネートとしてはエポキシドとしてポリプロピレンオキシドが用いられた交互共重合体(PPC)であることを特徴とする請求項1記載の二酸化炭素由来脂肪族ポリカーボネート複合体の製造方法。
  3.  (A)二酸化炭素由来脂肪族ポリカーボネート、(B)メタクリル系樹脂または脂肪族ポリエステル樹脂および(C)ビニル系樹脂を含有することを特徴とする二酸化炭素由来脂脂肪族ポリカーボネート樹脂複合体。
  4.  二酸化炭素とエポキシドとの交互共重合体である脂肪族ポリカーボネート(APC)からなる第1成分樹脂 97-50重量%、メタクリル系樹脂もしくは脂肪族ポリエステルからなる第2成分樹脂 3-50重量%(合計100重量%)に対してビニル系樹脂からなる第3成分樹脂 1-20重量%を備えた三元複合体組成物であり、第1成分樹脂マトリックス中に存在する第2成分樹脂ドメインが第3成分樹脂バインダーを介した状態で、共連続構造状態で存在することを特徴とする二酸化炭素由来脂肪族ポリカーボネート複合体。
  5.  二酸化炭素とエポキシドとの交互共重合体である脂肪族ポリカーボネート(APC)からなる第1成分樹脂 97-50重量%、メタクリル系樹脂もしくは脂肪族ポリエステルからなる第2成分樹脂 3-50重量%(合計100重量%)に対してビニル系樹脂からなる第3成分樹脂 1-20重量%、及び第4成分フィラー 0を超えて~10重量%からなる4元複合体組成物であり、第1成分樹脂マトリックス中に存在する第2成分樹脂ドメインが第3成分樹脂バインダー、及び第4成分を介した状態で、共連続構造状態で存在することを特徴とする特徴とする二酸化炭素由来脂肪族ポリカーボネート複合体。
  6.  前記脂肪族ポリカーボネートとしてはエポキシドとしてポリプロピレンオキシドが用いられた交互共重合体(PPC)であることを特徴とする請求項4又は5記載の二酸化炭素由来脂肪族ポリカーボネート複合体。
  7.  前記メタクリル系樹脂はポリメチルメタクリレート(PMMA)、ポリエチルメタクリレート(PEMA)やポリブチルメタクリレート(PBMA)から選ばれることを特徴とする請求項4又は5記載の二酸化炭素由来脂肪族ポリカーボネート複合体。
  8.  前記脂肪族ポリエステルはポリ乳酸(PLLA)、ポリグリコール酸(PGA)、ポリブチレンサクシネート(PBS)、PBSにコハク酸を共重合したコポリマー(PBSA)又はポリ(ε-カプロラクトン)(PCL)或いはポリブチレンアジペートーブチレンテレフタレート共重合体(PBAT)から選ばれる生分解性の脂肪族ポリエステル又はその共重合体であることを特徴とする請求項4又は5記載の二酸化炭素由来脂肪族ポリカーボネート複合体。
  9.  前記ビニル系樹脂は、ポリ酢酸ビニル(PVAc)もしくはエチレン-酢酸ビニル共重合体(EVA:VA含有量5~90重量%)であることを特徴とする請求項4又は5記載の二酸化炭素由来脂肪族ポリカーボネート複合体。
  10.  前記第4成分フィラーは、層状ケイ酸塩(粘土鉱物又はクレイ:有機化処理したものを含む)、マイカ、シリカ微粒子、籠状シリカ化合物(POSS)から選ばれる少なくとも1種類を含むことを特徴としている請求項5記載の二酸化炭素由来脂肪族ポリカーボネート複合体。
  11.  請求項4又は5記載の二酸化炭素由来脂肪族ポリカーボネート複合体より作製された樹脂を成形する成形工程をさらに備える成形加工方法。
  12.  請求項11項記載の成形加工方法により成形された二酸化炭素由来脂肪族ポリカーボネート複合体成形物。
  13.  前記成形物は、ロッド、フィルム、シート、ファイバーのいずれか1つであることを特徴とする請求項12記載の二酸化炭素由来脂肪族ポリカーボネート複合体成形物。
  14.  前記成形物は、25℃での弾性率が1GPa以上で、かつ破断伸びが100%以上である機械的性質を備えた請求項13記載の二酸化炭素由来脂肪族ポリカーボネート複合体成形物。
  15.  前記成形物は、厚さ100μmのフィルムにしたときに、可視部の波長領域(400nm~700nm)において80%以上の透過率を有する、透明性に優れた材料であることを特徴とする請求項13記載の二酸化炭素由来脂肪族ポリカーボネート複合体成形物。
PCT/JP2009/068881 2008-11-05 2009-11-05 二酸化炭素由来脂肪族ポリカーボネート複合体およびその製造方法 WO2010053110A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010536780A JP5610479B2 (ja) 2008-11-05 2009-11-05 二酸化炭素由来脂肪族ポリカーボネート複合体およびその製造方法
CN200980140208.0A CN102177193B (zh) 2008-11-05 2009-11-05 来自二氧化碳的脂肪族聚碳酸酯复合体及其制造方法
EP09824809A EP2351783A1 (en) 2008-11-05 2009-11-05 Aliphatic polycarbonate complex derived from carbon dioxide, and process for producing same
US13/127,530 US8937126B2 (en) 2008-11-05 2009-11-05 Ternary blends of aliphatic polycarbonate derived from carbon dioxide, and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008284212 2008-11-05
JP2008-284212 2008-11-05

Publications (1)

Publication Number Publication Date
WO2010053110A1 true WO2010053110A1 (ja) 2010-05-14

Family

ID=42152918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068881 WO2010053110A1 (ja) 2008-11-05 2009-11-05 二酸化炭素由来脂肪族ポリカーボネート複合体およびその製造方法

Country Status (6)

Country Link
US (1) US8937126B2 (ja)
EP (1) EP2351783A1 (ja)
JP (1) JP5610479B2 (ja)
KR (1) KR20110091853A (ja)
CN (1) CN102177193B (ja)
WO (1) WO2010053110A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167195A (ja) * 2011-02-15 2012-09-06 Sumitomo Chemical Co Ltd 樹脂組成物の製造方法、樹脂組成物及び成形体
JP2014019748A (ja) * 2012-07-13 2014-02-03 Sumitomo Seika Chem Co Ltd 脂肪族ポリカーボネート樹脂組成物
JP2014503677A (ja) * 2011-01-27 2014-02-13 エスケー イノベーション カンパニー リミテッド 二酸化炭素を原料とする高分子樹脂組成物及びそれにより製造された環境にやさしい装飾材
JP2015147861A (ja) * 2014-02-06 2015-08-20 住友精化株式会社 脂肪族ポリカーボネート樹脂組成物及びそれを用いた成形体
JP2016050232A (ja) * 2014-08-29 2016-04-11 帝人株式会社 ポリカーボネート樹脂

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101791215B1 (ko) * 2010-11-19 2017-10-27 에스케이씨 주식회사 환경친화형 열수축 필름
KR101392705B1 (ko) * 2011-08-18 2014-05-12 에스케이종합화학 주식회사 핫멜트 접착제 조성물
KR101439313B1 (ko) * 2011-10-18 2014-11-05 에스케이이노베이션 주식회사 태양광 모듈 밀봉 필름용 수지 조성물 및 이를 이용한 태양광 모듈
KR101917175B1 (ko) * 2012-01-17 2018-11-09 에스케이이노베이션 주식회사 내한성이 우수한 지방족 폴리카보네이트/폴리에스테르 고분자 수지 조성물
FR2987380B1 (fr) * 2012-02-28 2014-02-07 Saint Gobain Isover Membrane pare-vapeur a base de melange pa666/evoh
KR101489181B1 (ko) * 2012-04-19 2015-02-11 이동권 폴리알킬렌 카보네이트 및 폴리올레핀 기반의 접착부재 및 이를 포함하는 접착 구조체
KR101895498B1 (ko) * 2012-05-04 2018-09-05 에스케이이노베이션 주식회사 폴리(알킬렌 카보네이트)와 그것의 혼합물 입자의 캡슐화 방법 및 그것의 이용
KR101949979B1 (ko) * 2012-05-04 2019-02-19 에스케이이노베이션 주식회사 투명한 지방족 폴리카보네이트 수지 조성물 및 이의 이용
KR101466911B1 (ko) * 2013-03-04 2014-12-10 고려대학교 산학협력단 인장강도와 열적 안정성이 향상된 폴리프로필렌카보네이드 폴리메틸메타크릴레이트 고분자 복합체 및 이의 제조방법
WO2014157962A1 (ko) * 2013-03-27 2014-10-02 주식회사 엘지화학 폴리알킬렌 카보네이트를 포함하는 수지 조성물
DE102014105085B4 (de) * 2014-04-09 2022-01-27 Buergofol GmbH Polymere Mehrschichtfolie sowie deren Verwendung, Schlauchlining-Aufbau mit der polymeren Mehrschichtfolie und sanierter Kanalabschnitt mit dem Schlauchlining-Aufbau
CN104387737A (zh) * 2014-11-13 2015-03-04 中国科学院长春应用化学研究所 一种增强改性聚丙撑碳酸酯组合物及其制备方法
CN106916430B (zh) * 2017-04-25 2019-01-29 广州市阳铭新材料科技有限公司 一种组合物及其制备方法与在3d打印聚碳酸酯耗材中的应用
CN110157160A (zh) * 2018-03-21 2019-08-23 韩银兰 一种高性能的环保可降解型广告板及其制备方法
CN110079070B (zh) * 2019-03-06 2021-05-28 山西微通渗水膜生物科技有限公司 一种降解渗水农田覆盖薄膜的加工工艺及其应用
CN114276655B (zh) * 2021-07-29 2023-04-25 南京工程学院 一种可降解热塑性弹性体及其制备方法
CN114262511B (zh) * 2022-01-18 2024-02-23 上海华峰新材料研发科技有限公司 一种可生物降解的树脂组合物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61285251A (ja) * 1985-06-08 1986-12-16 バイエル・アクチエンゲゼルシヤフト 衝撃抵抗性熱可塑性ポリエステル組成物およびその製造法
US4912149A (en) 1989-02-22 1990-03-27 Air Products And Chemicals, Inc. Blends of poly(vinyl acetate) and poly(propylene carbonate)
JPH02258828A (ja) * 1988-12-02 1990-10-19 Dow Chem Co:The ポリ(アルキレンカーボネート)ポリオールおよびエチレン系不飽和エステルのポリマーの混合物およびその製造方法
WO2007125039A1 (en) * 2006-04-27 2007-11-08 Basf Se Transparent blends of polypropylene carbonate
US7326938B2 (en) 2001-08-23 2008-02-05 D.N.R. Imaging Systems Ltd. Optical system and method for inspecting fluorescently labeled biological specimens
JP2008063577A (ja) * 2006-09-05 2008-03-21 Chitec Technology Co Ltd 靭性及び耐熱性が改善された生分解性樹脂組成物及び生分解性樹脂を製造する方法
JP2008255349A (ja) * 2000-08-23 2008-10-23 E Khashoggi Industries Llc 積層被覆物としての使用に適した生分解性ポリマーフィルムおよびシートならびにラップその他のパッケージング材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3742088A (en) * 1971-01-07 1973-06-26 Texaco Inc Polycarbonate resins blended with elastomers for improved impact strength
US4743654A (en) * 1986-11-13 1988-05-10 University Of Akron Single phase blends of polycarbonate and polymethyl methacrylate
US4874030A (en) * 1989-03-22 1989-10-17 Air Products And Chemicals, Inc. Blends of poly(propylene carbonate) and poly(methyl methacrylate) and their use in decomposition molding
JPH07276789A (ja) * 1994-04-05 1995-10-24 Fuji Photo Film Co Ltd 記録用シート
CN101838425B (zh) 2005-08-04 2012-07-18 东丽株式会社 树脂组合物和由该树脂组合物形成的成型品
CN100999602A (zh) * 2006-12-18 2007-07-18 中山大学 可降解二氧化碳塑料基复合材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61285251A (ja) * 1985-06-08 1986-12-16 バイエル・アクチエンゲゼルシヤフト 衝撃抵抗性熱可塑性ポリエステル組成物およびその製造法
JPH02258828A (ja) * 1988-12-02 1990-10-19 Dow Chem Co:The ポリ(アルキレンカーボネート)ポリオールおよびエチレン系不飽和エステルのポリマーの混合物およびその製造方法
US4912149A (en) 1989-02-22 1990-03-27 Air Products And Chemicals, Inc. Blends of poly(vinyl acetate) and poly(propylene carbonate)
JP2008255349A (ja) * 2000-08-23 2008-10-23 E Khashoggi Industries Llc 積層被覆物としての使用に適した生分解性ポリマーフィルムおよびシートならびにラップその他のパッケージング材料
US7326938B2 (en) 2001-08-23 2008-02-05 D.N.R. Imaging Systems Ltd. Optical system and method for inspecting fluorescently labeled biological specimens
WO2007125039A1 (en) * 2006-04-27 2007-11-08 Basf Se Transparent blends of polypropylene carbonate
JP2008063577A (ja) * 2006-09-05 2008-03-21 Chitec Technology Co Ltd 靭性及び耐熱性が改善された生分解性樹脂組成物及び生分解性樹脂を製造する方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
S. INOUE, H. KOINUMA, T. TSURUTA, J. POLYM. SCI., POLYM. LETT., ED., vol. 7, 1969, pages 287
S. INOUE, H. KOINUMA, T. TSURUTA, MAKROMOL. CHEM., vol. 130, 1969, pages 210
X. L. WANG, F. G. DU, J. JIAO, Y. Z. MENG, R. K. Y. LI, J. BIOMED. MATER. RES., B, vol. 78B, 2007, pages 373
XUDONG SHI, ZHIHUA GAN, EUR. POLYM. J., vol. 43, 2007, pages 4852

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503677A (ja) * 2011-01-27 2014-02-13 エスケー イノベーション カンパニー リミテッド 二酸化炭素を原料とする高分子樹脂組成物及びそれにより製造された環境にやさしい装飾材
JP2012167195A (ja) * 2011-02-15 2012-09-06 Sumitomo Chemical Co Ltd 樹脂組成物の製造方法、樹脂組成物及び成形体
JP2014019748A (ja) * 2012-07-13 2014-02-03 Sumitomo Seika Chem Co Ltd 脂肪族ポリカーボネート樹脂組成物
KR20190132313A (ko) 2012-07-13 2019-11-27 스미토모 세이카 가부시키가이샤 지방족 폴리카보네이트 수지 조성물
JP2015147861A (ja) * 2014-02-06 2015-08-20 住友精化株式会社 脂肪族ポリカーボネート樹脂組成物及びそれを用いた成形体
JP2016050232A (ja) * 2014-08-29 2016-04-11 帝人株式会社 ポリカーボネート樹脂

Also Published As

Publication number Publication date
CN102177193B (zh) 2015-01-07
CN102177193A (zh) 2011-09-07
US20120053282A1 (en) 2012-03-01
JP5610479B2 (ja) 2014-10-22
JPWO2010053110A1 (ja) 2012-04-05
US8937126B2 (en) 2015-01-20
KR20110091853A (ko) 2011-08-16
EP2351783A1 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP5610479B2 (ja) 二酸化炭素由来脂肪族ポリカーボネート複合体およびその製造方法
Yeo et al. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications
Li et al. Toughening glassy poly (lactide) with block copolymer micelles
TWI278489B (en) Resin composition and its application, and modified polyolefin resin and method for manufacturing the same
Mohapatra et al. Study of thermo-mechanical and morphological behaviour of biodegradable PLA/PBAT/layered silicate blend nanocomposites
Balakrishnan et al. Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends
Kfoury et al. Recent advances in high performance poly (lactide): from “green” plasticization to super-tough materials via (reactive) compounding
Jiang et al. Properties of poly (lactic acid)/poly (butylene adipate-co-terephthalate)/nanoparticle ternary composites
Lin et al. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly (ester amide)
Kumar et al. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites
Zhang et al. Distinctive Tensile Properties of the Blends of Poly (l-lactic acid)(PLLA) and Poly (butylene succinate)(PBS)
KR101281834B1 (ko) 생분해성 고분자 복합재
JP2016065249A (ja) 生分解性ポリマーブレンド
US8222320B2 (en) High heat resistant polymer compositions having poly(lactic acid)
JP2010121131A (ja) 天然繊維強化ポリ乳酸樹脂組成物及びこれを利用した成形品
Pivsa-Art et al. Preparation of Polymer Blends between Poly (L-lactic acid), Poly (butylene succinate-co-adipate) and Poly (butylene adipate-co-terephthalate) for Blow Film Industrial Application
Khaw et al. Poly (lactic acid) composite films reinforced with microcrystalline cellulose and keratin from chicken feather fiber in 1‐butyl‐3‐methylimidazolium chloride
JP2010270309A (ja) 樹脂組成物の製造方法及び成形体
Izzati et al. Effect of empty fruit bunches microcrystalline cellulose (MCC) on the thermal, mechanical and morphological properties of biodegradable poly (lactic acid)(PLA) and polybutylene adipate terephthalate (PBAT) composites
Zhang et al. Effect of glycidyl methacrylate-grafted poly (ethylene octene) on the compatibility in PLA/PBAT blends and films
Gao et al. Constructing sandwich-architectured poly (l-lactide)/high-melting-point poly (l-lactide) nonwoven fabrics: toward heat-resistant poly (l-lactide) barrier biocomposites with full biodegradability
US10954367B2 (en) Reinforced thermoplastic polyolefin elastomer film
WO2005054366A1 (ja) ポリ(3−ヒドロキシアルカノエート)組成物およびその成形体
Rajakumar et al. Thermal and morphological behaviours of polybutylene terephthalate/polyethylene terephthalate blend nanocomposites
Uribe-Calderón et al. Influence of surface-modified cellulose nanocrystal on the rheological, thermal and mechanical properties of PLA nanocomposites

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140208.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010536780

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117010289

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009824809

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13127530

Country of ref document: US