WO2006112206A1 - リチウムイオン二次電池用ポリマー及びそれを用いたリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用ポリマー及びそれを用いたリチウムイオン二次電池 Download PDF

Info

Publication number
WO2006112206A1
WO2006112206A1 PCT/JP2006/304705 JP2006304705W WO2006112206A1 WO 2006112206 A1 WO2006112206 A1 WO 2006112206A1 JP 2006304705 W JP2006304705 W JP 2006304705W WO 2006112206 A1 WO2006112206 A1 WO 2006112206A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
lithium ion
weight
ion secondary
monomer unit
Prior art date
Application number
PCT/JP2006/304705
Other languages
English (en)
French (fr)
Inventor
Yasuo Takano
Naoki Imachi
Seiji Yoshimura
Shin Fujitani
Satoshi Nishikawa
Shinji Bessyo
Original Assignee
Sanyo Electric Co., Ltd.
Sunstar Giken Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd., Sunstar Giken Kabushiki Kaisha filed Critical Sanyo Electric Co., Ltd.
Priority to US11/887,225 priority Critical patent/US8354188B2/en
Publication of WO2006112206A1 publication Critical patent/WO2006112206A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a polymer for a lithium ion secondary battery and a lithium ion secondary battery using the same.
  • the separator is thinned with high capacity, while thinning is desired while maintaining the safety functions of the separator, such as shutdown, where there is a high demand for improvement in heat resistance. It was difficult to proceed. In particular, when shrinking the thickness, the shrinkage at higher temperatures becomes a problem, and it is difficult to achieve a balance between improving the heat resistance of the separator and reducing the thickness. For example, heat resistance such as polypropylene (PP) is difficult. Thermal stability is improved when fat is laminated with polyethylene (PE), but physical properties such as pore size and porosity change greatly due to problems with the thickness of the laminate and the manufacturing process. It is difficult to get out.
  • PE polyethylene
  • Patent Document 1 As a polymer having an epoxy group or an oxetanyl group, Patent Document 1, Patent Document 2 filed as a gel electrolyte, Patent Document 3, Patent Document 4 disclosed a separator short circuit prevention. And in Japanese Patent Application Laid-Open No. 2003-228561, an application relating to adhesion between an electrode and a separator applied to a separator has been filed.
  • Patent Document 1 and Patent Document 2 an in-battery polymerization method in which the battery electrolyte solution is all gelled, and in Patent Document 3 and Patent Document 4, a crosslinkable group containing an epoxy group or an oxetal group is used.
  • a crosslinkable group containing an epoxy group or an oxetal group is used.
  • Patent Document 5 discloses that a polymer is applied to a separator and the electrode and the separator are bonded to each other. However, when the electrolyte is injected, the polymer is dissolved in the electrolyte. Therefore, it is difficult to achieve a sufficient adhesive effect!
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-176555
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-110245
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-142158
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-142159
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-185920
  • An object of the present invention is a polymer for adhering a positive electrode and a negative electrode of a lithium ion secondary battery and a separator disposed therebetween, and the thermal contraction of the separator without deteriorating battery characteristics. It is intended to provide a polymer for a lithium ion secondary battery and a lithium ion secondary battery using the same, in which a thinner separator can be used.
  • a polymer for a lithium ion secondary battery according to the first aspect of the present invention bonds a positive electrode and a negative electrode of a lithium ion secondary battery including a positive electrode, a negative electrode, and an electrolytic solution, and a separator disposed therebetween.
  • A a monomer unit having cationic polymerizability
  • B a monomer unit that imparts affinity to the electrolytic solution
  • C a monomer unit that imparts poor solubility to the electrolytic solution.
  • the monomer unit (C) is preferably, for example, a unit that is partially crosslinked in a polymer.
  • a polymer unit examples include a monomer unit (C 2) crosslinked with a polyfunctional radically polymerizable monomer.
  • R 1 represents —H or —CH
  • X represents a hydroxyl group residue
  • a monomer unit (C 2) using a radically polymerizable monomer having a hardly soluble hydrocarbon group can be mentioned.
  • nomer unit (C) examples include a radical polymerizable monomer represented by the following formula 2.
  • R 2 represents —H or —CH
  • R 3 represents an alkyl group having 8 or more carbon atoms
  • a polymer for a lithium ion secondary battery according to the second aspect of the present invention bonds a positive electrode and a negative electrode of a lithium ion secondary battery including a positive electrode, a negative electrode, and an electrolyte, and a separator disposed therebetween.
  • A a monomer unit having cationic polymerizability
  • B a monomer unit imparting affinity for the electrolyte
  • D a hydrophilic property with a cationic property and a non-ionic property.
  • EC ethylene carbonate
  • DEC jetyl carbonate
  • the polymer of the second aspect of the present invention is characterized in that the elution rate is 10% by weight or less due to the inclusion of a radically polymerizable monomer having an alicyclic epoxy group during radical polymerization. It is said. That is, during the radical polymerization, the polymer is hardly soluble by including a radical polymerizable monomer having an alicyclic epoxy group. The details of this mechanism are unclear. In the case of radical polymerization, it seems that some cross-linking reaction has occurred in the polymer due to partial ring opening of the alicyclic epoxy group. Therefore, it is presumed that the radically polymerizable monomer having an alicyclic epoxy group is in some form the monomer unit (C) in the first aspect of the present invention.
  • the monomer unit (A) in the present invention includes a monomer unit composed of a radically polymerizable monomer having an alicyclic epoxy group and a radically polymerizable monomer having a Z or oxetal group.
  • radical polymerizable monomer having an alicyclic epoxy group examples include 3,4-epoxycyclohexylmethyl acrylate or 3,4-epoxycyclohexylmethyl methacrylate represented by the following formula 3. Rate.
  • R 4 represents H or CH.
  • radical polymerizable monomer having an oxetanyl group examples include oxetane acrylate or oxetane metatalylate represented by the following formula 4.
  • R 5 represents —H or —CH
  • R 6 represents an alkyl group having 1 to 6 carbon atoms.
  • Specific examples of the monomer unit (B) in the present invention include at least one selected from acryl ester monomers and methacrylic ester monomers represented by the following formula 5, and a butyl ester monomer force represented by the following formula 6. Units of monomers are listed.
  • R 7 represents —H or —CH
  • R 8 represents an alkyl group having 1 to 6 carbon atoms, — (CH
  • -(CH CH (CH) ⁇ ) ⁇ represents CH
  • R 9 represents CH, -CH, or -CH
  • the elution rate of the polymer in the present invention is defined by the above formula, and the amount of the polymer eluted in the mixed solvent is also obtained by performing an extraction treatment by immersing in the mixed solvent for 24 hours. is there.
  • the dissolution rate in the present invention indicates poor solubility of the polymer of the present invention in an electrolyte solution, preferably 10% by weight or less, more preferably 7% by weight or less, and still more preferably 5% by weight. % Or less.
  • the polymer of the present invention is not limited to merely being poorly soluble. It is preferable that the polymer of the present invention swells and Z or softens with respect to the electrolytic solution even if it is poorly soluble. Better Yes. From such a viewpoint, the polymer of the present invention includes a monomer unit (B) that imparts affinity for the electrolytic solution.
  • the polymer of the present invention is preferably one that swells and Z or softens with respect to the electrolytic solution.
  • the polymer of the present invention can be obtained as an emulsification-suspension of a particulate polymer by radical emulsion polymerization or radical suspension polymerization, and (preferably) the emulsion-suspension is diluted to provide a battery exterior.
  • the polymer particles By injecting into the body, the polymer particles can be placed between the positive and negative electrodes and the separator.
  • a monomer having an alicyclic epoxy group can be blended in an amount of about 1.0 to 40% by weight based on the total amount of the monomer and subjected to radical emulsion polymerization or radical suspension polymerization in water. However, if it is less than 1.0% by weight, it is easy to dissolve in the electrolyte solution and the adhesion effect is reduced. If it is 40% by weight or more, the degree of internal cross-linking becomes too large, and the adhesion of the polymer particles during drying is insufficient. In addition, the battery characteristics may be deteriorated because swelling due to the electrolytic solution is less likely to occur.
  • oxetal acrylate and oxetal methacrylate are represented by the above formula 4, and do not contribute to the internal crosslinking of the polymer particles. Then, it is cross-linked with the cationic polymerization initiator (including LiPF and LiBF) contained in the electrolyte to be injected, contributing to the adhesion between the electrode and the separator.
  • the cationic polymerization initiator including LiPF and LiBF
  • the above alicyclic epoxy group-containing monomer is also a cationic polymerization initiator (including LiPF and LiBF).
  • the total amount is 40% by weight, and it is not necessary to use alicyclic epoxy group-containing monomers.
  • an alicyclic epoxy group-containing monomer is not used, it is used in an amount of 10 to 40% by weight. If it is less than 10% by weight, the degree of crosslinking is low and it is easy to dissolve in the electrolyte, and the adhesiveness is insufficient. Since it is difficult for the electrolyte to swell, the battery characteristics may be deteriorated.
  • a radical polymerizable monomer containing a group that imparts poor solubility to the electrolytic solution such as a long-chain alkyl group, in the polymer, for example, represented by Formula 2 above.
  • a radical polymerizable monomer containing a group that imparts poor solubility to the electrolytic solution such as a long-chain alkyl group, in the polymer, for example, represented by Formula 2 above.
  • the target can be achieved if it is radically polymerized with about 10 to 70% by weight based on the total amount. If it is less than 10% by weight, it can be easily dissolved in the electrolyte and the adhesion effect is reduced. Since swelling does not easily occur, battery characteristics may be deteriorated.
  • polyfunctional radical polymerizable monomer having two or more radical polymerizable groups in one molecule a polyfunctional radical polymerizable monomer represented by the above formula 1, such as alkylene glycol to polyalkylene glycol, can be used.
  • polyfunctional radically polymerizable monomers such as dibutyl benzene, diallyl phthalate, triallyl trimellitate, triallyl isocyanurate, aryl methacrylate, and aryl arylate, acrylic, Even if the arylene compound is used, it can be cross-linked internally.
  • Internal crosslinking can also be performed using bistioglycolate, trimethylolpropane tris-thioglycolate, pentaerythritol tetrakis-thioglycolate or the like.
  • the poorly soluble polymer in the electrolytic solution has an affinity for the electrolytic solution represented by the above formulas 5 and 6 in order to adjust the force poorly soluble and appropriate swelling property obtained by these methods.
  • Power to use relatively high-polarity acrylic ester monomers, methacrylic ester monomers, and berylester monomers with high properties When using a radically polymerizable monomer containing an alicyclic epoxy group to make the electrolyte difficult to dissolve, the total amount of monomers The remaining amount is 60 to 98% by weight.
  • polymer particles can be suitably produced as a dispersion by emulsion polymerization in water or suspension polymerization in water, and emulsion polymerization can be performed by a usual method.
  • Polymerization initiators are water-soluble radical polymerization initiators such as sodium persulfate, potassium persulfate, ammonium persulfate, and persulfates such as lithium persulfate; 2,2, -azobis (1-imino-2 -Ethylpropane) Nodular chloride, 2,2, -azobis [2- (2-imidazoline-2-yl) propane], 2,2-azobis [2-methyl-N- (2-hydroethyl) propionamide], etc.
  • oil-soluble radical polymerization initiators such as ⁇ , ⁇ ′-azobisisobutyryl-tolyl, benzoyl peroxide and the like can be used in combination.
  • oil-soluble radical polymerization initiators such as ⁇ , ⁇ ′-azobisisobutyryl-tolyl, benzoyl peroxide and the like can be used in combination.
  • As a milky remedy there are a variety of conventional ones such as alkyl sulfates, alkylbenzene sulfates, alkylnaphthalene sulfates, etc .; polyoxyethylene alkyl ethers, polyoxyethylene alkylphenol ethers, etc.
  • a compound having a radical polymerizable group and a cation hydrophilic group or a nonionic hydrophilic group called a reactive emulsifier having a radical polymerizable group;
  • Alkali metal to ammonium salt of sulphoethyl methacrylate, Alkali metal to ammonia salt of sulphoethyl acrylate, ⁇ ⁇ ⁇ ⁇ Alkali metal to ammonia salt of styrene sulfonic acid, polyethylene glycol meta Talylate, polyethylene glycol acrylate, etc. are used.
  • reactive emulsifiers it is more preferable to use an anionic reactive emulsifier whose anionic group is a lithium salt. About 0.1 to 20% by weight is used.
  • Suspension polymerization is carried out in water in which water-soluble polymers such as polyvinyl alcohol, polyacrylates, carboxymethyl cellulose (CMC), and ethyl cellulose are dissolved as a dispersion aid.
  • the polymerization initiator is basically an oil-soluble polymerization initiator: ⁇ , ⁇ '-azobisisobutyl-tolyl, 2,2, -azobis (2-methylbutyoxy-tolyl), dimethyl 2,2, -azobis (2 -Methylpropionate ),
  • Persulfates such as sodium persulfate, potassium persulfate, ammonium persulfate, lithium persulfate, which are water-soluble radical polymerization initiators; , 2, -Azobis (1-imino-2-ethylpropane) dihydride chloride, 2,2, -azobis [2- (2-imidazoline-2-yl) propane], 2,2-azobis [2-methyl- N- (2-Hydroethyl) propionamide] and the like are also used.
  • the polymerization conditions are carried out in the presence of 60 to 500% by weight of water based on the total amount of monomers while introducing and stirring an inert gas such as nitrogen gas.
  • the polymerization temperature is the half-life of the radical polymerization initiator. Force that varies depending on temperature It is heated for 3 to 20 hours after heating at 50 ° C to 80 ° C, and it is manufactured by adjusting the polymer concentration, pH, etc. as necessary. Further, if necessary, a molecular weight modifier such as mercabtans can also be used.
  • the particle size of the polymer particles is too larger than the gap between the electrode / separator, it is considered that the particles do not easily penetrate and the adhesion effect is insufficient, but the particle size obtained by ordinary emulsion polymerization is several. There is no problem because it is below micron. In suspension polymerization, the particle size may reach 100 microns or more. In such a case, adjust the type and amount of the dispersion aid described below, the combined use of the emulsifier used in emulsion polymerization, the stirring conditions, etc. It is preferable that the thickness be several tens of microns or less.
  • the polymer dispersion is poured into a lithium ion secondary battery container in which a positive electrode, a negative electrode, and a separator are preliminarily incorporated, but the concentration of polymer particles is preferably 0.1 to 5.0 wt% in a dilute state. Then, 0.01 to 0.06 g of polymer is injected per lg of the positive electrode active material.
  • the dispersion of polymer particles is supplied at a concentration of about 20 to 40% by weight, and this dispersion is diluted before use.
  • the ability to use water for dilution When water-soluble polymers such as CMC and latex such as SBR are used as electrode binders for lithium ion secondary batteries, water-soluble organic materials may be damaged. It is desirable to use a solvent.
  • Water-soluble organic solvents include alcohols that are freely miscible in water such as methanol, ethanol, isopropanol, etc .: ketones such as acetone and 2-butanone, 2-methoxyethanol, 2-ethoxyethanol, 2-methoxy ( 2-propanol), glycosyl such as 2-butoxyethanol Ether ethers :: ethers such as dimethoxyethane and methoxyketoxetane; cyclic ethers such as dioxane and tetrahydrofuran; ⁇ -butyrolatatane, ⁇ -methylpyrrolidone, ⁇ , ⁇ '-dimethylformamide, etc. If the amount is small, a water-insoluble solvent can be used in combination.
  • the emulsification to suspension of the polymer is a water-soluble solvent with a polymer concentration of 0.1 to 5% by weight and a very low concentration of 0.01 to 0.06g of polymer per lg of the positive electrode active material V, It is characterized by maintaining good adhesiveness and excellent battery characteristics and without problems such as battery swelling.
  • Water-soluble latex such as CMC (carboxymethylcellulose) and SBR is used as a binder for the negative electrode of lithium ion secondary batteries! It is desirable to use a water-soluble organic solvent.
  • water-soluble organic solvents include alcohols that are freely miscible in water such as methanol, ethanol, isopropanol,
  • Acetone ketones such as 2-butanone, 2-methoxyethanol, 2-ethoxyethanol, 2-methoxy (2-propanol), glycol ethers such as 2-butoxyethanol, dimethoxyethane, methoxyethoxyether, etc.
  • Ether-based, ⁇ -butyrolatatone, ⁇ -methylpyrrolidone, ⁇ , ⁇ '-dimethylformamide and the like can be used, and if it is a small amount, an insoluble solvent can be used in combination.
  • this water-soluble solvent is removed by drying, which is a subsequent step, it has a large volatility! /, And a solvent having a relatively low boiling point is preferred.
  • Methanol, ethanol, isopropanol, 2-methoxyethanol, 2- Ethoxyethanol, dimethoxyethane and the like are preferred.
  • the polymer dispersion is ethanol and the polymer concentration is 1 to 10% by weight. Diluted to be used.
  • the polymer electrolyte functions as an adhesive, and when it elutes into an organic solvent used in an electrolytic solution such as EC or DEC, the polymer stagnates in the heat-welded part, not just the decrease in adhesiveness. As a result, the reliability of the sealing of the laminated part is lowered, and gas generation due to decomposition of the polymer during high temperature storage becomes a problem. Therefore, when a polymer electrolyte is used as in the method of the present invention, it is important to reduce solubility while ensuring affinity with the electrolytic solution.
  • the thermal contraction of the separator without deteriorating the battery characteristics can be suppressed, and a thinner separator can be used.
  • Fig. 1 is a graph showing the results of short-circuit resistance of the battery T1 of the present invention and the comparative batteries Rl to 5.
  • the non-volatile content of polymer P1 after drying at 105 ° C for 3 hours by heating was 34.4% by weight, and the particle size measured by a laser light diffusion particle size distribution analyzer was 0.14 microns in median size.
  • Polypropylene nonwoven fabric is impregnated with the above polymer, dried in hot air at 100 ° C for 30 minutes, then immersed in a mixed solvent of ethylene carbonate Z-carbonate (50/50 (weight ratio)) for 24 hours, and decompressed at 105 ° C for 5 hours. After drying, the dissolution rate was measured. The dissolution rate was 0.14% by weight.
  • the non-volatile content of the polymer P2 after drying at 105 ° C for 3 hours was 35.3% by weight, and the particle size measured by a laser light diffusion particle size distribution analyzer was 0.22 microns in median size.
  • the non-volatile content of Polymer P3 after drying at 105 ° C for 3 hours was 34.5% by weight, and the particle size measured by a laser light diffusion particle size distribution analyzer was 0.18 microns in median size.
  • Polypropylene nonwoven fabric is impregnated with the above polymer, dried in hot air at 100 ° C for 30 minutes, then immersed in a mixed solvent of ethylene carbonate Z-carbonate (50/50 (weight ratio)) for 24 hours, and decompressed at 105 ° C for 5 hours. Dry and elute The rate was measured. The dissolution rate was 0.47% by weight.
  • the solution was dissolved in the exchange water, added, and heated and stirred. The temperature was raised to 75 ° C while keeping attention to heat generation, and polymerization was continued while maintaining 75 ° C.
  • the pH was neutralized to 6-8 using a 1% by weight solution of 0), and then filtered through a 300 mesh filter screen to obtain a milky white emulsion polymerization polymer P4.
  • the non-volatile content of polymer P4 after drying at 105 ° C for 3 hours at 33.5 wt% was 33.5 wt% converted from non-volatile content, and the particle size measured by a laser light diffusion particle size distribution meter was 0.19 microns in median size. That's it.
  • 3,4-epoxycyclohexylmethyl acrylate 4.0g 3-ethyloxycetylmethacrylate 16.0g, methylmetatalylate 25.0g, n-butyl acrylate 35.0g , Sulfonic acid salt of caropolymer with ethylene oxide of alkylpuccinenyl phenol (trade name Aqualon HS-1025, concentration 25% by weight, manufactured by Daiichi Kogyo Seiyaku), and 155.0 g of ion-exchanged water, Nitrogen gas was introduced, stirred, and heated.
  • the non-volatile content of Polymer P5 after heating and drying at 105 ° C for 3 hours was 34.9 wt%, and the particle size as measured by a laser light diffusion particle size distribution analyzer was 0.13 microns in median size.
  • the temperature was raised to 75 ° C and polymerization was continued while maintaining 75 ° C.
  • the non-volatile content of polymer P6 after heating and drying at 105 ° C for 3 hours was 34.9% by weight, and the particle size as measured by a laser light diffusion particle size distribution analyzer was 0.30 microns in median size.
  • the temperature was raised to 75 ° C and polymerization was continued while maintaining 75 ° C.
  • the non-volatile content of Polymer P7 after heating and drying at 105 ° C for 3 hours was 34.4 wt%, and the particle size as measured by a laser light diffusion particle size distribution analyzer was 0.30 microns in median size.
  • the non-volatile content of Polymer Q1 after heating and drying at 105 ° C for 3 hours was 33.3% by weight, and the particle size measured by a laser light diffusion particle size distribution analyzer was 0.17 microns in median size.
  • Hydroxyl end-terminated polyester obtained by addition polymerization of 38.0 g of methyl methacrylate and 38.0 g of n-butyl acrylate in 500 ml of 4-neck colben substituted with nitrogen gas, and ⁇ -force prolacton on hydroxypivalate ester of neopentyl glycol
  • the non-volatile content of Polymer Q2 after drying at 105 ° C for 3 hours was 34.3% by weight, and the particle size measured by a laser light diffusion particle size distribution analyzer was 0.21 microns in median size.
  • Table 1 shows the blending ratio of the monomers of the polymers P1 to P7 and the polymers Q1 to Q2. The unit is g. The elution rate is also shown. The symbols in Table 1 are as follows: is there.
  • n-BA n-Butyl acrylate
  • TCDM Tricyclo [5 ⁇ 2 ⁇ 1 ⁇ 0 2 '°] De-force-rumetatalylate, product name FA-513 ⁇ (manufactured by Hitachi Chemical Co., Ltd.)
  • ⁇ 220 Diacrylate of both-end hydroxyl group polyester oligomer obtained by addition polymerization of ⁇ -force prolatatone to hydroxypivalate ester of neopentyl glycol, trade name Carrad ⁇ -220 (manufactured by Nippon Yakuyaku Co., Ltd.)
  • Liss p_Lithium styrene sulfonate
  • NR-1 Ethyl oxide addition polymer of alkyl pentole perphenol, concentration 65 wt%, trade name Aqualon RN-30 (Daiichi Kogyo Seiyaku Co., Ltd.)
  • AR- 2 Arukirupu port Bae - sulfo emissions salt of Echirenokishido with mosquito ⁇ polymers of Rufuenoru, concentration 25 weight 0/0, tradename Aqualon HS- 1025 (manufactured by Dai-ichi Kogyo Seiyaku)
  • Table 2 summarizes the elution amount of each polymer.
  • a cationically crosslinkable polymer is used, but all of them are premised on a polymer that dissolves in an electrolyte solution (solvent thereof).
  • the reason is that all the electrolyte in the battery is gelled, so that it is dissolved in the electrolyte beforehand and then cross-linked into a gel, or the polymer is liquefied as a solution to be applied to the separator. It depends on what must be done.
  • the present invention is characterized in that a polymer which is difficult to dissolve in a solvent is used after radical emulsion polymerization or radical suspension polymerization.
  • the oxetane ring has a smaller ring strain energy than the epoxy ring. It is difficult to polymerize.
  • the monomer containing an oxetal group, the alicyclic epoxy and the higher alkyl monomer are polymerized, and in the polymer P6 of the present invention, the alicyclic epoxy is polymerized to give an elution rate to the EC / DEC solvent of 5%. It became the following and showed favorable adhesiveness.
  • a radically polymerizable polymer containing an oxetanyl group alone is difficult to proceed with the reaction of creating a crosslinking site inside the molecule. Therefore, it is necessary to use an alicyclic epoxy monomer or a polyfunctional radically polymerizable monomer in combination.
  • the polymers Pl, 4, and 5 of the present invention which have the same monomer yarn structure, had an elution rate of 3% or less using any force using different emulsifiers.
  • water-soluble radical polymerization initiators such as sodium persulfate, potassium persulfate, ammonium persulfate, and lithium persulfate; 2,2, -azobis (1 -Imino-2-ethylpropyl) dihydride chloride, 2,2, -azobis [2- (2-imidazoline-2-yl) propane], 2,2-azobis [2-methyl-N- (2-hydroethyl) ) Propionamide], etc.
  • oil-soluble radical polymerization initiators such as ⁇ , ⁇ ′-azobisisobutyl-tolyl, benzoyl peroxide, etc. can be used in combination.
  • emulsifiers phenotypes such as alkyl sulfates, alkylbenzene sulfates, alkylnaphthalene sulfates,
  • radical polymerizable groups called reactive emulsifiers having radical polymerizable groups and A compound having an on-hydrophilic group or a non-on-hydrophilic group,
  • Inventive polymers Pl, ⁇ 4, ⁇ 5 have the same monomer composition but different reactive polymerization initiators.
  • the polymer was synthesized. Adhesive effects were exhibited with any initiator, but particularly excellent properties were obtained when lithium p-styrenesulfonate was used. Considering not only the dissolution rate but also the effect on battery characteristics, it is preferable to use lithium P-styrene sulfonate.
  • the alkali metal it is preferable that it is Li in consideration of charging / discharging inhibition in the battery.
  • Comparative polymer Q1 contains an oxetanyl group but is not partially crosslinked in the polymer. Therefore, when the electrolyte is injected, the polymer dissolves in the electrolyte before crosslinking by cationic polymerization. Is difficult to express!
  • Comparative polymer Q2 did not have a force-adhesive effect with a dissolution rate as low as 1.84. Therefore, it is insufficient to keep the elution rate low, and it is considered necessary to contain a cationically polymerizable group.
  • Table 3 shows the blending ratio of the monomers in each polymer.
  • weight In Table 3, weight
  • the percentage of monomer is shown in%.
  • Lithium secondary batteries were produced using the above-mentioned polymers P1 to P7 and polymers Q1 to Q2.
  • the production of the positive electrode and the negative electrode, the preparation of the nonaqueous electrolyte, and the assembly of the battery were performed as follows.
  • lithium cobalt oxide is mixed with carbon conductive agent, SP300, and acetylene black in a mass ratio of 92: 3: 2 to form a positive electrode mixture powder, and a mixing device (for example, a mechanofusion device manufactured by Hosokawa Micron (AM-15F) Fill 200g with). This was operated for 10 minutes at a rotational speed of 1500 rpm, and a compression 'impact' shearing action was caused to mix to obtain a positive electrode mixture. Next, this positive electrode mixture is mixed with fluorine-based resin binder (PVDF) in NMP solvent so that the mass ratio is 97: 3.
  • PVDF fluorine-based resin binder
  • the mixture was mixed to obtain a positive electrode mixture slurry, coated on both sides of the aluminum foil, dried and rolled to obtain an electrode plate.
  • the materials may be mixed in a slurry state as they are, or may be mixed by other methods.
  • the power of using lithium cobaltate as the positive electrode active material is not limited to this, but is not limited to spinel type lithium manganate, lithium- nickel complex oxide typified by lithium nickelate and olivine type phosphate A compound or the like may be used.
  • the size of the positive electrode used was 380.0 mm x 52.0 mm, and the active material coating portions were 339.0 mm x 50.0 mm and 271.0 mm x 50.0 mm, respectively.
  • the coating weight was 382 mg / 10 cm 2 (excluding the core weight), the electrode weight was 5.83 g, and the active material weight was 5.36 g.
  • the negative electrode is carbon material (graphite), CMC (carboxymethylcellulose sodium), SBR (styrene butadiene rubber) mixed in an aqueous solution at a mass ratio of 98: 1: 1, applied to both sides of the copper foil, and then dried. Rolled into an electrode plate.
  • carbon material graphite
  • CMC carboxymethylcellulose sodium
  • SBR styrene butadiene rubber
  • graphite, cobalt, tin oxide, metallic lithium, silicon, and mixtures thereof may be used as long as they can insert and desorb lithium ions. Nah ...
  • the size of the negative electrode used was 347.0 mm x 52.0 mm, and the active material application portions were 347.0 mm x 52 mm and 289.0 mm x 52.0 mm, respectively.
  • the coating weight was 171 mg / cm 2 (excluding the core weight), the electrode weight was 2.83 g, and the active material weight was 2.61 g.
  • the electrolyte is not particularly limited to this example.
  • Examples of the Li salt include LiBF, LiBF,
  • n l or 2] etc., and one or more of these can be used in combination.
  • concentration of the supporting salt is not particularly limited, but it is preferably 0.8 to 1.5 mol per liter of the electrolyte.
  • solvent species EC,
  • Carbonate solvents such as PC, GBL, DEC, EMC, DMC are preferred, more preferably cyclic A combination of a linear carbonate and a chain carbonate is preferred.
  • the gel polymer electrolyte will be described in detail in Examples and Comparative Examples.
  • the battery configuration is such that a lead terminal is attached to each of the positive and negative electrodes, and a spiral wound electrode is pressed through a separator, and the flattened electrode body is made of aluminum laminate as a battery outer package.
  • the solution was poured into a liquid, poured, and sealed to obtain a test battery.
  • the design capacity of this prototype battery is 780mAh.
  • a polymer dispersion was prepared by diluting the polymer P1 obtained by the polymer production method 1 with ethanol so that the solid content concentration was 2% by weight.
  • the positive and negative electrodes prepared according to the above-mentioned manufacturing method are wound up in a spiral shape through a polyethylene separator and used as the battery exterior.
  • a battery T2 of the present invention was prepared in the same manner as the battery T1 of the present invention, except that 3 ml of a polymer dispersion obtained by diluting the polymer P1 obtained in Production Example 1 to a solid content concentration of 3% by weight was injected. Made.
  • a battery T3 of the present invention was prepared in the same manner as the battery T1 of the present invention, except that 3 ml of a polymer dispersion obtained by diluting the polymer P1 obtained in Production Example 1 to a solid content concentration of 5% by weight was injected. Made.
  • the battery T4 of the present invention was prepared in the same manner as the battery T1 of the present invention, except that 3 ml of a polymer dispersion obtained by diluting the polymer P2 obtained in Production Example 2 to a solid content concentration of 2% by weight was injected. Made.
  • a battery T5 of the present invention was prepared in the same manner as the battery T1 of the present invention, except that 3 ml of a polymer dispersion obtained by diluting the polymer P3 obtained in Production Example 3 to a solid content concentration of 2% by weight was injected. Made.
  • a battery T6 of the present invention was prepared in the same manner as the battery T1 of the present invention, except that 3 ml of a polymer dispersion obtained by diluting the polymer P4 obtained in Production Example 4 to a solid content concentration of 2% by weight was injected. Made.
  • the battery T7 of the present invention was prepared in the same manner as the battery T1 of the present invention except that 3 ml of a polymer dispersion obtained by diluting the polymer P5 obtained in Production Example 5 to a solid content concentration of 2% by weight was injected. Made.
  • the battery T7 of the present invention was prepared in the same manner as the battery T1 of the present invention, except that 3 ml of a polymer dispersion obtained by diluting the polymer P6 obtained in Production Example 6 to a solid content concentration of 2% by weight was injected. Made.
  • a battery T9 of the present invention was prepared in the same manner as the battery T1 of the present invention, except that 3 ml of a polymer dispersion obtained by diluting the polymer P7 obtained in Production Example 7 to a solid content concentration of 2% by weight was injected. Made.
  • a comparative battery R1 was prepared by injecting the electrolyte in a dry box under a nitrogen atmosphere.
  • a solution prepared by dissolving polyvinylidene fluoride (PVDF) in THF to a concentration of 5% by weight was applied on the positive electrode prepared according to the above-mentioned manufacturing method, and then wet-stripped and the battery was sandwiched between clamps. In this state, drying under reduced pressure was performed at 105 ° C. for 2.5 hours, and thereafter, comparative battery R3 was produced in the same manner as comparative battery R1.
  • PVDF polyvinylidene fluoride
  • This type of polymer undergoes a crosslinking reaction using LiPF as a polymerization initiator.
  • the negative electrode coated with the polymer dispersion obtained by diluting the polymer P1 obtained in Production Example 1 with ethanol so as to be 5% by weight was dried, and thereafter the same as the comparative battery R1
  • a comparative battery R5 was produced by the method described above.
  • a comparative battery R6 was produced in the same manner as the battery T1 of the present invention, except that 3 ml of a polymer dispersion obtained by diluting the polymer P1 obtained in Production Example 1 to a solid content concentration of 1% by weight was injected. .
  • a comparative battery R7 was produced in the same manner as the battery Tl of the present invention except that 3 ml of the polymer dispersion was injected.
  • a comparative battery R8 was produced in the same manner as the battery T1 of the present invention, except that 3 ml of the polymer dispersion obtained by diluting the polymer Q1 obtained in Production Example 7 to a solid content concentration of 3 ⁇ 4% by weight was injected. .
  • a comparative battery R9 was produced in the same manner as the battery T1 of the present invention except that 3 ml of a polymer dispersion obtained by diluting the polymer Q2 obtained in Production Example 8 to a solid content concentration power of 3 ⁇ 4 wt% was injected. .
  • the battery was charged with constant current up to 4.2V at a current of 1C (750mA), and charged at a constant voltage of 4.2V until the current was C / 20 (37.5mA).
  • a constant current discharge was performed up to 2.75 V at a current of 1 C (750 mA).
  • the interval between the charge test and the discharge test was 1 Omin.
  • the battery voltage discharged from 2.75V was raised from 120 ° C to 160 ° C every 10 ° C through the holding time of each temperature lOmin. The presence or absence of a short circuit was confirmed by measurement. When the separator shrinks and the inter-electrode insulation is lost, a rapid voltage drop is observed, so this method can evaluate the adhesion between the separator and the electrode due to the polymer electrolyte.
  • the prepared battery was subjected to one cycle under the above charge / discharge conditions, and then charged to 4.2 V again to measure the thickness of the battery.
  • This charged battery was left in a constant temperature bath at 80 ° C., and the thickness of the battery after 4 days was measured. If degradation of polymer or electrolyte is observed, Since the battery was swollen by decomposition gas, etc., the reactivity at high temperature was evaluated based on the battery swollenness.
  • the prepared battery was subjected to one cycle under the above charge / discharge conditions, and then charged again to 4.2 V, and discharged at a current of 3 C (2250 mA), and the discharge capacity was calculated.
  • the capacity at 1C discharge and the capacity at 3C discharge were compared, and the discharge efficiency of 3C / 1C was calculated to evaluate the high-rate discharge performance.
  • Polymers with oxetanyl groups are produced by the catalytic action of lithium ions such as LiPF and LiBF.
  • the cationic polymerization of the cross-linked site proceeds and the bond between the polymers becomes stronger. Since the molecular weight is high, a certain degree of adhesion is exhibited when ethanol is removed, but the above-mentioned cationic polymerization proceeds due to high-temperature aging after injection, and the adhesion is further enhanced. High adhesiveness can be expressed even with a small amount of polymer.
  • the catalyst for initiating cationic polymerization is a Li electrolyte necessary for the battery, an initiator that particularly affects battery performance is not added. Li electrolytes that initiate cationic polymerization include LiPF and
  • LiBF is preferred.
  • Other electrolytes have no polymerization initiation function as a result of testing.
  • the battery contains a small amount of LiPF or LiBF.
  • comparative battery R1 in which the inside of the battery is completely an electrolyte exhibits the best performance, and the higher the gel content in the battery, the higher the discharge performance at high rate. Declined. In the future, when the capacity increases further, it is considered that the degradation of the discharge rate is more remarkable. In this sense, all gel type batteries such as comparative batteries R2 and R4 are not suitable. Conceivable.
  • the comparative battery R3 also shows a tendency for the polymer to penetrate somewhere inside the electrode due to wet PVDF coating, resulting in a decrease in discharge performance.
  • the battery T1 of the present invention is an in-battery cross-linking type and can secure adhesiveness in a very small amount, so that both discharge performance and adhesiveness are compatible. Since only the electrode and the separator are bonded, and the surrounding electrolyte is not gelled, the electrolyte can move freely, so that the ionic conductivity is not impaired. Conceivable.
  • a battery with good adhesion has a smaller distance between the electrodes, and therefore generates less decomposition gas with less excess electrolyte reacting with the electrodes.
  • comparative battery R4 which is an oxetane-based all-gel polymer battery, has an oxetanyl group. Bonding sites due to polymerization tend to be vulnerable to acid during storage, and gas generation tends to increase due to decomposition of these sites.
  • JP-A-2003-142158, JP-A-2002-110245, JP-A-2004-185920, etc. a force polymer in which this type of polymer electrolyte is used elutes into the electrolytic solution, so that good adhesion cannot be obtained.
  • Comparative battery R6 with a small amount of polymer-added ink was insufficient in the amount of polymer present at the interface between the separator and the electrode, and was unable to obtain sufficient short-circuit resistance.
  • the amount of polymer contained in the battery is O.Olg per lg of the positive electrode active material. It was solved o
  • the amount of polymer to be added is an additive amount that can express more than 5% by weight in the diluent concentration. It is desirable that this is the upper limit of the amount added. As a result of analysis, it was found that the amount of polymer contained in the battery at this time was 0.06 g per lg of the positive electrode active material.
  • the polymer loading force be 0.01-0.06 g per lg of the positive electrode active material.
  • the electrolyte concentration it is originally preferable to use the electrolyte concentration as a standard. It is difficult to define this battery in terms of production, and the amount was calculated based on the amount of the positive electrode active material used as a standard in the battery.
  • the battery of the present invention T4-9 was confirmed not to be short-circuited up to 160 ° C and to have high short-circuit resistance. This is consistent with the dissolution rate results shown in Table 6. It was found that the dissolution rate must be 10% by weight or less in order to secure short circuit resistance due to adhesion.
  • comparative battery R8 has excellent resistance to short-circuit resistance. The polymer elution rate is large and it elutes into the electrolyte. The sealing performance of the was significantly reduced. In addition, decomposition of the polymer eluted into the electrolyte increased gas generation after storage. From this, it became clear that a reduction in elution rate is necessary to reduce gas generation after storage. On the other hand, the comparative battery R9 using polymer Q2, which has a small elution rate but does not contain a cationic polymerization group, was unable to obtain an adhesive effect. It is necessary to include a group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電池特性を低下させることなく、セパレータの熱収縮を抑制することができ、より薄いセパレータを使用可能にすることができるリチウムイオン二次電池用ポリマーを得る。  正極、負極及び電解液を備えるリチウムイオン二次電池の正極及び負極と、それらの間に配置されるセパレータとを接着させるためのポリマーであって、(A)カチオン重合性を有するモノマーユニットと、(B)電解液に対する親和性を付与するモノマーユニットと、(C)電解液に対する難溶性を付与するモノマーユニットと、(D)アニオン性及びノニオン性の親水基を含むモノマーユニットとを含み、乳化重合または懸濁重合によるラジカル重合によって得られるポリマーであり、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒〔EC:DEC=5:5(重量比)〕への溶出率が10重量%以下であることを特徴としている。

Description

明 細 書
リチウムイオン二次電池用ポリマー及びそれを用いたリチウムイオン二次 電池
技術分野
[0001] 本発明は、リチウムイオン二次電池用ポリマー及びそれを用いたリチウムイオン二 次電池に関するものである。
背景技術
[0002] 携帯機器の小型高性能化と HEV等新規用途の拡大に伴!、、リチウムイオン二次 電池は高容量ィ匕と高出力化の 2極ィ匕が進行している。いずれの局面でも、電池内部 で発生する熱量の増カロと放熱性の低下が著しい環境が電池内部で形成されており、 安全性を確保する為には、電池材料の熱安定性向上が必要となっている。
[0003] 電池材料の熱安定性向上については、活物質では元素置換や粉末物性の制御が 、電解液ではイオン性溶媒を始めとする難燃性溶媒等が数多く検討されている。
[0004] し力しながら、セパレータにつ 、ては、高容量ィ匕では薄型化が望まれる反面、耐熱 性についても改善要望が高ぐシャットダウン等のセパレータの安全機能を保持した ままで薄型化を進めることが困難であった。特に薄型化に際しては、高温化での収縮 が大きくなることが問題となっており、セパレータの耐熱性向上と薄型化のバランスを 図ることが困難で、例えば、ポリプロピレン (PP)等の耐熱性榭脂をポリエチレン (PE) と積層構造にすると熱安定性は向上するが、張り合わせる厚みの問題や、製法上の 関係で、孔径ゃ気孔率等の物性が大きく変化し、従来セパレータと同等の性能を出 すことが難しい。
[0005] この他にポリエチレン(PE)製セパレータを用いたゲルポリマー電池として、ゲル電 解質によるセパレータ /電極間の接着性を保持し、収縮を抑制する手法が報告され ているが、ゲルポリマーは電解液電池と比較して、イオン伝導性に劣る為、接着によ るセパレータの熱収縮抑制効果は高 、ものの、高容量化には含液やハイレート放電 の面で不利となっており、巿場で要求される性能を満たすことは困難である。
[0006] またセパレータ /電極の密着性向上によるセパレータの熱収縮防止については、電 解液中で接着性を確保するためには、電解液に対して溶解の少な!ヽポリマーを使用 することが必要である力 この場合、ポリマー層のイオン伝導性が低くなり電池特性の 低下が顕著となる。これに対してゲルィ匕容易なポリマー電解質を用いた場合には、電 解液に溶解し易く十分な接着力が得られない。
[0007] このような背景のもと、エポキシ基或いはォキセタニル基を有するポリマーとして、特 許文献 1、特許文献 2にゲル電解質としての出願、特許文献 3、特許文献 4にセパレ ータの短絡防止としての出願、特許文献 5にセパレータに塗布して電極とセパレータ の接着に関する出願がなされている。
[0008] 特許文献 1、特許文献 2では、電池内電解液が全てゲル化される電池内重合方式 を、特許文献 3、特許文献 4ではエポキシ基或いはォキセタ-ル基を含む架橋性の 基を有するポリマーを予めセパレータに塗布または含液させたものに硬化剤を含む 電解液を注液し、架橋させてゲル電解質として用いる手法を採用することで、架橋ポ リマーによる補強効果でセパレータの熱収縮抑制を目的としている。し力しながら、前 者ではイオン伝導性の低下による充放電特性の低下、後者では、ポリマー総量が電 解液に対して低いことから、接着性の低下とポリマーの電解液中への溶解が問題で あり、高温保存等でガス発生が増加する問題があった。
[0009] また、特許文献 5にもポリマーをセパレータに塗布して電極とセパレータを接着する ことが開示されているが、これも電解液が注液された際に、ポリマーが電解液に溶解 するため十分な接着効果を発現し難!ヽ。
[0010] 電池内重合方式を採用したポリマー電池は他にも幾つか開示されている力 前述 の通り、電池内全ゲル型電池はイオン伝導性に乏しぐ特に高容量化電池では十分 な充放電性能を引き出すことが難しい。また、特許文献 3、特許文献 4、特許文献 5等 のように架橋性のポリマーをセパレータ上に塗工して、架橋剤を含む電解液を注入し て接着効果を得る方法が記載されて ヽるが、充放電性能から電解液に親和性の高 いポリマーを、量を少なく(薄膜)として用いる必要があるため、架橋剤を含む電解液 が注入された際に架橋前に電解液に溶解し、十分な接着効果が得られない上に、溶 解したポリマーが電池の充放電性能に悪影響を与えるという課題があった。
特許文献 1 :特開 2001— 176555号公報 特許文献 2:特開 2002— 110245号公報
特許文献 3 :特開 2003— 142158号公報
特許文献 4:特開 2003— 142159号公報
特許文献 5:特開 2004— 185920号公報
発明の開示
[0011] 本発明の目的は、リチウムイオン二次電池の正極及び負極と、それらの間に配置さ れるセパレータを接着させるためのポリマーであって、電池特性を低下させることなく 、セパレータの熱収縮を抑制することができ、より薄いセパレータを使用可能にするリ チウムイオン二次電池用ポリマー及びそれを用いたリチウムイオン二次電池を提供す ることにめる。
[0012] 本発明の第 1の局面に従うリチウムイオン二次電池用ポリマーは、正極、負極及び 電解液を備えるリチウムイオン二次電池の正極及び負極と、それらの間に配置される セパレータとを接着させるためのポリマーであって、(A)カチオン重合性を有するモノ マーユニットと、(B)電解液に対する親和性を付与するモノマーユニットと、(C)電解 液に対する難溶性を付与するモノマーユニットと、 (D)ァ-オン性及びノ-オン性の 親水基を含むモノマーユニットとを含み、乳化重合または懸濁重合によるラジカル重 合によって得られるポリマーであり、次式で定義されるエチレンカーボネート (EC)と ジェチルカーボネート (DEC)の混合溶媒〔EC: DEC = 5: 5 (重量比)〕への溶出率 が 10重量%以下であることを特徴としている。
[0013] ·溶出率 (重量%) = (混合溶媒に溶出されたポリマー重量 Z総ポリマー重量) X 10 0
[0014] モノマーユニット(C)は、例えば、ポリマー中において部分架橋しているユニットで あることが好ましい。このようなポリマーユニットとして、多官能ラジカル重合性モノマ 一により架橋しているモノマーユニット(C )が挙げられる。モノマーユニット(C )の具
1 1 体例としては、以下の式 1で表される多官能ラジカル重合性モノマーによるモノマー ユニットが挙げられる。
[0015] [化 1] R1
(CH2=C-C00) 2~4- (X) (式 1)
[0016] (式中、 R1は—Hまたは—CHを表わし、 Xは水酸基化合物の残基を表わす。 )
3
また、本発明における他のモノマーユニット(C)として、難溶性の炭化水素基を有 するラジカル重合性モノマーによるモノマーユニット(C )が挙げられる。このようなモ
2
ノマーユニット(C )の具体例としては、以下の式 2で表されるラジカル重合性モノマー
2
によるモノマーユニットが挙げられる。
[0017] [化 2]
R2
CH2=C-C00R3 (式 2)
[0018] (式中 R2は、— Hまたは— CHを表わし、 R3は炭素数 8以上のアルキル基、炭素数
3
8以上の脂環アルキル基、及びアルキル置換脂環アルキル基の!/、ずれかの 1種以上 を表わす。 )
[0019] 本発明の第 2の局面に従うリチウムイオン二次電池用ポリマーは、正極、負極及び 電解液を備えるリチウムイオン二次電池の正極及び負極と、それらの間に配置される セパレータとを接着させるためのポリマーであって、(A)カチオン重合性を有するモノ マーユニットと、(B)電解液に対する親和性を付与するモノマーユニットと、(D)ァ- オン性、ノ-オン性の親水基を含むモノマーユニットとを含み、乳化重合または懸濁 重合によるラジカル重合によって得られるポリマーであり、モノマーユニット (A)の少 なくとも一部が脂環エポキシ基を有するラジカル重合性モノマーのラジカル重合によ つて与えられており、かつラジカル重合の際脂環エポキシ基を有するラジカル重合性 モノマーが含まれることにより、得られるポリマーが、次式で定義されるエチレンカー ボネート(EC)とジェチルカーボネート (DEC)の混合溶媒〔EC: DEC = 5: 5 (重量 比)〕への溶出率が 10重量%以下であることを特徴として 、る。
[0020] ·溶出率 (重量%) = (混合溶媒に溶出されたポリマー重量 Z総ポリマー重量) X 10 [0021] 本発明の第 2の局面のポリマーは、ラジカル重合の際、脂環エポキシ基を有するラ ジカル重合性モノマーが含まれていることにより、溶出率が 10重量%以下となること を特徴としている。すなわち、ラジカル重合の際、脂環エポキシ基を有するラジカル 重合性モノマーが含まれていることにより、ポリマーに難溶性が付与される。このメカ -ズムの詳細については不明である力 おそらぐラジカル重合の際、脂環エポキシ 基が一部開環することにより、ポリマーに何らかの架橋反応が生じているものと思わ れる。従って、脂環エポキシ基を有するラジカル重合性モノマーは、何らかの形で、 本発明の第 1の局面におけるモノマーユニット(C)になっているものと推測される。
[0022] 以下、本発明の第 1の局面及び第 2の局面に共通する事項については、「本発明」 として説明する。
[0023] 本発明におけるモノマーユニット (A)としては、脂環エポキシ基を有するラジカル重 合性モノマー及び Zまたはォキセタ-ル基を有するラジカル重合性モノマーによるモ ノマーユニットが挙げられる。
[0024] 脂環エポキシ基を有するラジカル重合性モノマーの具体例としては、以下の式 3で 表わされる 3, 4—エポキシシクロへキシルメチルアタリレート、または 3, 4—エポキシ シクロへキシルメチルメタタリレートが挙げられる。
[0025] [化 3]
Figure imgf000007_0001
[0026] (式中、 R4は Hまたは CHを表わす。 )
3
[0027] ォキセタニル基を有するラジカル重合性モノマーの具体例としては、以下の式 4で 表わされるォキセタンアタリレートまたはォキセタンメタタリレートが挙げられる。
[0028] [化 4]
Figure imgf000008_0001
[0029] (式中、 R5は—Hまたは—CHを表わし、 R6は炭素数 1〜6のアルキル基を表わす。
3
)
[0030] 本発明におけるモノマーユニット(B)の具体例としては、以下の式 5で表わされるァ クリルエステルモノマー及びメタクリルエステルモノマー並びに以下の式 6で表わされ るビュルエステルモノマー力も選ばれる少なくとも一種のモノマーによるユニットが挙 げられる。
[0031] [化 5]
R7
CH2=C-C00R8 (式 5)
CH2=CH-0C0R9 (式 6)
[0032] (式中、 R7は— Hまたは— CHを表わし、 R8は炭素数 1〜6のアルキル基、―(CH
3 2
CH O)〜 CH、― (CH CH O)〜 C H、― (CH CH (CH ) 0)〜 CH、または
2 1 3 3 2 2 1 3 2 5 2 3 1 3 3
- (CH CH (CH ) θ)〜 C Hを表わし、 R9は CH、― C H、または— C Hを表
2 3 1 3 2 5 3 2 5 3 7 わす。)
[0033] 本発明におけるポリマーの溶出率は、上記式によって定義されるものであり、上記 混合溶媒に 24時間浸漬して抽出処理を行い、混合溶媒中に溶出したポリマーの量 力も求められるものである。本発明における溶出率は、本発明のポリマーの電解液に 対する難溶性を示すものであり、 10重量%以下であることが好ましぐさらに好ましく は 7重量%以下であり、さらに好ましくは 5重量%以下である。
[0034] し力しながら、本発明のポリマーは、単に難溶性であればよいというものではなぐ 難溶性であっても、電解液に対し膨潤及び Zまたは軟ィ匕するものであることが好まし い。このような観点から、本発明のポリマーには、電解液に対する親和性を付与する モノマーユニット (B)が含まれて 、る。
[0035] 本発明のポリマーが、電解液に対して膨潤及び Zまたは軟ィ匕するものであることが 好ましい理由は以下の通りである。
[0036] すなわち、本発明においては、本発明のポリマーを電池内に配置した後、電解液 中に含まれるカチオン重合開始剤により、ポリマーを架橋反応させる必要がある。従 つて、電解液に対して膨潤及び/または軟化することにより、電解液中に含まれる力 チオン重合開始剤により、カチオン重合が開始され、ポリマーの架橋反応が生じる。 また、架橋反応後もポリマー内に電解液が存在していることにより、リチウムイオンの 移動が妨げられに《なり、電池特性の低下を最小にすることができる。また、膨潤及 び軟ィ匕することにより、電極とセパレータの間に侵入したポリマーによるこれら間の接 着性が高められる。
[0037] 本発明のポリマーはラジカル乳化重合あるいはラジカル懸濁重合によって、粒子状 ポリマーの乳化〜懸濁液として得ることができ、この乳化〜懸濁液を (好ましくは)希 釈して電池外装体内に注入することにより、ポリマー粒子を正負電極とセパレータの 間に配置することができる。
[0038] 脂環エポキシ基を有するモノマーはモノマー全量中 1.0〜40重量%程度配合して 水中でラジカル乳化重合あるいはラジカル懸濁重合すれば同時に部分的に内部架 橋して目的を達することができるが、 1.0重量%未満では電解液へ溶解し易くなり接 着効果が減少し、 40重量%以上では内部架橋度が大きくなり過ぎ、乾燥時のポリマ 一粒子の融合が不足することにより接着性が低下し好ましくなぐまた、電解液による 膨潤が生じ難くなるため電池特性が低下する場合があり好ましくない。
[0039] ォキセタニル基を含むラジカル重合性モノマーとしては、例えば、上記式 4で表され るォキセタ-ルアタリレート、ォキセタ-ルメタタリレートが用いられ、ポリマー粒子の内 部架橋には寄与しないが、その後注液される電解液中に含まれるカチオン重合開始 剤(LiPF、 LiBFを含む)で架橋し電極とセパレータの接着に寄与する。
6 4
[0040] 上記の脂環エポキシ基含有モノマーもカチオン重合開始剤 (LiPF、 LiBFを含む)
6 4 で架橋するため、脂環エポキシ基含有モノマーと併用する場合はモノマー全量中そ の合計量が 40重量%を限度として使用され、脂環エポキシ基含有モノマーを使用す る場合は使用しなくても良 、。脂環エポキシ基含有モノマーを使用しな 、場合は 10 重量%〜40重量%使用され、 10重量%未満では架橋度が低く電解液へ溶解し易く なり接着性が不足し、 40重量%以上では電解液による膨潤が生じ難くなるため電池 特性が低下する場合があり、好ましくない。
[0041] また、電解液に難溶性のポリマーを得るにはポリマー中に長鎖アルキル基のような 電解液に難溶性を付与する基を含むラジカル重合性モノマー、例えば、上記式 2で 表される炭素数 8〜18程度の長鎖アルキルアタリレート〜メタタリレート、脂環アルキ ルアタリレート〜メタタリレート、アルキル置換脂環アルキルアタリレート〜メタタリレート 等をラジカル共重合することによって得ることができ、これらをモノマー全量に対し 10 〜70重量%程度配合してラジカル重合すれば目的を達することができ、 10重量%未 満では電解液へ溶解し易くなり接着効果が減少し、 70重量%以上では電解液による 膨潤が生じ難くなるため電池特性が低下する場合があり好ましくない。
[0042] また、 1分子中にラジカル重合性基を 2個以上有する多官能ラジカル重合性モノマ 一としては、上記式 1で表される多官能ラジカル重合性モノマー、例えばアルキレン グリコール〜ポリアルキレングリコールのジアタリレート、メタタリレート類;エチレングリ コールジアタリレート、ポリエチレングリコールジアタリレート、ポリエチレングリコールジ メタタリレート、ポリプロピレングリコールジアタリレート、ポリプロピレングリコールジメタ タリレートなど、:トリメチロールプロパン、グリセリン、あるいはこれらのアルキレンォキ シド付加物;トリメチロールプロパントリアタリレート、トリメチロールプロパントリメタクリレ ート、グリセリントリアタリレート、グリセリントリメタタリレート、ポリオキシエチレン付カ卟リ メチロールプロパントリアタリレート、ポリオキシプロピレン付加グリセリントリメタタリレー トなど、:過剰当量の多価アルコールと多塩基酸のオリゴエステル類、例えばエチレン グリコール、プロピレングリコール、ネオペンチルグリコールなどのグリコール類のアジ ピン酸、セバシン酸等の 2塩基酸オリゴエステル類のアタリレート〜メタタリレート類:ポ リ Ί -ブチ口ラタトンの残存カルボン酸あるいはヒドロキシビバリン酸のような水酸基と カルボキシ基を有する化合物(のカルボキシル基を)と多価アルコールのオリゴエステ ルのアタリレート〜メタタリレート類などを用いることができ、これらはモノマー全量に 対し 0.1〜4重量%と比較的少量用いられ、 0.1重量%未満では電解液へ溶解し易く なり接着効果が減少し、 4重量%以上では内部架橋度が大きくなり過ぎ、乾燥時のポ リマー粒子の融合が不足することにより接着性が低下し好ましくなぐまた、電解液に よる膨潤が生じ難くなるため電池特性が低下する場合があり好ましくない。
[0043] その他、多官能ラジカル重合性モノマー、例えば、ジビュルベンゼン、ジァリルフタ レート、トリアリルトリメリテート、トリアリルイソシァヌレート、ァリルメタタリレート、ァリル アタリレートなどの多官能ビュル、アクリル、ァリルイ匕合物を用いても内部架橋すること ちでさる。
[0044] また、これら多官能ラジカル重合性モノマー以外に多官能メルカプト化合物、ェチ レングリコールビスチォグリコレート、ブタンジォーノレ
ビスチォグリコレート、トリメチロールプロパントリス-チォグリコレート、ペンタエリスリト ールテトラキス-チォグリコレートなどを用いても内部架橋することもできる。
[0045] 尚、勿論、これらの電解液への溶解を防止する方法は上記の方法を複数併用して も良い。
[0046] 以上、電解液に難溶性のポリマーはこれらの方法によって得ることができる力 難溶 性と適度な膨潤性を調整するため、上記式 5及び 6で表される、電解液に対し親和性 の大きな比較的高極性のアクリルエステルモノマー、メタクリルエステルモノマー、ビ -ルエステルモノマー類が用いられる力 脂環エポキシ基を含むラジカル重合性モノ マーを用いて電解液難溶性とする場合はモノマー全量中その残り量である 60〜98重 量%、脂環エポキシ基を含むラジカル重合性モノマーを用いず電解液に難溶性を付 与する基を含むラジカル重合性モノマーを用いる場合はモノマー全量中その残り量 である 10〜80重量%、脂環エポキシ基を含むラジカル重合性モノマーを用いず多官 能ラジカル重合性モノマーを用いる場合はモノマー全量中その残り量である 56〜89. 9重量%が用いられる。
[0047] これらのポリマー粒子は水中乳化重合、水中懸濁重合によってその分散液として好 適に製造することができ、乳化重合は通常の方法で可能である。重合開始剤は水溶 性のラジカル重合開始剤である過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモ-ゥ ム、過硫酸リチウムなどの過硫酸塩、;2,2,-ァゾビス(1-ィミノ- 2-ェチルプロパン)ジ ノヽイド口クロライド、 2,2, -ァゾビス [2- (2-イミダゾリン- 2-ィル)プロパン]、 2,2-ァゾビス [ 2-メチル - N- (2-ヒドロェチル)プロピオンアミド]、などをモノマー総量に対し 0.01〜数 重量%程度使用される。また、必要に応じて油溶性ラジカル重合開始剤である Ν,Ν'- ァゾビスイソブチ口-トリル、ベンゾィルパーオキサイドなどを併用することもできる。乳 ィ匕剤としてはアルキル硫酸塩、アルキルベンゼン硫酸塩、アルキルナフタレン硫酸塩 などのァ-オン系;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキ ルフエノールエーテルなどのノ-オン系;などの通常の各種界面活性剤に加え、ラジ カル重合性基を有する反応性乳化剤と称されるラジカル重合性基とァ-オン親水基 あるいはノニオン親水基を有する化合物;
スルホェチルメタタリレートのアルカリ金属〜アンモ-ゥム塩、スルホェチルアタリレー トのアルカリ金属〜アンモ-ゥム塩、 Ρ-スチレンスルホン酸のアルカリ金属〜アンモ- ゥム塩、ポリエチレングリコールメタタリレート、ポリエチレングリコールアタリレートなど が用いられるが、反応性乳化剤を用いることが好ましぐ中でもァニオン性基がリチウ ム塩であるァニオン反応性乳化剤を用いることが更に好ましぐこれら反応性乳化剤 は 0.1〜20重量%程度用いる。
[0048]
Figure imgf000012_0001
、ては窒素ガス等の不活性ガスを導入、攪拌しつつ、モノマー総量 に対し、水が 60〜500重量%の存在下で行われ、重合温度はラジカル重合開始剤の 半減期温度によって変わってくる力 50°C〜80°Cに加温して 3時間〜 20時間程度行 われ、必要に応じてポリマー濃度、 pHなどを調整して製造され、また、必要に応じてメ ルカブタン類などの分子量調整剤を使用することもできる。
[0049] 懸濁重合は、分散助剤としてポリビニルアルコール、ポリアクリル酸塩類、カルボキ シメチルセルローズ(CMC)、ェチルセルローズなどの水溶性高分子を溶解した水中 で行われるが、上記のような反応性乳化剤をラジカル重合させた水溶性高分子、中 でもァ-オン性基を有する反応性乳化剤のリチウム塩をラジカル重合した水溶性高 分子などを 0.05〜数重量%程度溶解した水中にモノマーを分散させた状態で重合を 行えば好適に製造することができる。
[0050] 重合開始剤は基本的に油溶性重合開始剤: Ν,Ν'-ァゾビスイソプチ口-トリル、 2,2, -ァゾビス(2-メチルブチ口-トリル)、ジメチル 2,2,—ァゾビス(2-メチルプロピオネート )、ベンゾィルパーオキサイドが用いられる力 必要に応じ、水溶性のラジカル重合開 始剤である過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモ-ゥム、過硫酸リチウム などの過硫酸塩、;2,2,-ァゾビス(1-ィミノ- 2-ェチルプロパン)ジハイド口クロライド、 2, 2, -ァゾビス [2- (2-イミダゾリン- 2-ィル)プロパン]、 2,2-ァゾビス [2-メチル -N- (2-ヒド ロェチル)プロピオンアミド]などを併用する。
[0051] 重合条件については窒素ガス等の不活性ガスを導入、攪拌しつつ、モノマー総量 に対し、水が 60〜500重量%の存在下で行われ、重合温度はラジカル重合開始剤の 半減期温度によって変わってくる力 50°C〜80°Cに加温して 3時間〜 20時間程度行 われ、必要に応じてポリマー濃度、 pHなどを調整して製造される。また、必要に応じ てメルカブタン類などの分子量調整剤を使用することもできる。
[0052] ポリマー粒子の粒子径は、電極/セパレータの間隙より大き過ぎる場合は粒子が侵 入し難くなり接着効果が不足することが考えられるが、通常の乳化重合で得られる粒 子径は数ミクロン以下であるため問題はない。懸濁重合では粒子径が 100ミクロン以 上に達する場合があり、その場合は後述の分散助剤の種類と量、乳化重合で用いる 乳化剤の併用、攪拌条件などを調整し、得られる粒子径を数十ミクロン以下とするこ とが好ましい。
[0053] 本発明においては、ポリマー分散液を予め正極及び負極とセパレータを組み込ん だリチウムイオン二次電池容器内に注液するが、ポリマー粒子の濃度を好ましくは 0.1 〜5.0重量%の希薄な状態で、正極活物質 lg当りポリマーとして 0.01〜0.06g注液す る。
[0054] 通常、ポリマー粒子の分散液は 20〜40重量%程度の濃度で供給されるので、この 分散液を希釈して用いる。希釈は水を用いることもできる力 リチウムイオン二次電池 の電極バインダーとして CMCなどの水溶性高分子、 SBRなどのラテックスが用いられ ている場合には、電極に損傷を与える場合があり水溶性有機溶媒を用いることが望 ましい。
[0055] 水溶性有機溶媒は、メタノール、エタノール、イソプロパノール等の水に自由混和 するアルコール類、:アセトン、 2-ブタノンなどのケトン系、:2-メトキシエタノール、 2- エトキシエタノール、 2—メトキシ (2-プロパノール)、 2-ブトキシエタノールなどのグリコ ールエーテル系、:ジメトキシェタン、メトキシェトキシェタンなどのエーテル系、:ジォ キサン、テトラヒドロフランなどの環状エーテル系、: γ -ブチロラタトン、 Ν-メチルピロリ ドン、 Ν,Ν'-ジメチルホルムアミド等を用いることができ、少量であれば非水溶性溶媒 を併用することちできる。
[0056] この水溶性溶媒は後工程である乾燥で除去するため揮散性の大きい比較的低沸 点の溶媒が好ましぐメタノール、エタノール、イソプロパノール、 2-メトキシエタノール 、 2-エトキシエタノール、ジメトキシェタンなどが好ましく用いられる。
[0057] 本発明ではポリマーの乳化〜懸濁液は水溶性溶媒でポリマー濃度を 0.1〜5重量 %と希薄な濃度とし、正極活物質 lg当りポリマーとして 0.01〜0.06gと極めて少量を用 V、て良好な接着性と優れた電池特性を保持し、且つ電池の膨れ等の問題がな!、の が特徴である。
[0058] 0.1〜5重量%と希薄なポリマー濃度とすることにより、少量のポリマーを均一に電極 とセパレータ間隙へと浸透させることができる。
[0059] 〔ポリマー分散液の製法〕
希釈は水を用いることもできる力 リチウムイオン二次電池の負極の結着剤として水 溶性の CMC (カルボキシメチルセルロース)や SBR等のラテックスが用いられて!/、る場 合には、電極に損傷を与える場合があり水溶性の有機溶媒を用いることが望ましい。
[0060] 水溶性有機溶媒としては、メタノール、エタノール、イソプロパノール等の水に自由 混和するアルコール類、
アセトン、 2-ブタノン等のケトン系、 2-メトキシエタノール、 2-エトキシエタノール、 2-メ トキシ (2-プロパノール)、 2-ブトキシエタノールなどのグリコールエーテル系、 ジメトキシェタン、メトキシェトキシエーテル等のエーテル系、 γ -ブチロラタトン、 Ν-メ チルピロリドン、 Ν,Ν'-ジメチルホルムアミド等を用いることができ、少量であれば非水 溶性溶媒を併用することもできる。
[0061] また、この水溶性溶媒は後工程である乾燥で除去するため揮散性の大き!/、比較的 低沸点の溶媒が好ましぐメタノール、エタノール、イソプロパノール、 2-メトキシェタノ ール、 2-エトキシエタノール、ジメトキシェタン等が好適である。
[0062] 実施例において、ポリマーの分散液はエタノールでポリマー濃度を 1〜10重量%と なるように希釈して用いた。
[0063] 〔ポリマー溶出率の測定〕
本発明では、ポリマー電解質は接着剤としての機能を果たしており、 ECや DEC等 の電解液に使用される有機溶媒へ溶出した場合は、接着性の低下だけではなぐ熱 溶着部にポリマーが嚙むことによるラミネート部の封止の信頼性の低下、高温保存時 におけるポリマーの分解に起因するガス発生等が問題になる。従って、本発明方法 のようにポリマー電解質を使用した場合は、電解液との親和性を確保しつつ、溶解性 を減少させることが重要となる。
[0064] 通常、分子量の増加によって有機溶剤への溶解量は減少する力 〔ポリマーの製 法〕に従って作製したポリマーは、その分子量が大きすぎる為に正確に分子量を測 定することが困難である。
[0065] 本ポリマー作製方法に従えば、分子量が百万以上の有機溶剤に溶出し難いポリマ 一を作製することが可能であるが、具体的にその物性値を規定する為に、 EC:DEC=5 :5とした有機溶媒へ 24時間浸漬して抽出処理を行い、有機溶剤中へのポリマーの溶 出量を規定している。
[0066] 本来は電池内部へ注液する電解液に対する溶出率により規定するべきであるが、 電解液の組成によりその溶出率は若干変化するが大きな差異は確認できな力つた為 、EC/DEC = 5/5溶媒を基準とした抽出率を用いて規格ィ匕を行った。
(発明の効果)
[0067] 本発明によれば、電池特性を低下させることなぐセパレータの熱収縮を抑制する ことができ、より薄いセパレータを使用可能にすることができる。
図面の簡単な説明
[0068] [図 1]図 1は、本発明電池 T1と比較電池 Rl〜5の耐ショート特性の結果を示す図であ る。
発明を実施するための最良の形態
[0069] 以下、本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるもの ではなぐその趣旨を変更しない範囲において適宜変更して実施することが可能なも のである。 [0070] 〔ポリマーの製法〕
(製造例 1ポリマー P1の製造)
窒素ガスで置換した 500mlの 4口コルベンに 3,4-エポキシシクロへキシルメチルァク リレート 4.0g、 3-ェチルォキセタニルメタタリレート 16.0g、メチルメタタリレート 25.0g、 n- ブチルアタリレート 35.0g、 p-スチレンスルホン酸リチウム 3.0g、およびイオン交換水 15 5.0gを仕込み、窒素ガスを導入、攪拌、昇温した。約 60°Cに達した後、過硫酸アンモ -ゥム 0.2g、水酸化リチウム (LiOH' l/2H O)0.1gを 5.0gのイオン交換水に溶解して添
2
カロ、加熱攪拌を続け、発熱に注意しながら 75°Cまで昇温、 75°Cを保ちながら重合を 続けた。
[0071] 10〜20分後に乳白色になり重合が始まる力 この状態を保ったまま 3時間反応を続 け、過硫酸アンモ-ゥム O.lgをイオン交換水 2.0gに溶解してカ卩え、更に 75°Cで 2時間 を続け重合を完結させ、次いで 30〜40°Cまで冷却、水酸化リチウムの 1重量%溶液を 用いて pH6〜8まで中和、次いで 300メッシュのろ過網でろ過、乳白色の乳化重合液 ポリマー P1を得た。
[0072] ポリマー P1の 105°C、 3時間加熱乾燥後の不揮発分は 34.4重量%で、レーザー光拡 散粒度分布計による粒子径はメジアン径で 0.14ミクロンであった。上記ポリマーをポリ プロピレン不織布に含浸し、 100°Cで 30分熱風乾燥後、炭酸エチレン Z炭酸ジェチ ル =50/50 (重量比)の混合溶媒に 24時間浸漬し、 105°Cで 5時間減圧乾燥して、溶 出率を測定した。溶出率は、 0.14重量%であった。
[0073] (製造例 2ポリマー P2の製造)
窒素ガスで置換した 500mlの 4口コルベンに 3-ェチルォキセタ-ルメタタリレート 16.0 g、メチルメタタリレート 30.0g、 n-ブチルアタリレート 30.0g、ネオペンチルグリコールの ヒドロキシピノ リン酸エステルに γ -力プロラタトンを付加重合して得られる両末端水 酸基ポリエステルオリゴマーのジアタリレート(商品名カャラッド ΗΧ- 220、 日本化薬株 式会社製)を 4.0g、 p-スチレンスルホン酸リチウム 3.0g、およびイオン交換水 155.0gを 仕込み、窒素ガスを導入、攪拌、昇温した。約 60°Cに達した後、過硫酸アンモ-ゥム 0.2g、水酸化リチウム(LiOH' l/2H O) 0.1gを 5.0gのイオン交換水に溶解して添加、
2
加熱攪拌を続け、発熱に注意しながら 75°Cまで昇温、 75°Cを保ちながら重合を続け た。
[0074] 10〜20分後に乳白色になり重合が始まる力 この状態を保ったまま 3時間反応を続 け、過硫酸アンモ-ゥム O.lgをイオン交換水 2.0gに溶解してカ卩え、更に 75°Cで 2時間 を続け重合を完結させた。次いで 30〜40°Cまで冷却、水酸化リチウム (LiOH' l/2H 0
2
)の 1重量%溶液を用いて PHを 6〜8に中和、次いで 300メッシュのろ過網でろ過し、乳 白色の乳化重合液ポリマー P2を得た。
[0075] ポリマー P2の 105°C、 3時間加熱乾燥後の不揮発分は 35.3重量%で、レーザー光拡 散粒度分布計による粒子径はメジアン径で 0.22ミクロンであった。上記ポリマーをポリ プロピレン不織布に含浸し、 100°Cで 30分熱風乾燥後、炭酸エチレン/炭酸ジェチル =50/50 (重量比)の混合溶媒に 24時間浸漬し、 105°Cで 5時間減圧乾燥して、溶出率 を測定した。溶出率は、 0.96重量%であった。
[0076] (製造例 3ポリマー P3の製造)
窒素ガスで置換した 500mlの 4口コルベンに 3,4-エポキシシクロへキシルメチルァク リレート 4.0g、 3-ェチルォキセタニルメタタリレート 16.0g、メチルメタタリレート 20.0g、ラ ゥリルメタタリレート 20.0g、 p-スチレンスノレホン酸リチウム 3.0g、およびイオン交換水 15 5gを仕込み、窒素ガスを導入、攪拌、昇温した。約 60°Cに達した後、過硫酸アンモ- ゥム 0.2g、水酸化リチウム (LiOH' l/2H O)0. lgを 5.0gのイオン交換水に溶解して添カロ
2
、加熱攪拌を続け、発熱に注意しながら 75°Cまで昇温、 75°Cを保ちながら重合を続 けた。
[0077] 10〜20分後に乳白色になり重合が始まる力 この状態を保ったまま 3時間反応を続 け、過硫酸アンモ-ゥム O.lgをイオン交換水 2.0gに溶解してカ卩え、更に 75°Cで 2時間 を続け重合を完結させ、次いで 30〜40°Cまで冷却、水酸化リチウム (LiOH' l/2H 0)
2 の 1重量%溶液を用いて PHを 6〜8に中和、次いで 300メッシュのろ過網でろ過、乳白 色の乳化重合液ポリマー P3を得た。
[0078] ポリマー P3の 105°C、 3時間加熱乾燥後の不揮発分は 34.5重量%で、レーザー光拡 散粒度分布計による粒子径はメジアン径で 0.18ミクロンであった。上記ポリマーをポリ プロピレン不織布に含浸し、 100°Cで 30分熱風乾燥後、炭酸エチレン Z炭酸ジェチ ル =50/50 (重量比)の混合溶媒に 24時間浸漬し、 105°Cで 5時間減圧乾燥して、溶出 率を測定した。溶出率は、 0.47重量%であった。
[0079] (製造例 4ポリマー P4の製造)
窒素ガスで置換した 500mlの 4口コルベンに 3,4-エポキシシクロへキシルメチルァク リレート 4.0g、 3-ェチルォキセタニルメタタリレート 16.0g、メチルメタタリレート 25.0g、 n- ブチルアタリレート 35.0g、アルキルプ口ぺニルフエノールのエチレンォキシド付カロ重 合物(商品名アクアロン RN-30、 65重量%濃度、第一工業製薬株式会社製) 4.6g、お よびイオン交換水 155.0gを仕込み、窒素ガスを導入、攪拌、昇温した。約 60°Cに達し た後、過硫酸アンモ-ゥム 0.2g、水酸化リチウム (LiOH' l/2H O) 0.1gを 5.0gのイオン
2
交換水に溶解して添加、加熱攪拌を続け、発熱に注意しながら 75°Cまで昇温、 75°C を保ちながら重合を続けた。
[0080] 10〜20分後に乳白色になり重合が始まる力 この状態を保ったまま 3時間反応を続 け、過硫酸アンモ-ゥム O.lgをイオン交換水 2.0gに溶解してカ卩え、更に 75°Cで 2時間 を続け重合を完結させ、次いで 30〜40°Cまで冷却し、水酸化リチウム(LiOH' l/2H
2
0)の 1重量%溶液を用いて pHを 6〜8に中和し、次いで 300メッシュのろ過網でろ過、 乳白色の乳化重合液ポリマー P4を得た。
[0081] ポリマー P4の 105°C、 3時間加熱乾燥後の不揮発分は 33.5重量%で、不揮発分から 換算した重合率は 33.5重量%、レーザー光拡散粒度分布計による粒子径はメジアン 径で 0.19ミクロンであつ。上記ポリマーをポリプロピレン不織布に含浸し、 100°Cで 30 分熱風乾燥後、炭酸エチレン Z炭酸ジェチル =50/50 (重量比)の混合溶媒に 24時間 浸漬し、 105°Cで 5時間減圧乾燥して、溶出率を測定した。溶出率は、 5.11重量%で めつに。
[0082] (製造例 5ポリマー P5の製造)
窒素ガスで置換した 500mlの 4口コルベンに 3,4-エポキシシクロへキシルメチルァク リレート 4.0g、 3-ェチルォキセタニルメタタリレート 16.0g、メチルメタタリレート 25.0g、 n -ブチルアタリレート 35.0g、アルキルプ口ぺニルフエノールのエチレンォキシド付カロ重 合物のスルホン酸塩 (商品名アクアロン HS-1025、濃度 25重量%、第一工業製薬製) 12.0g、およびイオン交換水 155.0gを仕込み、窒素ガスを導入、攪拌、昇温した。約 60 °Cに達した後、過硫酸アンモ-ゥム 0.2g、水酸化リチウム (LiOH' l/2H O) 0.1gを 5.0g のイオン交換水に溶解して添加、加熱攪拌を続け、発熱に注意しながら 75°Cまで昇 温、 75°Cを保ちながら重合を続けた。
[0083] 10〜20分後に乳白色になり重合が始まる力 この状態を保ったまま 3時間反応を続 け、過硫酸アンモ-ゥム O.lgをイオン交換水 2.0gに溶解してカ卩え、更に 75°Cで 2時間 を続け重合を完結させ、次いで 30〜40°Cまで冷却、水酸化リチウム (LiOH' l/2H 0)
2 の 1重量%溶液を用いて PHを 6〜8に中和、次いで 300メッシュのろ過網でろ過、乳白 色の乳化重合液ポリマー P5を得た。
[0084] ポリマー P5の 105°C、 3時間加熱乾燥後の不揮発分は 34.9重量%で、レーザー光拡 散粒度分布計による粒子径はメジアン径で 0.13ミクロンであった。上記ポリマーをポリ プロピレン不織布に含浸し、 100°Cで 30分熱風乾燥後、炭酸エチレン/炭酸ジェチル = 50/50 (重量比)の混合溶媒に 24時間浸漬し、 105°Cで 5時間減圧乾燥して、溶出 率を測定した。溶出率は、 2.25重量%であった。
[0085] (製造例 6ポリマー P6の製造)
窒素ガスで置換した 500mlの 4口コルベンに 3,4-エポキシシクロへキシルメチルァク リレート 4.0g、メチルメタタリレート 31.7g、 n-ブチルアタリレート 44.3g、 p-スチレンスル ホン酸リチウム 3.0g、およびイオン交換水 155.0gを仕込み、窒素ガスを導入、攪拌、 昇温した。約 60°Cに達した後、過硫酸アンモ-ゥム 0.2g、水酸化リチウム (LiOH' l/2H O) 0.1gを 5.0gのイオン交換水に溶解して添加、加熱攪拌を続け、発熱に注意しなが
2
ら 75°Cまで昇温、 75°Cを保ちながら重合を続けた。
[0086] 10〜20分後に乳白色になり重合が始まる力 この状態を保ったまま 3時間反応を続 け、過硫酸アンモ-ゥム O.lgをイオン交換水 2.0gに溶解してカ卩え、更に 75°Cで 2時間 を続け重合を完結させ、次いで 30〜40°Cまで冷却、水酸化リチウム (LiOH' l/2H 0)
2 の 1重量%溶液を用いて PHを 6〜8に中和、次いで 300メッシュのろ過網でろ過、乳白 色の乳化重合液ポリマー P5を得た。
[0087] ポリマー P6の 105°C、 3時間加熱乾燥後の不揮発分は 34.9重量%で、レーザー光拡 散粒度分布計による粒子径はメジアン径で 0.30ミクロンであった。上記ポリマーをポリ プロピレン不織布に含浸し、 100°Cで 30分熱風乾燥後、炭酸エチレン/炭酸ジェチル = 50/50 (重量比)の混合溶媒に 24時間浸漬し、 105°Cで 5時間減圧乾燥して、溶出 率を測定した。溶出率は、 4.23重量%であった。
[0088] (製造例 7ポリマー P7の製造)
窒素ガスで置換した 500mlの 4口コルベンに 3,4-エポキシシクロへキシルメチルァク リレート 25.0g、メチルメタタリレート 31.25g、 n-ブチルアタリレート 43.75g、 p-スチレン スルホン酸リチウム 3.75g、およびイオン交換水 155.0gを仕込み、窒素ガスを導入、攪 拌、昇温した。約 60°Cに達した後、過硫酸アンモ-ゥム 0.2g、水酸化リチウム (LiOH' l /2H O) 0.1gを 5.0gのイオン交換水に溶解して添加、加熱攪拌を続け、発熱に注意し
2
ながら 75°Cまで昇温、 75°Cを保ちながら重合を続けた。
[0089] 10〜20分後に乳白色になり重合が始まる力 この状態を保ったまま 3時間反応を続 け、過硫酸アンモ-ゥム O.lgをイオン交換水 2.0gに溶解してカ卩え、更に 75°Cで 2時間 を続け重合を完結させ、次いで 30〜40°Cまで冷却、水酸化リチウム (LiOH' l/2H 0)
2 の 1重量%溶液を用いて PHを 6〜8に中和、次いで 300メッシュのろ過網でろ過、乳白 色の乳化重合液ポリマー P7を得た。
[0090] ポリマー P7の 105°C、 3時間加熱乾燥後の不揮発分は 34.4重量%で、レーザー光拡 散粒度分布計による粒子径はメジアン径で 0.30ミクロンであった。上記ポリマーをポリ プロピレン不織布に含浸し、 100°Cで 30分熱風乾燥後、炭酸エチレン/炭酸ジェチル = 50/50 (重量比)の混合溶媒に 24時間浸漬し、 105°Cで 5時間減圧乾燥して、溶出 率を測定した。溶出率は、 1.41重量%であった。
[0091] (製造例 8ポリマー Q1の製造)
窒素ガスで置換した 500mlの 4口コルベンに 3-ェチルォキセタ-ルメタタリレート 20.0 g、メチルメタタリレート 30.0g、 n-ブチルアタリレート 30.0g、 p-スチレンスルホン酸リチウ ム 3.0g、およびイオン交換水 155.0gを仕込み、窒素ガスを導入、攪拌、昇温した。約 6 0°Cに達した後、過硫酸アンモ-ゥム 0.2g、水酸化リチウム (LiOH' l/2H O) 0.1gを 5.0
2
gのイオン交換水に溶解して添加、加熱攪拌を続け、発熱に注意しながら 75°Cまで昇 温、 75°Cを保ちながら重合を続けた。
[0092] 10〜20分後に乳白色になり重合が始まる力 この状態を保ったまま 3時間反応を続 け、過硫酸アンモ-ゥム O.lgをイオン交換水 2.0gに溶解してカ卩え、更に 75°Cで 2時間 を続け重合を完結させ、次いで 30〜40°Cまで冷却、水酸化リチウム (LiOH' l/2H 0) の 1重量%溶液を用いて PHを 6〜8に中和、次いで 300メッシュのろ過網でろ過、乳白 色の乳化重合液ポリマー Q1を得た。
[0093] ポリマー Q1の 105°C、 3時間加熱乾燥後の不揮発分は 33.3重量%で、レーザー光 拡散粒度分布計による粒子径はメジアン径で 0.17ミクロンであった。上記ポリマーを ポリプロピレン不織布に含浸し、 100°Cで 30分熱風乾燥後、炭酸エチレン/炭酸ジェ チル =50/50 (重量比)の混合溶媒に 24時間浸漬し、 105°Cで 5時間減圧乾燥して、 溶出率を測定した。溶出率は、 20.83重量%であった。
[0094] (製造例 9ポリマー Q2の製造)
窒素ガスで置換した 500mlの 4口コルベンにメチルメタタリレート 38.0g、 n_ブチルァク リレート 38.0g、ネオペンチルグリコールのヒドロキシピバリン酸エステルに γ -力プロラ タトンを付加重合して得られる両末端水酸基ポリエステルオリゴマーのジァクリレート( 商品名カャラッド ΗΧ-220、 日本ィ匕薬株式会社製)を 4.0g、 P-スチレンスルホン酸リチ ゥム 3.0g、およびイオン交換水 155.0gを仕込み、窒素ガスを導入、攪拌、昇温した。 約 60°Cに達した後、過硫酸アンモ-ゥム 0.2g、水酸化リチウム (LiOH' l/2H O)0.1gを
2
5.0gのイオン交換水に溶解して添加、加熱攪拌を続け、発熱に注意しながら 75°Cま で昇温、 75°Cを保ちながら重合を続けた。
[0095] 10〜20分後に乳白色になり重合が始まる力 この状態を保ったまま 3時間反応を続 け、過硫酸アンモ-ゥム O.lgをイオン交換水 2.0gに溶解してカ卩え、更に 75°Cで 2時間 を続け重合を完結させ、次いで 30〜40°Cまで冷却、水酸化リチウム (LiOH' l/2H 0)
2 の 1重量%溶液を用いて PHを 6〜8に中和、次いで 300メッシュのろ過網でろ過、乳白 色の乳化重合液ポリマー Q2を得た。
[0096] ポリマー Q2の 105°C、 3時間加熱乾燥後の不揮発分は 34.3重量%で、レーザー光 拡散粒度分布計による粒子径はメジアン径で 0.21ミクロンであった。上記ポリマーを ポリプロピレン不織布に含浸し、 100°Cで 30分熱風乾燥後、炭酸エチレン/炭酸ジェ チル =50/50 (重量比)の混合溶媒に 24時間浸漬し、 105°Cで 5時間減圧乾燥して、 溶出率を測定した。溶出率は、 1.84重量%であった。
[0097] 表 1に、ポリマー P1〜P7及びポリマー Q1〜Q2のモノマー等の配合割合を示す。な お、単位は gである。また、溶出率も併せて示す。表 1における記号は、以下の通りで ある。
[0098] CEM:3,4-エポキシシクロへキシルメチルアタリレート
OXM:3-ェチルォキセタニルメタタリレート
MMA:メチルメタタリレート
n- BA:n-ブチルアタリレート
LMA:ラウリノレメタタリレート
TCDM:トリシクロ [5 ·2 · 1 ·02'°]デ力-ルメタタリレート、商品名 FA- 513Μ(日立化 成株式会社製)
ΗΧ220 :ネオペンチルグリコールのヒドロキシピバリン酸エステルに γ—力プロ ラタトンを付加重合して得られる両末端水酸基ポリエステルオリゴマーのジァクリレー ト、商品名カャラッド ΗΧ-220(日本ィ匕薬株式会社製)
Liss:p_スチレンスノレホン酸リチウム
NR- 1:アルキルプ口ぺ-ルフエノールのエチレンォキシド付加重合物、濃度 65 重量%、商品名アクアロン RN-30(第一工業製薬株式会社製)
AR- 2:アルキルプ口ぺ-ルフエノールのエチレンォキシド付カ卩重合物のスルホ ン酸塩、濃度 25重量0 /0、商品名アクアロン HS- 1025(第一工業製薬製)
[0099] [表 1]
Figure imgf000022_0001
[0100] 表 2に、各ポリマーの溶出量をまとめて示す,
[0101] [表 2] ホリマ- 本発明 P1 本発明 P2 本発明 P3 本発明 P4 本発明 P5
溶出率 (重量 ¾) 1. 83 0. 96 0. 47 5. 11 2. 25
ホ'リマ- 本発明 P6 本発明 P7 比較 Q1 比較 Q2
溶出率 (重量 ¾) 4. 23 1. 41 20. 83 1. 84
[0102] 従来、例えば、前述特許文献はカチオン架橋性ポリマーが用いられているがいず れも電解液 (の溶媒)に溶解するポリマーを前提としている。その理由は電池内電解 液をすベてゲルィ匕させるため、予め電解液に溶解しておいた後に架橋してゲルとす ること、あるいはセパレータに塗工するためポリマーを溶液として液状ィ匕しなければな らないこと〖こよる。本発明は溶媒に溶解し難いポリマーをラジカル乳化重合、あるい はラジカル懸濁重合して用いることに特徴がある。
[0103] 本発明ポリマー P1,P6,P7,Q1の比較より、
(Q1)ォキセタ-ル基を有するモノマーを含んで ヽても溶出率は大き ヽ(20.83重量 %)
(P1)ォキセタニル基を有し、且つ脂環エポキシ以外の C成分を含まないが、溶出率 は低く抑えられている(1.83重量%)
(P6,7)脂環エポキシ以外の C成分を含まな 、が溶出率が低く抑えられて 、る (4.23, 1.41重量%)
となり、脂環エポキシ基の存在により、溶媒中への溶出が抑制されていることが確認 できる。脂環エポキシ基の開環による架橋反応が生じていることはほぼ間違いと考え られる。従って、 A成分である脂環エポキシが特異的に一部 C成分としても機能してい ると考免られる。
[0104] 脂環エポキシ基を有するモノマーをラジカル乳化重合、ラジカル懸濁重合すること によって (部分的に)架橋する理由については、詳細は不明であるが、水の存在下で ラジカル重合することによって一部の脂環エポキシ基が開環重合 (架橋)するものと 推察される。この開環重合 (架橋)した脂環エポキシ基は赤外吸収スペクトル分析で は観察される程ではなくその比率は小さ 、と考えられる。ォキセタ-ル基を有するモ ノマ一は同じ条件したで製造したポリマーの溶出率が大きく開環重合し難いことが確 認されている力 ォキセタン環はエポキシ環に比べ環のひずみエネルギーが小さく 開環重合し難 ヽこと〖こよるものと考えられる。 [0105] 本発明ポリマー P3ではォキセタ-ル基を含むモノマーと脂環エポキシと高級アルキ ルモノマーを、本発明ポリマー P6では脂環エポキシをそれぞれ重合させることにより E C/DEC溶媒への溶出率は 5%以下となり、良好な接着性を示した。ォキセタニル基を 含むラジカル重合性ポリマー単独では分子内部に架橋部位を作る反応が進行し難 V、ため、脂環エポキシモノマーや多官能ラジカル重合性モノマーを併用する必要が ある。
[0106] また、モノマー糸且成は同じである本発明ポリマー Pl、 4、 5は異なる乳化剤を用いた 力 いずれを用いても溶出率は 3%以下であった。反応開始剤としては、水溶性のラジ カル重合開始剤である過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモ-ゥム、過硫 酸リチウム等の過硫酸塩、;2,2,-ァゾビス(1-ィミノ- 2-ェチルプロパン)ジハイド口クロ ライド、 2,2, -ァゾビス [2- (2-イミダゾリン- 2-ィル)プロパン]、 2,2-ァゾビス [2-メチル -N - (2-ヒドロェチル)プロピオンアミド]、等をモノマー総量に対し 0.01〜数重量%程度 使用される。また、必要に応じて油溶性ラジカル重合開始剤である Ν,Ν'-ァゾビスイソ プチ口-トリル、ベンゾィルパーオキサイド等を併用することもできる。乳化剤としては アルキル硫酸塩、アルキルベンゼン硫酸塩、アルキルナフタレン硫酸塩等のァ-ォ ン系,
ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフエノールエーテ ル等のノ-オン系等の通常の各種界面活性剤に加え、ラジカル重合性基を有する反 応性乳化剤と称されるラジカル重合性基とァ-オン親水基あるいはノ-オン親水基を 有する化合物,
スルホェチルメタタリレートのアルカリ金属〜アンモ-ゥム塩、スルホェチルアタリレー ト酸のアルカリ金属〜アンモ-ゥム塩、 Ρ-スチレンスルホン酸のアルカリ金属〜アンモ ニゥム塩、ポリエチレングリコールメタタリレート、ポリエチレングリコールアタリレートな どが用いられるが、反応性乳化剤を用いることが好ましぐ中でもァニオン性基がリチ ゥム塩であるァニオン反応性乳化剤を用いることが更に好ましぐこれら反応性乳化 剤は 0.1〜20重量%程度用いることが出来る。同じモノマー組成であっても重合開始 剤の量や種類によりポリマーの構造や分子量は変わることが一般に知られて 、る。本 発明ポリマー Pl、 Ρ4、 Ρ5は同モノマー組成であるが異なる反応性重合開始剤を用い てポリマーを合成した。いずれの開始剤においても接着効果は発現したが、中でも p -スチレンスルホン酸リチウムを用いたときに、特に優れた特性を示した。溶出率のみ でなく電池特性への影響も考慮すると、中でも P-スチレンスルホン酸リチウムを用いる ことが好ましい。アルカリ金属に関しては、電池内での溶解ゃ充放電阻害等を考慮 すると Liであることが好まし 、。
[0107] 比較ポリマー Q1はォキセタニル基を含んでいるがポリマー内で部分架橋されてい ない為、電解液を注液すると、カチオン重合による架橋前にポリマーが電解液に溶 解するため十分な接着効果が発現し難!ヽ。
[0108] 比較ポリマー Q2は、溶出率が 1.84と低く抑えられている力 接着効果は得られなか つた。従って、溶出率を低く抑えるだけで不十分であり、カチオン重合性基を含むこと が必要であると考えられる。
[0109] また、各ポリマーにおけるモノマーの配合割合を表 3に示す。表 3においては重量
%でモノマーの配合割合を示して 、る。
[0110] [表 3]
Figure imgf000025_0001
[0111] 上記のポリマー P1〜P7及びポリマー Q1〜Q2を用いて、リチウム二次電池を作製し た。正極及び負極の作製、非水電解液の調製、及び電池の組み立ては以下のように して行った。
[0112] 〔正極の作製〕
正極はコバルト酸リチウムを炭素導電剤、 SP300、アセチレンブラックを 92 : 3 : 2の質 量比で混合して正極合剤粉末とし、混合装置 (例えば、ホソカワミクロン製メカノフユ 一ジョン装置 (AM- 15F) )内に 200gを充填する。これを、回転数 1500rpmで 10分間作 動させて、圧縮 '衝撃'せん断作用を起こさせて混合して正極合剤とした。ついで、こ の正極合剤にフッ素系榭脂結着剤 (PVDF)を 97: 3の質量比になるように NMP溶剤中 で混合して正極合剤スラリーとし、アルミ箔の両面に塗着し、乾燥後圧延して極板とし た。但し、メカノフュージョンでの混合は行わなくても良ぐそのまま材料をスラリー状 態で混合しても良ぐまた他の方法で混合しても良い。
[0113] ここでは正極活物質としてコバルト酸リチウムを用いた力 これに限定されるもので はなぐスピネル型マンガン酸リチウム、ニッケル酸リチウムに代表されるリチウム-ッ ケル複合酸化物やオリビン型リン酸化合物等でも構わない。
[0114] 尚、用いた正極のサイズは 380.0mm X 52.0mmであり、活物質塗布部は表裏それぞ れ、 339.0mm X 50.0mmと 271.0mm X 50.0mmである。塗布重量は 382mg/10cm2 (芯体 重量除く)であり、電極重量は 5.83g、活物質重量は 5.36gであった。
[0115] 〔負極の作製〕
負極は炭素材 (黒鉛)と CMC (カルボキシメチルセルロースナトリウム)、 SBR (スチレン ブタジエンゴム)を 98:1: 1の質量比で水溶液中にて混合し、銅箔の両面に塗着した後 、乾燥後圧延して極板とした。ここでは一般的な負極活物質を用いたが、グラフアイト •コ一タス ·酸化スズ ·金属リチウム ·珪素 ·およびそれらの混合物等であってもリチウム イオンを挿入脱離できうるものであれば構わな 、。
[0116] 尚、用いた負極のサイズは 347.0mm X 52.0mmであり、活物質塗布部は表裏それぞ れ 347.0mm X 52mmと 289.0mm X 52.0mmである。塗布重量は 171mg/cm2 (芯体重量除 く)であり、電極重量は 2.83g、活物質重量は 2.61gであった。
[0117] 〔非水電解液の調製〕
電解液には、主として LiPFを 1.0mol/lの割合で EC:DECを 3:7の容積比で溶解'混
6
合したものを用いた。尚、電解液としても特に本実施例に限定されるものではなぐ Li 塩としては例えば LiBF ,
4
LiPF , LiN(SO CF ) , LiN(SO C F ) ,
6 2 3 2 2 2 5 2
LiPF (C F ) [但し、 Kx<6,
6-x n 2n+l x
n=l or 2]等が挙げられ、これらの 1種もしくは 2種以上を混合して使用できる。支持塩 の濃度は特に限定されないが、電解液 1リットル当り 0.8- 1.5モルが望ましい。また、溶 媒種としては EC,
PC, GBL, DEC, EMC, DMC等のカーボネート系溶媒が好ましぐ更に好ましくは環 状カーボネートと鎖状カーボネートの組合せが好ましい。尚、ゲルポリマー電解質に ついては実施例及び比較例で詳細を記載する。
[0118] 〔電池の組立〕
電池の構成は正'負極それぞれにリード端子を取り付け、セパレータを介して渦巻 状に巻き取ったものをプレスして、扁平状に押し潰した電極体を電池外装体としてァ ルミ-ゥムラミネートを用いたものに入れて注液を行 ヽ、封止して試験用電池とした。 尚、本試作電池の設計容量は 780mAhである。
[0119] (本発明電池 T1)
ポリマーの製法 1で得られたポリマー P1を固形分濃度が 2重量%となるようにェタノ ールで希釈したポリマー分散液を作製した。前述の製法に従 ヽ作製した正負極をポ リエチレン製のセパレータを介して渦巻状に巻き取ったものを電池外装としてアルミ
-ゥムラミネートを用いた外装体に挿入後、ポリマー分散液を 3ml注液し、 l/3atmで 5 min保持の含液工程を 2回繰り返した後に、余剰なポリマー分散液を除去後、電池を クランプに挟んだ状態で 105°C-2.5時間の真空減圧乾燥を行 、、次 、で窒素雰囲気 下のドライボックス中で電解液を注液して本発明電池 T1を作製した。
[0120] (本発明電池 T2)
製造例 1で得られたポリマー P1を固形分濃度が 3重量%となるように希釈したポリマ 一分散液を 3ml注液した以外は、本発明電池 T1と同様の方法で本発明電池 T2を作 製した。
[0121] (本発明電池 T3)
製造例 1で得られたポリマー P1を固形分濃度が 5重量%となるように希釈したポリマ 一分散液を 3ml注液した以外は、本発明電池 T1と同様の方法で本発明電池 T3を作 製した。
[0122] (本発明電池 T4)
製造例 2で得られたポリマー P2を固形分濃度が 2重量%となるように希釈したポリマ 一分散液を 3ml注液した以外は、本発明電池 T1と同様の方法で本発明電池 T4を作 製した。
[0123] (本発明電池 T5) 製造例 3で得られたポリマー P3を固形分濃度が 2重量%となるように希釈したポリマ 一分散液を 3ml注液した以外は、本発明電池 T1と同様の方法で本発明電池 T5を作 製した。
[0124] (本発明電池 T6)
製造例 4で得られたポリマー P4を固形分濃度が 2重量%となるように希釈したポリマ 一分散液を 3ml注液した以外は、本発明電池 T1と同様の方法で本発明電池 T6を作 製した。
[0125] (本発明電池 T7)
製造例 5で得られたポリマー P5を固形分濃度が 2重量%となるように希釈したポリマ 一分散液を 3ml注液した以外は、本発明電池 T1と同様の方法で本発明電池 T7を作 製した。
[0126] (本発明電池 T8)
製造例 6で得られたポリマー P6を固形分濃度が 2重量%となるように希釈したポリマ 一分散液を 3ml注液した以外は、本発明電池 T1と同様の方法で本発明電池 T7を作 製した。
[0127] (本発明電池 T9)
製造例 7で得られたポリマー P7を固形分濃度が 2重量%となるように希釈したポリマ 一分散液を 3ml注液した以外は、本発明電池 T1と同様の方法で本発明電池 T9を作 製した。
[0128] (比較電池 R1)
前述の製法に従い作製した正負極をポリエチレン製のセパレータを介して渦巻状 に巻き取ったものをアルミニウムラミネート外装体に挿入後、 105°C-2.5時間の真空減 圧乾燥を行 ヽ、次 、で窒素雰囲気下のドライボックス中で電解液を注液して比較電 池 R1を作製した。
[0129] (比較電池 R2)
比較電池 R1と同様に作製した電池に、トリプロピレングリコールジアタリレート (分子 量力 S300程度のもの)と、電解液 (1.0M LiPF
6
EC/DEC=3/7)とが質量比で 1:18となるように混合した後、この混合溶液に重合開始 剤として t-へキシルバーォキシビバレートを 3000ppm添カ卩したものを注液 (4ml)した後 、 60°Cで 3時間加熱して硬化処理をして、比較電池 R2を作製した。
[0130] (比較電池 R3)
前述の製法に従って作製した正極上に THFにポリフッ化ビ-リデン (PVDF)を 5重量 %となるように溶解させた溶液を塗工した後に湿式で卷取りを行 ヽ、電池をクランプ に挟んだ状態で 105°C-2.5時間の真空減圧乾燥を行い、その後は比較電池 R1と同 様の方法で比較電池 R3を作製した。
[0131] (比較電池 R4)
前述の製法に従い作製した正負極をポリエチレン製のセパレータを介して渦巻状 に巻き取ったものをアルミニウムラミネート外装体に挿入後、電解液を 4ml注液し、 60 °Cで 12時間硬化処理をして比較電池 R4を作製した。
[0132] 尚、電解液は(1)ォキセタ-ル基を含むラジカル重合性モノマーとアクリルモノマー を共重合させてなる分子量約 40万のポリマー (分子内架橋なし)を溶解させた電解液 ( Li電解質なし、 EC/DEC=3/7)と、 (2) LiPFを添カ卩した電解液 (EC/DEC=3/7)を混合
6
し、 LiPF濃度が 1.0M、かつ、電解液とポリマーが質量比で 60:1となるように注液直前
6
に調製した。この種のポリマーは LiPFを重合開始剤として架橋反応が進行するため
6
に、注液前工程で(1)ポリマー入り電解液と (2) Li電解質を含む電解液を混合する必 要がある。
[0133] (比較電池 R5)
前述の製法に従い作製した負極上に、製造例 1で得られたポリマー P1を 5重量%と なるようにエタノールで希釈したポリマー分散液を塗工した負極を乾燥後、その後は 比較電池 R1と同様の方法で比較電池 R5を作製した。
[0134] (比較電池 R6)
製造例 1で得られたポリマー P1を固形分濃度が 1重量%となるように希釈したポリマ 一分散液を 3ml注液した以外は、本発明電池 T1と同様の方法で比較電池 R6を作製 した。
[0135] (比較電池 R7)
製造例 1で得られたポリマー P1を固形分濃度が 10重量%となるように希釈したポリ マー分散液を 3ml注液した以外は、本発明電池 Tlと同様の方法で比較電池 R7を作 製した。
[0136] (比較電池 R8)
製造例 7で得られたポリマー Q1を固形分濃度力 ¾重量%となるように希釈したポリマ 一分散液を 3ml注液した以外は、本発明電池 T1と同様の方法で比較電池 R8を作製 した。
[0137] (比較電池 R9)
製造例 8で得られたポリマー Q2を固形分濃度力 ¾重量%となるように希釈したポリマ 一分散液を 3ml注液した以外は、本発明電池 T1と同様の方法で比較電池 R9を作製 した。
[0138] 〔電池の評価〕
•充電試験
lC(750mA)の電流で 4.2Vまで定電流充電を行!、、 4.2V定電圧で電流 C/20(37.5m A)になるまで充電した。
[0139] ·放電試験
1 C(750mA)の電流で 2.75 Vまで定電流放電を行つた。
[0140] ·休止
充電試験と放電試験の間隔は 1 Ominとした。
[0141] 〔耐ショート特性の評価〕
本作用効果による耐サーマル特性の向上を確認する目的で、 2.75Vまで放電した 電池を 120°Cから 160°Cまで各温度 lOminの保持時間を経て 10°C毎に昇温し、電池電 圧の測定によりショートの有無を確認した。セパレータが収縮して電極間絶縁性が失 われた場合は、急激な電圧低下等が見られる為に、本手法ではポリマー電解質によ るセパレータ /電極間の接着性を評価することが出来る。
[0142] 〔充電保存特性の評価〕
作製した電池を上記充放電条件にて 1サイクルさせた後に、再度 4.2Vまで充電させ て電池の厚みを測定した。この充電状態の電池を、 80°C雰囲気の恒温槽に放置して 4日経過後の電池の厚みを測定した。ポリマーや電解液の分解が見られた場合は、 分解ガス等による電池の膨れが見られる為、電池膨れを基に高温での反応性を評価 した。
[0143] 〔放電負荷特性の評価〕
作製した電池を上記充放電条件にて 1サイクルさせた後に、再度 4.2Vまで充電させ 、 3C(2250mA)の電流で放電を行い、放電容量を算出した。 1C放電時の容量と 3C放 電時の容量を比較し、 3C/1Cの放電効率を算出して、ハイレート放電性能を評価し た。
[0144] [表 4]
Figure imgf000031_0001
[0145] くポリマーの接着性評価 >
本発明電池 T1と比較電池 R1-5の耐ショート特性を調べた。その結果を表 4と図 1〖こ 示している。
[0146] ポリマー未添カ卩の比較電池 R1では加温により、 130°Cでセパレータの熱収縮に起 因して正負極間のショートが発生する。それに対し、各種ゲルポリマーを用いた比較 電池 R2-4では、ゲル電解質により電極とセパレータが接着されており、耐ショート性 は大きく向上している。しかし、電極全面にイオン伝導性の低いポリマー層が存在し、 且つ、電解液すべてがゲルィ匕している為、放電性能の低下が顕著である。一方、本 発明電池 T1では放電性能を低下させずに、従来技術と同等の良好な耐ショート性を 得ることが出来た。電極とセパレータが接した状態でポリマーを注液することにより、 ポリマーが電極内部へ浸透する前に電極とセパレータが接着したこと、及びポリマー が電解液中へ溶出しないために少量で良好な接着効果を発現したものと考えられる 。また、同じポリマーを用いても製法の異なる比較電池 R5では耐ショート性の向上が 確認できなかった。ポリマーを負極上に塗布した場合、電極内部へポリマー粒子が 浸透してしまい、接着に必要な電極表面のポリマー層が形成され難いためと考えら れる。
[0147] ォキセタニル基を有するポリマーは、 LiPFや LiBFのリチウムイオンが触媒的に作
6 4
用して、架橋部位のカチオン重合が進行し、ポリマー間の結合がより強固になる。分 子量が高い為にエタノールを除去した時点である程度の接着性は発現しているが、 注液後の高温エージングにより、上述のカチオン重合が進み、より接着性が強化され る為に、ごく少量のポリマー量でも高い接着性を発現できる。また、カチオン重合を開 始する触媒は、電池に必要な Li電解質である為、特に電池性能に影響を与えるよう な開始剤を添加することがない。カチオン重合を開始する Li電解質としては、 LiPFと
6
LiBFが好適である。その他の電解質は、試験の結果、重合開始の機能を保有しな
4
いことから、電池内部には LiPF又は LiBFが少量含まれていることが必要である。
6 4
[0148] <放電特性 >
表 4に示すように、負荷特性については、電池内部が完全に電解液である比較電 池 R1が最も良好な性能を示し、電池内部のゲルィ匕度が高まるほど、ハイレートでの放 電性能が低下した。今後、更に高容量ィ匕が進行した場合は、ノ、ィレート放電性能の 低下は更に顕著になるものと考えられ、その意味では比較電池 R2や R4等の全ゲル 型の電池は不向きであると考えられる。比較電池 R3についても、湿式で PVDFを塗工 する関係上、電極内部にポリマーが幾分浸透し、放電性能が低下する傾向が見られ る。セパレータ /電極間の接着性を確保する為には、ポリマー量がある程度必要であ り、電池内架橋タイプでない PVDFでは、ある程度分子量が高ぐゲル化し易い組成 が必要であり、そういった意味では接着性と放電特性の両立は困難な傾向にある。 本発明電池 T1は、電池内架橋タイプであり、ごく少量で接着性を確保できることから 、放電性能と接着性の両立が可能である。電極とセパレータの間のみが接着されて おり、周りの電解液はゲルイ匕していないために、電解液の移動が自由であり、そのた めイオン伝導性が損なわれな力つたことに起因すると考えられる。
[0149] <保存特性 >
表 4に示すように、比較電池 R1と比較して、接着性の良好な電池は、電極間の距離 が狭くなるため、電極と反応する余剰な電解液が少なぐ分解ガスの発生が少ない。 但し、ォキセタン系の全ゲル型ポリマー電池である比較電池 R4は、ォキセタニル基の 重合による結合部位が充電保存時の酸ィ匕に弱い傾向にあり、この部位の分解により ガス発生が増加する傾向にある。特開 2003-142158、特開 2002-110245、特開 2004- 185920等ではこの種のポリマー電解質が用いられている力 ポリマーが電解液中へ 溶出するため、良好な接着性が得られない。本発明電池 T1や比較電池 R5にもォキ セタ-ル基を含むポリマーが含まれている力 全ゲル型のポリマーと異なり、ォキセタ -ル基の数も少なぐポリマー添加量自体が少ないことから、ガス発生増加等の悪影 響も大幅に改善されている。
[0150] <電池内ポリマー添カ卩量の比較 >
ポリマー添カ卩量の最適値を調べる目的で本発明電池 T1-3と比較電池 Rl、 R6-7の 耐ショート特性と負荷特性と充電保存特性について調べた。その結果を表 5に示す。
[0151] [表 5]
Figure imgf000033_0001
[0152] ポリマー添カ卩量が少ない比較電池 R6では、セパレータと電極の界面に存在するポ リマー量不足で、十分な耐ショート性能が得られな力 た。接着効果を発現するため には 2重量%以上に希釈したポリマー分散液を用いることが必要であり、分析の結果 、この際に電池内に含まれるポリマー量は正極活物質 lg当り O.Olgであることが解か つた o
[0153] また、ポリマー量を増加させると接着効果は向上するものの、比較電池 R7では負荷 特性の低下が顕著である。先に述べた PVDF系ポリマー電池である比較電池 R3の負 荷特性を基準に評価すると、添加するポリマー量は希釈液濃度で 5重量%までがこ れ以上の性能を発現可能な添加量であり、これが添加量の上限であることが望まし い。分析の結果、この際に電池内に含まれるポリマー量は正極活物質 lg当り 0.06gで あることが解力つた。
[0154] このこと力ら、ポリマー添力卩量は正極活物質 lgあたり 0.01-0.06gであることが望まし い。尚、ポリマー量の規定に関しては、本来電解液濃度を基準にすることが好ましい 力 本電池は作製上、その規定が困難であり、電池内で基準となる正極活物質あたり の量で算出した。
次に、これらのポリマーを用いて作製した本発明電池 T4-9及び比較電池 R8-9で耐 ショート性、負荷特性、保存特性を調べた。その結果を表 6に示す。
[0155] [表 6]
Figure imgf000034_0001
[0156] 本発明電池 T4-9は 160°Cまでショートが確認されず、高い耐ショート性を有すること が確認された。これは表 6に示した溶出率の結果と一致するものであり、接着による耐 ショート性を確保するには溶出率が 10重量 %以下である必要があることが解力つた。ま た、比較電池 R8は耐ショート性には優れる力 ポリマーの溶出率が大きく電解液中へ 溶出する為、熱溶着により封止をする際に封止部にポリマーが嚙んでしまい、ラミネ 一トの封止性が顕著に低下した。また、電解液中へ溶出したポリマーの分解により、 充電保存後のガス発生が増加した。これより、充電保存後のガス発生を減らすために は、溶出率の低下が必要であることが明ら力となった。一方、溶出率は小さいがカチ オン重合基を含まな 、ポリマー Q2を用いた比較電池 R9では、接着効果が得られな 力つたことから、接着効果を発現するためにはポリマー内にカチオン重合性基を含む 必要がある。

Claims

請求の範囲
[1] 正極、負極及び電解液を備えるリチウムイオン二次電池の前記正極及び前記負極 と、それらの間に配置されるセパレータとを接着させるためのポリマーであって、
(A)カチオン重合性を有するモノマーユニットと、 (B)前記電解液に対する親和性 を付与するモノマーユニットと、 (C)前記電解液に対する難溶性を付与するモノマー ユニットと、(D)ァ-オン性及びノ-オン性の親水基を含むモノマーユニットとを含み 、乳化重合または懸濁重合によるラジカル重合によって得られるポリマーであり、次 式で定義されるエチレンカーボネート (EC)とジェチルカーボネート (DEC)の混合溶 媒〔EC: DEC = 5: 5 (重量比)〕への溶出率が 10重量%以下であることを特徴とする リチウムイオン二次電池用ポリマー。
•溶出率 (重量%) = (混合溶媒に溶出されたポリマー重量 Z総ポリマー重量) X 100 [2] モノマーユニット (C)力 ポリマー中にお 、て部分架橋して 、るユニットであって、多 官能ラジカル重合性モノマーにより架橋しているモノマーユニット(C )であることを特
1
徴とする請求項 1に記載のリチウムイオン二次電池用ポリマー。
[3] モノマーユニット (C)が、前記混合溶媒に対して難溶性の炭化水素基を有するラジ カル重合性モノマーによるモノマーユニット(C )であることを特徴とする請求項 1また
2
は 2に記載のリチウムイオン二次電池用ポリマー。
[4] モノマーユニット (C )力 以下の式 1で表わされる多官能ラジカル重合性モノマー
1
によるモノマーユニットであることを特徴とする請求項 2に記載のリチウムイオン二次 電池用ポリマー。
[化 1]
R1
(CH2=C-C00) 2~4- (X) (式 1)
(式中、 R1は—Hまたは—CHを表わし、 Xは水酸基化合物の残基を表わす。 )
3
[5] モノマーユニット(C )が、以下の式 2で表わされるラジカル重合性モノマーによるモ
2
ノマーユニットであることを特徴とする請求項 3に記載のリチウムイオン二次電池用ポ リマー。
[化 2]
R2
CH2=C-C00R3 (式 2)
(式中 R2は、 Hまたは— CHを表わし、 R3は炭素数 8以上のアルキル基、炭素数
3
8以上の脂環アルキル基、及びアルキル置換脂環アルキル基の!/、ずれかの 1種以上 を表わす。 )
[6] 正極、負極及び電解液を備えるリチウムイオン二次電池の前記正極及び前記負極 と、それらの間に配置されるセパレータとを接着させるためのポリマーであって、
(A)カチオン重合性を有するモノマーユニットと、 (B)前記電解液に対する親和性 を付与するモノマーユニットと、 (D)ァ-オン性及びノ-オン性の親水基を含むモノマ 一ユニットとを含み、乳化重合または懸濁重合によるラジカル重合によって得られる ポリマーであり、モノマーユニット (A)の少なくとも一部が脂環エポキシ基を有するラ ジカル重合性モノマーのラジカル重合によって与えられており、かつラジカル重合の 際脂環エポキシ基を有するラジカル重合性モノマーが含まれることにより、得られるポ リマーが、次式で定義されるエチレンカーボネート (EC)とジェチルカーボネート (DE C)の混合溶媒〔EC: DEC = 5: 5 (重量比)〕への溶出率が 10重量%以下であること を特徴とするリチウムイオン二次電池用ポリマー。
•溶出率 (重量%) = (混合溶媒に溶出されたポリマー重量 Z総ポリマー重量) X 10
0
[7] モノマーユニット (A)力 脂環エポキシ基を有するラジカル重合性モノマー及び Z またはォキセタニル基を有するラジカル重合性モノマーによるモノマーユニットである ことを特徴とする請求項 1〜6のいずれか 1項に記載のリチウムイオン二次電池用ポリ マー。
[8] 脂環エポキシ基を有するラジカル重合性モノマー力 以下の式 3で表わされる 3, 4 エポキシシクロへキシノレメチノレアタリレート、または 3, 4—エポキシシクロへキシノレメ チルメタタリレートであることを特徴とする請求項 6または 7に記載のリチウムイオン二 次電池用ポリマ
[化 3]
CH2=C— (式 3)
Figure imgf000037_0001
(式中、 R4は Hまたは CHを表わす。 )
3
ォキセタニル基を有するラジカル重合性モノマー力 以下の式 4で表わされるォキ セタンアタリレートまたはォキセタンメタタリレートであることを特徴とする請求項 7に記 載のリチウムイオン二次電池用ポリマー。
[化 4]
Figure imgf000037_0002
(式中、 R5は— Hまたは— CHを表わし、 R°は炭素数 1〜6のアルキル基を表わす。
3
)
モノマーユニット (B)力 以下の式 5で表わされるアクリルエステルモノマー及びメタ クリルエステルモノマー並びに以下の式 6で表わされるビュルエステルモノマーから 選ばれる少なくとも一種のモノマーによるユニットであることを特徴とする請求項 1〜9 のいずれか 1項に記載のリチウムイオン二次電池用ポリマー。
[化 5]
R7
CH2=C- C00R8 (式 5)
CH2=CH-0C0R9 (式 6)
(式中、 R7は—Hまたは—CHを表わし、 R8は炭素数 1〜6のアルキル基、一(CH CH O)〜 CH、― (CH CH O)〜 C H、― (CH CH (CH ) 0)〜 CH、または
2 1 3 3 2 2 1 3 2 5 2 3 1 3 3
- (CH CH (CH ) θ)〜 C Hを表わし、 R9は CH、― C H、または— C Hを表
2 3 1 3 2 5 3 2 5 3 7 わす。)
[11] 正極と、負極と、前記正極及び前記負極の間に配置されるセパレータと、電解液と を備えるリチウムイオン二次電池であって、
請求項 1〜10のいずれ力 1項に記載のポリマーをカチオン重合させたポリマー力 前記正極及び前記負極と、前記セパレータとの間に配置されていることを特徴とする リチウムイオン二次電池。
[12] 前記ポリマーの量が、前記正極に含まれる正極活物質に対して 1〜6重量%である ことを特徴とする請求項 11に記載のリチウムイオン二次電池。
[13] 正極と、負極と、前記正極及び前記負極の間に配置されるセパレータと、電解液と
、これらを収容する外装体とを備えるリチウムイオン二次電池を製造する方法であつ て、
前記正極、前記負極、及び前記セパレータを前記外装体内に挿入する工程と、 請求項 1〜10のいずれか 1項に記載のポリマーの分散液を前記外装体内に注入 する工程と、
前記ポリマーの分散液の余剰分を除去した後、前記ポリマーの分散液を乾燥させ る工程と、
前記ポリマーの分散液の乾燥後、前記電解液を前記外装体内に注入することによ り、前記ポリマーをカチオン重合させる工程とを備えることを特徴とするリチウムイオン 二次電池の製造方法。
PCT/JP2006/304705 2005-03-30 2006-03-10 リチウムイオン二次電池用ポリマー及びそれを用いたリチウムイオン二次電池 WO2006112206A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/887,225 US8354188B2 (en) 2005-03-30 2006-03-10 Polymer for lithium ion secondary battery and lithium ion secondary battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005098258A JP4822726B2 (ja) 2005-03-30 2005-03-30 リチウムイオン二次電池用ポリマー及びそれを用いたリチウムイオン二次電池
JP2005-098258 2005-03-30

Publications (1)

Publication Number Publication Date
WO2006112206A1 true WO2006112206A1 (ja) 2006-10-26

Family

ID=37114940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304705 WO2006112206A1 (ja) 2005-03-30 2006-03-10 リチウムイオン二次電池用ポリマー及びそれを用いたリチウムイオン二次電池

Country Status (5)

Country Link
US (1) US8354188B2 (ja)
JP (1) JP4822726B2 (ja)
KR (1) KR100960779B1 (ja)
CN (1) CN100524902C (ja)
WO (1) WO2006112206A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152991A1 (ja) * 2007-06-15 2008-12-18 Nitto Denko Corporation 電池用セパレータのための架橋性ポリマー担持多孔質フィルムとその利用
EP2262039A1 (en) * 2008-03-31 2010-12-15 Nitto Denko Corporation Cell separator and cell using the same
WO2013077211A1 (ja) * 2011-11-25 2013-05-30 Jsr株式会社 ゲル電解質形成剤、ゲル電解質形成用組成物、ゲル電解質、および蓄電デバイス
US11374247B2 (en) 2013-07-02 2022-06-28 Asahi Kasei Kabushiki Kaisha Electrolyte solution and method for producing same, continuously dissolving facility, electrolyte membrane, electrode catalyst layer, membrane electrode assembly and fuel cell

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8053112B2 (en) 2006-03-17 2011-11-08 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
CA2625271A1 (en) * 2008-03-11 2009-09-11 Hydro-Quebec Method for preparing an electrochemical cell having a gel electrolyte
JP5143053B2 (ja) * 2009-02-25 2013-02-13 株式会社日立製作所 リチウムイオン二次電池
JP5721179B2 (ja) * 2009-11-13 2015-05-20 Necエナジーデバイス株式会社 リチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池
KR20130081577A (ko) * 2012-01-09 2013-07-17 삼성에스디아이 주식회사 리튬 이차 전지
JP5810014B2 (ja) * 2012-03-15 2015-11-11 富士フイルム株式会社 非水二次電池用電解液及び二次電池
JP5447720B1 (ja) * 2012-05-31 2014-03-19 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池
WO2014038535A1 (ja) 2012-09-10 2014-03-13 Necエナジーデバイス株式会社 ポリマーゲル電解質、リチウムイオン電池およびその製造方法
KR101931418B1 (ko) * 2013-10-29 2018-12-20 가부시키가이샤 오사카소다 전지 전극용 바인더, 및 그것을 사용한 전극 그리고 전지
JP6302400B2 (ja) * 2013-11-27 2018-03-28 旭化成株式会社 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
JP5848783B2 (ja) * 2014-01-24 2016-01-27 旭化成イーマテリアルズ株式会社 積層体、蓄電デバイス及びリチウムイオン二次電池
CN103872379B (zh) * 2014-03-21 2017-04-26 东莞新能源科技有限公司 锂离子电池凝胶电解液
KR101938385B1 (ko) * 2014-12-08 2019-04-11 주식회사 엘지화학 바인더 고분자 층을 갖는 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
US10483525B2 (en) * 2015-03-24 2019-11-19 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP6693101B2 (ja) * 2015-11-30 2020-05-13 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池機能層用組成物の製造方法、非水系二次電池用機能層及び非水系二次電池
KR101975149B1 (ko) * 2017-09-14 2019-05-03 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 세퍼레이터
CN108400335B (zh) * 2018-03-09 2021-07-02 清华大学 粘结剂、组合物、电极材料及其制备方法
KR102338540B1 (ko) 2018-04-10 2021-12-14 주식회사 엘지에너지솔루션 리튬 이차 전지 및 이의 제조방법
KR102325037B1 (ko) * 2018-04-27 2021-11-12 주식회사 엘지에너지솔루션 리튬 이차 전지 및 이의 제조방법
JP7409311B2 (ja) * 2018-08-31 2024-01-09 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池電極合材層用スラリー組成物、全固体二次電池固体電解質層用スラリー組成物、全固体二次電池用電極、全固体二次電池用固体電解質層、および全固体二次電池
CN112771705B (zh) * 2018-10-05 2024-02-23 株式会社村田制作所 锂离子二次电池用电解液及锂离子二次电池
KR102609224B1 (ko) * 2018-10-11 2023-12-06 아사히 가세이 가부시키가이샤 가교 세퍼레이터를 사용한 리튬 이온 전지
KR20230063346A (ko) * 2021-11-01 2023-05-09 주식회사 엘지에너지솔루션 겔 폴리머 전해질 이차전지의 제조방법 및 이에 의해 제조된 겔 폴리머 전해질 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270152A (ja) * 2001-03-09 2002-09-20 Yuasa Corp リチウム二次電池
JP2002298820A (ja) * 2001-03-29 2002-10-11 Yuasa Corp 電池用セパレータおよびそれを用いた電池
JP2003346788A (ja) * 2002-05-30 2003-12-05 Yuasa Corp 電池用負極およびそれを用いた電池
JP2004185920A (ja) * 2002-12-02 2004-07-02 Nitto Denko Corp 電池用セパレータのための架橋性ポリマー担持多孔質フィルムとそれを用いた電池の製造方法
JP2004335210A (ja) * 2003-05-06 2004-11-25 Nitto Denko Corp 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いた電池の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597294B2 (ja) 1999-12-20 2010-12-15 サンスター技研株式会社 ポリマー固体電解質リチウムイオン2次電池
JP4911813B2 (ja) * 2000-10-03 2012-04-04 サンスター技研株式会社 固体電解質用架橋性組成物、ポリマー固体電解質リチウムイオン2次電池及びポリマー固体電解質リチウムイオン2次電池の製造法
JP2003142159A (ja) 2001-11-01 2003-05-16 Hitachi Maxell Ltd リチウムイオン二次電池の製造方法
JP2003142158A (ja) * 2001-11-01 2003-05-16 Hitachi Maxell Ltd リチウムイオン二次電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270152A (ja) * 2001-03-09 2002-09-20 Yuasa Corp リチウム二次電池
JP2002298820A (ja) * 2001-03-29 2002-10-11 Yuasa Corp 電池用セパレータおよびそれを用いた電池
JP2003346788A (ja) * 2002-05-30 2003-12-05 Yuasa Corp 電池用負極およびそれを用いた電池
JP2004185920A (ja) * 2002-12-02 2004-07-02 Nitto Denko Corp 電池用セパレータのための架橋性ポリマー担持多孔質フィルムとそれを用いた電池の製造方法
JP2004335210A (ja) * 2003-05-06 2004-11-25 Nitto Denko Corp 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いた電池の製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159863A4 (en) * 2007-06-15 2012-01-04 Nitto Denko Corp POROUS FILM LOADED WITH POLYMER RETICULABLE FOR BATTERY SEPARATOR AND USE THEREOF
JP2008311126A (ja) * 2007-06-15 2008-12-25 Nitto Denko Corp 電池用セパレータのための架橋性ポリマー担持多孔質フィルムとその利用
EP2159863A1 (en) * 2007-06-15 2010-03-03 Nitto Denko Corporation Crosslinkable polymer-loaded porous film for battery separator and use thereof
WO2008152991A1 (ja) * 2007-06-15 2008-12-18 Nitto Denko Corporation 電池用セパレータのための架橋性ポリマー担持多孔質フィルムとその利用
US8420247B2 (en) 2007-06-15 2013-04-16 Nitto Denko Corporation Crosslinking polymer-supported porous film for battery separator and use thereof
CN101689623B (zh) * 2007-06-15 2012-12-26 日东电工株式会社 电池隔膜用的负载有可交联聚合物的多孔膜和其用途
EP2262039A1 (en) * 2008-03-31 2010-12-15 Nitto Denko Corporation Cell separator and cell using the same
EP2262039A4 (en) * 2008-03-31 2011-07-20 Nitto Denko Corp Cell selector and cell with it
CN101983445A (zh) * 2008-03-31 2011-03-02 日东电工株式会社 电池用隔膜和使用所述隔膜的电池
CN101983445B (zh) * 2008-03-31 2014-07-23 日东电工株式会社 电池用隔膜和使用所述隔膜的电池
KR101474592B1 (ko) 2008-03-31 2014-12-18 닛토덴코 가부시키가이샤 전지용 세퍼레이터와 이것을 사용하여 이루어지는 전지
US9142817B2 (en) 2008-03-31 2015-09-22 Nitto Denko Corporation Battery separator and battery using the same
WO2013077211A1 (ja) * 2011-11-25 2013-05-30 Jsr株式会社 ゲル電解質形成剤、ゲル電解質形成用組成物、ゲル電解質、および蓄電デバイス
JPWO2013077211A1 (ja) * 2011-11-25 2015-04-27 Jsr株式会社 ゲル電解質形成剤、ゲル電解質形成用組成物、ゲル電解質、および蓄電デバイス
US11374247B2 (en) 2013-07-02 2022-06-28 Asahi Kasei Kabushiki Kaisha Electrolyte solution and method for producing same, continuously dissolving facility, electrolyte membrane, electrode catalyst layer, membrane electrode assembly and fuel cell

Also Published As

Publication number Publication date
US8354188B2 (en) 2013-01-15
US20090246635A1 (en) 2009-10-01
KR20080003793A (ko) 2008-01-08
CN101156259A (zh) 2008-04-02
CN100524902C (zh) 2009-08-05
KR100960779B1 (ko) 2010-06-01
JP4822726B2 (ja) 2011-11-24
JP2006278235A (ja) 2006-10-12

Similar Documents

Publication Publication Date Title
WO2006112206A1 (ja) リチウムイオン二次電池用ポリマー及びそれを用いたリチウムイオン二次電池
CN108140839B (zh) 非水电解质二次电池电极用粘合剂及其制造方法、以及其用途
JP6130413B2 (ja) ゲルポリマー電解質二次電池の製造方法、及びそれによって製造されたゲルポリマー電解質二次電池
JP5394239B2 (ja) ゲル状ポリマー電解質及びこれを備えた電気化学デバイス
KR102129829B1 (ko) 리튬 이온 이차 전지 부극용 슬러리, 리튬 이온 이차 전지용 전극 및 그 제조 방법, 그리고 리튬 이온 이차 전지
KR101539819B1 (ko) 이차 전지용 전극 및 이차 전지
KR101819067B1 (ko) 이차 전지용 정극 및 그 제조 방법, 슬러리 조성물, 그리고 이차 전지
JP4412840B2 (ja) リチウムポリマー電池およびその製造法
KR102270873B1 (ko) 젤 폴리머 전해질용 조성물 및 이를 포함하는 젤 폴리머 전해질 및 리튬 이차 전지
JP5089595B2 (ja) 新規な高分子電解質及び電気化学素子
KR20170140253A (ko) 비수 전해질 2차 전지 전극용 바인더 및 그 용도
KR20160008519A (ko) 리튬 이온 이차 전지용 바인더 조성물, 리튬 이온 이차 전지용 슬러리 조성물, 리튬 이온 이차 전지용 전극, 리튬 이온 이차 전지, 그리고 리튬 이온 이차 전지용 바인더 조성물의 제조 방법
KR102422331B1 (ko) 축전 디바이스 전극용 수지 조성물
JP2010527133A (ja) 二次電池およびその製造方法
JP4549621B2 (ja) 電池用セパレータのための架橋性ポリマー担持多孔質フィルムとそれを用いた電池の製造方法
EP3961784A1 (en) Copolymer for polymer electrolyte, gel polymer electrolyte comprising same, and lithium secondary battery
JP5124178B2 (ja) 電池用セパレータのための架橋性ポリマー担持多孔質フィルムとその利用
TW201925278A (zh) 非水系電池電極用漿液之製造方法
JP2007280947A (ja) 非水電解質電池及びその製造方法
CN113166425B (zh) 凝胶聚合物电解质用聚合物、包含其的凝胶聚合物电解质和锂二次电池
CN113993920A (zh) 用于聚合物电解质的共聚物以及包括该共聚物的凝胶聚合物电解质和锂二次电池
JP2002158037A5 (ja)
KR20200017060A (ko) 리튬이온 이차전지용 수계 바인더, 그를 포함하는 리튬이온 이차전지용 음극, 상기 음극을 포함하는 리튬이온 이차전지, 및 상기 바인더에 포함되는 공중합체의 중합방법
WO2024034442A1 (ja) シリコン系活物質を含む二次電池負極を備える二次電池の電極用バインダー及びその利用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680011034.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11887225

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077022214

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728873

Country of ref document: EP

Kind code of ref document: A1