WO2006121068A1 - 巻取式プラズマcvd装置 - Google Patents

巻取式プラズマcvd装置 Download PDF

Info

Publication number
WO2006121068A1
WO2006121068A1 PCT/JP2006/309387 JP2006309387W WO2006121068A1 WO 2006121068 A1 WO2006121068 A1 WO 2006121068A1 JP 2006309387 W JP2006309387 W JP 2006309387W WO 2006121068 A1 WO2006121068 A1 WO 2006121068A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
plasma cvd
roller
cvd apparatus
mask
Prior art date
Application number
PCT/JP2006/309387
Other languages
English (en)
French (fr)
Inventor
Takayoshi Hirono
Isao Tada
Atsushi Nakatsuka
Masashi Kikuchi
Hideyuki Ogata
Hiroaki Kawamura
Kazuya Saito
Masatoshi Sato
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to JP2007528300A priority Critical patent/JP5234911B2/ja
Priority to EP06732516.7A priority patent/EP1881087B1/en
Priority to CN2006800018846A priority patent/CN101098981B/zh
Publication of WO2006121068A1 publication Critical patent/WO2006121068A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources

Definitions

  • the present invention relates to a trapping type plasma CVD apparatus for forming a film on a film by plasma CVD while running the film in a reduced pressure atmosphere.
  • a vacuum type vacuum film forming apparatus has been used to continuously form a film on a long film or film-like substrate (see Patent Documents 1 and 2 below). This is configured so that the film unwound from the unwinding part is moved at a constant speed, and after film formation at the film forming position by plasma CVD or the like, the film is wound at the unwinding part. Yes.
  • FIG. 7 shows a configuration of a conventional trapping type plasma CVD apparatus.
  • the film 3 is unwound from the drawing roller 2, and this is transferred to a drum roller 5 with a built-in heating source through a plurality of auxiliary rollers 4.
  • the winding roller 7 is wound up through a plurality of auxiliary rollers 6.
  • the drum roller 5 is connected to the ground potential and is disposed opposite to the arc-shaped high-frequency electrode 8, and a reactive gas is supplied between the drum roller 5 and the high-frequency electrode 8 through the gas supply pipe 9 to generate plasma. Then, the reaction product is deposited on the film on the drum roller 5 to form a film.
  • the inside of the vacuum chamber 1 is divided into a reaction chamber 10 and a non-reaction chamber 11 by a sealing means 9 arranged around the drum roller 5.
  • the reaction chamber 10 is evacuated by the evacuation line 12, and the non-reaction chamber 11 is pressurized by introducing auxiliary gas from the auxiliary gas introduction pipe 13. It is configured to suppress the flow to the 11 side.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-212744
  • Patent Document 2 JP-A-7-233474
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-179043
  • the high-frequency electrode 8 for forming plasma is provided with a drum roller. It is formed in an arc shape along the circumferential surface of 9.
  • the present invention has been made in view of the above problems, and can uniformly supply the reaction gas to the film formation region of the film to make the film quality uniform, and the gap between the high frequency electrode and the counter electrode can be easily adjusted. It is an object of the present invention to provide a torsion type plasma CVD apparatus that can be easily used.
  • the torsion type plasma CVD apparatus of the present invention is arranged on the upstream side and downstream side of the film forming position with respect to the traveling direction of the film, respectively, and the upstream roller and the downstream that run the film substantially linearly at the film forming position
  • a counter electrode and a gas supply means for supplying a source gas to the film forming surface are arranged.
  • the film travels substantially linearly between the high frequency electrode and the counter electrode at the film forming position by being supported by the upstream roller and the downstream roller.
  • the raw material gas supplied toward the film formation surface is polymerized by applying a high-frequency voltage to the high-frequency electrode, and the reaction product adheres to the film formation surface of the traveling film.
  • the gap between the film and the high-frequency electrode can be easily set by adjusting the height positions of the upstream roller and the downstream roller.
  • both the high-frequency electrode and the counter electrode can be formed flat, the gap between the two electrodes can be easily adjusted.
  • the configuration of both electrodes can be simplified and the fabrication can be facilitated.
  • the gas supply means includes a shower plate attached to the high-frequency electrode, a space formed between the high-frequency electrode and the shower plate, and a communication with the space. And a gas supply pipe for supplying gas to the film formation surface via the shower plate.
  • the film can be heated to a uniform temperature at the film formation position. Therefore, in the present invention, a metal belt that runs simultaneously with the film at the deposition position is circulated in the vacuum chamber. The metal belt is heated to a constant temperature and runs against the back side of the film.
  • the metal belt can be configured separately from the counter electrode or as the counter electrode.
  • the present invention comprises a metal belt that circulates in a vacuum chamber and travels simultaneously on the back side of the film formation surface at the film formation position, and a mask having an opening that limits the film formation surface; An adjustment mechanism that adjusts the gap between the film deposition surface and the mask, a shirter that can close the mask opening by being inserted between the film deposition surface and the mask opening, And a gas supply means.
  • the film opening surface of the film is blocked from the plasma forming space by closing the mask opening with a shirter, and self-cleaning of the film forming portion can be performed during film formation.
  • the corrosive cleaning gas and its decomposition products can be prevented from diffusing into the film, peripheral mechanical parts, and the like.
  • the shatter can function as a counter electrode.
  • the cleaning gas supply means can be constituted by a gas supply means for supplying a reactive gas.
  • the adjustment mechanism is composed of a roller moving mechanism that moves up and down the upstream roller and the downstream roller that guide the travel of the film and the metal belt, and a belt tension adjustment unit that adjusts the tension of the metal belt. be able to.
  • the film quality formed on the film can be made uniform, and facing the high-frequency electrode according to the film forming conditions.
  • the gap between the electrodes can be easily adjusted.
  • the film forming unit can be self-cleaned during film formation, high-quality film formation processing can be performed while suppressing a reduction in apparatus operation rate. Is possible.
  • FIG. 1 is a schematic configuration diagram of a trapping type plasma CVD apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a film forming unit 25.
  • FIG. 3 is a cross-sectional view in the direction [3]-[3] in FIG.
  • FIG. 4 is a side sectional view of the film forming unit 25 for explaining a transition process during self-cleaning.
  • FIG. 5 is a side sectional view of the film forming unit 25 for explaining a transition process during self-cleaning.
  • FIG. 6 is a side sectional view of the film forming unit 25 during self-cleaning.
  • FIG. 7 is a schematic configuration diagram of a conventional trapping type plasma CVD apparatus.
  • FIG. 1 shows a schematic configuration of a torsion type plasma CVD apparatus 20 according to an embodiment of the present invention.
  • the trapping type plasma CVD apparatus 20 of the present embodiment includes a vacuum chamber 21 and a film formation
  • the film 22 includes a drawing roller 23 and a peeling roller 24 for the target film 22, and a film forming unit 25.
  • the vacuum chamber inside the vacuum chamber 21 is divided into a reaction chamber 27 in which the film forming unit 25 is arranged, and a non-reaction chamber 28 in which the brewing roller 23 and the wiping roller 24 are arranged by the partition plate 26. It is partitioned.
  • the reaction chamber 27 and the non-reaction chamber 28 are connected to evacuation ports 29 and 30, respectively, and each chamber can be evacuated independently.
  • the pressure in the reaction chamber 27 is maintained at several tens to several hundreds Pa, for example.
  • the vacuum exhaust port 29 on the reaction chamber 27 side is arranged in the vicinity of the film forming unit 25.
  • the slit 26a through which the directional film 22 can pass from the feeding roller 23 to the film forming unit 25 passes through the partition plate 26, and the directional film 22 passes from the film forming unit 25 to the brewing roller 24.
  • Each of the obtained slits 26b is provided.
  • the film 22 is a long flexible film cut to a predetermined width, and has a thickness of, for example, 70.
  • a glass film or a resin film of / z m is used.
  • the traveling speed of the film 22 is, for example, 0.01 to 0.1 lm / min.
  • a plurality of auxiliary rollers 31 A and 31B, a heating roller 32, and an upstream movable roller 33 that guide the traveling of the film 22 are provided in the traveling path of the film 22 from the feeding roller 23 to the film forming unit 25. They are arranged in order.
  • a downstream movable roller 34 and a plurality of auxiliary rollers 35A to 35C that guide the traveling of the film 22 are arranged in order on the traveling path of the film 22 from the film forming unit 25 to the scraping roller 24.
  • the auxiliary roller 35B also has a function as a cooling roller.
  • the heating roller 32 incorporates a heating means such as a heater, and heats the film 22 to a predetermined temperature (for example, 200 to 250 ° C.) during the film 22 conveyance process. If necessary, an auxiliary heater 39 may be installed on the film forming surface side of the film 22 between the heating roller 32 and the upstream movable roller 33.
  • a heating means such as a heater
  • auxiliary heater 39 may be installed on the film forming surface side of the film 22 between the heating roller 32 and the upstream movable roller 33.
  • the upstream movable roller 33 and the downstream movable roller 34 correspond to the “upstream roller” and the “downstream roller” of the present invention, respectively, and the film 22 is substantially linear ( Drive horizontally. These upstream side movable roller 33 and downstream side movable roller 34 will be described later.
  • the lifter 46 installed outside the vacuum chamber 21 can move up and down between a film forming position indicated by a solid line and a self-cleaning position indicated by a two-dot chain line in FIG.
  • the film forming unit 25 is disposed between the upstream movable roller 33 and the downstream movable roller 34, and faces the film forming surface of the film 22 with a high frequency electrode 36 and a shaft attached to the high frequency electrode 36.
  • a war plate 37 and an anode electrode 38 facing the back side of the film 22 are provided.
  • the raw material gas supplied to the film formation surface of the film 22 through the shower plate 37 is turned into plasma between the high-frequency electrode 36 and the film 22, and the reaction product of the raw material gas adheres to the film formation surface of the traveling film 22 To form a film.
  • the anode electrode 38 is configured as a counter electrode and is at a ground potential, and is heated to the same temperature as the heating roller 32 in order to make the temperature of the film 22 uniform.
  • a neutralization mechanism 53 is provided between the auxiliary roller 35B and the scraping roller 24.
  • the static elimination mechanism 53 is installed for the purpose of removing the electrification of the film 22.
  • a mechanism is adopted in which the film 22 is passed through plasma and the film 22 is neutralized by bombarding.
  • the metal belt 40 is circulated in the reaction chamber 27!
  • the metal belt 25 is, for example, an endless belt made of stainless steel, and the film 22 between the heating roller 32, the upstream movable roller 33, the downstream movable roller 34, and the auxiliary roller 35A is formed on the back side of the film 22 on the film 22 side. Drive at the same time.
  • the metal belt 40 is set to the same potential (ground potential) as the anode electrode 38.
  • auxiliary roller 35A and the heating roller 32 a plurality of guide rollers 42A to 42C for guiding the running of the metal belt 40 and a moving roller 43 for adjusting the running tension of the metal belt 40 are arranged. Yes.
  • the heating roller 32, the upstream movable roller 33, the downstream movable roller 34, the auxiliary roller 35A, the guide rollers 42A to 42C, and the moving roller 43 constitute a belt running system 41.
  • the tension of the metal belt 40 may be adjusted by the moving roller 43 or may be performed by installing a tension roller (not shown) separately.
  • the reaction chamber 27 includes partition plates 44, 45 between the heating roller 32 and the auxiliary roller 35A. Are provided.
  • An intermediate chamber (buffer chamber) 70 is provided between the partition plate 44 and the partition plate 45, and a traveling chamber 71 is provided between the partition plate 26 and the partition plate 44.
  • the intermediate chamber 70 and the traveling chamber 71 are provided with evacuation ports 72 and 73, respectively, and can be evacuated independently.
  • the partition plates 44 and 45 and the vacuum exhaust ports 72 and 73 suppress the diffusion, adhesion, and contamination of the reaction gas, the cleaning gas, the plasma product, and the like introduced into the film forming unit 25 to the belt traveling system 41.
  • FIG. 2 is a schematic configuration diagram of the film forming unit 25.
  • the high frequency electrode 36 is connected to a high frequency power supply 47.
  • the high frequency power supply 47 can adopt a power supply frequency of lOOKHz or more and lOOMHz or less depending on the plasma formation conditions.
  • the high-frequency electrode 36 has a container shape, and a space 49 having a predetermined volume is formed therein.
  • a metal shower plate 37 is attached to the upper end of the high-frequency electrode 36. The shower plate 37 faces the film forming surface of the film 22 that is stretched over the film forming unit 25.
  • the shower plate 37 functions as a part of the high-frequency electrode, and forms a plasma space of the source gas between the shower plate 37 and the film 22 in cooperation with the anode electrode 38 connected to the ground potential. To do.
  • the source gas is introduced from the gas supply pipe 50 into the space 49 through the flow rate adjusting valve 48 and the gas inlet 50a, and the holes of the shower plate 37 are also supplied uniformly.
  • the shower plate 37, the space 49, the gas supply pipe 50, and the gas introduction port 50a constitute the “gas supply means” of the present invention.
  • the type of source gas used is not particularly limited, and can be appropriately selected depending on the type of material to be deposited.
  • various functional layers for a thin film transistor (TFT) are formed on the film 22 by plasma CVD.
  • the source gas is a mixture of SiH and H when forming an amorphous silicon layer.
  • Si 4 2 gas can be used, and in the case of forming a P-doped n + type amorphous silicon layer, a mixed gas of SiH, PH, and H can be used. Furthermore, when forming a SiN layer, SiH,
  • a mixed gas of NH and N, or a mixed gas of SiH, NO, and Ar can be used.
  • a fluorine-based gas such as NF is used as a cleaning gas supplied at the time of self-cleaning described later.
  • the supply pipe 50 can be introduced.
  • This NF gas is a corrosive gas.
  • a mask 51 is disposed between the shower plate 37 and the film forming surface of the film 22. At least the upper part of the mask 51 is made of an insulating material such as ceramic, and an opening 52 is formed in the film forming surface of the film 22 to limit the film formation region.
  • the mask 51 includes a crank-shaped mask body 53 that covers a part of the side periphery and the upper surface of the high-frequency electrode 36, and a mask peripheral edge 54 that forms the opening 52.
  • a gas exhaust passage indicated by an arrow P in FIG. 2 is formed between the mask 51 and the high-frequency electrode 36, and the gas is guided to a nearby vacuum exhaust port 29 (FIG. 1).
  • FIGS. 3 to 6 are side cross-sectional views of the film forming unit 25 in which the traveling direction force of the film 22 is also seen.
  • the structure of the upstream movable roller 33 is shown.
  • the downstream movable roller 34 has the same structure.
  • the torsion type plasma CVD apparatus 20 of the present embodiment has a shirt 65 that opens and closes the opening 52 of the mask 51.
  • the shirt 52 closes the opening 52 of the mask 51 and opens the gas inlet.
  • the cleaning gas is supplied from 5 Oa, and the film forming unit 25 can be self-cleaned.
  • the upstream movable roller 33 (and the downstream movable roller 34, and so on) defines the traveling position of the film 22 by pivotally supporting both ends of the rotating shaft 56 on the support bracket 57, respectively.
  • the support bracket 57 is connected to a lifter 46 on the outer surface side of the bottom wall of the vacuum chamber 21 via a lifter pin 58. Accordingly, the upstream side movable roller 33 is driven up and down in the vertical direction by the drive of the lifter 46.
  • the lifter pin 58 is inserted into the vacuum bellows 59 installed between the support bracket 57 and the bottom wall of the vacuum chamber 21, so that the lifter pin 58 and the bottom wall of the vacuum chamber 21 are separated from each other. Airtightness between them is maintained.
  • FIG. 3 shows a state when the film 22 is formed.
  • the upstream side movable roller 33 is configured to be substantially equal to the width of the metal belt 40 that is larger than the width of the film 22.
  • traveling is guided by the upstream movable roller 33.
  • the film 22 and the metal belt 40 pass between the anode electrode 38 and the mask 51.
  • the anode electrode 38 is supported by an L-shaped upper hook 60 attached to the support brackets 57, 57, and the mask 51 is supported by a support block 62 installed on the inner surface of the bottom wall of the vacuum chamber 21.
  • each height position is defined.
  • the facing distance between the film 22 and the shower plate 37 is adjusted to 10 mm to 50 mm, preferably 15 mm to 25 mm. This distance is adjusted by moving the lifter 46 up and down as will be described later. If the facing distance between the film 22 and the shower plate 37 is less than 10 mm, the area where the plasma is generated becomes narrow and the gas reaction does not proceed. On the other hand, if the thickness exceeds 50 mm, the film formation rate decreases and the productivity deteriorates.
  • the lifter 46 has a force air cylinder, a motor or the like partially shown in the figure as a drive source. As shown in FIG. 4, the lifter 46 can move the anode electrode 38 supported by the upper hook 60 away from the mask 51, and can move up to a position where a gap G1 is formed between the anode electrode 38 and the mask 51. It is said that. As shown in FIG. 5, the lifter 46 further moves the mask 51 away from the shower plate 37 by engaging with the L-shaped lower hook 61 attached to the support bracket 57, and the mask 51 and the shower plate 37 It is configured to be able to ascend to a position where a gap G2 is formed.
  • a shirter 65 is on standby in the vicinity of the film forming unit 25. As shown in FIG. 6, the shirt 65 is configured to enter the gap G1 between the anode electrode 38 and the mask 51, and to close the mask opening 52 from the upper position.
  • the shirt 65 is made of metal and connected to the ground potential, faces the shower plate 37 through the mask opening 52, and defines a plasma space therebetween.
  • the film 22 and the metal belt 40 supported by the upstream movable roller 33 and the metal belt 40 are loosened due to a decrease in tension. Therefore, with respect to the metal belt 40, the slack of the metal belt 40 is absorbed by the movement roller 43 of the belt traveling system 41 moving to the position indicated by the two-dot chain line in FIG. As for the film 22, slackness of the film 22 is absorbed by, for example, the back torque of the take-out roller 23 or the tension control or torque control of the take-off roller 24.
  • the above-described lifter 46, support bracket 57, upper hook 60, and the like constitute the “roller moving mechanism” of the present invention.
  • the roller moving mechanism and the moving roller 43 constituting the belt traveling system 41 constitute the “adjusting mechanism” of the present invention.
  • the film 22 unwound from the unwinding roller 23 includes auxiliary rollers 31A and 31B, a heating roller 32, upstream and downstream movable rollers 33 and 34, and auxiliary rollers 35A to 35C. It is laid across the staking roller 24 via The upstream side and downstream side movable rollers 33 and 34 are at film forming positions indicated by solid lines in the figure.
  • the metal belt 40 traveling in the belt traveling system 41 travels integrally with the film 22 in the section of the heating roller 32, the upstream and downstream movable rollers 33 and 34, and the auxiliary roller 35A.
  • Each of the moving rollers 43 guides the traveling of the metal belt 40 at a position indicated by a solid line in the drawing.
  • the film 22 unwound from the unwinding roller 23 is joined to the metal belt 40 by the heating roller 32.
  • the calo heat roller 32 is heated to a reaction temperature (200 to 250 ° C.) necessary for film formation. Accordingly, the film 22 comes into contact with the heating roller 32 through the metal belt 40 located on the back surface side (the surface opposite to the film forming surface) and is heated. If necessary, the film 22 is heated by the auxiliary heater 39.
  • the heating efficiency of the film 22 can be increased and the power consumption required for the heating source can be reduced.
  • the metal belt 40 is made to travel integrally with the film 22, the rubbing between the metal belt 40 and the film 22 can be eliminated and the film 22 can be protected.
  • the film 22 heated by the heating roller 32 is conveyed to the film forming unit 25 together with the metal belt 40.
  • the film 22 faces the shower plate 37 with a certain gap.
  • the opposing distance is 10 to 50 mm as described above. This size can be appropriately adjusted according to the plasma forming conditions.
  • the film 22 can be moved substantially linearly at the film forming position by the upstream and downstream movable rollers 33, 34. Gap adjustment with the G-37 can be easily performed. Further, the shower plate 37 can be formed flat.
  • Film formation on the film 22 is performed by converting the raw material gas supplied from the shower plate 37 into plasma by applying a high-frequency voltage to the high-frequency electrode 36 and attaching the reaction product to the traveling film 22. Done.
  • the film formation area of the film 22 is limited by the mask 51.
  • the metal belt 40 also functions as an anode electrode (counter electrode).
  • the space 49 formed inside the high-frequency electrode 36 functions as a buffer space for the raw material gas introduced from the gas introduction port 50 a, and this force is also generated through each hole of the shower plate 37. Supply raw material gas uniformly to the space. Thereby, a uniform plasma can be formed on the film 22, and the film formation layer can be made uniform.
  • the formed film 22 is separated from the metal belt 40 by the auxiliary roller 35A, and cooled to a predetermined temperature by the auxiliary roller 35B. Then, the charge removal mechanism 53 performs a charge removal process on the charge on the film 22, and then winds the film 22 around the winding roller 24. As a result, the occurrence of wrinkles and turbulence due to the charging of the film 22 exceeding a predetermined value can be suppressed.
  • the film forming process is performed on the film 22.
  • the self-cleaning process of the film forming unit 25 is performed as follows.
  • the supply of the source gas in the film forming unit 25 is stopped, and the running of the film 22 and the metal belt 40 is also stopped. Thereafter, the lifter 46 is driven upward, and the upstream movable roller 33, the downstream movable roller 34, the anode electrode 38, and the mask 51 are sequentially moved to the upper self-cleaning position as shown in FIGS.
  • the shirter 65 moves directly above the mask opening 52 through the gap G1 between the anode electrode 38 and the mask 51, and then the mask 51 is further lifted so The opening 52 is closed. Then, cleaning gas is introduced from the gas introduction port 50a and plasma is generated between the shower plate 37 and the shirter 65, whereby the deposits attached to the shower plate 37 and the mask 51 are decomposed and removed.
  • self-cleaning of the film forming unit 25 is performed.
  • the film forming process of the film 22 can be resumed immediately after the cleaning is completed.
  • the mask 51, the anode electrode 38, and the movable rollers 33 and 34 are moved down by the reverse operation to return to the film formation position shown in FIG.
  • the mask opening 52 is closed by the shirt 65, so that the cleaning gas is prevented from diffusing into the space above the mask. can do.
  • the vacuum exhaust port 29 (FIG. 1) on the reaction chamber 27 side is disposed in the vicinity of the film forming section 25, the introduced cleaning gas is placed in the exhaust flow path indicated by the arrow P in FIG. Then, the gas is exhausted directly from the side of the mask 51 to the vacuum exhaust port 29, and the film forming unit 25 is circulated to suppress the diffusion to the upper part.
  • the self-tarling of the film forming unit 25 can be executed during the film formation of the film 22, and the deterioration of the apparatus operating rate can be suppressed and high quality can be maintained.
  • a film formation process can be performed.
  • the metal belt 40 and the anode electrode 38 perform the same operation, and either one may be omitted as necessary.
  • the upstream movable roller 33 and the downstream movable roller 34 are moved up to move the film 22 and the metal belt 40 from the shower plate 37.
  • a roller member that can be raised and lowered is separately installed between the upstream movable roller 33 and the film forming unit 25, and between the film forming unit 25 and the downstream movable roller 34, and these rollers are installed. You can move the film and metal belt up and down with members. Yes.
  • the take-up roller 24 functions as a feed roller
  • the feed roller 24 functions as a feed roller
  • the auxiliary roller 35A may be configured in advance as a heating roller
  • the auxiliary roller 31B may be configured in advance as a cooling roller.
  • a static elimination mechanism and an auxiliary heater may be installed in necessary positions in advance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 フィルムの成膜領域に反応ガスを均一に供給して膜質の均質化を図ることができ、フィルム成膜途中で成膜部のセルフクリーニングをも実行可能な巻取式プラズマCVD装置を提供する。  フィルムの走行方向に関して成膜部(25)の上流側および下流側に配置した一対の可動ローラ(33,34)間でフィルム(22)を支持し、フィルム(22)を成膜位置においてほぼ直線的に走行させる。これによりシャワープレート(37)とフィルム(22)間の対向距離を一定に保持して膜質の均質化を図る。フィルム(22)は、その裏面側で同時走行する金属ベルト(40)により加熱される。可動ローラ(33,34)は成膜位置からセルフクリーニング位置へ上昇可能に構成し、フィルム(22)をシャワープレート(37)から遠ざけられるようにする。そして、マスク(51)の開口部をシャッタ(65)で塞ぎ、クリーニングガスの漏出を防いで成膜中のセルフクリーニングを実行可能とする。

Description

明 細 書
巻取式プラズマ CVD装置
技術分野
[0001] 本発明は、減圧雰囲気内でフィルムを走行させながらフィルムにプラズマ CVDによ り成膜を行う卷取式プラズマ CVD装置に関する。
背景技術
[0002] 従来より、長尺のフィルムあるいはフィルム状基板に連続的に成膜を行うのに、例え ば卷取式真空成膜装置が用いられている(下記特許文献 1, 2参照)。これは、卷出 し部から巻き出したフィルムを一定速度で走行させながら、成膜位置にぉ 、てプラズ マ CVD等により成膜を行った後、卷取り部で巻き取るように構成されている。
[0003] 図 7に従来の卷取式プラズマ CVD装置の構成を示す。従来の卷取式プラズマ CV D装置においては、真空チャンバ 1の内部において、卷出しローラ 2からフィルム 3を 巻き出し、これを複数本の補助ローラ 4を介して加熱源を内蔵したドラムローラ 5に卷 き付けた後、複数本の補助ローラ 6を介して卷取りローラ 7へ巻き取るように構成され ている。ドラムローラ 5は接地電位に接続されていると共に円弧状の高周波電極 8と 対向配置されており、ガス供給管 9を介して反応ガスをドラムローラ 5と高周波電極 8 との間に供給してプラズマを発生させ、その反応生成物をドラムローラ 5上のフィルム に付着させて成膜を行う。
[0004] この従来の卷取式プラズマ CVD装置においては、ドラムローラ 5の周囲に配置され たシール手段 9により、真空室 1の内部を反応室 10と非反応室 11とに区画して 、る。 また、反応室 10を真空排気ライン 12で真空排気し、非反応室 11を補助ガス導入管 13からの補助ガスの導入により加圧することで、反応室 10に供給された反応ガスの 非反応室 11側への流動を抑制するように構成されて ヽる。
[0005] 特許文献 1:特開 2002— 212744号公報
特許文献 2:特開平 7— 233474号公報
特許文献 3 :特開 2003— 179043号公報
発明の開示 発明が解決しょうとする課題
[0006] 上述した従来の卷取式プラズマ CVD装置においては、フィルム 3をドラムローラ 5の 周面に巻き付けた状態で成膜を行うために、プラズマを形成するための高周波電極 8は、ドラムローラ 9の周面に沿う円弧状に形成されている。
[0007] し力しながら、このような構成では、フィルムの成膜領域全域に反応ガスを均一に供 給することが困難であるため、均一なプラズマを形成できず、フィルム 3に均一な成膜 を行いにくいという問題がある。また、高周波電極 8をドラムローラ 5と同心円筒状に形 成する必要があるため、高周波電極 8とドラムローラ 5との間の間隙調整を容易に行 えず、更に高周波電極 8の作成も容易でな 、と 、う問題もある。
[0008] 一方、通常プラズマ CVDによる成膜時は、成膜位置の周辺部品(シャワープレート 、マスク等)が反応生成物の付着により汚染される。このため、定期的に反応室のタリ 一ユングを行い、ダストの発生率を低く抑える必要がある。このクリーニング作業は、 反応ガスの代わりにクリーニング用ガスを導入してプラズマ化し、付着物と反応させて 除去する手法 (セルフクリーニング)がある(上記特許文献 3参照)。
[0009] しかしながら、上述した従来の卷取式プラズマ CVD装置においては、ドラムローラ 5 に巻き付けられているフィルム 3が常に高周波電極 8と対向しており、セルフクリー- ングを行うとフィルムや周囲の部品が汚染されるため、フィルムの成膜途中では成膜 部のセルフクリーニングを行うことができないという問題がある。
[0010] 本発明は上述の問題に鑑みてなされ、フィルムの成膜領域に反応ガスを均一に供 給して膜質の均一化を図ることができ、高周波電極と対向電極間の間隙調整も容易 に行える卷取式プラズマ CVD装置を提供することを課題とする。
[0011] また、本発明は、フィルムの成膜途中で成膜部のセルフクリーニングを実行すること ができる卷取式プラズマ CVD装置を提供することを課題とする。
課題を解決するための手段
[0012] 本発明の卷取式プラズマ CVD装置は、フィルムの走行方向に関して成膜位置の 上流側および下流側に各々配置され、成膜位置でフィルムをほぼ直線的に走行させ る上流ローラおよび下流ローラを有し、上記成膜位置には、フィルムの成膜面に対向 し高周波電源に接続された高周波電極と、フィルムの成膜面の裏面側に配置された 対向電極と、フィルムの成膜面に原料ガスを供給するガス供給手段とが配置されて いる。
[0013] 本発明において、フィルムは、上流ローラ及び下流ローラに支持されることにより、 成膜位置で高周波電極と対向電極との間をほぼ直線的に走行する。フィルムの成膜 面に向けて供給された原料ガスは、高周波電極へ高周波電圧が印加されることでプ ラズマ化し、その反応生成物が走行するフィルムの成膜面に付着することで成膜され る。
[0014] フィルムは直線的に支持されているので、上流ローラ及び下流ローラの高さ位置の 調整でフィルムと高周波電極との間隙設定が容易となる。また、高周波電極及び対 向電極を共に平坦に形成できるので、両電極間の間隙調整も容易に行える。更に両 電極の構成も簡素化でき、作製も容易化できる。
[0015] 本発明にお 、て、上記ガス供給手段は、高周波電極に取り付けられたシャワープレ ートと、高周波電極とシャワープレートとの間に形成された空間部と、この空間部と連 通しシャワープレートを介してフィルムの成膜面にガスを供給するガス供給配管とを 有する。これにより、フィルムの成膜領域に供給される反応ガスの均一化が図られる ので、プラズマを均一に形成でき、膜質の均一化を図ることができる。
[0016] 成膜位置でフィルムを均一な温度に加熱できる構成があると好ましい。そこで本発 明では、成膜位置でフィルムと同時に走行する金属ベルトを真空室内に循環走行さ せている。金属ベルトは一定温度に加熱され、フィルムの裏面側に対向して走行する 。なお、金属ベルトは、上記対向電極とは別に構成したり、上記対向電極として構成 することができる。
[0017] 一方、本発明は、真空室において循環走行し成膜位置でフィルムの成膜面の裏面 側を同時走行する金属ベルトと、フィルムの成膜面を限定する開口部を有するマスク と、フィルムの成膜面とマスク間の間隙を調整する調整機構と、フィルムの成膜面とマ スクの開口部との間に挿入されることによりマスク開口部を閉塞可能なシャツタと、タリ 一-ング用ガスの供給手段とを備えて 、る。
[0018] これにより、マスク開口部をシャツタで閉塞することでフィルムの成膜面をプラズマ形 成空間から遮断し、フィルムの成膜途中で成膜部のセルフクリーニングを実行できる 。この場合、例えば腐食性のあるクリーニング用ガスやその分解生成物がフィルムや 周辺の機構部品等へ拡散することを抑えることができる。シャツタは対向電極として機 能させることができる。また、クリーニング用ガスの供給手段は、反応ガスを供給する ガス供給手段で構成することができる。
[0019] なお、上記調整機構は、フィルムと金属ベルトの走行をガイドする上流ローラ及び 下流ローラを昇降移動させるローラ移動機構部と、金属ベルトの張力を調整するべ ルト張力調整部とで構成することができる。
発明の効果
[0020] 以上述べたように、本発明の卷取式プラズマ CVD装置によれば、フィルムに形成さ れる膜質の均一化を図ることができるとともに、成膜条件等に応じて高周波電極と対 向電極間の間隙調整を容易に行うことができる。
[0021] また、本発明の他の構成により、フィルムの成膜途中で成膜部のセルフクリーニング を行うことができるので、装置稼働率の低下を抑えて、高品位の成膜処理を行うこと が可能となる。
図面の簡単な説明
[0022] [図 1]本発明の実施の形態による卷取式プラズマ CVD装置の概略構成図である。
[図 2]成膜部 25の概略構成図である。
[図 3]図 1における [3]— [3]線方向断面図である。
[図 4]セルフクリーニング時の移行過程を説明する成膜部 25の側断面図である。
[図 5]セルフクリーニング時の移行過程を説明する成膜部 25の側断面図である。
[図 6]セルフクリーニング時の成膜部 25の側断面図である。
[図 7]従来の卷取式プラズマ CVD装置の概略構成図である。
符号の説明
[0023] 20 卷取式プラズマ CVD装置
21 真空チャンバ
22 フィルム
23 卷出しローラ
24 卷取りローラ 27 反応室
29 真空排気ポート
32 加熱ローラ
33 上流側可動ローラ
34 下流側可動ローラ
36 高周波電極
37 シャワープレート
38 アノード電極(対向電極)
40 金属ベルト
41 ベルト走行系
43 移動ローラ
46 リフター
47 高周波電源
49 空間部
50 ガス導入配管
51 マスク
52 開口部
53 除電機構
56 回転軸
57 支持ブラケット
60 上段側フック
61 下段側フック
65 シャツタ
発明を実施するための最良の形態
[0024] 以下、本発明の実施の形態について図面を参照して説明する。
[0025] 図 1は、本発明の実施の形態による卷取式プラズマ CVD装置 20の概略構成を示 している。本実施の形態の卷取式プラズマ CVD装置 20は、真空チャンバ 21と、成膜 対象であるフィルム 22の卷出しローラ 23及び卷取りローラ 24と、成膜部 25とを備え ている。
[0026] 真空チャンバ 21の内部の真空室は、仕切板 26により、成膜部 25が配置される反 応室 27と、卷出しローラ 23及び卷取りローラ 24が配置される非反応室 28に区画さ れている。反応室 27及び非反応室 28にはそれぞれ真空排気ポート 29, 30が接続さ れており、各室が独立して真空排気可能とされている。ここでは、反応室 27の圧力を 例えば数十〜数百 Paに維持している。また、反応室 27側の真空排気ポート 29は、 成膜部 25の近傍に配置されて 、る。
[0027] また、仕切板 26には卷出しローラ 23から成膜部 25へ向力 フィルム 22が通過し得 るスリット 26aと、成膜部 25から卷取りローラ 24へ向力 フィルム 22が通過し得るスリツ ト 26bとがそれぞれ設けられて 、る。
[0028] フィルム 22は、所定幅に裁断された長尺の可撓性フィルムでなり、厚さが例えば 70
/z mのガラスフィルム又は榭脂フィルムが用いられている。榭脂フィルムとしては、ポリ イミド、ポリアミド、ァラミドなど耐熱温度 200°C以上の榭脂フィルムが好適である。ま た、フィルム 22の走行速度は、例えば 0. 01〜0. lm/min.とされている。
[0029] 卷出しローラ 23から成膜部 25へ至るフィルム 22の走行経路には、フィルム 22の走 行をガイドする複数の補助ローラ 31 A, 31B、加熱ローラ 32及び上流側可動ローラ 3 3がそれぞれ順に配置されている。また、成膜部 25から卷取りローラ 24へ至るフィル ム 22の走行経路には、フィルム 22の走行をガイドする下流側可動ローラ 34及び複 数の補助ローラ 35A〜35Cがそれぞれ順に配置されている。なお、補助ローラ 35B は、冷却ローラとしての機能も有している。
[0030] 加熱ローラ 32は、ヒータ等の加熱手段を内蔵し、フィルム 22の搬送過程でフィルム 22を所定温度 (例えば 200〜250°C)に加熱する。なお必要に応じて、加熱ローラ 3 2と上流側可動ローラ 33との間に、フィルム 22の成膜面側に補助ヒータ 39を設置し てもよい。
[0031] 上流側可動ローラ 33及び下流側可動ローラ 34は、それぞれ本発明の「上流ローラ 」及び「下流ローラ」に対応し、成膜部 25 (成膜位置)でフィルム 22をほぼ直線的(水 平)に走行させる。これら上流側可動ローラ 33及び下流側可動ローラ 34は、後述す るように、真空チャンバ 21の外部に設置されたリフタ一 46によって、図 1において実 線で示す成膜位置と二点鎖線で示すセルフクリーニング位置との間を昇降移動可能 とされている。
[0032] 成膜部 25は、上流側可動ローラ 33と下流側可動ローラ 34との間に配置され、フィ ルム 22の成膜面に対向する高周波電極 36と、高周波電極 36に取り付けられたシャ ワープレート 37と、フィルム 22の成膜面の裏面側に対向するアノード電極 38等を備 えている。そして、シャワープレート 37を介してフィルム 22の成膜面へ供給した原料 ガスを高周波電極 36とフィルム 22との間でプラズマ化し、走行するフィルム 22の成 膜面へ原料ガスの反応生成物を付着させて成膜する。なお、アノード電極 38は対向 電極として構成され、接地電位とされていると共に、フィルム 22の温度均一化のため 、加熱ローラ 32と同様な温度に加熱されている。
[0033] 補助ローラ 35Bと卷取りローラ 24との間には、除電機構 53が設けられている。この 除電機構 53は、フィルム 22の帯電を除去する目的で設置されている。除電機構 53 の構成例としては、プラズマ中にフィルム 22を通過させボンバード処理によりフィルム 22を除電する機構が採用されている。
[0034] 次に、反応室 27には、金属ベルト 40が循環走行されて!、る。この金属ベルト 25は 例えばステンレス製の無端ベルトであり、加熱ローラ 32、上流側可動ローラ 33、下流 側可動ローラ 34、補助ローラ 35Aの間を、フィルム 22の成膜面の裏面側でフィルム 2 2と同時に走行する。金属ベルト 40は、アノード電極 38と同電位 (接地電位)とされて いる。
[0035] 補助ローラ 35Aと加熱ローラ 32との間には、金属ベルト 40の走行をガイドする複数 のガイドローラ 42A〜42Cと、金属ベルト 40の走行張力を調整する移動ローラ 43が それぞれ配置されている。これら加熱ローラ 32、上流側可動ローラ 33、下流側可動 ローラ 34、補助ローラ 35A、ガイドローラ 42A〜42C、移動ローラ 43により、ベルト走 行系 41が構成されている。なお、金属ベルト 40のテンションの調整は移動ローラ 43 により行われる場合と、図示しな!ヽテンションローラを別途設置して行われる場合とが ある。
[0036] そして、反応室 27には、加熱ローラ 32と補助ローラ 35Aとの間に、仕切板 44, 45 がそれぞれ設けられている。仕切板 44と仕切板 45との間は中間室 (バッファ室) 70と され、仕切板 26と仕切板 44との間は走行室 71とされている。中間室 70及び走行室 71には、真空排気ポート 72及び 73がそれぞれ設けられ、独立して真空排気可能で ある。これら仕切板 44, 45及び真空排気ポート 72, 73により、成膜部 25に導入され る反応ガスやクリーニングガス、プラズマ生成物等がベルト走行系 41へ拡散し付着、 汚染するのを抑制する。
[0037] 図 2は成膜部 25の概略構成図である。
[0038] 高周波電極 36は、高周波電源 47に接続されている。高周波電源 47は、プラズマ の形成条件に応じて、 lOOKHz以上 lOOMHz以下の電源周波数が採用可能とされ ている。高周波電極 36は容器形状を有し、内部に所定容積の空間部 49が形成され ている。高周波電極 36の上端部には、金属製のシャワープレート 37が取り付けられ ている。シャワープレート 37は、成膜部 25に架け渡されたフィルム 22の成膜面に対 向している。
[0039] シャワープレート 37は高周波電極の一部として機能し、接地電位に接続されたァノ ード電極 38と協働してシャワープレート 37とフィルム 22との間に原料ガスのプラズマ 空間を形成する。原料ガスは、ガス供給配管 50から流量調整バルブ 48及びガス導 入口 50aを介して空間部 49へ導入され、シャワープレート 37の各孔カも均一に供給 される。なお、これらシャワープレート 37、空間部 49、ガス供給配管 50及びガス導入 口 50aにより、本発明の「ガス供給手段」が構成されている。
[0040] 使用される原料ガスの種類は特に限定されず、成膜する材料の種類に応じて適宜 選定可能である。本実施の形態では、プラズマ CVD法により、フィルム 22に薄膜トラ ンジスタ(TFT:Thin Film Transistor)用の各種機能層を形成するようにしている。
[0041] 即ち、成膜材料としては、シリコン、窒化シリコン、酸ィ匕シリコンもしくは酸窒化シリコ ン、又は、これらにホウ素(B)、リン (P)の何れか一方もしくは両方が添加される。この 場合、原料ガスとしては、アモルファスシリコン層を成膜する場合は SiHと Hの混合
4 2 ガスを用いることができ、 Pドープ n+型アモルファスシリコン層を成膜する場合は SiH , PH , Hの混合ガスを用いることができる。更に、 SiN層を形成する場合は SiH ,
4 3 2 4
NH, Nの混合ガス、あるいは SiH, N O, Arの混合ガスを用いることができる。 [0042] また本実施の形態では、成膜時に供給される上記原料ガスのほか、後述するセル フクリー-ング時に供給されるクリーニングガスとして、 NF等のフッ素系ガスがガス
3
供給配管 50から導入可能に構成されている。この NFガスは腐食性ガスである。
3
[0043] 一方、シャワープレート 37とフィルム 22の成膜面との間には、マスク 51が配置され ている。マスク 51は少なくとも上部がセラミック等の絶縁材料でなり、フィルム 22の成 膜面の面内において成膜領域を限定する開口部 52が形成されている。マスク 51は 、高周波電極 36の側周部及び上面の一部を覆うクランク形状のマスク本体 53と、開 口部 52を形成するマスク周縁部 54とで構成されている。マスク 51と高周波電極 36と の間には、図 2において矢印 Pで示すガスの排気流路が形成されており、近傍の真 空排気ポート 29 (図 1)へガスを導く。
[0044] 図 3〜図 6は、フィルム 22の走行方向力も見た成膜部 25の側断面図である。なお、 図では上流側可動ローラ 33側の構成を示している力 下流側可動ローラ 34側も同 様の構成を有している。
[0045] 本実施の形態の卷取式プラズマ CVD装置 20は、マスク 51の開口部 52を開閉自 在なシャツタ 65を有し、このシャツタ 65でマスク 51の開口部 52を塞ぎ、ガス導入口 5 Oaからクリーニングガスを供給して、成膜部 25のセルフクリーニングを実行可能に構 成されている。
[0046] 上流側可動ローラ 33 (及び下流側可動ローラ 34、以下同様)は、その回転軸 56の 両端がそれぞれ支持ブラケット 57に軸支されることで、フィルム 22の走行位置を規定 している。支持ブラケット 57は、リフターピン 58を介して真空チャンバ 21の底壁外面 側のリフター 46に接続されている。従って、上流側可動ローラ 33は、このリフター 46 の駆動により上下方向に昇降駆動される。
[0047] リフターピン 58は、支持ブラケット 57と真空チャンバ 21の底壁との間に設置された 真空べローズ 59の内部に挿入されることにより、リフターピン 58と真空チャンバ 21の 底壁との間の気密が保持されている。
[0048] 図 3はフィルム 22の成膜時の様子を示している。上流側可動ローラ 33は、フィルム 22の幅よりも大きぐ金属ベルト 40の幅とほぼ同等に構成されている。上流側可動口 ーラ 33が図示する成膜位置にある場合、上流側可動ローラ 33で走行をガイドされる フィルム 22及び金属ベルト 40は、アノード電極 38とマスク 51との間を通過する。この とき、アノード電極 38は、支持ブラケット 57, 57に取り付けられた L字形状の上段側 フック 60で支持され、マスク 51は、真空チャンバ 21の底壁内面側に設置された支持 ブロック 62に支持されることで、それぞれの高さ位置が規定されて 、る。
[0049] この状態において、フィルム 22とシャワープレート 37との間の対向距離は、 10mm 以上 50mm以下、好ましくは 15mm以上 25mm以下に調整されている。この距離は 、後述するようにリフタ一 46の昇降移動で調整される。フィルム 22とシャワープレート 37との間の対向距離が 10mmより小さいと、プラズマが発生するエリアが狭くなり、ガ スの反応が進まなくなる。また、 50mmを上回ると、成膜レートが低下し生産性が悪く なる。
[0050] リフター 46は図では部分的に示している力 エアシリンダあるいはモータ等を駆動 源として有している。リフター 46は、図 4に示したように、上段側フック 60に支持され ているアノード電極 38をマスク 51から遠ざけ、アノード電極 38とマスク 51との間に間 隙 G1を形成する位置へ上昇可能とされている。リフター 46は更に、図 5に示したよう に、支持ブラケット 57に取り付けられた L字形状の下段側フック 61との係合によりマス ク 51をシャワープレート 37から遠ざけ、マスク 51とシャワープレート 37との間に間隙 G2を形成する位置まで上昇可能に構成されて 、る。
[0051] そして、反応室 27には、図 3〜図 5に示したように成膜部 25の近傍位置にシャツタ 6 5が待機されている。このシャツタ 65は、図 6に示ようにアノード電極 38とマスク 51間 の間隙 G1に進入して、マスク開口部 52を上方位置から閉塞可能に構成されている 。なお、シャツタ 65は金属製で接地電位に接続されており、マスク開口部 52を介して シャワープレート 37と対向し、両者間にプラズマ空間を区画する。
[0052] なお、上流側可動ローラ 33及び下流側可動ローラ 34の上昇移動により、これらに 支持されるフィルム 22及び金属ベルト 40は、張力の低下により弛む。そこで、金属べ ルト 40に関しては、ベルト走行系 41の移動ローラ 43が図 1において二点鎖線で示す 位置へ移動することで金属ベルト 40の弛みが吸収される。また、フィルム 22に関して は、例えば卷出しローラ 23のバックトルクあるいは卷取りローラ 24の張力制御もしくは トルク制御等によりフィルム 22の弛みが吸収されるようになっている。 [0053] 以上、上述したリフター 46、支持ブラケット 57、上段側フック 60等により、本発明の 「ローラ移動機構部」が構成される。また、このローラ移動機構部と、ベルト走行系 41 を構成する移動ローラ 43とにより、本発明の「調整機構」が構成される。
[0054] 続いて、以上のように構成される本実施の形態の卷取式プラズマ CVD装置 20の 作用について説明する。
[0055] 図 1を参照して、卷出しローラ 23から卷出されたフィルム 22は、補助ローラ 31A, 3 1B、加熱ローラ 32、上流側及び下流側可動ローラ 33, 34、補助ローラ 35A〜35C を介して卷取りローラ 24に架け渡されている。上流側及び下流側可動ローラ 33, 34 はそれぞれ図中実線で示す成膜位置にある。
[0056] 一方、ベルト走行系 41を走行する金属ベルト 40は、加熱ローラ 32、上流側及び下 流側可動ローラ 33, 34、補助ローラ 35Aの区間でフィルム 22と一体的に走行する。 移動ローラ 43は、それぞれ図中実線で示す位置で金属ベルト 40の走行をガイドして いる。
[0057] 成膜時、卷出しローラ 23から巻き出されたフィルム 22は、加熱ローラ 32で金属べ ルト 40と合流する。カロ熱ローラ 32は、フィルムの成膜に必要な反応温度(200〜250 °C)に加熱されている。従って、フィルム 22は、その裏面側 (成膜面とは反対側の面) に位置する金属ベルト 40を介して加熱ローラ 32と接触し加熱される。なお必要に応 じて、補助ヒータ 39によりフィルム 22の加熱処理が施される。
[0058] 本実施の形態によれば、走行する金属ベルト 40を介してフィルム 22を加熱してい るので、フィルム 22の加熱効率を高め、かつ加熱源に要する消費電力の低減を図る ことができる。また、金属ベルト 40をフィルム 22と一体的に走行させているので、金属 ベルト 40とフィルム 22間の擦れをなくし、フィルム 22の保護を図ることができる。
[0059] 加熱ローラ 32で加熱されたフィルム 22は、金属ベルト 40と共に成膜部 25へ搬送さ れる。成膜部 25において、図 2に示したように、フィルム 22はシャワープレート 37と一 定の間隙をおいて対向している。その対向距離は、上述したように 10〜50mmであ る。この大きさは、プラズマ形成条件に応じて適宜調整可能である。
[0060] 特に本実施の形態によれば、上流側及び下流側可動ローラ 33, 34によってフィル ム 22を成膜位置においてほぼ直線的に走行させることができるので、シャワープレー ト 37との間の間隙調整を容易に行うことができる。また、シャワープレート 37を平坦に 形成できる。
[0061] フィルム 22への成膜は、高周波電極 36への高周波電圧の印加によりシャワープレ ート 37から供給された原料ガスをプラズマ化し、その反応生成物を走行するフィルム 22に付着させることによって行われる。フィルム 22の成膜領域は、マスク 51によって 制限される。また、このとき金属ベルト 40は、アノード電極 (対向電極)としても機能す る。
[0062] ここで、高周波電極 36の内部に形成された空間部 49は、ガス導入口 50aから導入 された原料ガスのバッファ空間として機能し、ここ力もシャワープレート 37の各孔を介 してプラズマ空間へ均一に原料ガスを供給する。これにより、フィルム 22に対して均 一なプラズマを形成でき、成膜層の均質ィ匕を図ることができる。
[0063] 成膜されたフィルム 22は、補助ローラ 35Aで金属ベルト 40と分離され、補助ローラ 35Bで所定温度に冷却される。そして、除電機構 53においてフィルム 22に帯電した 電荷の除電処理が施された後、卷取りローラ 24へ巻き取られる。これにより、フィルム 22の所定以上の帯電による皺や巻き乱れの発生を抑えることができる。
[0064] 以上のようにして、フィルム 22に対する成膜処理が行われる。
さて、フィルム 22の成膜処理を長時間連続して行うと、成膜部 25の特にシャワープレ ート 37やマスク 51の開口部 52周辺に、原料ガスの分解生成物の付着量が増大する 。これを放置すると、ダストの発生により膜質を劣化させたり、マスク開口部 52の開口 面積が変動する。そこで、本実施の形態では、以下のようにして、成膜部 25のセルフ クリーニング処理が実行される。
[0065] セルフクリーニング時は、成膜部 25における原料ガスの供給を停止し、フィルム 22 及び金属ベルト 40の走行をも停止させる。その後、リフター 46を上昇駆動させ、図 4 及び図 5に示したように上流側可動ローラ 33、下流側可動ローラ 34、アノード電極 3 8及びマスク 51を順次上方のセルフクリーニング位置へ移動させる。
[0066] なお、可動ローラ 33, 34の上昇移動により発生するフィルム 22及び金属ベルト 40 の弛みは、上述したように、卷出しローラ 23あるいは卷取りローラ 24の回転制御、移 動ローラ 43により吸収される。 [0067] その後、図 6に示したように、シャツタ 65がアノード電極 38とマスク 51間の間隙 G1 を介してマスク開口部 52の直上へ移動した後、マスク 51を更に上昇させることで当 該開口部 52を閉塞する。そして、ガス導入口 50aからクリーニングガスを導入し、シャ ワープレート 37とシャツタ 65の間にプラズマを発生させることで、シャワープレート 37 及びマスク 51に付着した付着物の分解除去を行う。
[0068] 以上のようにして、成膜部 25のセルフクリーニングが行われる。本実施の形態によ れば、フィルム 22を成膜部 25に架け渡した状態でセルフクリーニングが実行可能で あるので、クリーニング終了後は、直ちにフィルム 22の成膜処理を再開することがで きる。なお、成膜再開時は、マスク 51、アノード電極 38、可動ローラ 33, 34を上述と は逆の動作で下降させることで、図 3に示した成膜位置へ復帰させる。
[0069] また、セルフクリーニング時に導入されるクリーニングガスに腐食性のガスが用いら れる場合でも、マスク開口部 52をシャツタ 65で閉塞しているので、マスク上方空間へ のクリーニングガスの拡散を防止することができる。また、反応室 27側の真空排気ポ ート 29 (図 1)を成膜部 25の近傍に配置しているので、導入されたクリーニングガスは 、図 6に矢印 Pで示した排気流路に沿ってマスク 51の側方から上記真空排気ポート 2 9へダイレクトに排気され、成膜部 25を回り込んで上方部への拡散が抑制される。
[0070] 従って、本実施の形態によれば、フィルム 22の成膜途中で成膜部 25のセルフタリ 一-ングを実行することができ、装置稼働率の低下を抑え、高品位を維持して成膜 処理を行うことができる。
[0071] 以上、本発明の実施の形態について説明した力 勿論、本発明はこれに限定され ることなく、本発明の技術的思想に基づいて種々の変形が可能である。
[0072] 例えば、以上の実施の形態では、金属ベルト 40とアノード電極 38とは同様な作用 を行うので、どちらか一方を必要に応じて省略してもよい。
[0073] また、以上の実施の形態では、成膜部 25のセルフクリーニング時に上流側可動口 ーラ 33及び下流側可動ローラ 34を上昇移動させて、フィルム 22及び金属ベルト 40 をシャワープレート 37から遠ざけるように構成した力 これに代えて、上流側可動ロー ラ 33と成膜部 25、成膜部 25と下流側可動ローラ 34との間に昇降自在なローラ部材 を別途設置し、これらのローラ部材でフィルム及び金属ベルトを昇降移動させてもよ い。
更に、成膜済のフィルムを卷取りローラ 24で全部巻き取った後、フィルムの走行方 向を逆にして成膜部 25で他の材料層を成膜することも可能である。この場合、卷出し ローラ 22は卷取りローラとして機能し、卷取りローラ 24は卷出しローラとして機能する 。また、補助ローラ 35Aは加熱ローラとして、補助ローラ 31Bは冷却ローラとして予め 構成しておいてもよい。更に、除電機構や補助ヒータを予め必要位置に設置してお いてもよい。

Claims

請求の範囲
[1] 真空室内でフィルムを走行させながら当該フィルムにプラズマ CVDにより成膜を行 う卷取式プラズマ CVD装置であって、
前記フィルムの走行方向に関して成膜位置の上流側および下流側に各々配置さ れ、前記成膜位置で前記フィルムをほぼ直線的に走行させる上流ローラおよび下流 ローラを有し、
前記成膜位置には、
前記フィルムの成膜面に対向し高周波電源に接続された高周波電極と、 前記フィルムの成膜面の裏面側に配置された対向電極と、
前記フィルムの成膜面に原料ガスを供給するガス供給手段とが配置されていること を特徴とする卷取式プラズマ CVD装置。
[2] 前記ガス供給手段は、
前記高周波電極に取り付けられたシャワープレートと、
前記高周波電極と前記シャワープレートとの間に形成された空間部と、 前記空間部と連通し前記シャワープレートを介して前記フィルムの成膜面にガスを 供給するガス供給配管とを有する請求の範囲第 1項に記載の卷取式プラズマ CVD 装置。
[3] 前記シャワープレートと前記フィルムの成膜面との間の対向距離は、 10mm以上 5 Omm以下である請求の範囲第 2項に記載の卷取式プラズマ CVD装置。
[4] 前記高周波電源の周波数は、 ΙΟΟΚΗζ以上 100MHz以下である請求の範囲第 1 項に記載の卷取式プラズマ CVD装置。
[5] 前記対向電極は、接地電位である請求の範囲第 1項に記載の卷取式プラズマ CV D装置。
[6] 前記成膜位置の上流側には、前記フィルムを加熱するヒータが設置されている請 求の範囲第 1項に記載の卷取式プラズマ CVD装置。
[7] 前記成膜位置の下流側には、前記フィルムを除電する除電機構が設置されている 請求の範囲第 1項に記載の卷取式プラズマ CVD装置。
[8] 前記フィルムは、榭脂フィルム又はガラスフィルムである請求の範囲第 1項に記載の 卷取式プラズマ CVD装置。
[9] 前記フィルムの成膜面に成膜される材料は、シリコン、窒化シリコン、酸ィ匕シリコンも しくは酸窒化シリコン、又は、これらにホウ素、リンの何れか一方もしくは両方を添加し たものである請求の範囲第 1項に記載の卷取式プラズマ CVD装置。
[10] 前記真空室には、前記成膜位置で前記フィルムの成膜面の裏面側を支持する金 属ベルトと、この金属ベルトを循環走行させるベルト走行系が配置されている請求の 範囲第 1項に記載の卷取式プラズマ CVD装置。
[11] 前記金属ベルトは、前記成膜位置に配置された対向電極と同電位である請求の範 囲第 10項に記載の卷取式プラズマ CVD装置。
[12] 前記金属ベルトは、前記成膜位置に配置された対向電極である請求の範囲第 10 項に記載の卷取式プラズマ CVD装置。
[13] 前記金属ベルト及び前記フィルムはそれぞれ、前記成膜位置の上流側に配置され た上流ローラに接触して走行し、この上流ローラには前記金属ベルトを介して前記フ イルムを加熱するヒータが内蔵されている請求の範囲第 10項に記載の卷取式プラズ マ CVD装置。
[14] 前記成膜位置には、前記フィルムの成膜面を限定する開口部を有するマスクが配 置されている請求の範囲第 1項に記載の卷取式プラズマ CVD装置。
[15] 前記マスクの開口部を開閉自在なシャツタを有し、このシャツタで前記マスクの開口 部を塞ぎ、ガス供給手段カゝらクリーニング用ガスを供給して、成膜部のクリーニングを 行う請求の範囲第 14項に記載の卷取式プラズマ CVD装置。
[16] 前記フィルムの成膜面を限定する開口部を有するマスクと、
前記フィルムの成膜面と前記マスク間の間隔を調整する調整機構と、
前記フィルムの成膜面と前記マスクの開口部との間に挿入されることにより当該開 口部を閉塞可能なシャツタと、
クリーニング用ガスの供給手段とを備えた請求の範囲第 1項に記載の卷取式プラズ マ CVD装置。
[17] 前記フィルムの成膜面の裏面側で当該フィルムと同時に走行する金属ベルトを有し 前記調整機構は、前記フィルムと前記金属ベルトの走行をガイドする上流ローラ及 び下流ローラを昇降移動させるローラ移動機構部と、前記金属ベルトの張力を調整 するベルト張力調整部とを有する請求の範囲第 16項に記載の卷取式プラズマ CVD 装置。
[18] 前記ローラ移動機構部は、前記上流ローラ及び下流ローラを昇降移動させると同 時に、前記成膜位置に配置された対向電極をも昇降移動させる請求の範囲第 17項 に記載の卷取式プラズマ CVD装置。
[19] 前記ローラ移動機構部は、前記上流ローラ及び下流ローラの回転軸の両端を支持 する支持ブラケットと、この支持ブラケットに取り付けられ、前記対向電極の周縁下端 部に係合可能な係合爪とを有する請求の範囲第 18項に記載の卷取式プラズマ CV D装置。
[20] 前記シャツタは、接地電位である請求の範囲第 16項に記載の卷取式プラズマ CV D装置。
[21] 前記成膜位置には、前記フィルムの成膜面を限定する開口部を有するマスクが配 置されており、このマスクと前記高周波電極との間には、ガスの排気流路が形成され ている請求の範囲第 1項に記載の卷取式プラズマ CVD装置。
PCT/JP2006/309387 2005-05-10 2006-05-10 巻取式プラズマcvd装置 WO2006121068A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007528300A JP5234911B2 (ja) 2005-05-10 2006-05-10 巻取式プラズマcvd装置
EP06732516.7A EP1881087B1 (en) 2005-05-10 2006-05-10 Winding plasma cvd apparatus and method
CN2006800018846A CN101098981B (zh) 2005-05-10 2006-05-10 卷绕式等离子cvd装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005137671 2005-05-10
JP2005-137671 2005-05-10

Publications (1)

Publication Number Publication Date
WO2006121068A1 true WO2006121068A1 (ja) 2006-11-16

Family

ID=37396576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309387 WO2006121068A1 (ja) 2005-05-10 2006-05-10 巻取式プラズマcvd装置

Country Status (8)

Country Link
US (1) US7896968B2 (ja)
EP (1) EP1881087B1 (ja)
JP (1) JP5234911B2 (ja)
KR (1) KR100953577B1 (ja)
CN (1) CN101098981B (ja)
RU (1) RU2371515C2 (ja)
TW (1) TWI328050B (ja)
WO (1) WO2006121068A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057020A (ja) * 2006-09-01 2008-03-13 Ulvac Japan Ltd 巻取式プラズマcvd装置
JP2008169434A (ja) * 2007-01-11 2008-07-24 Tdk Corp プラズマcvd装置、薄膜製造方法、及び、積層基板
JP2008257134A (ja) * 2007-04-09 2008-10-23 Sumitomo Metal Mining Co Ltd 耐熱遮光フィルムとその製造方法、及びそれを用いた絞り又は光量調整装置
JP2009283547A (ja) * 2008-05-20 2009-12-03 Dainippon Printing Co Ltd 導電性パターンの形成方法とその形成装置並びに導電性基板
JP2013044015A (ja) * 2011-08-24 2013-03-04 Fujifilm Corp 成膜装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101204089B1 (ko) * 2007-12-24 2012-11-22 삼성테크윈 주식회사 롤투롤 기판 이송 장치, 이를 포함하는 습식 식각 장치 및회로 기판 제조 장치
EP2096190A1 (en) * 2008-02-28 2009-09-02 Applied Materials, Inc. Coating apparatus for coating a web
US8493434B2 (en) * 2009-07-14 2013-07-23 Cable Television Laboratories, Inc. Adaptive HDMI formatting system for 3D video transmission
WO2011026034A2 (en) 2009-08-31 2011-03-03 Andrew Llc Modular type cellular antenna assembly
JP5460236B2 (ja) * 2009-10-22 2014-04-02 株式会社神戸製鋼所 Cvd成膜装置
JP5513320B2 (ja) * 2010-08-31 2014-06-04 富士フイルム株式会社 成膜装置
JP6368647B2 (ja) 2011-12-21 2018-08-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 基板を処理するシステムおよび方法
CN102433551A (zh) * 2011-12-31 2012-05-02 汉能科技有限公司 一种反应腔室喷淋系统
DE102012205254B4 (de) 2012-03-30 2018-05-09 Von Ardenne Gmbh Verfahren und Vorrichtung zur Temperierung bandförmiger Substrate unter thermisch stimulierter Prozessumgebung
DE102012208233A1 (de) 2012-05-16 2013-11-21 Von Ardenne Anlagentechnik Gmbh Verfahren und Vorrichtung zur Temperierung bandförmiger Substrate unter thermisch stimulierter Prozessumgebung
JP5958092B2 (ja) * 2012-05-31 2016-07-27 ソニー株式会社 成膜装置及び成膜方法
DE102012108742B4 (de) 2012-06-04 2017-02-23 Von Ardenne Gmbh Verfahren und Anordnung zum Transport von bandförmigen Materialien in Vakuumbehandlungsanlagen
WO2014208943A1 (ko) * 2013-06-28 2014-12-31 (주) 에스엔텍 플라즈마 화학기상 장치
JP5971870B2 (ja) * 2013-11-29 2016-08-17 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び記録媒体
CN103695839B (zh) * 2013-12-07 2016-05-18 深圳市金凯新瑞光电有限公司 一种应用在镀膜设备中的离子源清洗装置
CN103789739B (zh) * 2014-01-22 2015-12-23 南京汇金锦元光电材料有限公司 磁控溅射镀膜装置
DE102014105747B4 (de) * 2014-04-23 2024-02-22 Uwe Beier Modulare Vorrichtung zum Bearbeiten von flexiblen Substraten
JP6600079B2 (ja) * 2015-11-27 2019-10-30 韓国機械研究院 基板コーティング装置及びこれを含む伝導性フィルムコーティング装置
JP6791389B2 (ja) * 2018-03-30 2020-11-25 Jfeスチール株式会社 方向性電磁鋼板の製造方法および連続成膜装置
JP7406503B2 (ja) * 2018-04-30 2023-12-27 アイクストロン、エスイー 炭素含有コーティングにより基板をコーティングするための装置
TWI743726B (zh) * 2019-04-15 2021-10-21 日商新川股份有限公司 封裝裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475680A (en) * 1987-09-17 1989-03-22 Teijin Ltd Plasma cvd device
JP2000054151A (ja) * 1998-08-03 2000-02-22 Toppan Printing Co Ltd 真空成膜装置
JP2002151513A (ja) * 2000-11-14 2002-05-24 Sekisui Chem Co Ltd 半導体素子の製造方法及びその装置
JP2002339075A (ja) * 2001-05-17 2002-11-27 Konica Corp 長尺基材の表面処理方法及びその方法により製造された光学フィルム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736437A (en) * 1980-08-14 1982-02-27 Fuji Photo Film Co Ltd Producing device of magnetic recording medium
JPS6361420A (ja) * 1986-09-01 1988-03-17 Hitachi Maxell Ltd 磁気記録媒体およびその製造方法
JP2532598B2 (ja) * 1988-08-03 1996-09-11 シャープ株式会社 光メモリ素子の製造方法及びその装置
JP2932602B2 (ja) * 1990-04-27 1999-08-09 松下電器産業株式会社 薄膜製造装置
JP2824808B2 (ja) * 1990-11-16 1998-11-18 キヤノン株式会社 マイクロ波プラズマcvd法による大面積の機能性堆積膜を連続的に形成する装置
JPH07233474A (ja) 1994-02-23 1995-09-05 Ulvac Japan Ltd 巻取式真空成膜装置
US5665640A (en) * 1994-06-03 1997-09-09 Sony Corporation Method for producing titanium-containing thin films by low temperature plasma-enhanced chemical vapor deposition using a rotating susceptor reactor
JPH0863746A (ja) * 1994-08-24 1996-03-08 Fuji Photo Film Co Ltd 磁気記録媒体の製造方法及び装置
JP4067589B2 (ja) * 1995-02-28 2008-03-26 株式会社半導体エネルギー研究所 薄膜太陽電池の作製方法
US6592771B1 (en) * 1999-04-08 2003-07-15 Sony Corporation Vapor-phase processing method and apparatus therefor
US20040149214A1 (en) * 1999-06-02 2004-08-05 Tokyo Electron Limited Vacuum processing apparatus
JP4439665B2 (ja) * 2000-03-29 2010-03-24 株式会社半導体エネルギー研究所 プラズマcvd装置
JP3255903B2 (ja) * 2000-08-10 2002-02-12 キヤノン株式会社 堆積膜形成方法および堆積膜形成装置
JP4200413B2 (ja) 2001-01-17 2008-12-24 富士電機ホールディングス株式会社 薄膜半導体の製造装置
JP4822378B2 (ja) * 2001-02-06 2011-11-24 株式会社ブリヂストン 成膜装置および成膜方法
US6852169B2 (en) * 2001-05-16 2005-02-08 Nordson Corporation Apparatus and methods for processing optical fibers with a plasma
JP2002371358A (ja) * 2001-06-14 2002-12-26 Canon Inc シリコン系薄膜の形成方法、シリコン系薄膜及び半導体素子
JP2003168593A (ja) * 2001-11-29 2003-06-13 Sekisui Chem Co Ltd 放電プラズマ処理装置
JP2003179043A (ja) 2001-12-13 2003-06-27 Ulvac Japan Ltd プラズマcvd装置
ES2263734T3 (es) * 2002-03-15 2006-12-16 Vhf Technologies Sa Aparato y procedimiento para fabricar dispositivos semi-conductores flexibles.
JP4516304B2 (ja) * 2003-11-20 2010-08-04 株式会社アルバック 巻取式真空蒸着方法及び巻取式真空蒸着装置
US7785672B2 (en) * 2004-04-20 2010-08-31 Applied Materials, Inc. Method of controlling the film properties of PECVD-deposited thin films
US7169232B2 (en) * 2004-06-01 2007-01-30 Eastman Kodak Company Producing repetitive coatings on a flexible substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475680A (en) * 1987-09-17 1989-03-22 Teijin Ltd Plasma cvd device
JP2000054151A (ja) * 1998-08-03 2000-02-22 Toppan Printing Co Ltd 真空成膜装置
JP2002151513A (ja) * 2000-11-14 2002-05-24 Sekisui Chem Co Ltd 半導体素子の製造方法及びその装置
JP2002339075A (ja) * 2001-05-17 2002-11-27 Konica Corp 長尺基材の表面処理方法及びその方法により製造された光学フィルム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057020A (ja) * 2006-09-01 2008-03-13 Ulvac Japan Ltd 巻取式プラズマcvd装置
JP2008169434A (ja) * 2007-01-11 2008-07-24 Tdk Corp プラズマcvd装置、薄膜製造方法、及び、積層基板
JP2008257134A (ja) * 2007-04-09 2008-10-23 Sumitomo Metal Mining Co Ltd 耐熱遮光フィルムとその製造方法、及びそれを用いた絞り又は光量調整装置
JP2009283547A (ja) * 2008-05-20 2009-12-03 Dainippon Printing Co Ltd 導電性パターンの形成方法とその形成装置並びに導電性基板
JP2013044015A (ja) * 2011-08-24 2013-03-04 Fujifilm Corp 成膜装置

Also Published As

Publication number Publication date
JP5234911B2 (ja) 2013-07-10
US20080006206A1 (en) 2008-01-10
US7896968B2 (en) 2011-03-01
CN101098981B (zh) 2010-10-20
EP1881087A1 (en) 2008-01-23
JPWO2006121068A1 (ja) 2008-12-18
TW200730663A (en) 2007-08-16
EP1881087B1 (en) 2013-07-24
RU2371515C2 (ru) 2009-10-27
KR100953577B1 (ko) 2010-04-21
CN101098981A (zh) 2008-01-02
TWI328050B (en) 2010-08-01
EP1881087A4 (en) 2009-07-08
KR20070089848A (ko) 2007-09-03
RU2007141737A (ru) 2009-05-20

Similar Documents

Publication Publication Date Title
WO2006121068A1 (ja) 巻取式プラズマcvd装置
JP5665290B2 (ja) 成膜装置
JP5486249B2 (ja) 成膜方法
US8821638B2 (en) Continuous deposition apparatus
JP4669017B2 (ja) 成膜装置、ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP5562723B2 (ja) 成膜方法、成膜装置、およびガスバリアフィルムの製造方法
JP5122805B2 (ja) 成膜装置
JP4817313B2 (ja) 巻取式プラズマcvd装置
JP2009221511A (ja) 成膜装置
JP4817072B2 (ja) 成膜装置
JP4833872B2 (ja) プラズマcvd装置
JP4870615B2 (ja) プラズマcvd成膜装置およびプラズマcvd成膜方法
KR101622449B1 (ko) 기능성 필름의 제조 방법
KR101413979B1 (ko) 플라즈마 발생장치 및 이를 포함하는 박막증착장치
EP3868920B1 (en) Film formation apparatus
KR101358641B1 (ko) 박막형성방법
KR20140032074A (ko) 박막증착장치 및 박막증착방법
JP2011195899A (ja) 成膜装置
JP2009138240A (ja) 成膜方法
KR101345997B1 (ko) 박막증착장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528300

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11792810

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680001884.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077015759

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006732516

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007141737

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006732516

Country of ref document: EP